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ABSTRACT

Objective: To investigate whether secondary impairment of the transmethylation pathway is a mech-
anism underlying the neurologic involvement in homocystinuria due to remethylation defects.

Methods: Twelve patients with neurologic disease due to remethylation defects were examined by
brain magnetic resonance spectroscopic imaging (1H MRSI). Brain N-acetylaspartate, choline-
containing compounds (Cho), and creatine (Cr) were quantified and compared to with controls. Metab-
olites of remethylation cycle and creatine biosynthesis pathway were measured in plasma and urine.

Results: MRSI revealed isolated Cho deficiency in all regions examined (mean concentration units
� SD, patients vs controls): frontal white matter (0.051 � 0.010 vs 0.064 � 0.010; p � 0.001),
lenticular nucleus (0.056 � 0.011 vs 0.069 � 0.009; p � 0.001), and thalamus (0.063 � 0.010
vs 0.071 � 0.007; p � 0.006). In contrast to controls, the Cho/Cr ratio decreased with age in
patients in the three brain regions examined. Low creatine urinary excretion (p � 0.005), normal
urine and plasma guanidinoacetate, and a paradoxical increase in plasma S-adenosylmethionine
(p � 0.005) concentrations were observed.

Conclusion: Patients with homocystinuria due to remethylation defects have an isolated brain
choline deficiency, probably secondary to depletion of labile methyl groups produced by the trans-
methylation pathway. Although biochemical studies suggest mild peripheral creatine deficiency,
brain creatine is in the reference range, indicating a possible compartmentation phenomenon.
Paradoxical increase of S-adenosylmethionine suggests that secondary inhibition of methylases
contributes to the transmethylation defect in these conditions. Neurology® 2008;71:44–49

GLOSSARY
CblC � combined homocystinuria–methylmalonic aciduria; CblG � methionine synthase deficiency; CBS � cystathionine
�-synthase; Cho � water-soluble choline-containing compounds; Cr � creatine; DQ � developmental quotient; Met � plasma
methionine; MR � magnetic resonance; MSRI � magnetic resonance spectroscopic imaging; MTHFR � methylene tetrahy-
drofolate reductase; NA � not available; NAA � N-acetylaspartate; NN � neonatal; NS � not significant; OA � optic atrophy;
OMA � oculomotor apraxia; OMIM � Online Mendelian Inheritance in Man; PM � pigmentary maculopathy; Pt � patient; RD �
remethylation defect; RP � retinitis pigmentosa; tHcy � plasma total homocysteine; THF � tetrahydrofolate.

Homocystinuria due to remethylation defects (RD) is a group of inherited metabolic diseases
characterized by chronic and progressive neurologic impairement.1 In contrast to homocystin-
uria due to cystathionine �-synthase (CBS) deficiency, plasma methionine concentration is low
in RD, and there is neither skeletal involvement nor ectopia lentis. Despite treatments effective
in reducing plasma homocysteine level, the neurologic outcome in RD is often poor.2,3

From a metabolic point of view, the methionine–homocysteine cycle is a carrier of activated
methyl group taking part in the transmethylation pathway (figure 1).1 Labile methyl groups are
provided by dietary methionine, glycine, serine, betaine, and choline. They are also produced endo-
genously through the folate cycle by methylenetetrahydrofolate reductase (MTHFR) in the form of
5= methyltetrahydrofolate (figure 1, step A), and transferred to homocysteine to produce methio-
nine (step B). This last step is formally called remethylation pathway. The activated form of methi-
onine, S-adenosylmethionine (AdoMet), is the methyl donor for many important biosynthetic
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processes.4 Quantitatively and qualitatively, the
most important methyl consumers are creatine,
phosphatidylcholine, and sphingomyelin bio-
synthesis, as well as DNA methylation.4,5

Overall, this suggests that the pathophysio-
logic mechanisms underlying neurologic im-
pairment may be distinct between RD and
CBS deficiency. In contrast to CBS defi-
ciency, low methionine levels in RD can im-
pair the transmethylation pathway (figure 1),
potentially contributing to the neurologic in-
volvement. To test this hypothesis in vivo, we
investigated a group of patients with RD by
magnetic resonance spectroscopic imaging
(MRSI) to measure creatine and choline-
containing compounds in the brains of these
patients. The concentrations of the metabo-
lites of transmethylation pathways were also
determined in plasma and urine.

