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Rapid eye movement sleep (REMS) is associated with intense neuronal
activity, rapid eye movements, muscular atonia and dreaming.
Another important feature in REMS is the instability in autonomic,
especially in cardiovascular regulation. The neural mechanisms
underpinning the variability in heart rate (VHR) during REMS are
not known in detail, especially in humans. During wakefulness, the
right insula has frequently been reported as involved in cardiovascular
regulation but this might not be the case during REMS. We aimed at
characterizing the neural correlates of VHR during REMS as
compared to wakefulness and to slow wave sleep (SWS), the other
main component of human sleep, in normal young adults, based on the
statistical analysis of a set of H2

15O positron emission tomography
(PET) sleep data acquired during SWS, REMS and wakefulness. The
results showed that VHR correlated more tightly during REMS than
during wakefulness with the rCBF in the right amygdaloid complex.
Moreover, we assessed whether functional relationships between
amygdala and any brain area changed depending the state of vigilance.
Only the activity within in the insula was found to covary with the
amygdala, significantly more tightly during wakefulness than during
REMS in relation to the VHR. The functional connectivity between the
amygdala and the insular cortex, two brain areas involved in
cardiovascular regulation, differs significantly in REMS as compared
to wakefulness. This suggests a functional reorganization of central
cardiovascular regulation during REMS.
© 2006 Elsevier Inc. All rights reserved.
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Introduction

Rapid eye movement sleep (REMS) is characterized by low-
amplitude, relatively high-frequency electroencephalographic
(EEG) rhythms, rapid eye movements and a complete muscular
atonia interrupted by short muscular twitches. In addition, during
REMS, neurovegetative regulation exhibits distinct features that are
observed neither during wakefulness nor during non-REM sleep
(NREMS). A striking example concerns thermoregulation. During
REMS, a warm thermal load does not induce skin vasodilatation
whereas a cold thermal load does not elicit any cutaneous
vasoconstriction (Parmeggiani, 1980). These findings suggest that
REMS is characterized by an “open-loop” mode of regulation,
which does not rely on homeostatic feedback loops as strictly as
during wakefulness or NREMS (Parmeggiani, 1985). During these 2
states, “closed-loop operations of automatic control mechanisms
[…] warrant an efficient and steady regulation of [autonomic]
functions” (Parmeggiani, 1985). These rules presumably apply also
to other neurovegetative systems. Accordingly, respiratory and heart
rates are known to be much more variable during REMS than during
NREMS or wakefulness (Orem and Keeling, 1980).

Although cardiovascular regulation is understood in detail, the
cerebral correlates of VHR have been characterized only recently,
and exclusively during wakefulness. In humans, VHR has primarily
been related to the activity in the insular cortex. Intraoperative
electrical stimulation of the insula elicits changes in heart rate and
blood pressure (Oppenheimer et al., 1992). In normal subjects,
functional neuroimaging studies showed that in response to
physical exercise (Williamson et al., 1997, 1999) and mental
stressor tasks (Critchley et al., 2000), both associated with
significantly increased heart rate, the activity in both insula covaried
with heart rate.

Heart rate regulation changes during sleep and has also been
related to forebrain activity, as assessed by EEG recordings. For
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instance, EEG power spectral density relates to VHR indices
(Otzenberger et al., 1997, 1998; Ehrhart et al., 2000; Branden-
berger et al., 2001; Ako et al., 2003). However, the cerebral
correlates of VHR during sleep needs to be further characterized,
anatomically refined and described separately for NREMS and
REMS. Indeed, heart rate regulation differs between these 2 types of
sleep due to predominant parasympathetic and sympathetic drives,
respectively (Brandenberger, 2005). In this paper, we were
particularly interested in characterizing the cerebral correlates of
VHR during REMS because of the intriguing autonomic control
described in this stage of sleep. We hypothesized that during REMS,
heart rate regulation involves the amygdala. This structure is one of
the most active brain areas during REMS in man (Maquet et al.,
1996). Due to its anatomical connectivity, it is in good position to
influence key regions involved in cardiovascular regulation like the
hypothalamus and the parabrachial complex in the brainstem
(Hopkins and Holstege, 1978). The paraventricular nucleus of the
hypothalamus is a key site for regulating autonomic activities such
as blood pressure and heart rate (Coote, 1995; Xia and Krukoff,
2003). The parabrachial complex is known to be implied in the
regulation of sympathetic activity and heart rate (Henderson et al.,
2002).

