

Développement d'un formalisme Arbitraire Lagrangien Eulérien tridimensionnel en dynamique implicite. Application aux opérations de mise à forme.

Romain Boman – Ingénieur civil physicien

Le 6 mai 2010

Contents

- 1. Introduction
- 2. Mesh management
- 3. Convective step
- 4. Numerical applications
- 5. Industrial application: roll forming
- 6. Conclusions and future work

Contents

1. Introduction

- 2. Mesh management
- 3. Convective step
- 4. Numerical applications
- 5. Industrial application: roll forming
- 6. Conclusions and future work

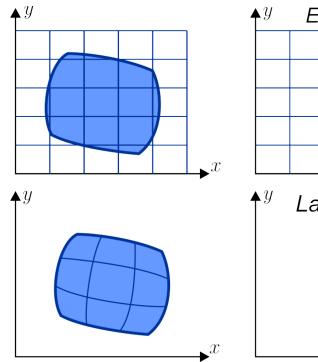
General framework & keywords

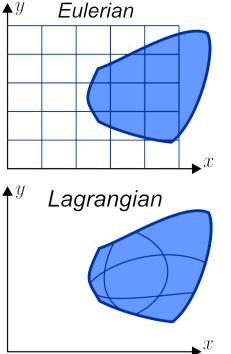
• **Continuum mechanics** – Nonlinear Solid Mechanics

Highly nonlinear situation: large deformations, nonlinear materials, contact, thermomechanical coupling, inertia effects, etc.

- Numerical simulation
 - Finite Element Method (FEM)
 - Simulation of metal forming processes
- Metafor (home made software <u>http://metafor.ltas.ulg.ac.be/</u>)

Kinematic description of the motion





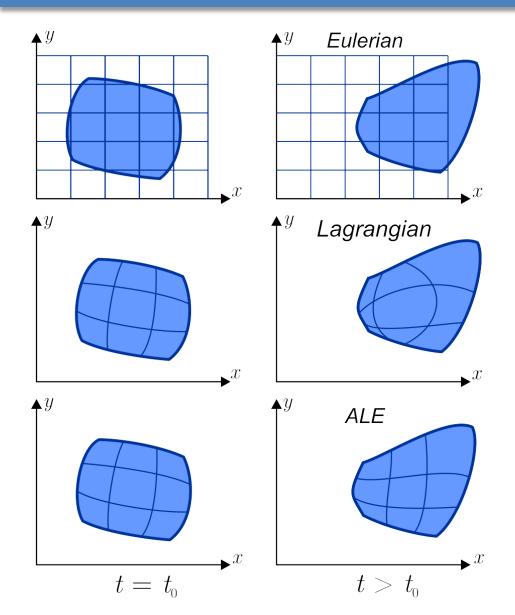
Eulerian formalism

- Undistorted mesh
- Free boundaries are difficult to track
- History-dependent materials are difficult to handle

Lagrangian formalism

- The mesh can be rapidly distorted
- Free boundaries are automatically computed
- History-dependent materials are easier to handle

Kinematic description of the motion



Arbitrary Lagrangian Eulerian (ALE) formalism

- Extension of both previous formalisms
- The mesh motion is uncoupled from material motion
- ALE can be crudely seen as a continuous remeshing procedure
- Mesh topology does not change
- Remapping of variables is faster than classical remeshing

Equations to be solved

Continuum mechanics (Lagrangian description)

• Mass

$$\left. \frac{\partial \rho}{\partial t} \right|_{\mathbf{X}} = -\rho \, \nabla \cdot \mathbf{v}$$

coordinate systems

- X : material coordinates
- **x** : spatial coordinates

<u>Momentum</u>

$$\left. \rho \frac{\partial \mathbf{v}}{\partial t} \right|_{\mathbf{X}} = \nabla \cdot \mathbf{\sigma} + \rho \, \mathbf{b}$$

v : material velocity

• Energy

$$\left. \rho \frac{\partial u}{\partial t} \right|_{\mathbf{X}} = \mathbf{\sigma} : \mathbf{D} + \rho r + \nabla \cdot \mathbf{q}$$

Material

$$\frac{\partial \mathbf{\sigma}}{\partial t} \bigg|_{\mathbf{X}} = \mathbf{H} : \mathbf{D} + \mathbf{\sigma} \mathbf{W} \mathbf{\sigma} \mathbf{W}$$

Equations to be solved

Continuum mechanics (ALE description)

• Mass

$$\left. \frac{\partial \rho}{\partial t} \right|_{\chi} + \mathbf{c} \cdot \nabla \rho = -\rho \, \nabla \cdot \mathbf{v}$$

• <u>Momentum</u>

$$\mathbf{P} \quad \rho \left(\frac{\partial \mathbf{v}}{\partial t} \Big|_{\boldsymbol{\chi}} + (\mathbf{c} \cdot \nabla) \mathbf{v} \right) = \nabla \cdot \boldsymbol{\sigma} + \rho \mathbf{b}$$

coordinate systems

- X : material coordinates
- **x** : spatial coordinates
- χ : grid coordinates

v : material velocityv* : arbitrary grid velocity

• Energy

$$\rho\left(\frac{\partial u}{\partial t}\Big|_{\chi} + \mathbf{c} \cdot \nabla u\right) = \mathbf{\sigma} : \mathbf{D} + \rho r + \nabla \cdot \mathbf{q}$$

with $\mathbf{c} = \mathbf{v} - \mathbf{v}^*$ (convective velocity)

Material

$$\frac{\partial \mathbf{\sigma}}{\partial t} \bigg|_{\chi} + (\mathbf{c}\mathbf{\sigma}\nabla) = \mathbf{H} : \mathbf{D} + \mathbf{W}\mathbf{\sigma} - \mathbf{\sigma}\mathbf{W}$$

ALE solution procedure

Fully coupled solution

- OK if mesh motion (\mathbf{v}^*) is known
- Otherwise, twice more mechanical unknowns (v and v*)
 - → too difficult and too slow for the simulation of forming processes

Operator split

Lagrangian step: (classical)

Mesh sticks to the material ($\mathbf{v} = \mathbf{v}^*, \mathbf{c} = 0$)

Compute an equilibrated "Lagrangian configuration" at time $t + \Delta t$

Eulerian step: (when equilibrium is reached)

1. Define c (define a new mesh)

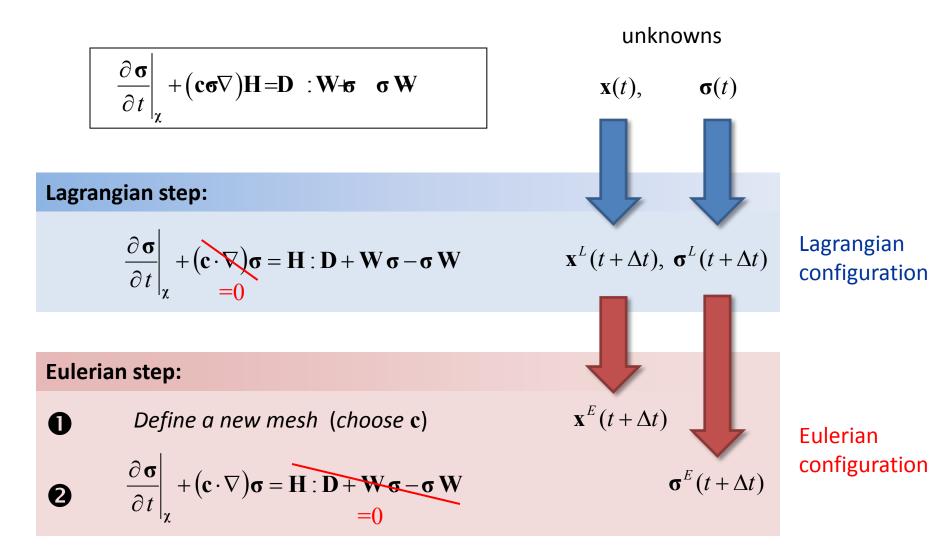
→ see "mesh management" in this presentation

2. Data transfer from old mesh to the new one

→ see "convective step" in this presentation

ALE Solution procedure

Operator split – Example: constitutive law



Two families of ALE applications

1. Problems involving excessive mesh distortion

Benefits of ALE vs. Lagrangian models

- Helps to keep well-shaped elements despite large deformations
- Most often remeshing is completely avoided

Features of these ALE models

- Boundary nodes are (more or less)
 Lagrangian
- Small convective displacements are expected
- Complex smoothing methods for interior nodes

Example: axisymmetric forging Lagrangian model ALE model

Two families of ALE applications

2. "Quasi-Eulerian" models

Example: rolling

ALE model (954 FEs)

Lagrangian model (1755 FEs)

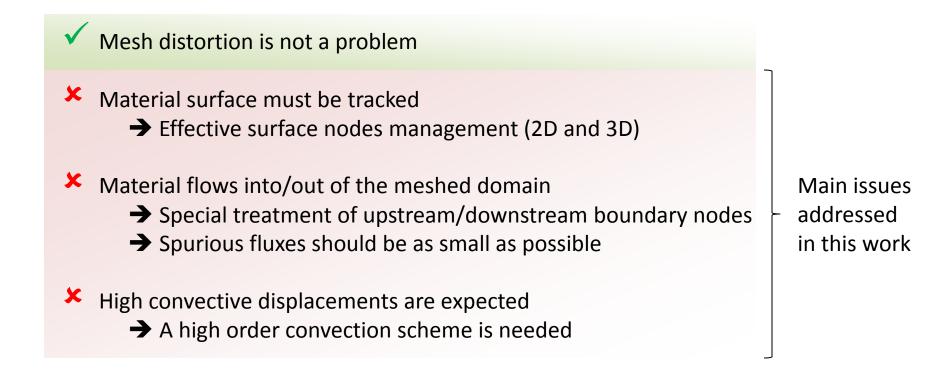
Benefits of ALE vs. Lagrangian models

- The size of the model is decreased in the flow direction
- Loading is easier
- The element size may be optimised in the flow direction
- The contact regions do not change
- Less volume/contact elements → less CPU time

Two families of ALE applications

2. "Quasi-Eulerian" models

Features of these ALE models



Contents

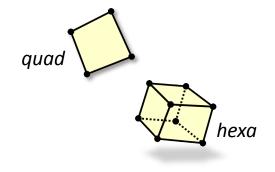
1. Introduction

2. Mesh management

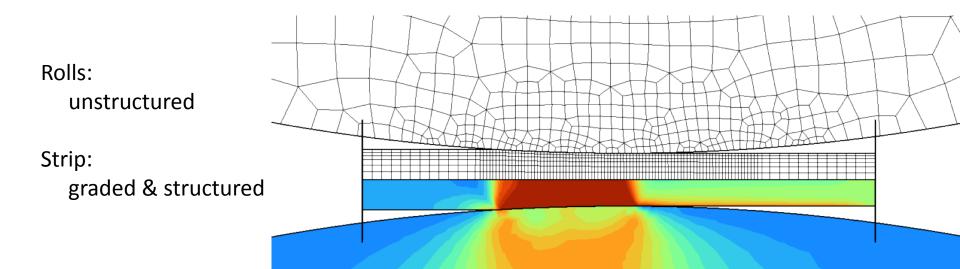
- 3. Convective step
- 4. Numerical applications
- 5. Industrial application: roll forming
- 6. Conclusions and future work

Introduction

- Quadrangles or hexahedra only (Metafor)
- Sometimes unstructured
- Usually structured with local refinement for bending, contact ("graded mesh")



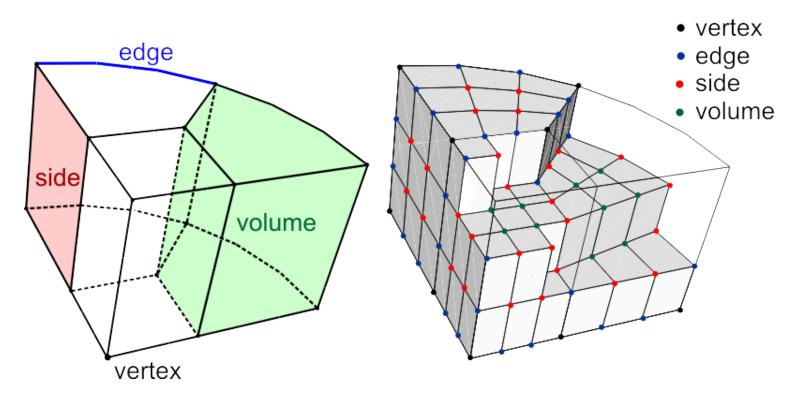
Example: modelling of cold rolling



How to define mesh motion?

