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I. INTRODUCTION

In hadron-hadron collisions it is often assumed that final states containing high-mass systems

or high transverse momentum jets are generated by a single hard scattering which involves

one parton from each colliding hadron. The possibility, however, of multiple hard scatterings

should be considered as well. One might therefore consider the case in which two hard

interactions occur within the same hadron-hadron collision as an approximation to the full

multiple parton interactions contributions. Several experimental results indeed support this

possibility and are based on the analysis of the four-jet [1–3] and γ + 3 jets channels [4, 5].

Multiple parton interactions has been first modelled and included in modern Monte Carlo

event generators [6–8]. Very recently detailed phenomenological investigations on double

parton scattering have appeared in the literature. They focus on the four-jet [9, 10], double-

inclusive-forward-pion production [13], same-sign W [11] and Z plus jets [12] final states.

The efforts to identify processes which could be maximally sensitive to the contributions of

double-parton scattering (DPS) is driven by two main interests. On the one hand a carefull

assessment of phase-space region where DPS events might impact searches for new physics

is needed. On the other hand a genuine understanding of hadron structure in high energy
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collisions in terms of multi-partons distributions would emerge from these studies. Most of

the predictions reported in the phenomenological analysis are based on the simplified model

in which double parton distributions (DPD) are supposed to be the product of single-parton

distributions. This assumption is indeed reasonable given the regime of low parton fractional

momenta presently accessible at hadron colliders. Such an assumption simply disregards any

longitudinal-momentum and flavour correlation between the two interacting partons from

each hadron, so that each one evolves according to standard DGLAP equations [14]. The

main virtue of such an approach is that it is technically appealing since numerous single

parton distributions sets are available. The scale dependence of double-parton distributions

has been worked out in Ref. [15]. With respect to standard single-parton distributions

evolution equations (DGLAP), they do contain an additional term which is responsable for

dynamical correlation between the interacting partons. Quite recently a new set of double

parton distributions has been obtained by means of numerical integrations of the DPD

evolutions equations. The initial conditions are such that DPD preserve under evolution a

number of momentum and flavour sum rules [16]. The evolution equations elaborated in

Ref. [15] however assume that both the interacting parton have the same virtualities.

Numerical studies [10, 12] and the arguments given in Ref. [17] indeed indicate that

the characterizing scale for double parton scattering is the transverse momentum of the

final state products. One may therefore consider the production of a gauge boson of mass

M2 = Q2
2 in the first hard scattering associated with jets produced in the second hard

scattering and characterized by the jet transverse momentum P 2
t = Q2

1. We indicate with

Q2
1 and Q2

2 the factorization scales for the two hard processes. The low P 2
t regime, with

P 2
t ≪ M2, for which we expect significant contributions from DPS events, is not covered by

evolution equations proposed in Ref. [15]. The first purpose of this paper is to obtain DPD

evolutions equations for different virtualities of the interacting partons. Then we consider

the extension of the formalism beyond the leading logarithmic approximation. By using jet

calculus rules we work out the inhomogeneous term at next-to-leading order accuracy and

connect the real two-loops splitting functions arising in DPD evolution equations to the one

appearing in fracture functions evolution equations at the same level of accuracy. Our main

results are all framed within the Jet Calculus formalism since it proves to be an efficient

tool for calculating multi-parton distributions properties and only an ab initio calculation

could bring these findings on a firmer ground.
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This paper is organized as follows. In Sec. II we review the basics of Jet Calculus for-

malism and recover known results on DPD. In Sec. III we work out the DPD evolution

equations at different virtualities. In Sec. IV we guess the evolution equations for DPD at

next-to-leading order accuracy. Finally we summarise our results in Sec. V.