We examined the cerebral correlates of VHR in REMS, as
compared to wakefulness and SWS, in humans, using positron
emission tomography (PET). To do so, we conducted a retro-
spective analysis on a set of PET scans acquired in 13 non-sleep
deprived normal participants during SWS, REMS or wakefulness
with simultaneous electroencephalographic and electrocardio-
graphic recordings. We determined the brain areas where the
regional blood flow (CBF) was more tightly related to the VHR
during REMS than during wakefulness, during SWS than during
wakefulness or during SWS than during REMS. We focused on a
set of target areas identified as critical in autonomous regulation
during wakefulness: the insula (Cechetto and Saper, 1987;
Oppenheimer et al., 1992; Oppenheimer, 1994; Corfield et al.,
1995; Oppenheimer et al., 1996; Williamson et al., 1997; Critchley
et al., 2000), the amygdala (Orem and Keeling, 1980; Sei and
Morita, 1996; Critchley et al., 2000), the hypothalamus (paraven-
tricular nucleus) (Hopkins and Holstege, 1978; Coote, 1995; Xia
and Krukoff, 2003) and the midbrain (Herbert et al., 1990;
Chamberlin and Saper, 1992; Henderson et al., 2002). Other areas
more occasionally implicated in heart rate regulation were also
considered as potential regions of interest: the hippocampus (Rowe
et al., 1999; Ribeiro et al., 2002; Pedemonte et al., 2003), the
anterior cingulate cortex (Buchanan et al., 1985; Neafsey, 1990),
the ventromedial prefrontal cortex (Buchanan et al., 1985; Neafsey,
1990), the motor cortex (Critchley et al., 2000), the neostriatum
(Delgado, 1960; Bradley et al., 1987, 1991; Lin and Yang, 1994;
Critchley et al., 2000), the cerebellum (Delgado, 1960; Bradley
et al., 1987, 1991; Lin and Yang, 1994; Critchley et al., 2000) and
the brainstem areas of the pons and medulla (Willette et al.,
1984; Allen and Cechetto, 1992; Critchley et al., 2000).

Methods

Subjects and experimental protocol

Data were obtained from previous sleep studies conducted in
our center using the H2

15O infusion method (Maquet et al., 2000;
Peigneux et al., 2003). All subjects were young, healthy, right-
handed and male volunteers (n=13; age range 20–30 years) who
gave their informed consent to participate in studies approved by
the Ethics Committee of the Faculty of Medicine of the University
of Liège. All had normal sinus rhythm and regular sleep–wake
habits. None had any medical, surgical or psychiatric history;
none was taking medication. Each subject spent three consecutive
nights in the PET scanner at usual sleep time. Polysomnography
monitoring during the first two nights allowed us to check for
any abnormality in sleep (insomnia, sleep fragmentation, REMS
onset, etc.) and accustomed participants to the experimental setting.
Participants were selected for the third night if they could maintain
20 min of continuous stage 2, stages 3–4 of NREMS and REMS on
both habituation nights. During the third night, PET scans were
performed both during various stages of sleep when polysomno-
graphy showed steady characteristic sleep patterns and during
waking at rest with eyes closed in complete darkness. Duringwaking
scans, the subjects had to stay still, eyes closed.

At least two waking, two stage 2, two stages 3–4 and two
REMS scans were obtained in all subjects. In the present
manuscript, we used 97 PET scans (30 during W, 29 during SWS
and 38 during REMS) from 13 subjects who all had high-quality
electrocardiographic (EKG) recordings in all the 3 main states of
vigilance (wakefulness, NREMS, REMS). The same subjects were
used for the delta analysis published by Dang-Vu et al. (2005).

