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Chapitre 1

Introduction

1.1 Contexte

Lors de la simulation de grandes transformations d’un milieu continu par la méthode
des éléments finis, le choix initial d’'une description cinématique de celui-ci est important et
conditionne parfois le bon déroulement du calcul. Certaines équations, faciles a résoudre
dans un formalisme particulier, peuvent devenir tres difficiles a satisfaire dans un autre.

La formulation lagrangienne, pour laquelle le maillage suit la matiere, semble étre le
choix naturel en mécanique du solide puisqu’elle permet de suivre chaque particule maté-
rielle au cours de la déformation. Elle facilite ainsi le traitement de matériaux complexes
dont le comportement dépend de I'histoire du chargement. Cependant, utiliser un maillage
qui subit les mémes grandes déformations que la matiere risque évidemment de détériorer
la qualité des mailles et donc la précision associée. Les éléments finis peuvent méme se
distordre jusqu’a provoquer l'arrét du calcul.

Pour étudier de tres grandes déformations et éviter ce probléme, les équations peuvent
étre reformulées en utilisant une description cinématique eulérienne ou le maillage est fixe
dans I'espace et la matiére s’écoule a travers celui-ci. Formulation naturelle en mécanique
des fluides, elle garantit une qualité de maillage constante quel que soit le niveau de ci-
saillement du milieu continu, au prix de termes convectifs additionnels dans les équations.

Dans ce travail, nous nous plagons dans certains cas particuliers de la mécanique du
solide ot la formulation lagrangienne montre ses limitations et pour lesquels la formulation
eulérienne n’est néanmoins pas des mieux adaptées.

Le premier cas se rencontre lorsque le maillage a subi de trop grandes distorsions et que
la qualité des résultats en souffre. A titre d’exemple, la figure 1.1 montre une simulation
axisymétrique de forgeage arrétée a la suite d’'un écrasement excessif des éléments sous le
poincon. La description eulérienne est une solution rapidement écartée au vu de son inca-
pacité a suivre précisément les frontieres libres du solide et des difficultés de gestion des va-
riables d’hérédité liées a la plasticité des métaux. Une autre solution, brutale mais efficace,
consiste a remailler le solide en cours de calcul, c’est-a-dire définir un nouveau maillage,
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forgeage

——L
—

arrét du calcul
(jacobien négatif)

FiGURE 1.1 — Simulation lagrangienne de forgeage. Arrét du calcul par distorsion du maillage.

meilleur que le précédent, tout en conservant sa frontiere. Cette opération, lorsqu’elle est
possible, est tres coliteuse. De plus, a trois dimensions, des solutions complétement automa-
tisées de remaillage n’existent actuellement que pour des éléments tétraédriques et ceux-ci
ne sont adaptés qu’aux procédés de mise a forme massifs de type forgeage ol aucune direc-
tion de I'espace ne peut étre privilégiée a priori (voir, par exemple, Cescutti [48] et Chenot
et al. [49]). Enfin, dans le cas d’'un remaillage, les résultats intermédiaires du calcul doivent
étre transportés de I'ancien maillage vers le nouveau en prenant garde a limiter I'inévitable
erreur de diffusion. La solution qui consiste a remailler est peut-étre dans certains cas utile,
mais elle est généralement trop radicale pour étre optimale.

sens d'avancement de la téle
%

maillage utile uniquement au
démarrage de la simulation

FiGure 1.2 — Simulation lagrangienne de planage sous traction. Maillage inutilement long.

Le deuxiéme cas particulier ou une description lagrangienne n’est pas idéale se ren-
contre lors de la simulation de procédés de mise a forme stationnaires tels que le laminage,
le profilage ou le planage (figure 1.2). Pour ceux-ci, la qualité du maillage n’est générale-
ment pas en cause puisque les déformations subies ne sont pas extrémes. Par contre, le cal-
cul de la solution stationnaire nécessite I'utilisation d’'un maillage suffisamment long pour
éliminer tous les effets transitoires qui apparaissent au démarrage du processus. Lorsqu'un
régime stable est atteint, la partie aval du maillage, qui n’a servi qu’a amorcer le calcul,
est simplement ignorée lors de 'analyse des résultats alors qu’elle a alourdi la résolution
du systeme d’équations tout au long du déroulement de la simulation. Au final, le calcul
lagrangien, bien que réalisable, devient tres coliteux en temps de calcul et en mémoire. No-
tons qu’ici aussi, une description eulérienne n’est pas envisageable a cause des difficultés
liées a la détermination des surfaces libres et des conditions de contact sur maillage fixe.
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Le formalisme Arbitraire Lagrangien Eulérien (ALE) a été développé pour résoudre,
entre autres, ces deux problemes en découplant le mouvement du maillage et celui de la
matiere. La cinématique du maillage devient ainsi un parametre supplémentaire sur lequel
on peut jouer pour, d'une part, optimiser la forme des mailles et, d’autre part, minimiser la
taille du modele en concentrant les éléments finis aux endroits ot ils sont les plus utiles.
On peut ainsi imaginer de garder continiment un bon maillage au cours du calcul ou de
restreindre le mouvement de celui-ci dans une seule direction pour modéliser un procédé
stationnaire. Les descriptions classiques lagrangienne et eulérienne deviennent alors des
cas particuliers de ce formalisme général en fixant le maillage a la matiere ou en annulant
sa vitesse.

Ce travail de these se concentre donc sur le développement d’une formulation ALE gé-
nérale, simple et efficace au sein du programme Metafor [1, 125, 146, 156, 168]. Ce code
de calcul non linéaire, initialement dédié a la simulation numérique de la mise a forme
des métaux (« METAl FORming ») dont il tire son nom, permet de modéliser les grandes
transformations de solides par la méthode des éléments finis en prenant en compte les
principales sources de non-linéarités (matériaux complexes, contact, grands déplacements,
thermomécanique). Il rassemble la totalité des nombreux travaux de recherches du labora-
toire Mécanique Numérique Non Linéaire (LTAS-MNZL) de I'Université de Liége.

Par formulation ALE générale, on entend une formulation qui peut étre utilisée pour
tous les problémes lagrangiens habituellement modélisés dans Metafor, qu’ils soient réso-
lus de maniere implicite ou explicite, qu’ils utilisent des éléments finis simples ou plus
complexes, qu’ils soient thermomécaniques ou non, qu’ils soient 2D ou 3D, qu’ils fassent
intervenir des matériaux simples ou plus sophistiqués, etc. Bien souvent, les implémenta-
tions du formalisme ALE sont sujettes a de nombreuses limitations pratiques qui réduisent
ainsi significativement l'intérét de la méthode. Pour ne citer qu'un exemple, le logiciel Aba-
qus [55] restreint I'utilisation du formalisme ALE a des modeéles constitués exclusivement
d’éléments finis sous-intégrés. Seule sa version explicite permet de définir des frontieres
eulériennes, au travers desquelles la matiere peut s’écouler. Dans son domaine d’applica-
tion, Metafor se distingue des autres codes notamment par la disponibilité d’éléments EAS
(Enhanced Assumed Strain) qui permettent une prise en compte améliorée des flexions et
cisaillement. Une formulation ALE dans Metafor doit pouvoir prendre en compte ce type
particulier d’élément fini.

Lutilisation du formalisme ALE doit également rester simple d’emploi. La mise en don-
nées d’'un modele ALE est généralement beaucoup plus complexe qu'un modele lagrangien
équivalent. C’est, d’apres nous, le plus grand frein a une utilisation plus généralisée du for-
malisme ALE dans la communauté des utilisateurs de la méthode des éléments finis. Cet
aspect, beaucoup trop technique pour étre détaillé ici, reste cependant un point a ne pas
négliger.

L'implémentation du formalisme ALE doit enfin étre efficace pour pouvoir concurrencer
les simulations lagrangiennes traditionnelles en termes de temps de calcul. Méme si ce n’est
pas le seul, un des buts du formalisme ALE est la réduction de ce temps de calcul sur de
gros modeles 3D. Tout au long de ce manuscrit, nous ne perdrons donc jamais de vue que
I'objectif final du travail est la réalisation de simulations dans un contexte industriel. Nous
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écarterons ainsi toutes les solutions qui, bien qu’élégantes d’'un point de vue scientifique,
sont inapplicables en pratique parce que trop cofiteuses.

Ces trois points permettent d’expliquer pourquoi, malgré des fondements mathéma-
tiques mis au point et validés depuis longtemps (en mécanique du solide non linéaire, la
publication de Benson [22], datant de 1989, fait déja un tour quasi exhaustif du sujet),
le formalisme ALE n’est encore que trés rarement utilisé pour modéliser des opérations de
mise a forme. Un des objectifs de cette thése est de supprimer tous ces obstacles. Elle a
également pour but de démontrer qu’il est aujourd’hui possible de bénéficier des atouts du
formalisme ALE pour modéliser des procédés industriels de grande taille.

1.2 Applications visées

Au niveau des applications numériques, le but de ce travail n’est pas d’étudier un nou-
veau procédé particulier, mais plutot adapter des modeles lagrangiens existants, déja bien
validés, au formalisme ALE. Il s’agit principalement de simulations de mise a forme de
produits minces (sheet metal forming) tels que le planage, le laminage et le profilage de
toles d’acier, pour lesquels les éléments quadrangulaires et hexaédriques de Metafor sont
les mieux adaptés.

D’autres procédés tels que le forgeage ou I'extrusion nécessiteraient, comme nous I'avons
déja mentionné, l'utilisation de tétraedres. Ce type d’élément n’est pas disponible actuelle-
ment dans Metafor. Nous avons cependant toujours gardé a l’esprit la possibilité d’étendre
les méthodes numériques aux tétraedres. L’ajout futur d’un élément tétraédrique ne devrait
donc pas poser de probleme. Les techniques présentées dans les chapitres suivants peuvent
étre adaptées sans mal a cette nouvelle géométrie d’élément fini.

L'application numérique principale de ce travail de thése est un modele ALE d’une ligne
de profilage a froid. La géométrie des outils peut étre congue a 'aide de COPRA Roll For-
ming [56], le logiciel phare de conception dans le domaine, et importée par la suite dans
Metafor. Ceci permet d’obtenir un modele tout a fait générique permettant de traiter la
majorité des profils rencontrés dans I'industrie.
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1.3 Originalités de la these

La littérature sur le formalisme ALE étant déja tres fournie, il est intéressant de souli-
gner ici les originalités qui démarquent ce travail des autres. Les deux phases de I'algorithme
(la gestion du maillage et le transfert des données) ont fait 'objet de nombreux dévelop-
pements pour permettre l'utilisation du formalisme dans un grand nombre d’applications
différentes.

Gestion du maillage

La méthode de classification des noeuds (section 3.1.2) permettant leur tri et appli-
cation d’'une méthode de repositionnement adéquate est une extension a trois dimen-
sions des macrorégions ALE définies par Ponthot [168]. Ce classement automatique,
rarement abordé dans la littérature, permet de résoudre le probléme complexe de
I'introduction des données supplémentaires définissant le mouvement du maillage.
De ce fait, il permet également l'utilisation du formalisme dans de grands modeles
3D de maniere simple.

Beaucoup d’auteurs semblent faire I’hypothése que la frontiére du maillage reste la-
grangienne (tout en autorisant, bien stir, un glissement du maillage le long de celle-ci)
ou purement eulérienne. L'algorithme de gestion du maillage proposé dans ce travail
permet un déplacement des frontieres a travers lesquelles un flux de matiere existe.
Ces frontieres, appelées frontiéres eulériennes (section 3.5.3), sont remaillées en cal-
culant I'intersection du maillage avec une surface prédéfinie, éventuellement mobile.
Ce traitement est original dans le cadre du formalisme ALE.

Pour la simulation de la mise a forme de produits minces, le traitement original des
arétes paralleles décrit a la section 3.3.4 permet de conserver un maillage structuré
dont les lignes restent orthogonales tout au long du calcul malgré la présence de
fortes flexions.

Pour pouvoir aborder des problemes tridimensionnels, il est nécessaire de pouvoir
repositionner des noeuds sur des surfaces courbes tout en conservant au mieux leurs
formes. Notre algorithme consiste a construire une surface composite du troisiéme
degré sur le maillage de la surface et a déplacer les nceuds sur celle-ci. Cette technique
originale (section 3.5.2) est tout a fait générale et applicable a n'importe quel maillage
surfacique composé de quadrangles, qu’il soit structuré ou non.

Parmi la large gamme de méthodes itératives de relocalisation de nceuds disponibles,
seules quelques-unes permettent de traiter le cas de maillages structurés et locale-
ment raffinés qui sont couramment rencontrés dans les applications qui nous inté-
ressent (on parle de graded elements en anglais). Malheureusement, ces méthodes
possedent une vitesse de convergence déplorable et sont donc difficilement utilisables
en pratique. C’est la raison pour laquelle nous avons mis au point une nouvelle mé-
thode de lissage (section 3.4.3), basée sur un lissage laplacien pondéré, qui permet de
conserver les différences de tailles de mailles imposées par l'utilisateur tout en étant
beaucoup plus rapide que les précédentes.




CHAPITRE 1. INTRODUCTION

Transfert des données

e Les algorithmes ALE de transfert des grandeurs aux points de Gauss les plus élaborés
utilisent une reconstruction linéaire du champ inconnu et sont précis au second ordre.
Cependant, ils nécessitent 1'utilisation exclusive d’éléments finis sous-intégrés, c’est-
a-dire un seul point de Gauss par élément. Nous avons étendu ce type de schéma a
des éléments finis possédant plusieurs points de Gauss en s’'inspirant de la démarche
de Huerta et Casadei [114] dans le cas d’une reconstruction constante du champ
inconnu. L'algorithme résultant (section 4.5.5) est original et permet 'utilisation de
toute la gamme d’éléments finis lagrangiens, y compris les éléments EAS.

e Ce nouvel algorithme de convection a ensuite été adapté au transfert des grandeurs
nodales (températures, vitesses et accélérations) tout en gardant le méme ordre de
précision. Ceci permet l'utilisation de tout type de schémas d’intégration temporelle,
en incluant éventuellement, si le modeéle le demande, les effets thermiques. Un schéma
similaire a récemment été publié par Benson [26] a deux dimensions. Notre implé-
mentation est tridimensionnelle et plus générale (section 4.5.6).

e La création des maillages auxiliaires nécessaires a la résolution des problemes de
convection (section 4.4.4) est entierement automatisée et donc transparente lors de
l'utilisation du formalisme ALE quelle que soit la dimension spatiale du probleme, 2D
ou 3D, et le type de maillage, structuré ou non. Ce gros travail technique d’automa-
tisation explique en partie pourquoi il existe si peu de publications sur le formalisme
ALE a trois dimensions a 'heure actuelle.

e Une analyse poussée de l'influence des conditions aux limites et des flux parasites au
niveau des surfaces libres a été menée pour permettre une prise en compte de grandes
rotations entre le mouvement du maillage et celui de la matiere (sections 4.7.2
et 4.7.3). Ce probléeme n’a jamais été abordé, a notre connaissance, dans la litté-
rature relative au formalisme ALE. Il doit pourtant étre pris en compte et résolu pour
aborder la plupart des procédés stationnaires.

e Une méthode de gestion simple, mais efficace, du contact et du frottement a été mise
au point (section 4.6). Elle n’a jamais été publiée auparavant et fonctionne aussi bien
pour le contact entre un outil rigide et une surface maillée déformable que pour le
contact entre deux surfaces déformables.

Applications

e Lutilisation d’éléments EAS en formalisme ALE est une premiere.

e La majorité des publications ALE se borne aujourd’hui a montrer la faisabilité d’une
simulation sur un procédé spécifique. Nous sommes allés beaucoup plus loin dans ce
travail en comparant dans les détails (courbes de frottement, courbes d’allongements
locaux, etc.) les résultats ALE avec ceux fournis par des simulations lagrangiennes
traditionnelles et, lorsque c’est possible, des mesures expérimentales.

e Les modeles ALE de planeuse et de profileuse sont tout a fait originaux. Le modele de
double extrusion, bien que 2D, est original par sa gestion complexe du mouvement
du maillage et la précision obtenue sur le frottement.

e Les modeles stationnaires incluent la prise en compte de conditions aux limites non
nulles, telles que des tractions en entrée et en sortie pour les simulations de planage
et de laminage.
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1.4 Structure du manuscrit

Suite a ce chapitre introductif, le chapitre 2 introduit les bases théoriques du formalisme
ALE en réécrivant les équations classiques de conservation d'un milieu continu dans le
cas d’'un mouvement arbitraire du maillage. Les différentes techniques de résolution de
ces nouvelles équations sont brievement abordées. On distingue I'approche couplée, pour
laquelle les équations sont résolues telles qu’elles, de 'approche par partition de 'opérateur
eulérien-lagrangien (operator split), qui permet de traiter les effets convectifs séparément.
Comme la majorité des auteurs, nous choisissons cette derniere maniere de procéder. La
résolution est scindée en deux phases : une phase lagrangienne, pendant laquelle le maillage
suit la matiere, et une deuxiéme phase, nommée abusivement phase eulérienne, qui consiste
dans un premier temps a redéfinir un nouveau maillage et dans un second a y transférer
les grandeurs importantes pour continuer le calcul. Ces deux étapes de la phase eulérienne
font chacune I'objet d’un chapitre distinct.

La premiere étape de la phase eulérienne est détaillée au chapitre 3. On y décrit les
méthodes utilisées pour déplacer les nceuds et définir ainsi la nouvelle configuration du
maillage (appelée maillage eulérien). Les méthodes de repositionnement de noeuds peuvent
étre classées de maniére hiérarchique en fonction de la dimension de I'entité géométrique
sur laquelle ils reposent : nceud de coin, nceud d’aréte, noeud de surface ou nceud de vo-
lume. Les méthodes similaires sont comparées entre elles a I'aide de tests simples de con-
vection sur des maillages quasi eulériens pour déterminer leur efficacité, leur robustesse et
leur précision. La mise au point d'une méthode de traitement des maillages surfaciques non
plans est une étape cruciale pour pouvoir aborder plus tard des simulations 3D de procédés
stationnaires.

Le chapitre 4 est consacré a la seconde étape de la phase eulérienne qui consiste a trans-
férer les grandeurs définies aux points de Gauss et aux nceuds du maillage lagrangien vers
le nouveau maillage construit précédemment. Parmi les méthodes de transfert disponibles,
nous nous concentrons exclusivement sur les schémas dérivés de la méthode des volumes
finis. Ceux-ci ont 'avantage de posséder des propriétés intéressantes de conservation de la
grandeur convectée au prix d’une structuration des données relativement complexe pour
les mettre en ceuvre dans un code initialement dédié aux éléments finis. Malheureusement,
les schémas précis au deuxiéme ordre sont congus pour étre utilisés avec des éléments
possédant un seul point d’intégration. En nous inspirant d’'un schéma du premier ordre
développé par Huerta, Casadei et Donéa [47, 114] applicable a des éléments a plusieurs
points de Gauss, nous proposons de combiner ces approches pour obtenir finalement un
schéma du second ordre utilisable quel que soit le nombre de points d’intégration. Le pro-
bléme du contact avec frottement est également abordé. Ce chapitre se termine par une
étude détaillée des effets dissipatifs du schéma et de I'influence des conditions aux limites
utilisées sur les frontieres libres.

Apres cette partie théorique, nous abordons au chapitre 5 une série d’applications qui
ont pour but ’étude détaillée des différents parametres qui interviennent dans I’élaboration
de modeles ALE de procédés de mise a forme. Ces résultats permettront de concevoir plus
facilement le modéle 3D d’une ligne de profilage industrielle dans le chapitre suivant. Nous
débutons ces applications par deux benchmarks incontournables : la barre de Taylor et la

7



CHAPITRE 1. INTRODUCTION

barre d’Hopkinson. Ces tests montrent I'intérét du formalisme ALE pour la conservation
d’un maillage de bonne qualité lors d’'un impact ou d’une striction. L'application suivante
est un test de double extrusion qui emploie une maniere originale pour contourner la né-
cessité d’'un remaillage complet de la structure pendant la simulation. Ce probléme permet
également de valider la prise en compte du frottement sur un maillage mobile. Nous pas-
sons ensuite a des modeéles quasi eulériens pour lesquels les effets convectifs sont dominants
et qui nous rapprochent ainsi du profilage. Un modele 2D de laminage incluant les défor-
mations des cylindres est présenté. Les résultats lagrangiens et ALE sont comparés a des
résultats obtenus grace au code stationnaire eulérien LAM3 dédié au laminage. Le dernier
modele de ce chapitre est un modele de planeuse sous traction. Il met en évidence la né-
cessité d’'un schéma de convection précis pour calculer 'allongement longitudinal subi par
la tole.

Enfin, le dernier chapitre est dédié a la description d’un modeéle 3D d’une ligne continue
de profilage. Grace a une interface avec le logiciel de conception COPRA, ce modele est
trées général et permet la simulation de nombreux types de profilés. Apres une validation
des résultats ALE grace a un modele lagrangien et des mesures expérimentales obtenues
lors d’essais sur une ligne pilote d’ArcelorMittal, nous montrons les avantages du modele
ALE sur différents profils industriels complexes pour lesquels le formalisme lagrangien est
difficilement utilisable et parfois méme incapable de fournir des résultats.




Chapitre 2

Formalisme Arbitraire Lagrangien
Eulérien

2.1 Introduction

Ce chapitre se concentre sur les fondements théoriques de la formulation Arbitraire
Lagrangienne Eulérienne (ALE) et la maniere de résoudre les équations en mécanique du
solide. Aprés un rappel des formulations lagrangienne et eulérienne, ’équation fondamen-
tale ALE est présentée. Les lois de conservations sont réécrites pour un maillage mobile
possédant une vitesse arbitraire. Les algorithmes de résolution couplée sont détaillés, puis
abandonnés au profit d'une partition des opérateurs. Celle-ci permet de traiter I'étape la-
grangienne du probléme grace aux méthodes numériques couramment utilisées en méca-
nique du solide, et 'étape de convection en s’aidant des techniques eulériennes développées
notamment en mécanique des fluides. Ce faisant, on peut alors faire confiance, pour cha-
cune de ces parties, a des algorithmes robustes et m{irement testés.

2.2 Descriptions cinématiques d’un milieu continu

2.2.1 Formalismes lagrangien et eulérien

La description cinématique lagrangienne est obtenue en définissant un systeme de réfé-
rence lié a la matiére appelé Systéme de Référence Matériel (SRM). Lors de la transformation,
une particule matérielle du milieu continu est repérée par ses coordonnées matiére notées X,
c’est-a-dire ses coordonnées spatiales dans la configuration de référence, a I'instant t = t,.
Si cette configuration est la configuration initiale, on parle de formulation lagrangienne
totale. Il peut s’agir également de la derniere configuration a I’équilibre connue ; on parle
alors de formulation lagrangienne actualisée.
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configuration de référence configuration courante

FiGURE 2.1 - Description lagrangienne du mouvement. Le maillage suit la matiére (en gris) au cours de la
déformation.

AYinstant t > t,, la configuration de la matiére peut étre déduite de la configuration de
référence en t = t, par la loi du mouvement (figure 2.1)

x=¢X,t) (2.1)

Cette équation, projette tous les points du volume de référence V, = V(t,) sur le volume
a l'instant t que 'on dénote V(t). En calculant les dérivées de cette équation par rapport a
X ou t, on obtient 'expression du jacobien (le tenseur gradient de déformations F) et de la
vitesse matérielle v .
_% _% 2.9)
F(X,t)= X v(X,t)= o 2.

t X

avec J = detF supposé fini et non nul pour tout t > t,, ce qui suppose que la relation
inverse ¢ ! existe et donc que la relation (2.1) est biunivoque.

En formalisme lagrangien, les lois de conservation et de comportement du milieu con-
tinu sont exprimées explicitement en fonction des coordonnées matérielles X et, de ce fait,
bénéficient de I'absence de termes convectifs. Leur résolution par la méthode des éléments
finis est effectuée en définissant un maillage pour lequel chaque nceud est toujours lié a la
méme particule matérielle. La frontiere du maillage délimite donc parfaitement, et a tout
instant, la frontiere matérielle du corps étudié. Les conditions aux limites s’appliquent ainsi
directement aux nceuds du maillage et 'équation de conservation de la masse est automa-
tiquement satisfaite. Enfin, cette description cinématique est idéale pour le traitement du
comportement irréversible des matériaux puisque chaque point de Gauss représente, lui
aussi, toujours la méme particule matérielle lors de la simulation.

Le formalisme lagrangien s’avere donc étre le choix naturel pour traiter les problemes
de mise a forme des matériaux ou les conditions aux limites, telles que des conditions
de contact unilatéral avec des outils, et les lois constitutives peuvent étre trés complexes.
Cependant, lier le mouvement du maillage a celui d'un corps subissant de tres grandes dé-
formations entraine inévitablement une dégradation progressive des éléments finis au cours
de la simulation. Les distorsions du maillage réduisent alors la précision de la discrétisation
spatiale et peuvent méme provoquer l'arrét prématuré du calcul si 'application (2.1) n’est
plus biunivoque (detF < 0). L'écrasement des mailles induit également un ralentissement
notoire de la simulation lorsqu'un schéma explicite est utilisé. Dans ce cas, la taille maxi-
male du pas de temps qui garantit la stabilité du schéma est une fonction de I'inverse de la
plus petite distance entre deux nceuds.

10



CHAPITRE 2. FORMALISME ARBITRAIRE LAGRANGIEN EULERIEN

Un autre probléme apparait lors de la simulation de procédés stationnaires qui néces-
sitent un trés grand nombre de mailles lagrangiennes pour démarrer la simulation, calculer
une phase transitoire, et finalement converger vers un état stabilisé. Dans ce cas de figure,
le maillage ne peut généralement pas étre optimisé dans la direction de 1’écoulement et
doit étre choisi suffisamment fin pour garantir la convergence du calcul transitoire et une
bonne précision sur la solution stationnaire finale. Un maillage uniforme dans le sens de
I’écoulement est alors souvent le meilleur choix. Ce type de modele est d’autant plus cofi-
teux en termes de mémoire utilisée et de temps de calcul que la zone stationnaire d’intérét
est grande.

Pour remédier a ces problemes, on pourrait étre tenté d’utiliser une description ciné-
matique eulérienne qui consiste a définir un systeme de référence fixe dans l'espace, le
Systeme de Référence Spatial (SRS), et non plus lié au mouvement de la matiere. Les lois de
conservation sont alors écrites en fonction des coordonnées spatiales x et du temps, entrai-
nant l'apparition de termes convectifs. Ces derniers traduisent le fait que chaque point de
la grille de calcul voit défiler de nombreuses particules matérielles au cours du temps. Du
point de vue mathématique, ce formalisme est bien s{ir tout a fait équivalent au formalisme
lagrangien.

Utiliser le formalisme eulérien permet de supporter sans problémes numériques les
grandes distorsions du matériau puisque les mailles restent toujours indéformables et sont
choisies au début du calcul pour étre bien conditionnées. D’autre part, les difficultés liées
a la taille du maillage d’'un procédé stationnaire n’apparaissent pas non plus puisqu’il est
théoriquement possible de mailler uniquement la zone d’intérét et laisser la matiere s’écou-
ler a travers celle-ci.

Néanmoins, le formalisme eulérien est difficilement utilisable en dehors de la mécanique
des fluides. Outre la nécessité de traiter efficacement les termes convectifs supplémentaires
dans les équations du mouvement et les lois constitutives, la gestion des surfaces libres
pose un gros probleme pour le traitement eulérien des solides. En effet, ces frontieres ne
coincident généralement pas avec la grille de calcul et leurs positions doivent étre calculées
a chaque instant pour y appliquer d’éventuelles conditions aux limites. On est donc, en
général, limité a des problemes ot les frontiéres sont fixes et connues a priori.

2.2.2 Formalisme Arbitraire Lagrangien Eulérien

Ce bref rappel des deux descriptions classiques du mouvement a pour but de prouver la
nécessité, dans certains cas, d’utiliser un formalisme plus général. Celui-ci doit conserver les
avantages des formalismes lagrangien et eulérien et pouvoir s’y particulariser si la situation
le requiert. Il s’agit de la formulation Arbitraire Lagrangienne-Eulérienne (ALE) également
appelée formulation mixte eulérienne-lagrangienne.

On y définit un nouveau systeme de référence, appelé Systéme de Référence de Grille
(SRG) ou systeme de référence de calcul, qui peut se mouvoir indépendamment de la ma-
tiere et du systeme de référence spatial. On introduit ainsi un découplage entre le mouve-
ment de la matiere et celui du maillage. Grace a cela, il est par exemple possible de garder
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un maillage de bonne qualité tout au long du calcul a I'intérieur d'un domaine étudié malgré
de grandes déformations matérielles. On peut aussi imaginer, pour les problemes station-
naires, de permettre a la matiere de traverser certaines frontieres du maillage pour limiter
artificiellement le domaine étudié a une certaine portion de I'espace.

AY AY  eulérien
o ///
[ \ (r
/); \\ V.
d D
4y 4V lagrangien
»T »T
AY AY ALE
>z T
L=t t >t

FIGURE 2.2 — Les trois formalismes utilisés en mécanique des milieux continus. A gauche, la configuration au
temps de référence t,. A droite, un instant ultérieur.

La figure 2.2 montre de maniere schématique les trois formalismes appliqués a la défor-
mation d’un solide. A gauche les configurations de référence de la matiére et du maillage
en t = t, pour chaque formalisme. A droite, une configuration a un instant t ultérieur.
Dans le cas eulérien, le solide étudié quitte 'espace maillé. En formalisme lagrangien, le
maillage a subi des distorsions excessives. En formalisme ALE, le maillage a été adapté tout
en respectant les frontieres du solide.

La formulation ALE n’est pas nouvelle : elle a tout d’abord été introduite pour traiter
des probléemes gouvernés par les équations de Navier-Stokes (Noh [157] en 1964, Frank
et Lazarus [74] en 1964 et Trulio [195] en 1966) par la méthode des différences finies.
A cette époque, chaque région était soit purement lagrangienne, soit purement eulérienne.
Un peu plus tard, toujours en mécanique des fluides, Hirt, Amsden et Cook [111] étendent
la formulation en permettant les premiers mouvements relatifs arbitraires entre le maillage
et la matiere.

La formulation ALE est ensuite appliquée a la méthode des éléments finis dans le cadre
de problémes d’interactions fluide-structure (Donéa [61, 63], Belytschko [18], Liu [139,
141]). Pour ces auteurs, seul le fluide est traité en formalisme ALE. Le solide et I'interface
sont lagrangiens.
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Le traitement du solide par le formalisme ALE est ensuite abordé par différents auteurs
(Schreurs et al. [180], Huétink [119, 121], Liu et Belytschko [142, 143], Benson [22],
Ponthot [165, 166], etc.). Depuis lors, les techniques numériques de résolution des équa-
tions de la mécanique du solide en formalisme ALE ont continuellement été améliorées et
appliquées a des opérations de mise a forme de plus en plus complexes (Benson [24, 26],
Huerta et al. [64, 114, 175], Huétink et al. [3, 83, 187, 206], Fourment et al. [95, 164]
Pantalé [161, 162], Ponthot [168, 171], Boman [31-33, 35] parmi beaucoup d’autres).

Plusieurs dénominations sont utilisées pour parler des différentes méthodes de réso-
lution et des hypothéses effectuées. Benson distingue par exemple la formulation S-ALE
(ou Simple-ALE, c’est-a-dire un seul matériau par élément et des frontieres exclusivement
lagrangiennes) et MMALE (formulation générale multi-matériau).

Aujourd’hui, malgré tous ces développements, le formalisme ALE est loin d’étre systé-
matiquement utilisé en mécanique du solide non linéaire. Les difficultés principales restent
la définition d'un mouvement de maillage approprié et la prise en compte des conditions
aux limites (mouvement des noeuds sur les surfaces libres, prise en compte du contact avec
ou sans frottement, gestion du flux de matiére en entrée et en sortie du maillage). Des
implémentations sont disponibles dans les codes de calcul commerciaux (LS-DYNA [103],
Abaqus [55], par exemple), mais elles souffrent toujours de fortes limitations : générale-
ment, le formalisme ALE ne peut étre utilisé qu’avec certaines combinaisons particulieres
d’éléments finis, de conditions aux limites et de schémas d’intégrations. De plus, le caractere
arbitraire du formalisme, qui permet a I'utilisateur, en théorie, de déplacer le maillage selon
ses désirs, est tres difficile a interfacer dans un programme général qui ne peut proposer
qu'une liste limitée de méthodes de repositionnement de noeuds. La définition du mouve-
ment du maillage nécessite donc généralement un gros travail de prétraitement par rapport
a une simulation lagrangienne et se heurte souvent a 'absence de méthodes adéquates pour
le probleme considéré.

Mathématiquement, chaque particule d'un milieu continu peut étre repérée de maniere
univoque dans un des trois systemes de référence définis précédemment : soit X, les coor-
données dans le systeme de référence matériel (SRM), x les coordonnées dans le systeme
de référence spatial (SRS) et y les coordonnées relatives a la grille de calcul et appelées
coordonnées SRG.

On définit le volume V*(t,) occupé par le maillage en t = t, qui vient se superposer au
volume V(t) au temps t (figure 2.3). Autrement dit, les domaines V*(t) et V(t) sont définis
de telle maniere a ce qu'’ils coincident spatialement au temps t. Ils contiennent néanmoins,
en toute généralité, un ensemble différent de particules en t = t,,. Le volume V est appelé
volume matériel puisqu’il contient toujours les mémes particules de matiere. Le volume V*
est appelé volume particulaire parce qu’il contient toujours les mémes particules SRG.

Les points de 'ensemble V(t) peuvent étre obtenus a partir de ceux de 'ensemble V*(¢,)
par la relation

x=¢"(x,t) (2.3)

Cette équation traduit la cinématique propre au maillage utilisé. De cette derniere rela-
tion, on peut déduire une matrice jacobienne F*, tout comme on a défini le tenseur gradients
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V() A V()=V*()

configuration
matiére courante

FIGURE 2.3 — Cinématique de la matiére (en gris) et de la grille de calcul.

de déformation F pour la transformation (2.1).

ox

F'=—
ox

(2.4)

avec les mémes conditions que précédemment sur le jacobien J* = detF* pour garantir la
biunivocité de ¢*.

Les volumes V et V* peuvent étre reliés entre eux en combinant les deux transformations
2.1) et (2.3):
2=9¢""(x,0)=¢""(¢(X,0), ) =9"(X,t) (2.5)

ot 'on a introduit 'application @™ dont on peut également définir la matrice jacobienne et
son déterminant qui doit étre, encore une fois, fini et non nul.

Il est facile de retrouver la formulation lagrangienne en identifiant, partout et en tout
instant, les vecteurs y aux vecteurs X. L'application ™ se réduit alors a la fonction identité
et le SRG est confondu avec le SRM. La formulation eulérienne, quant a elle, est obtenue
en identifiant les vecteurs y aux vecteurs x. Le SRG est, cette fois, confondu avec le SRS.

Suivant le systeme de référence auquel I'observateur est 1ié, une grandeur physique
arbitraire f peut étre exprimée de plusieurs manieres. Par exemple, en coordonnées la-
grangiennes, on a f = f;(X,t). De méme, en coordonnées eulériennes, f = fz(x,t) et
enfin, si on choisit le SRG, on écrit f = f;(x, t). Toutes ces grandeurs sont égales et liées
entre elles par les relations (2.1), (2.3) et (2.5). Dans la suite, nous omettrons les indices
L, E et ¢ pour simplifier ’écriture.

Placons-nous sur la grille de calcul pour observer les variations temporelles de f. A
chaque instant, et pour chaque point SRG, la valeur de grandeur f est donnée par f =
f(x,t). La variation SRG de f au point SRG y durant l'incrément temporel At est appelée
la variation SRG de f et est donnée par A, f = f(x,t + At)— f(x,t). On définit alors la
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dérivée SRG, notée ici f , par
of

e Aof
ot

= l1m
At—0 At

(2.6)

z
En particulier, si f représente la position courante x, on obtient la vitesse de grille ou la
vitesse SRG, v* :
ES
0671, 0)

ot

ox(x,t)
ot

vig,t)=x= 2.7)

V4 x

ol la notation v* est utilisée pour insister sur I’analogie avec la vitesse matérielle v.

Pour pouvoir déduire les lois de conservation d’un milieu continu en formalisme ALE,
nous avons besoin de calculer les dérivées particulaires relatives aux systéemes de référence
qui viennent d’étre introduits. Pour la grandeur physique arl.)itraire f, la relation entre la
dérivée temporelle pour un obsoervateur lié au SRM (notée f ou Df /Dt) et celle pour un
observateur lié au SRG (notée f) peut étre évaluée en appliquant la regle de dérivation de
fonctions composées :

P70 I {C 815 T L
at | ot x Ot|y Ot |y OY*
_ I
= §Z+W'Vlf (2.8)

ou w est la vitesse d’une particule matérielle mesurée dans le SRG. L'intérét de cette relation
est limité puisque 1’évaluation du gradient de f par rapport aux coordonnées SRG n’est pas
commode en pratique. Pour obtenir une relation similaire qui fait intervenir le gradient
spatial de f, on réécrit les deux dérivées de la maniere suivante : pour le SRM, la dérivée
totale (ou matérielle) se calcule par :

plU0|  d&o0l | ol of
ot |y ot x Ot|y, Ot|y 0¢
= of +v-V (2.9)
- at_ . v xf .
Pour le SRG, on a, de maniere similaire :
o Of
f=§ +v* V. f (2.10)

En prenant simplement la différence entre ces deux derniéres expressions, on obtient :

f=f+—=v)-Vf (2.11)

On définit alors la vitesse convective par ¢ = v — v*, qui n’est rien d’autre que la vi-
tesse relative entre le SRM et le SRG, ou la vitesse d’'une particule matérielle vue depuis le
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SRG. Finalement, la relation fondamentale reliant les dérivées dans les deux systemes de
référence s’écrit :

of

. ot

of

PR +c-V,.f ou f=f+c-fo (2.12)

x

Cette relation permet de retrouver les deux cas particuliers importants contenus dans la

formulation ALE :
e la formulation lagrangienne, pour laquelle on a : v* = vouc=0.Le maillage est
lié a la matiere et on retrouve la dérivée matérielle f = f, ce qui est logique puisque
X = x pour tout t.
e la formulation eulérienne, pour laquelle on a : v* = 0 ou ¢ = v. Le maillage est fixe

dans I'espace et on retrouve la formule de la dérivée particulaire :

of|  of
— of

*

o

X

g=x Ot
Il est important de ne pas confondre les vitesses ¢ et w. En remplacant f par la position
x dans la relation (2.8), on obtient :
., Ox
c=v—-v =—w (2.14)
o
qui montre que w et ¢ sont identiques uniquement dans le cas ot le SRG est animé d’'un
mouvement de translation uniforme (dx/dy =1I) par rapport au SRM.

2.3 Lois de conservation en formulation ALE

En utilisant la relation fondamentale (2.12), nous pouvons déduire les lois de conserva-
tion d’un milieu continu exprimées sous forme ALE a partir des mémes équations exprimées
en formalisme lagrangien. On obtient des équations tout a fait similaires a la formulation
eulérienne ou la vitesse relative entre le maillage et la matiere remplace la vitesse totale
dans I'expression des dérivées matérielles. C’est pour cette raison que la formulation ALE
est également appelée formulation quasi eulérienne par Belytschko et al. [20].

Conservation de la masse :

R +c¢c-Vp+pV-v=0 (2.15)

X

Conservation de la quantité de mouvement :

ov
p at

Conservation du moment de la quantité de mouvement :

+(c-V)v)=V-(r+pb (2.16)
i

=o' (2.17)
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Conservation de I'énergie :

du
p ot

ou p est la masse volumique, o est le tenseur des contraintes de Cauchy, b sont les charges
volumiques mécaniques, u représente 'énergie interne spécifique, r sont les sources volu-
miques de chaleur, D est le tenseur taux de déformation et q le flux de chaleur.