II. PRELIMINARIES

The double-parton distributions (DPD) Dj1,j2
h (x1, Q

2
1, x2, Q

2
2) are interpreted as the two-

particle inclusive probability of finding in a target hadron a couple of partons of flavour j1

and j2, fractional momenta x1 and x2 and virtualities up to Q2
1 and Q2

2, respectively. The

special case in which Q2
1 = Q2

2 = Q2 has been considered in detail in Ref. [15]. According to

Jet Calculus [18], the distributions at the final scales, Q2
1 andQ2

2, are constructed through the

parton-to-parton functions, E, which themselves obey DGLAP-type [14] evolution equations:

Q2 ∂

∂Q2
Ej

i (x,Q
2
0, Q

2) =
αs(Q

2)

2π

∫ 1

x

du

u
P i
k(u)E

k
i (x/u,Q

2
0, Q

2) , (1)

where P i
k(u) are the Altarelli-Parisi splitting functions. Inserting the initial condition

Ej
i (x,Q

2
0, Q

2) = δji δ(1− x) eq. (1) can iteratively be solved to give

Ej
i (x,Q

2
0, Q

2) = δji δ(1− x) +
αs

2π
P j
i (x) ln

Q2

Q2
0

+O(α2
s) . (2)

Therefore the functions E provide the resummation of collinear logarithms up to the accuracy

with which the P i
k(u) are specified. We may therefore express, by Jet Calculus rules [18],

the double-parton distributions Dj1,j2
h (x1, Q

2
1, x2, Q

2
2) as

Dj1,j2
h (x1, Q

2
1, x2, Q

2
2) = (3)

∫ 1−x2

x1

dz1
z1

∫ 1−z1

x2

dz2
z2

D
j′
1
,j′
2

h (z1, Q
2
0, z2, Q

2
0)E

j1
j′
1

(x1

z1
, Q2

0, Q
2
1

)
Ej2

j′
2

(x2

z2
, Q2

0, Q
2
2

)
+

∫ Min(Q2

1
,Q2

2
)

Q2

0

dµ2
s

∫ 1−x2

x1

dz1
z1

∫ 1−z1

x2

dz2
z2

D
j′
1
,j′
2

h,corr(z1, z2, µ
2
s)E

j1
j′
1

(x1

z1
, µ2

s, Q
2
1

)
Ej2

j′
2

(x2

z2
, µ2

s, Q
2
2

)
.

The first term on r.h.s., usually addressed as the homogeneous term, takes into account the

uncorrelated evolution of the active partons found at a scale Q2
0 in D

j′
1
,j′
2

h up to Q2
1 and Q2

2,

respectively. The second term, the inhomogeneous one, takes into account the probability
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to find the active partons at Q2
1 and Q2

2 as a result of a splitting at a scale µ2
s, integrated

over all the intermediate scale at which such splitting may occur. The distribution D
j′
1
,j′
2

h,corr is

D
j′
1
,j′
2

h,corr(z1, z2, µ
2
s) =

αs(µ
2
s)

2πµ2
s

F j′

h (z1 + z2, µ
2
s)

z1 + z2
P̂

j′
1
,j′
2

j′

( z1
z1 + z2

)
. (4)

The distributions F j′

h in eq. (4) are the single parton distributions and the P̂
j′
1
,j′
2

j′ are the real

Altarelli-Parisi splitting functions [18]. Both terms in eq. (3) are shown in Fig. (1).

FIG. 1: Pictorial representation of both terms on right hand side of eq. (3). Black dots symbolize

the parton-to-parton evolution function, E .

Due to strong ordering in parton virtualities, the maximum scale in the µ2
s integral is set to

Min(Q2
1, Q

2
2). The scale Q

2
0 is in general the (low) scale at which DPD are usually modelled,

in complete analogy with the single-parton distributions case. In the present context it

also acts as the factorization scale for the correlated term, since all unresolved splittings for

which µ2
s < Q2

0 are effectively taken into account in the definition of D
j′
1
,j′
2

h (z1, Q
2
0, z2, Q

2
0).

