When do faces capture attention? Evidence from eye movements

Method

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Target cue (1000 ms)</th>
<th>Display (1000 ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp. 1 (upright)</td>
<td>Face or Butterfly</td>
<td>...</td>
</tr>
<tr>
<td>Exp. 2 (inverted)</td>
<td>Butterfly</td>
<td>...</td>
</tr>
<tr>
<td>Exp. 3 (face irrelevant)</td>
<td>Flower or Butterfly</td>
<td>...</td>
</tr>
</tbody>
</table>

- **Target search time**
- **Percentage of capture by faces**

About Faces:
- Detected very fast by the brain (~100 ms).
- Detected and attended more than other objects.
- Their semantic processing is less sensitive to attentional load.

Langton et al. (2008) Cognition
- In a visual search task, upright (but not inverted) distractor faces disrupt the search for a butterfly (manual responses).
- Butterfly distractors do not interfere with a face search.
- Faces capture attention.

Experiment 1 - Upright displays (N=8).
- Faces found faster than butterflies.
- The presence of the opposite distractor is disruptive but even more when it is a face.
- Same pattern with number of saccades.

Experiment 2 - Inverted displays (N=8).
- Inverted faces also found faster.
- The presence of a distractor inverted face is disruptive for the inverted butterfly search.

Conclusion

Upright and inverted faces are easy to detect. Faces have highly salient features but they only capture the eyes when their detection is relevant during the task.

* cdevue@ulg.ac.be