+c-Vu):0:D+pr+V-q (2.18)
z

Pour compléter le systéme, il faut ajouter a ces équations, les lois constitutives décrivant
le comportement du matériau étudié. Dans le cadre de la mécanique du solide en grandes
transformations, celles-ci sont généralement écrites sous forme différentielle et relient une
dérivée objective du tenseur des contraintes au taux de déformation. En choisissant par
exemple la dérivée de Jaumann, notée oV, on peut écrire pour un probléme purement
mécanique :

cV'=06-Wo+ocW=%:D (2.19)

ol O est la dérivée matérielle du tenseur des contraintes de Cauchy, D et W sont les parties
symétrique et antisymétrique du tenseur gradient des vitesses (L =F F~! = D+ W) et A est
un tenseur matériel caractérisant le matériau et dépendant des parametres constitutifs, des
contraintes et de I'histoire du chargement.

En isolant la dérivée matérielle, non objective, dans le premier membre, on obtient :

O'ZE +(c-V)o=H:D+Wo—-0W (2.20)

x

A cet ensemble d’équations viennent s’ajouter des conditions aux limites essentielles sur
les déplacements (x(t) = x(t) sur I,) et les températures (T(t) = T(t) sur I';) et des
conditions aux limites naturelles sur les tractions de surface (o -n =t sur I},) et le flux de
chaleur (q(t)-n =q(t) sur I[)

Enfin, a coté de ces équations modélisant la physique du milieu continu, il faut définir
le mouvement de la grille de calcul par v* = v*(y, t) avec, comme seule contrainte, des
équations de compatibilité entre la frontiere du maillage et celle de la matiere :

vien=v-n (2.21)

ou n est la normale externe a la frontiére.
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2.4 Résolution des équations

2.4.1 Résolution des équations couplées

Les méthodes numériques mises en ceuvre pour résoudre les équations qui régissent le
milieu continu dépendent fortement de la nature de celui-ci et du type de chargement en-
visagé. On rencontre principalement deux probleémes lors de I’élaboration d'un algorithme
de résolution des équations couplées.

Le premier probleme vient de la définition du mouvement du maillage qui peut, soit
étre choisi et imposé, soit dépendre de la déformation a priori inconnue du matériau en-
visagé. Définir compléetement le mouvement du maillage au préalable simplifie, bien sfr,
énormément le processus de résolution, mais limite considérablement le champ d’applica-
tion de la méthode. Inversement, si le mouvement du maillage est inconnu et dépend de la
configuration courante du matériau, le champ de vitesse v* vient s’ajouter aux inconnues
du probleme, alourdissant la résolution du systéeme d’équations.

Le deuxieme probléme est la présence de termes convectifs dans les équations. Ceux-
ci doivent étre traités par des méthodes numériques appropriées pour éviter 'apparition
d’oscillations numériques indésirables dans la solution. De plus, ces termes produisent des
matrices fortement non symétriques lors de leur discrétisation spatiale et donc requiérent
des solveurs appropriés. Au niveau des lois constitutives, ces termes convectifs rendent le
traitement des matériaux a mémoire beaucoup plus complexe.

2.4.1.1 Discrétisation spatiale

Pour résoudre le systeme des équations de conservation par la méthode des éléments
finis, on est amené a écrire celles-ci sous forme faible. Par exemple, 'équation de conserva-
tion de la quantité de mouvement (2.16) peut étre multipliée par une fonction cinématique-
ment admissible du et intégrée sur le volume courant V(t). Apres intégration par parties,
on obtient, de cette maniere, le principe des travaux virtuels en formalisme ALE.

o avi 35ui

pvi (SuldV"l‘ pC]‘_(SuidV + —O-l]dV

V(6) V() x; V(6) ox;
V() S(t)

avec S, la surface frontiere du volume V et t; = oy;n;, les tractions de surface. Ici, nous
avons implicitement choisi de formuler le probléme en termes de déplacements u, comme
c’est généralement le cas en mécanique du solide. On peut également choisir le champ de
vitesses comme inconnue principale en définissant un champ de vitesses cinématiquement
admissible. On obtient alors le principe des puissances virtuelles. Equivalents d’un point de
vue mathématique, le choix de formuler le probleme en vitesses ou en déplacements peut
faciliter ou au contraire rendre plus difficile certaines parties de I'algorithme de résolution

ALE (voir par exemple la gestion du frottement, section 4.6).
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Le principe de travaux virtuels (2.22) peut se mettre sous la forme simplifiée
SM+6C+ oW =sWwe (2.23)

Par rapport a la forme lagrangienne, on remarque l'apparition d’un terme convectif, 6C,
qui s’annule avec la vitesse relative ¢ entre le maillage et la matiere.

Lintroduction de fonctions de forme permet alors de discrétiser spatialement le principe
des travaux virtuels. En exprimant le résultat sous la forme habituelle d'un résidu d’équilibre
r, on obtient la forme matricielle suivante

r=Mv+Cv + f™— (2.24)

ot M est la matrice des masses, C regroupe les termes convectifs et f™ et £ sont respecti-
vement les forces internes et externes. Les expressions détaillées de ces matrices et vecteurs
sont tout a fait classiques (voir par exemple Ponthot [168] ou Belytschko et al. [20]).

2.4.1.2 Forces d’inertie

Lorsque le probleme est traité sous ’hypothese quasi statique, c’est-a-dire lorsque les
phénomeénes d’inertie sont négligeables (6 M 4+ 6C = 0), le terme de convection 6C dispa-
rait avec le terme 6 M. Les équations du mouvement sont alors identiques a celles écrites
en formulation lagrangienne, bien que I'expression de la loi constitutive du matériau (2.20)
contienne cependant toujours un terme convectif. Contrairement aux autres termes convec-
tifs, ce dernier fait intervenir la dérivée spatiale des contraintes. Or, les contraintes sont des
inconnues faibles du probleme et ne sont connues qu’aux points de Gauss de chaque élé-
ment. Le gradient n’est donc pas directement calculable.

Dans le cas ol les forces d’inertie ne peuvent pas étre négligées, ’équation de conserva-
tion de la masse doit étre prise en compte et discrétisée spatialement comme 1’équation de
la quantité de mouvement. C’est une difficulté supplémentaire par rapport au formalisme
lagrangien pour lequel la matrice des masses est toujours constante au cours du calcul et la
loi de conservation (2.15) se réduit a une simple équation locale permettant de calculer la
densité courante :

pX,t) J(X,t)=p(X,0) J(X,0) (2.25)

Si on modélise un matériau élastoplastique, on peut, en premiere approximation, utiliser
une densité constante en négligeant la variation de volume due a 'élasticité. Grace a cela, la
matrice des masses évolue uniquement en fonction de la géométrie du maillage et 'équation
de conservation de la masse ne doit plus étre discrétisée.
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2.4.1.3 Mouvement de maillage connu a priori

Dans le cas tres particulier ou le mouvement du maillage est connu, la principale dif-
ficulté est d’évaluer le terme convectif présent dans les équations constitutives (2.20).
Puisque les contraintes ne sont connues qu’en certains points discrets, une approximation
de leur gradient doit donc étre calculée a partir de ces valeurs ponctuelles.

Liu et al. [142] proposent de remplacer ’équation (2.20) par un nouveau systeme de
deux équations en introduisant une nouvelle inconnue ) définie comme le produit du dé-
viateur du champ de contrainte et de la vitesse convective :

YVijk = Sij Ck (2.26)

Cette équation, mise sous forme faible et discrétisée en utilisant des fonctions de forme
constantes par élément pour le déviateur des contraintes s s’écrit :

M’y =N’s (2.27)

Le vecteur y est ensuite réinjecté dans 'équation constitutive discrétisée. Cette maniere
de procéder permet d’obtenir une approximation globale du gradient des contraintes sous la
forme d’'une expression matricielle. La méme technique est appliquée a toutes les variables
internes du matériau. Enfin, pour éviter les oscillations, Liu utilise des fonctions de forme
SUPG (Brooks et Hughes [38]) pour évaluer tous les termes convectifs apparaissant dans
les équations.

D’autres méthodes peuvent étre utilisées pour évaluer ce gradient de contraintes. Cer-
taines d’entre elles seront détaillées a la section 4.2.1.1. Huétink et al. [121] proposent, par
exemple, de construire une approximation continue du champ de contrainte sur chaque él¢é-
ment par moindres carrés. Les valeurs des contraintes obtenues en un nceud pour tous les
éléments adjacents a ce nceud sont ensuite moyennées pour obtenir un champ global con-
tinu dont on peut calculer le gradient spatial. Cette méthode, qui peut étre assimilée a un
lissage local et global des contraintes (voir Hinton et Campbell [110]), introduit une dif-
fusion qui peut étre contrélée en pondérant les deux opérations précédentes, pour lutter
contre les oscillations dues aux termes convectifs. Cependant, contrairement a la méthode
SUPG utilisée par Liu, la méthode de Huétink est isotrope et souffre donc de diffusion
transverse.

Remarquons que, lorsque le probleme est résolu de maniere explicite, certains auteurs
(Pantalé [160] par exemple) calculent la vitesse du maillage en se basant sur la configu-
ration au pas de temps précédent puisque la taille du pas de temps est généralement tres
petite. De cette maniere, la vitesse du maillage ne dépend pas directement de la vitesse
matérielle qui reste la seule inconnue du probléme.

20



CHAPITRE 2. FORMALISME ARBITRAIRE LAGRANGIEN EULERIEN

2.4.1.4 Mouvement de maillage inconnu a priori

Il est donc possible, dans des cas particuliers simples ott le mouvement du systeme de ré-
férence peut étre fixé a priori, de résoudre directement les équations ALE. Cependant, dans
la majorité des cas qui nous intéressent, il est impossible de fixer a priori le mouvement
de la grille de calcul. Le maillage doit pouvoir étre adapté en fonction des déformations
du matériau et suivre ses frontiéres qui peuvent subir I'influence de conditions aux limites
fortement non linéaires (du contact par exemple). Le mouvement du maillage constitue
donc généralement une inconnue supplémentaire qui vient s’ajouter aux inconnues tradi-
tionnelles de la mécanique des milieux continus.

Placons-nous dans le cas simplifié d'un probléme purement mécanique sous hypothese
quasi statique. L’équation (2.24) est habituellement résolue grace a un algorithme itéra-
tif de Newton-Raphson. Puisque le mouvement du maillage est inconnu, il est nécessaire
d’introduire deux jeux d’inconnues par noeud : les déplacements matiere u,, et les dépla-
cements maillage u. En effet, on peut montrer (voir Ponthot [168]) que cette équation se
linéarise sous la forme suivante :

ou K, et la matrice de raideur tangente relative aux déplacements de la matiere et K, celle
relative aux déplacements du maillage ; x; et x représentent respectivement l'incrément
de déplacement de la matiere et du maillage.

Le systeme d’équations linéaires (2.28) possede exactement deux fois plus d’inconnues
que d’équations. Il faut donc ajouter des équations supplémentaires qui vont fermer le
systeme et qui décrivent le mouvement du maillage. Cette opération est appelée processus
de détermination SRG (Schreurs et al. [180]). On obtient ainsi un systeme linéarisé du type

avec des équations de contraintes sur les frontieres qui permettent de garantir le respect de

la géométrie de la frontiere au cours du temps. I’équation (2.21) linéarisée et exprimée en
termes d’incréments de déplacements peut s’écrire :

(Ax;—Axy)-n=0 (2.30)

ol la normale n est supposée constante durant I'incrément.
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2.4.1.5 Difficultés

Si on essaye de résoudre les équations (2.29) et (2.30) telles qu’elles viennent d’étre
introduites, on se trouve face a plusieurs difficultés :

Remarquons tout d’abord qu'une méthode de résolution étagée n’est pas applicable :
en effet, déduire les déplacements du maillage a partir du deuxieme groupe d’équations
de (2.29) et les injecter dans le premier groupe n’est pas une bonne idée puisque la solu-
tion obtenue ne vérifiera pas nécessairement les contraintes de compatibilité des frontieres
(2.30). Le systeme a résoudre posséde donc inévitablement deux fois plus d’inconnues que
son homologue lagrangien. Le temps de calcul sera donc plus important ; ce qui diminue
I'intérét de la méthode si le but de l'utilisation du formalisme ALE est une réduction de
temps de calcul.

particules identiques particules différentes

relocalisation
des noeuds

pas lagrangien

FIGURE 2.4 — Probléme lors de lintégration des lois constitutives.

L'intégration des lois constitutives pose en outre un probléme majeur pour la résolution
couplée. En effet, imaginons que la solution du systéme linéarisé (2.29) a été calculée. A
partir de la configuration du maillage de l'itération précédente, on peut déduire la nouvelle
position du maillage (x + Ax;) et des nouvelles positions matérielles (x 4+ Ax,,). Dans
cette nouvelle configuration, les nouveaux points de Gauss du nouveau maillage ne cor-
respondent plus aux mémes particules matérielles que celles qui se trouvaient aux points
de Gauss du maillage de I'itération précédente. Or, les lois constitutives décrivant les maté-
riaux solides ne peuvent étre intégrées qu’en suivant la méme particule matérielle au cours
d’un incrément temporel. Quant aux équations d’équilibre (2.24), elles nécessitent 1'éva-
luation des forces internes qui dépendent du champ de contraintes aux points de Gauss du
maillage. Pour résoudre ce probléme, Schreurs et al. [179, 180] proposent de calculer les
contraintes sur un maillage auxiliaire qui se déplace avec la matiere au cours des itérations.
Les contraintes aux points de Gauss de la grille de calcul sont déduites a tout instant par
interpolation des valeurs du maillage auxiliaire.

Dans un tel cas de figure, le processus de détermination SRG doit étre linéarisable pour
pouvoir étre inclus dans la matrice d’itération de Newton-Raphson. En pratique, on est
donc limité a des mouvements relativement simples. Schreurs et al. [180] proposent de
définir sur le SRG un matériau fictif élastique isotrope qui régit les déplacements des nceuds
internes du maillage en fonction des déplacements des frontieres. Gadala et Wang [76, 78]
proposent d’exprimer les vitesses nodales du maillage comme une fonction linéaire des
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vitesses matérielles. Cette relation est basée sur une interpolation transfinie des frontiéres
et permet d’éliminer la vitesse du maillage des équations.

Au niveau des conditions aux limites, trouver des déplacements qui satisfont la relation
(2.30) ne garantit pas toujours la conservation de la frontiere du domaine matériel. En effet,
la relation (2.21) qui doit étre vérifiée s’écrit en termes de vitesses et doit idéalement étre
vérifiée a tout instant. Utiliser 'équation linéarisée (2.30) dans le cas d’une frontiere non
rectiligne ou qui subit des rotations entraine inévitablement des flux parasites de matiere a
travers le maillage.

2.4.2 Partition de opérateur eulérien-lagrangien

Pour résoudre d’'une maniere beaucoup plus simple le systeme d’équations (2.24), il
est possible de partitionner I'opérateur eulérien-lagrangien (on parle d’operator split en
anglais) et d’effectuer une résolution séquentielle des équations en deux temps. Cette ma-
niére de faire a été initialement proposée par Donéa [61] dans le cadre de la mécanique
des fluides et par Benson [22], Baaijens [14] (sous le nom de Updated-ALE ou U-ALE) et
Huétink [119] dans le cadre de la mécanique du solide. Depuis lors, la quasi-totalité des
auteurs et des codes de calcul utilise cette méthode pour résoudre les équations ALE.

L'idée est tres simple : pour chaque incrément temporel, on procede en deux étapes dis-
tinctes : dans la premiere étape, appelée phase lagrangienne, le maillage suit la matiere. Si
une méthode implicite est utilisée, cette étape se termine lorsque I’équilibre est vérifié. A ce
moment, la deuxieme étape, appelée phase eulérienne, peut commencer. Elle consiste a dé-
finir une nouvelle position pour les nceuds du maillage et a transporter toutes les grandeurs
nécessaires a la poursuite du calcul, du maillage lagrangien vers le nouveau maillage.

On obtient ainsi un algorithme qui est beaucoup plus rapide, plus général et méme plus
robuste que son homologue totalement couplé, au prix d’'une légere perte de précision sur la
solution obtenue (voir Chorin et al. [51]). Cette derniére affirmation est discutable, d’apres
Benson [26], tant les schémas de transfert actuels sont précis et différents d’'une simple
intégration temporelle (méthodes de projections par exemple — voir section 4.5.1).

Il est important de remarquer que ce type d’approche découplée pour résoudre des équa-
tions complexes est régulierement utilisé en mécanique non linéaire. La technique du retour
radial (Ponthot [170]) utilisée pour intégrer le comportement plastique des matériaux ou
les schémas thermomécaniques étagés (Armero et Simo [5]) en sont deux exemples cou-
rants.
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2.4.2.1 Phase lagrangienne

La puissance de la méthode découplée réside dans le fait que la phase lagrangienne de
'algorithme ALE est tout a fait identique a celle d'un calcul purement lagrangien. Les points
de la grille de calcul y suivent les particules matérielles X. On peut donc utiliser, pendant
cette phase, toutes les méthodes et tous les schémas disponibles pour une simulation clas-
sique. Par exemple, la thermique peut étre prise en compte ainsi que les effets d’inertie,
et ce, a l'aide de schémas maintenant bien établis. Des conditions aux limites complexes
comme le contact avec des outils rigides ou déformables peuvent étre envisagées.

En pratique, on résout, pendant cette phase, I’équation (2.22) sans le terme convectif
0C. Le principe des travaux virtuels semi-discrétisé (2.24) devient :

r=MvV +f"— fx avec V=1 (2.31)

Un avantage considérable de la résolution séquentielle dans le cas dynamique est que la
matrice des masses est, cette fois, constante durant la phase lagrangienne et '’équation de
conservation de la masse (2.15) ne doit pas étre discrétisée. Seule une simple mise a jour
de la matrice des masses a la fin de chaque pas de temps est nécessaire.

Au niveau des équations constitutives, les termes convectifs disparaissent également.
L'équation (2.20) devient :

Jo

c=0 -
atl

=H:D+Wo—-0W (2.32)
Elle doit étre intégrée pour obtenir ce que nous appellerons les contraintes lagrangiennes
o, cest-a-dire, plus précisément, les contraintes obtenues apres la phase lagrangienne.

2.4.2.2 Phase eulérienne

Lorsqu’une configuration lagrangienne équilibrée est obtenue, la phase eulérienne (Ben-
son [22]), ou phase ALE, peut commencer. Cette phase est en fait composée de plusieurs
sous-étapes qui ont pour but de redéfinir une nouvelle configuration équilibrée sur un nou-
veau maillage. On considérera ensuite que cette configuration est une bonne approximation
de la solution du systeme d’équations couplées ALE défini a la section 2.3.

La premiere tache est de déterminer, pour une configuration équilibrée obtenue lors
de la phase lagrangienne, une nouvelle position du maillage en fonction de la configura-
tion lagrangienne précédemment calculée. Vu la liberté laissée par le formalisme pour le
mouvement du maillage, de nombreux algorithmes sont applicables (lissage, remaillage,
schémas de transport, etc.) et le choix de ceux-ci dépend fortement du processus simulé et
de l'effet recherché. En conséquence, pour un code de calcul généraliste, il est important
d’offrir une large gamme de méthodes de repositionnement de nceuds. Les méthodes mises
en ceuvre doivent préserver la topologie du maillage, c’est-a-dire conserver le nombre de
neceuds et de mailles ainsi que les relations de voisinage. L'opération consiste donc unique-
ment a modifier la position de chaque noeud et non redéfinir complétement un nouveau
maillage.
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Une attention toute particuliére doit étre apportée au respect des frontieres matérielles
(équation (2.21)) pour éviter de modifier la masse totale du systéme et sa géométrie lors de
la définition du nouveau maillage. Dans le cas de la simulation de procédés stationnaires,
de minimes erreurs géométriques a ce niveau peuvent s’accumuler au cours de I'intégration
temporelle et provoquer, au final, une perte ou un gain continu de matiere qui détériore la
solution. Nous détaillons les méthodes qui ont été développées dans le cadre de ce travail
dans le chapitre 3.

Dans le cas d’'une formulation en vitesses, il est nécessaire de faire a ce moment un
choix d’inconnues (voir par exemple Guerdoux [95], Philippe [164], Traoré [194]) : soit
résoudre le probleme de repositionnement en termes de vitesses de grille (on parle alors de
splitting cinématique pour lequel on détermine v* = v*(v)), soit le résoudre en termes de
déplacements (ou splitting géométrique : la position du maillage dans la phase lagrangienne
est calculée par intégration temporelle de v, les noeuds sont déplacés et les vitesses du
maillage v* en sont déduites). Dans le cas d’'une formulation lagrangienne en déplacements,
comme c’est le cas pour cette these, il semble naturel de résoudre également le probleme
en termes de déplacements. Cette méthode permet de mieux controler les flux a travers les
frontiéres.

La deuxieme tache de la phase eulérienne est le transport de la solution lagrangienne
vers le nouveau maillage. Mathématiquement, pour les équations constitutives, il s’agit de
résoudre (2.20) sans second membre (il n’y a en effet plus aucune déformation dans cette
phase) :

oo

R +(-V)o=0 (2.33)

x

avec comme condition initiale ¢ = o'L. La variable t qui apparait dans cette équation est un
temps fictif pendant lequel le maillage se déplace de sa position lagrangienne a sa nouvelle
position. Une autre maniere équivalente d’exprimer cette relation est d’écrire simplement :

Jdo

—| =0 2.3
R (2.34)

X

qui signifie que le champ de contraintes est spatialement constant pendant la phase eulé-
rienne alors que le maillage évolue. Le probléme est donc de le représenter « au mieux » sur
la nouvelle grille de calcul, c’est-a-dire pour que le résidu d’équilibre recalculé sur la nou-
velle grille apres transfert des contraintes soit tres proche de zéro. L'équation (2.33) décrit
le probleme sous forme d’une équation de convection pure, tandis que I’équation (2.34) est
une équation d’interpolation (remapping en anglais) qui met I'accent sur la préservation du
champ inconnu pendant I'étape de transfert. Remarquons que ces équations sont décou-
plées et que chaque composante du tenseur des contraintes peut étre traitée séparément.
Il s’agit donc de six équations scalaires indépendantes. Celles-ci ne garantissent donc pas
la conservation des invariants du tenseur o. Par exemple, le résultat de la convection de la
contrainte équivalente de Von-Mises donnerait une valeur différente de celle recalculée a
partir du tenseur convecté composante par composante.

En pratique, il faut transporter toutes les grandeurs nécessaires au bon déroulement de
la suite du calcul, c’est-a-dire toutes celles nécessaires a la réévaluation du résidu d’équilibre
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(2.31) sur le nouveau maillage. Le nombre de grandeurs dépend donc du type de probleme
(présence du champ thermique, calcul dynamique, loi constitutive du matériau, type d’élé-
ment fini, etc.). Pour chacune d’elles, on doit résoudre une équation scalaire du type (2.33)
ou (2.34). 1l peut s’agir de grandeurs nodales (températures, vitesses, etc.) ou de grandeurs
définies aux points de Gauss (variables internes du matériau, densité, etc.). La précision re-
quise pour cette étape est d’autant plus grande que le mouvement du maillage est fortement
différent de celui de la matiére (c’est le cas d'un écoulement sur un maillage purement eu-
lérien par exemple). Les techniques de transfert sont similaires a celles utilisées dans le
cas d’'un remaillage complet du probleme. Cependant, elles peuvent étre rendues considé-
rablement plus rapides en tirant profit du caractere constant de la topologie du maillage.
Les difficultés rencontrées proviennent principalement du nombre de points d’intégrations
utilisés par élément fini, de la dimension du probleme et de la structure du maillage. Le
chapitre 4 est consacré exclusivement au traitement du transport en formalisme ALE.

La derniere tache de la phase eulérienne de I'algorithme ALE consiste a réévaluer I'équi-
libre du milieu continu sur le nouveau maillage. Le nouveau résidu est un indicateur de
I'erreur commise lors des deux taches eulériennes précédentes. Un aspect important pour
les simulations de mise a forme qui nous intéressent est la gestion des nceuds en contact et
le recalcul des forces de frottement. Il peut étre aussi nécessaire de recalculer la matrice des
masses sur le nouveau maillage si on utilise un schéma d’intégration dynamique. On peut
également profiter de ce moment pour effectuer quelques corrections locales sur les valeurs
précédemment transportées (vérification du critére de plasticité apres transport, remise a
zéro d’une déformation plastique devenue accidentellement négative, etc.).

Dans le cas d’'un algorithme d’intégration temporelle explicite, les déplacements lors
d’un pas de temps sont généralement tres faibles. Pour réduire le temps de calcul, la phase
eulérienne peut étre activée tous les n pas de temps.

2.4.2.3 Algorithme ALE

La figure 2.5 représente un organigramme qui résume les différentes étapes du calcul
non linéaire d’une structure par le formalisme ALE. On peut y observer la séparation nette
des phases lagrangienne et eulérienne. Cette séparation peut étre rendue tout aussi nette
dans 'implémentation de I'algorithme, rendant la maintenance et I'évolution du code rela-
tivement aisée.

Aujourd’hui, le partitionnement de l'opérateur ALE est unanimement utilisé dans le
cadre de la mécanique du solide en grandes transformations. Une variante, proposée par
Wisselink et Huetink [206, 207], consiste a activer la phase eulérienne a toutes les itéra-
tions de la boucle de Newton-Raphson. Il affirme qu’on peut ainsi mieux controler la qualité
de la solution puisque le test de convergence sur le résidu se fait apres la phase eulérienne.
Cependant, cette méthode est inévitablement plus coliteuse puisque I'algorithme ALE est
activé plus souvent. De plus, la convergence quadratique de Newton-Raphson est perdue
(Ie processus de détermination SRG ne peut pas étre dérivé exactement). Enfin, I'intégra-
tion des lois constitutives doit inévitablement nécessiter une procédure pour déterminer la
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Début du calcul

Configuration .

équilibrée /-

Incrément de
charge

Calcul du résidu
d'équilibre

Vérif(ijr;ation 0 Relocalisation des
réquilibre? noeuds
N

N

. . g Dernier
Correction Transfert des données incrément?

. . o)
Phase lagrangienne Phase eulérienne v

Fin du calcul

FiGURE 2.5 — Les deux phases d’'un calcul en formalisme ALE.

position des particules matérielles a chaque itération. Cette procédure relativise fortement
le gain de précision obtenu sur le résidu final.

2.5 Conclusions

Ce chapitre a présenté de maniere tres générale les équations de conservation d’un mi-
lieu continu en formalisme ALE et la maniére de les résoudre, en deux temps, par séparation
des opérateurs lagrangien et eulérien. Les implémentations de la formulation ALE se diffé-
rencient par les méthodes utilisées pour gérer le maillage, les algorithmes de transport et
la gestion des conditions aux limites telles que le contact et les frontieres eulériennes. Les
deux chapitres suivants décrivent en détail ces différents points.
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Chapitre 3

Gestion du maillage

3.1 Introduction

3.1.1 Généralités

Dans ce chapitre, nous considérons qu'un incrément temporel a été calculé avec succes a
partir de I'instant t lors de la premiere phase lagrangienne de I'algorithme ALE (figure 2.5).
Une configuration équilibrée, que nous appellerons configuration lagrangienne, est dispo-
nible a l'instant t + At et la phase eulérienne peut débuter. La premiere tache consiste
a redéfinir un nouveau maillage, appelé configuration eulérienne, en déplacant les noeuds
pour atteindre I'objectif voulu :

e Il peut s’agir de minimiser les distorsions des éléments finis en cours de calcul pour
améliorer la précision de la solution finale ou simplement éviter un arrét préma-
turé du calcul (jacobien négatif). On utilisera dans ce cas les méthodes de lissage et
d’optimisation de maillages utilisées traditionnellement par de nombreux outils de
prétraitement. On parle aussi de méthodes de bougé de nceuds (Frey et George [75]).

e On peut aussi imaginer de déplacer les mailles pour les concentrer au niveau des
zones les plus sollicitées (r-adaptation). Ce type de repositionnement peut étre ma-
nuel lorsque le processus est suffisamment simple pour que I'on puisse prédire les
zones qui nécessitent une concentration de mailles. Il peut étre aussi automatisé
en le faisant dépendre directement des valeurs des inconnues sur le maillage. Par
exemple, certains auteurs (voir Ponthot [168], Askes et Sluys [7], Guerdoux [95],
parmi d’autres) adaptent le maillage pour suivre les forts gradients de déformation
plastique ou minimiser l'erreur sur la solution. Dans le cadre de ce travail, nous
ne nous intéressons pas a 'adaptation automatique de maillage. Le mouvement des
neceuds est uniquement fonction de la géométrie déformée du maillage apres la phase
lagrangienne. Il ne dépend jamais de la valeur des inconnues.

e Enfin, dans le cas de problemes quasi eulériens, le but est simplement de garder
un maillage plus ou moins fixe dans la direction de I'’écoulement de matiére. Si le
probleme est purement eulérien, la relocalisation des noeuds est alors une opération
triviale qui consiste a identifier le nouveau maillage a celui du début du pas de temps.
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La formulation ALE laisse une tres grande liberté dans la définition du mouvement du
maillage tant que I'on prend garde a préserver les frontieres matérielles du milieu continu
étudié. Nous nous limitons ici a une formulation ALE monomatériau (appelée S-ALE ou
Simple ALE par Benson [22]). Cela signifie que, bien qu’il soit possible de considérer un
probleme comprenant plusieurs matériaux différents, il n’est pas permis de créer un nou-
veau maillage pour lequel certaines mailles contiendraient plusieurs matériaux a la fois.
Autrement dit, les frontieres entre les différents matériaux devront étre préservées lors de
I'opération de repositionnement des nceuds. Un noeud de cette frontiere pourra donc glisser
le long de celle-ci, mais ne pourra jamais la traverser.

Des formulations eulériennes ou ALE multimatériaux existent (Multi-Material ALE ou
MMALE Benson [25]) mais elles nécessitent des techniques sophistiquées pour, d’une part,
déterminer les frontiéres entre les corps en présence (boundary tracking [55], X-FEM [202],
etc.) et, d’autre part, gérer les interactions entre ceux-ci. Les applications ciblées par 'ALE
multimatériaux (interactions de nombreux corps solides dans un fluide par exemple) sont
tres différentes de celles qui nous intéressent ici. Quant aux maillages utilisés, ce sont gé-
néralement des grilles eulériennes structurées. Le probleme de définition d'un nouveau
maillage ne se pose donc pas.

Les méthodes de repositionnement de noeuds utilisées en formalisme ALE doivent étre
précises, robustes et rapides. Une grande précision signifie la bonne conservation des fron-
tieres de la structure et donc du volume total du maillage. Vu que I'algorithme sera activé
a chaque pas de temps, une petite erreur peut s’accumuler et détériorer considérablement
la solution finale. C’est d’autant plus important dans le cas de la recherche de solutions
stationnaires. La robustesse est nécessaire pour les méthodes qui nécessitent des opéra-
tions qui peuvent échouer comme des projections ou des recherches d’intersections. Il est
a ce moment capital de pouvoir continuer le calcul (en divisant I'incrément temporel par
exemple). Enfin, les méthodes doivent étre rapides a I'exécution pour rester compétitives
face a un calcul lagrangien équivalent lorsque celui-ci est envisageable.

Ce chapitre décrit les méthodes mises en ceuvre dans le cadre de ce travail. Nous nous
concentrons sur les maillages de quadrangles ou d’hexaedres, pouvant étre éventuellement
localement raffinés. Les méthodes sont rassemblées suivant un ordre logique correspondant
a la nature du nceud dans la structure (coin, aréte, face ou volume). Un effort important
a été fourni pour obtenir une méthode originale de repositionnement de nceuds sur les
surfaces courbes tridimensionnelles et une gestion efficace des frontieres eulériennes. Ces
deux points sont capitaux pour pouvoir aborder des problémes stationnaires tridimension-
nels tels que le profilage.
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3.1.2 Classification des noeuds

Une difficulté pratique majeure de l'utilisation du formalisme ALE réside dans la défini-
tion du mouvement du maillage via un jeu de données simple. En effet, suivant la nature
du nceud dans le maillage, les techniques utilisées pour le repositionner peuvent étre tres
différentes. Par exemple, un nceud de la surface du maillage est généralement contraint
de rester sur celle-ci, tandis qu'un nceud interne peut étre déplacé avec plus de liberté. En
outre, les arétes vives et les coins du solide étudié doivent pouvoir étre préservés. Il est
donc tres important de connaitre la position du nceud dans le maillage (nceud de volume,
de surface, d’aréte ou de coin) pour appliquer une méthode qui respecte les contraintes
sur son mouvement. Ce probleme de détection peut étre résolu de deux manieres : soit
automatiquement, soit manuellement.

3.1.2.1 Détection automatique de la nature des nceuds

Dans le but d’alléger la mise en données, certains auteurs (Aymone et al. [12, 13],
Guerdoux [95], Abaqus [55], parmi d’autres) essayent de déterminer automatiquement la
position de chaque nceud dans le maillage pour appliquer ensuite une méthode appropriée.

Aymone et al. [12, 13] utilisent par exemple le nombre N d’éléments voisins a un nceud
pour déterminer sa nature (figure 3.1). Un nceud de coin posséde un seul élément voisin,
un neeud sur une aréte en possede deux, etc. Cette maniere de faire ne fonctionne que si le
maillage est structuré.

nature du noeud:

N=1 — coln
N=2 — aréte vive
N=3,4 — surface

N>4 — volume

FIGURE 3.1 — Détection de la nature des nceuds sur maillage structuré d'un quart de cylindre (Aymone et
al. [12, 13]). La méthode utilisée pour repositionner le nceud dépend directement du nombre N d’éléments
VOIsins.

La méthode peut étre généralisée au cas non structuré. Les nceuds internes sont faciles
a repérer puisque chaque facette aboutissant a un tel noeud possede deux éléments voisins.
Une autre méthode pour détecter les noeuds internes est présentée par Belytschko et Liu
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[19] et utilisable lorsque les liens entre éléments voisins ne sont pas disponibles. Elle con-
siste a effectuer un assemblage des éléments finis pour lequel les forces en chaque nceud
sont remplacées par la somme des normales unitaires aboutissant au noeud. Le résultat de
cette opération permet d’identifier les noeuds internes puisque ceux-ci ont une résultante
nulle.

Les nceuds restants sont nécessairement sur une surface. Parmi ceux-ci, les arétes vives
et les coins (nommés geometric features dans Abaqus [55]) sont détectés en mesurant les
angles internes formés par les arétes aboutissant au nceud. Dans le cadre d'une formula-
tion en vitesses, Guerdoux [95] calcule les normales en les identifiant aux vecteurs propres
d’un systeme résultant d'un probleme de minimisation locale du flux a travers la frontiere.
Le nombre de normales a utiliser est déduit d’'un critere sur les valeurs propres corres-
pondantes. Cette détection peut étre effectuée, soit une seule fois au début du calcul, soit
continuellement pour pouvoir prendre en compte la formation d’arétes vives et de coins.

coin activé coin désactivé

FiGURE 3.2 — Détection automatique de coins (d’aprés le manuel Abaqus [55]). Langle 6, est la valeur limite
de Uangle entre deux arétes a partir de laquelle le coin qu’elles forment est considéré comme une réelle
discontinuité de la surface. Ce coin est alors activé, ce qui signifie qu’il est considéré lagrangien pour le
préserver au cours de Uopération de repositionnement.

Applicable directement a tout type de maillage quel que soit sa complexité, cette facon
de faire est idéale lorsque le seul but de la formulation ALE est d’améliorer globalement
la qualité du maillage en cours de calcul tout en préservant ses frontieres et ses arétes.
C’est également 'unique méthode facilement utilisable lorsqu’on envisage de simuler des
procédés ot le solide étudié subit un changement de forme radical pour lequel de nouvelles
arétes ou de nouvelles surfaces peuvent apparaitre (simulation du forgeage, de la découpe
de métaux, etc.).

La détection automatique montre cependant ses limites lorsque des déplacements plus
complexes doivent étre définis ou lorsque I'on autorise la matiére a traverser le maillage
(voir frontieres eulériennes, section 3.5.3). Dans ce cas, certains nceuds doivent étre ma-
nuellement écartés de la procédure pour étre traités séparément. En effet, vu le caractere
global et automatique de la détection, tous les nceuds de méme nature se voient générale-
ment attribuer la méme méthode de repositionnement. S’il nécessite un traitement distinct,
un noeud de surface frontiere doit donc étre préalablement désigné comme tel.

Enfin, la détection des arétes vives et des coins peut échouer, car elle repose sur une
valeur d’angle (ou de valeur propre) limite qui doit étre fixée intuitivement au début du
calcul et qui dépend de la finesse du maillage utilisé (angle 6, sur la figure 3.2).
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En conclusion, ce type de méthode est uniquement nécessaire pour des procédés ou la
géométrie du corps déformable change fondamentalement au cours du calcul. L'apparente
simplicité des méthodes automatiques est séduisante et pourrait faire croire qu’elles en-
trainent un gain de temps dans la conception des modeles ALE. Il n’en est rien : les essais
que nous avons effectués au cours de ce travail avec le logiciel Abaqus nous ont montré
qu’il est tres difficile de rendre la détection complétement automatique et indépendante de
la finesse du maillage. La détection erronée d’un coin ou d’'une aréte vive peut, en effet,
avoir des conséquences importantes sur les résultats.

3.1.2.2 C(lassification hiérarchique basée sur la géométrie

Pour pouvoir traiter sans ambiguité et avec plus de souplesse le probleme de détection
de la nature des nceuds, nous avons choisi de nous baser directement sur la définition
géométrique du milieu continu obtenu par 'outil de CAO qui a servi a la mailler. L'idée
n’est pas neuve : pour des problémes bidimensionnels, Ponthot [168] suggere de découper
le maillage en se basant sur ses constituants géométriques. Il définit des lignes maitresses et
des domaines ALE pour lesquels l'utilisateur doit explicitement spécifier le type de méthode
a utiliser.

e sommet
aréte o aréte
o face
volume

sommet

FIGURE 3.3 - Classification des nceuds fournie par Uoutil de CAO. Chaque nceud est lié a une et une seule
entité gé¢ométrique (sommet, aréte, face ou volume) définissant le quart de cylindre et ses sous-domaines.
Cette description ne distingue pas les discontinuités réelles de la structure des entités auxiliaires utiles a la
construction des sous-domaines (une aréte n’est pas nécessairement une aréte vive, un sommet n’est pas
nécessairement un coin, etc.)

Nous nous sommes inspirés de cette idée et nous I'avons étendue a trois dimensions : on
considere que chaque noeud posseéde une et une seule entité géométrique dont il est issu.
Il peut s’agir d’'un point (un sommet), d’'une ligne (une aréte), d’'une surface (une face) ou
d’un volume. Ces liens entre la géométrie et le maillage sont généralement fournis par le
mailleur utilisé. Si un nceud est a l'intersection de plusieurs entités, il est considéré comme
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lié uniquement a leur intersection. Cela revient a dire que le maillage des entités géomé-
triques n’inclut pas leurs frontieres. Ainsi, en parcourant toutes les entités géométriques les
unes apres les autres, on balaye une et une seule fois tous les nceuds du maillage.

La figure 3.3 montre la géométrie utilisée pour mailler un quart de cylindre. Pour obte-
nir un maillage structuré, le solide a été décomposé en trois sous-domaines hexaédriques
permettant l'utilisation d’un mailleur transfini. A ce stade, aucune distinction n’est faite
entre les sommets représentant un coin de la structure ou les sommets auxiliaires utilisés
pour la découpe du volume en sous-volume. On ne distingue pas non plus les arétes vives
des autres arétes ou les faces externes des faces internes. La classification des noeuds dé-
crite ici est simplement celle qui découle des opérations de maillage et qui est fournie telle
qu’elle par l'outil de CAO utilisé.

Par rapport a une méthode de détection automatique, cette maniére de faire possede
I'avantage de regrouper les nceuds qui appartiennent a une méme aréte, une méme face ou
un méme volume. Pour chaque groupe, on pourra alors choisir de traiter tous les nceuds
simultanément et utiliser des techniques de reconstruction du maillage (méthode d’inter-
polation transfinie pour nceuds internes, section 3.4.1 ou la méthode des splines pour les
neceuds d’arétes vives, section 3.3.2) qui ne peuvent pas étre utilisées lorsque les noeuds ne
sont pas ordonnés.

Notre classification des nceuds fonctionne donc uniquement lorsquune description géo-
métrique des zones non lagrangiennes est disponible. Si ce n’est pas le cas, il reste la possibi-
lité de travailler sur des sélections automatiques ou manuelles de nceuds. Notons cependant
que l'utilisation de ces informations géométriques est naturelle dans un code EF spécialisé
en mise a forme des matériaux puisque, méme en formalisme lagrangien, toute la géomé-
trie du modele est généralement déja importée pour la gestion des outils rigides et la prise
en compte des conditions aux limites.