The limits on convolutions integrals in eq. (4) are fixed by momentum conservation,

z1 ≥ x1, z2 ≥ x2, z1 + z2 ≤ 1 , (5)

where z1 and z2 are intermediate partons fractional momenta and the last condition guaran-

tees that their sum never exceeds the incoming hadron fractional momentum. The, lowest-

order, real Altarelli-Parisi splitting functions P̂ qg
q (u) and P̂ gg

g (u) both contain an infrared

singularity at the endpoint, u = 1. It is however easy to show that such a singularity is

always outside the triangle defined by eq. (5) in the [z1, z2] plane, provided that the triv-

ial condition x1, x2 > 0 holds. In the “equal scales” case, Q2
1 = Q2

2 = Q2, we may take
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the logarithmic derivative with respect to Q2 in eq. (3) and recover the result presented in

Ref.[15]:

Q2∂D
j1,j2
h (x1, x2, Q

2)

∂Q2
=

αs(Q
2)

2π

∫ 1

x1

1−x2

du

u
P j1
k (u)Dj2,k

h (x1/u, x2, Q
2)+

αs(Q
2)

2π

∫ 1

x2

1−x1

du

u
P j2
k (u)Dj1,k

h (x1, x2/u,Q
2) +

αs(Q
2)

2π

F j′

h (x1 + x2, Q
2)

x1 + x2
P̂ j1,j2
j′

( x1

x1 + x2

)
. (6)

The first and second terms on the right-hand side are obtained through the Q2 dependence

contained in the E functions, while the last is obtained from the Q2 dependent limit in

the µ2
s integration in the correlated term. The evolution equations therefore resum large

contributions of the type αs ln(Q
2/Q2

0) and αs ln(Q
2/µ2

s) appearing in the uncorrelated and

correlated term of eq. (3), respectively.

III. EVOLUTION EQUATIONS FOR DIFFERENT VIRTUALITIES

Let us now consider the general case in which the partons initiating the two separate hard

scatterings have different virtualities, Q2
1 and Q2

2, respectively with Q2
1 < Q2

2. The evolution

equations for the higher scale is obtained by taking the logarithmic derivative of eq. (3) with

respect to Q2
2

Q2
2

∂Dj1,j2
h (x1, Q

2
1, x2, Q

2
2)

∂Q2
2

=

[∫ 1−x2

x1

dz1
z1

∫ 1−z1

x2

dz2
z2

D
j′
1
,j′
2

h (z1, Q
2
0, z2, Q

2
0)E

j1
j′
1

(x1

z1
, Q2

0, Q
2
1

)
+

+

∫ Q2

1

Q2

0

dµ2
s

αs(µ
2
s)

2πµ2
s

∫ 1−x2

x1

dz1
z1

∫ 1−z1

x2

dz2
z2

F j′

h (z1 + z2, µ
2
s)

z1 + z2
P̂

j′
1
,j′
2

j′

( z1
z1 + z2

)
Ej1

j′
1

(x1

z1
, µ2

s, Q
2
1

)]
·

·
αs(Q

2
2)

2π

∫ 1

x2

z2

du

u
P j2
k (u)Ek

j′
2

(
x2

z2u
, µ2

s, Q
2
2) , (7)

and using eq. (1). Reordering the integrals, we get

Q2
2

∂Dj1,j2
h (x1, Q

2
1, x2, Q

2
2)

∂Q2
2

=
αs(Q

2
2)

2π

∫ 1

x2

1−x1

du

u
P j2
k (u)

[

∫ 1−
x2

u

x1

dz1
z1

∫ 1−z1

x2

u

dz2
z2

D
j′
1
,j′
2

h (z1, Q
2
0, z2, Q

2
0)E

j1
j′
1

(x1

z1
, Q2

0, Q
2
1

)
Ek

j′
2

( x2

z2u
,Q2

0, Q
2
2

)
+

+

∫ Q2

1

Q2

0

dµ2
s

αs(µ
2
s)