Sleep analysis

Polysomnography was performed with a Synamp (Neuroscan,
NeuroSoft Inc.K, Sterling, Virginia) system at 500 Hz or 1000 Hz,
with a band width of 0.15–100 Hz. EEG on (at least) C3–A2 and
C4–A1 derivations were recorded. In all cases, vertical and
horizontal electrooculograms, chin electromyographic derivation
and chest electrocardiogram were recorded on bipolar montage.
Sleep scoring followed standard international criteria (Rechtschaf-
fen and Kales, 1968).

Heart rate analysis

The analysis was performed on the 90-s recordings obtained
during each PET scan. The EKG was visually checked in order to
discard any period containing movement, muscle or breathing
artefact. A template of the QRS complex was generated by
averaging the QRS complexes over the whole 90 s of recording. A
coefficient of correlation was computed at each time point
between the template and the actual recording using a sliding
window. Correlation coefficient above 0.80 was shown to reliably
identify the occurrence of a QRS complex. This threshold was
used to detect R events. RR intervals, from these tagged events
were then computed, generating a new time series covering the
whole 90-s scanning period. The variability in heart rate (VHR)
was simply estimated as the standard deviation of the duration of
RR intervals, as it has been described as a valid measure of the
VHR (Malik, 1996).

PET data acquisitions

PET data were acquired on a Siemens CTI 951 R 16/31 scanner
in three-dimensional mode. The head of the subjects was stabilized
by a thermoplastic face mask secured to the head holder (Truscan
Imaging, Annapolis, Maryland), and a venous catheter was
inserted in a left antebrachial vein. First, a 20-min transmission
scan was acquired for attenuation correction using three rotating



Table 1
Increased brain activity during REMS compared to wakefulness

Area x y z Z score P

Left lingual gyrus −28 −64 −2 7.25 <0.001
Right lingual gyrus 28 −62 0 6.98 <0.001
Left cuneus −16 −90 20 6.19 <0.001
Right cuneus 6 −82 16 6.12 <0.001
Left precuneus −20 −48 54 6.54 <0.001
Right anterior cingulate cortex 6 −2 40 6.34 <0.001
Left anterior cingulate cortex −12 −10 42 5.39 0.001
Right medial temporal gyrus 66 −14 −2 5.75 <0.001
Right superior temporal gyrus −62 −16 2 5.65 <0.001
Right precentral gyrus 38 −20 54 5.28 0.001
Left amygdala −30 −2 −18 4.50 0.042

Localization and statistical results concerning the local maxima of the brain
areas where the activity is larger during REMS as compared to wakefulness.
Coordinates are defined in the stereotatic MNI space, relative to anterior
commissure. x represents the lateral distance from midline (positive, right);
y is the anteroposterior distance from anterior commissure (positive:
anterior); z represents the rostrocaudal distance from the bicommissural
plane (positive: rostral). These results survive a correction for multiple
comparisons over the entire brain volume at a threshold of corrected
P<0.05.
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sources of 68-Ge. Then, when polysomnography showed stable
characteristic patterns, rCBF, taken as a marker of local neuronal
activity (Jueptner and Weiller, 1995), was qualitatively estimated
during a maximum of 12 emission scans per subject using the
H2

15O technique. Each scan consisted of two frames: a 30-s
background frame and a 90-s acquisition frame. The slow
intravenous water (H2

15O) infusion began 10 s before the second
frame. Six millicuries (mCi) equivalent to 222 megaBecquerel
(MBq) was injected for each scan, in 5 cubic centimeters (cc)
saline, over a period of 20 s, starting 10 s before the onsets of the
active frame. The infusion was totally automated in order not to
disturb the subject during the scanning period. Data were
reconstructed using a Hanning filter (cutoff frequency: 0.5 cycle/
pixel) and corrected for attenuation and background activity.