METHODS Patients and controls. Twelve patients (me-
dian age 6 years, range 2–22 years) with homocystinuria due to
RD were prospectively included: seven patients with combined
homocystinuria–methylmalonic aciduria (CblC, Online Mende-
lian Inheritance in Man [OMIM] no. 277400), one patient with
methionine synthase deficiency (CblG, OMIM no. 250940),
and four patients (including three siblings, patients 9–11) with
MTHFR deficiency (OMIM no. 236250). Diagnoses were con-
firmed by enzyme assays (MTHFR), complementation studies
(CblC and G), and molecular analyses (CblC) as previously de-
scribed6,7 (performed by Dr. D.S. Rosenblatt, McGill University,
Montreal, Canada). Patients’ medical charts were retrospectively
reviewed. Controls included 36 consecutive children of similar
age (median 6.9 years, range 2–18 years) for whom magnetic
resonance (MR) spectra were acquired after a brain MRI exami-

nation performed for assessment of various nonmetabolic neuro-
logic disorders. Individuals with unexplained encephalopathy
diffuse cerebral abnormalities and those who received brain irra-
diation were excluded. Informed consent was obtained from par-
ticipants or their legal guardians, and the Institutional Review
Board of Ste-Justine Hospital approved the study.

Brain MRI and spectroscopy. Patients and controls under-
went brain MRI and 1H MRSI examinations on a 1.5-tesla Mag-
netom Symphony MR imager (Siemens, Erlangen, Germany)
using a standard circularly polarized head coil. MRSI data were
acquired with the point-resolved spectroscopy sequence on a 15-
mm-thick axial slice passing through the center of the thalami.
Acquisition parameters were a field of view of 16 � 16 cm2, a
voxel size of 15 � 10 � 10 mm3, 16 phase-encoding steps in
each direction, an echo time of 135 ms, and a repetition time of
1,500 ms. Quantitation of the metabolite signals of
N-acetylaspartate (NAA), creatine plus phosphocreatine (Cr),
and choline-containing compounds (Cho), as well as the Cho/Cr
ratio, was performed using the LCModel software package.8 Me-
tabolites levels were quantitated from a single voxel in each
hemisphere for three brain areas: thalamus, frontal white matter,
and lenticular nucleus. For each individual, the concentration
for a specific brain area was the mean of the left and right sides
measurements. Metabolite units were the untransformed con-
centrations as recorded by LCModel.

Biochemical studies. Venous blood was collected in a 15-
U/mL sodium heparin tube and placed on ice. Samples were centri-
fuged immediately and plasma stored at �80°C. Before storage at
�80°C, an aliquot of plasma was deproteinized with perchloric acid
for determination of AdoMet and S-adenosylhomocysteine
(AdoHcy). Plasma amino acid concentrations were measured by
automated ion-exchange chromatography (Biochrom 30, Fisher
Scientific Ltd.) and plasma total homocysteine by fluorescence po-
larization immunoassay (IMx homocysteine kit, Abbott). Plasma
AdoMet and AdoHcy concentrations were determined using stable
isotope dilution tandem mass spectrometry.9 Guanidinoacetate and
creatine were measured in plasma and urine using stable isotope
dilution gas chromatography–mass spectrometry as previously re-
ported.10,11

