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General framework & keywords
5Introduction 

• Continuum mechanics – Nonlinear Solid Mechanics
Highly nonlinear situation: large deformations, nonlinear 
materials, contact, thermomechanical coupling, inertia 
effects, etc.

• Numerical simulation
- Finite Element Method (FEM)
- Simulation of metal forming processes

• Metafor (home made software – http://metafor.ltas.ulg.ac.be/ )

http://metafor.ltas.ulg.ac.be/�


Kinematic description of the motion
6Introduction

Eulerian formalism
 Undistorted mesh
 Free boundaries are difficult to 

track
 History-dependent materials 

are difficult to handle

Lagrangian formalism

 The mesh can be rapidly 
distorted

 Free boundaries are 
automatically computed

 History-dependent materials are 
easier to handle



Kinematic description of the motion
7Introduction

Arbitrary Lagrangian Eulerian 
(ALE) formalism

• Extension of both previous 
formalisms

• The mesh motion is uncoupled from 
material motion

• ALE can be crudely seen as a 
continuous remeshing procedure

• Mesh topology does not change
• Remapping of variables is faster than 

classical remeshing



Equations to be solved
8Introduction

X : material coordinates
x : spatial coordinates

coordinate systems

Continuum mechanics (Lagrangian description)

• Mass

• Momentum

• Energy

• Material

:
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Equations to be solved
9Introduction

• Mass

• Momentum

• Energy

v : material velocity
v* : arbitrary grid velocity

(convective velocity)

X : material coordinates
x : spatial coordinates
χ : grid coordinates

coordinate systems

• Material

with  c = v - v*

Continuum mechanics (ALE description)
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ALE solution procedure
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Fully coupled solution

Operator split

• OK if mesh motion (v*) is known
• Otherwise, twice more mechanical unknowns (v and v*)

 too difficult and too slow for the simulation of forming processes

Lagrangian step:  (classical)

Eulerian step:  (when equilibrium is reached)

1. Define c (define a new mesh)
 see “mesh management” in this presentation

2. Data transfer from old mesh to the new one
 see “convective step” in this presentation

Mesh sticks to the material (v = v*, c = 0)
Compute an equilibrated “Lagrangian configuration” at time t +∆t
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ALE Solution procedure
11Introduction
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Lagrangian step:

Eulerian step:

Define a new mesh  (choose c)

Operator split – Example: constitutive law
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Two families of ALE applications
12Introduction

• Helps to keep well-shaped elements 
despite large deformations

• Most often remeshing is completely 
avoided

Benefits of ALE vs. Lagrangian models

1. Problems involving excessive mesh distortion

 Boundary nodes are (more or less) 
Lagrangian

 Small convective displacements are 
expected 

 Complex smoothing methods for 
interior nodes

Features of these ALE models

Example: axisymmetric forging

Lagrangian model                      ALE model






Two families of ALE applications
13Introduction

2. “Quasi-Eulerian” models

• The size of the model is decreased in the flow direction
• Loading is easier
• The element size may be optimised in the flow direction
• The contact regions do not change
• Less volume/contact elements  less CPU time

Benefits of ALE vs. Lagrangian models

Lagrangian model (1755 FEs)

ALE model (954 FEs)
Example: rolling

fixed
free






Two families of ALE applications
14Introduction

2. “Quasi-Eulerian” models

Features of these ALE models

 Mesh distortion is not a problem

 Material surface must be tracked
 Effective surface nodes management (2D and 3D)

 Material flows into/out of the meshed domain
 Special treatment of upstream/downstream boundary nodes
 Spurious fluxes should be as small as possible

 High convective displacements are expected
 A high order convection scheme is needed

Main issues
addressed
in this work
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Introduction
16Mesh management

• Quadrangles or hexahedra only (Metafor)
• Sometimes unstructured
• Usually structured with local refinement for bending, 

contact (“graded mesh”)