Enfin, comme nous I'avons souligné précédemment, des simulations de coupe ou de
forgeage pour lesquelles de nouvelles entités apparaissent ou disparaissent en cours de
calcul, requierent des méthodes plus automatiques et ne seront pas abordées dans ce travail
(également parce qu’elles requierent un outil de remaillage dont nous ne disposons pas).

3.1.3 Classification des méthodes

Les méthodes de repositionnement de noeuds présentées dans ce chapitre découlent di-
rectement de la classification des nceuds décrite précédemment. Chaque entité géométrique
peut se voir attribuer une méthode spécifique de repositionnement qui est appliquée a tous
ses noeuds. Généralement, le concepteur du modele ALE choisira de parcourir les nceuds de
maniere hiérarchique et commencera donc par ceux des sommets et des arétes, pour termi-
ner par les nceuds internes aux faces et des volumes. En effet, il semble naturel par exemple
de repositionner les nceuds d’'une aréte apres avoir préalablement traité ses extrémités.

Cependant, cette maniere de faire n’est pas toujours suffisante pour pouvoir traiter les
maillages qui proviennent d'une géométrie décomposée en de nombreux sous-domaines. La
figure 3.4 met en évidence les entités géométriques (en rouge sur la figure) qui délimitent
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méthode 1 (2 arétes + 1 sommet)

méthode 2 (8 faces +3 arétes + 1 sommet)
sommet
a_auziliaire

p >

I

FIGURE 3.4 - Entités géométriques auxiliaires FIGURE 3.5 — Fusion d’entités géométriques compo-

constituant le quart de cylindre (en rouge). sant le quart de cylindre. Les entités en bleu sont
Ces entités, qui délimitent les différents sous- rassemblées pour leur appliquer collectivement
domaines de maillage, ne peuvent généralement une méthode d’aréte vive. Lensemble des nceuds
pas étre traitées séparément des entités princi- des entités en rouge font Uobjet d’'une unique mé-
pales (en noir). thode surfacique.

les trois sous-domaines utilisés pour mailler un quart de cylindre. Cette décomposition est
artificielle et n’est utile que dans le but de faciliter 'opération de maillage. Comme nous
le verrons plus loin dans ce chapitre, le repositionnement des nceuds reposant sur ces dé-
coupes dépend généralement de la position de noeuds des entités adjacentes. Il est donc
nécessaire de regrouper ces différents noeuds ou, d’'une maniere équivalente, appliquer une
méthode sur plusieurs entités géométriques a la fois. Par exemple, dans le cas du quart de
cylindre, on appliquera une méthode permettant de conserver la forme des arétes vives sur
les nceuds de deux arétes et un sommet (en bleu sur la figure 3.5). D’'une maniére simi-
laire, tous les nceuds de la face supérieure seront traités simultanément en appliquant une
méthode surfacique aux nceuds des entités qui la composent (en rouge sur la figure 3.5).
Ce rassemblement d’entités géométrique est effectué uniquement lorsque c’est nécessaire.
C’est une opération manuelle treés simple puisqu’elle consiste a assigner la méme méthode a
plusieurs entités adjacentes. La réorganisation des nceuds des différentes entités en une liste
commune, ordonnée si nécessaire, et utilisable par un algorithme unique est automatique.

On distinguera donc dans la suite les méthodes permettant de gérer les coins de la
structure (section 3.2), les méthodes relatives aux arétes vives (section 3.3) qui peuvent
étre éventuellement composées de plusieurs arétes et sommets auxiliaires, les méthodes
relatives aux surfaces (section 3.5) qui regroupent plusieurs faces, arétes et sommets auxi-
liaires et, finalement, les méthodes volumiques (section 3.4).
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3.1.4 Maillages utilisés

Bien qu’aujourd’hui de nombreux types d’éléments finis soient utilisables dans le cadre
de simulation numérique en mécanique non linéaire du solide, Metafor (Ponthot [168]),
depuis sa création, privilégie quasi exclusivement les éléments quadrangulaires (2D) et
hexaédriques (3D) isoparamétriques linéaires. En comparaison aux triangles ou tétraédres,
ces éléments sont généralement plus précis et permettent d’utiliser des maillages structurés
particulierement adaptés, entre autres, a la modélisation de processus de formage de toles
minces. Leur principale faiblesse vient de I'absence de mailleurs automatiques robustes en
3D qui empéche leur utilisation sur des géométries tres complexes ou sur des procédés
nécessitant du remaillage comme le forgeage. Quant aux éléments de degré plus élevé, ils
posent des problemes au niveau de la gestion du contact et sont donc rarement utilisés.

maillage non structuré cylindre
’—_‘ —

|
|

maillage structuré non uniforme bande

FiGURE 3.6 — Exemple de maillages utilisés dans Metafor (simulation 2D du laminage d’une tble mince). Le
¢ylindre est modélisé par un maillage non structuré de quadrangles. Le maillage de la bande a été généré
par un mailleur structuré (transfini). Dans les deux cas, la taille des mailles n’est pas constante et les
variations de taille doivent étre préservées lors de Uopération de repositionnement de nceuds.

Nous nous concentrons donc uniquement sur les méthodes de repositionnement de
nceuds applicables aux maillages de quadrangles et d’hexaedres linéaires. Ces maillages
peuvent étre structurés ou non (figure 3.6). Cependant, dans la plupart des cas, lorsque c’est
possible, nous utilisons un maillage localement structuré généré par un mailleur transfini
(voir section 3.4.1). La taille des mailles est alors définie le long de directions orthogonales,
permettant ainsi des zones de raffinement qu’il faut pouvoir préserver lors de 'opération
de repositionnement des nceuds. On obtient ainsi un maillage anisotrope dont la forme de
I’élément idéal est parallélépipédique plutot que cubique. Or, la plupart des méthodes de lis-
sage dont s'inspirent les méthodes de repositionnement des nceuds utilisées en formalisme
ALE sont concues pour uniformiser la taille des mailles ; ce que nous ne voulons pas faire
ici, puisque cette différence de taille est recherchée pour concentrer le maillage 1a ot c’est
utile. Il faut donc utiliser des méthodes spécifiques de repositionnement qui conservent le
rapport des tailles de mailles ou adapter les méthodes de lissage traditionnelles.
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3.2 Traitement des coins

En mécanique du solide, un grand nombre d’auteurs (voir Aymone [12] ou Potapov
[172] par exemple) considerent que tous les coins du maillage sont lagrangiens. Il suffit
alors de conserver leur position acquise en fin de phase lagrangienne. Le coin de la structure
est ainsi préservé. C’est le cas le plus simple qui convient généralement lorsque la frontiere
du domaine de calcul coincide avec celle du domaine matériel tout au long de la simulation.
Tous les autres cas de repositionnement vont inévitablement entrainer un flux de matiere a
travers les arétes aboutissant a ce coin.

Si le coin est eulérien, il suffit de le repositionner a sa position initiale. On peut égale-
ment choisir de fixer le nceud selon une direction pour limiter son mouvement dans un plan
perpendiculaire a celle-ci. Cependant, dans les cas ot le maillage possede une frontiere que
la matiere peut traverser, ces types de repositionnement simples ne sont généralement pas
suffisants.

translation uniforme
»

zone d'intérét

frontiére eulérienne amont modele ALE frontiére eulérienne aval
o matiére
YA , zone maillée
T matiére quasi-eulérienne
L> e < SEN R SRR

FiGuRE 3.7 — Définition d’une zone quasi eulérienne. La translation uniforme d’un solide est observée dans
une zone spatialement fixe grdce au formalisme ALE. Le maillage peut étre réduit a cette zone d'intérét
délimitée par deux frontiéres eulériennes. Contrairement au cas lagrangien, la détermination de la surface
libre et ses extrémités n’est pas triviale.

Pour illustrer cela, considérons le solide a section variable (y = y(x)) représenté sur la
figure 3.7 qui est animé d’'un mouvement de translation uniforme vers la droite. Il ne subit
aucune déformation. Imaginons que l'on veuille observer le passage de la matiere dans
une zone spatialement fixe appelée zone d’intérét sur la figure et délimitée par deux lignes
verticales, les frontieres eulériennes. Le formalisme ALE peut étre utilisé pour modéliser le
passage de la matiére entre ces deux lignes en définissant un maillage du solide réduit a
cette zone. On économise ainsi la création d’un long maillage. Dans la zone d’intérét, le
mouvement des noeuds sera quasi eulérien puisqu’ils doivent étre maintenus fixes dans le
sens de '’écoulement. Seules leurs positions verticales doivent étre adaptées pour permettre
une représentation correcte de la frontiére libre du solide en translation. Bien que cette
frontiére n’évolue pas dans un repére lié au mouvement de la matiere, elle nécessite un
calcul dans un repére indépendant.
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La figure 3.8 décompose les deux phases de I'algorithme ALE. Pendant la phase lagran-
gienne, le maillage suit la matiere et traverse la frontiere aval. Pour reconstruire le nouveau
maillage (en grisé sur la figure), qui doit nécessairement étre localisé entre les deux fron-
tieres, il faut, d’'une part, étirer le maillage jusqu’a la frontiére amont pour combler le vide
qui s’est créé et, d’autre part, calculer I'intersection du maillage lagrangien avec la frontiere
aval pour le découper et régénérer un maillage sur la zone d’intérét uniquement.

configuration configuration ) )
lagrangienne aval eulérienne intersection
amont ( aval)
n, . §
— imposé N I — .
r-—" 1

(amont)
n, N e

>
déplacement durant la
phase lagrangienne

FIGURE 3.8 — Repositionnement d’'un coin sur une frontiére eulérienne. Les configurations lagrangienne et
eulérienne du maillage sont représentées en grisé. Le mouvement du nceud n, en amont de U'écoulement est
imposé par la géométrie connue du solide qui entre dans la zone maillée. Le nceud du coin opposé n,, en
aval, est repositionné a Uintersection du maillage (dans sa configuration lagrangienne) et de la frontiére
eulérienne aval.

En amont, le mouvement du nceud doit étre explicitement imposé. C’est une condition
aux limites qui dépend de la forme connue de la structure qui entre dans la zone d’intérét.
En aval, il est important de ne pas appliquer de fixations. On pourrait par exemple étre tenté
de définir une condition du type (x%, y£) = (Xponeres ¥©) OU les exposants L, E désignent
respectivement les positions avant et apres repositionnement. Cependant, cette condition
est trop simple (y* ne diminuerait jamais dans le cas présenté — voir figure 3.9) pour
décrire le mouvement du nceud sur la frontiere qui doit impérativement suivre la position
de la frontiere libre. La position correcte du nceud est donnée par l'intersection de l'aréte
supérieure et de la frontiere eulérienne. Cette technique sera approfondie et généralisée au
cas de surfaces 3D a la section 3.5.3.

amont aval mauvaise
projection
.......................... .

FIGURE 3.9 — Le neeud n, ne peut pas étre simplement projeté orthogonalement sur la frontiére eulérienne
aval parce que, dans ce cas, son ordonnée ne diminue jamais. Le maillage se déforme anormalement a
proximité de la frontiére et ne décrit plus la surface matérielle (en pointillé).
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3.3 Traitement des arétes vives

Lorsque les noeuds des coins de la structure ont été repositionnés, ceux provenant du
maillage des arétes peuvent étre traités a leur tour. Nous nous intéressons ici uniquement
aux arétes vives du maillage qui doivent étre préservées tout au long du calcul. Ce type de
ligne est appelé€ sliding edge dans Abaqus [55] parce que les nceuds peuvent glisser sur elle,
mais ne peuvent pas s’en écarter. Les autres arétes sont des lignes auxiliaires reposant sur
des faces ou traversant des volumes (voir section 3.1.3) et sont donc traités plus tard, en
méme temps que ceux-ci.

Le probleme consiste a redistribuer les noeuds de l'aréte le long de celle-ci tout en
conservant au mieux sa forme. Puisque nous utilisons exclusivement des éléments finis
a géométrie linéaire, I'aréte est discrétisée par une ligne brisée formée par une succession
de segments de droite. Si I'aréte n’est pas rectiligne, le déplacement de ses noeuds risque de
provoquer une modification du volume comme le montre schématiquement la figure 3.10
dans le cas d’une aréte formée de trois segments.

extérieur repositionnement naif

matiére

configuration lagrangienne

[ pertes de matiére conservation du volume

[_] gains de matiére (=)

FiGure 3.10 — Probléme de conservation du volume lors du repositionnement de nceuds sur les arétes vives.
Un repositionnement naif des nceuds sur la ligne brisée représentant la frontiére provoque dans ce cas-ci
des pertes de matiéres. Celles-ci peuvent étre minimisées en utilisant des méthodes de repositionnement
plus élaborées.

Un repositionnement simple le long de la ligne brisée entraine une variation de volume
importante qui se traduira par une perte ou un gain de matiere au cours du calcul. En
permettant aux nceuds de quitter la ligne brisée, les pertes peuvent compenser les gains et
le volume global est conservé. La difficulté est donc de déplacer les noeuds de telle maniere
a ce que le volume soit globalement préservé tout en essayant de conserver la courbure
locale de l'aréte.

Les nceuds peuvent étre redistribués de différentes facons suivant I'effet désiré. On peut
par exemple les concentrer dans les zones qui le nécessitent pour améliorer la qualité de
la solution (voir Ponthot [166, 167, 168], Askes et Sluys [7], Askes et al. [8], Guerdoux
[95], par exemple). Dans le cadre de ce travail, nous nous bornons a redistribuer chaque
neceud en fonction de son abscisse curviligne initiale sur 'aréte. Un maillage régulier reste
ainsi régulier et une zone de raffinement est conservée tout au long du calcul. La difficulté
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principale d'une méthode d’adaptation n’est pas sa mise en ceuvre, puisqu’elle revient a
calculer une liste d’abscisses curvilignes, mais de trouver un critere pertinent de raffinement
du maillage le long de la direction de I'aréte pour la simulation envisagée.

3.3.1 Remaillage par cercles

Cette méthode, décrite par Ponthot [168], s’apparente a un remaillage. Elle consiste a
approximer localement, pour chacun de ses noeuds, le maillage non lisse de I'aréte par un
cercle. Les noeuds sont tout d’abord repositionnés le long de la ligne brisée décrivant I'aréte
en respectant les abscisses curvilignes voulues (ce que nous appelons repositionnement naif
sur la figure 3.10). Ils sont ensuite chacun projetés sur le cercle construit autour d’eux a
partir des trois nceuds les plus proches.

FiGURE 3.11 - Rediscrétisation d’une aréte vive par la méthode des cercles. Les points x, X, et X5 corres-
pondent aux positions des nceuds de la frontiére aprés la phase lagrangienne.

La figure 3.11 détaille cette procédure : pour chaque noeud, on détermine tout d’abord
la position p’ le long de la configuration lagrangienne de l'aréte calculée en fonction de
’abscisse curviligne désirée. Les deux nceuds aux extrémités du segment qui contient p’
sont notés x; et x,. Un troisieme nceud x5 est identifié comme étant le plus proche de
p’ (en dehors de x; et x,). La nouvelle position p du nceud est donnée par l'intersection
du cercle passant par les nceuds x,x,, x5 et le rayon passant par p’. On procéde ainsi
pour tous les nceuds de I'aréte a remailler. Cette méthode a 'avantage d’étre directe et tres
rapide.
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3.3.2 Remaillage par spline

Une extension de la méthode des cercles peut étre obtenue en augmentant le degré de
I'approximation locale utilisée. En construisant une spline cubique a partir de la configu-
ration lagrangienne des nceuds de I'aréte, le repositionnement des nceuds se réduit a une
simple opération de maillage de cette courbe.

configuration lagrangienne

configuration remaillée

FiGURE 3.12 — Rediscrétisation d’'une aréte vive par la méthode des splines. Une spline cubique est construite
a partir des positions lagrangiennes des nceuds de Uaréte. Le repositionnement consiste a remailler cette
courbe aux abscisses curvilignes voulues.

La figure 3.12 montre schématiquement le principe de la méthode. La spline cubique
est simplement construite sur les noeuds de la ligne et évaluée aux abscisses voulues pour
obtenir les nouvelles positions. Une méthode de ce type a été initialement utilisée dans le
cadre du formalisme ALE par Huétink et van der Lugt [120] et Huétink et al. [121].

F1GURE 3.13 - Segment de spline cubique défini par les positions de ses deux extrémités x; et x,;,, et les deux
vecteurs tangents unitaires u; et u;,, en ces points.

Soient N points x; (i = 1,...,N) sur lesquels on veut construire une courbe. Supposons
également connus en tous les points le vecteur tangent unitaire u; (i = 1,...,N). Consi-
dérons le segment [x;,x;,,], paramétré localement par & € [0, 1] (figure 3.13). On peut
construire le morceau de courbe suivant entre ces deux points :

x(8) = po(E)x; + 1 (E) X i1 + pa(E) u; + pa(E)uisy (3.1)
ou les u; sont les fonctions d’Hermite :
Ho()) = (1+28)(1-¢&) (3.2)
wm(E) = (3-25)¢ (3.3)
Ha(8) = £(1-¢&) (3.4)
us(&) = (E-1)¢& (3.5)

Lunicité de la tangente u; en chaque point x; assure la continuité C' de la courbe
assemblée. Pour faciliter le remaillage, il est préférable de disposer d'une paramétrisation
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naturelle de la courbe (c’est-a-dire en fonction de son abscisse curviligne s € [0, L]). Mailler
la courbe revient alors a évaluer celle-ci aux abscisses voulues. Pour ce faire, on peut utiliser
I'approximation de McConalogue [149] :

t t t t
x(6) = () % 1 () Xy () Tt s () Tt (3.6)

ol les vecteurs u; sont unitaires et t € [0, T] avec

ng [\/f2+2ge—f} 3.7)

et
f = (i —x)(uq —uy) (3.8)
g = llxi —xl)? (3.9)
1
e = g—gllui+1+ui||2 (3.10)

Cette expression donne en fait une tres bonne approximation de la longueur du segment
de spline [x;,x;,,] (T = L). De plus, on peut vérifier que dt/ds = 1, c’est-a-dire que le
parametre t est trés proche de I'abscisse curviligne s.

FIGURE 3.14 — Détermination de la tangente u; au point x;. Elle correspond a la tangente a une courbe du
second degré passant par les points x;_q, x; et x;,, et évaluée en x;.

Les vecteurs tangents u; en chaque point peuvent étre calculés en faisant passer une
approximation de Lagrange du deuxieme degré par trois points successifs et en évaluant la

tangente de cette courbe au point milieu ou aux points extrémes (figure 3.14). On obtient :

V.

u, = i l” v,=(1—-a)Ax,_; +aAx; (3.11)
Vi
avec )
o lax 512
[[Ax;_1|1* + [[Ax,|? '
ou
Axi:xi_;’_]_—xi (3.13)
En début et en fin de courbe, on utilise un schéma décentré, avec :
vo=1(x;—xq) —ag(xy—x;) (3.14)
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et 5
" - || Ax,|| (3.15)
° T (laxll + [1ax,[1)? = [[ax,|? '
pour le premier point et
vy =(xy —xy_1)tay ey —xy_p) (3.16)
“ laxy P
AXxy_
ay Nl (3.17)

— (JAxy_all +1Axy_y[1)? = [[Axy_y|1?
pour le dernier point.

Par rapport a d’autres types de courbes d’ordre élevé (B-Splines, NURBS - voir par
exemple Prautzsch et al. [173]), les splines de McConalogue semblent étre un tres bon
choix puisque leur paramétrisation quasi naturelle permet d’évaluer les distances entre
neeuds sans calculer d’intégrales et d’obtenir en conséquence une vitesse d’exécution proche
de la méthode des cercles présentée précédemment. En contrepartie, la courbure locale
n’est pas contrdlable et n’est continue aux noeuds que si ceux-ci sont régulierement espa-
cés.

FiGure 3.15 — Approximation d’un cercle par une spline fermée de McConalogue définie par quatre points.

Pour illustrer 'approximation obtenue par les splines de McConalogue, nous I'utilisons
sur quatre points placés sur un cercle (figure 3.15), 'approximation par spline donne une
géométrie assez proche d’un cercle.

Un probleme de remaillage peut survenir lorsque I'aréte vive dont on veut repositionner
les nceuds traverse une frontiére eulérienne (figure 3.16). Dans ce cas, si le déplacement
de l'aréte est suffisamment important pour que, durant la phase lagrangienne, plusieurs
neeuds franchissent la frontiere, il est important de ne pas tenir compte de ceux-ci lors
de la création de la spline. Cette modification de la méthode étant fastidieuse et surtout
coliteuse, nous utiliserons donc généralement des maillages dont les mailles sont suffisam-
ment grandes prées des frontiéres eulériennes pour éviter ce probléme et garantir qu’un seul
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neeud traverse la frontiére lors du pas lagrangien. Cette approximation peut se justifier par
le fait qu’au dela de la frontiere eulérienne aval, le mouvement de la matiere est peut étre
généralement considéré comme un déplacement de corps rigide.

frontiere frontiére

amont aval
configuration $
initiale
configuration
lagrangienne

R noeuds

construction ignorés
de la spline

FIGURE 3.16 - Aréte vive franchissant une frontiére eulérienne. Plusieurs nceuds ont franchi la frontiére
eulérienne aval lors de la phase lagrangienne. Ils doivent étre ignorés dans la construction de la spline
cubique.

3.3.3 Autres méthodes
De nombreux auteurs (Stoker [187], Geijselaers [83], Gadala et al. [ 78] parmi d’autres)
se bornent a résoudre de maniere directe '’équation (2.21). Pour rappel :
vien=v-n (3.18)

qui exprime que la vitesse normale du maillage est identique a celle de la matiere. Remar-
quons que c’est la seule possibilité si on essaye de résoudre les équations ALE de maniére
couplée, méme si les auteurs cités ci-dessus utilisent une partition de 'opérateur.

normale
N consistante

n

‘gauche

n

droite

plan tangent

Ly L

FiGURE 3.17 — Remaillage d’'une aréte vive a lUaide de équation (2.21). La normale consistante définit un
plan tangent sur lequel le nceud x; peut étre repositionné tout en conservant le volume du maillage.

Le probléeme provient de la définition de la normale n a la surface externe évaluée
au noeud. Puisque la frontiére du maillage est une ligne brisée, cette normale n’est pas
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définie de maniére unique. Il est cependant possible de définir une normale moyenne et en
déduire un plan tangent. Le meilleur choix est d’utiliser la normale consistante (Engelman
et al. [67]) définie par la somme des normales de part et d’autre du noeud, pondérée par la
longueur des arétes respectives (voir figure 3.17) :

n=(x;—x;_1)ANe,+(x;y; —x;)Ne, (3.19)

Par construction, cette normale est perpendiculaire au segment (x;,;,x;_;). Le déplace-
ment du nceud x; sur la tangente qui en découle (pour vérifier I'équation (2.21)) n’entrai-
nera donc aucune variation du volume du maillage. Malheureusement, ce raisonnement
est valide uniquement si on déplace un seul nceud. En effet, si x,,; et x;_; sont eux aussi
repositionnés, ce qui constitue le cas général, cette conservation n’est plus garantie et la
méthode provoquera inévitablement de grandes variations de volume parasites. On ne peut
donc utiliser cette méthode que pour des procédés ou la vitesse tangentielle du maillage
par rapport a la matiere est faible (le forgeage, par exemple, sauf exception). Il n’est donc
pas envisageable de traiter des cas industriels ot apparaissent des mouvements de surfaces
libres complexes avec cette technique.

Pour améliorer la méthode, Guerdoux [95] projette, de maniere plus ou moins sophis-
tiquée, la nouvelle position du nceud sur le maillage de la configuration lagrangienne. Il
travaille en termes de positions dans une formulation initialement en vitesses (splitting
géométrique — voir section 2.4.2.2). Cela a pour effet d’éviter les instabilités, mais n’amé-
liore pas les variations de volume indésirables.

Benson [23] redistribue simplement les nceuds le long de la ligne brisée décrivant la
frontiere libre du maillage (le repositionnement naif, sur la figure 3.10). Il tolére ainsi une
erreur sur la conservation du volume qu’il juge faible.

Geijselaers [83] calcule l'intersection de la frontiere avec une direction fixée a priori
pour chaque nceud. Puisqu’il utilise des éléments quadratiques, la frontiere est mieux dé-
crite que dans le cas linéaire et les variations de volume sont donc plus faibles. Sa méthode
est cependant peu générale et limitée a des simulations quasi eulériennes.

La simplicité des méthodes tirées de la littérature provient certainement d’'une difficulté
technique liée a la description souvent trop simplifiée du maillage dans les codes éléments
finis. En effet, pour pouvoir appliquer des méthodes globales, telles que la méthode des
arcs ou des splines, traitant 'aréte dans son intégralité, il est indispensable de pouvoir
isoler les nceuds de celle-ci et de les trier efficacement. Les deux méthodes utilisées dans
ce travail, quoique simples dans leur principe, nécessitent donc une structure de données
suffisamment riche pour étre mise en ceuvre, structure qui fait défaut dans la majorité des
codes de calcul.

Aymone [12] propose une méthode similaire a la méthode des cercles : pour reposition-
ner un neeud sur une aréte vive, il choisit de faire passer une interpolation du second degré
par celui-ci et ses deux voisins directs (figure 3.18). Le nceud est repositionné a I'abscisse
curviligne £ € [—1, 1] qui tend a uniformiser la taille des mailles voisines :

g = diii—d;

= ou d =||x;—x._ 3.20
dl_1+dl A || 1 1 1|| ( )
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FIGURE 3.18 - Interpolation locale du second degré (Aymone [12]). Les points x;_1,X;,X .1 représentent les
positions lagrangiennes des nceuds de Uaréte vive. La valeur de £* est calculée pour uniformiser le maillage.

Cette procédure de lissage est locale et donc itérative. Néanmoins, Aymone n’effectue qu'un
seul passage sur tous les nceuds ; ce qui limite I'utilisation de la méthode a des déplacements
tangentiels faibles des nceuds du maillage.

Wisselink et Huétink [207] adoptent une méthode originale dans le cas particulier ot la
frontiere peut se mettre sous la forme d’'une fonction y = f(x). Dans ce cas, le probléme de
repositionnement de noeuds peut étre vu comme un probléme de convection unidimension-
nel qu’ils résolvent par un schéma explicite de Lax-Wendroff. Les oscillations sont évitées
a l'aide de limiteurs de flux appropriés. De cette maniere, ils abordent le probleme de re-
positionnement de nceuds par le méme algorithme que celui utilisé pour le transfert des
données (chapitre 4). Cette technique a été implémentée et testée dans Metafor par Duvi-
vier [66]. Elle provoque une erreur de diffusion largement plus élevée que la méthode des
arcs ou des splines. De plus, son extension a tout type de maillage (aréte tridimensionnelle
ou ne pouvant pas se mettre sous forme de fonction) n’est pas évidente. En particulier, cette
méthode serait incapable de simuler le test présenté a la section 3.3.5.2 puisque le profil
considéré possede des tangentes verticales.

3.3.4 Remaillage de lignes paralléles

Remailler une ligne en conservant I’abscisse curviligne de chaque nceud tout au long du
calcul peut provoquer des distorsions indésirables du maillage volumique adjacent. Consi-
dérons par exemple une tole mince que I'on veut faire s’enrouler autour de trois cylindres
(figure 3.19). Initialement, la tole est plane et sa géométrie est un simple rectangle maillé
uniformément. La simulation consiste a faire descendre le cylindre du milieu pour imposer
une forte imbrication a la tole. Celle-ci fléchit et vient s’enrouler autour des cylindres.

Si les noeuds des lignes supérieure et inférieure sont gérés indépendamment par la
méthode des arcs (section 3.3.1) ou des splines (section 3.3.2), on obtient le maillage
représenté sur la figure 3.19. Les éléments quadrangulaires sont cisaillés par la procédure
parce que l'espacement entre chaque nceud a été maintenu constant pour respecter les
abscisses curvilignes de la configuration initiale. Or, le maillage idéal, pour éliminer toute
diffusion transverse suite au transfert des données (voir section 4.7.1), devrait étre un
maillage d’éléments presque rectangulaires dont les lignes décrivent d’une part les sections
droites de la tole et d’autre part les trajectoires des particules de matiere. Il serait obtenu
en alignant les nceuds des deux lignes opposées représentant les surfaces supérieure et
inférieure de la tole avec le point de I'axe du cylindre le plus proche. De cette maniére, les
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configuration
initiale

configuration
apres imbrication

F1GURE 3.19 - Dégradation de la qualité des mailles dans le cas de U'imbrication d’une tdle entre trois cylindres.
Les maillages des deux lignes représentant la surface supérieure et la surface inférieure de la téle sont
maintenus réguliers. Ceci provoque Uapparition de mailles quadrangulaires fortement cisaillées.

1. maillage wnitial 2. spline a mi-épaisseur

)

3. projection sur les frontiéres 4. maillage final

FIGURE 3.20 — Procédure de remaillage de deux arétes paralléles. A partir du maillage initial des deux lignes
(1), on construit une spline a mi-épaisseur en moyennant la position des nceuds en vis-a-vis. Ces points
a mi-distance sont relocalisés sur la spline (2) et ensuite projeté sur les deux lignes (3) pour obtenir le
maillage final (4).

FiGURE 3.21 — Maillage obtenu avec la méthode spécifique de repositionnement sur lignes paralléles. Les lignes
du maillage sont perpendiculaires entre elles et les éléments sont partout proches de rectangles.
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arétes internes du maillage seraient plus ou moins perpendiculaires a celles du maillage des
deux lignes.

Pour obtenir ce résultat de maniere générale, c’est-a-dire sans introduire explicitement
le rayon des cylindres dans les calculs, on peut procéder comme suit (figure 3.20) : imagi-
nons deux lignes paralleles discrétisées avec une méme distribution de nceuds. On construit
une spline de McConalogue (équation (3.6)) située a mi-distance de celles-ci en définissant
une série de points équidistants de chaque paire de noeuds en vis-a-vis. Cette spline est
ensuite discrétisée en utilisant les abscisses curvilignes initiales des noeuds des deux lignes
frontiere. On obtient ainsi une nouvelle position des points a mi-épaisseur. Il suffit alors de
projeter ces nouveaux points de part et d’autre sur les frontieres. Pour éviter les variations
de volume, on utilise a nouveau une approximation spline des deux lignes frontiere. Le ca-
ractere orthogonal des projections permettra d’obtenir des éléments proches de rectangles.

Cette méthode, appliquée au probléme d’imbrication décrit précédemment, fournit le
maillage représenté sur la figure 3.21.

3.3.5 Tests de convection

Nous proposons d’étudier brievement les méthodes de rediscrétisation d’arétes sur deux
tests de convection. Ceux-ci nous permettront de nous faire une idée sur leur capacité
respective a propager une forme géométrique sur un maillage fixe (quasi eulérien).

3.3.5.1 Convection d’une sinusoide

Le premier test s’effectue sur un maillage initialement rectiligne de longueur L = 100
mm représenté schématiquement sur la figure 3.22. On impose une vitesse de matiere
constante selon x et uniforme : v = 2 mm/s. Le domaine maillé est fixe dans I'espace :
ses extrémités sont eulériennes (x(t) = x(t,)). En amont du domaine maillé, on impose
la géométrie de la matiere qui entre dans le maillage par une fonction du type y(x,,t) =
Asinwt avecA=10 mm et w =10v /L.

A

v

LR y(z,,t)= A sin wt

A NANN |
AVEAVAAVARVEY | z

«— zone quasi eulérienne (longueur L) —»

\4

FiGURE 3.22 — Géométrie du test de convection d’une sinusoide par les méthodes des arcs et des splines.

On utilise un maillage uniforme de n, = 300 mailles sur la longueur L. Un pas de temps
constant est fixé a At = L/(2n,v). La matiere avance donc d'une demi-maille par pas de
temps. Le déplacement final de la sinusoide est de 0.8L le long de la direction horizontale
et la solution finale est comparée a la solution analytique y(x,t) = A sin(w (t — x/v)) sur
la figure 3.23.
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——exact

—— spline

—arc
naif

y [mm]

x [mm]

FIGURE 3.23 — Géométrie finale du test de convection aprés un déplacement de 80 mm. Les solutions ob-
tenues par la méthode des arcs et des splines sont comparées a la solution exacte et a celle obtenue en
repositionnant les nceuds directement sur la ligne brisée (repositionnement naif).

Comme on pouvait s’y attendre, la méthode de repositionnement naive, consistant a
repositionner le nceud directement sur la ligne brisée décrivant la frontiere, provoque une
détérioration considérable de la forme de la solution au cours de sa translation. Par contre,
on constate que les deux solutions obtenues par les méthodes des arcs et des splines sont
trés proches de la solution exacte du probleme. Néanmoins, les amplitudes calculées dimi-

nuent 1égerement lorsqu’on s’éloigne de l'origine. La phase de la sinusoide est par contre
bien respectée.

——exact
107 —— spline ||
—arc
8r naif
£
£
> 4+
2 L
0 L
70 75 80 85 90
X [mm]

FIGURE 3.24 — Zoom sur le premier extremum de la solution finale du test de convection. Aucune des méthodes

n’est capable de représenter correctement la discontinuité de pente observée en x = 80 mm dans la solution
exacte.

Le point anguleux situé en x = 80 mm pose évidemment un probleme aux algorithmes.
Les profils ont subi un lissage indésirable mais inévitable et ceci provoque une erreur qui
s’est propagée en amont, si bien que le premier extremum des solutions numériques (celui
le plus a droite) est assez mal représenté par rapport aux précédents (voir figure 3.24).
Pour ce test de convection particulier, la méthode des splines donne un résultat plus proche
de la solution analytique que la méthode des arcs.
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3.3.5.2 Convection d’un profil complexe

Le second test consiste a translater un profil courbe construit initialement a I'aide d’'une
spline. La géométrie est représentée sur la figure 3.25.

y A

v |

‘ ‘ -

! «— zone quasi eulérienne (longueur L) —»

FIGURE 3.25 — Géométrie du test de convection d’un profil complexe construit a Uaide de deux splines de
McConalogue. Les tangentes aux trois points définissant la spline sont choisies horizontales et unitaires.

I a été construit pour mettre en avant la capacité des deux méthodes a traiter des fron-
tieres possédant une tres forte courbure (le profil possede plusieurs points ou les tangentes
sont verticales). On choisit | = h = 10 mm. Le profil est initialement positionné en x = 10
mm. Les autres parametres sont identiques a ceux du cas précédent. Apres une translation
de 80 mm (c’est-a-dire apres avoir parcouru 240 nceuds du maillage), les courbes résul-
tant de l'utilisation des deux algorithmes de repositionnement de noeuds sont analysées
(figure 3.26).

——exact
107 —— spline ||
—arc
8r naif
£ O
£
> 4}
2 L
0

84 86 88 90 92 94 96
X [mm]

F1GURE 3.26 - Solutions obtenues apres un déplacement total du profil de 80 mm. Les méthodes des splines et
des arcs fournissent une solution proche de la solution exacte en comparaison a la méthode naive.

Encore une fois, on remarque que la géométrie est globalement bien conservée par les
deux méthodes. On préférera cependant a nouveau la méthode des splines qui donne une
solution plus proche de la solution exacte. Quant au repositionnement naif, il provoque une
trés forte diffusion et semble donc tout a fait inadapté pour traiter la convection d’un profil
complexe sur de longues distances.
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3.4 Traitement des volumes

Dans cette section, nous détaillons les méthodes de repositionnement qui s’appliquent
aux neceuds internes du maillage. Ceux-ci sont liés a un domaine plan a 2D ou a un volume
a 3D. Cette étape intervient apres le repositionnement des noeuds des frontieres du mail-
lage. Cependant, déplacer un nceud dans un volume est une opération plus simple que le
déplacer sur une surface. Nous présentons donc tout d’abord les méthodes volumiques. Les
méthodes surfaciques seront déduites des méthodes volumiques en ajoutant une contrainte
de conservation de la forme de la frontiére au cours du processus.

Il serait possible de démarrer le repositionnement des noeuds volumiques en détermi-
nant préalablement ceux dont le mouvement est susceptible d’améliorer le maillage. Par
exemple, Benson [22] calcule a 2D pour chaque noeud une valeur de distorsion volumique
et en cisaillement. Son maillage idéal est un maillage régulier composé d’éléments carrés.
Ce genre de critére est fastidieux a mettre en place pour un maillage quelconque. Cette
sélection n’est pas utile pour des calculs quasi eulériens pour lesquels la plupart des noeuds
sont constamment en mouvement pendant la phase lagrangienne et doivent donc tous étre
repositionnés.

Benson [23] limite également le déplacement maximal admissible d’'un nceud en fonc-
tion de la stabilité du schéma de convection utilisé par la suite. Dans ce travail, nous choi-
sirons plutot de modifier le schéma de convection (section 4.4.8) pour respecter le critere
de stabilité quel que soit 'amplitude du déplacement des noeuds. On peut aussi condition-
ner le déplacement d’un nceud a 'augmentation locale d’un critére de qualité des éléments
adjacents (constrained Laplacian ou smart Laplacian — George [86]). Ces techniques ne se-
ront pas utilisées parce qu’elles ne nous ont pas semblé nécessaires pour les applications
envisagées.

3.4.1 Meéthode d’interpolation transfinie (MIT)

Si le maillage volumique initial de la structure a été généré par un mailleur structuré
de type transfini, il est possible de redistribuer les nceuds internes en exécutant a nouveau
ce méme type de mailleur. Uavantage d’une telle méthode est sa simplicité et sa rapidité
d’exécution.

La méthode d’interpolation transfinie (Gordon et Hall [91]) a été initialement utilisée
dans le cadre de la méthode des éléments finis par Haber et al. [97]. Elle a été reprise
par la suite, en formalisme ALE, par de nombreux auteurs (Koh et al. [131], Ponthot [166,
168], Gadala et Wang [76], Gadala et al. [78], Akkerman [3], Aymone [12], etc.) vu son
efficacité. Dans ce travail, nous I'utilisons aussi bien a 2D qu’a 3D.

A deux dimensions, si la surface F est limitée par quatre courbes, P, (&), P,(&), Q,(n) et
Q,(1n), on définit un projecteur IT qui transforme un carré de coté unitaire en une surface
approchée qui rencontre exactement les quatre arcs frontiéres. Par définition, on appelle
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interpolant bilinéaire de Lagrange de la surface F le projecteur suivant :

NF) = A=mPE)+nP(E) +(1-8)2i(n) +EQ,(n)
—&n7(1,1)-1-8)(1-n)F(0,0)
+(1-8)n7F(0,1) = &(1 —n)F(1,0), (3.21)

avec 0 < & <1et0<n <1.0n parle de méthode algébrique de génération de maillage
en opposition aux méthodes elliptiques, qui consistent a résoudre un systeme d’équations
aux dérivées partielles, telle que la méthode de Laplace dont est dérivé le lissage laplacien
(section 3.4.2).

FIGURE 3.27 — Maillage transfini d’'une domaine 2D F délimité par les quatres courbes Py, P,, Q; et Q.

Si les lignes en vis-a-vis sont maillées avec un nombre identique de nceuds (M nceuds
sur P;, P, et N nceuds sur Q,;, Q,), '’équation (3.21) peut étre discrétisée en utilisant
En=(m—-1)/(M—1)etn, =(n—1)/(N —1). La position des nceuds internes peut étre
ainsi déduite des positions des noeuds de la frontiere en faisant varier m € [2,M — 1] et
n € [2,N — 1]. Remarquons que, sur le contour, les coordonnées (&, n) ainsi calculées ne
correspondent pas nécessairement aux abscisses curvilignes réelles des nceuds.

A trois dimensions, on peut obtenir une relation similaire a I’équation (3.21) (voir Gor-
don et Hall [91]). Une fois discrétisée, la position du noeud interne dépend des positions
de 26 nceuds (1 neceud sur chaque sommet, chaque aréte et chaque face du domaine hexa-
édrique). Des variantes existent pour mailler des domaines triangulaires, tétraédriques et
pentaédriques (George [86]).

La méthode d’interpolation transfinie, utilisée dans le cadre du repositionnement des
nceuds, donne généralement de tres bons résultats parce qu’elle est directe et tres simple.
Elle ne nécessite pas d’itération pour obtenir le nouveau maillage contrairement a toutes
les méthodes présentées ci-apres. En conséquence, elle est aussi tres rapide.