Statistical analyses. Brain metabolites measured by MRSI
were compared between patients and controls using a Student t
test. Linear regression was used to examine the association be-
tween age (explanatory variable) and brain metabolite concentra-
tions and ratios (dependent variable) in patients and controls. To
test whether the magnitude of the effect of age on metabolite
concentrations and ratio varied as a function of the diagnostic
category (patients vs controls), we used a product term (age *
diagnostic category; controls � reference group). The regression
coefficient of the product term (age * diagnostic category) can be
interpreted as the amount of change in the association between
age and brain metabolites when diagnostic category is “patients”
instead of “controls” (reference category). A one-sample signed
rank test was used to compare patients’ plasma and urine metab-
olite concentrations and the upper limit of the given reference
range for homocysteine, AdoMet, AdoHcy, guanidinoacetate,
and the lower limit of the given reference range for methionine
and creatine. The 95% CI of the proportion of patients with
plasma or urine concentrations of transmethylation and creatine
biosynthesis pathways above (or below) the upper (or lower)
limit of the reference range were estimated as previously de-
scribed.12 Reference ranges for each of these plasma and urine
metabolites were provided by the laboratory that performed the

Figure 1 The transmethylation pathway

AdoHcy � S-adenosylhomocysteine; AdoMet � S-adenosylmethionine; CblC � combined
homocystinuria–methylmalonic aciduria; CblG � methionine synthase deficiency; MTHFR �

methylene tetrahydrofolate reductase deficiency; THF � tetrahydrofolate. Enzymes: a,
methylene tetrahydrofolate reductase; b, methionine synthase; c, methionine adenosyl-
transferase; d, guanidinoacetate methyltransferase; e, phosphoethanolamine methyltrans-
ferase; f, S-adenosylhomocysteine hydrolase.
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biochemical measurement; thus, the reference populations for these
measurements were different from the controls for the MRSI stud-
ies. Only unrelated patients were included in statistical analyses to
avoid overrepresentation of the three members of the same family
(only the proband was included). Statistical significance was set at
�0.05. Statistical analyses were performed with SAS statistical soft-
ware (version 9.1, SAS Institute, Inc., Cary, NC).

RESULTS Characteristics at presentation and current
status of patients are shown in table 1. Median age at diag-
nosis was 2 months (range 1–142 months). Ten patients
had low methionine concentration (�14 mmol/L) at di-
agnosis. Patients were initially treated with hydroxoco-
balamin (IM injections), folic acid, betaine, and
moderate protein restriction. CblC patients received
oral L-carnitine supplementation. Hydroxocobalamin
was discontinued in MTHFR patients. No CblC pa-
tient experienced episode of acidosis after initiation of
treatment. Currently, no patient has signs of spasticity.

Brain MRI. Results of brain MRI are summarized
in table e-1 on the Neurology® Web site at www.
neurology.org. The main neuroradiologic findings
were nonspecific cerebral atrophy with periven-
tricular white matter loss. For many patients (8/
12), this pattern was reminiscent of periventricular
leukomalacia. Focal white matter T2 hyperintensi-
ties were uncommon and mild.

Magnetic resonance spectroscopy. Mean Cho concen-
tration was significantly lower in patients than in
controls in the three regions examined (table 2).

Brain Cr and Cho/Cr ratio were lower in patients
than in controls, but these differences reached signif-
icance only for the Cho/Cr ratio in the lenticular
nuclei. In controls, Cho tended to decrease with age
in frontal white matter and lenticular nuclei, whereas
Cr decreased only in frontal white matter. In pa-
tients, both Cho and Cho/Cr ratio decreased with
age in each brain region examined (table e-2). The
effect of age on Cho/Cr ratio clearly differed between
cases and controls in frontal white matter (pinteraction

�0.0008) and thalami (pinteraction � 0.01). The
Cho/Cr ratio decreased progressively with age in
cases but was stable in controls (figure 2). We de-
tected no differences between patients and controls
in mean brain NAA concentrations nor any signifi-
cant changes with age (tables 2 and e-2).

