Experiment 1

METHOD

Participants. 123 (33 men) students from the ULg. All of them were previously photographed.

Stimuli. Each critical stimulus (CS) was a face in greyscale (0.89 X 1.07°) taken among 6 unknown faces (3 males and 3 females) or 2 familiar faces (participants’ face and his/her friend’s face).

Procedure. Participants were instructed to stare at a centred fixation cross and to judge which arm of a bigger cross presented very briefly was longer compared to the other one.

There was a total of 9 trials. Each trial was initiated by a key press. A fixation cross was presented for 1500 ms. Then, a masked bigger cross appeared for 200 ms randomly in one of 4 quadrants on the bigger cross presented for 200 ms in addition to the bigger cross. After the length judgment, participants were asked to indicate/guess what had been present for 1500 ms. Then, a masked bigger cross appeared for 200 ms randomly in one of 4 quadrants on the fixation cross at fixation for 200 ms at fixation.

RESULTS

• Overall accuracy on the primary task = 69%.
• Accuracy did not differ significantly between the 3 groups on the two critical trials nor on the bias trial. Performance on critical trials (4 and 8), 70%, did not differ significantly from that during adjacent trials (3, 5, 6, 7), 71%.

• Recognition of faces and objects is not significantly different (probably because objects are more discriminable than faces). Recognition is at random level on the first CS.
• Replication of previous findings: faces are better detected than objects (Experiment 2).
• The identity/familiarity of the face is not a relevant factor for attentional capture (Experiment 1).

CONCLUSIONS

• The identity/familiarity of the face is not a relevant factor for attentional capture (Experiment 1).
• No difference overall.
• However, when CS is detected, participants do not seem to be biased to think that they should see themselves: when they choose self-face, they really saw it.

REFERENCES


CD and SB are supported by a grant from the Belgian FNRS (8.4506.05-2.4539.05). CL is a Research Fellow of the FNRS.