De plus, elle permet de remailler des domaines tres complexes pour autant que 'on
partitionne ceux-ci en sous-domaines (ou macrorégions — Ponthot [168]) quadrangulaires
(2D) ou hexaédriques (3D). Ce positionnement est généralement requis lors de la création
du maillage initial, quel que soit le formalisme utilisé par la suite (lagrangien ou ALE).
Utiliser cette méthode en formalisme ALE ne demande donc pas de travail supplémentaire.

Malheureusement, des inconvénients et limitations existent :

e Le maillage doit étre structuré, c’est-a-dire que chaque noeud interne doit étre entouré
a deux dimensions de quatre mailles quadrangulaires et a trois dimensions de huit
mailles hexaédriques.
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e Le mailleur doit étre accessible a partir des routines ALE. En particulier, il est impor-
tant de régénérer les noeuds dans le méme ordre que celui utilisé lors du maillage
initial sous peine de devoir modifier les connexions entre éléments et réorganiser les
degrés de liberté du probleme. On voit ici I'intérét de posséder un mailleur transfini
en interne dans le code de calcul. Dans le cas contraire, une réorganisation des noeuds
doit étre préalablement effectuée.

e Cette méthode ne conserve pas nécessairement les tailles relatives des mailles au mi-
lieu du domaine. Le repositionnement des nceuds sur les arétes influence grandement
le mouvement des noeuds internes. En particulier, si on applique cette méthode pour
une surface 3D non plane, la surface obtenue apres remaillage peut étre tres diffé-
rente de la surface initiale. Comme cette méthode ignore completement la courbure
interne de la surface en se basant uniquement sur la géométrie de ses frontieres, cette
méthode, utilisée telle qu’elle, est inadaptée au repositionnement des noeuds sur des
surfaces non planes.

e Enfin, dans le cas de frontieres fortement concaves par exemple, le projecteur peut ne
plus étre biunivoque et le domaine maillé peut alors déborder au dela de ses frontieres
(on parle d’overspill — voir Gordon et Hall [91]).

3.4.2 Lissage laplacien

Le lissage laplacien, également appelé lissage barycentrique, est certainement la plus
simple et la plus populaire des méthodes d’amélioration de la qualité des mailles. Dans
le cadre du formalisme ALE, elle est régulierement utilisée en combinaison avec d’autres
méthodes (voir Hermann [108], Stoker et al. [186], Pantalé et al. [162], Wisselink [206],
parmi d’autres)

Elle correspond a la résolution d’une équation de Laplace pour chacune des coordonnées
des nceuds du maillage en imposant comme conditions aux limites les positions connues des
neceuds frontieére. Par exemple, a deux dimensions pour un maillage structuré :

x N x _ %

0E2 " on2

By iy (3.22)
4= =0

0&2  On?

ol x, y sont les coordonnées spatiales et &, 1 sont les coordonnées des noeuds dans
un espace logique déduit de la numérotation des nceuds (figure 3.28). En discrétisant les
dérivées secondes par différences finies et en isolant la position du noeud central x,, on
obtient :

1 4
Xg= ZZ x; (3.23)
i=1

Cette relation exprime la position d'un nceud en fonction de celle de ses quatre voisins. En
I’écrivant pour tous les noeuds internes du maillage, on obtient un systéme d’équations a
résoudre (voir section 3.4.11). Chaque nceud est ainsi repositionné au barycentre de ses
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voisins. Cette équation peut également étre utilisée pour générer un maillage structuré sur
un domaine dont on connait les nceuds frontiére (George [86]). On parle alors de méthode
elliptique de génération de maillage.

La relation (3.23) est facilement généralisée au cas de n nceuds voisins :

1 n
Xo= H; X, (3.24)
/\77 \y
z = 2(&§n)
M y=y(&n)
| SR SN v

Ficure 3.28 — Coordonnées logiques (&, n) et spatiales (x, y) utilisées pour le lissage laplacien. Les coordon-
nées logiques correspondent a la numérotation (& =colonne, 1 =ligne) des nceuds du maillage qui est donc
nécessairement structuré.

Plusieurs variantes existent en fonction des noeuds voisins utilisés. On peut ainsi utiliser
uniquement les noeuds reliés au nceud central par une aréte, c’est-a-dire les voisins directs,
ou prendre en compte les nceuds qui sont diagonalement opposés sur chaque élément voisin
(Hyun et Lindgren [123]).

Appliqué tel quel sur un maillage quelconque, le lissage laplacien ne préserve pas les
rapports entre les volumes des mailles voisines et tend a uniformiser le volume de toutes
les mailles. En effet, le systeme d’équations (3.22) traduit mathématiquement une minimi-
sation de la variation de la densité du maillage.

avant lissage aprés lissage

FIGURE 3.29 — Probléme du lissage laplacien prés d’une frontiére fortement concave. Apreés lissage, le neeud
déplacé est situé au dela de la frontiére, provoquant un retournement partiel des mailles en rouge.

Linconvénient majeur du lissage laplacien est qu’il attire les nceuds internes du mail-
lage vers les zones concaves de la frontiere (figure 3.29). Il est donc nécessaire d’avoir a
disposition d’autres types de méthodes pour pouvoir traiter les cas pathologiques.
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3.4.3 Lissage laplacien pondéré

Une variante de la méthode du lissage laplacien consiste a pondérer les termes de ’équa-
tion (3.24). On parle de lissage laplacien pondéré. Il s’écrit :

1 n
WX (3.25)
Z w, ; ivi

Comme précédemment, cette relation relie la position d'un nceud x; a celle de ses n voisins.
Les poids w; permettent de modifier le comportement du lissage. Nous proposons ici de
mettre au point une nouvelle méthode qui tire parti de cette liberté pour obtenir un lissage
qui conserverait les proportions des différentes mailles d'un maillage structuré localement
raffiné. En faisant cela, nous ne tentons pas d’améliorer un maillage qui serait initialement
de mauvaise qualité, mais plutot conserver la qualité et la densité variable d'un maillage
au cours du temps. Lidée est donc de calculer des poids w; sur le maillage initial pour
retrouver un maillage similaire lors du processus de lissage ultérieur.

Xog =

FiGURE 3.30 — Cas unidimensionnel. Conservation des longueurs de deux segments adjacents. On cherche la
position du neceud x pour le rapport des longueurs l; et I, soit conservé quel que soit le mouvement des
neeuds x4 et x4

A une dimension (figure 3.30), pour conserver la position du nceud x, sur le segment
(x,, x,) et ainsi conserver le rapport des longueurs des deux arétes entourant x,, il faut
que le nceud conserve ses coordonnées barycentriques sur ce segment lors du lissage, quelle
que soient les positions de x; et x5 :

Xy = (Lx,+1x,) (3.26)

L+,
ou [; et l, sont les longueurs initiales des arétes (x, x,) et (x,, x,). On en déduit des poids
constants w; =, et w, = [;.

Au-dela d’'une seule dimension, la situation se complique. Par exemple, dans le plan,
on pourrait raisonner de la méme maniere lorsque le nceud est entouré de trois arétes : il
suffirait de calculer ses coordonnées barycentriques initiales par rapport a ses trois noeuds
voisins et les injecter dans (3.25) pour lisser le maillage déformé et obtenir ainsi un nou-
veau maillage similaire au maillage initial. Les coordonnées barycentriques s’obtiennent
aisément en calculant les aires des sous triangles formés par les arétes (voir figure 3.31).
On obtient ainsi w; = Ay3, Wy = Ay, w3 = Ay3 OU A;; est l'aire du triangle dont les sommets
sont X, X;, X ;.
(x; —x)A(x;—x)

ij 2

(3.27)

avec A;; = —A;;.
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T

FiGure 3.31 - Cas bidimensionnel. Le nceud x, entouré de trois mailles voisines (en pointillé). Le nceud peut
étre repéré par ses coordonnées barycentriques (W, = Ags, Wy = Agq, Wy = Ay3) en définissant un triangle
dont les sommets sont ses trois nceuds voisins x, X et Xs.

Cependant, en ce qui nous concerne, le cas le plus intéressant dans le plan est celui d'un
noeud entouré par quatre arétes. Dans ce cas, les poids w; ne peuvent plus étre déterminés
de maniere unique. Pour trouver une solution particuliére, on peut étendre le concept de
barycentre au cas de quatre arétes voisines (figure 3.32). En utilisant ses diagonales, le
quadrangle x,, x,, x5, x, peut étre divisé deux fois en deux triangles. Pour chacun de ces
quatre triangles, la position de x, peut étre exprimée en fonction des sommets du triangle.
En additionnant ces relations, on obtient :

X ((Azs +Aszq +Ag)x, + (Azy + A4 +Asz) X,

(A1, + Ay +ALR) X3+ (A + Ay +A13)x4)

0= 5 (3.28)

ouA= ZAU. Ces poids, faisant intervenir toutes les combinaisons possibles des sous tri-
angles construits sur les cinq nceuds, peuvent étre calculés sur la configuration initiale et
utilisés pour repositionner les nceuds. Si le nombre d’arétes est plus important, il suffit de
découper le polygone correspondant en une série de triangles et déterminer les nouveaux
poids. On se rend compte que les calculs deviennent rapidement tres lourds. C’est d’autant
plus vrai si on veut étendre la méthode a trois dimensions. Dans ce cas, les coordonnées
barycentriques sont calculées sur des tétraedres construits autour du nceud a déplacer. Ajou-
tons a cela qu’en pratique, pour des raisons d’économie de mémoire, il n’est pas question
de stocker les poids correspondant au lissage de chaque noeud. Les poids doivent donc étre
calculés a chaque évaluation de la formule (3.25).

xl T,
@ A,
T, z
:B'-'l -,
% A,
T, ‘.
FiGuRE 3.32 — Cas bidimensionnel. Le nceud x, entouré de quatre mailles voisines (en pointillé). La position

du neceud peut également étre exprimée comme une combinaison linéaire de la position de ses quatre voisins
en faisant intervenir les aires A;;. Cependant cette combinaison linéaire n’est pas unique.
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Pour ces raisons, il est important de trouver des poids w; beaucoup plus simples qui
garantissent la conservation des rapports des longueurs des arétes dans le cas rencontré le
plus fréquemment : un maillage structuré et localement raffiné (figure 3.33). Pour celui-ci,
les mailles sont, pour la plupart, rectangulaires et tous les angles sont proches de 90 degrés.

FIGURE 3.33 - Cas courant d’'un maillage structuré dont les mailles (en pointillé) sont proches de rectangles.
On cherche a repositionner le nceud x o pour conserver les longueurs des arétes l; quel que soit la position
des neceuds voisins x;.

L’idée est de repartir de I'équation (3.26) et de I’écrire pour les segments (x,x3) et
(x5,x,), considérés comme rectilignes :

(lz+l4)X0 = l4x2+12x4 (3.30)

en multipliant les équations respectivement par (I, [,) et ([, l5) et en les additionnant, on
obtient la valeur des poids en identifiant les coefficients de chaque nceud :

we=]]k (3.31)
ki

Cette expression des poids est extrémement simple a évaluer. De plus, écrite sous cette
forme, elle peut étre utilisée aussi bien a 2D qu’a 3D, sur des maillages structurés ou non.

3.4.4 Méthode des volumes pondérés

Une variante populaire au lissage laplacien est d’effectuer les calculs non plus avec les
neeuds voisins, mais avec les centres de gravité des éléments adjacents. On parle alors
de la méthode des volumes pondérés (ou des aires pondérées a deux dimensions). C’est
la méthode par défaut utilisée par Abaqus [55] (sous le nom de volume smoothing) en
formalisme ALE. Elle s’écrit, pour un nceud possédant N éléments voisins :

1 N
Xo==— Y. Ve, (3.32)
2ViLe
i=1
ou V; et c¢; sont respectivement le volume de I'élément adjacent i et la position de son
centre de gravité. Pour simplifier la formulation, on utilisera généralement le barycentre
des noeuds des éléments voisins plutot que leurs centres de gravité.

57



CHAPITRE 3. GESTION DU MAILLAGE

FIGURE 3.34 — Méthode des volumes pondérés. La position d'un nceud x est calculée en fonction des bary-
centres c; des éléments adjacents.

Cette méthode utilise donc tous les noeuds des éléments comprenant le nceud a repo-
sitionner et permet dans certains cas ou le maillage posseéde des frontieres a géométrie
complexe et fortes courbures, d’obtenir une meilleure qualité de maillage qu’avec le lissage
laplacien traditionnel. En effet, le nceud central sera attiré plus fortement vers les éléments
possédant un grand volume. Dans le cas de la figure 3.29, les poids des éléments de la
couche frontiére seront plus faibles que ceux des éléments de la deuxiéme couche. Le nceud
sera donc repositionné moins loin de sa position initiale.

Par contre, loin des frontieres, tout comme le lissage laplacien, la méthode des volumes
pondérés tend a uniformiser les aires des éléments voisins.

3.4.5 Meéthode de Giuliani

La méthode de Giuliani [87] est une méthode de lissage basée sur I'optimisation de
la forme des éléments comprenant un nceud donné. L'algorithme donne itérativement, a
chaque nceud, la position qui minimise I’écrasement et le cisaillement des éléments adja-
cents. Il peut étre utilisé dans le cas de maillages mixtes constitués de triangles et qua-
drangles a 2D ou de tétraedres et hexaedres a 3D.

FiGure 3.35 — Méthode de Giuliani a deux dimensions. Elle consiste a optimiser itérativement la forme des
triangles (en gris foncé) construits autour de chaque nceud. La position du neeud x, est donc fonction des
positions de ses voisins directs. A droite, les différentes grandeurs intervenant dans le calcul de la fonction
objectif a minimiser.

A deux dimensions, on construit, pour un nceud donné, un ensemble de triangles a
I'aide des arétes successives aboutissant au noeud (zone plus foncée sur la figure 3.35). Ces
triangles forment une zone polygonale autour du nceud. On s’intéresse au minimum de la
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fonction :

E(xg)= Y (?) +>° (%) (3.33)

1 1
A

écrasement cisaillement

ou N est le nombre de triangles, h est la hauteur de chaque triangle aboutissant au neceud,
h est la hauteur moyenne, b est la base moyenne et d est la distance entre le nceud et
la position du nceud si le triangle était isocele tout en conservant sa hauteur. Le premier
terme de I'expression est une mesure de I'écrasement moyen des triangles et le second est
une mesure du cisaillement moyen.

En explicitant h et d en fonction de la position du nceud et en minimisant E par rapport
a x,, on obtient une expression analytique de la nouvelle position optimale du nceud en
fonction de ses voisins directs. Des développements similaires (voir Giuliani [87]) peuvent
étre effectués dans le cas 3D en construisant les tétraedres sur les arétes de chaque élément
voisin du nceud au lieu de triangles. La solution est plus complexe, mais reste analytique.

L’avantage de cette méthode par rapport au lissage laplacien est qu’elle prend en compte
le cisaillement des mailles et permet ainsi d’éviter des retournements de mailles dans cer-
tains cas pathologiques. Elle est donc plus robuste, mais plus cofiteuse. Par contre, tout
comme la version originale du lissage laplacien, la méthode de Giuliani tend a uniformiser
les tailles des mailles. Elle n’est donc pas applicable dans le cas de maillages structurés loca-
lement raffinés. De plus, contrairement au lissage laplacien, elle est difficilement modifiable
pour pouvoir traiter ce genre de cas.

Dans le cadre du formalisme ALE, I'algorithme de Giuliani est utilisé, entre autres, par
Huerta et Casadei [47, 114], Potapov [172] et Pantalé et al. [161].

3.4.6 Lissage équipotentiel

Le lissage équipotentiel (Farrashkhalvat et Miles [70], Hyun et Lindgren [123], Winslow
[205]) peut étre vu comme un cas particulier du lissage laplacien. On se place dans le cas
particulier, mais trés courant, d'un maillage structuré. Un systéme d’équations elliptiques,
similaire a (3.22), est écrit pour les variables £(x,y), n(x,y) au lieu de x(&,7), y(&,m) :

0? 0?

2 2 _

ox2  dy?

2y (3.34)
—— - = 0

ox? = dy?

Ce nouveau systeme génere un réseau de lignes équipotentielles (§ = constante, n =
constante) mutuellement orthogonales. Sa solution a également les propriétés intéressantes
de minimiser la courbure locale des lignes traversant le maillage et de garantir qu’aucun
extremum de & ou 1) n’apparaitra dans le domaine. On peut donc espérer éviter le probleme
du lissage laplacien prés des frontieres concaves (figure 3.29). Pour obtenir les positions
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FiGURE 3.36 — Numérotation des nceuds pour le lissage équipotentiel d deux dimensions.

cartésiennes des noeuds, le systeme doit étre inversé. On obtient ainsi les équations de
Winslow [205] :

x x x
g228_¥_2g12@+g118_172 =0
(3.35)
2y 2y 2y
g”a_gz_zg”%J’g”a_nz =0
avec
ox dy
_ 732 A Y/
& = (35) +(3§)
Ox Ox Jdy dy
= — 422 3.36
§12. = Fxan T o an (3.36)

_Ox, 9y,
82 = (377) +(3n)

Des équations similaires peuvent étre obtenues en 3D (Hallquist [102]). En discrétisant
les dérivées de (3.35) par de simples différences finies, on obtient les poids suivants a
utiliser dans I’équation (3.24) :

1
Wy =Wg = 5[(3(2 —x6) (x4 — xg)] + [(y2 — ¥6) (¥4 — ¥s)]

1
Wy =Wg = Z[(X4_X8)2+(J’4_J’8)2] (3.37)

1
Wy =Wwg = Z[(Xz —x6)*+ (¥2 — ¥6)*]

Le lissage équipotentiel peut étre adapté au cas de maillages a densité variable en ajou-
tant un second membre adéquat aux équations du systéme (3.22). On obtient ainsi des
équations de Poisson a résoudre (voir Thompson, Thames et Mastin [192]). Dans le cadre
du formalisme ALE, le lissage équipotentiel est utilisé par Benson [22] et les codes LS-
DYNA [102] et Abaqus [55, 162].
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3.4.7 Lissage isoparamétrique

Cette méthode (Hermann [108], Hyun et Lindgren [123]) repositionne un nceud du
maillage x, au centre d’'un élément isoparamétrique fictif qui est construit a 'aide des
neeuds voisins. Pour un maillage régulier, cela revient a utiliser localement la méthode d’in-
terpolation transfinie (3.21) sur une grille limitée aux éléments voisins du noeud. Le lissage
isoparamétrique permet ainsi de préserver les zones raffinées dans un maillage structuré
puisqu’il ne tend pas a uniformiser la taille des mailles voisines.

Tout comme le lissage laplacien, cette méthode est généralisée au cas de maillages non
structurés :

1S
0= NZ(XQ + x5 —x;) (3.38)
i=1

ol les nceuds x4, x5, X5 sont choisis comme sur la figure 3.37 et N est le nombre d’éléments
adjacents au noeud.

FiGURE 3.37 — Numeérotation des nceuds de Uélément i adjacent au nceud x, pour le lissage isoparamétrique
a deux dimensions.

Il est possible de pondérer de maniére différente la participation des nceuds diagona-
lement opposés au nceud central. on parle alors de lissage isoparamétrique pondéré (Her-
mann [108]) :

Xo= 5= W)NZ(x +xl —wxl) (3.39)

ol w est compris entre 0 et 1. Si w vaut 0, on retrouve le lissage laplacien classique. Si w
vaut 1, on a le lissage isoparamétrique décrit ci-dessus. La méthode peut étre également
étendue a trois dimensions sans difficulté.

61



CHAPITRE 3. GESTION DU MAILLAGE

3.4.8 Autres méthodes

De nombreuses autres méthodes de lissage existent. Parmi celles-ci, citons la méthode
area pull présentée par Hyun et Lindgren [123]. Le déplacement d’un nceud est fonction
de la différence des aires des éléments qui 'entourent dans le but d’égaliser toutes les aires
des mailles. Utilisée seule, cette méthode de lissage se révele instable sur des maillages
quadrangulaires.

Zhou et Shimada [212] présentent une méthode 2D originale qui consiste a modifier
itérativement la position des nceuds pour égaler progressivement les angles adjacents du
maillage et tendre idéalement vers des mailles carrées (ou équilatérales dans le cas de
triangles). On espere arriver ainsi a éliminer les angles proches de 0 et 180 degrés. Bien
qu’elle donne, d’apres son auteur, de bons résultats sur des maillages non structurés de
triangles, cette méthode est, elle aussi, treés instable lorsqu’elle est appliquée a des mailles
quadrangulaires. Ceci parait intuitivement logique puisqu’aucun contréle de la longueur
des arétes n’est effectué.

En pratique, malgré leurs défauts, ces deux méthodes peuvent étre tout de méme utili-
sées en combinaison avec d’autres (section 3.4.9) pour modifier légérement leur comporte-
ment et apporter a la méthode combinée leur objectif respectif de qualité.

3.4.9 Combinaison de méthodes

Pour obtenir un controle maximal sur la qualité du maillage, il est parfois intéressant
de combiner les méthodes précédentes pour obtenir une nouvelle méthode qui peut étre
mieux appropriée pour une application spécifique. Si on utilise simultanément les méthodes
de lissage A et B et que celles-ci fournissent les positions x4 et x pour le nceud central,
la nouvelle position x est calculée par une combinaison linéaire des positions grace a un
poids w.

xo=(1-w)xj+wx] (3.40)

Cette maniere de créer une nouvelle méthode peut fournir de tres bons résultats bien que
la valeur w optimale ne peut étre déduite que par essai-erreur et intuition.
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3.4.10 Comparaison des méthodes

Cette section a pour but d’illustrer les différentes méthodes de lissage volumique précé-
demment décrites sur un exemple afin de montrer leurs qualités et défauts respectifs. Nous
les comparons sur une géométrie simple bidimensionnelle : une demi-couronne maillée a
'aide de différents mailleurs.

La figure 3.38 présente le cas d’'un maillage structuré généré par un mailleur trans-
fini classique. La couronne est maillée avec 5x10 éléments initialement trapézoidaux. On
constate que le lissage laplacien donne le pire maillage : les nceuds sont attirés par la fron-
tiere concave et les mailles frontiere sont écrasées. Ce phénomeéne est amplifié par le fait
que le nombre de mailles sur la demi-circonférence est faible. La méthode transfinie et le
lissage isoparamétrique donnent évidemment un maillage identique au maillage initial. Le
lissage équipotentiel donne aussi un bon résultat. Parmi les méthodes pouvant gérer plus
de quatre arétes par noeud, le meilleur résultat est obtenu par 'algorithme de Giuliani.

Si on s’intéresse a un maillage structuré, mais localement raffiné (figure 3.39), la plu-
part des méthodes déforment le maillage original puisqu’elles ont tendance a uniformiser
la taille des mailles voisines. Par contre, tout comme précédemment, les méthodes transfi-
nie et isoparamétrique donnent les mémes résultats avec un maillage initial conservé. Les
maillages obtenus par les autres méthodes sont tous semblables, mis a part celui de la mé-
thode du laplacien pondéré dont les poids ont été spécialement calculés pour conserver au
mieux le rapport des longueurs des arétes dans ce cas spécifique. Le fait d’utiliser 'équation
simplifiée (3.31) au lieu de ’équation (3.28) explique les légéres différences constatées par
rapport au maillage initial.

Le cas d’'un maillage non structuré est présenté sur la figure 3.40 pour les méthodes qui
le permettent. Les maillages obtenus a I'aide de I'algorithme de Giuliani et des aires pondé-
rées sont tres similaires entre eux et meilleurs (les aires des mailles ont été homogénéisées)
que celui obtenu par lissage laplacien traditionnel. Le lissage laplacien pondéré détériore,
quant a lui, légérement le maillage initial. Le lissage isoparamétrique produit un maillage
invalide. Ces deux dernieres méthodes, bien que techniquement applicables a des maillages
non structurés, doivent étre définitivement écartées pour ce type de maillages.

Le tableau 3.1 résume le champ d’application des méthodes de repositionnement pré-
sentées dans cette section. Toutes les méthodes sont utilisables sur un maillage structuré
dont la taille de maille est constante. Seuls la méthode d’interpolation transfinie, le lissage
isoparamétrique et le laplacien pondéré avec des poids spécifiques permettent de conserver
les zones de raffinement d’un maillage structuré dont la taille de maille est variable. Enfin,
le lissage laplacien, la méthode des volumes pondérés et la méthode de Giuliani permettent
de gérer les maillages non structurés. Armé de cet ensemble de méthodes, il est possible
de résoudre la plupart des problémes de repositionnement que 1’'on peut rencontrer dans le
cas de maillages de quadrangles ou d’hexaedres.
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transfini laplacien

volumes
pondérés

laplacien
pondéré

Giuliant 1soparamétrique

FiGure 3.38 — Comparaison des méthodes volumiques sur un maillage structuré régulier d’une demi-couronne.
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volumes
pondérés

laplacien
pondéré

F1GURE 3.40 — Comparaison des méthodes volumiques sur un maillage non structuré d’une demi couronne.

maillage maillage maillage
structuré - constant | structuré - variable | non structuré

interpolation transfinie v 4 X
laplacien v X v
laplacien pondéré v 4 X
volumes pondérés v X v
Giuliani v X 4
équipotentiel v X X
isoparamétrique v 4 X

TABLEAU 3.1 - Possibilité d’utilisation des différentes méthodes de lissage en fonction du type de maillage.
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3.4.11 Résolution du systeme d’équations
3.4.11.1 Algorithme SOR

Mise a part la méthode d’interpolation transfinie, les méthodes présentées ci-dessus
sont des méthodes locales liant la position d’'un nceud a celle de ses proches voisins. Pour
résoudre 'ensemble des équations, on peut, dans les cas les plus simples, utiliser une mé-
thode directe qui consiste a inverser le systéme. Cependant, dés que 'on utilise des mé-
thodes plus complexes que le lissage laplacien, ce systeme n’est plus linéaire et il devient
plus compliqué a résoudre. De plus, méme dans le cas d’un systeme linéaire, le temps de
résolution et la mémoire nécessaire risquent d’étre élevés.

Pour ces deux raisons, on adopte généralement des méthodes itératives de résolution
qui ne nécessitent pas le stockage de la matrice du systeme. Parmi ces méthodes, la méthode
de Gauss-Seidel (voir par exemple Saad [177]) semble étre la plus appropriée. Elle consiste
a résoudre le systéme, équation apres équation, en utilisant continuellement les valeurs des
inconnues les plus a jour dont on dispose. En pratique, cela consiste a effectuer un lissage
local en chaque nceud en modifiant continuellement les nouvelles positions des noeuds. Si
le systeme est linéaire, de type Ax = b, la méthode s’écrit pour l'itération k :

x®=m-1)" (Ux*V+b) (3.41)

ouUA =D—-L-UetD, —L, —U sont respectivement les parties diagonale, inférieure et
supérieure de la matrice du systeme A.

Pour améliorer la convergence de la méthode de Gauss-Seidel, il est possible d’extrapo-

ler la solution a chaque itération en utilisant '’équation :
x¥=wx+(1-w)xY (3.42)
oll w est un facteur d’extrapolation et ¥ %) est la solution de Gauss-Seidel a l'itération k. La
nouvelle méthode est appelée SOR (Successive OverRelaxation) et converge si w est dans
l'intervalle (0, 2) (et si la matrice du systeme A est symétrique et définie positive). La valeur

optimale de w dépend du rayon spectral de la matrice d’itération (voir Saad [177]) qui est
difficilement calculable. Dans notre cas, elle dépend de I'aspect du maillage.

Idéalement, un critere d’arrét permet de limiter le nombre d’itérations. En pratique,
dans le cadre du lissage de maillages, son utilité est discutable puisqu’il n’est souvent pas
utile d’atteindre la convergence pour obtenir un résultat acceptable. Dans la plupart des
cas ou le but du lissage est d’améliorer la qualité des mailles, seules quelques itérations
sont donc nécessaires. Par contre, dans le cas de la simulation de processus stationnaires ou
quasi eulériens, la qualité du maillage est généralement déja correcte a la fin de la phase
lagrangienne. Le but de 'opération de repositionnement n’est plus de lisser le maillage mais
bien de le déplacer dans la direction opposée a celle de '’écoulement de matiere. On ne peut
donc pas se limiter a quelques itérations si on souhaite obtenir un maillage plus ou moins
fixe dans la direction de ’écoulement.
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3.4.11.2 Exemple numérique

Pour illustrer les difficultés rencontrées lors de la résolution du systéme d’équations,
nous proposons d’étudier un des cas les plus défavorables : il s’agit de la simulation d'une
translation uniforme d’un matériau a travers un maillage fixe localement raffiné. Ce type
d’application est une version simplifiée des modeéles utilisés pour la simulation de processus
stationnaires.

Pour cette étude, nous utilisons le domaine carré de longueur unitaire (L = 1 mm)
représenté sur la figure 3.41 et un mouvement de matiere du bas en haut. Le maillage sur
chaque ligne est défini par la fonction de taille suivante :

L() = Ly — & exp ((s — p/L)* (L/)* In(0.1)) (3.43)

avec les parametres 6 = 0.08 mm, p = 0.5 mm, o = 0.25 mm et L ,, = 0.1 mm. Les mailles
les plus grandes sont de I'ordre de 0.1 mm et les plus petites de 0.02 mm.

F1GURE 3.41 - Maillage initial du carré. Lutilisation =~ FIGURE 3.42 — Maillage apreés le pas lagrangien et
de mailles plus petites au centre va pénaliser for- le repositionnement des nceuds des lignes de la
tement les méthodes itératives de lissage. frontiére du domaine maillé.

Comme tout calcul ALE, on effectue tout d’abord un pas lagrangien qui consiste a dé-
placer le maillage vers le haut. L'incrément de déplacement est fixé arbitrairement a 0.09
mm, soit 90% de la plus grande taille de maille. Ensuite, la phase ALE commence et on re-
positionne tout d’abord les nceuds des arétes a ’'aide d'une méthode eulérienne. Les nceuds
de la frontiere se retrouvent donc a leur position initiale et on obtient transitoirement le
maillage de la figure 3.42. C’est a ce moment qu’intervient 'opérateur de lissage surfa-
cique. Bien sfr, il n’est pas question ici d’utiliser une méthode directe comme la méthode
eulérienne ou le mailleur transfini pour repositionner les nceuds internes du maillage. Nous
considérons que ces deux méthodes ne sont pas disponibles. C’est le cas par exemple pour
le repositionnement de nceuds sur des surfaces a forte courbure (voir section 3.5), méme si
elles ont été initialement maillées par un mailleur transfini.
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Deux méthodes itératives peuvent étre utilisées pour repositionner les noeuds du mail-
lage de la figure 3.42 tout en conservant la taille des mailles : le lissage isoparamétrique
(section 3.4.7) et le lissage laplacien pondéré avec les poids adéquats (section 3.4.3). Les
autres méthodes itératives tendent a uniformiser la taille des mailles.
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FIGURE 3.43 — Laplacien pondéré. Maillage obtenu FIGURE 3.44 - Lissage isoparamétrique. Maillage

aprés 20 itérations. obtenu apres 20 itérations.
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FIGURE 3.45 — Laplacien pondéré avec surrelaxation FIGURE 3.46 - Lissage isoparamétrique avec surre-
(w = 1.8). Maillage obtenu apreés 20 itérations. laxation (w = 1.8). Maillage obtenu aprés 20
itérations.

Si on compare les deux méthodes a nombre d’itérations identique, on constate que le
lissage laplacien (figure 3.43) converge beaucoup plus vite que le lissage isoparamétrique
(figure 3.44). Apres 20 itérations, les deux solutions obtenues sont encore assez éloignées
du maillage initial. Ceci est di a la présence des petites mailles dans la zone de raffinement
puisque celles-ci entrainent un déplacement moyen de 'ordre de la taille de la plus petite
aréte lors de chaque itération.
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Remarquons également que la solution obtenue par lissage isoparamétrique est forte-
ment non symétrique et beaucoup plus irréguliere que celle obtenue par lissage laplacien
pondéré.

Les figures 3.45 et 3.46 illustrent 'accélération obtenue par surrelaxation. On utilise
un coefficient w = 1.8. La vitesse de convergence est grandement améliorée et le maillage
obtenu par lissage laplacien est, cette fois, tres proche du maillage initial. Appliquée au le
lissage isoparamétrique, la surrelaxation amplifie également le déplacement final obtenu,
mais aussi les irrégularités et la dissymétrie. La figure 3.47 montre I’évolution de la norme
de la différence des positions courantes et initiales des nceuds du maillage pour les deux
méthodes et pour différentes valeurs de w. Le lissage laplacien pondéré converge toujours
plus rapidement que le lissage isoparamétrique.

— laplacien pondéré
—— isoparamétrique
0.8 0.8¢
[0 [0
@ ©
k) 2
© 0.6 ‘® 0.6F .
£ 1S laplacien
e 2 —— laplacien pondéré
5041 5 0.4 ——volumes pondérés
£ 2 Giuliani
@ 5 Giuliani
—— isoparamétrique
0.2 0.2 —— équipotentiel
0 0 ; y
0 100 200 300 400 0 10 20 30 40 50
itérations itérations

FiGURE 3.47 - Vitesses de convergence du laplacien FIGURE 3.48 - Vitesses de convergence de toutes les
pondéré et du lissage isoparamétrique pour dif- méthodes itératives pour un maillage régulier.
férents coefficients de surrelaxation.

En conclusion, lorsque les méthodes directes ne sont pas exploitables (voir section 3.5),
le lissage laplacien pondéré semble étre la meilleure méthode de lissage itérative a notre
disposition pour traiter le cas trés courant de maillages quasi eulériens structurés et locale-
ment raffinés.

En pratique, dans le cadre du formalisme ALE et de simulations quasi eulériennes, un
moyen radical pour accélérer la convergence du repositionnement des noeuds est de choi-
sir, comme premiere approximation, la configuration finale du dernier lissage effectué. En
d’autres mots, on démarre le lissage avec la configuration maillage du début du pas de
temps et non celle de la fin du pas lagrangien. A ce moment, le nombre d’itérations né-
cessaires est réduit a un minimum (1 ou 2 suffisent), y compris dans le cas de trés grands
déplacements matiere.

Si on effectue la méme étude sur un maillage structuré régulier, on peut comparer
la vitesse de convergence de toutes les méthodes. La figure 3.48 montre les courbes de
convergence obtenues. La plupart des méthodes sont équivalentes. Seules deux méthodes
se distinguent : le lissage isoparamétrique est largement plus lent que les autres, ce qui
le rend tres peu attrayant en pratique, et la méthode des volumes pondérés est la plus
rapide. Il est également intéressant de comparer les méthodes en fonction de leur cotit CPU
par nceud et par itération (figure 3.49). A ce point de vue, on constate par exemple qu'un
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Lissage isoparamétrique
Lissage équipotentiel
Méthode de Giuliani
Volumes pondérés
Laplacien pondéré

Laplacien 1

3 4

0 1 2
Temps CPU [us/noeud]

FIGURE 3.49 — Temps CPU des différentes méthodes itératives.

simple lissage laplacien est 6 fois plus rapide qu'un algorithme de Giuliani. Remarquons
également que le lissage équipotentiel est relativement coliteux malgré sa simplicité parce
qu’il nécessite une identification et un tri préalable des nceuds voisins.
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3.5 Traitement des surfaces

3.5.1 Surfaces planes

Commencons par le cas simple de surfaces planes tri-dimensionnelles. La majorité des
méthodes de la section 3.4 peuvent étre utilisées telle quelles, au prix de calculer a trois
dimensions les aires et les longueurs qui interviennent dans leur formulation. Pour les mé-
thodes plus complexes a mettre en ceuvre, comme la méthode de Giuliani, on peut effectuer
un changement de repere approprié pour travailler dans le plan du maillage surfacique, quel
que soit son orientation dans 'espace.

Ficure 3.50 - Lissage de surfaces planes. Définition d’un repére 2D en fonction d’'un point de passage o et de
la normale n au plan.

Ce plan est défini par une origine o et par une normale n. A partir de ces deux données,
on peut construire un repere (e;,e,) orthonormé dans le plan et appliquer la méthode
lissage 2D choisie dans le plan. A chaque fois qu'une position est requise, on la projette
dans le plan. Par exemple, le point p, = (p,,p,,p,) devient :

(Pg:pn):Pg: ((Px_o)'eg, (px_o)'en) (3.44)

Lorsque la nouvelle position du point p, est obtenue dans le repere 2D de la surface, on
la transforme dans le repeére global 3D par :

px=o+(p€~tx)tx+(pg-ty)ty (3.45)

De cette maniére, n’importe quelle méthode 2D est utilisable sans modification dans un
plan quelconque.
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3.5.2 Surfaces non planes
3.5.2.1 Introduction

Apres avoir étudié les méthodes de repositionnement de nceuds internes et étendu
celles-ci a des surfaces planes d’orientation arbitraire dans un espace a trois dimensions,
il nous reste a traiter le cas de surfaces non planes. Ce cas englobe les surfaces initialement
planes qui se déforment au cours de la simulation. Le probléme de repositionnement de
neceuds devient alors beaucoup plus complexe qu’a deux dimensions parce qu’il faut non
seulement améliorer la qualité du maillage, mais aussi préserver au mieux la courbure en
tout point pour éviter que la succession des opérations de lissage entraine une augmenta-
tion ou une diminution du volume total du corps que 'on déforme. Ce probléme est I'ex-
tension 3D du repositionnement des nceuds sur une aréte vive étudié a la section 3.3. Il est
assez peu discuté dans la littérature bien qu’il s’agisse d’une étape essentielle et inévitable
dans la mise en place d’un algorithme ALE 3D général. C’est, d’apreés nous, la principale dif-
ficulté a surmonter pour étendre une implémentation ALE 2D au cas 3D. Sans une méthode
de repositionnement efficace sur les frontiéres, on est limité a des géométries simples ot
tous les nceuds des surfaces sont lagrangiens (voir par exemple Potapov [172])

La majorité des auteurs qui abordent des problemes 3D utilisent la relation (2.21) pour
contraindre le mouvement du maillage dans le plan tangent a celui-ci (pour rappel, v*-n =
v - n). La nouvelle position du nceud est éventuellement reprojetée sur la configuration
lagrangienne de la surface du maillage (Guerdoux [95]). Cette maniere de faire est, bien
entendu, beaucoup trop simpliste pour conserver précisément la forme de la surface et pour
éviter les flux parasites de matiere a travers celle-ci. En particulier, on peut vérifier que si
la vitesse relative du maillage par rapport a la matiére a une composante tangentielle trop
importante, cette méthode devient instable lorsque la surface est courbe.

Parmi les méthodes plus élaborées, Aymone [11] étend I’algorithme qu'il utilise sur les
arétes vives (figure 3.18) en I'appliquant successivement dans les deux directions orthogo-
nales définies par les lignes du maillage. Il se limite donc au cas de maillages surfaciques
quadrangulaires structurés. Bien que tres simple (et donc certainement tres rapide), ce type
de méthode est également limité aux vitesses tangentielles faibles puisque 'approximation
de la surface est reconstruite uniquement dans le voisinage du noeud a déplacer.

Philippe [164] utilise une approximation quadratique locale de la surface du maillage
construite sur chaque facette de la frontiere du domaine ALE. La position du nceud apres
lissage est projetée sur ces surfaces en vue de conserver au mieux la courbure obtenue en fin
de pas lagrangien. Malheureusement, pour simplifier le probleme de projection, la surface
du second degré est remplacée par une discrétisation linéaire par morceau qui diminue
grandement la précision et donc l'intérét de la méthode.

La méthode la plus sophistiquée est proposée par Traoré [194]. Dans le cadre du lami-
nage circulaire, il reconstruit, sur la configuration lagrangienne, une approximation NURBS
de la totalité de la surface externe du solide modélisé. Cette approximation unique inclut
méme les discontinuités telles que les arétes vives, si bien que le traitement de celles-ci
n’est qu'un cas particulier du cas surfacique. En pratique, chaque nceud se voit attribuer
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des coordonnées réduites sur 'approximation NURBS. Pour obtenir un mouvement quasi
eulérien du maillage, il suffit alors de conserver ces coordonnées au cours du temps. La sur-
face NURBS est actualisée a chaque incrément temporel et le repositionnement de nceud
consiste « simplement » a évaluer cette surface pour chaque nceud. Cette méthode est d'une
précision redoutable dans le cas du laminage circulaire. Cependant, elle ne semble pas
facilement généralisable a tout type de géométrie d’'un point de vue technique.