2πµ2
s

∫ 1−
x2

u

x1

dz1
z1

∫ 1−z1

x2

u

dz2
z2

F j′

h (z1 + z2, µ
2
s)

z1 + z2
P̂

j′
1
,j′
2

j′

( z1
z1 + z2

)
Ej1

j′
1

(x1

z1
, µ2

s, Q
2
1

)
·

·Ek
j′
2

(
x2

z2u
, µ2

s, Q
2
2)

]
.(8)
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It is now easy to recognize, through direct comparison with eq.(3), that the term is square

brackets is the double parton distribution Dj1,k
h (x1, Q

2
1, x2/u,Q

2
2). The desidered evolution

equations then becomes

Q2
2

∂Dj1,j2
h (x1, Q

2
1, x2, Q

2
2)

∂Q2
2

=
αs(Q

2
2)

2π

∫ 1

x2

1−x1

du

u
P j2
k (u)Dj1,k

h (x1, Q
2
1, x2/u,Q

2
2) . (9)

We could obtain the same result in a rather different way. We can in fact exploit the following

property of the E function

Ej
i (x,Q

2
0, Q

2
2) =

∫ 1

x

du

u
Ek

i

(x
u
,Q2

0, Q
2
1

)
Ej

k(u,Q
2
1, Q

2
2) . (10)

The latter can be checked, for example, by expanding the E functions in power of αs as

given in eq. (2). By using eq. (10), eq. (3) can be recast in the much compact form

Dj1,j2
h (x1, Q

2
1, x2, Q

2
2) =

∫ 1−x1

x2

dw2

w2
Dj1,k

h (x1, Q
2
1, w2, Q

2
1)E

j2
k

(x2

w2
, Q2

1, Q
2
2

)
. (11)

By direct substitution it can be checked that eq. (11) is indeed a solution of eq. (9). With

respect to “equal scale” DPD evolution equations we notice the disappereance of the inho-

mogenous term. This is due to the fact that the correlations up to a scale Q2
1 given by the

inhomogeneous term are taken into account by the “equal scales” evolution equations and

properly built into Dj1,k
h (x1, Q

2
1, w2, Q

2
1) . The evolution of the second parton from Q2

1 to

Q2
2 is uncorrelated due to strong ordering in virtualities assumed in the leading logarithmic

approximation. From the numerical point of view therefore DPD at different virtualities can

be obtained evolving Dj1,k
h (x1, Q

2
1, w2, Q

2
1) with the “equal scale” evolution equations up to

Q2
1, eq. (6), and then using the latter output as initial condition in eq. (9), for Q2

2 > Q2
1.

We have threfore proven the conjecture put forward in Ref. [16] and actually implemented

numerically [26]. For completeness we have also considered the DPD evolution equations in

Q2
1. Provided that Q2

1 < Q2
2 and using the same techniques through which we have derived

eqs. (6) and (9) we get

Q2
1

∂Dj1,j2
h (x1, Q

2
1, x2, Q

2
2)

∂Q2
1

=
αs(Q

2
1)

2π

∫ 1

x1

1−x2

du

u
P j1
k (u)Dk,j2

h (x1/u,Q
2
1, x2, Q

2
2)+

+
αs(Q

2
1)

2π

∫ 1−x1

x2

dz2
z2

F j
h(x1 + z2, Q

2
1)

x1 + z2
P̂

j1j
′

2

j

( x1

x1 + z2

)
Ej2

j′
2

(x2

z2
, Q2

1, Q
2
2

)
. (12)

In this case the evolution equations contain an inhmogeneous term which arises due to the

explicit Q2
1 dependence on the µ2

s integral in eq. (3). Since the factorization scale are kept
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different, the latter does contain explicitely the function E(Q2
1, Q

2
2), which cannot be further

simplified. To avoid a direct calculations of the E function, the double-parton distributions

for unequal final scales should be obtained therefore via the two step procedure mentioned

above.