Brain imaging data analysis

PET data were analyzed using Statistical Parametric Mapping
(SPM99; Wellcome Department of Cognitive Neurology, Institute
of Neurology, London, UK) implemented in MATLAB® (The
MathWorks, Inc., Natick, Massachusetts). For each subject, all
scans were realigned to the first scan. PET images were then
normalized to a standard template within the Montreal Neurolo-
gical Institute (MNI) space (Frackowiak et al., 1997). Finally,
normalized PET images were smoothed using a Gaussian Kernel of
16 millimeters full width at half maximum.

Data were analyzed using a general linear model, in a single
step conforming to a fixed effects analysis. This analysis does not
allow to partition variance in within- and between-subject
components. The results therefore do not pertain to the population
at large but only to the studied sample.

The design matrix included 2 regressors: the main effect of the
condition (state of vigilance: REMS, SWS or Wakefulness) and the
condition (state of vigilance) by VHR interaction.

Global flow adjustment was performed by proportional scaling.
Areas of significant changes were determined using linear
contrasts. The contrast of interest estimated the condition and
VHR effects, as well as the interactions between the condition and
VHR (REMS versus SWS; SWS versus wakefulness; REMS
versus wakefulness). Each of these contrasts identified the brain
areas where the regional activity is more tightly related to VHR
during the first than the second state of vigilance.

A psychophysiological interaction was also analyzed. This
analysis assessed whether the relationship between the activity in
the reference region identified (i.e., the amygdala, see Results
section) and other distant areas depends on the state of vigilance
(Wakefulness or REMS) (Friston et al., 1997). A new linear model
was constructed using three regressors. The first regressor was the
condition effect (REMS versus wakefulness). The second regressor
was the activity in the reference area (amygdala, coordinates: 36, 8,
−20 mm). The third regressor represented the interaction of interest
between the first (psychological) and second (physiological)
regressor.

In both analyses, the resulting set of voxel values for the
contrast of interest constituted a map of the t statistic {SPM(T)},
thresholded at p<0.001 (Z≥3.09). Corrections for multiple
comparisons were then performed at the voxel level over the
entire brain volume or over small volumes (Small Volume
Correction {SVC} with spheres of 10 mm) centered on coordinates
previously published in the literature (Critchley et al., 2002a,
2002b; see also introduction).
Results

Statistical data

A repeated measure ANOVA was conduced with stage of
vigilance (SWS versus REMSversus wakefulness) as within-subject
factor and VHR as dependent variable. Results showed a trend for a
difference between conditions (F(2,24)=2,4006, p=0.1121).
Planned comparisons compared REMS with SWS, SWS with
wakefulness and REMS with wakefulness. VHR tended to differ
between REMS and SWS (p=0.1043), as well as between SWS and
wakefulness (p=0.958025). The only significant difference was
detected between REMS and wakefulness (p=0.03371).

Imaging data

Difference in the distribution of cerebral activity between
wakefulness and REMS

The main effect of condition (state of vigilance: wakefulness or
REMS) is reported to establish the consistency of the present
findings with previous studies (Maquet et al., 1996; Braun et al.,
1997; Maquet, 2000; Maquet et al., 2000; Peigneux et al., 2003,
2004) and will not be discussed further.

Regional CBF was significantly larger during REMS than
during wakefulness in the occipital area, in the lateral and
mesiotemporal regions, in the anterior cingulate and in the
precentral cortex (Table 1). Conversely, higher activity during
wakefulness (versus REMS) was found bilaterally in the
dorsolateral prefrontal and parietal cortices and in the posterior
cingulate cortex (Table 2).

Difference in the distribution of cerebral activity between
wakefulness and SWS

The main effect of condition (state of vigilance: wakefulness or
SWS) is reported to establish the consistency of the present
findings with previous studies (see, for instance, Maquet, 2000)
and will not be discussed further.



Fig. 1. The activity in the lateral aspect of the right amygdala (coordinates:
36, 8, −20) is more tightly related to VHR during REMS than during
wakefulness (Z=3.11, pSVC=0.028). The functional results are displayed
over an individual MRI scan normalized to the MNI space in transverse (left
panel), frontal (right panel) and sagittal planes. The functional results are
displayed at p<0.001, uncorrected.