3.5.2.2 Principe de la méthode proposée

La méthode de relocalisation proposée dans cette section est originale. Elle consiste a
étendre toutes les méthodes (itératives ou non) de relocalisation volumiques décrites a la
section 3.4 en les appliquant sur une approximation spline de la surface. Cette approxi-
mation se base sur les splines de McConalogue dont nous avons montré I'efficacité pour le
traitement des arétes vives (section 3.3).

Un effort particulier a été fourni pour obtenir un algorithme trés robuste et capable de
repositionner les noeuds quel que soit 'amplitude du déplacement relatif entre le maillage
et la matiere. En effet, bien souvent, ce type d’algorithme est limité a un déplacement relatif
qui ne dépasse pas la taille d’'une maille. Cette limitation peut étre tres restrictive sur la taille
du pas de temps lorsqu’on utilise des maillages localement raffinés. Une recherche efficace
des projections lointaines nous permet ainsi d’éviter l'utilisation de nombreux « sous-pas
de temps » (Philippe [164]) qui peuvent se révéler treés coliteux puisque leur nombre est
inversement proportionnel a la longueur de la plus petite aréte du maillage surfacique.

Supposons que 'on doive repositionner un nceud donné sur une surface maillée. Nous
nous limitons ici aux maillages quadrangulaires bien qu'’il soit possible, sans aucune diffi-
culté, d’étendre la procédure a des maillages contenant des triangles. Ce maillage surfacique
a été déformé au cours du pas lagrangien qui vient de se terminer. Il faut donc trouver une
nouvelle position des nceuds qui va, d’'une part, améliorer la qualité du maillage et, d’autre
part, minimiser les erreurs sur la courbure. La figure 3.51 illustre la situation en montrant
le maillage autour d’un nceud de la surface. On a choisi de représenter quatre mailles surfa-
ciques adjacentes au point, mais ce n’est pas une hypothese qu’il est nécessaire de vérifier.

Pour pouvoir utiliser les méthodes de la section 3.4 sans modification, il faudrait idéale-
ment posséder une paramétrisation de la surface décrite par le maillage. Il suffirait alors de
repositionner le nceud dans le plan des parametres de la surface pour obtenir sa nouvelle
position spatiale et corriger ensuite la courbure locale. Cette paramétrisation est calculable
pour des surfaces a topologie rectangulaire (voir par exemple Traoré [194]) mais elle est
complexe et coliteuse. Nous nous limiterons donc a une approximation locale.
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Y.
x x
FiGure 3.51 — Maillage surfacique lagrangien au-  FIGURE 3.52 - Calcul de la normale n au nceud par
tour d’un neeud donné (limité aux facettes adja- une moyenne des normales n; des facettes voi-
centes). sines (normale consistante).

3.5.2.3 Lissage dans le plan tangent

Considérons tout d’abord le cas des méthodes de lissage itératives telles que le lissage
laplacien (section 3.4.2). Dans un premier temps, nous allons déterminer un plan tangent
a la surface. C’est, bien s{ir, une approximation puisque la surface n’a pas une normale
continue aux nceuds. Il s’agit donc de calculer une normale moyenne au point considéré.
Pour ce faire, nous calculons, pour chaque maille i adjacente au point, la normale n; a cette
facette (voir figure 3.52). Cette normale est calculée par produit vectoriel des deux arétes
de la facette aboutissant au nceud (n; = d; A d,) pour que la norme de la normale obtenue
représente d’'une maniere grossiere la surface de la facette (c’est uniquement le cas si la
facette est un parallélogramme). L'approximation de la normale au nceud est obtenue en
sommant toutes ces normales provenant des facettes adjacentes (n = ».n;). On obtient
ainsi une extension 3D de la normale consistante définie précédemment (figure 3.17).

Le maillage surfacique traité est censé ne contenir aucune aréte vive et aucun coin. Dans
le cas contraire, ces discontinuités seraient ignorées et lissées dans la suite de la procédure.
Ceci n’est pas restrictif : si un noeud appartient a une aréte, intersection de deux faces a
traiter, la méthode de repositionnement sera appliquée séquentiellement aux deux faces
et deux normales distinctes seront calculées pour chaque nceud de cette aréte. Par contre,
nous faisons I'hypothése qu’aucune nouvelle aréte vive n’apparait au cours de la simulation.

Une fois la normale n déterminée, le probleme peut étre résolu localement par n'importe
quelle méthode de lissage 2D. Plus précisément, pour chaque nceud a déplacer, on projette
sur le plan tangent tous les nceuds voisins nécessaires au lissage grace a la relation (3.44)
et on résout le probleme dans ce plan. La nouvelle position du nceud se trouve évidemment
sur le plan tangent (voir figure 3.53).
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plan surface

tangent

FiGURE 3.53 — Déplacement du nceud dans le plan ~ FIGURE 3.54 — Projection du résultat du lissage
tangent. Tous les nceuds nécessaires au lissage (point rouge) sur la surface spline interpolante.
sont projetés dans le plan et le probléme est ré-
solu par une méthode 2D quelconque.

3.5.2.4 Construction de la surface spline

Il reste alors a déplacer le point obtenu précédemment par lissage dans le plan pour
conserver la courbure locale de la surface. Pour y arriver, nous créons une surface spline (en
francais, une surface composite) sur 'ensemble des facettes du maillage surfacique. Idéa-
lement, pour obtenir une surface dont la tangente est continue quelle que soit la position
des mailles, il serait nécessaire d’utiliser, au moins, une interpolation cubique. Celle-ci est
coliteuse et, en conséquence, nous avons décidé d’utiliser une interpolation bilinéaire entre
splines cubiques. Elle ne garantit pas la continuité de la normale, mais donne tout de méme
une trés bonne approximation de la courbure.

La premieére étape consiste a calculer une normale en chaque nceud de la surface. Cette
normale est choisie identique a celle utilisée pour 'opération de lissage dans le plan tan-
gent. Elle peut donc étre calculée au début de la procédure de lissage et utilisée, d’'une part,
pour le lissage et, d’autre part, pour la création de la surface.

Ensuite, a chaque aréte linéaire du maillage surfacique, on associe une spline de McCo-
nalogue (courbe du troisieme degré définie par I’équation (3.6)) en déduisant les tangentes
u; des normales précédemment calculées. Chaque aréte est traitée indépendamment des
autres. La figure 3.55 montre schématiquement la construction des deux tangentes u, et u,
relatives a une aréte (x, x,) du maillage. Elles sont obtenues par projection de cette aréte
sur les deux plans tangents définis par les normales n, et n, en x; et x,. Sid = x, — x4,
ona:

d—(d-n;)n;
YT ld=(d nonl

i=1,2 (3.46)

Cette maniere de calculer les tangentes différe 1égerement de celle utilisée pour re-
mailler les arétes vives (section 3.3). En effet, pour rappel, 'ordonnancement des nceuds
sur les arétes vives permettait de faire passer une parabole par trois points consécutifs et
d’en déduire une tangente. Dans le cas du maillage de surface, il n’est pas toujours pos-
sible de trier les nceuds et, lorsque c’est faisable (dans le cas d’'un maillage structuré), c’est
techniquement complexe et cofiteux. Nous verrons sur un exemple (section 3.5.2.8) que les
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FiGURE 3.55 - Construction d’'un segment du spline C sur Uaréte d du maillage surfacique. Les tangentes u,
et u, sont calculées par projection de Uaréte d sur les plans tangents définis par n, et n,.

tangentes utilisées ici sont tout aussi précises que celles utilisées dans le cas des arétes vives
mis a part aux bords de la surface.

FIGURE 3.56 — Un élément surfacique et son patch de Coons associé.

Apres avoir construit les arétes cubiques, chaque facette du maillage surfacique se voit
attribuer un patch de Coons [53], noté S(&, n), interpolant les splines C; (figure 3.56) :

S(E,m) = (A-8)Cn)+uly(n)+ (1 —v)Ci(E)+vCs(E)
—[(1—5)(1—n)x1+€(1—n)xz+€nx3+(1—€)nx4] (3.47)

Ces patches sont créés au début du calcul lors de 'étape de prétraitement. Ils sont
ensuite mis a jour en réévaluant les normales lorsque les nceuds se déplacent. La topologie
du maillage restant identique au cours de la simulation, les liens de voisinage, nécessaires
a la plupart des méthodes de lissage, ne doivent pas étre recréés.
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3.5.2.5 Exemple

A titre d'illustration, la figure 3.57 montre un maillage surfacique créé a partir d’un mail-
lage structuré d’un carré de 4x4 mailles. Trois nceuds internes du maillage plan ont ensuite
été déplacés verticalement de maniére arbitraire. La figure 3.58 montre la surface spline
obtenue par notre algorithme de génération de surface a partir de ce maillage particulier.
le résultat est évidemment beaucoup plus lisse que le maillage original.

FiGURE 3.57 — Exemple d’un maillage surfacique F1GURE 3.58 - Surface spline construite sur le mail-
3D construit a partir d’'un maillage régulier d'un lage de la figure 3.57.
carré duquel trois nceuds ont été déplacés hors
plan.

normale discontinue

F1GURE 3.59 - Surface spline construite sur le mail- FiGURE 3.60 - Vue de profil de la surface de la fi-
lage d’un carré dont le nceud central a été dé- gure 3.59 pour mettre en évidence une disconti-
placé perpendiculairement au plan. nuité de normale.

La figure 3.59 montre un maillage similaire ot nous avons, cette fois, déplacé qu'un
seul noeud interne selon la verticale. Sur cette derniére figure, on voit bien I'influence de
la position de ce noeud sur la courbure des patches voisins. La position du noeud influence
non seulement la surface spline des éléments adjacents, mais aussi les voisins de ces élé-
ments par I'intermédiaire de la normale. La surface obtenue ne possede pas une symétrie
de révolution.
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La figure 3.60 montre la surface de la figure 3.59 sous un autre angle. Ceci nous permet
de faire remarquer que la normale a la surface n’est pas toujours continue au passage d’'une
aréte a 'autre. Pour obtenir cette continuité, nous aurions dii interpoler au troisieme degré
les quatre splines formant un patch ; ce qui serait vraiment tres coliteux en temps de calcul.
Remarquons que, méme aux nceuds, les dérivées ne sont continues que dans le cas tres
particulier d’'un maillage régulier non déformé.

Malgré les quelques défauts de continuité et de symétrie énumérés ci-dessus, nous pen-
sons que l'utilisation d’une telle surface d’approximation est trés intéressante et constitue
un bon compromis entre précision et simplicité d’utilisation. En effet, par rapport a une sur-
face composée de patches de Coons bilinéaires, la surface spline semble mieux représenter
une surface réelle et donc permet d’éviter les pertes ou gains de volume dus au remaillage.
De plus, par rapport a une surface dont la dérivée est continue, notre solution a 'avantage
d’étre assez simple et rapide a évaluer numériquement, au prix d’une difficulté accrue lors
des opérations de projection. La section suivante est dédiée a la résolution de ce probleme.

3.5.2.6 Projection sur la surface

Une fois le lissage effectué dans le plan tangent, la nouvelle position du noeud est pro-
jetée sur la surface spline. Cette opération, qui peut paraitre simple a premiere vue, est en
fait relativement compliquée si on veut qu’elle soit robuste et rapide. Elle peut donc étre
vue comme la source principale de problémes lors de 'exécution de méthode.

Tout d’abord, effectuer une projection sur une surface du troisieme degré est une opé-
ration assez coliteuse en temps de calcul. La surface étant non linéaire, 'opération de pro-
jection s’effectue par un algorithme de Newton-Raphson pour lequel on doit fournir une
approximation initiale de la solution, sans quoi celle-ci risque de ne pas étre trouvée si la
surface posséde une forte courbure. Cette premiere estimation de la projection est calculée
par une méthode de grille qui consiste a évaluer la position de la surface en des abscisses
curvilignes prédéfinies (§ et n =0,1/3,2/3, 1, soient 16 évaluations qui sont un minimum
pour garantir la convergence) et de garder le point le plus proche de la projection. L'algo-
rithme de Newton Raphson nécessite, quant a lui, '’évaluation des deux dérivées premieres
et quatre dérivées secondes de '’équation (3.47) a chaque itération.

De plus, projeter sur une surface composite nécessite un algorithme de recherche effi-
cace pour éviter de projeter inutilement le point sur un trop grand nombre de patches. Une
premiere possibilité pour simplifier la méthode serait de limiter la recherche de la projection
sur les mailles adjacentes au point a projeter. Ceci entraine une limite dans le déplacement
maximal d’'une maille lors du lissage. En d’autres termes, si on fait cette hypothese, les
mailles ne peuvent pas se déplacer de plus de la longueur d’'une maille lors du lissage. Cette
hypothese n’est pas tres restrictive tant que le maillage utilisé est grossier. Par contre, si
on veut le raffiner, 'opération de lissage limite le déplacement maximum admissible des
mailles et donc aussi, indirectement, le pas de temps. En conséquence, le temps total de la
simulation augmente.

Une méthode de recherche de projection améliorée, permettant des déplacements re-
latifs entre le maillage et la matiere d’amplitude tout a fait arbitraire, est décrite sur la
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(a) tentative de projection (b) déplacement sur le maillage

projection
extérieure

(c) projection trouvée

D les 4 patches actifs
O noeud central
e noeud a projeter

o noeud a tester

--- distance la plus courte

projection —>» meilleure direction
Intérieure

FIGURE 3.61 — Recherche du meilleur ensemble de facettes pour effectuer la projection. Le nceud xi est reposi-
tionné en x] lors du lissage dans le plan tangent et doit étre projeté sur la spline. Une premiére tentative de
projection est effectuée (a) sur les patches voisins du nceud. Si celle-ci échoue, on se déplace sur le maillage
(b) en testant la distance des nceuds voisins a x’l‘. La plus courte distance donne la meilleure direction
de recherche et le prochain ensemble de patches actifs. Cette recherche s’arréte lorsque la distance la plus
courte est celle du nceud central (c). A ce moment, la projection est effectuée avec succés sur les patches
adjacents au dernier nceud.
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figure 3.61. Imaginons que le point x; se soit déplacé pendant la phase lagrangienne en
x? et qu'il soit ensuite repositionné en x7} lors du lissage 2D dans le plan tangent. A de
rares exceptions pres, le point x| ne se situe pas sur maillage surfacique et il faut donc le
projeter sur la surface spline préalablement construite. Pour trouver le patch qui contient
la projection, nous tentons une premiere projection sur les mailles qui sont grisées sur le
dessin, c’est-a-dire celles qui sont adjacentes a la position lagrangienne x{ du neceud. Si une
projection est trouvée a ce stade, la procédure s’arréte ici et on passe au lissage du nceud
suivant. Dans ce cas-ci, on constate qu’aucun des patches grisés ne contient la projection.
Ecartons directement l'idée de projeter successivement sur tous les patches de la surface
(une surface d’un test industriel peut posséder plusieurs dizaines de milliers de patches).
Nous allons donc essayer de trouver le meilleur noeud a partir duquel on pourra appliquer
I'ancien algorithme, c’est-a-dire se limiter a une projection sur les patches adjacents au
neceud. L'idée est simple : on se déplace dans le maillage en suivant les arétes. La direction
du déplacement est celle de I'aréte dont I'extrémité est la plus proche de x7. On procede
ainsi itérativement jusqu’a ce que la distance minimale soit obtenue au point central. A ce
moment, la projection est effectuée sur les patches voisins du dernier point. En procédant
de la sorte, il est trés improbable que la projection de x] ne soient pas localisée sur les
patches voisins. Dans les tres rares cas ou cela arriverait ou dans le cas ou la recherche
échoue, la phase lagrangienne est recalculée avec un pas de temps plus petit. Il est impor-
tant d’insister sur le fait qu’au plus deux tentatives de projection sont faites par nceud. La
recherche du meilleur noeud central n’implique que des calculs de distances.

Une derniére difficulté provient de la simplification que nous avons faite pour la surface
spline : par construction, la surface spline est de continuité C°. Autrement dit, la normale
n’est pas toujours continue entre deux facettes. Et méme si elle I'est presque, il est possible
que la projection n’existe pas. Ce manque de continuité de la normale est assez compliqué
a résoudre. Heureusement, dans Metafor, un probléme tres similaire a déja été résolu dans
le cas de l'algorithme de contact entre surfaces déformables (Graillet et Ponthot [92]). En
effet, lorsque deux maillages surfaciques peuvent entrer en contact I'un avec l'autre, une
projection des nceuds de la premiere surface doit étre calculée sur la seconde. Les mailles
utilisées étant, dans ce cas, bilinéaires, il est trés courant d’obtenir soit une projection mul-
tiple, soit aucune projection (voir figure 3.62).

FiGURE 3.62 - Absence de projection et projection multiple sur
une surface a normale non continue.

L'algorithme utilisé pour déterminer les noeuds potentiellement en contact est le sui-
vant : pour chaque projection, les limites de toutes les surfaces sont étendues pour pouvoir
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localiser des projections qui sont faiblement en dehors de celles-ci. Plus précisément, si une
surface quadrangulaire initiale est paramétrée pour des valeurs des coordonnées réduites &
et 7) variant entre 0 et 1, on accepte les projections sur une plage de valeurs [—6,1+ 6] ou
5 est un parametre déterminé par la bonne pratique (actuellement 6 = 31072). Contraire-
ment au cas d'une surface lisse ol la premiére projection trouvée est toujours considérée
comme la bonne, toutes les projections sont conservées en mémoire et traitées en fonction
des différents cas qui peuvent se présenter :

e Il n’y a eu aucune projection détectée, méme en agrandissant légerement les patches
a l'aide du parametre 6. Dans ce cas, on considere que la projection n’existe pas.

e Il n’y a qu'une seule projection et elle est a I'intérieur d’'un patch : on est dans le cas
le plus simple et la projection trouvée est celle retenue.

e Il y a plusieurs projections détectées sur des arétes ou sur des sommets (a la tolérance
0 pres), on agit alors en réduisant toutes les projections en une seule, soit sur I'aréte
concernée, soit sur le sommet.

Nous proposons donc d’utiliser ce type de méthode de projection qui a fait ses preuves
dans le cadre du traitement du contact.

3.5.2.7 Méthode directe

Lopérateur de lissage résultant de ces améliorations est tres robuste. Il reste cependant
assez coliteux vu le nombre d’opérations nécessaires a sa mise en ceuvre. On voit donc ici
I'intérét d’utiliser une méthode de lissage 2D qui nécessite peu d’itérations. En particulier,
dans le cas d'un maillage structuré généré par la méthode d’interpolation transfinie, il est
parfois possible d’utiliser ce méme mailleur pour repositionner les nceuds (section 3.4.1). A
ce moment, la méthode de repositionnement de nceuds sur surfaces courbes devient directe
et consiste a générer un nouveau maillage entre les arétes délimitant la surface. On projette
alors simplement le maillage transfini sur 'approximation spline de la surface lagrangienne,
construite comme précédemment.

maillage
surfacique

projection (orthogonale)
des noeuds sur la surface

interpolation transfinie
des frontieres

FiGURE 3.63 — Projection de linterpolation transfinie sur le maillage de surface. Ceci n’est possible que si le
maillage généré par interpolation transfinie, basé uniquement sur la forme des frontiéres de la surface, n’est
pas trop éloigné de la surface. Autrement, la projection orthogonale des nceuds peut fournir un maillage
de trés mauvaise qualité ou méme échouer.
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Ce maillage étant une simple interpolation bilinéaire des arétes, il ne prend pas en
compte la courbure réelle de la surface loin de ses frontieres. La figure 3.63 montre un
exemple de surface en forme de sinusoide dont la frontiere est carrée. L'interpolation trans-
finie des frontiéres fournit un maillage plan qui est tres différent de la forme du maillage
surfacique. L'opération de projection orthogonale des nceuds de l'interpolation sur le mail-
lage lagrangien peut donc facilement échouer et on doit alors avoir recours a des méthodes
de lissage itératives.

3.5.2.8 Test de convection

Tout comme nous I'avons fait pour le remaillage des arétes vives (section 3.3.5), il est
intéressant de mesurer 'efficacité de la méthode de repositionnement proposée via un test
de convection. Il s’agit de faire se déplacer une géométrie connue a travers un maillage
quasi eulérien. Initialement, le domaine maillé est plan et rectangulaire (longueur L = 30
mm et largeur [ = 4 mm). On définit une vitesse matiére v = 2 mm/s constante selon la
direction de la longueur. La géométrie a translater est de type sinusoidal. Elle est imposée en
tant que condition limite sur la frontiere du maillage en amont de 'écoulement de matiere
par I'’équation

z(y,t) =Asin(w t)sin(y/l) (3.48)

ol A= 2 mm est 'amplitude de la sinusoide et w est choisi pour obtenir cinq pulsations le
long du domaine (w = 10v7/L s~'). Méme sur maillage structuré, ce type de géométrie
empéche l'utilisation de la méthode directe d’interpolation transfinie (section 3.4.1). En
effet, a tout moment, l'interpolation bilinéaire des frontiéres est tres éloignée de la forme
réelle de la surface, si bien que toute tentative de projection est irrémédiablement vouée
a I'échec. Nous sommes donc réduits a utiliser les méthodes de lissage itératives pour re-
positionner les nceuds. Parmi celles-ci, nous choisissons un lissage laplacien limité a 10
itérations avec un coefficient de surrelaxation de w = 1.5. Pour accélérer la convergence,
le lissage est initialisé avec la position des nceuds au pas de temps précédent. Pour des
raisons pratiques, la surface est extrudée selon z d’'une hauteur h = 0.1 mm pour obtenir
un volume parallélépipédique et pouvoir ainsi simuler ce test de convection comme un pro-
bléeme ordinaire tridimensionnel résolu a I'aide d’éléments finis 3D. Les surfaces supérieure
et inférieure sont donc identiques et traitées de la méme maniére.

Pour insister sur la généralité de notre algorithme, nous utilisons un maillage surfacique
quadrangulaire non structuré isotrope dont la taille de maille moyenne vaut L, = 0.25 mm.
A chaque pas de temps, I'incrément de déplacement vaut L,/4. La simulation est arrétée
aprés un déplacement total de 1.05 L. La figure 3.64 montre le déroulement du calcul.
La géométrie imposée en amont par un mouvement vertical de la frontiere du maillage se
translate a la vitesse v d’avancement de la matiere bien que le maillage soit globalement
fixe.

On peut comparer la solution finale obtenue et la solution analytique du probléme dans
le sens longitudinal. La figure 3.65 montre la sinusoide exacte pour la surface supérieure du
maillage (la face inférieure est décalée d’'une hauteur h) superposée a deux solutions obte-
nues pour deux tailles de mailles différentes (L, = 0.25 mm et L, = 0.1 mm). Tout d’abord,
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déplacement vertical
imposé en amont z=2z(y,t)

déplacement vertical
-1.00 0.0 1.00 2.00

F1GURE 3.64 — Convection sur un maillage non structuré d’'une géométrie connue, imposée par des conditions
aux limites appropriées. Configurations a différents instants (L, = 0.25 mm).

erreur amont solution analytique
N\

FIGURE 3.65 — Comparaison du profil longitudinal obtenu en t = tg, avec la solution analytique pour deux
maillages différents (L, = 0.25 mm et L, = 0.1 mm).
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il est intéressant de constater que, dans les deux cas, la phase de la sinusoide obtenue est
trés proche de celle voulue. Néanmoins, 'amplitude du profil obtenu s’écarte de celle de
la solution de référence. Cet écart, mesuré au premier maximum et noté erreur amont sur
la figure 3.65, est assez important et apparait dés la premiére oscillation de la sinusoide
suivant la frontiere amont. Plus loin en aval, on observe une diminution d’amplitude con-
stante, mais beaucoup plus faible (cette diffusion est d’autant plus faible que le maillage
est fin). La méthode de repositionnement surfacique provoque donc une erreur de prise en
compte de la condition amont non négligeable. Puisque cette erreur n’est pas apparue dans
le test de convection de la section 3.3.5 relatif au remaillage des arétes, nous supposons
qu’elle provient de la différence de méthode utilisée pour le calcul des normales aux noeuds
des extrémités de la surface. La méthode 1D utilisée pour les arétes, qui utilise un schéma
a trois points, est nécessairement plus précise que le schéma a deux points utilisé pour les
surfaces. Cette différence est illustrée sur la figure 3.66.

algorithme 2D
----- (surfaces) Ly

algorithme 1D :
(arétes) L,

F1GURE 3.66 — Différence de calcul de la normale aux nceuds extrémes pour les arétes (algorithme 1D) et pour
les surfaces (algorithme 2D).

Dans le sens transverse, le profil aval (x = L) est comparé au profil amont (x = 0) sur
la figure 3.67. Comme on pouvait s’y attendre, on constate que la diffusion est d’autant plus
faible que le maillage utilisé est fin.

2
1.5¢
e
E 1
N
0.57
——amont
—e—aval (Le=0.1mm)
—e—aval (Le=0.25mm) |
0 1 2 3 4

y [mm]

FiGURE 3.67 — Comparaison du profil transverse avec la solution analytique.

En conclusion, la méthode de relocalisation des nceuds sur les surfaces courbes permet
de convecter une géométrie donnée sur un maillage fixe avec peu de diffusion pourvu que
le maillage utilisé soit suffisamment fin. Le calcul simpliste des normales sur les bords de la
surface provoque cependant une erreur importante dans la prise en compte du déplacement
de la frontiere.
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Remarquons enfin que ce test est certainement un des cas les plus complexes a traiter
puisqu’il s’agit d'un probleme transitoire ou tous les nceuds du maillage subissent de grands
déplacements tout au long du calcul. Il est donc nécessaire d’utiliser de nombreuses itéra-
tions de lissage malgré la surrelaxation. La méthode devient ainsi trés cofiteuse. A titre de
comparaison vis-a-vis des méthodes de lissage dans le plan (pour rappel, le tableau 3.49
montre des temps de 'ordre de 0.5 a 4 us), le temps CPU moyen sur ce test de convection
est de 727 us/nceud/itération.

Pour des problémes stationnaires, le maillage subit de faibles déplacements et on peut
alors généralement se contenter de quelques itérations de lissage. Enfin, dans tous les cas,
il est important d’utiliser une méthode directe lorsque le probléme le permet (mailleur
transfini suivi d'une projection). C’est la méthode la plus rapide a notre disposition.

3.5.3 Frontieres eulériennes

Les noeuds situés sur des frontiéres eulériennes, c’est-a-dire des surfaces a travers les-
quelles la matiere peut s’écouler, nécessitent un traitement particulier. Le probleme a déja
été abordé lors du repositionnement des coins du maillage. A trois dimensions, il est com-
mode de traiter simultanément tous les noeuds de ce type de frontiére en utilisant la mé-
thode décrite a la section 3.2.

sens d'avancement

F1GURE 3.68 — Découpe du maillage par une frontiére eulérienne.

La figure 3.68 représente un maillage qui s’est déplacé au-dela d’'une frontiere plane
délimitant un domaine quasi eulérien. Une simple projection orthogonale des noeuds qui
ont traversé la frontiere sur la surface provoque une distorsion des éléments adjacents et ne
permet pas de respecter la frontiere réelle de la matiere. Il faut donc calculer I'intersection
du maillage avec le plan frontiere. Pour simplifier le probleme, nous faisons I’hypothése que
les noeuds du maillage de frontiére n’ont qu'une seule aréte hors du plan de la frontiere et
que cette aréte est plus ou moins perpendiculaire a la frontiere. De plus, cette aréte ne doit
pas avoir franchi entierement la frontiére. Cette seconde hypothese est moins restrictive que
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la premiére. Pour la contourner, il suffit de mailler le domaine avec des mailles suffisamment
longues a proximité du plan frontiere (une seule rangée de longues mailles suffit).

aréte la plus . . i lissage i
p intersection / 9 |

! dans le plan |

|

1

S
perpendiculaire |
| |

] ]

L

1

!

!

' (c)

(b)

FIGURE 3.69 — Calcul de lintersection du maillage sur une frontiére eulérienne. Pour chaque nceud initiale-
ment sur la frontiére et qui a traversé celle-ci pendant la phase lagrangienne, on détermine Uaréte la plus

perpendiculaire au plan frontiére (a). Le nceud est repositionné a lUintersection de cette aréte et du plan
(b). Lorsque tous les nceuds ont été traités, on effectue un lissage dans le plan frontiére (c).

1

1

1 5

',' plan frontiére
1

1

(a)

Le calcul de l'intersection consiste, pour chaque nceud de la frontiere, a calculer l'in-
tersection de l'aréte perpendiculaire a la frontiére avec celle-ci et a le repositionner a cet
endroit. Si un nceud posséde plusieurs arétes hors du plan de la frontiere ou si 'aréte n’est
pas perpendiculaire au plan (figure 3.69), il est toujours possible d’utiliser la méthode pro-
posée en sélectionnant 'aréte la plus perpendiculaire. Dans ce cas, la qualité du maillage
surfacique obtenu risque de se dégrader. Il faut alors combiner la méthode avec un lissage
dans le plan de la frontiére. La méthode résultante est générale et efficace. Elle a été utilisée

avec succes dans le test de convection de la section 3.5.2.8.
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3.6 Conclusions

Ce chapitre recense les nombreuses méthodes de repositionnement de nceud qui nous
seront utiles pour pourvoir gérer le maillage dans les simulations visées par ce travail. Il
s’agit principalement de procédés stationnaires tels que la mise a forme de t6les minces
(laminage, planage ou profilage).

La difficulté principale de ce genre de modéle, au niveau de la cinématique du maillage,
est le déplacement des noeuds sur les surfaces libres. D’'une part, cette opération doit préser-
ver la forme de la surface et, d’autre part, les différences de densités de mailles, imposées
volontairement par I'utilisateur dans le but d’affiner la solution dans les zones de déforma-
tion et de contact, doivent étre préservées. Pour résoudre le premier probleme, nous avons
mis au point un algorithme efficace et robuste basé sur la reconstruction d'une surface spline
a partir du maillage surfacique en question. Le probleme de conservation du raffinement
du maillage est résolu par l'utilisation d’un lissage laplacien pondéré de maniere originale.
Ce nouvel algorithme est beaucoup plus performant que les méthodes traditionnelles, no-
tamment le lissage isoparamétrique. Il permet ainsi, dans le cas de procédés stationnaires,
de trouver, en quelques itérations, une nouvelle configuration du maillage de surface. Cette
rapidité compense le colit relativement élevé de gestion de surface spline.

Enfin, nous nous sommes attardé sur la gestion des conditions aux limites, sujet ra-
rement abordé dans la littérature concernant le formalisme ALE. La mise au point d'une
méthode simple et efficace de découpe de maillage par une frontiere eulérienne en aval du
processus garantit des résultats qui sont peu influencés par la position de cette frontiere.
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Chapitre 4

Transfert des données

4.1 Introduction

Ce chapitre décrit la deuxiéme étape de la phase eulérienne de I'algorithme de résolu-
tion ALE par séparation des opérateurs. Suite a la premiere étape lagrangienne, un nouveau
maillage a été construit par repositionnement des noeuds (chapitre 3). Il est ensuite néces-
saire de transférer les valeurs définies sur le maillage lagrangien vers le nouveau maillage,
que nous appelons de maniére concise, comme Benson [26], le maillage eulérien. Pour rap-
pel (voir chapitre 2, équation (2.33)), ce transfert peut s’écrire mathématiquement sous la
forme d’un systéme d’équations scalaires indépendantes :

Jo
—| 4+c¢c-Vo=0 4.1)
ot

x

ol c est la vitesse relative de la matiere par rapport au maillage (équation (2.14)) et o dé-
signe une des grandeurs a transférer. Il peut s’agir d'un champ défini aux nceuds du maillage
(vitesse, température, etc.) ou de valeurs aux points d’intégration des éléments finis (com-
posante du tenseur des contraintes, variables d’hérédité du matériau, masse volumique,
etc.). La variable t désigne ici un temps fictif pendant lequel s’effectue la convection des
données d’'un maillage a l'autre.

De maniere équivalente, cette étape peut étre également vue comme un probleme d’in-
terpolation (ou de projection) entre deux maillages :

o (4.2)

ot |,
qui exprime simplement que le champ a transférer ne doit pas étre modifié lors de la phase
de transfert lorsqu’on se place en un point géométrique x donné.

Quelle que soit 'approche utilisée, la résolution de ces équations, bien que d’apparence
simple, pose plusieurs problemes. Le principal vient du fait que le champ a transférer n’est
généralement pas suffisamment continu.
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D’une part les champs nodaux sont continus, mais leur gradient est discontinu a la fron-
tiere des éléments. Une interpolation naive d’'un maillage vers I'autre entrainera donc des
erreurs importantes. La figure 4.1 le montre dans le cas d’'un maillage régulier unidimen-
sionnel. Le champ a transférer o est tracé en ordonnée. Les éléments finis, en abscisse, ont
des fonctions de forme linéaires et les valeurs aux nceuds xiL permettent de tracer le champ
linéaire par morceaux o’ représenté en noir sur la figure. Linterpolation du champ aux
nouvelles positions des nceuds x; donne la courbe o*.

valeur au noeud

K_\ o valeur au
TN .
; . point de Gauss

‘ . _
v

L
élément fini ]
noeud point de Gauss

I M L A
.. xl x/F
élément fini

FIGURE 4.1 - Interpolation d’un champ nodal de  FIGURE 4.2 — Interpolation d’'un champ aux points

continuité C°. En abscisse, les éléments finis. En de Gauss. Le champ a transférer, en noir, est cette
ordonnée, la variable a transférer. En noir, le fois un ensemble de valeurs discrétes. Les valeurs
champ avant transfert. En rouge, le champ aprés en rouge représentent le champ o obtenu aprés
un transfert par interpolation naive. transfert par une méthode quelconque.

D’autre part, les valeurs aux points de Gauss sont des inconnues faibles du probleme
et sont, par conséquent, uniquement connues en ces points. On est donc en présence de
valeurs discretes qui doivent étre évaluées en des points ou elles ne sont pas définies. La
figure 4.2 illustre schématiquement la situation dans un cas simple. Tout comme la figure
précédente, il s’agit d’'un maillage unidimensionnel tracé en abscisse pour lequel on a re-
porté les valeurs du champ inconnu o en ordonnée. En noir, les valeurs o sont les valeurs
discretes a transférer vers les nouvelles positions des points de Gauss. En utilisant une des
techniques parmi celles décrites dans ce chapitre, on obtient les valeurs en rouge sur la
figure.

Dans le cas des valeurs aux points de Gauss, toutes les méthodes de transfert néces-
sitent donc une étape préalable de reconstruction d’'un champ continu au voisinage des
points Gauss. Il peut s’agir d’'une reconstruction globale d’'un champ continu sur la totalité
du maillage ou d’une reconstruction locale, éventuellement discontinue aux frontieres des
éléments finis, mais suffisamment continue a l'intérieur de ceux-ci pour permettre I'éva-
luation de la grandeur a transférer et de son gradient. La qualité de cette approximation
influence directement la précision de la méthode de transfert utilisée dans un second temps.

Parmi les méthodes de transfert disponibles, il est important de choisir celles qui pré-
servent localement la monotonicité du champ transféré. En effet, le caractére hyperbolique
de I'équation (4.1) nécessite un décentrage vers 'amont (upwind) de la discrétisation des
dérivées spatiales. Si on n’y prend garde, de nouveaux maxima ou minima peuvent appa-
raitre. En mécanique non linéaire, certaines grandeurs ont un domaine de valeurs admis-
sibles qu’il est important de respecter. Par exemple, la déformation plastique équivalente est
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un scalaire non négatif. Si la méthode de transfert provoque 'apparition d'une valeur néga-
tive, il faut inévitablement la corriger pour éviter les problemes qui pourraient survenir au
niveau de la gestion ultérieure du matériau. Si le schéma de transfert est conservatif, c’est-
a-dire s’il conserve l'intégrale de la solution sur le domaine de calcul, cette conservation
sera certainement perdue lors de la correction. L'apparition d’un nouveau maximum de dé-
formation plastique peut également étre problématique. Le matériau a subi un écrouissage
additionnel qui le rendra donc artificiellement plus dur pour le reste de la simulation.

De plus, la vitesse d’exécution joue un role important dans le choix d'une méthode.
Lorsque le formalisme ALE est utilis€é comme une alternative au formalisme lagrangien,
le but est généralement de gagner du temps de calcul par rapport a ce dernier. On doit
donc se limiter a des algorithmes simples et rapides. Dans ce contexte, il est par exemple
difficilement envisageable d’utiliser des méthodes d’intégration implicites pour résoudre le
probléme de transfert (4.1).

Enfin, Benson [22], un des pionniers dans le domaine du traitement de cette phase
convective de l'algorithme ALE, insiste également sur I'importance de la consistance (la
solution reste identique si ¢ = 0), la précision et la stabilité du schéma. Ces qualificatifs
peuvent sembler évidents, au premier abord. Il faut cependant étre conscient que des sché-
mas inconsistent, imprécis, voire méme instables ont couramment été utilisés par le passé
dans ce contexte.

Dans le cadre de ce travail, nous avons choisi de mettre au point une nouvelle méthode
de transfert en partant de celle proposée par Huerta, Casadei et Donéa [47, 114, 115]. Leur
approche est basée sur la méthode des volumes finis qui, outre sa simplicité, possede l'in-
térét majeur de conservation de l'intégrale du champ transféré. Elle permet aussi de traiter
de maniere naturelle le décentrage amont nécessaire a '’évaluation des termes convectifs.

Cette méthode de transfert, telle que décrite par ses auteurs, est seulement du premier
ordre et provoque, dans certains cas, une diffusion trop importante pour obtenir des résul-
tats précis sur de longues distances de convection. Elle a cependant 'avantage indéniable
de pouvoir traiter des éléments finis a plus d’'un point de Gauss grace a un maillage de
volumes finis approprié.

Pour 'améliorer, nous choisissons de reformuler le probléme sous la forme d'un pro-
bleme d’interpolation (équation (4.2)) mais nous conservons le maillage de volumes finis
proposé par Huerta, Casadei et Donéa. De cette maniere, il est possible d’obtenir un schéma
du second ordre, beaucoup plus précis, mais toujours mathématiquement tres simple. Ce
schéma original peut étre vu comme une généralisation aux cas 3D implicites et aux élé-
ments a plus d’un point de Gauss de celui utilisé par Benson [22] en dynamique explicite a
deux dimensions pour des éléments finis sous-intégrés.
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4.2 Revue bibliographique

Avant de nous attarder sur I'algorithme choisi dans ce travail pour effectuer le trans-
fert des valeurs d’'un maillage vers 'autre, nous passons en revue les différentes méthodes
présentes dans la littérature. Elles peuvent étre classées principalement en deux grandes
familles.

a’l_[vUUQ]
61:[n1,n2,n3,n1] a, PU“U%
;=\,
a,=[v,,v]

FIGURE 4.3 - Description « éléments finis » d’un FIGURE 4.4 — Description « volumes finis » d’un

maillage. La définition de l'élément e; est une maillage. La définition du volume v, est la liste
simple liste ordonnée de ses quatre nceuds de ses frontiéres a;,a,,as,a,. Chacune de ces
Ny, Ny, N3, Ny. Il n'est pas possible de connaitre arétes possede des liens directs vers les deux vo-
les éléments voisins de e, sans parcourir tous les lumes voisins.

éléments du maillage.

La premiere famille se base sur la représentation « éléments finis » du maillage et con-
siste généralement a reconstruire un champ global continu de la grandeur a transférer. Le
succes de ces méthodes parmi les mécaniciens du solide (Huétink [119] et Ponthot [168],
par exemple) s’explique par le fait qu’elles nécessitent uniquement la description topolo-
gique simplifiée du maillage que I'on retrouve dans les codes éléments finis lagrangiens,
c’est-a-dire une liste de noeuds suivie d’'une liste d’éléments, ces derniers étant définis par
leurs nceuds respectifs (figure 4.3). Cette maniére de stocker la topologie du maillage est
amplement suffisante pour appliquer la méthode des éléments finis. Cependant, elle ne
fournit aucune notion de voisinage. Il n’est par exemple pas possible de déterminer faci-
lement les éléments voisins d’'un élément donné sans parcourir toute la liste d’éléments.
Cette famille de méthodes de transfert travaille donc uniquement sur les deux tableaux dis-
ponibles dans le cadre de la méthode des éléments finis : la liste de tous les nceuds ou la
liste des nceuds d’'un élément donné.