IV. EVOLUTION EQUATIONS TO NLLA

In this section we address the problem of deriving the structure of DPS evolution equa-

tions at next-to-leading logarithmic accuracy. The aim therefore is to provide some guidance

for an eventual ab initio calculation. At present, in fact, such an accuracy is not required

since, given the scarce experimental information available, we do not even have sufficient

data to test whether the scale dependence predicted by DPD evolution is supported. Jet

Calculus techniques has been succesfully extended up next-to-leading logarithmic accuracy

to improve the perturbative description of time-like parton cascades [20]. For space-like par-

ton cascades instead, which is the case we are actually interested in, the formalism has not

been extended beyond leading-logarithmic accuracy. However a couple of calculations have

been performed in the context of semi-inclusive Deep Inelastic Scattering. In particular the

one-particle inclusive cross sections up to order O(α2
s) have been calculated in Refs. [21, 22].

Such calculations carefully consider hadron production collinear to the hadron remnant

where the introduction of fracture functions [23] is shown to be necessary to factorize addi-

tional collinear singularities appearing in the calculations in that phase-space region. The

fixed order calculations atO(α2
s) allows the authors to derive the fracture functions evolution

equations to next-to-leading logarithmic accuracy, as well as the two-loop, unknown, real

splitting functions, P̂ (1). Fracture functions evolution equations can be calculated, as DPD,

within the Jet Calculus formalism [24, 25] and they do contain an inhomogenous term as

well. While in the fracture functions case the partons emitted by the active one hadronizes

through a fragmentation function, in the DPD one, the emitted parton is allowed to further

evolve and eventually initiate a second hard scattering.

When evaluting the evolutions equations at next-to-leading logarithmic accuracy the

evolution equations for the parton-to-parton functions E must be properly modified to

Q2 ∂

∂Q2
Ej

i (x,Q
2
0, Q

2) =
αs(Q

2)

2π

∫ 1

x

du

u

[
P

(0),i
k (u) +

αs(Q
2)

2π
P

(1),i
k (u)

]
Ek

i (x/u,Q
2
0, Q

2) , (13)



8

where P (0)(u) and P (1)(u) are the one- and two-loops [19] Altarelli-Parisi splitting functions,

respectively. This in turn implies that the two homogenous terms in DPD evolution equa-

tions in eq. (6) are modified by adding the two-loop splitting functions contributions. On the

contrary, the derivation of the inhomogenous term to next-to-leading logarithmic accuracy

is not trivial so, in the following, we will construct it explicitely in the “equal scales” case.

The correlated term can be written therefore as

D
j′
1
,j′
2

h,corr(x1, x2, Q
2
0, Q

2) =

∫ Q2

Q2

0

αs(µ
2
s)

2πµ2
s

∫ 1

x1+x2

dw

∫ 1−x2

x1

dz1
z1

∫ 1−z1

x2

dz2
z2

∫
dr1 dr2 du1 du2

· F j′

h (w, µ2
s))

[
P̂

(0) j′
1
,j′
2

j′ (u1)δ(1− u1 − u2) +
αs(µ

2
s)

2πµ2
s

P̂
(1) j′

1
,j′
2

j′ (u1, u2)
]
·

· Ej1
j′
1

(r1, µ
2
s, Q

2) Ej2
j′
2

(r2, µ
2
s, Q

2) δ(x1 − r1z1) δ(x2 − r2z2) δ(z1 − u1w) δ(z2 − u2w) . (14)

In the above equations P̂
(1) j′

1
,j′
2

j′ (u1, u2) gives the probability that a parton j′ splits to three

partons, where the first, j′1, and a second, j′2, have respectively a fraction u1 and u2 of the

incoming parton momentum j′ and the third is integrated over. Integrating the δ-functions,

which implements longitudinal momentum conservation, one gets

D
j′
1
,j′
2

h,corr(x1, x2, Q
2
0, Q

2) =

∫ Q2

Q2

0

αs(µ
2
s)