Table 2
Increased brain activity during Wakefulness compared to REMS

Area x y z Z score P

Right medial frontal gyrus 44 50 −2 >10 <0.001
Right superior frontal gyrus 42 52 8 >10 <0.001
Right inferior frontal gyrus 54 16 14 7.01 <0.001
Right precentral gyrus 54 12 46 6.51 <0.001
Left medial frontal gyrus −46 50 4 >10 <0.001
Left inferior parietal gyrus −44 −56 38 6.14 <0.001
Left cingulate gyrus −2 −34 26 6.85 <0.001

Localization and statistical results concerning the local maxima of the brain
areas where the activity is larger during wakefulness as compared to REMS.
Coordinates and inferences are determined as in Table 1.
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Regional CBF was significantly deactivated during SWS than
during wakefulness in the thalami, orbital frontal cortex, precuneus
and in the parietal cortex (Table 3).

Effect of VHR on CBF
We did not identify any area where the regional CBF was

significantly related to the VHR irrespective of the state of
vigilance (wakefulness or REMS or SWS).

Condition (REMS versus Wakefulness) by VHR interaction
The activity in the lateral aspect of the right amygdala

(coordinates: 36, 8, −20) was shown to be related to VHR more
tightly during REMS than in wakefulness (Z=3.11, pSVC=0.028,
reference coordinates taken in Critchley et al., 2002a, 2002b;
Fig. 2). Due to the poor spatial resolution of PET scanning, it is
not possible to further specify this area that probably encompasses
part of the extended amygdala (Alheid and Heimer, 1988) (Fig. 1).

Psychophysiological interaction
Psychophysiological interaction assessed whether functional

relationships between amygdala and any brain area were
modulated by the state of vigilance. The psychophysiological
interaction using the amygdala as reference region (x=36, y=8, z=
−20) identified a single area in the anterior insular cortex (Fig. 2A).
This result indicates that the anterior insula is connected more
tightly with the amygdala during wakefulness than during the
REMS (Z=3.11, pSVC=0.028, reference coordinates taken in
Critchley et al., 2000) (Fig. 2B).

Insular cortex is involved in central processing of various
sensory modalities. It is why we chose specifically for the small
volume correction of our interest region the coordinates of a paper
that investigates specifically the cardiovascular regulation to insure
that the region is implicated in this physiological function
(Critchley et al., 2000).
Table 3
Decreased brain activity during SWS compared to wakefulness

Area x y z Z score P

Orbital frontal cortex 26 38 −28 >10 <0.001
Orbital frontal cortex −22 40 −26 >10 <0.001
Left thalamus −8 10 −2 >10 <0.001
Parietal cortex 42 −76 48 6.23 <0.001
Parietal cortex −46 −62 48 7.48 <0.001
Precuneus −2 −82 52 6.92 <0.001

Localization and statistical results concerning the local maxima of the brain
areas where the activity is smaller during SWS as compared to wakefulness.
Coordinates and inferences are determined as in Table 1.
Condition (SWS versus wakefulness) by VHR interaction, condition
(wakefulness versus SWS) by VHR interaction, condition
(REMS versus SWS) by VHR interaction and condition
(SWS versus REMS) by VHR interaction

These analyses did not identify a single significant change in
regional cerebral blood flow (puncorrected=0.001).

Discussion

Methodological issues

We used the standard deviation of heart rate as a measure of
VHR during the 90-s duration of each PET scan. This parameter
has been proposed as a valid estimation of VHR (Malik, 1996).

Alternatively, VHR can be estimated in the frequency domain.
Two components can be isolated in a spectrum calculated from
short-term recording: low-frequency (LF) and high-frequency (HF)
components. The distribution of the power and the central frequency
of LF and HF may vary in relation to changes in autonomous
modulations of heart period (Malik, 1996). HF power would reflect
parasympathetic activity, whereas LF power would primarily reflect
a mixed sympathetic and parasympathetic influence (Malik, 1996).
Due to methodological constraints of PET measurements, the time
series recorded during the 90-s scans were too short to obtain
reliable heart rate power spectra. Recordings of approximately
1 min are needed to assess the high-frequency peak whereas at
least 2 min recording are needed to reliably assess the low-
frequency component (Akselrod et al., 1981; Malik, 1996;
Otzenberger et al., 1997, 1998; Brennan et al., 2002).