La deuxieme famille de méthodes provient du savoir-faire des mécaniciens des fluides
(Benson [22] et Donéa [62], parmi d’autres) et de la méthode des volumes finis. La des-
cription topologique d’'un maillage de volumes finis est radicalement différente de celle
d’un maillage d’éléments finis (voir par exemple Beall et Shephard [17]) : il est consti-
tué d’une liste globale d’arétes (facettes en 3D) et chaque volume est défini par la liste
des entités constituant sa frontiere (figure 4.4). Ici, les relations de voisinage sont direc-
tement utilisables et permettent de traiter localement les termes convectifs entre chaque
volume de maniere tres simple. Malheureusement, ce type de représentation n’est généra-
lement pas disponible dans un code éléments finis lagrangien. L'utilisation de ces méthodes
de transfert nécessite donc de faire coexister une double représentation du maillage. Une
autre difficulté vient de la différence entre le nombre de points de collocation d’un volume
fini et du nombre de points de Gauss d’'un élément fini. Généralement, on utilise un seul
point par volume alors qu’il est courant, dans le cas de codes implicites, d’utiliser plusieurs
points de Gauss par élément fini. La majorité des auteurs qui choisissent la méthode des
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volumes finis, malgré la difficulté liée a la représentation du maillage, se bornent a utiliser
un seul point de Gauss par élément fini pour garantir la correspondance avec le point de
collocation du volume fini correspondant. Ceci explique qu’a '’heure actuelle, malgré les
qualités évidentes des schémas de type « volumes finis » en termes de simplicité mathéma-
tique et de précision, de nombreux auteurs utilisent toujours des méthodes basées sur une
représentation éléments finis du maillage.

Dans la suite, nous nous focaliserons principalement sur le probléeme du transfert des va-
leurs aux points de Gauss comme le font la plupart des auteurs. Le transfert des grandeurs
nodales est généralement considéré dans la littérature comme un cas particulier a celui des
valeurs aux points de Gauss et il est donc traité de maniere similaire. En effet, les méthodes
utilisables pour transférer ou interpoler un champ discret sont facilement adaptables au cas
d’'un champ continu, mais I'inverse n’est évidemment pas vrai. Il est donc commode d’uti-
liser le méme type d’algorithme dans les deux cas si c’est possible. Remarquons également
que la majorité des grandeurs a transférer pour les opérations de mise a forme qui nous
intéressent sont localisées aux points de Gauss (ce point sera détaillé a la section 4.3). En
particulier, si le probleme ne possede pas de champ thermique et que les forces d’inertie
sont négligeables, aucune grandeur nodale ne doit étre transférée.

4.2.1 Méthodes de type « éléments finis »
4.2.1.1 Reconstruction d’'un champ continu

Le transfert des grandeurs aux points de Gauss nécessite d’abord la reconstruction d'un
champ continu a partir de valeurs discretes. Pour ce faire, la technique la plus simple con-
siste, pour chaque élément fini, a extrapoler aux nceuds les grandeurs aux points de Gauss
par la méthode des moindres carrés (voir par exemple Hinton et Campbell [110], Huétink
etal. [121], Wisselink et Huétink [207], Ponthot [168], Aymone et al. [11, 13]) en écrivant
pour chaque point de Gauss j de ’élément i :

n
o = Z NI(x"67) oot (4.3)
I=1

éme

ou NiI (x) est 1a I*™ fonction de forme de ’élément i, afG’j est la valeur de o évaluée au j
point de Gauss de I'élément i et G?IOd’I est la valeur inconnue de o au nceud I de I'élément
i et n est le nombre de noeuds de I'élément. En rassemblant les valeurs de o aux points de
Gauss et aux noeuds de I'élément i dans des vecteurs, on peut écrire :

o= 0 (4.4)
ol ®; est une matrice qui regroupe les valeurs des fonctions de forme Nl.I évaluées aux
points de Gauss. Le systéeme est inversé, en utilisant la méthode des moindres carrés si
nécessaire, pour déterminer les valeurs nodales a partir des valeurs aux points de Gauss.
De cette maniere, le champ obtenu est continu sur chaque élément. La figure 4.5 illustre
cette opération pour un champ unidimensionnel et des éléments a deux points de Gauss. On
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PG2 .
o vy O, Nod2 o
—  —¥

FiGURE 4.5 - Champ o continu par élément. FIGURE 4.6 — Champ globalement continu obtenu
Chaque nceud, mis a part les extrémités du mail- en moyennant les valeurs nodales des éléments
lage, posséde deux valeurs de o. Il est possible voisins. Si on évalue ce champ aux points de
d’obtenir des valeurs négatives a partir de va- Gauss, la valeur a changé (les schémas basés
leurs toutes positives. sur ce type de reconstruction ne sont pas consis-

tants).

constate que, malgré des valeurs initialement toutes positives, 'extrapolation peut produire
des valeurs négatives.

Pour rendre le champ globalement continu sur tout le maillage, les valeurs nodales
par élément obtenues lors de 1’étape précédente sont simplement moyennées aux nceuds
(figure 4.6). Pour chaque nceud on peut écrire :

1 &
oNed = — Z ol (4.5)
n 4
i=1

ot oN°d est 1a valeur nodale unique au nceud et N est le nombre d’éléments qui contiennent
le nceud. Cette technique est couramment utilisée en post-traitement pour visualiser de ma-
niére continue les champs discrets et donc généralement déja codée dans un programme
élément fini lagrangien traditionnel. Cependant, il est facile de comprendre que ce type de
reconstruction est beaucoup trop grossier pour étre utilisé dans un schéma de convection
ou d’interpolation. En particulier, elle n’est pas consistante a cause de 'opération de moyen-
nage : la reconstruction globale ne permet pas de retrouver les valeurs initiales aux points
de Gauss lorsqu’elle est évaluée en ceux-ci.

[ patch topologique
® noeud central
4+ points de Gauss voisins

FIGURE 4.7 - Superconvergent Patch Recovery (SPR) d’aprés Guerdoux [95]. La valeur du champ au neceud
central est déduite des valeurs aux points de Gauss voisins par interpolation d’ordre élevé.

Dans le cadre du formalisme ALE, Guerdoux [95] propose une technique de recouvre-
ment par patch élémentaire (également appelée Superconvergent Patch Recovery — Zienkie-
wicz et Zhu [213]). Elle consiste a reconstruire une approximation polynémiale locale du
champ a partir des valeurs connues dans un voisinage du point considéré (figure 4.7).

o(x)=P(x)-a (4.6)
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ol P est une base polynémiale d’ordre donné et a, un vecteur de coefficients qui sont déter-
minés par moindres carrés. Cette approximation, construite autour d’un nceud a l'aide des
valeurs aux points de Gauss voisins, permet de définir une valeur nodale plus précise que
la technique précédente, mais elle nécessite d’avoir a disposition des relations de voisinage
entre éléments. La méthode peut étre également utilisée autour d'une position quelconque
en déterminant les points de Gauss les plus proches.

4.2.1.2 Transfert par interpolation

La méthode de transfert la plus intuitive consiste a effectuer une interpolation entre
les deux maillages. Elle ne nécessite aucune hypothese sur les deux maillages. Ce type de
technique est donc également utilisé apres un remaillage complet pour lequel le nombre de
neceuds et le nombre d’éléments changent.

Apres avoir reconstruit un champ continu sur le maillage lagrangien si nécessaire, il
suffit d’évaluer ce champ pour tous les points du nouveau maillage dont on veut connaitre la
valeur. La difficulté principale est alors de rechercher, pour chacun de ces points, ’élément
du maillage lagrangien dans lequel il est localisé. Il est donc nécessaire de mettre en place
des techniques de recherche performantes pour pouvoir utiliser efficacement cette méthode
(voir, par exemple, Jansen et al. [124], Krause et Rank [132] pour des maillages 2D et
Aymone et al. [13] dans le cas de maillages 3D d’hexaedres). La précision obtenue est
fonction de la qualité de la reconstruction préalablement utilisée. On obtient par exemple,
pour un champ reconstruit sur I’élément i par (4.4) :

E _ PG _ Nod
oc'=0,"=%0" 4.7)
ou, de maniere équivalente, pour le seul point de Gauss j,

of =79 = Ngh™ (4.8)

ol N = N,(x"%7) est la ligne j de la matrice ®,.
Nous verrons qu’il est possible d’améliorer cette méthode en faisant 'hypothese d’'une
topologie de maillage constante au cours de I'interpolation (section 4.5). Dans ce cas, la

recherche de I’élément contenant le point a interpoler n’est plus nécessaire, ce qui accélere
notablement la recherche.

4.2.1.3 Intégration au premier ordre
En effectuant un développement en série de Taylor du champ o autour du point consi-
déré ou en intégrant 'équation (4.1) au premier ordre, on obtient :
E _ L _— ~L
oc"=0"—d-Vo=0"—Atc-Vo (4.9)

ot of et ol sont respectivement les valeurs du champ sur le nouveau et sur 'ancien mail-
lage et d, que 'on appelle déplacement convectif, est le vecteur joignant la position lagran-
gienne du point a la nouvelle position (figure 4.8). Cette relation simple permet d’effectuer
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le transfert des données tant que le déplacement de la matiére par rapport au maillage reste
faible. Le principal avantage de cette technique est d’étre consistante, ce qui se démontre
de maniere évidente si d = 0.

configuration ‘ configuration

lagrangienne eulérienne

FIGURE 4.8 — Définition du déplacement convectif comme le vecteur reliant la position lagrangienne (avant
repositionnement des neeuds) d’'un point du maillage a sa position eulérienne (apres repositionnement des
neeuds).

Ponthot [168] et Aymone et al. [13] utilisent cette méthode pour transférer les valeurs
aux points de Gauss dans leur implémentation respective du formalisme ALE. Le gradient
est évalué a partir du champ continu reconstruit par extrapolation et moyenné aux nceuds
(équation (4.8)). Aucun décentrage n’étant effectué, le schéma obtenu est inconditionnel-
lement instable.

Pour améliorer la stabilité, Huétink et al. [121] et plus récemment Wisselink et Huétink
[208] proposent la méthode WLGS (weighted local and global smoothing) qui consiste a
pondérer I'opération d’extrapolation (local smoothing - équation (4.8)) et 'opération de
transfert calculée avec le gradient du champ global lissé (global smoothing - équation (4.9)).
En utilisant les mémes notations que précédemment, on obtient, pour le point de Gauss j
de I'élément i (les indices ont été supprimés pour alléger I'écriture) :

cf=(1-a) (O‘L +d - (BTGNOd)) +a (N O'NOd) (4.10)

ol B et la matrice des gradients des fonctions de forme de 1’élément évaluée au point de
Gauss considéré et a est le coefficient de pondération, calculé en fonction du nombre de
Courant (C < a(C) < 2C). On remarque en particulier que ce schéma est consistant (of =
ol si C = 0). Huétink montre que cette pondération introduit une diffusion artificielle
qui stabilise le schéma. Le terme de diffusion est d’autant plus grand que le déplacement
convectif est important. En combinant une méthode instable et une méthode trop diffusive,
on obtient une méthode stable, mais toujours peu convaincante en termes de précision.

Stoker [187], Guerdoux [95], Philippe [164] utilisent également une intégration au
premier ordre pour transférer les valeurs nodales sur des maillages tétraédriques. Le gra-
dient est évalué dans 'élément amont pour éviter les oscillations. La méthode résultante
est stable, mais on observe cependant une forte diffusion.
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4.2.1.4 Schéma de Lax-Wendroff

Huerta, Casadei et Donéa [47, 116] proposent d’intégrer temporellement I'équation
de convection par un schéma de Lax-Wendroff. Il est obtenu classiquement en effectuant
un développement en série de Taylor au second ordre ou les dérivées temporelles sont
remplacées par des dérivées spatiales grace a ’équation originale (4.1) :

F=ot A30+At2 0 %o ,j=1,2,3 (4.11)
o' =0"—CAt—+ —c;¢c;(—— avec i,j=1,2, .
T ox; 2 T ox; Ox; J
Cette équation contient non seulement la dérivée premiere du champ o mais également sa
dérivée seconde. Ces dérivées sont évaluées en utilisant la méthode des résidus pondérés
sur la relation :
JV

e

NIVGdV=—J

Ve

GVNIdV+J N'ondsS (4.12)

Se

ol V, est le volume d’un élément fini, S, sa frontiere et N’, les fonctions de forme de
I’élément. Les intégrales sur la frontiere de I'élément sont évaluées en extrapolant o a
I'aide des fonctions de forme élémentaires. On évite ainsi 'accés explicite aux éléments
voisins pour calculer le gradient et cette méthode reste donc de type « éléments finis » bien
que la relation (4.12) soit généralement utilisée pour une formulation en volumes finis.
Cette procédure peut étre vue comme un lissage du gradient de o. Une fois discrétisées
et assemblées, les équations forment un systeme qui est diagonalisé et résolu pour fournir
des valeurs nodales de Vo. Ces valeurs sont alors interpolées aux points de Gauss pour
permettre 'évaluation de (4.11).

Le schéma résultant est simple et applicable a des éléments finis a plusieurs points de
Gauss. Il possede cependant une précision qui n’est pas du second ordre contrairement a
un schéma de Lax-Wendroff classique a cause de 'opération de lissage du gradient. De plus,
rien n’'empéche l'apparition de nouveaux maxima dans la solution.

Cette méthode est également recommandée par Belytschko et al. [20] dans les cas oti la
résolution couplée qu'’ils proposent (basée sur 'équation (2.27) — voir aussi Liu et al. [142])
devient trop complexe a mettre en ceuvre.
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4.2.2 Méthodes de type « volumes finis »

Les méthodes suivantes se basent sur une reconstruction locale du champ o a partir
des valeurs aux points de Gauss. Elles nécessitent toutes un acces direct aux valeurs des
éléments voisins pour construire cette approximation. Elles requierent donc un stockage
de la structure de maillage de type « volumes finis » (figure 4.4). Ces méthodes mélangent
généralement des schémas convectifs (intégration temporelle de I'équation (4.1)) et des
schémas d’interpolation (intégration spatiale de I'équation (4.2)) si bien que la distinction
entre les deux approches est souvent difficile a faire.

Les volumes finis possédent généralement un seul point de collocation en leur centre.
Si on veut résoudre le probleme de transfert en utilisant un maillage de volumes finis iden-
tique a celui utilisé par la méthode des éléments finis, on est limité a l'utilisation d’éléments
sous-intégrés, c’est-a-dire possédant un seul point de Gauss, pour avoir une correspondance
entre le point de collocation du volume et le point d’intégration de I’élément.

On distingue donc les méthodes qui ne gérent qu'un seul point de Gauss par élément
fini de celles qui peuvent en gérer plusieurs.

4.2.2.1 Un point de Gauss par élément

Le pionnier dans le domaine est Benson [22] qui, des 1989, met au point un algorithme
simple et peu diffusif basé sur 'expression de la conservation de la grandeur a transférer :

J oEdV':J oldv (4.13)
A% v

ou V est le volume du domaine de calcul.

En considérant un champ constant par élément et en écrivant cette relation pour chaque
élément du nouveau maillage, Benson exprime la nouvelle valeur de o en fonction des
valeurs des éléments adjacents. Par exemple, dans le cas de la figure 4.9, on a, pour la
grandeur ag que 'on cherche a déterminer :

Vol = Vyol+AVsor +AV, 0L+ AV o}
= Vioy—(AV, + AV, + AV 0 + AVyof + AV, 05+ AVgoy  (4.14)

Mis a part le cas unidimensionnel, la méthode est cependant complexe a mettre en
ceuvre, car elle nécessite le calcul de I'intersection des deux maillages pour évaluer les AV;
(voir Grandy [93]). C’est pourquoi la plupart des implémentations négligent par exemple
les flux de coin (AV, et AV, sur la figure 4.9). Ce schéma est précis au premier ordre.

Pour obtenir un schéma du second ordre, Benson utilise une approximation linéaire de
o sur chaque élément. Le gradient Vo, constant sur chaque élément, peut étre calculé
de différentes facons. Benson propose d’utiliser une reconstruction locale parabolique qui
correspond au schéma MUSCL (Monotone Upstream-centered Scheme for Conservation Laws)
de Van Leer [200]. Pour éviter les oscillations et stabiliser le schéma, la valeur du gradient

98



CHAPITRE 4. TRANSFERT DES DONNEES

volumes :

V'=VA4AVA+AVA+AV,
V=V A+AVA+AV.A+AV,

= 7= VL+(A VAAVAAV) fluz "entrant”
-(AVAAVA+AV) fluzx "sortant”

FIGURE 4.9 — Opérateur de projection 2D par Benson. On a représenté une seule maille (en gras) du maillage
en configuration eulérienne. La valeur de o sur cette maille est déduite des valeurs dans la maille lagran-
gienne correspondante et dans les mailles adjacentes 6, 7 et 8. Si le déplacement convectif est faible, les
volumes d’intersection des deux maillages peuvent étre vus comme des flux entrant et sortant de la maille
eulérienne.

est localement modifiée dans les zones ot la solution varie brusquement (on parle de limi-
teur de flux). Ce type de reconstruction fournit un schéma précis au second ordre partout
ou le champ inconnu varie peu et du premier ordre partout ailleurs. Grace au limiteur de
flux, la monotonicité de la solution est préservée, c’est-a-dire que le schéma garantit I'ab-
sence d’oscillations dans la solution si le champ initial en est dépourvu. Cette méthode a été
récemment étendue au cas de maillages non structurés de quadrangles, toujours par Ben-
son [26]. Dans ce cas plus complexe, certaines parties du calcul, comme la détermination
du gradient du champ inconnu, sont effectuées a une dimension selon chaque direction
du maillage. La nécessité d’utiliser un seul point de Gauss par élément est le point faible
majeur de cet algorithme de transfert.

Van der Helm et al. [198] proposent une méthode similaire basée sur un schéma de
Lax Wendroff. Il s’agit d'un schéma unidimensionnel auquel on ajoute un limiteur de flux
de type Van Leer pour éviter les oscillations typiques d'une approximation du second ordre.
La méthode est étendue a deux dimensions en appliquant le schéma simultanément dans
les deux directions orthogonales du maillage, que I'on suppose structuré et constitué de
quadrangles. En pratique, on observe une diffusion d’autant plus grande que la vitesse
de convection n’est pas alignée sur la grille de calcul. De plus, le limiteur de Van Leer
étant calculé uniquement dans deux directions orthogonales, il ne garantit pas toujours
I'absence d’oscillations dans la solution. Enfin, tout comme la précédente, cette méthode
est applicable uniquement a des éléments sous-intégrés.

Geijselaers et Huétink [83, 85] proposent un algorithme implicite de type Discontinuous
Galerkin sur maillage 2D d’éléments triangulaires. Le schéma utilise deux parametres a fixer
par l'utilisateur qui controlent sa diffusion et sa stabilité. Cette méthode semble cofiteuse
vu son caractere implicite et ne préserve pas la monotonicité de la solution.
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Huerta, Casadei et Donéa [115] utilisent 'approche convective et discrétisent spatia-
lement I’équation de convection (4.1) par un schéma de Godunov du premier ordre. Le
schéma obtenu correspond a I'algorithme d’interpolation de Benson (équation (4.14)) pour
lequel les gradients de la valeur a transférer seraient nuls. La formulation a été étendue au
cas tridimensionnel par Potapov [172]. Le schéma proposé est cependant du premier ordre
et présente donc une forte diffusion.

Le code de calcul Abaqus/Explicit [55] utilise également un schéma de transfert de type
volumes finis (voir par exemple les simulations de découpe des métaux par Pantalé et al.
[162]) mais, encore une fois, seul 'élément sous-intégré est utilisable pour une analyse
ALE.

4.2.2.2 Extensions a plusieurs points de Gauss

Mis a part les codes de dynamique rapide, qui utilisent quasi exclusivement des éléments
sous-intégrés couplés a des algorithmes explicites d’intégration temporelle, et qui peuvent
donc se contenter d'un schéma de transfert faisant '’hypothéese d’un seul point de Gauss par
élément, il est nécessaire d’étendre les algorithmes précédents au cas d’éléments possédant
plusieurs points de Gauss. Ce type d’élément plus riche est généralement utilisé lorsqu’on
décide d’intégrer de maniere implicite les équations d’équilibre.

Plusieurs tentatives existent pour coupler les schémas précédents a l'utilisation d’élé-
ments finis a plusieurs points de Gauss. Par exemple, pour adapter leur méthode de Godu-
nov au cas de quadrangles a quatre points de Gauss, Huerta, Casadei et Donéa [47, 114]
divisent chaque élément fini quadrangulaire en quatre cellules a I'aide de ses médianes.
Chaque point de Gauss se voit ainsi attribuer un volume fini pour lequel on applique
la méthode de transfert initialement proposée. Cette méthode, nommée par ses auteurs
Godunov-like update, a été utilisée par la suite avec succes par Rodriguez-Ferran et Huerta
[174], Rodriguez-Ferran et al. [175] et Askes et al. [8, 9]. La difficulté principale de mise
en ceuvre est la création, idéalement automatique, du maillage de volumes finis a partir du
maillage des éléments finis. Ceci explique que, mis a part dans ce travail de thése, aucune
extension 3D de la méthode n’a été publiée a ce jour.

Van Haaren et al. [199] adaptent la méthode de Benson pour des maillages 2D composés
d’éléments triangulaires quadratiques a trois points de Gauss. Ces trois points permettent de
calculer directement un gradient Vo pour chaque triangle (figure 4.10). Une mise a jour,
similaire a 'équation (4.14), est appliquée a la valeur moyenne de I’élément. Pour pouvoir
mettre a jour les valeurs des trois points de Gauss a partir de cette valeur moyenne, il est
nécessaire de recalculer un nouveau gradient Vaf. Celui-ci est obtenu par moindres carrés
ou par application du théoréme de Green-Gauss a partir des valeurs o dans les éléments
voisins.

Stocker et al. [186, 187] tentent d’étendre la technique précédente pour des qua-
drangles a quatre points de Gauss. Pour déterminer le gradient de o a partir de ceux-ci, trois
points sont nécessaires et suffisants. Le probleme est donc surdéterminé (voir figure 4.11)
et doit étre résolu localement par moindres carrés. En conséquence, la reconstruction li-
néaire de la solution est déja entachée d’erreurs. Pire, le champ final aprés transport est,
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FIGURE 4.10 - Calcul de Vo sur un triangle a trois FIGURE 4.11 - Calcul de Vo sur un quadrangle

points de Gauss (Van Haaren et al. [199]). Le a quatre points de Gauss (Stocker et al. [186,
gradient est calculé sur chaque triangle indé- 187]). Le gradient est calculé indépendamment
pendamment a Uaide des trois valeurs aux trois dans chaque élément par moindres carrés car le
points de Gauss. probléme est surdéterminé.

par construction, toujours linéaire, quel que soit le champ initial. Autrement dit :
of =0l + Vo, Ax (4.15)
0 0 :

olt 0§ est la nouvelle valeur moyenne de o au centre de I'élément, Vo, et le nouveau
gradient et Ax est le vecteur reliant le point de Gauss au centre de I'élément. Ceci empéche
I'extension de cette méthode a trois dimensions ou il est, certes, possible mais pas tres
judicieux de contraindre les huit valeurs des points de Gauss d’'un hexaédre a vérifier une

telle équation.

Nous constatons donc qu’a 'heure actuelle aucune méthode idéale n’existe pour trans-
férer de maniére précise les grandeurs d'un maillage dans le cas d’éléments finis a plusieurs
points de Gauss. La méthode de Stoker fait une hypotheése tres restrictive sur le gradient
du champ convecté. La méthode de type Godunov proposée par Huerta et al. est, quant a
elle, beaucoup plus générale dans le traitement de la multiplicité des points de Gauss, mais
elle n’a jamais été étendue au second ordre vu la difficulté technique liée a la gestion du
maillage auxiliaire nécessaire de volumes finis.
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4.2.3 Autres méthodes

Pour étre complet, nous décrivons ici brievement une méthode originale de convection
que nous avons développée au début de ce travail de these et qui a été abandonnée par la
suite. Son principe est tres simple : puisque la forte diffusion introduite par les méthodes de
la section 4.2.1 vient principalement des étapes successives d’extrapolation vers les nceuds
et d’interpolation vers les points de Gauss, il suffit de résoudre le probléeme de convection
directement sur les points de Gauss sans passer par les nceuds. Un nouveau maillage dont
les sommets sont les points de Gauss du maillage lagrangien est créé a partir du maillage
de la structure. I’équation (4.1) est discrétisée par la méthode des éléments finis sur ce
maillage auxiliaire.

Points de Gauss du maillage lagrangien

FIGURE 4.12 — Maillages auxiliaires (en rouge) construits sur les points de Gauss du maillage de base pour
des éléments a quatre points de Gauss (a gauche) et a un seul point de Gauss (a droite).

A titre d’illustration, la figure 4.12 représente deux maillages auxiliaires utilisés pour des
éléments quadrangulaires possédant un ou quatre points de Gauss. Les maillages obtenus
sont composés exclusivement de quadrangles si le maillage initial est structuré. De plus,
si par endroits, le maillage initial est composé d’une seule couche d’éléments sous-intégrés
(ou partiellement sous-intégrés), le maillage auxiliaire dégénére et comporte des éléments
linéiques. La construction automatique des maillages auxiliaires n’est pas simple et requiert
la disponibilité des relations de voisinage entre éléments.

Sur le maillage auxiliaire, on utilise une discrétisation spatiale de type SUPG (Stream-
line Upwind Petrov Galerkin — voir Brooks et Hughes [38, 117]) pour éviter les oscilla-
tions numériques. Cette méthode consiste a modifier la formulation standard de Galerkin
en ajoutant aux fonctions de pondération un terme de décentrage « amont » agissant uni-
quement dans la direction de I'écoulement. Il est donc possible d’éviter ainsi la diffusion
transverse que I'on observe avec la majorité des méthodes classiques (y compris la méthode
des volumes finis présentée a la section 4.2.2).

La méthode standard de Galerkin et la méthode SUPG sont des cas particuliers de la
méthode des résidus pondérés. Celle-ci consiste a multiplier '’équation (4.1) par des fonc-
tions de pondération w’(x) et ensuite a intégrer le résultat sur le volume total V du milieu
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continu (ou de I'élément) :

Iao- I
w —dV+ | w'c-VodV=0 (4.16)
y ot v

La méthode SUPG consiste a choisir les fonctions test w; suivantes :

o' =N+ c-VN! (4.17)

llell?
ot les N’ sont les fonctions de forme classiques utilisées pour discrétiser le champ inconnu
(o(x,t)=Y.N(x)o,(t)), o;(t) estlavaleur de o au nceud I et k est un paramétre scalaire
de la méthode qui permet de controler la quantité de diffusion anisotrope introduite par
le schéma dans le sens de I'écoulement. Ce parametre peut étre rendu adimensionnel en
utilisant la relation suivante (Hughes [117]) :

k=a(lc-hy|+|c-hy|) (4.18)

ol a est un nouveau parametre et les vecteurs h; et h, sont définis sur la figure 4.13 dans
le cas d’'un quadrangle.

FIGURE 4.13 - Grandeurs intervenant dans Uévaluation du coefficient k (c est la vitesse de convection).

En remplacant (4.17) dans (4.16), on obtient le systeme d’équations semi-discrétisées
suivant :
Co+Ko=0 (4.19)

ol les matrices C et K sont évaluées et assemblées sur le maillage auxiliaire relatif a la gran-
deur o. Vu son cofit, une intégration implicite des équations (4.19) n’est pas envisageable
dans le cadre du formalisme ALE. On utilise donc un schéma d’Euler explicite apres avoir
diagonalisé la matrice C.

Vu qu’il n’introduit pas de diffusion transverse, ce schéma donne des résultats intéres-
sants (Boman et Ponthot [28, 29, 30]). Une méthode similaire a été récemment utilisée
avec succes par Okazawa et al. [158] pour la résolution de problemes eulériens en méca-
nique du solide. Néanmoins, nous I'avons rapidement abandonnée au profit des méthodes
volumes finis pour plusieurs raisons.

La premiere concerne la limitation sur le type de maillages utilisable. Seuls des maillages
structurés sont envisageables si on veut garder un maillage auxiliaire composé d’un seul
type d’élément. Une extension a des maillages non structurés est possible en décomposant
tous les polygones non quadrangulaires en triangles mais elle complique sérieusement la
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création automatique du maillage auxiliaire. La dégénérescence du maillage dans le cas
d’éléments a un points de Gauss ne possédant que deux voisins est aussi problématique.

De plus, 'application des conditions aux limites est techniquement complexe. Celles-ci
doivent étre imposées aux noeuds frontiere du maillage auxiliaire ou la matiére entre dans
le maillage (¢ -n < 0). Puisque ¢ varie au cours de la simulation, ces conditions varient
également dans le temps et la taille du systeme (4.19) n’est pas constante.

Enfin, le schéma obtenu ne préserve pas la monotonicité de la solution. Il est donc
fréquent d’obtenir des oscillations parasites dans les résultats. amplitude de celles-ci peut
étre influencée par un choix judicieux de k (ou a) mais il n’est pas possible de les supprimer
completement. C’est la raison principale pour laquelle ce schéma a été abandonné.

4.3 Grandeurs a transférer

Nous énumérons, dans cette section, les différentes grandeurs qui doivent étre transfé-
rées du maillage lagrangien vers le maillage eulérien. Le nombre et la nature de celles-ci
dépendent principalement de la loi constitutive, du schéma d’intégration temporelle et du
type d’élément fini utilisés pour la simulation.

4.3.1 Lois constitutives

Dans le cadre de la simulation de procédés de mise a forme, il est courant de rencontrer
des lois constitutives complexes modélisant le comportement non linéaire et irréversible
des matériaux rencontrés. La majorité des grandeurs a transférer sont celles qui permettent
de calculer les forces internes f™ sur le nouveau maillage et de continuer le calcul. Ces
valeurs sont stockées aux points de Gauss de chaque élément fini. Le nombre de ceux-ci
dépend du type d’élément fini utilisé.

Pour les matériaux hypoélastiques que nous utilisons dans ce travail, il est nécessaire de
transférer tout d’abord le tenseur des contraintes de Cauchy o qui est généralement scindé
en sa trace (la pression hydrostatique p = tr(o)/3) et sa partie déviatorique s = o — pL.
Les forces internes peuvent alors étre recalculées par (voir par exemple Ponthot [168]) :

Iilm = J B;;0;,;dV (4.20)
V(t)

ol les indices majuscules sont relatifs aux noeuds du maillage et les indices minuscules aux
directions de I'espace. La matrice B;; = ON'/dx; des dérivées des fonctions de forme N est
recalculée sur le nouveau maillage.

Les variables d’hérédité du matériau doivent également étre transférées, d’une part,
pour obtenir la solution sur le nouveau maillage et, d’autre part, pour permettre la conti-
nuation du processus d’intégration temporelle des lois constitutives qui peut s’exprimer sous
la forme simplifiée :

n+1 n+1 n+1y _ Ny 47 n
o (x" L q" ) =0"(x",q") + Ao (4.21)
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ol I'exposant n est relatif a 'incrément temporel et ot q est un vecteur regroupant les va-
riables d’hérédité. Pour les lois les plus courantes, il s’agit de la déformation (visco)plastique
équivalente £'P, sa dérivée £ si la loi est visqueuse, un éventuel tenseur de backstress a
si 'écrouissage est cinématique, etc. Remarquons qu’il n’est pas nécessaire de transférer la
limite d’élasticité puisque celle-ci est une fonction des autres variables internes.

Les composantes des tenseurs sont traitées comme des scalaires tout a fait indépen-
dants. Un tenseur symétrique tel que o génere donc six problemes de convection a trois
dimensions et quatre en état plan de déformation (o ,,, 0y, 0y, 0,,). De ce fait, apres le
transfert, il n’y a par exemple aucune garantie que les contraintes respectent le critére de
plasticité utilisé. Lorsque celui-ci est violé, Ponthot [168] suggere d’utiliser la méthode du
retour radial (Ponthot [170]) apres transfert pour ramener les contraintes sur la surface de
charge calculée a partir de la nouvelle valeur de £'P. Cette procédure n’a pas été appliquée
dans le cadre de ce travail car elle ne nous a pas semblé utile : en utilisant un schéma de
transfert précis, le critére de plasticité ne peut étre que faiblement violé et, de plus, cet

éventuel écart est automatiquement corrigé lors de l'incrément temporel suivant.

4.3.2 Schémas d’intégration temporelle

Le nombre de grandeurs a transférer dépend aussi du schéma d’intégration temporelle
utilisé pour intégrer les équations de conservation. Considérons tout d’abord un probléme
purement mécanique. Les équations d’équilibre discrétisées a résoudre peuvent s’écrire sous
la forme simple suivante : . .

flnert +f1nt — feXt (422)

ot £ M et £ sont respectivement les forces d’inertie, les forces internes et les forces
externes. Le cas le plus simple est 'hypothése quasistatique pour laquelle les forces d’inertie
finet — Ma sont négligées (M est la matrice des masses et a le vecteur des accélérations
nodales). Il n’y a alors aucune variable supplémentaire a considérer.

Le cas dynamique est plus complexe. Il est tout d’abord nécessaire de recalculer la ma-
trice des masses M intervenant dans I'expression des forces d’inertie. Son expression est la
suivante :

M= J p(t)N'NAV (4.23)
V(t)

ol p est la masse volumique et N est la matrice des fonctions de forme. Dans un calcul
purement lagrangien, cette matrice peut étre calculée une fois pour toutes sur la configura-
tion initiale puisque, par conservation de la masse (p dV = p,dV,), celle-ci est constante
au cours du temps.

En formalisme ALE, réévaluer la matrice des masses demande donc d’évaluer la masse
volumique courante p(t). Le calcul de cette grandeur n’est jamais nécessaire en formalisme
lagrangien. Il faut donc calculer p(t) a la fin de chaque pas lagrangien et ajouter cette
grandeur a la liste des variables a transférer. En pratique, si la compressibilité des matériaux
utilisés est tres faible, on peut faire 'hypothése que la densité ne varie pas et recalculer la
matrice des masses en utilisant la masse volumique initiale.
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Les forces externes, elles s’écrivent d’aprées I’équation (2.22) :

f‘ext = J p bi (Sui dV + J ti (Sui dS (4'24)
V(t) S(t)

Les forces volumiques doivent donc étre recalculées a ’'aide de la nouvelle masse volumique
et les tractions de surface doivent étre intégrées sur la nouvelle géométrie des éléments. Le
recalcul des forces de contact et du frottement nécessite une procédure particuliere décrite
a la section 4.6.

Les équations d’équilibre peuvent étre intégrées en dynamique par des schémas impli-
cites ou explicites. Le schéma explicite le plus courant est obtenu par différences centrées.
La matrice des masses est diagonalisée et I'accélération est calculée a partir des équations
d’équilibre :

al‘l — M—l (feXt _ fint) (4.25)

On en déduit successivement les vitesses et les positions :
pH2 = yn=1/2 4 At qn (4.26)
X" = X"+ ArymtH2 (4.27)

Pour ce schéma, seule la vitesse doit étre transférée du maillage lagrangien vers le nou-
veau maillage. Convecter indépendamment la masse volumique et la vitesse est un choix.
Benson [24, 26] préfere plutdt convecter la quantité de mouvement, produit de ces deux
grandeurs, pour pouvoir mieux en garantir la conservation lors de 'opération de transfert.

Le schéma dynamique implicite que nous utilisons fait partie de la famille des algo-
rithmes a-généralisés. Il s’agit du schéma de Chung-Hulbert [52] qui s’écrit :
(1—oay) Ma"™ +a,Ma"+
(1 _ aF) [fint(xn+1 vn+1) _fext(xn—H vn+1)]
+a, I:fint(xn’ V) — FE(xh, vn)] =0 (4.28)
ol a,, et a, sont des parametres. Les schémas de Newmark [154] (a,, = a = 0), Hilber-

Hugues-Taylor [109] (a,, = 0) et Wood-Bossak-Zienkiewicz [209] (a; = 0) en sont des cas
particuliers. Les relations entre positions, vitesses et accélérations s’écrivent :

1
X = x”_|-A,fv”-|-(£—[5)At2a”—i-[5At2a”+1 (4.29)
vl‘H—l — vn+(1 _Y)Atan_i_')/AtarH_l (4.30)

ou f3 et y sont également des parametres du schéma. Dans Metafor, les valeurs par défaut
du schéma de Chung-Hulbert sont fixées a a,; = —0.97, a; = 0.01, B, = 0.25, y, = 0.5
avec B =By (1 —ay+ap) ety =71,(1—2ay +2ay)>

Une intégration implicite des équations d’équilibre requiert donc le transfert de la vitesse
v" et de 'accélération a” pour calculer le pas de temps n + 1.
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Si le probléme est thermomécanique, il est nécessaire de transférer également le champ
de température T défini aux nceuds du maillage. Sans rentrer dans les détails (voir Adam
[1] et Jeunechamps [125]), les équations d’équilibre thermique peuvent se mettre sous la
forme (4.22) avec cette fois f inert — ¢ T, Deux schémas sont utilisés pour les résoudre : le
schéma du trapeze généralisé (STG) et le schéma du point milieu généralisé (SMG) (voir

Hogge [112]).

Le schéma du trapeze généralisé consiste a exprimer la dérivée de la température de la
maniere suivante : ) .
o T —Th—(1-0)At T

0 At
ou 0 € [0, 1] est un parametre du schéma. Il est donc nécessaire de transférer également la
dérivée de la température de 'ancien maillage vers le nouveau.

(4.31)

Pour le schéma du point milieu généralisé, 'équilibre est calculé en t""% = t" + At A
l'aide des températures T"% = (1 — 6)T" + 0 T""! et on utilise 'expression suivante pour
calculer la dérivée temporelle de la température :

0 Tn+1 —T"

T =— .32
At (4.32)

N s 1 nn . . 7 7
ol la dérivée T n’intervient pas. On peut donc se contenter de ne transférer que la tempé-
rature dans le cas de ce schéma.

4.3.3 Eléments

Le type d’élément fini utilisé peut influencer directement le nombre de grandeurs a
transférer. Nous utilisons principalement trois formulations différentes.

La premiere est appelée SRI (sous-intégration sélective — Selective Reduced Integration).
Elle consiste a sous-intégrer la partie volumique des contraintes lors du calcul des forces in-
ternes. Ceci permet d’éviter les problemes liés au locking de ’élément fini standard lorsqu’il
est intégré completement. Le tenseur o est décomposé en sa partie déviatorique s, intégrée
al'aide de deux points de Gauss par direction de ’espace (les points de Gauss déviatoriques),
et la pression p intégrée avec un seul point de Gauss (le point de Gauss volumique). On
parle donc d’élément SRI & pression constante. A partir des six composantes du tenseur des
contraintes o, on se retrouve avec sept grandeurs pour la convection (les six composantes
du tenseur s et la pression p). Deux méthodes sont envisageables. La premiere consiste a
transférer tous ces scalaires de maniere indépendante. Le risque est alors que la trace du
tenseur s apres convection ne soit plus nulle. La seconde méthode est de privilégier une
direction (par exemple z) et de ne pas effectuer le transfert de s,, qui est alors déduit de s,
ets,, apres convection en imposant une trace nulle. En pratique, si 'algorithme de transfert
est précis, la trace de s reste toujours proche de zéro. On peut cependant économiser un
probleme de convection en imposant une trace nulle. C’est donc cette seconde méthode qui
sera généralement utilisée par unique souci de rapidité d’exécution.

Le second type d’élément est une variante de 1'’élément SRI tel que décrit précédem-
ment. La pression est cette fois calculée, aux mémes points de Gauss que le déviateur des
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contraintes, a partir d'un incrément de volume unique pour I'élément. Cet incrément de vo-
lume est calculé au centre de 'élément et reporté sur les points de Gauss déviatoriques. On
parle d’élément SRI a dilatation constante. Cette fois, le tenseur des contraintes est intégra-
lement défini sur les mémes points de Gauss. On peut dont choisir de transférer directement
le tenseur des contraintes o ou son déviateur s et la pression p de maniere séparée. En pra-
tique, dans le code, vu que le tenseur des contraintes est toujours décomposé quel que soit
le type d’élément, il est techniquement plus simple de choisir cette derniere méthode.