Biochemical studies. All patients had high plasma to-
tal homocysteine (table 3). Plasma methionine con-
centration was in the lower half of the distribution
for all cases but, paradoxically, plasma AdoMet, the
product of adenylation of methionine (figure 1, reac-
tion C), was markedly increased in patients.
AdoHcy, the product of all methyltransferases (figure
1, reactions D and E), was also increased. Urine and
plasma concentrations of guanidinoacetate, the pre-
cursor of creatine (figure 1, reaction D), were within
reference range in all patients. Urinary excretion of
creatine, the methylation product of guanidinoac-
etate, was significantly decreased.

Table 1 Characteristics of patients

Initial presentation Current status

Pt
Age,
mo Symptoms

tHcy/Met,
�mol/L*

Age,
y Seizure

Cognitive
status† Ophthalmology Diagnosis

1 2 Poor feeding NA/13 22 � 77 (IQ) PM, RP CblC

2 4 Seizures, lethargy 50/3 6 � 87 (IQ) Normal CblG

3 1 Lethargy, poor feeding, hypothermia 186/23 5 � 58 (IQ) PM, RP, OA CblC

4 1 Developmental delay (NN screening) NA/5 18 � 62 (IQ) PM CblC

5 1 Seizures, lethargy, hypotonia 166/13 6 � 55 (DQ) OA CblC

6 1 None (NN screening) 234/�5 2 � 63 (DQ) PM CblC

7 1 Lethargy, poor feeding 188/4 4 � 67 (IQ) PM, RP, OA CblC

8 2 Seizures, nystagmus, megaloblastosis 60/NA 7 � 20 (DQ) PM, RP, OA CblC

9 11 Developmental delay 137/8 3 � 22 (DQ) OMA MTHFR

10 142 Seizures, mental retardation 176/12 13 � 53 (IQ) Normal MTHFR

11 131 Mental retardation 131/11 11 � 68 (IQ) Normal MTHFR

12 9 Encephalopathy, seizures, microcephaly 194/7 6 � 22 (DQ) Normal MTHFR

*Normal values for plasma total homocysteine (tHcy), 5–15 �mol/L; and for plasma methionine (Met), 9 –37 �mol/L.
†Neuropsychological testing included evaluation of IQ by the Wechsler Adult Intelligence Scale–Revised, the Wechsler
Intelligence Scale for Children Version III, and the Leiter, and assessment of developmental quotient (DQ) by the Griffiths
Mental Development Scale, according to patient’s age and developmental status.
Pt � patient; NA � not available; PM � pigmentary maculopathy; RP � retinitis pigmentosa; CblC � combined homocystin-
uria–methylmalonic aciduria; CblG � methionine synthase deficiency; OA � optic atrophy; NN � neonatal; OMA � oculomo-
tor apraxia; MTHFR � methylene tetrahydrofolate reductase deficiency.
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DISCUSSION In agreement with most reports, RD
patients in this study have a wide range of severe
neurologic symptoms, including seizures, psychomo-
tor delay, and cognitive impairment. The pathophys-
iologic mechanisms underlying the neurologic
involvement in RD is not fully understood. Plasma
homocysteine concentration is generally lower in RD
than in CBS deficiency. However, in contrast to CBS
deficiency, microcephaly is frequent in RD1 and was
observed in six of our patients (table e-1). There is no
obvious relationship between plasma homocysteine
concentration and clinical phenotype.

Our hypothesis was that the lack of methyl
groups could be responsible for secondary creatine
deficiency and cerebral guanidinoacetate intoxica-
tion. By extension, transmethylation pathway dis-
ruption in RD may induce depletion of all AdoMet-
dependent biosynthetic processes. At least 50
AdoMet-dependent methylation reactions exist in
mammals, which constitutes a minimal estimation as
suggested by genomic analyses.13

MRSI was previously used to identify secondary
brain creatine depletion in hyperornithinemia due to
ornithine-�-aminotransferase deficiency,14 and it was
hypothesized that the reduced brain creatine concen-
tration contributed to the retinal degeneration ob-
served in this condition.15 Six of our patients had
retinitis pigmentosa or pigmentary maculopathy. In
our study, we did not find significant brain creatine

depletion, although given the small size of our sam-
ple, a definitive answer to this question will need fur-
ther study. Low urinary creatine excretion indicates
probable peripheral insufficiency, suggesting a com-
partmentation phenomenon. Moreover, no increase
in guanidinoacetate concentration was found in
plasma and urine, in contrast to a previous report on
six CblC patients.16 Despite plasma creatine concen-
trations in the low-normal range, it is possible that
brain creatine uptake was sufficient to sustain ade-
quate brain creatine levels.