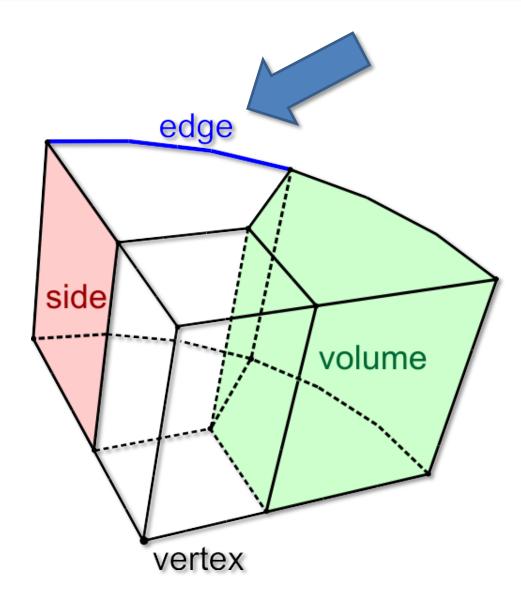
Manual procedure

- The methods highly depend on node position in the mesh.
 (vertex method ≠ edge method ≠ side method ≠ interior node method)
- They are applied to CAD entities (like loads and boundary conditions)



Mesh management

Nodes on sharp edges

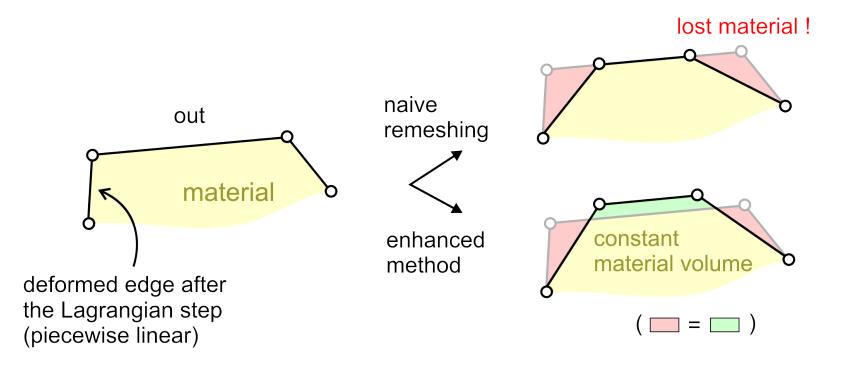


Nodes on sharp edges

Problem statement

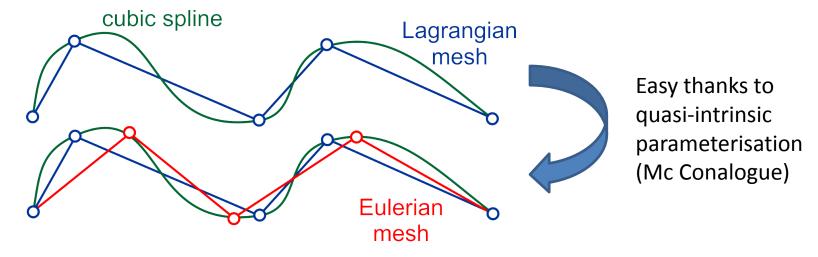
Remesh the deformed edge according to the initial node distribution

Difficulty: the edge is piecewise linear, material volume should not change

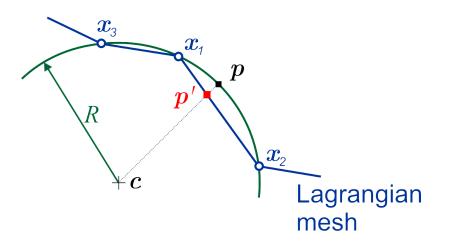


Nodes on sharp edges

Cubic spline method (Huétink)



Arc method (Ponthot)



Same as the "naïve method" except that the node is projected on a circle built from the tree closest Lagrangian nodes

Nodes on sharp edges

Simple convection test total displacement = 0.8 L \mathcal{V} L/10Х quasi Eulerian mesh L/10(length = L)300 elements along x 480 time steps (~1/2 element per step) exact 10 spline arc 8 naïve **Observations:** 6 y [mm] The "naïve method" should be avoided Arc and spline method are very close to 4 the exact solution

2

0

84

86

88

90

x [mm]

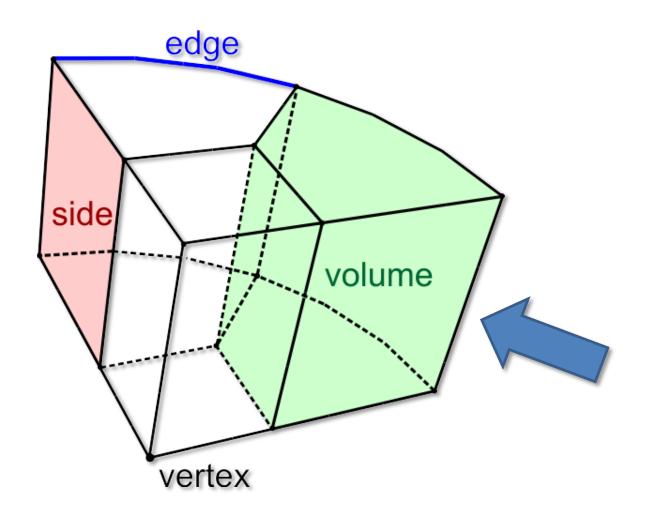
92

94

96

• The spline method is slightly better

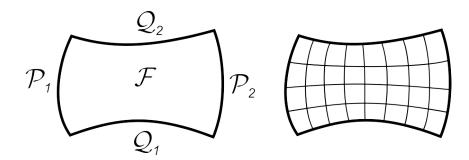
Interior (volume) nodes



Interior nodes (2D/3D)

Direct methods

- Very fast but limited to structured meshes on quad-shaped domains
- e.g.: Transfinite mapping (TM)



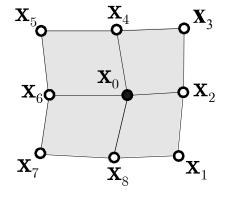
Iterative smoothing methods

- Slower than TM but more general
- Solver: Gauss Seidel + Successive OverRelaxation (SOR)

e.g.: weighted Laplacian

$$\mathbf{x}_0 = f(\mathbf{x}_i)$$

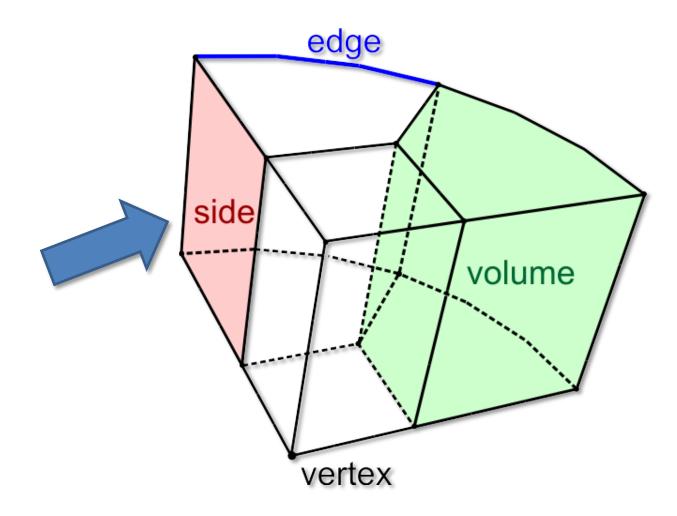
$$\mathbf{x}_0 = \frac{1}{\sum w_i} \sum w_i \, \mathbf{x}_i$$



Interior nodes (2D/3D)

Available methods

	Structured	Structured	Unstructured
	constant	graded	
Transfinite Mapping	\checkmark	\checkmark	×
Laplacian	~	*	\checkmark
Weighted volumes	~	*	\checkmark
Equipotential	~	*	×
Isoparametric	\checkmark	\checkmark	×
Giulinani	\checkmark	×	\checkmark



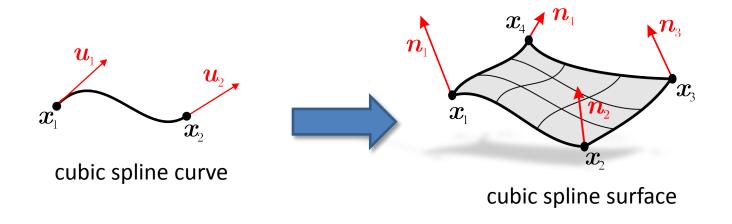
Problem statement

Remesh the deformed surface according to the initial sizes of the elements

Difficulty: the surface is piecewise bilinear, material volume should not change

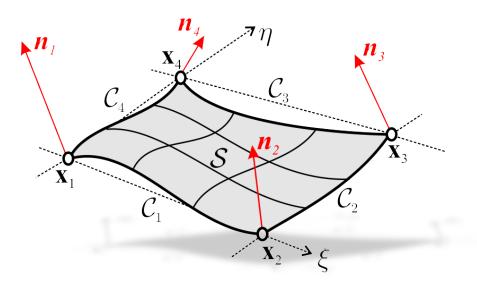
Proposed solution:

Extend the previous method used for sharp edges



Cubic spline surface construction

- Normal continuity at nodes is obtained by averaging normals of neighbouring patches
- 2. Straight edges are converted to cubic segments
- 3. A Coons patch is built on the basis of these new edges





Example:

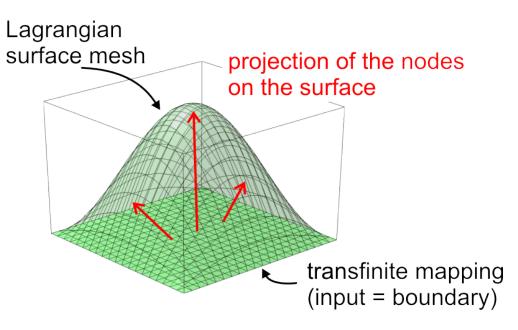
Direct method

Proposed method

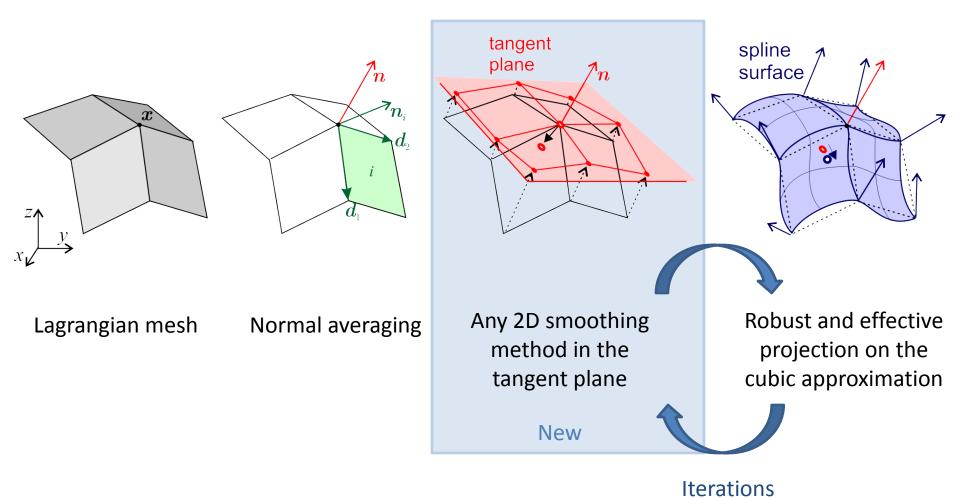
- Build/Update the spline surface
- Generate a new mesh using the transfinite mapping method
- Project each node to the spline surface

This method may fail if...