Le troisiéme type d’élément est appelé EAS (Enhanced Assumed Strain — Glaser et Ar-
mero [88], Simo et al. [183] — voir Bui et al. [42] et Adam et Ponthot [2] pour I'implé-
mentation de 'élément EAS dans Metafor). Il permet d’éliminer de maniere plus efficace le
locking volumique et le locking en cisaillement que la méthode de sous-intégration sélective
SRI au prix d’'une formulation mathématiquement beaucoup plus complexe. Ces éléments
EAS possédent un enrichissement au niveau du tenseur gradient de déformations F (voir
équation (2.2)) qui est calculé, dans I'espace isoparamétrique (variables &), par :

F°(&) =F(&) + F(0) F* (4.33)

ou F est le gradient de déformation compatible et F(0) est ce tenseur évalué en § = 0, c’est-
a-dire au centre de I'élément. Le terme F* est défini dans la configuration de référence a
partir d’une transformation du tenseur F™°%_ Elle s’écrit, selon Simo et al. [183] :

RFAS _ (det Jo(0)

= J,(0)F™odes -1 3
o2 ) B@FE 5 (434

ou J = 0x /0§ et J, est ce tenseur évalué dans la configuration de référence. Le tenseur
Fmodes est défini par une somme pondérée des modes de déformation augmentés F?Ode :

M
des __ d
Frodes = E a,, Frede (4.35)
m=1

ou les a; sont des scalaires qui controlent I'importance de l'activation de chacun des M
modes d’enrichissement. L'expression des tenseurs Fgl“’de est connue. Par exemple, a deux
dimensions, en se limitant aux modes de base (des modes « étendus » peuvent étre ajoutés
pour améliorer encore la formulation), on a :

s (&0 s (00O
Frid® = ( 0 0 ) Foiy = ( 0 n ) (4.36)

ou &, sont les composantes du vecteur §. Ces deux modes sont les modes volumiques
auxquels s’ajoutent les deux modes de cisaillement suivant :

0 0 0 n
modes __ modes __
Fciso,les - ( 5 0 ) Fdso,Zes - ( 0 0 ) (437)

Des expressions similaires existent pour les problemes 3D (voir par exemple Adam et Pon-
thot [2]). Dans ce cas, on utilise trois modes volumiques et six modes de cisaillement.
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Les parametres a,, sont des nouvelles inconnues, internes a chaque élément. Elles sont
déterminées localement en imposant que les forces internes provenant des modes d’enri-
chissement doivent étre nulles. Les forces internes mécaniques au nceud I de ’élément sont
alors calculées par :

= J o bl dv (4.38)
\%4
ou le vecteur b;"‘ est calculé par :

ON' ON'
b =F" |:J5Ta—§ + (F*$)1357(0) 3_5(0):| =b, +b" (4.39)

ol N'(&) désigne la fonction de forme relative au noeud I de I'élément. Cette expression
fait intervenir de nombreuses grandeurs inconnues sur le nouveau maillage. Le premier
terme est le vecteur b, classique (b; correspond a une ligne de la matrice B de I'équation
(4.20)) qui dépend uniquement de la géométrie du maillage courant. Le second terme
n’existe que si certains modes EAS sont actifs et introduit une contribution qui dépend des
configurations du maillage lagrangien au début et a la fin du pas de temps. Recalculer les
forces internes sur le nouveau maillage n’est donc pas simple dans ce cas de figure. On
pourrait imaginer de convecter les grandeurs manquantes. Ce n’est cependant pas possible
en pratique, car elles sont intrinsequement liées a la géométrie du maillage sur lequel elles
sont définies et n’ont plus aucun sens sur un autre maillage.

O_L: Cte O_E: Cte
x
o o = o o o —>
Ie—————»2 3 l——H 2 3
I’ I
configuration lagrangienne configuration eulérienne

FIGURE 4.14 - Probléme de recalcul des forces en EAS. Une barre unidimensionnelle est discrétisée par deux
éléments finis. Cet exemple démontre que le vecteur by ne peut pas étre transféré d’'un maillage a Uautre
pour recalculer les forces sur le nouveau maillage.

Pour s’en convaincre, considérons le probléme unidimensionnel d’une barre de section
A en traction simple schématisé sur la figure 4.14. En configuration lagrangienne (a gauche
sur la figure), le champ de contrainte est constant et vaut o. La force nodale au nceud 1
vaut

1

flL =JL0L bf deabf vt =ol—L(lLA)=—0A (4.40)
Vv

Si on définit un nouveau maillage de la barre en déplacant le nceud 2 vers le nceud 1 (a

droite sur la figure) et que I'on décide de transférer o et b;, on peut montrer que ces deux

grandeurs vont rester constantes sur 'élément 1-2. La force nodale sur le premier nceud du

second maillage vaut alors

ZE
ff= J ol btdV = i f (4.41)
VE

On obtient ainsi une force incorrecte qui dépend de la position du nceud 2. Ceci démontre
que le vecteur b,, et de maniéere similaire le vecteur bf‘AS, ne peuvent pas étre simplement
transférés d'un maillage a 'autre pour recalculer les forces.
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Pour contourner ce probleme, il est nécessaire d’exprimer le vecteur bIEAS en fonction de
b;. On écrit, a l'aide de la relation (4.39) :

ON'
23

En multipliant le second membre de cette relation par le scalaire suivant

b =F T (F*)7 J;7(0) —(0) (4.42)

b,

aN' Y oN!
JT FT F_TJ_T
(T ) s
1= (4.43)

aNTY oN!
(%)%

les forces internes peuvent alors se réécrire sous la forme

n = J (0 +6)b,dV (4.44)
1%

ol @ est un tenseur non symétrique de contraintes additionnelles dues aux modes EAS et
calculé par :

I Ay
FT(F*)"J;7(0) ai(0) (ai) JOF"
i 3 23

o=0 (4.45)

oN'Y aN!
(%) %

Ce tenseur peut étre calculé en chaque point de Gauss du maillage lagrangien et trans-
féré vers le nouveau maillage dans le but de recalculer les forces internes en fin de pas
de temps. Comme & est non symétrique, son transfert est tres coliteux et peut étre évité
dans les cas ot le recalcul de la valeur des forces n’est pas obligatoire. En effet, I'évaluation
exacte des forces en fin de pas est nécessaire uniquement lors de l'utilisation d’'un schéma
dynamique implicite (équation (4.28) quand a # 0), lors de l'utilisation d’une loi de frot-
tement (voir section 4.6) ou lorsque 'on s’intéresse explicitement a celles-ci (pour le calcul
d’une réaction par exemple). Dans les autres cas, les forces internes peuvent ne pas étre re-
calculées précisément sur le nouveau maillage et la suite du calcul n’en sera pas perturbée.

En effet, les valeurs des modes EAS a; dépendent uniquement de I'incrément de charge
subi par I'élément sur le pas de temps courant et ne sont donc pas des variables d’hérédité.

Cette combinaison des éléments EAS et du formalisme ALE est une contribution origi-
nale de cette these.
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4.3.4 Autres grandeurs

A c6té des grandeurs utiles 4 la poursuite du calcul, il est parfois intéressant d’en trans-
férer d’autres dans un but de post-traitement. C’est le cas, par exemple, des déformations
totales. En formalisme lagrangien, il est tres courant de calculer des déformations surfa-
ciques locales en se basant sur les positions courantes des nceuds du maillage. On modélise
ainsi la mesure effectuée par une jauge de déformation expérimentale. Bien entendu, il
n’est pas question d’utiliser cette méthode en formalisme ALE puisque le maillage ne suit
pas les déformations de la matiere. On peut contourner cette difficulté en calculant un ten-
seur de déformation obtenu a partir du tenseur des gradients de déformation totale au pas
de temps n. Ce dernier est calculé incrémentalement par la décomposition multiplicative :

FO—n — gln=1-n) g(0—n-1) (4.46)

ot Fi=7) = 9x 1) /9x W est 1a matrice jacobienne de la transformation entre la configuration
xU) au pas j et la configuration xV au pas i. On peut en déduire, entre autres, le tenseur
des déformations de Green Lagrange par E°" = %(FTF -I.

Le calcul des déformations en ALE nécessite donc le transfert du tenseur non symé-
trique F=™, c’est-a-dire neuf scalaires supplémentaires pour un probléme tridimension-
nel. Il s’agit d’'une augmentation non négligeable de la charge de calcul, similaire a celle
produite par un calcul utilisant des éléments EAS. Il est donc important de savoir a priori si
la connaissance des déformations est nécessaire pour, si ce n’est le cas, éliminer le coliteux
transfert du tenseur F.

Notons enfin que ce transfert est, bien entendu, inévitable lors de l'utilisation d'un
matériau hyperélastique. Néanmoins, dans ce cas, il n’est pas nécessaire de transférer les
contraintes.
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4.3.5 Exemple

Pour illustrer le choix des variables a convecter, imaginons un probléme mécanique 2D
quasistatique discrétisé avec des éléments de type SRI. Le matériau utilisé est élastoplas-
tique a écrouissage linéaire. Les champs a convecter sont, d’'une part, la pression p définie
au point de Gauss volumique de I’élément et, d’autre part, les composantes du déviateur s
des contraintes de Cauchy et la déformation plastique équivalente &P aux points de Gauss
déviatoriques, soit au total cinq grandeurs scalaires par élément fini. Le tableau 4.1 montre
I’évolution de ce nombre si on modifie certains parametres du probleme. On peut donc
facilement avoir plus de 30 grandeurs a convecter pour un probléme plus complexe.

PG PG neceuds Total
volumique | déviatoriques
SRI 2D p Sxxs> Sxys - 5
matériau élastoplastique Syy, EF
+ dynamique implicite - - +Vy, vy, +4=09
(Chung Hulbert) a,, a,
+ calcul des déformations - +Fyys Fyys - +4=13
F}’X’ F}’}’
2D — 3D - +S55 Sy +v,, a, +9=22
F Xz F ¥z
F 2X° F 2y 12z
+ thermique - - +T, T +2=124
SRI — EAS - +G x5 Oy - +9=33
O-XZ
‘%yw ‘?yyf ‘?yz
O-Z'X’ O-Zy’ O-Z'Z
+ écrouissage cinématique - F0s Ayys Ay - +5=238
(1 tenseur de back-stress) Ayy, Ay

TABLEAU 4.1 — Evolution du nombre de variables a convecter en fonction du type de probleme.
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4.4 Méthode de Godunov

Nous reprenons dans cette section les travaux effectués par Huerta, Casadei et Do-
néa [47, 114, 115] pour résoudre le probleme de transport des grandeurs aux points de
Gauss par la méthode des volumes finis ou, plus précisément, la méthode de Godunov.

4.4.1 Discrétisation de ’équation

Soit un domaine de calcul V subdivisé en cellules de controle V. Ces cellules sont des
polyedres (des polygones a 2D) tout a fait quelconques. Le champ scalaire o (une des
grandeurs a convecter dont nous avons parlé a la section 4.3) est défini sur V au temps t
et vaut o. On recherche sa valeur o en t + At grice a I'équation (4.1). Celle-ci peut étre
réécrite sous forme conservative en définissant le produit Y = o ¢ :

Jo
E-I—V-Y:O'V'c (4.47)

La méthode des volumes finis consiste a construire une forme faible en intégrant direc-
tement cette relation sur le volume V :

J(ai+V'Y)dV=J(GV'C)dV (4.48)
\% at \%

La méthode de Godunov [89] consiste a choisir une approximation constante de o sur
chaque cellule de contrdle de volume V. On peut également écrire une équation valable
pour chaque cellule en remplacant simplement V par V dans ’équation (4.48). En appli-
quant ensuite le théoréeme de Green pour transformer les intégrales des dérivées spatiales
de Y et c en intégrales sur la frontiere de la cellule, on obtient :

oo _
—dV=ajEc-ndS—j€Y-ndS (4.49)
ot s s

1%

ou O est la valeur de o dans la cellule V, S est la frontiére et n est la normale extérieure
unitaire. Le champ o et sa dérivée temporelle sont supposés spatialement constants sur le
volume V. La relation (4.49) devient :

o6 _
—V=6¢c-ndS—PY-ndS (4.50)
ot S s

L'intégrale sur la frontiere compléte S de la cellule de controle peut étre transformée en une
somme d’intégrales sur les N sous-surfaces S; qui la composent (S = [ JS,). On remplace
ensuite Y par sa valeur sur la frontiere (Y = of c ou af désigne la valeur de o sur S;). On
obtient ainsi :

06 1| .. ds 1N s 4.51
E_VZ (6 —0;) Sic-n i —V;(O'_O-i)fi (4.51)

i=1
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ol l'on a introduit le flux f; = f gcn dS;. Puisque o est discontinu au passage des frontiéres

entre volumes, la valeur de o¢ n’est pas bien définie. On choisit donc de I'exprimer comme
une combinaison de la valeur de o dans la cellule traitée (&) et la valeur o dans la cellule
voisine partageant la frontiére S; (valeur notée o;).

O'f _ 1+ aszign(fi) 54 1- aszign(fi) o,
ol a est un parametre de décentrage (upwind) pouvant étre choisi dans l'intervalle [0,1].
La valeur a = 0 correspond a la valeur moyenne des deux volumes voisins et fournit donc
un schéma centré. Si a = 1, la valeur de o sur la frontiere est évaluée uniquement dans le
volume amont par rapport a la direction de convection et le schéma résultant sera totale-
ment décentré (full upwind ou full donor scheme ou simplement donor cell).

(4.52)

Finalement, en substituant '’équation (4.52) dans (4.51), on obtient :

06 1 & (1 : 4.53
E_W;fi(gi_o)( — asign(f;)) (4.53)

Grace a cette méthode, on arrive donc a décomposer un probleme initialement tridi-
mensionnel ou bidimensionnel en une série de problémes unidimensionnels définis aux
interfaces des cellules de controle dans les directions normales a celles-ci. Il reste a discréti-
ser temporellement ’équation obtenue. On utilise pour ce faire un schéma d’Euler explicite
pour lequel les valeurs géométriques V et f; sont évaluées sur la configuration finale.

At &
E_ L Ef, L _LN(1 _ ol :
o'=0"+ FVE ;fi (o; — o) — asign(f;)) (4.54)
ol 'exposant E correspond a la solution « eulérienne » recherchée en t + At et 'exposant
L désigne le champ «lagrangien » a l'instant ¢.

L'intégration explicite est une nécessité dans le cadre du formalisme ALE pour garantir
une résolution rapide du probleme. Tout en simplifiant grandement les calculs, cela limite
considérablement la quantité de mémoire nécessaire par rapport a une résolution implicite
puisqu’il n’y a pas de systeme d’équations a inverser. Par contre, on obtient ainsi une stabilité
conditionnelle du schéma.

4.4.2 Précision et stabilité

En termes de précision temporelle, le schéma (4.54) est du premier ordre. Il est égale-
ment du premier ordre spatialement. En effet, si on le particularise au cas unidimensionnel
sur un maillage uniforme pour une vitesse ¢ constante, on obtient :

c At

ofn = afn R [—(ofn_l — afn)(l +a)+ (ofﬁ1 — ofn)(l — a)] (4.55)

ol l'indice m est relatif a la position spatiale dans la grille de calcul et h est la distance
séparant deux points sur cette grille. En définissant le nombre de Courant (ou nombre CFL)

114



CHAPITRE 4. TRANSFERT DES DONNEES

par le rapport C = c At /h et en réarrangeant les termes, on transforme cette combinaison
de deux dérivées décentrées avant et arriere en une dérivée centrée et un opérateur de
diffusion.

C Ca
E_ L L L L L L
ol =0 ——(o o, )+ 2 (0,,,—20,+0, ) (4.56)

m m 2 m+1 m+1 m—1

Cette diffusion controlée par le parametre a permet de stabiliser le schéma centré obtenu
avec a = 0. On essaye ainsi de se rapprocher d’'un schéma du deuxiéme ordre bien que le
schéma tel qu’il est décrit par '’équation (4.56) soit toujours du premier ordre. Une analyse
classique de Von Neuman (voir Boman [27]) donne la limite de stabilité du schéma (4.56)
(condition CFL) :

0<C=<a (4.57)

On voit donc que le déplacement convectif maximal admissible sera d’autant plus grand
que a est grand. En particulier, si a = 0, le schéma est inconditionnellement instable.

Un autre aspect tres intéressant est la préservation de la monotonicité de la solution,
cest-a-dire que si le champ ol est une fonction monotone, alors of conservera cette pro-
priété. Autrement dit, le schéma ne créera pas d’oscillations dans la solution si celle-ci n’en
possede pas initialement. De plus, il n’amplifiera pas les extrema existants. Dans le cadre
plus général de la mécanique du solide, il est souhaitable que le schéma de transfert utilisé
ait cette qualité et ne crée donc jamais de nouveaux minima ou maxima dans la solution,
ne serait-ce que pour garantir que les variables convectées restent dans leur domaine de
validité physique (par exemple, conserver une déformation plastique positive).

Godunov [89] a montré que les schémas préservant la monotonicité de la solution sont,
au mieux, du premier ordre (Godunov’s order barrier theorem — voir aussi Wesseling [204]).
Les schémas d’ordre supérieur ne possedent cette propriété que dans le cas tres particulier
ou C = 1. La condition nécessaire et suffisante de préservation de la monotonicité est
obtenue en exprimant le schéma sous la forme :

of = Z Yiok,. (4.58)

Elle s’écrit alors simplement y; > 0. Dans le cas du schéma (4.54) on obtient ainsi a > 1.
En combinant cette relation avec la condition CFL (4.57), on déduit que la seule valeur
du parametre d'upwind a qui fournit un schéma stable sans oscillations est a« = 1. Nous
utiliserons donc exclusivement cette valeur pour les applications. Le schéma devient alors :

1 & (1 —sign(AV)))
E _ L, = L _ L [
ol = o +VE ;21 AV(o; —0o7) 5 (4.59)
1
— 0L+F E AV(ol —o") (4.60)

AV;<0

ol le temps artificiel a été supprimé en remplacant les flux f; par les volumes AV; = f;At et
ol la somme est limitée aux termes pour lesquels ces volumes sont négatifs (flux entrants).

A deux dimensions ou plus, la condition CFL (4.57) est toujours valide si le nombre de
Courant est calculé de la maniere suivante :

N _ . :
Cla)= - AV = asfnmm) <a (4.61)
i=1
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configuration A vF
eulérienne
[ XAV,
AV, <0
configuration

lagrangienne

F1GURE 4.15 — Evaluation de la limite de stabilité a 2D. La somme des volumes en gris, représentant le flux qui
entre dans la cellule, ne peut pas étre supérieur au volume de la cellule dans sa configuration eulérienne
(hachuré).

On obtient pour a = 1 'expression :

C=-— > AV <1 (4.62)

La condition de stabilité C < 1 exprime que la somme des volumes balayés par les
arétes entrant dans la cellule ne peut pas excéder son propre volume. Sur un maillage
non régulier, la condition est applicable a chaque cellule. On obtient donc min(C) < 1.
Autrement dit, pour une translation uniforme d’'un maillage non régulier, c’est la valeur
de C de la plus petite maille qui impose la limite de stabilité et, de ce fait, la valeur du
déplacement convectif maximal admissible.

1.2f
1k
0.8r
0.61
0.41

i =071 2

J' °
; N

}(l T T T T T T T _02 L ‘ : ‘ ‘ i
¢ gl 200 220 240 260 280 300
L=300mm, 300 cellules Position [mm]

FIGURE 4.16 — Description du test de convection 1D FIGURE 4.17 - Influence du parameétre de décen-
d’un signal carré sur une distance égale a 7x sa trage a sur la solution finale (o varie de 0.5 a 1
largeur. par pas de 0.1 — C=0.5).

La figure 4.16 montre la géométrie d’un test de convection simple unidimensionnel sur
un maillage eulérien de longueur L constitué de 300 cellules identiques. Il s’agit de la
translation d’un signal carré de largeur [ = L/10 sur une distance d,,, = 0.7 L. Le nombre
de Courant C est choisi égal a 0.5. La figure 4.17 montre le résultat de la convection pour
différentes valeurs de a comprises entre C et 1. Les valeurs proches de C provoquent des
oscillations, tandis que les valeurs plus élevées de a induisent une dissipation numérique
importante.
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C=1
0.87
0.67

o

0.4r

0.2y

0

230 240 250 260 270 280
Position [mm]

FIGURE 4.18 - Influence du nombre de Courant C sur la forme finale du signal (a¢ =1 et C = 0.02, 0.1, 0.5,
0.8, 0.9, 1). La solution exacte est obtenue pour C = 1.

La figure 4.18 montre I'influence du nombre de Courant sur la solution finale pour une
valeur unitaire du parameétre de décentrage a. La diffusion est d’autant plus importante que
C est faible. En particulier, si C = 1, la solution exacte est obtenue.

4.4.3 Elements a un point de Gauss

La résolution par volumes finis se préte particulierement bien au transfert des grandeurs
aux points de Gauss si on utilise des éléments finis sous-intégrés (un seul point de Gauss).
Dans ce cas, le maillage des volumes finis coincide exactement avec le maillage des élé-
ments finis comme le montre la figure 4.19. La valeur moyenne du volume est la valeur du
point de Gauss de I'élément correspondant. Les volumes ainsi définis sont appelées cellules
barycentriques (on parle de cell-centered finite volumes).

o noeud
A point de Gauss
e point de collocation

[T 1 volume fini

maillage des éléments finis > maillage des volumes finis

FIGURE 4.19 - Elements finis a un seul point de Gauss et maillage associé de volumes finis utilisé pour le
transfert des grandeurs. Un volume fini a été grisé pour faciliter la comparaison avec les figures 4.21
et 4.30.
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4.4.4 Extension a plus d’un point de Gauss

Lorsqu’on utilise une intégration plus riche des éléments finis (deux points de Gauss par
direction), la situation devient plus complexe et la formulation précédente ne peut plus étre
appliquée telle quelle. Huerta, Casadei et Donéa [47, 114] proposent deux méthodes pour
surmonter la difficulté.

La premiére consiste a étendre la méthode précédente en définissant une approximation
bilinéaire du champ o a convecter au lieu de 'approximation constante. Les fonctions de
forme N! suivantes permettent d’interpoler exactement les valeurs aux points de Gauss
dans le cas d'un quadrangle et de quatre points d’intégration :

N(gn)——( ;)(1+n) (4.63)

ol (&, n) sont les coordonnées réduites du quadrangle considéré et (£;,n;), les coordonnées
du point de Gauss I. Une nouvelle forme intégrale est créée a partir de (4.47) en multipliant
cette relation par une fonction test w(x) et en l'intégrant sur le volume V d’une cellule.
Puisque o n’est plus constant sur la cellule de contréle, on obtient cette fois :

2
0Z V=6 w(oc-n)dS+ | Vo-YdV—¢ w(Y-n)ds (4.64)
174 at S 174 S

Cette relation est discrétisée spatialement en choisissant w = N puis temporellement
par un schéma d’Euler explicite pour obtenir une équation matricielle pour chaque élément :

Mof =Mo’+ At(Cot - f) (4.65)

ol M est une matrice diagonale et f regroupe les intégrales de surface, évaluées sur les
frontiéres de la cellule de contrdle a 'aide d’une expression similaire a (4.52). On obtient
ainsi une relation légerement plus complexe que (4.54) qui a 'avantage de conserver la
coincidence entre le maillage élément fini utilisé pour la phase lagrangienne et le maillage
volume fini de la phase de transport.

Cependant, d’apres ses auteurs, cette extension directe de la méthode de Godunov n’in-
troduit pas suffisamment de dissipation et se révele instable en pratique. Des oscillations
parasites apparaissent pour des déplacements convectifs importants. Ce comportement est
prévisible puisque la méthode utilisée s’apparente a une reconstruction linéaire locale sur
chaque élément qui rend le schéma comparable a un schéma du second ordre (voir sec-
tion 4.5 ci-apres).

Huerta, Casadei et Donéa proposent une deuxiéme maniere d’étendre la méthode de
Godunov aux quadrangles a quatre points de Gauss. Séduits par la simplicité mathématique
du schéma initial, ils définissent un nouveau maillage en divisant chaque élément fini en
quatre volumes finis a I'aide de ses médianes. En procédant de la sorte, chaque point de
Gauss possede sa propre cellule dont le volume est proportionnel au domaine d’influence (et
au poids d’intégration) du point de Gauss sur ’élément. En considérant que o est constant
sur ce volume, la relation (4.54) est utilisable sans modification et conserve en particulier
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o noeud

A point de Gauss
& échange externe
« échange interne

F1GURE 4.20 - Division d’'un quadrangle a quatre points de Gauss en quatre volumes en reliant les milieux
des cétés opposés. Lalgorithme résultant est appelé Godunov-like par ses auteurs (Huerta, Casadei et
Donéa [47, 114]).

ses propriétés de monotonicité quand a = 1. La difficulté de la méthode est ainsi reportée
dans la construction de ce maillage auxiliaire et de la structure de données nécessaire pour
mettre les deux maillages en corrélation.

o noeud

A point de Gauss
e point de collocation

1 1 volume fini

N

maillage des éléments finis > maillage des volumes finis

FIGURE 4.21 - Elements finis a quatre points de Gauss et maillage associé de volumes finis. Un volume fini a
été grisé pour faciliter la comparaison avec les figures 4.19 et 4.30.

Pour mettre en ceuvre le schéma, Huerta, Casadei et Donéa proposent de distinguer
les flux f; échangés a travers les arétes internes d’un élément fini (fleches noires sur la fi-
gure 4.20) de ceux échangés avec un élément voisin (fleches blanches). Ceci laisse supposer
que le maillage auxiliaire utilisé pour la méthode des volumes finis n’est jamais explicite-
ment créé lors de 'implémentation du schéma.

Lalgorithme revient alors a boucler sur chaque élément fini et a calculer tous les échan-
ges internes puis tous les échanges externes. Pour ces derniers il est nécessaire, d'une part,
de déterminer les voisins de I'élément et, d’autre part, d’identifier les points de Gauss en
vis-a-vis. En effet, chaque élément fini peut étre orienté de maniere quelconque par rapport
a ses voisins comme le montre la figure 4.22 (se référer a Benson [26] pour les détails
d’implémentation et les difficultés liées a ces orientations relatives d’éléments pour des
maillages 2D non structurés). Cette maniere de procéder, que nous avons utilisée lors d'une
premiere implémentation 2D, présente 'avantage d’étre économe en mémoire puisque seul
le maillage élément fini est requis. Elle est cependant difficilement transposable a trois di-
mensions ou les configurations des éléments les uns par rapport aux autres se multiplient.
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élément 1 élément 2 élément 1 élément 2
A A A
3 3 4 o noeud
Ao point de Gauss
1 1 2
A A A
configuration 1/4 configuration 2/4

FIGURE 4.22 — Deux orientations (sur les quatre possibles a 2D) de deux éléments quadrangulaires voisins.
Sans construction et stockage du maillage auxiliaire, U'algorithme de transfert doit pouvoir déduire a tout
instant les points de Gauss en vis-a-vis pour le calcul des flux a travers les arétes.

Il est donc beaucoup plus confortable de créer explicitement le maillage auxiliaire a
partir du maillage des éléments finis. On obtient ainsi un algorithme plus clair, plus rapide
(Ies sommets du maillage et les relations de voisinage ne sont calculés qu'une seule fois) et
plus général au prix d’'une consommation de mémoire plus importante.

FIGURE 4.23 - Division d’un hexaédre a huit points de Gauss en huit volumes finis hexaédriques. Chaque face
est divisée en quatre quadrangles en reliant le milieu des arétes opposées, comme a 2D. Les points milieu
des faces opposées de Uhexaédre sont ensuite reliées au barycentre des huit sommets de ce dernier.

L'extension 3D aux hexaedres a plusieurs points de Gauss est conceptuellement immé-
diate. La figure 4.23 montre un élément fini hexaédrique découpé en huit volumes finis
autour de ses huit points d’intégration. Pour un maillage donné, chaque élément est dé-
coupé de la sorte et ses volumes sont assemblés dans une nouvelle structure de maillage.
Des liens sont créés entre chaque volume et les grandeurs a convecter au point de Gauss
correspondant. Une fois I’étape complexe de création du maillage auxiliaire effectuée, 'al-
gorithme de convection se réduit a deux étapes :

e une boucle sur les frontieres des cellules pour le calcul de AV;.

e une boucle sur les cellules pour la mise a jour de la valeur de o en fonction des AV;

calculés précédemment.

Il est important de remarquer qu’en divisant chaque élément fini de cette maniere, la
position du point de Gauss n’est pas exactement le barycentre du volume fini qui ’entoure.
En effet, lors d’'une intégration a deux points de Gauss par direction, ceux-ci sont position-
nés en £ = £4/3/3 » 0.5774 ou1 £ € [—1,1] est la coordonnée réduite dans la direction
considérée. L'erreur commise par cette différence peut étre facilement illustrée dans un cas
unidimensionnel.
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e point de Gauss EF

Mo / (= point de collocation VF)
dE
ST x
— translation uniforme —> ke M o e e o
v v 1 élément fini 1 volume fini
FIGURE 4.24 - Profil initial du test de convection. FiGuURE 4.25 - Utilisation d’un point de collocation
Le maillage de volumes finis est régulier et fixe. centré sur le volume (cas d’'un élément fini a un
Le profil posséde une vitesse constante uniforme seul point de Gauss).

vers la droite.

£>0.5
Ao N
§1& | T
décentrage | .t
T
v 1 élément fini 1 volume fini

FIGURE 4.26 - Utilisation d’'un point de collocation =~ FIGURE 4.27 — Utilisation d’'un point de collocation
décentré. Configuration initiale. Chaque volume décentré. Solution obtenue en un temps t >t
fini est cette fois la moitié d’un élément fini. (Uerreur est volontairement amplifiée).

La figure 4.24 montre le profil initial d’'un test de convection simple. Ce profil a pour
équation o(x) = o, + B x. Il se translate vers la droite a une vitesse v. Le maillage des
volumes finis est régulier et fixe dans I’espace. La solution exacte de ce probleme est donnée
paro(x,t)=o0y,+ P (x —vt).

Dans un premier temps, on considere que le point de collocation des volumes est cen-
tré. Dans le cadre du formalisme ALE, cela correspond a l'utilisation d’éléments finis sous-
intégrés (un point de Gauss centré sur chaque élément). La reconstruction obtenue est
représentée sur la figure 4.25. La solution obtenue aux points de Gauss de cette maniere
est la solution exacte car les flux AV, (GI.LJrl — al.L) calculés sur les frontiéres des volumes
sont tous identiques.

Dans un second temps, on utilise des éléments finis a deux points de Gauss. Pour garder
la méme taille de volumes finis, les éléments finis sont choisis deux fois plus grands que
précédemment. Le point de collocation de chaque cellule est ainsi 1égerement décentré
(figure 4.26) soit en avant, soit en arriere, de maniere alternée. Les flux calculés sur les
frontieres des cellules ne sont plus tous identiques et, vu leur périodicité (un flux trop
important est suivi d'un flux trop faible), la solution oscille autour de la solution exacte
comme le montre trés schématiquement la figure 4.27. Néanmoins, il est intéressant de
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constater que 'intégrale de solution reconstruite sur chaque élément fini a partir des valeurs
aux points de Gauss coincide toujours avec l'intégrale de la solution exacte. Le schéma a
donc 1égerement perdu en précision mais il est toujours conservatif.

1.1 ; ; ; ; ; 1 w
—C=0.1
Exact ——(C=05
1 0.95} ——C=0.6]
—C=1.0
0.9¢
0.9r /
3 0.8f 1 3
g ‘GEJ 0.85¢ ]
o 0.7f 1 o
0.8f ]
0.6f 1
—=05
| —=v3/3 0.75¢ 1
0.5 —iZor
—=10
04 i i i i T 0-7 i i i i i
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Déplacement [mm] Déplacement [mm]

FiGURE 4.28 - Variation de U'angle 6 au cours du FIGURE 4.29 - Variation de U'angle 6 au cours du
temps pour différentes positions & du point de temps pour différentes valeurs du nombre de
collocation (C =0.1). Courant C (£ = /3/3).

Pour illustrer ceci, une simulation numérique a été effectuée pour une pente initiale
B =1 et pour des cellules de taille 1 mm. La figure 4.28 montre I’évolution de la pente de
la solution, interne a un élément fini (6 sur la figure 4.27) en fonction du déplacement pour
plusieurs positions du point de collocation (on choisit un nombre de Courant C = 0.1). On
constate, pour une position & donnée, que la valeur de la pente converge progressivement
vers une valeur stable. Cette valeur asymptotique est d’autant plus éloignée de la valeur
initiale 6 = a = 1 que la position du point de Gauss est décentrée. En particulier, si le point
de collocation est sur la frontiere, la pente finale est la moitié de la pente initiale.

La figure 4.29 montre la méme courbe pour une valeur de & = v/3/3 (c’est-a-dire la po-
sition utilisée en pratique pour des éléments a deux points de Gauss) et plusieurs nombres
de Courant. La convergence de [ est monotone tant que C < 0.5. Au dela, I'angle oscille
autour de la valeur asymptotique. Dans le cas particulier ou C = 1 (le contenu d’une cellule
est transporté entierement dans la cellule suivante), 'angle oscille continuellement entre
deux valeurs.

Le fait que les points de Gauss ne soient pas centrés dans les cellules lorsqu’on utilise
deux points de Gauss par élément fini entraine donc une perte de précision locale. Celle-ci
est tout a fait comparable a celle qui serait obtenue en utilisant des points de collocation
centrés sur un maillage non régulier. De plus, cette erreur est relativement faible puisque
£ = v/3/3 2 0.5774 est proche de £ = 0.5. En conclusion, le phénoméne doit étre gardé a
I'esprit mais il ne sera généralement pas visible sur les résultats de nos simulations.
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4.4.5 Transfert des grandeurs nodales

Le probleme de transfert des grandeurs nodales est plus simple que celui relatif aux
grandeurs des points de Gauss puisque I'on dispose déja d’une grille de calcul sur laquelle
le champ a convecter est partout défini et continu. On pourrait donc par exemple discrétiser
I’équation (4.1) par une méthode de type SUPG comme nous 'avons fait a la section 4.2.3
a la différence prés que, cette fois, aucun maillage auxiliaire n’est nécessaire. Cependant,
il est possible, avec peu d’effort, d’adapter le schéma de Godunov utilisé pour les points de
Gauss et bénéficier ainsi de ses avantages.

Le probleme ainsi posé revient a définir un maillage de volumes finis pour lequel les
neeuds du maillage des éléments finis deviennent les points de collocation. Ces cellules sont
appelées median dual cell-vertex ou cellules INRIA (Dervieux [59]). Elles sont construites en
divisant chaque élément du maillage en un nombre de cellules égal a son nombre de noeud
en utilisant le barycentre de ’élément, de ses facettes et de ses arétes. Toutes les cellules
adjacentes a un nceud sont ensuite fusionnées pour former un polygone (un polyedre en

3D) englobant le nceud en question. On obtient ainsi le maillage dual du maillage élément
fini.

o noeud
A point de Gauss
e point de collocation

[T 1 volume fini

maillage des éléments finis > maillage des volumes finis

FIGURE 4.30 — Elements finis et maillage de volumes finis associé aux nceuds. Un volume fini a été grisé pour
faciliter la comparaison avec les figures 4.19 et 4.21.

A titre d’illustration, la figure 4.30 montre un maillage quadrangulaire non structuré
et son maillage dual composé de cellules INRIA. Si le maillage initial est quelconque, il y
a peu de chance pour que le nceud soit le centre de gravité de la cellule ainsi créée. Seul
un maillage structuré parfaitement régulier permettrait d’obtenir cette correspondance. On
peut s’attendre donc a une perte de précision locale du schéma telle que décrite a la sec-
tion 4.4.4.

Encore une fois, la principale difficulté de l'algorithme de convection se situe dans la
gestion du maillage auxiliaire. En pratique, on peut décider de ne pas créer une structure
dédiée et de gérer les échanges entre cellules dans chaque élément fini. Dans le cas des cel-
lules INRIA, tous les transferts sont des transferts internes (fleches noires de la figure 4.20).
Il n’y a pas de transfert entre éléments finis voisins si bien qu’il est relativement simple de
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gérer de cette facon des problemes 3D (Potapov [172]). En particulier, le probleme d’orien-
tation d’éléments voisins (figure 4.22) n’existe pas.

Dans notre implémentation, nous avons préféré construire le maillage dual en début
de calcul pour obtenir plus de souplesse au détriment de la quantité de mémoire utilisée.
Il en découle par exemple que la méme routine de convection peut étre utilisée pour le
transfert nodal ou le transfert des valeurs aux points de Gauss ; seul le maillage donné est
différent. La construction du maillage dual est simplifiée par le fait que nous disposons
généralement de la découpe des éléments finis en cellules barycentriques autour des points
de Gauss. Le maillage INRIA est donc simplement construit en fusionnant toutes les cellules
barycentriques adjacentes a un nceud. Cette opération de fusion consiste a déterminer la
frontiere de chaque cellule INRIA en éliminant les facettes internes communes a plusieurs
cellules barycentriques qui la composent.

4.4.6 Prise en compte des conditions aux limites

L'équation (4.1) est hyperbolique. Il est donc nécessaire d’imposer des conditions aux
limites sur les frontieres pour lesquelles ¢ -n < 0 ou plus simplement d -n < 0. Ce probléeme
est tres peu discuté dans la littérature relative au formalisme ALE. La figure 4.31 illustre
schématiquement la détermination des portions de frontiere sur lesquelles des conditions
aux limites doivent étre imposées. Le nombre de ces zones est fonction du type de reposi-
tionnement choisi et peut varier au cours de la simulation.

configuration
eulérienne

configuration
lagrangienne

conditions aux
limites nécessaires

F1GURE 4.31 — Zone d’application des conditions aux limites. Elle est déterminée simplement grdce au signe
des flux AV, calculés sur la frontiére.

Localement, au niveau de la frontiére S; d’une cellule donnée, le probléme de détermi-
nation de ces zones est fonction du signe de :

AV, = J d-nds, (4.66)
S

i

Lorsque AV; < 0, il faut imposer la valeur de o} a I'extérieur du maillage des volumes
finis, au dela de la frontiere S; (équation (4.60)). Cette maniere d’imposer les conditions
aux limites par la valeur d’un flux est naturelle dans une résolution par la méthode des
volumes finis et tres pratique. On parle d’imposition faible des conditions aux limites par

124



CHAPITRE 4. TRANSFERT DES DONNEES

opposition a ce que 'on fait généralement dans la méthode des éléments finis ot la valeur
est directement assignée aux nceuds du maillage.

Dans le cas de I'équation (4.59) pour laquelle a # 1, le schéma demande une valeur de
o} méme si AV, > 0. Le plus simple, dans ce cas, est de choisir o = o* oll de maniére
équivalente a = 1 pour le flux de matiére vers 'extérieur du maillage.

On pourrait penser qu’il suffit donc de définir une valeur a I'extérieur du maillage pour
tous les champs a transférer. Par exemple, fixer le tenseur des contraintes o au tenseur
nul, la déformation plastique £” a zéro, etc. Ceci correspondrait a imposer que la nouvelle
matiere qui entre dans le maillage a un moment donné est toujours vierge. En pratique, la
situation est plus complexe.

approximation spline

( de la frontiére

——e maillage eulérien
o maillage lagrangien
[ ] gain de matiére
[ 1 perte de matiére

FIGURE 4.32 - Flux de matiére parasites dus aux repositionnement des nceuds sur les frontiéres libres.

Un probléme important vient du caractere discontinu de la normale a la frontiere ex-
terne du maillage. Lorsque des éléments a géométrie linéaire sont utilisés, il est difficile
de préserver la forme des frontiéres libres du maillage pour lesquelles aucun flux de ma-
tiere n’est permis. Les arétes des maillages lagrangien et eulérien sont des lignes brisées
qui doivent correspondre au mieux les unes aux autres. Bien que les techniques de reposi-
tionnement présentées au chapitre 3 (section 3.3.2 pour les arétes et section 3.5.2 pour les
surfaces) permettent de conserver globalement le volume du maillage, elles n’évitent pas
des variations locales de volumes. Ces erreurs sur la géométrie de la frontiere se traduisent
par des flux de matiére parasites inévitables dés que celle-ci est courbe (figure 4.32). Dans
ce cas, imposer des conditions aux limites correspondant a de la matiere vierge va perturber
la solution. C’est d’autant plus vrai dans le cas de la simulation de procédés stationnaires.
En effet, pour ceux-ci, le maillage tend vers une configuration fixe au cours des incréments
temporels pour laquelle les déplacements du maillage et de la matiere se stabilisent. Les
flux parasites sont toujours localement de méme signe et s’accumulent inévitablement au
cours de la simulation. Il est donc trés important de perturber un minimum la solution au
voisinage de la frontiére. Ce résultat est obtenu en choisissant o7 = " ou AV, = 0.