Mesh types

Example: modelling of cold rolling

Rolls:
unstructured

Strip:
graded & structured

quad

hexa



How to define mesh motion?
17Mesh management

• The methods highly depend on node position in the mesh.
(vertex method ≠ edge method ≠ side method ≠ interior node method)

• They are applied to CAD entities (like loads and boundary conditions)

Manual procedure



Nodes on sharp edges
18Mesh management



Nodes on sharp edges
19Mesh management

Difficulty: the edge is piecewise linear, material volume should not change

Problem statement

Remesh the deformed edge according to the initial 
node distribution



Nodes on sharp edges
20Mesh management

Cubic spline method (Huétink)

Arc method (Ponthot)

Easy thanks to 
quasi-intrinsic 
parameterisation
(Mc Conalogue)

Same as the “naïve method” 
except that
the node is projected on a circle 
built from the tree closest 
Lagrangian nodes



Nodes on sharp edges
21Mesh management

Simple convection test

• The “naïve method” should be avoided
• Arc and spline method are very close to 

the exact solution
• The spline method is slightly better

Observations:

84 86 88 90 92 94 96

0

2

4

6

8

10

x [mm]

y 
[m

m
]

 

 

exact
spline
arc
naïve

300 elements along x
480 time steps (~1/2 element per step)



Interior (volume) nodes
22Mesh management



Interior nodes (2D/3D)
23Mesh management

Direct methods

Iterative smoothing methods

e.g.: Transfinite mapping ( TM )
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• Very fast but limited to structured 
meshes on quad-shaped domains

• Slower than TM but more general
• Solver: Gauss Seidel + Successive OverRelaxation (SOR)
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Interior nodes (2D/3D)
24Mesh management

Structured 
constant 

Structured 
graded

Unstructured

Transfinite Mapping   
Laplacian   
Weighted volumes   
Equipotential   
Isoparametric   
Giulinani   

Available methods



Nodes on boundary surfaces in 3D
25Mesh management



Nodes on boundary surfaces in 3D
26Mesh management

Difficulty: the surface is piecewise bilinear, material volume should not change

Problem statement

Remesh the deformed surface according to the initial 
sizes of the elements

Extend the previous method used for sharp edges 

Proposed solution:

cubic spline curve 
cubic spline surface



Nodes on boundary surfaces in 3D
27Mesh management

Cubic spline surface construction

Example:

cubic approximationpiecewise bilinear surface

1. Normal continuity at nodes is obtained 
by averaging normals of neighbouring 
patches

2. Straight edges are converted to cubic 
segments

3. A Coons patch is built on the basis of  
these new edges



Nodes on boundary surfaces in 3D
28Mesh management

Direct method

This method may fail if...

• the surface mesh is unstructured
• the deformed Lagrangian mesh is 

far from the bilinear interpolation 
of the boundaries of the surface

• Build/Update the spline surface
• Generate a new mesh using the transfinite mapping method
• Project each node to the spline surface

Proposed method



Nodes on boundary surfaces in 3D
29Mesh management

Lagrangian mesh Normal averaging Any 2D smoothing 
method in the 
tangent plane

Robust and effective 
projection on the

cubic approximation

Iterative method

New

Iterations



Back to interior nodes methods
30Mesh management



Back to Interior nodes methods
31Mesh management

Structured – constant Structured – graded Unstructured
Transfinite Mapping   
Laplacian   
Weighted volumes   
Equipotential   
Isoparametric   
Giulinani   

only one method available!

Common issue in quasi Eulerian models

• Graded surface mesh
• Complex shape  iterative method required

 “Isoparametric smoothing”



Back to Interior nodes methods
32Mesh management

Reference configuration
Eulerian remeshing of

boundaries

Lagrangian configuration

flow of material

flow of material

Isoparametric smoothing 
(after 200 iterations)

Isoparametric smoothing is VERY slow!