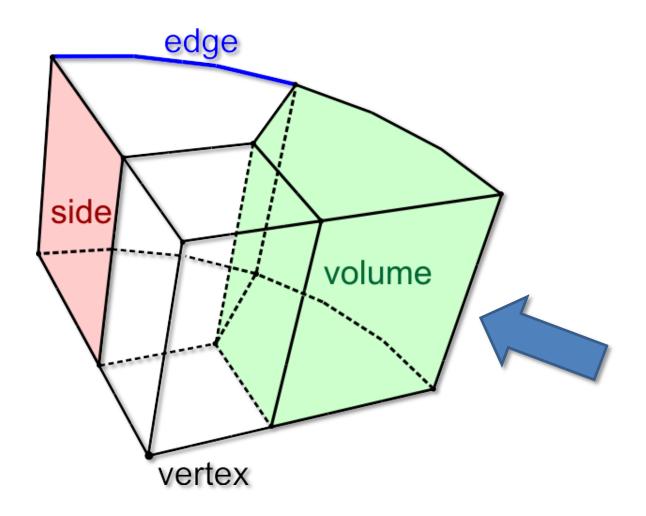
- the surface mesh is unstructured
- the deformed Lagrangian mesh is far from the bilinear interpolation of the boundaries of the surface



Iterative method



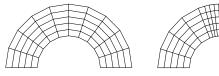
Back to interior nodes methods

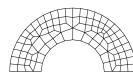


Back to Interior nodes methods

Common issue in quasi Eulerian models

- Graded surface mesh
- Complex shape → iterative method required





	Structured – constant	Structured – graded	Unstructured
Transfinite Mapping			*
Laplacian	\checkmark	×	\checkmark
Weighted volumes	\checkmark	×	\checkmark
Equipotential	\checkmark	\checkmark	×
Isoparametric	\checkmark	(✓)	×
Giulinani	\checkmark	×	\checkmark

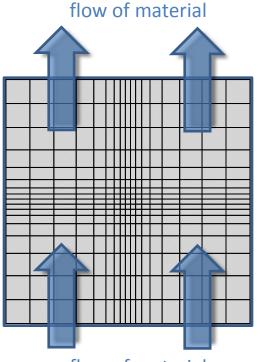
only one method available!

➔ "Isoparametric smoothing"

Back to Interior nodes methods

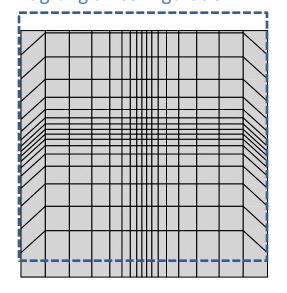
Isoparametric smoothing is VERY slow!

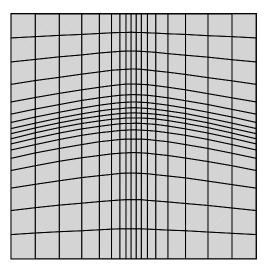
Simple 2D example



flow of material

Lagrangian configuration





Reference configuration

Eulerian remeshing of boundaries

Isoparametric smoothing (after 200 iterations)

Back to Interior nodes methods

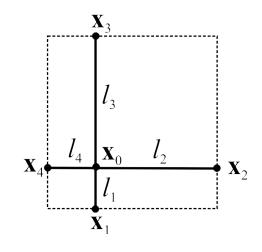
New smoothing method

Based on weighted Laplacian: $\mathbf{X}_0 = \frac{\mathbf{I}}{\sum W_i} \sum W_i \mathbf{X}_i$

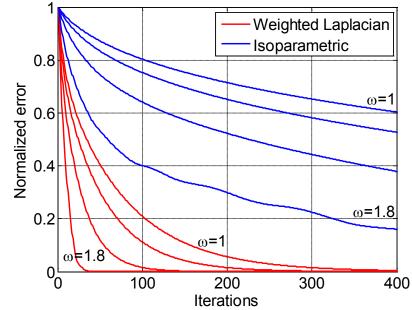
Find weights
$$w_i$$
 that preserve the *n* edge ength (l_i) ratios

$$\begin{cases} \left(l_1 + l_3\right) \mathbf{x}_0 = l_3 \mathbf{x}_1 + l_1 \mathbf{x}_3 \\ \left(l_2 + l_4\right) \mathbf{x}_0 = l_4 \mathbf{x}_2 + l_2 \mathbf{x}_4 \end{cases}$$

- Simple and efficient
- Faster than the isoparametric method
- Easier to implement

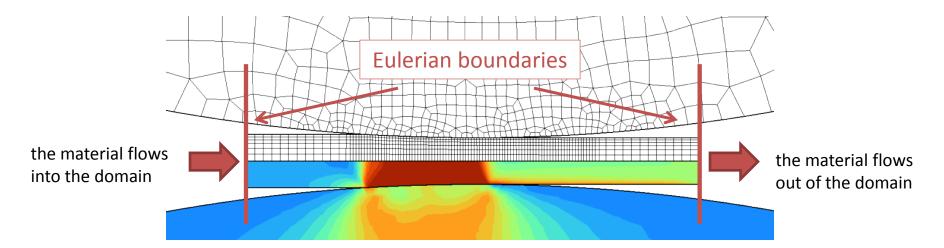


Convergence speed on previous test



Eulerian boundaries

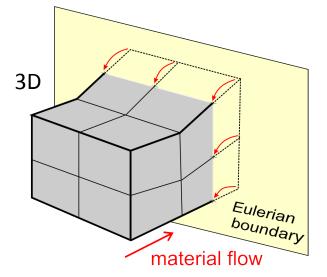
The mesh must remain inside the ALE domain



Orthogonal projection must be avoided!

Proposed solution

- The mesh is cut by a boundary surface (usually a plane)
- Additional smoothing may be added in order to improve the quality of the section mesh



Numerical example

Sinusoïd convection on an unstructured quad mesh

Numerical example

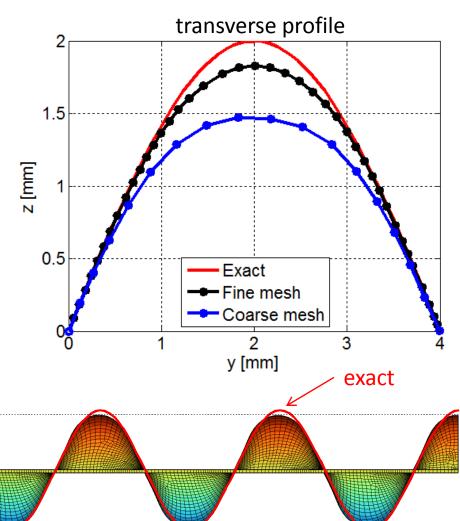
Sinusoïd convection on an unstructured quad mesh

Observations

upstream

error

- The shape is well preserved
- A better accuracy is obviously obtained with a finer mesh
- A small upstream error is due to a bad normal approximation on the upstream boundary



Numerical example

Sinusoïd convection on an unstructured quad mesh

Downstream view of the Eulerian boundary



Contents

- 1. Introduction
- 2. Mesh management

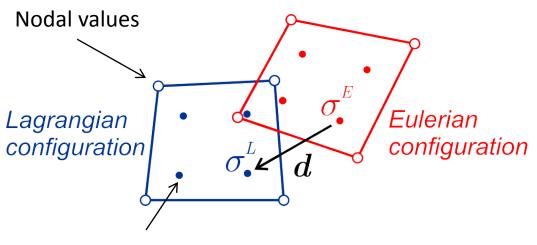
3. Convective step

- 4. Numerical applications
- 5. Industrial application: roll forming
- 6. Conclusions and future work

Introduction

Problem statement

- The Eulerian configuration (the "new" mesh) has been computed
- Data must be transferred from the Lagrangian to the Eulerian configuration



Gauss point values

Two kinds of data

(always denoted by σ):

- Nodal (continuous)
- Gauss points (discrete)
- d : convective displacement
- c : convective velocity

$$\mathbf{d} = \mathbf{c} \, \Delta t$$

Fields to be transfered

From 6 to 38 scalar convection problems in 3D

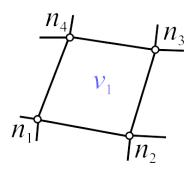
	Gauss Points (GP)		Nodes	
Constitutive law	Cauchy stresses $oldsymbol{\sigma}$ (s and p)	6	-	
	Equiv. plastic strain ($ar{arepsilon}^p$)	+1		
	Backstresses (α)	+6		
Inertia effects	Density ($ ho$)	+1	Velocity (v),	+3
			Acceleration (<i>a</i>)	+3
Thermal effects	-		Temperature (T)	+1
			and its derivative (\dot{T})	+1
EAS Elements	Additional EAS stresses ($\widetilde{\pmb{\sigma}}$)	+9	-	
Postprocessing	Deformation gradient	+6	-	
	tensor F			
TOTAL		30		8

Two kinds of methods

"finite elements" based methods

Easier in the frame of a FEM code (same data structure)

★ Artificial diffusion is difficult to handle → oscillations

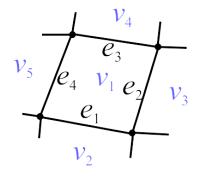


 $v_1 = (n_1, n_2, n_3, n_4)$

"finite volumes" based methods

Our choice

The finite volume mesh requires a different and separate data structure
 Efficient convection schemes used in Computational Fluid Dynamics (CFD)



 $v_1 = (e_1, e_2, e_3, e_4)$

$$e_{1} = (v_{1}, v_{2})$$

$$e_{2} = (v_{1}, v_{3})$$

$$e_{3} = (v_{1}, v_{4})$$

$$e_{4} = (v_{1}, v_{5})$$

Introduction

Two mathematically equivalent points of view

ı.