Based on early studies of the labile methyl balance, it
has been considered that creatine biosynthesis con-
sumed more AdoMet than all the other physiologic
methyltransferases reactions combined, accounting for
the use of more than 70% of AdoMet-derived methyl

Table 2 Brain NAA, Cho, and Cr concentrations* and Cho/Cr ratio measured
by magnetic resonance spectroscopic imaging

Brain region Patients†, n � 9 Controls, n � 36 p Value‡

Frontal white matter

NAA 0.220 � 0.045 0.253 � 0.052 0.1

Cho 0.051 � 0.010 0.064 � 0.010 0.001

Cr 0.142 � 0.027 0.158 � 0.032 0.1

Cho/Cr 0.380 � 0.108 0.415 � 0.053 0.2

Lenticular nucleus

NAA 0.327 � 0.031 0.347 � 0.032 0.1

Cho 0.056 � 0.011 0.069 � 0.009 �0.001

Cr 0.204 � 0.027 0.213 � 0.022 0.3

Cho/Cr 0.277 � 0.046 0.331 � 0.053 �0.01

Thalamus

NAA 0.328 � 0.051 0.324 � 0.033 0.8

Cho 0.063 � 0.010 0.071 � 0.007 0.006

Cr 0.163 � 0.017 0.173 � 0.019 0.2

Cho/Cr 0.388 � 0.056 0.417 � 0.045 0.1

*LCModel untransformed concentrations; values are mean � SD.
†Only the unrelated patients (including the proband of the family) were included in this anal-
ysis to avoid overrepresentation of the three members of the same family.
‡p values for differences between patients and control subjects using Student t test.
NAA � N-acetylaspartate; Cho � water-soluble choline-containing compounds; Cr � creatine.

Figure 2 Scatter plots of the choline/creatine
ratio according to age in frontal
white matter (A), lenticular nuclei
(B), and thalami (C)

Solid lines are regression curves for patients (�); dashed
lines are regression curves for controls (X).
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groups in humans.17,18 Recent studies in animal models
as well as reexamination of the human creatine metabo-
lism suggested that creatine synthesis was responsible
for a smaller proportion of AdoMet-derived methyl
group consumption and that phosphatidylcholine syn-
thesis through the reaction catalyzed by the phosphati-
dylethanolamine methyltransferase was a major
consumer of these methyl groups.19,20 In this study, we
found that patients with RD had a significant decrease
in choline-containing compounds signal in the brain.
The Cho signal is mainly derived from the precursors of
phosphatidylcholine, phosphocholine, free choline, and
glycerophosphocholine.21 Overall, our results are in
agreement with the recent estimation on the methyl
group balance in humans.19,20 Phosphatidylethano-
lamine methyltransferase is the rate-limiting step of
phosphatidylcholine synthesis in the liver. Its activity
has also been specifically characterized in oligodendro-
cytes, although it was considered a minor contributor to
the total phosphatidylcholine synthesis in the whole
brain. Phosphatidylcholine synthesis in brain proceeds
mainly through the CDP-choline/Kennedy pathway,
directly incorporating phosphocholine on the diacyl-
glycerol backbone.22 Nevertheless, conversion of
phosphatidylethanolamine into phosphatidylcholine
remains the only known pathway for the de novo cho-
line biosynthesis in the body, ultimately supplying the
brain in choline.