Simple 2D example



Back to Interior nodes methods
33Mesh management

New smoothing method

Find weights wi that preserve the n edge 
length (li) ratios
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Weighted Laplacian
Isoparametric

Convergence speed on previous test

Based on weighted Laplacian:

• Simple and efficient
• Faster than the isoparametric method
• Easier to implement



Eulerian boundaries
34Mesh management

The mesh must remain inside the ALE domain

the material flows 
into the domain

the material flows 
out of the domain

Eulerian boundaries

Proposed solution 
• The mesh is cut by a boundary surface 

(usually a plane)
• Additional smoothing may be added in order 

to improve the quality of the section mesh

3D

Orthogonal projection must be avoided!



Numerical example
35Mesh management

Sinusoïd convection on an unstructured quad mesh
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Numerical example
36Mesh management

Observations

exact
upstream 

error

• The shape is well preserved
• A better accuracy is obviously obtained 

with a finer mesh
• A small upstream error is due to a bad 

normal approximation on the upstream 
boundary

transverse profile

Sinusoïd convection on an unstructured quad mesh



Numerical example
37Mesh management

Downstream view of the Eulerian boundary

Sinusoïd convection on an unstructured quad mesh
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Introduction
39Convective step

d : convective displacement
c : convective velocity

t∆= cd

• The Eulerian configuration (the “new” mesh) has been computed
• Data must be transferred from the Lagrangian to the Eulerian configuration

Gauss point values

Nodal values

• Nodal (continuous)
• Gauss points (discrete)

Two kinds of data 
(always denoted by σ):

Problem statement



Fields to be transfered
40Convective step

From 6 to 38 scalar convection problems in 3D

 Gauss Points (GP) Nodes 
Constitutive law Cauchy stresses σ  (s and p) 

Equiv. plastic strain (𝜀𝜀𝑝̅𝑝 ) 
Backstresses (α) 

6 
+1 
+6 

-  

Inertia effects Density (ρ) +1 Velocity (v),  
Acceleration (a) 

+3 
+3 

Thermal effects -  Temperature (T) 
and its derivative (𝑇̇𝑇) 

+1 
+1 

EAS Elements Additional EAS stresses (𝝈𝝈�) +9 -  
Postprocessing Deformation gradient 

tensor F 
+6 -  

TOTAL  30  8 
 



Two kinds of methods
41Convective step

“finite elements” based methods

“finite volumes” based methods

 Easier in the frame of a  FEM code 
(same data structure)

 Artificial diffusion is difficult to 
handle  oscillations

 The finite volume mesh requires a 
different and separate data structure

 Efficient convection schemes used in 
Computational Fluid Dynamics (CFD) e v v1 1 2= ( , )

e v v
e v v
e v v

2 1 3

3 1 4

4 1 5

= ( , )
= ( , )
= ( , )

v e e e e1 1 2 3 4= ( , , , )

v n n n n1 1 2 3 4= ( , , , )

Our choice



Introduction
42Convective step

0σ σ
t χ

+
∂

⋅∇ =
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c

0
x

σ
t

∂
=

∂

Convection problem

Interpolation problem

Two mathematically equivalent points of view

Highlight on convective fluxes
Godunov’s scheme

Highlight on field invariance
Projection scheme

σ is any GP or nodal field
(not necessarily a stress 
component)



Godunov’s scheme
43Convective step

0=∇⋅+
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∂ σ
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σ c
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• One Gauss Point per finite element (explicit dynamics)
• One finite element  one finite volume (one cell)
• σ is constant over each cell (“constant reconstruction”)

Huerta, Casadei, Donéa 1992

Hypotheses

space discretisation: Finite Volume Method
time discretisation: Backward Euler explicit scheme

α: upwind factor (α ≤ 1)
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Godunov’s scheme
44Convective step