Convection problem

$$\frac{\partial \sigma}{\partial t} \bigg|_{\chi} + \mathbf{c} \cdot \nabla \sigma = 0$$

σ is **any** GP or nodal field (not necessarily a stress component)

Highlight on convective fluxes→Godunov's scheme

Interpolation problem

$$\left. \frac{\partial \sigma}{\partial t} \right|_{\mathbf{X}} = 0$$

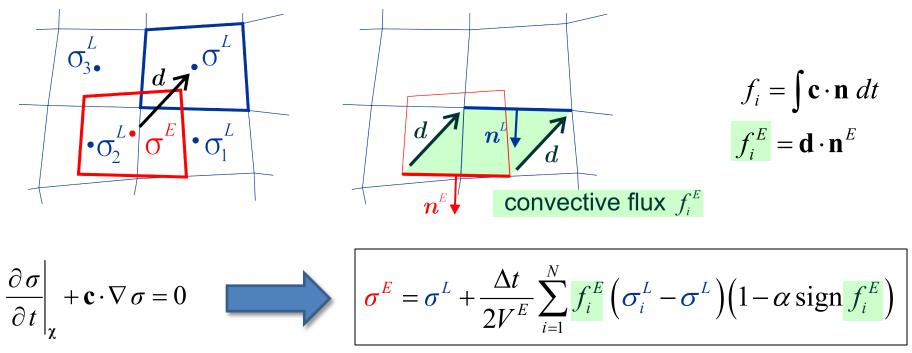
→ Projection scheme

Godunov's scheme

Huerta, Casadei, Donéa 1992

Hypotheses

- One Gauss Point per finite element (explicit dynamics)
- One finite element ⇔ one finite volume (one cell)
- σ is constant over each cell ("constant reconstruction")



space discretisation: Finite Volume Method time discretisation:

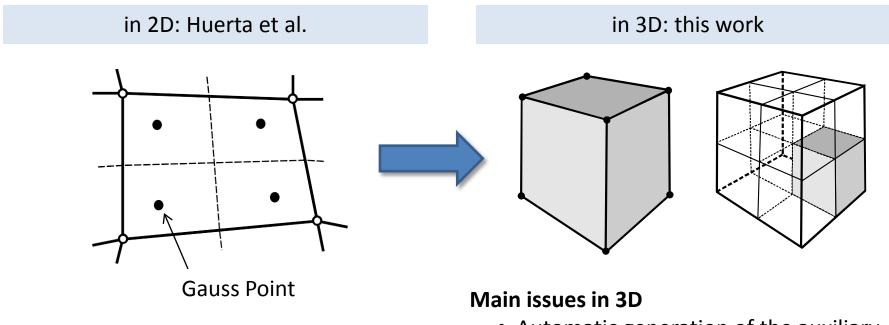
Backward Euler explicit scheme

 α : upwind factor ($\alpha \leq 1$)

Godunov's scheme

Extension to more than 1 Gauss Point per element

(for implicit problems)

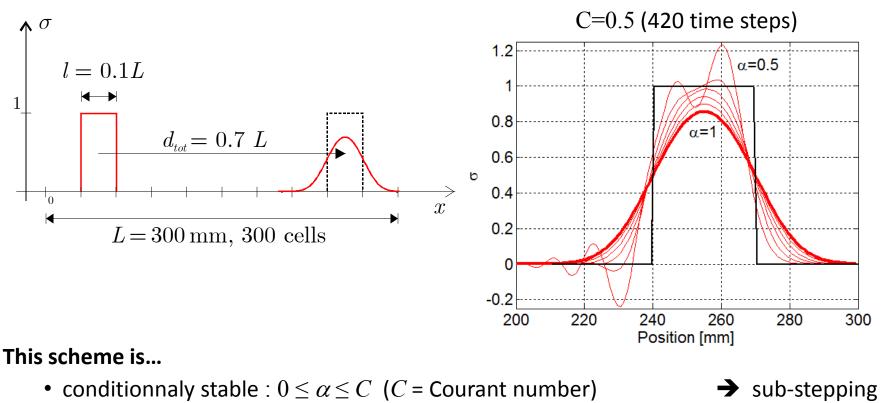


"Engineering-like approach": Each FE is split in 4 cells that surround each GP

- Automatic generation of the auxiliary mesh from 3D unstructured FE meshes
- Data storage management
- Easily solved using
 Object Oriented Programming (OOP)

Godunov's scheme

Simple 1D convection test



- monotonicity preserving if $\alpha = 1$
- first order accurate (too diffusive for quasi Eulerian problems)

→ A higher order scheme is required!

 \rightarrow always $\alpha = 1$

Benson 1989

Hypotheses:

- Only one GP per finite element (explicit dynamics)
- 1 finite element = 1 cell

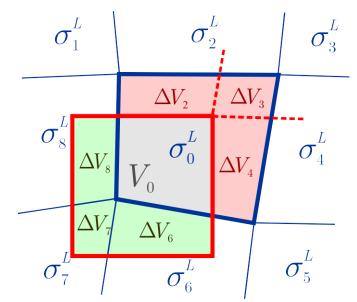
Error norm minimization:

$$\int_{V} \sigma^{E} dV = \int_{V} \sigma^{L} dV$$

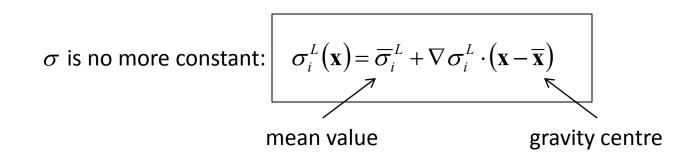
Example: if σ is constant on each cell:

$$V^{E}\sigma_{0}^{E} = V_{0}\sigma_{0}^{L} + \Delta V_{6}\sigma_{6}^{L} + \Delta V_{7}\sigma_{7}^{L} + \Delta V_{8}\sigma_{8}^{L}$$

= $V^{L}\sigma_{0}^{L} - (\Delta V_{2} + \Delta V_{3} + \Delta V_{4})\sigma_{0}^{L} + \Delta V_{6}\sigma_{6}^{L} + \Delta V_{7}\sigma_{7}^{L} + \Delta V_{8}\sigma_{8}^{L}$
inward flux outward flux



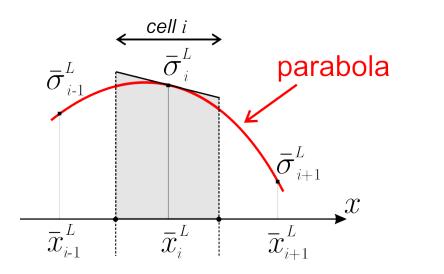
Extension to second order accuracy : Linear reconstruction



The gradient $\nabla \sigma_i^L$ is computed from the values of neighbouring cells:

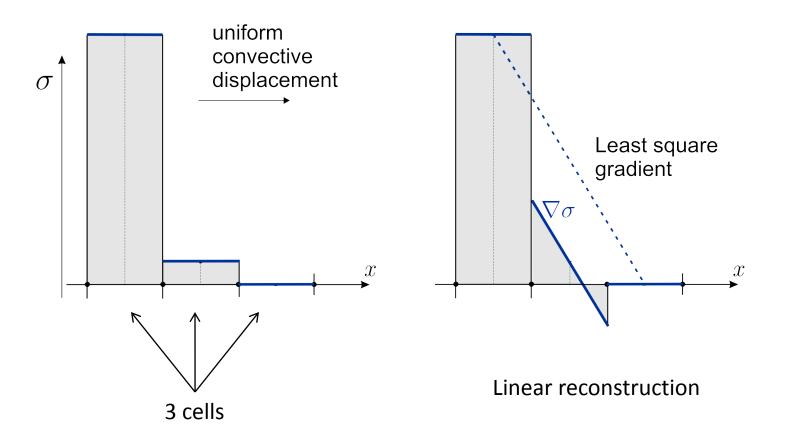
complexity

ncreasing



- Van Leer : MUSCL scheme (1D only)
- Benson (2D = 2x 1D problem)
- This work (2D-3D):
 CFD → Least squares

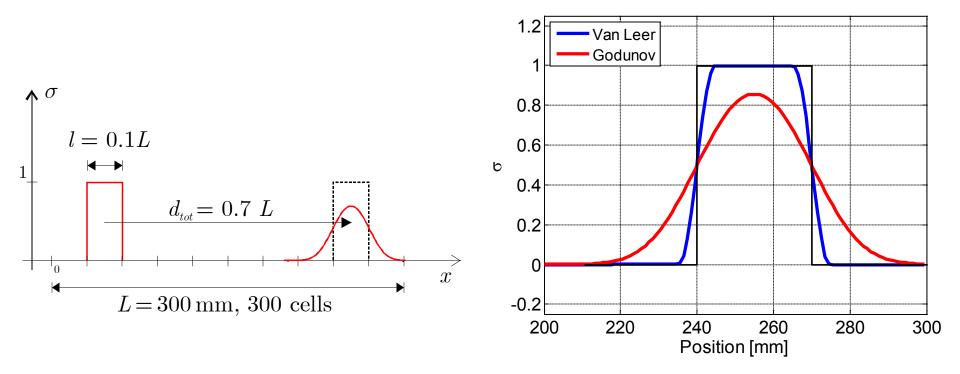
Monotonicity and flux limiters – 1D example



Monotonicity and flux limiters – 1D example

Second order accuracy is (locally) lost BUT oscillations are avoided

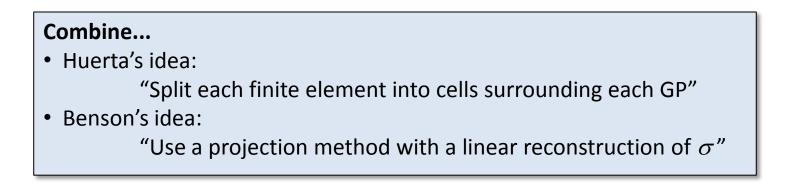
Back to the simple 1D convection test



Steeper gradients are preserved without oscillations!

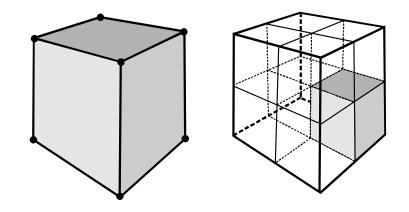
Extension to more than 1 Gauss Point per finite element

(for implicit problems)



→ Highly accurate ALE convection scheme

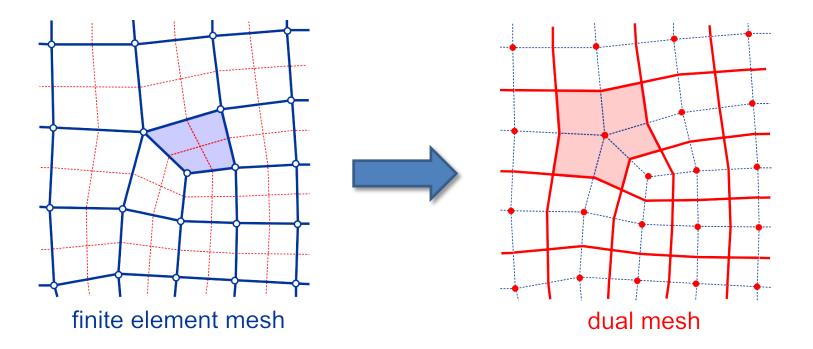
- for 2D/3D problems
- on structured/unstructured meshes
- using any kind of elements (including EAS – Enhanced Assumed Strain)



Nodal values

Convection scheme for the nodal values (temperatures, velocities, etc.)