Of note, cerebral choline depletion observed by
MRSI has been reported in an infant with dietary
cobalamin deficiency23 and in a patient with

S-adenosylhomocysteine hydrolase deficiency24 (fig-
ure 1, reaction F), both situations potentially impair-
ing transmethylation pathway. Because brain MRSI
in patients with nonspecific psychomotor delay, my-
elination delay, or focal T2-weighted hyperintensi-
ties shows an increase in the choline signal,25-27 we
think that our findings are specific to RD and related
to the metabolic defects. In our patients, we can spec-
ulate that lifelong depletion of choline precursors has
contributed to the periventricular white matter loss
and cerebral atrophy observed on MRI.

Previous studies have shown that brain concentra-
tions of creatine and choline remain constant after
age 2 years.28 In our control group, we found a slight
Cho decrease with age in frontal with matter and
lenticular nuclei, whereas the Cho/Cr ratio was sta-
ble. By contrast, in patients, the Cho/Cr ratio pro-
gressively decreased with age in the three brain
regions examined. This suggests that brain Cho de-
pletion occurs as an isolated phenomenon and that
this deficiency seems persistent throughout life.

There was a paradoxical increase in plasma AdoMet
in our patients, as previously reported in a study of six
CblC patients.16 This was discordant with the concom-
itant low methionine levels. The explanation for such a
paradoxical AdoMet increase remains unclear, but a sec-
ondary inhibition of the methylases is likely. This rein-
troduces a “toxic hypothesis” in the pathophysiologic
model of the disease, in addition to the “depletion hy-
pothesis” already discussed. AdoHcy, an inhibitor of
many AdoMet-dependent methyltransferases, was high

Table 3 Plasma and urine concentrations of transmethylation and creatine biosynthesis pathways
metabolites

Metabolite

Patients,
median
(range)

% (95% CI)
above/below limit
of reference
range*

Reference
value p Value†

Plasma

Homocysteine, �mol/L 72.3 (42.5–151.5) 100 (72–100) 5–15 �0.001

Methionine, �mol/L 13 (11–23) 0 (0–28) 9–37 NS

AdoMet, nmol/L 250 (60–379) 90 (60–98) 65–125 �0.005

AdoHcy, nmol/L 35 (19–46) 90 (60–98) 4.9–19.7 �0.001

Creatine, �mol/L 23 (8–57) 0 (0–28) 6–109 NS

Guanidinoacetate, �mol/L 1.4 (1.1–1.9) 0 (0–28) 0.35–3.5 NS

Urine

Creatine, mmol/mol creat 18 (12–25) 100 (60–98) 40–1,510 �0.005

Guanidinoacetate, mmol/mol creat 52 (22–107) 0 (0–28) 18–159 NS

*For plasma homocysteine, S-adenosylmethionine (AdoMet), S-adenosylhomocysteine (AdoHcy), guanidinoacetate, and
urine guanidinoacetate, we considered concentrations above the upper limit of the reference range. For plasma methionine,
creatine, and urine creatine, we considered concentrations below the lower limit of the reference range. Only the unrelated
patients (including the proband of the family) were included in this analysis to avoid overrepresentation of the three mem-
bers of the same family.
†p value for comparison between patients and upper limit of the reference range (for homocysteine, AdoMet, AdoHcy, and gua-
nidinoacetate) and the lower limit of the reference range (for methionine and creatine), using a one-sample signed rank test.
NS � not significant.
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in our patients, but there was no significant association
between AdoMet and AdoHcy concentrations. Of
note, plasma AdoMet concentration was significantly
higher in CblC patients than in MTHFR patients. Ad-
ditional studies are needed to investigate the mecha-
nisms underlying AdoMet accumulation in RD.

Our results show that patients with RD have an
isolated deficiency of choline-containing compounds
in the brain, probably due to the impairment of
transmethylation processes. Paradoxical AdoMet in-
crease suggests that secondary inhibition of methyl-
ases could contribute to the transmethylation defect
in these conditions.
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