Extension to more than 1 Gauss Point per element

Main issues in 3D
• Automatic generation of the auxiliary 

mesh from 3D unstructured FE meshes
• Data storage management

 Easily solved using 
Object Oriented Programming (OOP)

in 2D: Huerta et al. in 3D: this work

“Engineering-like approach”:
Each FE is split in 4 cells that 
surround each GP

(for implicit problems)

Gauss Point



Godunov’s scheme
45Convective step

Simple 1D convection test

• conditionnaly stable : 0 ≤ α ≤ C (C = Courant number)  sub-stepping
• monotonicity preserving if α = 1  always α = 1
• first order accurate (too diffusive for quasi Eulerian problems)

x

s

L = 300 mm, 300 cells  

l = 0.1  L

0

d Ltot = 0.7 

1

This scheme is…

 A higher order scheme is required!

C=0.5 (420 time steps)



Projection scheme
46Convective step

∫∫ =
V

L

V

E dVdV σσ

Benson 1989
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Example:    if σ is constant on each cell:

inward flux outward flux

• Only one GP per finite element (explicit dynamics)
• 1 finite element = 1 cell

Error norm minimization:

Hypotheses:



Projection scheme
47Convective step

Extension to second order accuracy : Linear reconstruction

( ) ( )xxx −⋅∇+= L
i

L
i

L
i σσσσ is no more constant:

The gradient is computed from the values of neighbouring cells:L
iσ∇

mean value gravity centre

• Van Leer : MUSCL scheme (1D only)

• Benson (2D = 2x 1D problem)

• This work (2D-3D):
CFD   Least squares
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Projection scheme
48Convective step

Monotonicity and flux limiters – 1D example

3 cells
Linear reconstruction



Projection scheme
49Convective step

Monotonicity and flux limiters – 1D example

Second order accuracy is (locally) lost BUT oscillations are avoided



Projection scheme
50Convective step

Back to the simple 1D convection test

x

s

L = 300 mm, 300 cells  

l = 0.1  L
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d Ltot = 0.7 

1

Steeper gradients are preserved without oscillations!
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Projection scheme
51Convective step

Extension to more than 1 Gauss Point per finite element

Combine...
• Huerta’s idea: 

“Split each finite element into cells surrounding each GP”
• Benson’s idea: 

“Use a projection method with a linear reconstruction of σ ”

Highly accurate ALE convection scheme
• for 2D/3D problems
• on structured/unstructured meshes
• using any kind of elements 

(including EAS – Enhanced Assumed Strain)

(for implicit problems)



Nodal values
52Convective step

The same methods (Godunov or projection) can be applied on a “dual mesh” 

Main issues solved in this work 
• Automatic construction of the dual mesh in 3D
• Unique set of routines for both problems (nodal and GP)

Convection scheme for the nodal values (temperatures, velocities, etc.)



Flux computation
53Convective step

“Eulerian” flux “Lagrangian” flux “Real” flux 
(swept area)

Three ways are commonly used in literature

• Very fast
• Translations only!

• Slower (in 3D)
• Translations/Rotations

The scheme accuracy can be highly reduced using a bad approximation of the fluxes 



Flux computation
54Convective step

Numerical example

Transverse fluxes are observed.

Transverse fluxes can be kept small using
• a linear reconstruction of p AND
• an exact flux computation

The mesh is fixed – material rotation: 1 revolution









Boundary conditions
57Convective step

The material slides on the line 
 The physical flux should be 0

Piecewise linear geometry + spline method
 The numerical flux is small but not 0

2. “Lagrangian” lines with “sliding nodes”

The flux is explicitly set to 0

The flux is computed (using an 
extrapolation of σ if needed)

Two considered solutions

Lagrangian mesh
Eulerian mesh

Difficulty



Boundary conditions
58Convective step

Boundary flux is computedBoundary flux is set to 0

Boundary fluxes must be 
computed to get a steady 
(stationary) solution

sxx

xy

2. Lagrangian lines with “sliding nodes” – numerical example

• The mesh is fixed – material rotation : 1.5 revolution
• sxx is observed and should remain constant due to symmetry