The same methods (Godunov or projection) can be applied on a "dual mesh"



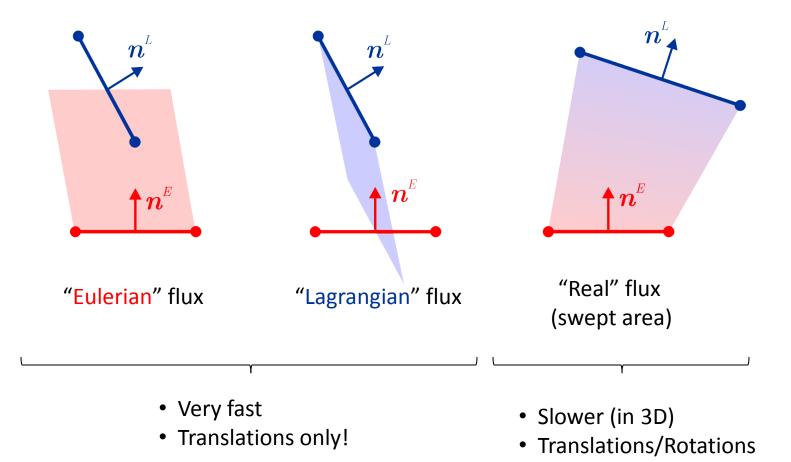
Main issues solved in this work

- Automatic construction of the dual mesh in 3D
- Unique set of routines for both problems (nodal and GP)

Flux computation

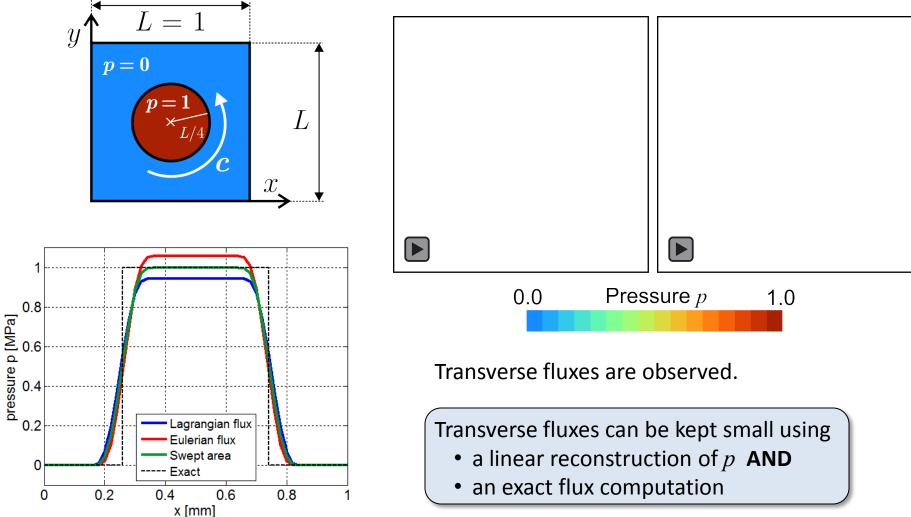
Three ways are commonly used in literature

The scheme accuracy can be highly reduced using a bad approximation of the fluxes



Flux computation

Numerical example

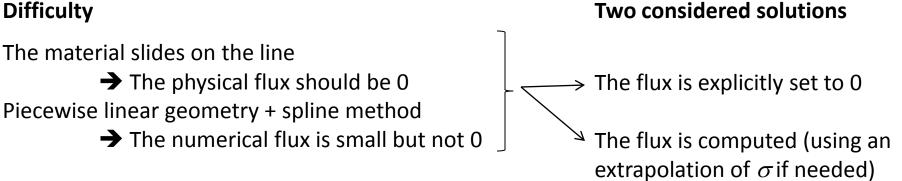


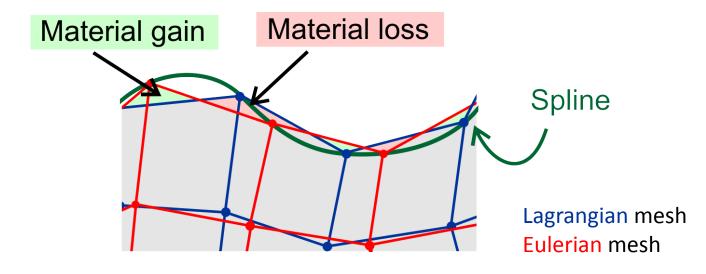
The mesh is fixed – material rotation: 1 revolution

Boundary conditions

2. "Lagrangian" lines with "sliding nodes"

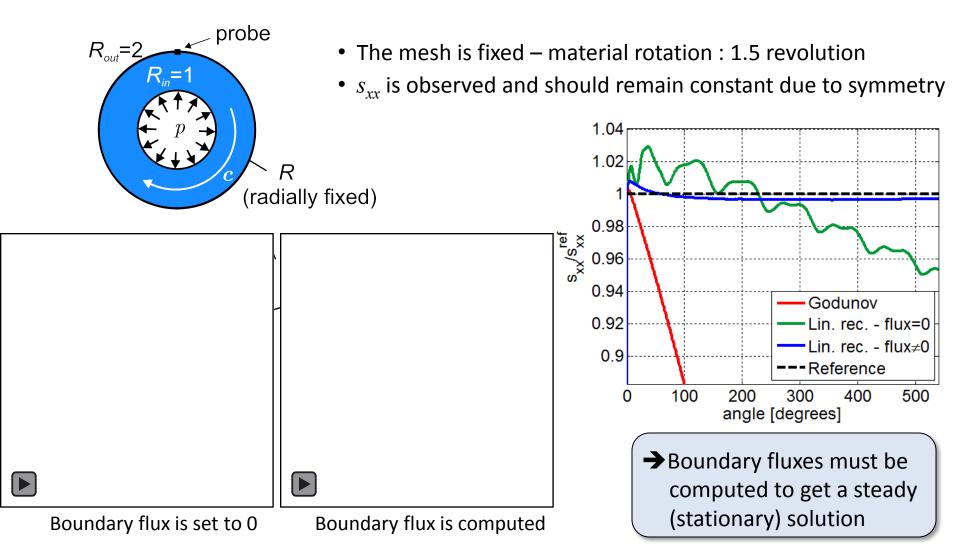
Difficulty





Boundary conditions

2. Lagrangian lines with "sliding nodes" – numerical example



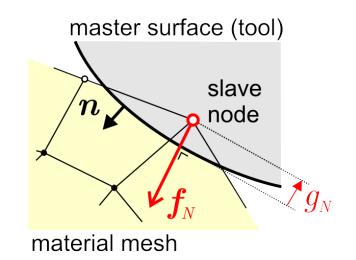
Contact with friction

Contact (normal) force on the new mesh

Lagrangian step: (penalty method)

 $f_N^{ext} = -\alpha_N g_N$

Similar to an elastic material → no history variable



Eulerian step:

- Contact is ignored during the mesh management step
- The contact force is computed from the equilibrium

$$f_N^{ext} = f_N^{int} + f_N^{inert} \longrightarrow g_N - \frac{f_N^{ext}}{q_N}$$

Computed using the values of the variables (σ^{E} , a^{E} , \mathbf{M}^{E}) on the Eulerian mesh

The gap is NOT corrected to avoid spurious fluxes

Contact with friction

Friction (tangent) force on the new mesh

Lagrangian step: (penalty method)

$$f_T^* = \alpha_T g_T$$

$$\begin{cases} f_T^* > \mu f_N \to f_T = \mu f_N \quad \text{(slip)} \\ f_T^* \le \mu f_N \to f_T = f_T^* \quad \text{(stick)} \end{cases}$$

Similar to an elastoplastic material \rightarrow history variable = x_{stk}

master surface (tool) f_T g_T slave node x_{stk} x_{proj}

material mesh

Eulerian step:

$$f_T^{ext} = f_T^{int} + f_T^{inert}$$

$$g_T = \frac{f_T^{ext}}{\alpha_T} \longrightarrow \mathbf{x}_{stk}$$

Computed using the values of the variables (σ^{E} , a^{E} , M^{E}) on the Eulerian mesh

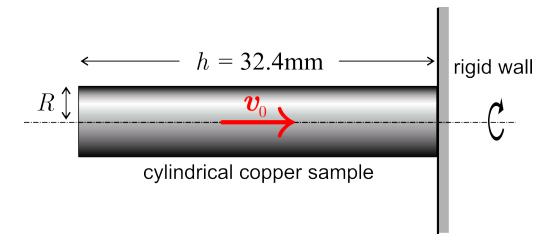
New gap for the next time step

Contents

- 1. Introduction
- 2. Mesh management
- 3. Convective step
- 4. Numerical applications
- 5. Industrial application: roll forming
- 6. Conclusions and future work

Description of the test

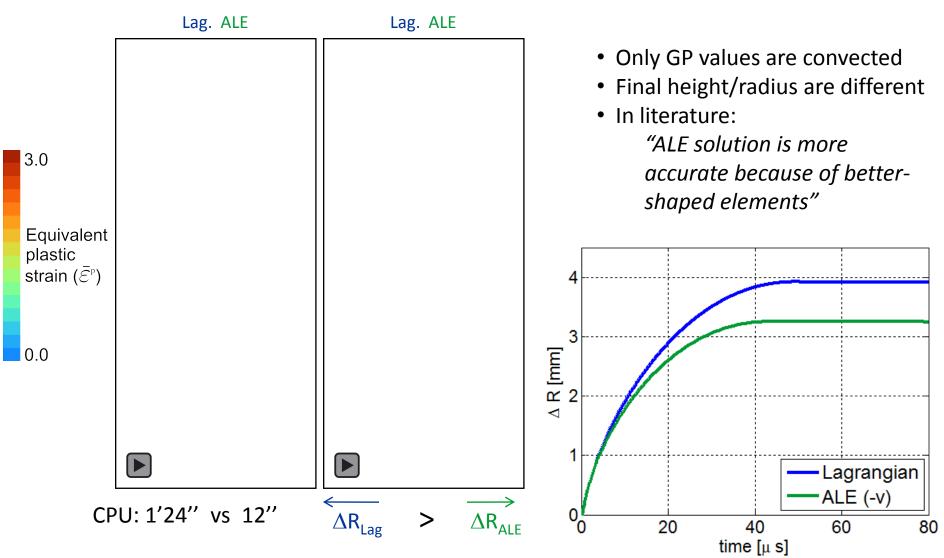
- Impact of a cylindrical copper sample
- Used in practice to study the behaviour of materials at very high strain rates (v_0 =227m/s)
- Classical benchmark of the ALE formalism



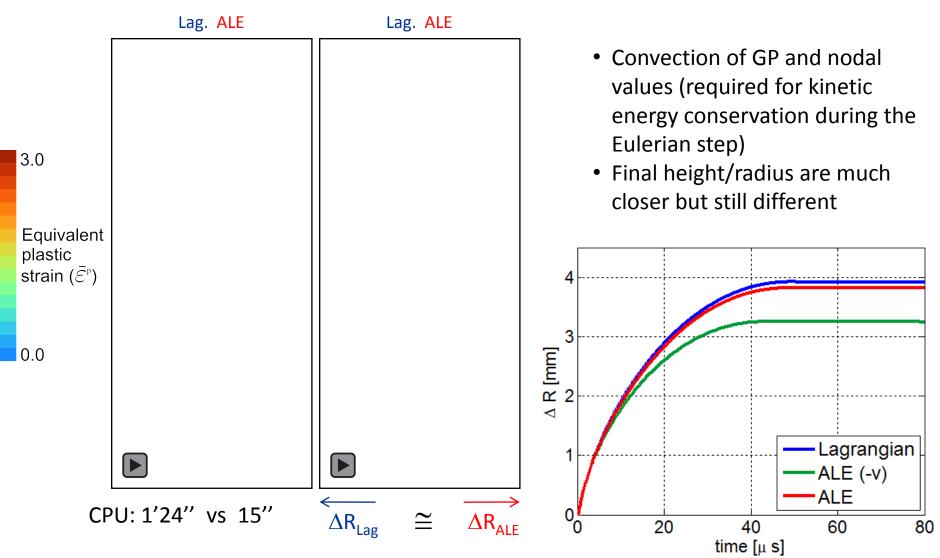
Why ALE?