Consequently, we conservatively assessed VHR using the
standard deviation of the heart rate. This measure is relatively more
sensitive to high-frequency variations in heart rate (Malik, 1996).

It should be noted that a circadian effect is not likely to
confound our results. The acquisition times for wakefulness, REMS
and NREMS largely overlapped. Furthermore, a circadian factor is
probably minor because VHR is highly sleep stage dependent
(Zemaityte et al., 1984; Raetz et al., 1991; Vanoli et al., 1995; Pivik
et al., 1996; Brandenberger et al., 2001; Viola et al., 2002). For
instance, individual profiles revealed abrupt HR increases in each
transition from deeper sleep to lighter sleep or awakening (Viola et
al., 2002). The standard deviation of normal RR intervals and LF:



Fig. 2. (A) Psychophysiological interaction using the amygdala rCBF as reference region (x=36, y=8, z=−20) and the state of vigilance (REMS versus
wakefulness) as condition identified a single area in the right anterior insular cortex. The functional result is displayed over an individual MRI scan normalized to
the MNI space in transverse, frontal and sagittal planes. The functional results are displayed at p<0.001, uncorrected. (B) Regression of insular on amygdalar
activity during REMS and in wakefulness. This result indicates that the right anterior insula is connected more tightly with the amygdala during wakefulness than
during the REMS (Z=3.11, pSVC=0.028, reference coordinates taken in Critchley et al., 2000). The straight lines correspond to the regression, in wakefulness
and REMS, respectively. The dots correspond to the adjusted rCBF observed in the 2 regions (red dots: REMS, blue cross: wakefulness).
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(LF+HF) ratio decreases during SWS and significantly increases
during REMS and during intrasleep awakening (Viola et al., 2002).
However, the circadian factor cannot be totally ruled out. Although
sympathetic nervous system activity is mostly influenced by sleep
states, parasympathetic nervous system activity has been shown to
be under circadian regulation (Burgess et al., 1997).

Dreams are known to occur frequently during REMS. One
might argue that dream content would partly explain the variability
in heart rate that ever report. As no dream reports were obtained
from the subjects after each scan, we are in a position neither to
confirm or falsify such a conclusion.

Amygdala in the regulation of heart rate variability during REMS

Central regulation of heart rate probably involves distributed
networks encompassing cortical, hypothalamic and brainstem
structures. At the cortical level, no significant effect of VHR was
observed. This suggests that the functional neuroanatomy of
central cardiovascular regulation varies between wakefulness,
SWS and REMS. This hypothesis is further supported by the
condition by VHR interaction.

The latter shows that the amygdala is the only area where the
rCBF covaries with VHR differentially during REMS than during
wakefulness. In particular, the activity in the amygdala is more
tightly related to VHR during REMS than during wakefulness. No
significant difference was observed between REMS and SWS and
between SWS and wakefulness in terms of brain areas where the
regional blood flow is related to VHR. Given results did not show
any significant difference in VHR between SWS and wakefulness
nor between SWS and REMS, we cannot argue that the modulatory
influence of the amygdala is specific to REM sleep. However, we
can suggest that the neural correlates of VHR differ between
wakefulness and REM sleep. At present, no definite conclusion can
be reached for SWS during which the cerebral correlates of VHR
differed neither from wakefulness nor from REMS.

The coordinates of the significant changes in blood flow
point to the lateral aspect of the amygdala. Although the poor
spatial resolution of the PET cannot precisely describe the
location of the amygdala response, it should be noted that these
coordinates were reported in studies involving the right
amygdala in cardiovascular regulation during wakefulness (Critch-
ley et al., 2002a, 2002b).