Contact with friction
59Convective step

(penalty method)

Contact (normal) force on the new mesh

Lagrangian step: 

NN
ext

N gf α−=

• Contact is ignored during the mesh management step
• The contact force is computed from the equilibrium 

inert
N

int
N

ext
N fff +=

Similar to an elastic material
 no history variable

ext
N

N
N

fg
α

= −

The gap is NOT corrected 
to avoid spurious fluxes

Eulerian step:

Computed using the values 
of the variables (σE, aE, ME)
on the Eulerian mesh



Contact with friction
60Convective step

TTT gf α=*

Lagrangian step: (penalty method)

**

*

TTNT

NTNT

ffff
ffff

=→≤

=→>

µ

µµ

Eulerian step: 

Friction (tangent) force on the new mesh

inert
T

int
T

ext
T fff +=

Computed using the values 
of the variables (σE, aE, ME)
on the Eulerian mesh

T

ext
T

T
fg
α

=

(stick)

New gap for the next 
time step

Similar to an elastoplastic material
 history variable = xstk

xstk

(slip)
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Taylor’s bar impact
62Numerical applications

• Impact of a cylindrical copper sample
• Used in practice to study the behaviour of materials at very high strain rates (v0=227m/s)
• Classical benchmark of the ALE formalism

• Explicit time integration
• The time step size (∆t) is proportional to the size of the smallest element of the mesh
• ALE helps to control this size ( ∆tALE> ∆tLag)
• ALE should be faster than Lagrangian models

Description of the test

Why ALE?



∆RLag          >     ∆RALE

Taylor’s bar impact
63Numerical applications

No velocity field convection (common assumption in literature)

• Only GP values are convected
• Final height/radius are different
• In literature:

“ALE solution is more 
accurate because of better-
shaped elements”

CPU: 1’24’’  vs  12’’

Lag.  ALE Lag. ALE









∆RLag          ≅ ∆RALE

Taylor’s bar impact
64Numerical applications

Convection of the velocity field is added

• Convection of GP and nodal 
values (required for kinetic 
energy conservation during the 
Eulerian step)

• Final height/radius are much 
closer but still different

Lag.  ALE Lag.  ALE

CPU: 1’24’’  vs 15’’









Taylor’s bar impact
65Numerical applications

The ALE mesh is optimised

• Same total number of elements 
than before 

• The mesh is densified near the 
rigid wall (the surface curvature 
of the bar is better modelled)

Lag.  ALE Lag.  ALE

∆RLag          =     ∆RALE
CPU: 1’24’’  vs 31’’









Hopkinson’s test
66Numerical applications

Principle of the “Split Hopkinson Tensile Bar”

Characterisation of the behaviour of materials at high strain rates

Why ALE?
• Ductile fracture: the geometry of the specimen is badly modelled when necking occurs
• Accurate Lagrangian results require a very fine mesh
• CPUALE is expected to be smaller than CPULag for a given accuracy in the results

Parameters (Noble et al. 1999)
• Thermomechanical problem (temperature field should be convected)
• Staggered implicit dynamic time integration (Chung Hulbert)
• Elastoviscoplastic material (iron) modelled by a Zerilli-Armstrong law



Hopkinson’s test
67Numerical applications

ALE vs. Lagrangian results (same mesh)

ALE

Lag.

ALE

Lag.









Hopkinson’s test
68Numerical applications
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ALE vs. Lagrangian results

If the Lagrangian mesh is refined, the ALE results with the coarsest mesh are retrieved! 