- Explicit time integration
- The time step size (Δt) is proportional to the size of the smallest element of the mesh
- ALE helps to control this size ($\rightarrow \Delta t_{ALE} > \Delta t_{Lag}$)
- ALE should be faster than Lagrangian models

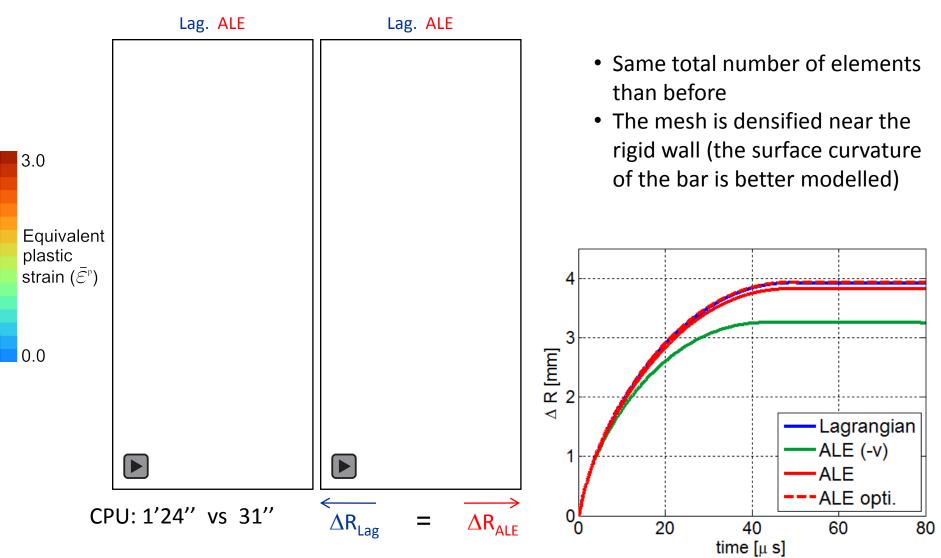
No velocity field convection (common assumption in literature)



Convection of the velocity field is added

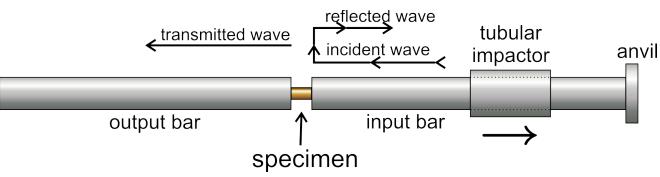


The ALE mesh is optimised



Hopkinson's test

Principle of the "Split Hopkinson Tensile Bar"



Characterisation of the behaviour of materials at high strain rates

Why ALE?

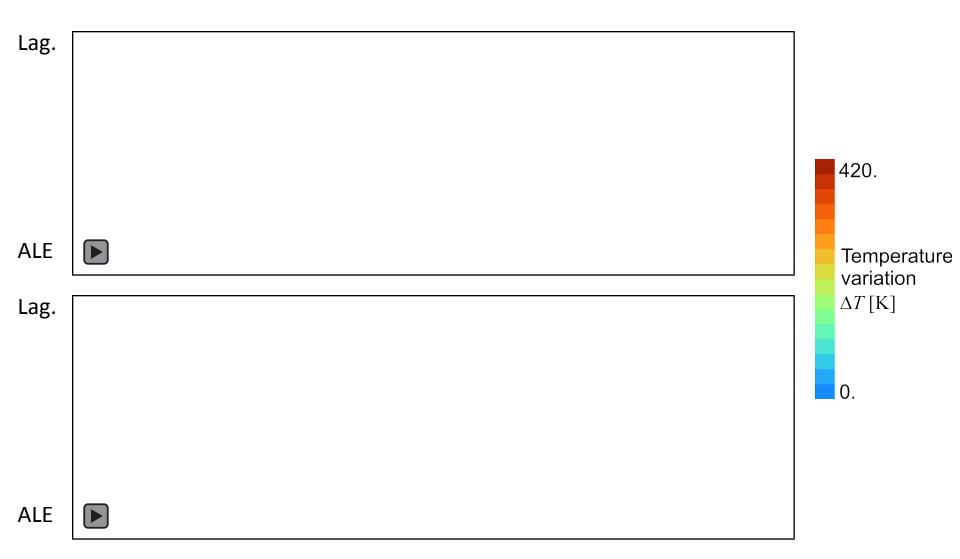
- Ductile fracture: the geometry of the specimen is badly modelled when necking occurs
- Accurate Lagrangian results require a very fine mesh
- CPU_{ALE} is expected to be smaller than CPU_{Lag} for a given accuracy in the results

Parameters (Noble et al. 1999)

- Thermomechanical problem (temperature field should be convected)
- Staggered implicit dynamic time integration (Chung Hulbert)
- Elastoviscoplastic material (iron) modelled by a Zerilli-Armstrong law

Hopkinson's test

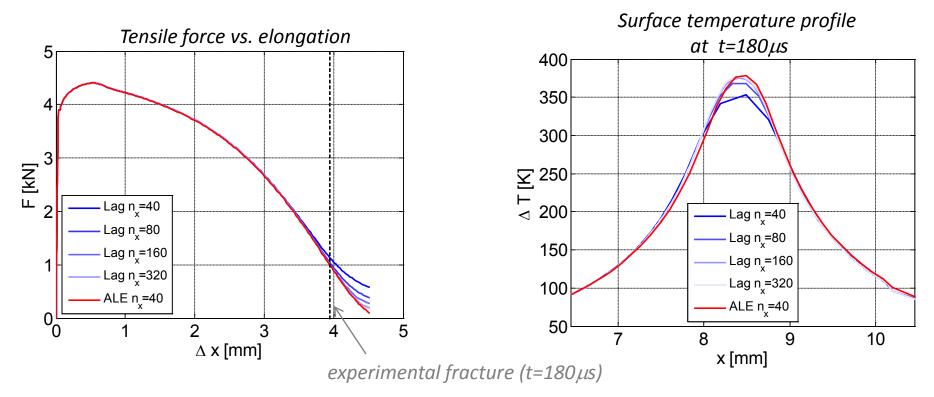
ALE vs. Lagrangian results (same mesh)



Hopkinson's test

ALE vs. Lagrangian results

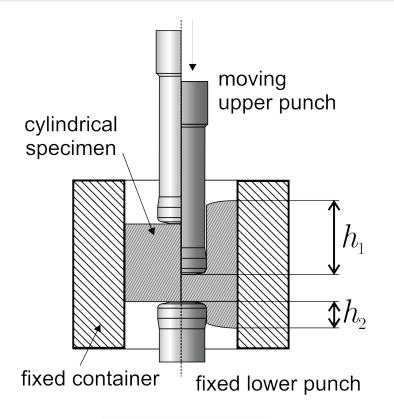
 $(n_x = number of elements along the necking zone)$

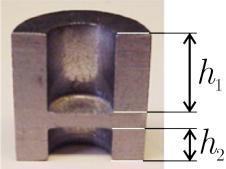


If the Lagrangian mesh is refined, the ALE results with the coarsest mesh are retrieved!

$$CPU_{ALE} = 1'07'' < CPU_{Lag} = 3'13''$$

Double cup extrusion test (DCET)





Process description

- Experimental friction test (Bushhausen /Altan -Ohio State University - 1992)
- Mean friction coefficient is deduced from the comparison of experimental and numerical (FEM) "cup height ratios" h_1/h_2 (=1 if frictionless)
- Frictional conditions close to the forging process
 - Interface pressure ~ 2500MPa
 - Surface temperature ~600°C
 - Surface enlargement ~3000%
- Typical numerical simulation needs remeshing

Why ALE?

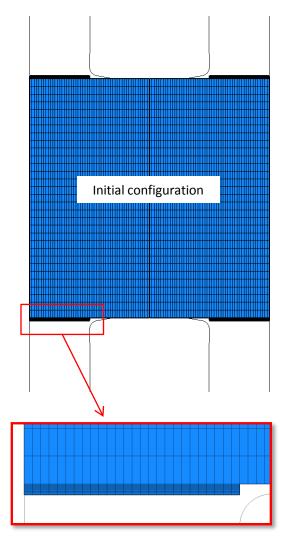
• Complete remeshing is avoided

Double cup extrusion test (DCET)

 $\bar{\varepsilon}^p$

0.0

ALE mesh management

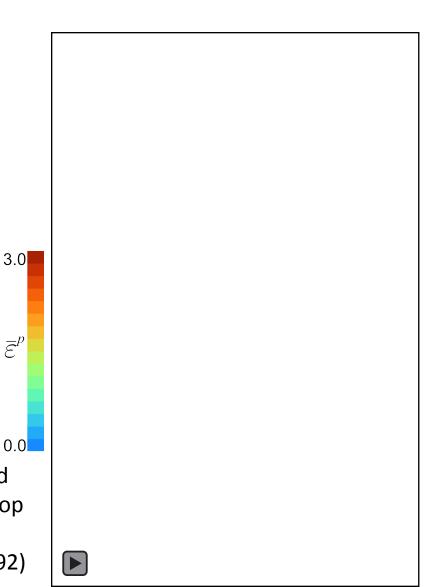


Observations

- the Godunov scheme is sufficient
- The volume remains constant
- CPU time: 5'45"

Numerical trick

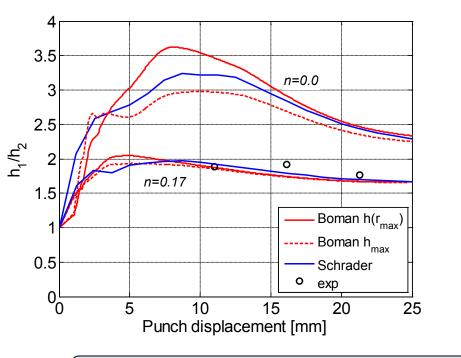
An initial thin squeezed mesh is added to the top of the billet (Atzema & Huétink 1992)

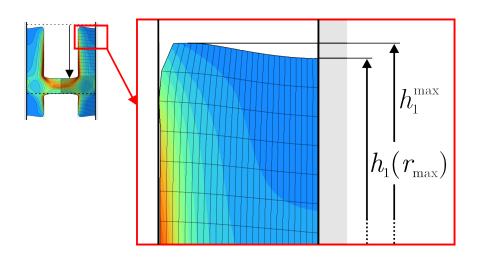


Double cup extrusion test (DCET)

Comparison with Schrader's results (2007)

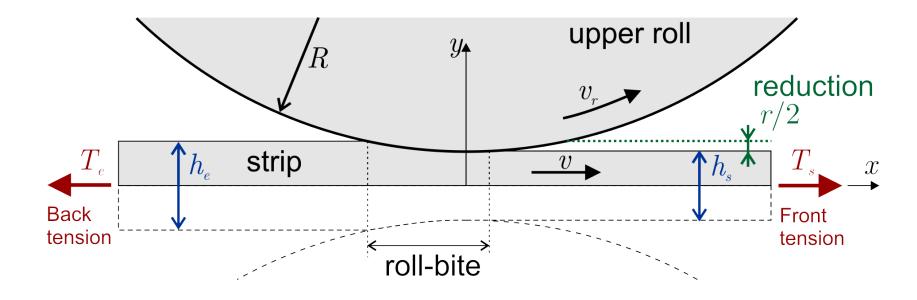
- Material (AISI 1018 Steel) : $\overline{\sigma} = K \overline{\varepsilon}^n = 735 \overline{\varepsilon}^{-0.17}$
- Comparison with experimental results
- Comparison with FE results obtained using Deform2D (and remeshing)