The amygdala is intimately implicated in several basic features
of REMS. In humans, the amygdala is particularly active in
REMS (Maquet et al., 1996). In cats, cholinergic activation of the
central amygdaloid nucleus produces a long-term facilitation of
REMS occurrence (Calvo et al., 1996). Similarly, pharmacological
stimulation (by vasointestinal peptide) of the amygdala induces
increased amounts of REMS and ponto-geniculo-occipital waves
(Simon-Arceo et al., 2003). Likewise, the rebound of REMS
induced by microinjections of GABA agonist into the periaque-
ductal grey matter elicited a significant increase in c-fos labeling
in the amygdala (Sastre et al., 2000).

Moreover, amygdala is in good position to influence critical
regions for the cardiovascular regulation (Hopkins and Holstege,
1978), like the hypothalamus (Coote, 1995; Shannahoff-Khalsa
and Yates, 2000; Xia and Krukoff, 2003) and parabrachial complex
(Henderson et al., 2002).

The psychophysiological interaction also shows that the func-
tional connectivity between amygdala and insula is different
during REMS as compared to wakefulness. The functional
relationship between the amygdalar and the insular cortices seems
tighter during wakefulness than during REMS. During wakeful-
ness, the insula plays a major role in cardiovascular regulation
(Oppenheimer et al., 1992; Critchley et al., 2000). In normal
humans, rCBF in the right insula covaries with heart rate
(Critchley et al., 2000). Functional magnetic resonance imaging
(fMRI) recently confirmed the functional links between the
insular cortex and the modulation of heart rate (Williamson et al.,
1997, 1999; Critchley et al., 2000). The activity in the left insula
increases during dynamic exercise (cycling) but not passive
exercise (cycling movement induced by moving pedals indepen-
dently) (Williamson et al., 1997, 1999). Likewise, increased rCBF
in right insula covaried with HR during isometric exercise and
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mental stressor tasks like arithmetic (Critchley et al., 2000).
Moreover, the observations of brain damaged patients confirm the
pivotal influence of the insular cortex in cardiovascular regulation
(Oppenheimer, 1994; Oppenheimer et al., 1996; Tokgozoglu et al.,
1999). The insular cortex is implicated in the generation of cardiac
arrhythmias following hemispheric stroke (Oppenheimer, 1994).
Accordingly, strokes in the region of insula (especially on the right
side) leads to decrease VHR and to increased the incidence of
sudden death (Tokgozoglu et al., 1999). Similarly, left-sided acute
insular stroke “increase basal cardiac sympathetic tone and was
associated with a decrease in randomness of heart rate variability”
(Oppenheimer et al., 1996). In epileptic patients, electrical
stimulations within the insula elicit changes in heart rate (Cechetto
and Saper, 1987; Oppenheimer et al., 1992; Cechetto, 1994). Finally,
it is known that the insula is anatomically and functionally
connected with autonomic centers involved in heart rate regulation
such as the amygdala and the hypothalamus (Augustine, 1996).

In contrast to what happens during wakefulness, our findings
suggest that the amygdala largely influences heart rate during
REMS. Moreover, our results suggest that this change in cardio-
vascular regulation is accompanied with a change in functional
connectivity between the amygdala and the insula.

During REMS relative to wakefulness, the insula is less likely
to modulate cardiovascular regulation, through its projections
toward the amygdala. In this respect, the amygdala seems to take a
prominent role in cardiovascular regulation during REMS in
contrast to wakefulness. As amygdala is an integral part of the
cerebral networks which generate and maintain REMS (Datta et al.,
1998), the participation of the amygdala in VHR explains why the
latter is an intrinsic characteristic of this sleep stage.

The modified cardiovascular regulation during REMS relative
to wakefulness might have some bearing on important clinical
issues. Many studies have demonstrated that the incidence of
adverse cardiovascular events like sudden deaths or arrhythmias
(Verrier et al., 1996) peak in the early morning hours (Muller et al.,
1985, 1987; Tofler et al., 1987; Willich et al., 1987; Maron et al.,
1994; Venditti et al., 1996; Elliott, 1998, 2001), and particularly
during REMS (Schafer et al., 1997; Viola et al., 2002, 2004).
Future research will have to assess the role of the amygdala and the
change in its connectivity with the insular cortex in these life-
threatening events.
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