Tensile force vs. elongation
Surface temperature profile 

at  t=180µs

experimental fracture (t=180µs)

CPUALE = 1’07’’  <  CPULag = 3’13’’ 

(nx = number of elements along the necking zone)



Double cup extrusion test (DCET)
69Numerical applications

• Experimental friction test (Bushhausen /Altan -
Ohio State University - 1992)

• Mean friction coefficient is deduced from the 
comparison of experimental and numerical (FEM) 
“cup height ratios”  h1/h2 ( =1 if frictionless)

• Frictional conditions close to the forging process
• Interface pressure ~ 2500MPa
• Surface temperature ~600°C
• Surface enlargement ~3000%

• Typical numerical simulation needs remeshing

Process description

Why ALE?

• Complete remeshing is avoided



Double cup extrusion test (DCET)
70Numerical applications

Numerical trick
An initial thin squeezed 
mesh is added to the top 
of the billet 
(Atzema & Huétink 1992)

Initial configuration

ALE mesh management

• the Godunov 
scheme is sufficient

• The volume remains 
constant

• CPU time:  5’45’’

Observations






Double cup extrusion test (DCET)
71Numerical applications
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Comparison with Schrader’s results (2007)

• Material (AISI 1018 Steel) :
• Comparison with experimental results 
• Comparison with FE results obtained using Deform2D (and remeshing)

17.0
735 εεσ ==

n
K

 The computation of frictional contact on arbitrary moving meshes is validated



Rolling
72Numerical applications

Why ALE?
ALE vs. Lagrangian codes:

• Shorter model, less finite elements  CPUALE < CPULag is expected
ALE vs. Eulerian codes:

• Eulerian codes are too specialised, too difficult to maintain
• Unsteady phenomena can also be studied using ALE (defects, vibrations)

Process description
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Convection – Constant or linear reconstruction?

ALE cst
(158’’) 
Lag.
(138’’)

ALE lin.
(502’’) 
Lag.
(138’’)

 Constant reconstruction is sufficient if the transient state is not important!

Hot rolling (thick strip and rigid rolls) 
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Numerical results - Comparison with LAM3

Good match between results but
the ALE model shows spurious oscillations
near the inlet zone!

The spline method cannot model the sharp inlet 
angle α and oscillations propagate around it
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Numerical results - mesh optimisation

Optimised ALE mesh

• CPU reduction (CPUALE = CPULag = 52’’)
• Inlet oscillations are smaller

Fair comparison
Both (Lagrangian/ALE) meshes are optimised

Results
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Process description

Used at the end of the forming line to remove  shape defects using plastic 
bending and stretching

Example: Pilot Mill of ArcelorMittal – Maizières – France 
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Why ALE?

Quasi Eulerian model 
Less ALE elements than in the Lagrangian formulation. 
CPUALE < CPULag is expected 

Process parameters

• Experimental results from the pilot line of ArcelorMittal are available.
• Material: Dual Phase DP600 Steel
• The strip has no initial defect  the process generates camber (and crossbow in 3D)

Numerical parameters

• EAS (Enhanced Assumed Strain) elements
• Chung-Hulbert implicit dynamic scheme (but a and v are not convected)
• Rolls are rigid and free to rotate
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Lagrangian model

ALE model

Main results of the model 
• Longitudinal strain (F tensor must be convected)
• Camber radius after springback
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Convection scheme

• The Godunov scheme is NOT sufficient for retrieving the Lagrangian longitudinal strain
• The flux computation method has a large influence on the ALE results

Comparison with experimental results

Linear Rec.
Scheme
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ALE Mesh optimisation

• Linear reconstruction is very CPU expensive (+50% compared to Godunov)
• Both models are optimised

The ALE model is faster than the Lagrangian one (but requires more optimisation efforts)

Optimised ALE model

Conclusion

Lagrangian : (4566 FEs) 1h20’40’’
ALE  : (1818 FEs) 48’44’’CPU Times

ALE is
1.7x faster!
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A metal strip is incrementally bent by sets of rolls (called “forming stands”) 
until the desired cross section is obtained

Roll forming mill

Process description

“Flower diagram”
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Classical Lagrangian model

Can handle almost any kind of process (stationary or not) but…
 Large CPU times when sheet length increases
 Complex boundary conditions (friction, rigid body modes, etc)
 Severe contact conditions when entering/leaving a stand (impact, dynamic oscillations)
 Uniform mesh of small elements required along the main direction
 Transverse mesh refinement sometimes shifted due to lengthening

Features
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The proposed ALE model of continuous roll forming

Boundary conditions easier to handle (1-step simulation)
Mesh can be optimised : less finite elements / contact elements

 Longer forming line (many stands) can be modelled
More complex shapes are possible
 Smaller CPU times are expected

Continuous roll forming only
Initial mesh?