➔ The computation of frictional contact on arbitrary moving meshes is validated

Process description



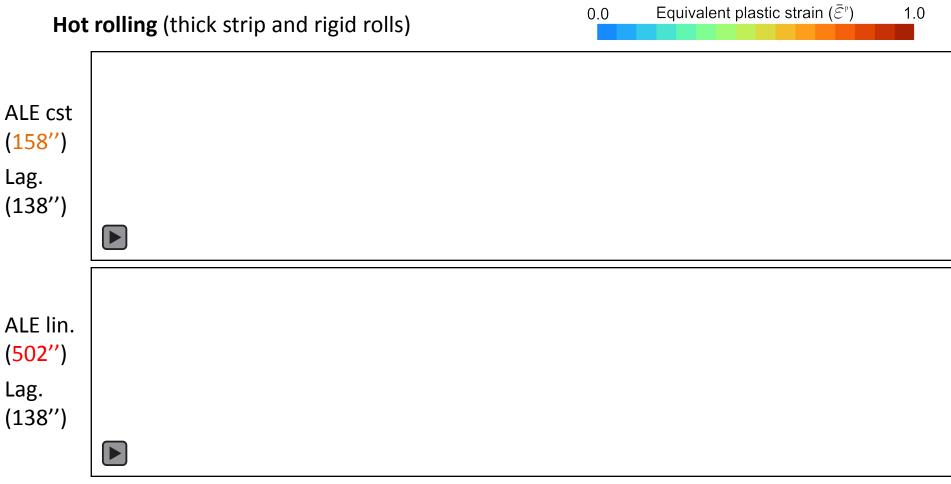
Why ALE?

ALE vs. Lagrangian codes:

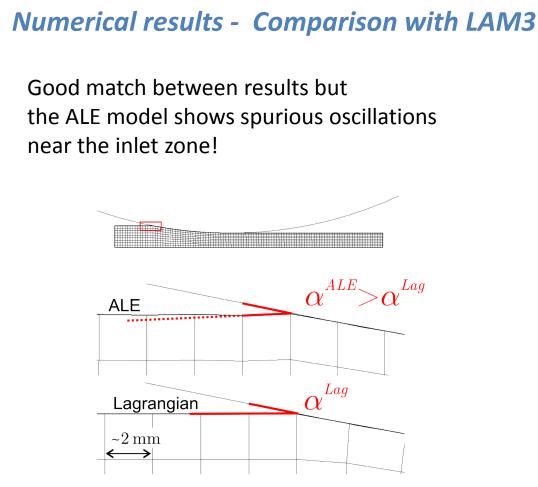
• Shorter model, less finite elements \rightarrow CPU_{ALE} < CPU_{Lag} is expected ALE vs. Eulerian codes:

- Eulerian codes are too specialised, too difficult to maintain
- Unsteady phenomena can also be studied using ALE (defects, vibrations)

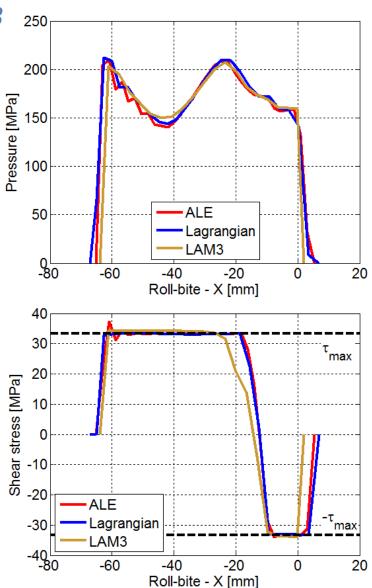
Convection – Constant or linear reconstruction?

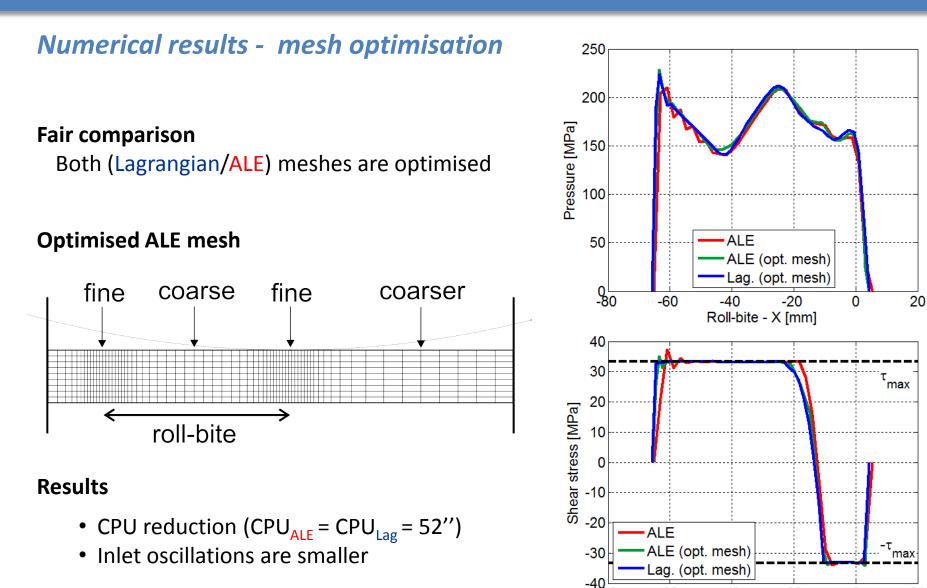


→ Constant reconstruction is sufficient if the transient state is not important!



The spline method cannot model the sharp inlet angle α and oscillations propagate around it





-60

-40

Roll-bite - X [mm]

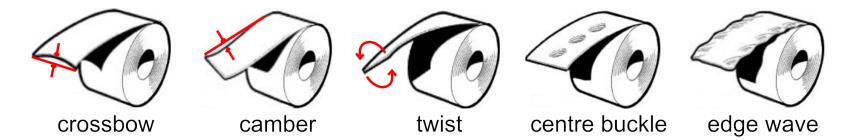
-20

20

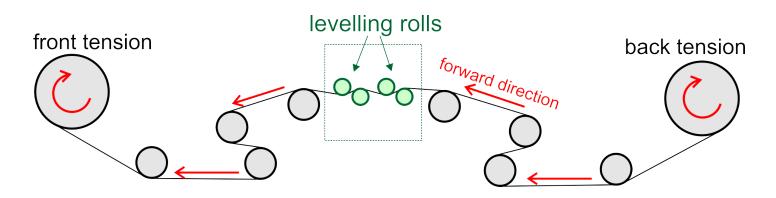
0

Process description

Used at the end of the forming line to remove shape defects using plastic bending and stretching



Example: Pilot Mill of ArcelorMittal – Maizières – France



Why ALE?

Quasi Eulerian model → Less ALE elements than in the Lagrangian formulation. → CPU_{ALE} < CPU_{Lag} is expected

Process parameters

- Experimental results from the pilot line of ArcelorMittal are available.
- Material: Dual Phase DP600 Steel
- The strip has no initial defect \rightarrow the process generates camber (and crossbow in 3D)

Numerical parameters

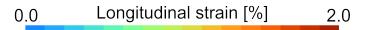
- EAS (Enhanced Assumed Strain) elements
- Chung-Hulbert implicit dynamic scheme (but *a* and *v* are not convected)
- Rolls are rigid and free to rotate

Lagrangian model

ALE model

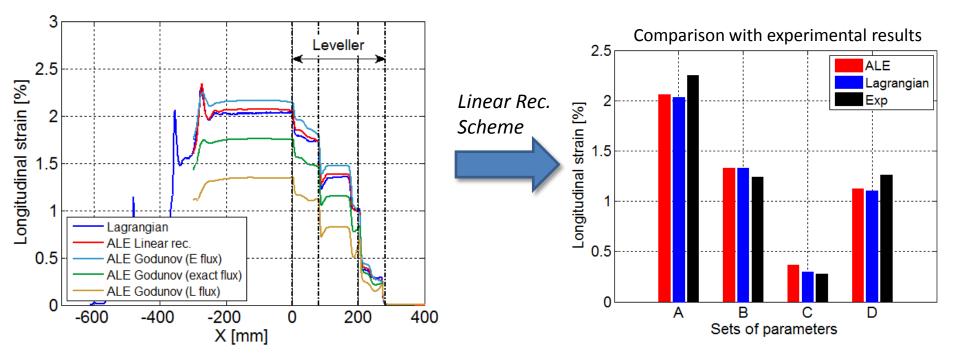
Main results of the model

- Longitudinal strain (F tensor must be convected)
- Camber radius after springback



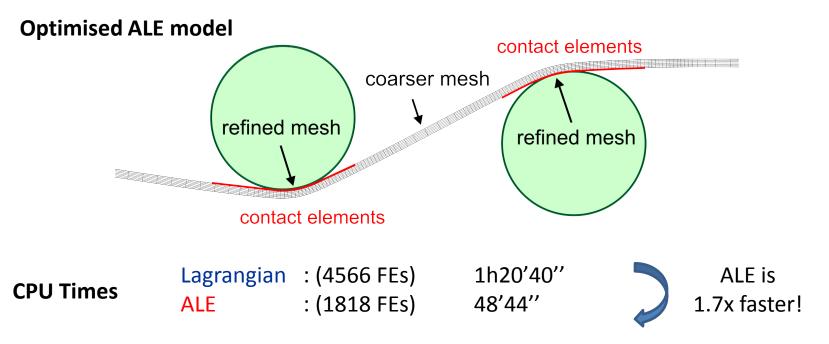
Convection scheme

- The Godunov scheme is **NOT** sufficient for retrieving the Lagrangian longitudinal strain
- The flux computation method has a large influence on the ALE results



ALE Mesh optimisation

- Linear reconstruction is very CPU expensive (+50% compared to Godunov)
- Both models are optimised



Conclusion

The ALE model is faster than the Lagrangian one (but requires more optimisation efforts)

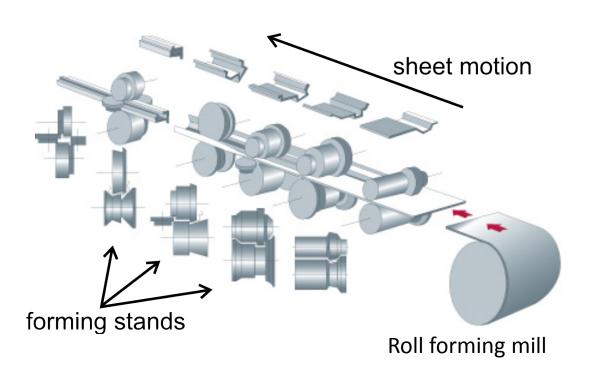
Contents

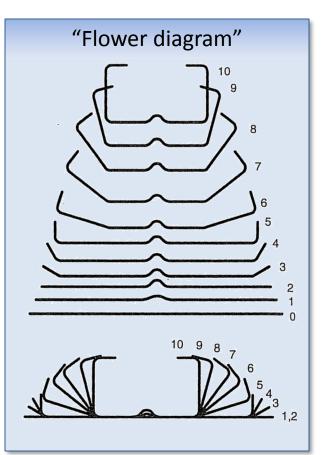
- 1. Introduction
- 2. Mesh management
- 3. Convective step
- 4. Numerical applications
- 5. Industrial application: roll forming
- 6. Conclusions and future work

Roll forming

Process description

A metal strip is incrementally bent by sets of rolls (called "forming stands") until the desired cross section is obtained





Why ALE?