2πµ2
s

∫ 1

x1+x2

dw

w2
F j′

h (w, µ2
s)

∫ 1−x2

x1

dz1
z1

∫ 1−z1

x2

dz2
z2

[
P̂

(0) j′
1
,j′
2

j′

(z1
w

)
δ
(
1−

z1
w

−
z2
w

)
+

αs(µ
2
s)

2πµ2
s

P̂
(1) j′

1
,j′
2

j′

(z1
w
,
z2
w

)]

Ej1
j′
1

(x1

z1
, µ2

s, Q
2
)
Ej2

j′
2

(x2

z2
, µ2

s, Q
2
)
. (15)

As already noted, the inhomogenous term in DPD evolution equations is due to the explicit

Q2 dependence in the upper limit of µ2
s integration. In order to obtain it we set µ2

s = Q2 in

eq.(15), multiply by Q2, and use intial condition on E, Ej
i (x,Q

2, Q2) = δji δ(1− x). Adding

the homogeneous contributions, the final result reads

Q2∂D
j1,j2
h (x1, x2, Q

2)

∂Q2
=

αs(Q
2)

2π

∫ 1

x1

1−x2

du

u

[
P

(0),j1
k (u)+

αs(Q
2)

2π
P

(1),j1
k (u)

]
Dk,j2

h (x1/u, x2, Q
2)+

+
αs(Q

2)

2π

∫ 1

x2

1−x1

du

u

[
P

(0),j2
k (u) +

αs(Q
2)

2π
P

(1),j2
k (u)

]
Dj1,k

h (x1, x2/u,Q
2)+

+
αs(Q

2)

2π

∫ 1

x1+x2

dw

w2
F j′

h (w,Q2)
[
wP̂

(0),j1,j2
j′

(x1

w

)
δ(w−x1−x2)+

αs(Q
2)

2π
P̂

(1),j1,j2
j′

(x1

w
,
x2

w

)]
.

(16)
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It should be noted however that the kernels P̂
′(1),j′

1
,j′
2

j′ (u, v) reported in Refs. [21, 22] do

express the probability that a parton j′ splits into a parton j′1 with a momentum fraction u

of the incoming parton, into a parton j′2 with a mometum fraction v of j′1, the third being

integrated over. Therefore they are related to the ones appearing in eq. (16) by the following

mapping

P̂
(1),j′

1
,j′
2

j′ (u1, u2) =
1

u1
P̂

′(1),j′
1
,j′
2

j′

(
u1,

u2

u1

)
. (17)

The additional integral in the inhomogeneous term does appear since the momentum is not

anymore constrained in the 1 → 2 splitting. The DPS evolution equations to next-to-leading

logarithmic accuracy for different scales can be obtained by the same arguments given in

Sec. III. We just quote the final result which reads

Q2
2

∂Dj1,j2
h (x1, Q

2
1, x2, Q

2
2)

∂Q2
2

=
αs(Q

2
2)

2π

∫ 1

x2

1−x1

du

u

[
P

(0),j2
k (u) +

αs(Q
2
2)

2π
P

(1),j2
k (u)

]
·

·Dj1,k
h (x1, Q

2
1, x2/u,Q

2
2) , (18)

provided that Q2
1 < Q2

2.

V. SUMMARY

We have considered double parton distributions in the general case in which the two factor-

ization scales are kept different and derivered the corresponding evolution equations. The

results of the present calculation support the guess put forward in Ref. [16] and recently

implemented numerically [26] widening the range of possible phenomenlogical investigations

on double-parton scatterings. We have also derived the general structure of the DPD evolu-

tion equations at next-to-leading logarithmic accuracy and indicated how to transform the

two-loops real splitting functions present in the literature in order to be used in the present

context. Both results should be confirmed by performing an ab initio calculation.
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