Features






Transfinite
interpolation

Mesh refinement 
in contact regions

Initial ALE mesh
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Outlet length
(springback)

Flower diagram

2D-mesh generation of a cross section

Interpolation of the flower diagram

Graded and 
structured mesh
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Forming of a symmetrical U-channel

• Experimental mill (ArcelorMittal R&D, Montataire, France)
• 6 stands (15°, 32°, 50°, 68°, 80°, 90°) 
• Final bending radii: 6 mm
• Inter-stand distance : 0.5 m
• Sheet : 2000 x 200 x 1.6 mm
• Sheet velocity: v = 200 mm/s
• Coulomb friction µ = 0.2
• DP980 steel (σY0 = 697.34 MPa)

Numerical parameters

• Symmetry
• Friction drives the sheet
• Two layers of EAS elements
• Dynamic implicit scheme (Chung-Hulbert)

Process parameters
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ALE simulation results 
(global view from the exit)

• Strains and stresses propagate 
through the quasi-Eulerian mesh 

• The initial “perfect” U shape is 
modified and springback can be 
measured
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Longitudinal membrane strain

• Bad results are obtained using a constant reconstruction scheme (Godunov).
• Thanks to a linear reconstruction, ALE and Lagrangian longitudinal membrane 

strain curves are very similar

…on the edges …on the symmetry plane
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Shape of the sheet inside the mill

• Experimental data were collected with a portable 
measurement arm

• The particle trajectory of the Lagrangian
simulation is very close to the final ALE mesh 
shape and nicely matches the experiments
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Numerical vs. experimental springback

The final shape has been digitised using a high precision 3D measurement device 
and fits well both numerical curves (courtesy of ArcelorMittal)

Lagrangian : (21 320 FEs) 4d 12h 28’
ALE  : (12 768 FEs) 1d 17h 42’CPU Times:

ALE is
2.6x faster!
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Simulation of an industrial line

Process parameters
• 16 stands – unsymmetrical shape
• Material: DP980
• Sheet: 5950 x 165 x 1.5 mm

Mesh
• 1 FE through the thickness
• FE length: from 3mm to 30mm
• 155 652 dofs

stand #1

stand #16

forming 
direction

closed 
cross section
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Lagrangian simulation FAILS!

• The sheet cannot enter stand #7 by itself (in 
the industry the continuous process must be 
started using additional tools which are not 
modelled)

• Friction is needed to make the sheet advance 
through the mill but a uniform constant 
coefficient is very hard to guess

ALE results

• No problem encountered
• 2995 time increments 
• CPU time: 3d 19h 01m

Main reasons
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Main contributions of this work

Mesh management
• Efficient 3D surface mesh smoothing method based on a cubic spline surface
• Fast graded mesh smoothing on these surfaces
• Eulerian boundaries

Convection step
• Second order scheme on 3D unstructured meshes of finite elements using more 

than one Gauss points
• Simple but efficient management of friction forces

Applications
• ALE models of DCET,  tension levelling and roll forming
• Systematic and fair comparison with Lagrangian results
• Comparison with experimental data when available
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Future work

ALE formalism
ALE + remeshing (2 projects in progress at LTAS-MN²L)

Applications
Unsteady phenomena using quasi Eulerian models (request from the industry)

CPU optimisation
Parallelisation (my current work)
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Thank you for your attention
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