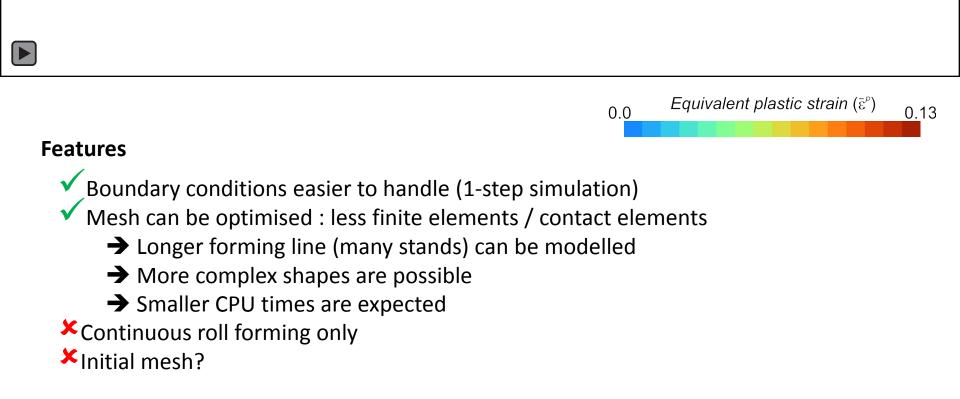
Classical Lagrangian model

Features

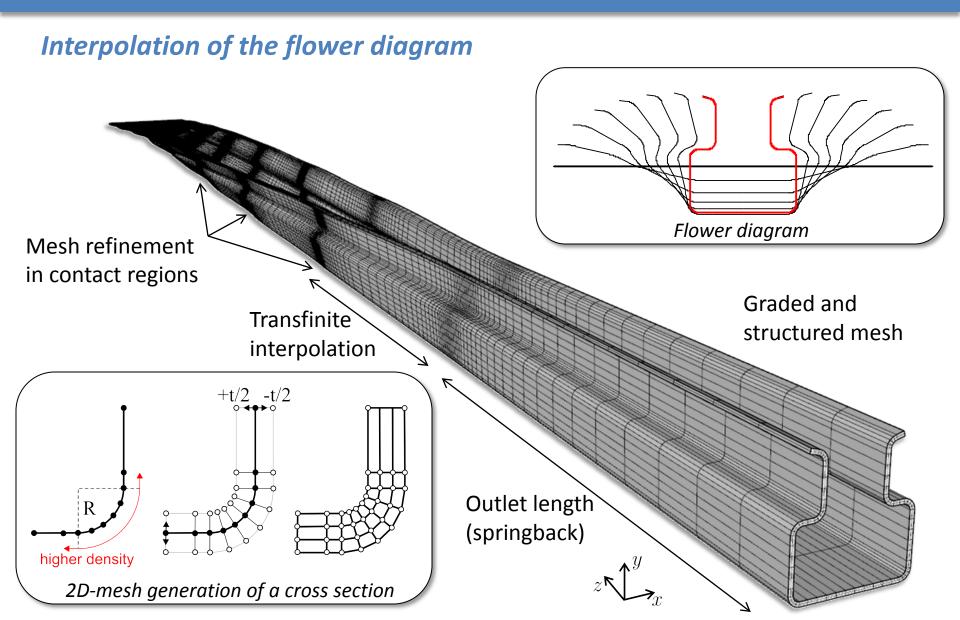
- ✓ Can handle almost any kind of process (stationary or not) but...
- Large CPU times when sheet length increases
- Complex boundary conditions (friction, rigid body modes, etc)
- Severe contact conditions when entering/leaving a stand (impact, dynamic oscillations)
- Uniform mesh of small elements required along the main direction
- Transverse mesh refinement sometimes shifted due to lengthening

Why ALE?

The proposed ALE model of continuous roll forming



Initial ALE mesh



Forming of a symmetrical U-channel

Process parameters

- Experimental mill (ArcelorMittal R&D, Montataire, France)
- 6 stands (15°, 32°, 50°, 68°, 80°, 90°)
- Final bending radii: 6 mm
- Inter-stand distance : 0.5 m
- Sheet : 2000 x 200 x 1.6 mm
- Sheet velocity: v = 200 mm/s
- Coulomb friction μ = 0.2
- DP980 steel (σ_{Y0} = 697.34 MPa)

Numerical parameters

- Symmetry
- Friction drives the sheet
- Two layers of EAS elements
- Dynamic implicit scheme (Chung-Hulbert)

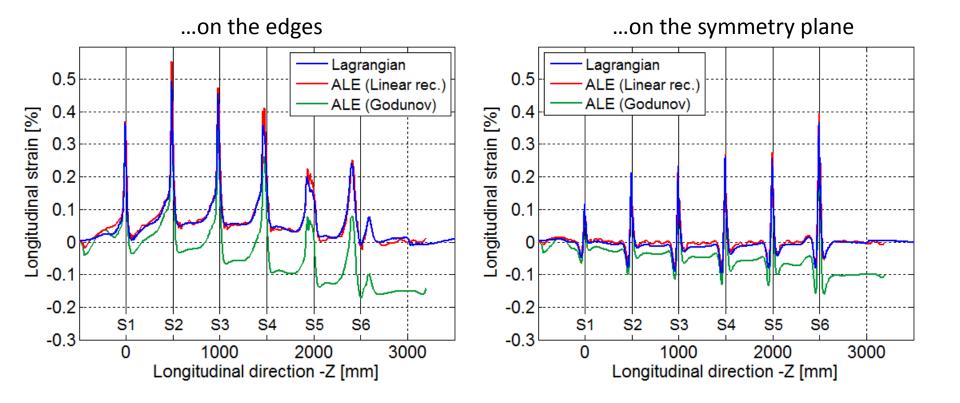
ALE simulation results (global view from the exit)

- Strains and stresses propagate through the quasi-Eulerian mesh
- The initial "perfect" U shape is modified and springback can be measured

0.13

0.0

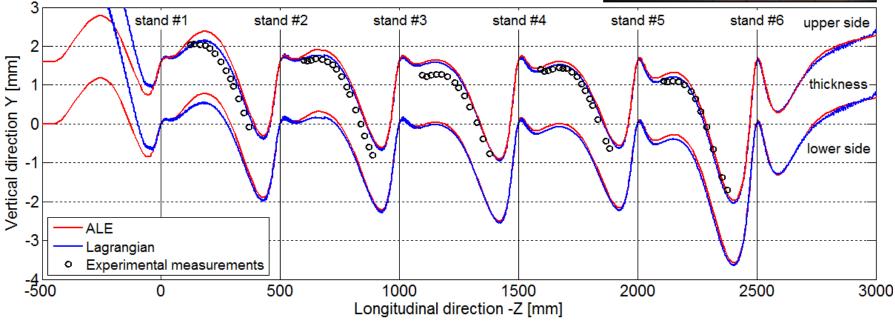
Longitudinal membrane strain



- Bad results are obtained using a constant reconstruction scheme (Godunov).
- Thanks to a linear reconstruction, ALE and Lagrangian longitudinal membrane strain curves are very similar

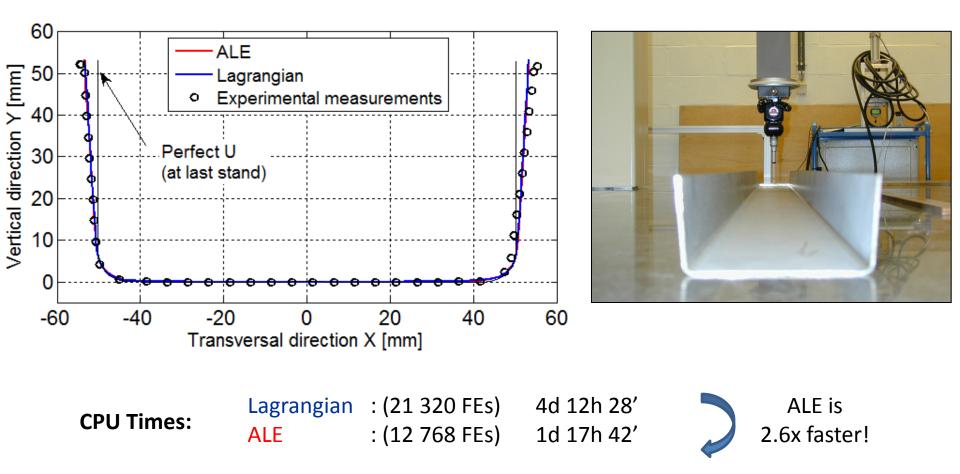
Shape of the sheet inside the mill

- Experimental data were collected with a portable measurement arm
- The particle trajectory of the Lagrangian simulation is very close to the final ALE mesh shape and nicely matches the experiments



Numerical vs. experimental springback

The final shape has been digitised using a high precision 3D measurement device and fits well both numerical curves (courtesy of ArcelorMittal)



Forming of a rocker pannel

Simulation of an industrial line

forming direction

- 16 stands unsymmetrical shape
- Material: DP980
- Sheet: 5950 x 165 x 1.5 mm

Mesh

stand #16

- 1 FE through the thickness
- FE length: from 3mm to 30mm
- 155 652 dofs

stand #1

closed

cross section

Forming of a rocker pannel

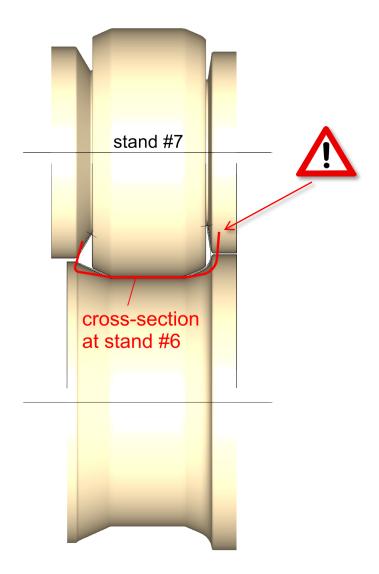
Lagrangian simulation FAILS!

Main reasons

- The sheet cannot enter stand #7 by itself (in the industry the continuous process must be started using additional tools which are not modelled)
- Friction is needed to make the sheet advance through the mill but a uniform constant coefficient is very hard to guess

ALE results

- No problem encountered
- 2995 time increments
- CPU time: 3d 19h 01m



Forming of a rocker pannel

0.13

Contents

- 1. Introduction
- 2. Mesh management
- 3. Convective step
- 4. Numerical applications
- 5. Industrial application: roll forming
- 6. Conclusions and future work

Conclusions

Main contributions of this work

Mesh management

- Efficient 3D surface mesh smoothing method based on a cubic spline surface
- Fast graded mesh smoothing on these surfaces
- Eulerian boundaries

Convection step

- Second order scheme on 3D unstructured meshes of finite elements using more than one Gauss points
- Simple but efficient management of friction forces

Applications

- ALE models of DCET, tension levelling and roll forming
- Systematic and fair comparison with Lagrangian results
- Comparison with experimental data when available

Conclusions

Future work

ALE formalism

ALE + remeshing (2 projects in progress at LTAS-MN²L)

Applications

Unsteady phenomena using quasi Eulerian models (request from the industry)

CPU optimisation

Parallelisation (my current work)

Thank you for your attention