Un deuxiéme probleme courant concernant les conditions aux limites est rencontré
lorsque la matiere qui entre dans le maillage n’est pas vierge. Imaginons par exemple une
simulation de laminage pour laquelle une traction amont et aval doit étre imposée (fi-
gure 4.33). Il est intéressant de ne mailler qu'une zone restreinte autour de 'emprise du
laminoir qui sera délimitée par deux frontiéres eulériennes (section 3.5.3). Des conditions
d’entrée appropriées, reflétant 1’état de la bande en amont du maillage, doivent étre dé-
terminées. Une premiere solution consiste a calculer analytiquement I'état de contrainte
représentant ’état du matériau sous traction. Ce n’est pas l'idéal car on est alors limité a
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G

traction amont v traction aval
<« | [—— P
conditions

d'entrée? C\‘

zone maillée

FIGURE 4.33 — Entrée de matiére contrainte dans le maillage. Cas du laminage. La traction amont entraine
un état de contrainte non nul pour la matiére qui entre dans la zone maillée.

des cas simples (linéaires). De plus, si la traction doit varier au cours de la simulation, cette
méthode nécessite la mise en place de conditions aux limites variables.

Plus simplement, la méthode retenue consiste a appliquer, comme condition aux limite,
une valeur identique a la valeur dans la cellule frontiére, c’est-a-dire, une fois encore al.L =
ol. Cette solution peut paraitre dangereuse du point de vue de la stabilité du schéma
puisqu’elle fait dépendre I'état de la matiére entrant dans le maillage de son état en aval.
Cependant, si on s’assure que

Vo-n=0 (4.67)

c’est-a-dire que o ne varie pas selon la normale a la frontiére dans un voisinage de celle-
ci, cette méthode reste stable et permet d’éviter des calculs fastidieux et inévitablement
approximatifs. Respecter la condition (4.67) revient, en pratique, a éloigner suffisamment
les frontieres eulériennes de 'emprise de laminoir.

En conclusion, dans la majorité des cas, 'imposition des conditions aux limites pour le
schéma de Godunov revient a étendre le champ o a l'extérieur du maillage a I'aide des
valeurs des cellules frontieres. Dans les cas restants, il est toujours possible d’appliquer une
valeur prédéfinie pouvant dépendre éventuellement du temps et de la position sur la fron-
tiere. Ceci est fait en ajoutant préalablement une couche de volumes finis supplémentaires
a l'extérieur de la frontiere comme représenté en vert sur la figure 4.34.

frontiére

couche de volumes i/c
I

X

sur la frontiére

o=o(x,t)

F1GURE 4.34 - Imposition des conditions aux limites. Création d’une couche de volumes finis supplémentaire
au dela de la frontiére. La fonction o(x,t) peut étre imposée de maniére tout a fait générale, tant de
maniére spatiale que temporelle.
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4.4.7 Calcul des volumes et des flux

Pour obtenir une précision maximale, les volumes doivent idéalement étre calculés exac-
tement. A deux dimensions, on utilise les expressions suivantes (Benson [22] — voir aussi
la figure 4.35) :

V. = % [(ry 1y 13)(0 Axgy) +(ry + 15+ 14)(05 AX ) €3] (4.69)
respectivement pour les quadrangles plans et axisymétriques, ou x;; = x; — X;. A trois
dimensions, on utilise une intégration de Gauss a deux points de Gauss dans chaque di-

rection. Une intégration a un point de Gauss est envisageable si les mailles hexaédriques
restent réguliéres, c’est-a-dire, si leurs faces restent planes.

F1GURE 4.35 — Notations utilisées pour le calcul des volumes.

Le calcul des flux échangés a travers la frontiere S; d’'un volume fini passe par I'éva-
luation de AV, par I'équation (4.66). En considérant que la géométrie de la frontiere est
linéaire (2D) ou bilinéaire (3D), on peut exprimer la surface S; sous la forme d’une inter-
polation de ses sommets :

$:(&:m) =Y N'(&n)x, (4.70)

ou N!(&,n) sont les fonctions d’interpolation et x;, les n sommets de la frontiére S;. En écri-
vant cette relation pour les configurations lagrangienne et eulérienne, puis en soustrayant
les deux expressions, on obtient 'expression du déplacement convectif sur la surface :

d(£,m) =Y N'(£,n)d, (4.71)
I1=1
En introduisant cette expression dans (4.66), on a :
AV;= | D> N'(E,n)d,-nds, (4.72)
S; I=1

Dans le cas 2D, I'intégrant est linéaire et on obtient, en utilisant un seul point de Gauss :

1+d2
AV, =n-: ( )—(ezA(xz_x1)) (——) (4.73)
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FIGURE 4.36 — Calcul et visualisation du flux AV a travers une frontiére (surface grisée). La normale de
référence utilisée ici est la normale de la frontiére eulérienne. Le flux peut étre visualisé soit en projetant
les vecteurs d sur la direction normale n (on obtient ainsi un trapéze), soit en déplacant Uaréte eulérienne
au milieu de Uaréte lagrangienne (on obtient un parallélogramme dont Uaire est identique au trapéze).

Si cette intégrale est effectuée sur la configuration eulérienne de la facette (S; = Sf, n =
nt), la figure 4.36 représente deux maniéres de visualiser le volume calculé.

Dans le cas axisymétrique, en définissant 'expression 6 =d - n, l'intégrale est effectuée
analytiquement :

L

AV, = ords (4.74)

0
= L [%(511’1"‘52”2)"‘ %(511”24-521”1)] (4.75)

ol1 L est la longueur de l'aréte, s I'abscisse curviligne et r; et r, les rayons aux points x% et

E
x2.

FiGURE 4.37 — Comparaison des flux (surfaces grises) calculés a partir de la normale eulérienne (a gauche) ou
lagrangienne (a droite). Les flux sont différents si la frontiére a subi une rotation ou si sa taille a changé.

Le choix de la configuration a utiliser pour évaluer l'intégrale (maillage lagrangien ou
eulérien) n’est pas du tout anodin si la frontiere a subi une rotation lors de 'opération de
repositionnement (figure 4.37). Dans ce cas, les deux valeurs calculées peuvent étre tres
différentes 'une de I'autre. C’est également le cas sous 'hypothese axisymétrique lorsque la
frontiére subit un mouvement radial. Enfin, si un mouvement de rotation est observé pour

128



CHAPITRE 4. TRANSFERT DES DONNEES

les facettes de la frontiére du maillage, une mauvaise évaluation de l'intégrale entrainera un
flux local parasite de matiere qui est susceptible de perturber les résultats. En particulier, si
on imagine une cellule carrée qui subit une rotation rigide de 90 degrés, il semble important
que les flux calculés sur sa frontiére soient bien tous nuls.

La solution a ce probléeme de choix de configuration, inspirée du travail de Benson
[22], est d’'utiliser le volume balayé par la frontiére au cours de 'opération de reposition-
nement. Ce volume est également appelé volume de transport. Le mouvement de la facette
est interpolé linéairement entre les deux configurations. On utilise donc finalement des for-
mules identiques a celles utilisées pour calculer les volumes des cellules (équations (4.68)
et (4.69)). A trois dimensions, une intégration compléte s'impose dans ce cas-ci car les vo-
lumes balayés sont généralement beaucoup moins réguliers que ceux des cellules. L'évalua-
tion du volume balayé devient tres cofliteuse et Benson [26] recommande alors de multiplier
simplement le déplacement normal moyen par l'aire de la facette dans une configuration
choisie.

F1GURE 4.38 - Calcul du volume balayé par la facette au cours de Uopération de repositionnement. Cette ma-
niére de calculer le flux permet notamment d’obtenir un flux nul a travers une aréte lorsque les extrémités
de celle-ci se déplacent sur un cercle.

Une méthode alternative consiste a utiliser la normale moyenne n = (n +n')/2 dans
I'expression (4.73). On obtient ainsi a 2D :

nf+nt d,+d
AV, = (—5—)( 12 %) (4.76)

= 5[y —xDAGT —xD)] e 4.77)

qui est 'expression du volume balayé obtenu par (4.68).
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4.4.8 Algorithme

Comme nous utilisons un schéma d’intégration explicite pour résoudre I'équation de
convection, il n’est pas possible d’utiliser des pas de temps aussi grands que I'on veut. En
particulier, le pas de temps imposé par l'intégration temporelle mécanique peut étre trop
grand et provoquer une instabilité lors de la résolution du probleme de convection si on n’y
prend garde.

Pour contourner le probleme, nous avons décidé d’effectuer des sous-pas lors de la phase
de convection (et uniquement celle-ci). L'utilisateur peut contrdler ce mécanisme en spé-
cifiant une condition CFL & ne pas dépasser. Soit C“! la valeur du nombre de Courant
maximum admissible. La condition s’exprime par C < C®, La premiére étape est donc de
calculer le nombre de Courant maximum sur le maillage C™* = max; C; ou C; est évalué a
laide de I'expression (4.61). En exprimant C™* < C“! on peut en déduire le nombre de
sous-pas nécessaire n = C™*/C! arrondi a I'entier supérieur.

Une fois ce nombre de sous-pas calculé, les positions des deux maillages sont calculées
par interpolation linéaire, a défaut de pouvoir faire mieux, entre la configuration lagran-
gienne (x!) et la configuration eulérienne (x%). Le premier sous-pas seffectue avec les
positions :

xf = x"+ %(xE ) (4.78)

xt o= xt (4.79)
et les suivants :

xi,o= xi+(xf—x}) (4.80)

xi, = xi (4.81)

olui € [1,n— 1] est le numéro du sous-pas. Avant chaque sous-pas, les points auxiliaires
des maillages de volumes finis provenant de la découpe des éléments sont mis a jour en
fonction des positions nodales. Si les valeurs des conditions aux limites sont variables, elles
doivent également étre adaptées a chaque sous-pas.

Le nombre de sous-pas est variable et dépend fortement du type de probléme envisagé.
Par exemple, pour un probleme ou le formalisme ALE est uniquement utilisé pour lisser le
maillage, les déplacements convectifs sont généralement faibles sur un incrément temporel
et le nombre de sous-pas est généralement constant et égal a un. Par contre, pour des pro-
blémes quasi eulériens ou pour des problemes possédant des zones trés finement maillées
(pour rappel, le nombre C se calcule sur la plus petite maille du maillage), le nombre de
sous-pas peut étre plus élevé (n > 10).
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4.5 Extension au second ordre

4.5.1 Le transfert vu comme un opérateur de projection

Pour améliorer le schéma de Godunov présenté précédemment (section 4.4), il est com-
mode de reformuler le probleme de transfert comme une opération de projection en le ré-
solvant sous la forme (4.2). Cette équation exprime que le champ o ne doit pas étre modifié
pendant la phase de transfert. Cette approche, initialement utilisée par Benson [22, 26],
présente 'avantage d’éviter toute intégration temporelle dans 'algorithme de résolution.

Considérons un volume V auquel correspond deux maillages constitués de cellules de
volume V; (il nous arrivera de désigner la cellule par son volume; on parlera ainsi de la
cellule V;). La valeur du champ scalaire o s’exprime, sur ces cellules, par o(x) = N;(x) o;.
Dans le cadre du formalisme ALE, les deux maillages sont évidemment les maillages eulé-
rien et lagrangien dont les grandeurs sont distinguées respectivement par les exposants E
et L.

En toute généralité, une projection du maillage lagrangien vers le maillage eulérien
débute en construisant une mesure de I'erreur e(x ) définie en tout point du volume V :

e(x)=N'(x)of —=N'(x)o? (4.82)

Projeter le champ o d’'un maillage sur l'autre revient a annuler une norme de cette erreur
sur le volume V :

J wi(x)e(x)dV=0 (4.83)

ol les w;(x ) sont des fonctions de pondération et oli on considere, sans perte de généralité,
que V = Vt = V£, La qualité de l'algorithme obtenu est fonction de la norme choisie
par l'intermédiaire des fonctions w;(x) et de la qualité de l'interpolation du champ par
I'intermédiaire des fonctions N;(x). En s’assurant que Zi w; = 1 sur V, annuler la norme
de l'erreur revient a égaler I'intégrale du champ o sur le volume V :

J cfdv = J oldv (4.84)
A\ v

Dans ce contexte, le schéma de Godunov peut étre réécrit comme un opérateur de
projection pour lequel les fonctions w;(x) et N;(x) sont identiques et constantes par cellule.
Discontinues a travers les frontiéres, elles valent 1 sur la cellule i et sont nulles partout
ailleurs. On obtient ainsi une équation pour le volume i :

J aiEdV:J odv (4.85)

ol les deux membres de 'équation sont intégrés sur la configuration eulérienne de la cellule
i. Cette relation donne donc explicitement la valeur de af sur cette cellule. 'intégrale du
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second membre est décomposée en une somme d’intégrales sur les volumes définis par les
intersections des deux maillages (voir figure 4.39) :

E L L L
o>dV = o dV + E o dV — o dV (4.86)
i i J#L VY, Nv: j#L YV ﬂV]
maillage

T dss] ] e

1S s

' [
maillage
eulérien

F1GURE 4.39 — Décomposition des intégrales intervenant dans Ualgorithme de projection. Lorsque les deux
maillages ont la méme topologie, cette décomposition permet d’éviter la coliteuse opération de localisation
des zones de recouvrement des mailles du premier maillage sur le second. Néanmoins, le champ d’applica-
tion de la méthode se voit alors limité a des déplacements convectifs inférieurs a la taille d’'une maille.

Par rapport a une approche utilisant la méthode des volumes finis (section 4.4), la
dérivée temporelle est donc remplacée par des intégrales spatiales. La précision de la mé-
thode dépend ainsi, d’'une part, de la qualité de I'intégration numérique de ces intégrales et,
d’autre part, de la qualité de la reconstruction de la solution utilisée (via les fonctions N;(x)
qui, jusqu’a présent, sont constantes). En particulier, si le champ o, défini sur le maillage
lagrangien, peut étre représenté de maniere exacte sur le maillage eulérien, 'opérateur de
projection n’introduira aucune erreur. Par contre, la précision de I'approche convective, qui
consistait a intégrer une dérivée temporelle (section 4.4), est inévitablement limitée par
I'ordre du schéma d’intégration temporelle utilisé.

En pratique, le calcul des volumes délimités par les intersections de deux maillages
est un probleme géométrique difficile, surtout en 3D, et c’est pourquoi Benson décide de
construire sa méthode de transfert sur base d'un schéma unidimensionnel.

O flux entrant

L

01 O flux sortant
L
O—I
L
O-H»l
—>
A -
>
E L E L T
‘Tl '/I/‘z mHl le

FIGURE 4.40 — Opérateur de projection 1D. Reconstruction constante de o sur chaque cellule.
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Dans le cas de la figure 4.40, 'équation (4.85) se réécrit de la maniere suivante en
décomposant les intégrales :

(i —x)of = O =x)oi, +(x, — X))oy (4.87)
= (xiL — xiE) al.L_l + (xiLJrl — xl.L) al.L — (xl.L+1 — fo) al.L (4.88)

ol on a fait implicitement I’hypothése que le déplacement convectif ne dépasse pas la taille
d’une maille. A ce stade, il est intéressant de montrer I'équivalence de I'approche par pro-
jection et I'approche par volumes finis. En définissant V; = x;,; — x;, AV; = x{ — x et en
remarquant que

V=V + AV, —AY, (4.89)

on réécrit 'équation précédente sous la forme :

VEoE =(VE+ AV, —AV) ol + AV, o! | — AV, of (4.90)

1

c’est-a-dire en réarrangeant les termes :

1
of = O'f + vE AV, (aiL_l — oiL) (4.91)

L

qui est 'expression (4.60) écrite dans le cas unidimensionnel. A deux ou trois dimen-
sions, I’équivalence entre les deux méthodes n’est pas automatiquement retrouvée. Des
différences peuvent provenir de la maniere dont les volumes AV; sont calculés (voir sec-
tion 4.4.7). En conséquence, une relation du type (4.89) ne peut pas toujours étre écrite.
Enfin, la méthode des volumes finis ne permet pas de prendre en compte naturellement les
flux de coin, c’est-a-dire les volumes adjacents qui partagent uniquement un sommet avec
la cellule (voir section 4.5.4.1), contrairement a la formulation par projection.

4.5.2 Reconstruction linéaire

Le schéma de transfert précédent, qu’il soit déduit de la méthode des volumes finis ou
qu’il vienne de la discrétisation d’'un opérateur de projection, posseéde une précision spatiale
du premier ordre. Pour augmenter celle-ci, il est nécessaire de construire préalablement
une approximation plus élaborée du champ o sur le maillage lagrangien. En utilisant une
reconstruction linéaire sur chaque cellule :

ol(x)=67+Voi-(x —x;) (4.92)

ou VaiL est le gradient de o> supposé constant sur la cellule i. Les valeurs X, et 6iL sont
respectivement la position du centre de gravité de la cellule et la valeur de o’ en ce point.
Elles doivent vérifier la relation :

J (61 + Vol - (x —%)) AV =V} & (493
ViL

qui revient a dire que I'intégrale sur une cellule est indépendante de la valeur du gradient.
Dans ces conditions, le schéma est conservatif quel que soit Val.L.
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En injectant (4.92) dans (4.86), on obtient :

J ofdv = J (6f+Vol-(x—x))dv
vE vl

i i

+ZJ (6F+ Vol (x—x))dV
j#IVENVE

_ZJ (5f +Vor - (x —J_Ci)) av (4.94)
[ VleV]E

Par rapport au cas précédent, les intégrales sont plus difficiles a évaluer puisque o n’est
plus constant sur les volumes définis par I'intersection des deux maillages. A une dimension,
il est cependant possible d’utiliser une intégration a un point de Gauss et d’obtenir une
expression exacte du schéma. La figure 4.41 illustre la situation dans une configuration
similaire a celle traitée précédemment. On obtient cette fois :

[xE, = xFlof(x) = [xf,—x']ok(x)
+lxf —xfl ol (Glxf 4+ x1)
=[xy, —xi,] O-f(%[xiL-i-l +x;,,]) (4.95)

ol les deux derniers termes peuvent étre vus respectivement comme un flux entrant et un
flux sortant de la cellule i.

cellule 1

O flux entrant

P O flux sortant
-l __—
o}
L
A - A -
E L E L '.'1} —L '.%‘
xi xi xH»l $1,-] Il—l
FIGURE 4.41 - Opérateur de projection 1D. Recons- FIGURE 4.42 — Calcul du gradient au point J'clL grdce
truction linéaire de o sur chaque cellule. awx valeurs des deux cellules voisines (Van Leer

[200]).

Ce schéma unidimensionnel est une extension du schéma de Godunov proposée par
Van Leer [200]. Pour obtenir une précision du second ordre, plusieurs expressions du gra-
dient VaiL sont possibles. Van Leer propose de construire une parabole qui passe par les
valeurs aux points i — 1, i, et i + 1 (figure 4.42). Le gradient est la pente de la parabole
évaluée en i. On obtient :

Jo;

vol = i (O-i—i—l - O-i)AxiZ + (Ui - Gi_l)AxiZH

L oox Ax; Axi 1 (Ax; + Axiyq)

(4.96)

avec Ax; = X; — X;_;. Ce gradient donne une précision du second ordre, mais ne préserve
pas la monotonicité de la solution (voir section 4.4.2). Pire, le schéma résultant est instable.

134



CHAPITRE 4. TRANSFERT DES DONNEES

Pour le comprendre de maniére intuitive, la figure 4.43 illustre la création d’'un nouveau
minimum dans la solution : le gradient calculé en X/ a une pente suffisamment négative
pour que aiL(xl.LH) soit inférieur a la valeur de o dans la cellule adjacente en amont. Cette
cellule va donc recevoir un flux négatif et la mise a jour sera telle que c'fl.EH < O_'l.L+1. En
imaginant que toutes les cellules amont ont la méme valeur, le schéma provoque ainsi

I'apparition d’un nouveau minimum dans la cellule i 4 1.

—L

Uz—l
5 &
+1- Yia . :
“Vo=——" 5si Az=¢c"
2 Az
Vo A
xH»l ‘%‘H»l
4’ .
=L
0-7
=L
i+1:0
0O- A -
® Ll
—L =L —L
:E,;l ‘Tm xH»l
flux négatif

FIGURE 4.43 - Origine des oscillations produites par un schéma du second ordre 1D. Le flux au point x;; est
négatif car la reconstruction linéaire est localement négative au voisinage de ce point. Ce flux est regu par
la cellule i + 1 dont la valeur o, initialement nulle va diminuer, créant ainsi un nouveau minimum dans
la solution.

Pour caractériser la monotonicité d'un schéma, on introduit le concept de variation
totale (TV ou Total Variation) de la solution :

V(o) = o — o (4.97)

Le schéma sera alors dit TVD (Total Variation Diminishing) lorsqu’il vérifie

TV(of) < TV(o!) (4.98)

Cette condition est plus restrictive que la simple préservation de la monotonicité. Un
schéma TVD préserve toujours la monotonicité de la solution (Harten [106]). L'inverse
n’est pas toujours vrai.

En traduisant cette condition TVD sur le schéma précédent, Van Leer déduit une nou-
velle expression du gradient, fonction des valeurs de o dans les cellules voisines :

o= % (sign(@ai) + sign(@aiﬂ)) min (|Vai

Vol Vo) (4.99)

135



CHAPITRE 4. TRANSFERT DES DONNEES

“L_ AL “L AL
© 0,704 < _Oin i 4100
oi=—y—1 Ois1 =~ =T (4.100)
Xk —x - X
i i i+1 X

ol Vo, est toujours évalué a l'aide de ’équation (4.96).

Cette nouvelle expression du gradient inclut un limiteur de flux. Le schéma qui en dé-
coule est cette fois stable et monotone. Il est connu sous le nom de schéma MUSCL (Mono-
tone Upstream-centered Scheme for Conservation Laws) de Van Leer [200]. Il est de second
ordre partout ou la solution varie faiblement, c’est-a-dire lorsque les expressions (4.100)
n’interviennent pas dans I'expression du gradient 0. Le limiteur revient a utiliser locale-
ment un schéma du premier ordre, dans les zones ou le champ o varie brusquement, pour
garantir la monotonicité de la solution.

—L
O—L—l

Vo, (limiteur non actif)

E L
‘Tt+l a:H»l

Vo e

3. | Vo, (limiteur actif)
NG —L

0-77+1 z

»
>

flux positif —»

FIGURE 4.44 — Utilisation d’'un limiteur de flux (schéma MUSCL). Le gradient Vo est calculé puis comparé aux
valeurs Vo; et Vo,,. Dans ce cas-ci, |Vo| > |Vo,,4| et le gradient doit étre réduit, en valeur absolue, a
cette valeur limite. Le flux en x;,, est ainsi positif et la valeur de &, ne diminuera pas.

La figure 4.44 montre le calcul du gradient limité dans le cas de 'exemple précédent.
On constate que le flux négatif est transformé en un flux inutilement positif. Il est donc
possible d’améliorer le limiteur en utilisant les expressions suivantes (Benson [22]) si le
flux sort de la cellule i :

=L = L =L

=L
(O — 0.

= - ~ +1
Vo, = . et Vo, = . i

— (4.101)
%(xf-i—l + xiL+1) - xiL

Le résultat de ce nouveau limiteur est illustré sur la figure 4.45 pour laquelle seule la
valeur de Vo, change puisque le flux est sortant en xiLH.

Si on effectue le test de convection unidimensionnel de la section 4.4.2 (page 114), on
constate immédiatement l’effet de la reconstruction linéaire (figure 4.47) sur la qualité de
la convection. La solution finale est beaucoup plus proche de la solution exacte qu’avec le
schéma de Godunow.
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Vo, (inchangé)

o Vo., (meilleur)
- _L

Ut+l ‘x

fluz nul

1=

FIGURE 4.45 — La valeur de Vo, peut étre amé-
liorée en calculant la valeur du gradient qui en-

trainera un flux exactement nul en x; .

[| = Van Leer

—— Godunov

0.8
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0.47

0.27
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FiGURE 4.46 — Amélioration du limiteur de flux.
Zoom sur la partie intéressante de la figure 4.45.

FIGURE 4.47 — Test de convection sur maillage fixe d’un signal carré sur une distance égale a 7x sa largeur.
Comparaison des solutions obtenues avec une reconstruction constante (Godunov) et linéaire (Van Leer).
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4.5.3 Schéma axisymétrique

L'extension au cas axisymétrique du schéma précédent n’est pas immédiate. En effet, si
on utilise des cellules barycentriques traditionnelles, le point de collocation est au centre
de gravité de I'élément qui correspond a la position du point de Gauss utilisé par le calcul
lagrangien. Une reconstruction linéaire de o autour de ce point ne vérifie pas la relation
(4.93). Autrement dit, l'intégrale de o sur la cellule dépend directement de la valeur du
gradient. Pour des éléments 1D axisymétriques, la position du point r; vérifiant (4.93) est
donnée par :

_ m (Ar,)?
rn=r m
127;

(4.102)

our™" = %(ri +r;,,) et Ar; = r;;; — r;. Ce point est d’autant plus éloigné du barycentre
de la cellule que celle-ci est proche de I'axe de symétrie (figure 4.48). En utilisant le point
milieu r™ au lieu de 7;, on introduit une erreur dans le schéma. Benson [22] montre que
cette erreur commise sur le calcul des flux est indépendante de la distance a I'axe. Utiliser
r; n’est pas non plus une solution puisque la valeur de o de la cellule provient de la valeur
du point de Gauss situé en r".

volumes égaux fluz sortant

l \ -

: 1 L

ﬁ i Ti

i 717 r1+1

! :

. E E L

! T; Tivr Tin

FIGURE 4.48 — Choix du centre de la reconstruction FIGURE 4.49 — Calcul du flux pour un probléme axi-
linéaire. On peut choisir le milieu du segment ;" symétrique. Lintégrant n’est pas linéaire et re-
ou le centre de gravité ;. quiert idéalement deux points de Gauss.

En conséquence, nous décidons d’utiliser toujours le point milieu r" dans le cas axi-
symétrique comme centre de la reconstruction (a deux dimensions, il s’agira du centre de
gravité du volume comme s’il n’était pas axisymétrique). L'erreur qui en découle est d’au-
tant plus élevée que les flux radiaux sont importants. Dans le cas de simulations ot ces flux
sont prépondérants, I'utilisation d’une reconstruction linéaire peut entrainer l'instabilité du
schéma et 'apparition d’oscillations dans la solution. Pour de tels tests, nous choisirons
d’annuler le gradient dans la direction radiale pour éviter ce phénomene. On retrouve ainsi
le schéma du premier ordre selon cette direction.

Le calcul numérique des flux axisymétriques est également plus complexe dans le cas
d’une reconstruction linéaire puisque la fonction a intégrer est du second degré en r et
nécessite donc deux points de Gauss pour étre évaluée exactement a 1D (quatre points a
2D et huit a 3D). Néanmoins, par souci d’efficacité, les flux seront sous-intégrés dans tous

les cas (figure 4.49) par la relation :

L ~1r,L E L E Lelp, L E
o'(r)rdr= E[ri+1 —rial i, trilo (E[ri+1 = 1)) (4.103)

r

E

Tiv1
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4.5.4 Schémas 2D et 3D
4.5.4.1 Flux de coin

Le schéma de convection de Van Leer est un schéma unidimensionnel. Une maniére de
I'adapter a deux ou trois dimensions est d’utiliser la méthode des directions alternées si le
maillage est régulier et ses directions orthogonales : 'opération de transfert est alors dé-
composée en deux ou trois étapes pour lesquelles le maillage se déplace uniquement dans
ses directions principales. On retombe ainsi a une succession de problemes unidimension-
nels résolus par le schéma (4.95).

calcul exact calcul simplifié
flux de coin
1% 1% |___| flux regu de la cellule droite
\
| I /

FIGURE 4.50 - Simplification du calcul des flux a 2D. Le calcul exact de Uopérateur de projection requiert U'éva-
[uation des flux de coin provenant des cellules non directement voisines. Le calcul simplifié ne fait intervenir
que les cellules directement voisines, c’est-a-dire celles partageant une aréte avec la cellule considérée.

Dans le cas d'un maillage quelconque, cette méthode est difficilement applicable. Méme
s’il est structuré, la distorsion des mailles empéche la définition de deux directions ortho-
gonales. Il est donc nécessaire de repartir de la relation (4.94). Cependant, cette équation
nécessite la détermination de tous les volumes définis par l'intersection des maillages la-
grangien et eulérien. Pour éviter ce calcul cofliteux, il est commode d’ignorer les volumes
qui ne sont pas directement adjacents a la cellule considérée. Les flux associés a ces vo-
lumes sont appelés flux de coin (voir figure 4.50). Tous les autres flux, c’est-a-dire ceux
faisant intervenir des cellules ayant une frontiére commune, sont alors calculés comme dé-
crit a la section 4.4.7 et sont proportionnels au volume balayé par la frontiere au cours du
déplacement du maillage.

Les flux de coin sont donc remplacés par une contribution supplémentaire venant s’ajou-
ter aux flux traversant les frontieres adjacentes au coin. Cette approximation entraine une
diffusion transverse qui est d’autant plus importante que le déplacement relatif des deux
maillages n’est pas aligné sur les directions principales de ceux-ci. Un deuxieme effet né-
gatif de cette approximation est son influence sur la stabilité du schéma. En effet, les flux
a travers les arétes sont surestimés. On peut le voir aisément sur la figure 4.50 ou le flux
recu par la cellule provenant de sa frontiére droite est plus grand dans le cas du calcul
simplifié. Le critére de stabilité calculé par 'expression (4.62) sera donc beaucoup plus res-
trictif sur la taille du déplacement relatif entre les deux maillages. Par exemple, dans le cas
d’un maillage structuré régulier, si le déplacement relatif est oblique et incliné a 45 degrés
par rapport au maillage, la limite de stabilité en termes de déplacement maximal selon
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chaque direction sera divisée par deux a deux dimensions et par trois a trois dimensions.
Ces phénomenes sont illustrés dans le cas d'un exemple simple a la section 4.7.1.

La prise en compte des flux de coin sans passer par I'évaluation des volumes intersectés
est possible en utilisant un schéma de Runge Kutta a deux pas (Benson [26]) nommé RK-
MUSCL. Le premier pas correspond a la moitié du déplacement convectif total. Les flux de
coin sont ignorés. On obtient ainsi une solution intermédiaire qui est utilisée pour évaluer
les flux du deuxieme pas. Celui-ci est effectué a partir de la configuration lagrangienne en
utilisant cette fois le déplacement convectif total. Ce schéma n’a pas été implémenté dans le
cadre de ce travail parce qu’il multiplie par deux le cofit de I'algorithme de transfert et que
le phénomene de diffusion transverse n’a pas été un probleme critique dans les applications
traitées.

A 2D ou 3D, on utilisera donc I'expression suivante du schéma :

1 n

E __ LysL
o; = vE o V- Z Aoy (4.104)
1 ]:1
ou n est le nombre d’arétes (2D) ou de facettes (3D) de la cellule i et Ao j; est le flux de o
sortant de la cellule 7 a travers la frontiere j :

Ao, :J ol(x)dv (4.105)
AV,

J

Cette intégrale peut étre calculée en évaluant la valeur de la reconstruction de o sur la
cellule i au barycentre du volume balayé AV, et en la multipliant par la valeur du volume
AV; comme le montre la figure 4.51 :

Ao = (c‘rf +(x]—x;)- Vai) AV, (4.106)

On procede de la méme maniere a trois dimensions.

config.
config. lagrangienne

eulérienne

aréte j

FIGURE 4.51 - Evaluation du flux Ao j; a deux dimensions. Il est calculé comme le produit du volume AV; et
de la valeur de o évaluée au barycentre x}f du volume balayé.
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4.5.4.2 Gradient en coordonnées volumiques

Le probléme suivant est le calcul de la reconstruction linéaire 2D ou 3D du champ o*
et donc de la détermination du gradient Vo’. Contrairement au cas unidimensionnel, il est
difficilement possible de satisfaire la relation (4.93) avec des éléments quadrangulaires ou
hexaédriques. Dans le cas d’éléments sous-intégrés, I'unique point de Gauss est au centre
de gravité des sommets, mais ce point n’est pas toujours le centre de gravité de I’élément.
Utiliser le point de Gauss comme point de collocation du volume fini entraine donc une
valeur de l'intégrale de o sur I'élément qui dépend directement de la valeur calculée du
gradient. On retrouve ici le méme probléme que celui décrit dans le cas axisymétrique a la
section 4.5.3.

Eul.
AV, —]
AV, AV,
v, v, £ 3 N Lag
AV,
n
24 |:| Axl
Pul T Ooas
V12 1/21
! N_ 2" noeud de la cellule 3

FIGURE 4.52 — Coordonnées volumiques. Définition des sous-cellules V;; et des flux AV;; dans le cas de trois
cellules V,, V, et V. Les coordonnées volumiques s’obtiennent en sommant les volumes de toutes les sous-
cellules adjacentes a une aréte.

Pour faciliter le calcul du gradient, Benson [22] propose de traiter le probléeme sépa-
rément dans chaque direction. En d’autres mots, a deux dimensions, au lieu de calculer le
gradient en coordonnées cartésiennes x, y, on utilise des coordonnées volumiques définies
en divisant chaque cellule en quatre quadrangles comme représenté sur la figure 4.52. Les
distances Ax; et Ax;,, sont alors calculées par :

Ax; = VE L, +VE L +VE+VE (4.107)
Axin = Vo +Vi+ Vi, +Vi, (4.108)

ou V,; est le volume de la j®me sous-cellule de la cellule i. Chaque sous-cellule peut étre
numérotée en fonction du nceud. L'indice j est le numéro interne de nceud de la cellule qui
appartient également a la sous-cellule. Les définitions ci-dessus sont donc fonction de la
numérotation interne des noeuds des cellules et des orientations des unes par rapport aux
autres.

Les composantes du gradient selon & et n (notés Vy0; et V,0;) sont calculées et limi-
tées par les équations unidimensionnelles de Van Leer (équations (4.95), (4.96) et (4.99))
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en remplacant les Ax; par les volumes correspondants. Les flux sont ensuite calculés en
utilisant un point de Gauss. Par exemple, pour le flux de o sortant de la cellule 2 vers la
cellule 3 (noté Ao ,, en suivant les conventions de la figure 4.52), on obtient :

NGy = AVy [0F + (Vo + Vog + 2AV,,) V0, | (4.109)

Ces flux sont enfin injectés dans le schéma (4.104) pour fournir la nouvelle valeur de o
dans la cellule en configuration eulérienne.

4.5.4.3 Gradient en coordonnées cartésiennes

Le schéma de Benson a I'avantage d’étre simple, précis et général. Il nécessite cependant
le calcul de nombreux sous-volumes pour évaluer le gradient dans chaque direction. A deux
dimensions, 12 volumes interviennent dans le calcul (4 internes et 2 externes par aréte) et
on en compte 32 pour un hexaedre a trois dimensions (8 internes et 4 externes par facette).
Une intégration exacte de ces volumes a 3D nécessite deux points de Gauss par direction et
par sous-volume. L'utilisation des coordonnées volumiques est donc assez cofiteuse.

De plus, dans le cas d’'un maillage non structuré, il est nécessaire de prendre en compte
I'orientation relative des éléments les uns par rapport aux autres pour déterminer les vo-
lumes en vis-a-vis de part et d’autre d’'une frontiere. Un probléeme équivalent a déja été
mentionné a la section 4.4.4 (figure 4.22) lors de l'extension du schéma de Godunov a
des éléments a plusieurs points de Gauss. Ce probleme d’orientation est assez fastidieux a
résoudre sans construire explicitement une structure de maillage correspondant aux sous-
volumes. D’ailleurs, il n’est pas étonnant que la récente implémentation de Benson semble
se limiter a 2D pour cette raison.

Enfin, dans le cas de maillages non structurés, l'utilisation des coordonnées volumiques
est discutable. En effet, les directions & et 1) peuvent ne plus étre perpendiculaires et les
gradients ainsi calculés deviennent fortement dépendants de la géométrie du maillage.

frontiére

F1GURE 4.53 - Calcul du gradient a Uaide du théoréme de Green-Gauss pour le cas d’'une cellule interne (a
gauche) ou sur la frontiére du domaine maillé (a droite).

Pour ces raisons, il semble plus intéressant de calculer le gradient en coordonnées car-
tésiennes. Pour ce faire, plusieurs méthodes sont possibles. La premiére consiste a utiliser
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le théoreme de Green-Gauss (voir Barth et Jespersen [15]) :
1
T

ol JI'; est un contour englobant la cellule i pour laquelle on veut évaluer le gradient et dé-
limitant le volume TI';. Il est construit en reliant les centres des cellules voisines. L'ensemble
de ces cellules intervenant dans le calcul du gradient constitue le stencil de reconstruction. La
figure 4.53 montre un exemple de stencil pouvant étre utilisé, d'une part, pour un volume
intérieur et, d’autre part, pour un volume sur la frontiére du domaine maillé. L'intégrale est
calculée par sommation des contributions de chaque segment du contour en utilisant une
méthode du trapeze :

1 <4646,
l:FZ ~Ln, (4.111)
J

ou [; est la longueur du segment j dont la normale est n;. On peut montrer (voir par
exemple Delanaye [57]) que cette approximation du gradient est au moins du premier
ordre. Pour alléger les calculs, le stencil peut étre simplifié en ne gardant que les voisins
directs, c’est-a-dire ceux partageant une aréte avec la cellule pour laquelle on veut calculer
le gradient de o. La difficulté de cette procédure est la construction du stencil a partir des
relations de voisinage entre cellules. Le stencil doit également étre trié pour permettre le
parcours du contour JI'; «aire a gauche ». Cette étape est effectuée une seule fois pour
chaque cellule au début du calcul et le résultat est conservé en mémoire. Dans le cas ou
le maillage est constitué d’'une seule couche d’éléments alignés, un stencil valide ne peut
pas étre construit (I'; = 0). Il faut alors envisager une méthode alternative pour calculer le
gradient. Notons enfin que I'extension 3D de la méthode n’est pas du tout immédiate et n’a
donc pas été envisagée.

Pour pouvoir traiter les problemes tridimensionnels, il est nécessaire de procéder au-
trement. L'idée est de déterminer la valeur du gradient par moindres carrés. On construit
également un stencil de reconstruction qui inclut les voisins de la cellule. Ce stencil peut se
limiter aux voisins directs (c’est notre choix dans ce travail) ou étre choisi plus riche. Soit
N; le nombre de voisins de la cellule i. En écrivant les équations suivantes pour tous les
volumes du stencil :

6;+(x;—x;)Vo, =07 = (x;—x;)Vo,=06;—7; (4.112)
ou j =1,...,N;. On obtient un systeme surdéterminé de N; équations a n inconnues (n est la
dimension de I'espace). Si on note A la matrice de ce systéme, 'approximation du gradient
par moindres carrés est obtenue par I'équation :

Vo, = ((ATA)'A") Ao, (4.113)

Cette expression du gradient est également précise au moins du premier ordre. Elle
est cependant beaucoup plus simple a mettre en ceuvre que la précédente puisqu’elle ne
nécessite pas un tri des voisins. Elle est aussi plus générale puisque directement applicable
a trois dimensions.
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Enfin, le cas pathologique pour lequel le maillage est constitué d’une seule couche d’é1é-
ments alignés peut étre facilement contourné. En effet, dans ce cas, on a : det(ATA) =0 et
il suffit de calculer la pseudo-inverse de la matrice du systeme (4.112). Celle-ci se déduit
en pratique d’'une décomposition en valeurs singuliéres de la matrice : A=UX V' (voir par
exemple Watkins [203]). La résolution du systéme s’écrit alors :

Vo, = (VZ'U") Ao, (4.114)

ot X' est la pseudo-inverse de la matrice diagonale %, obtenue en inversant tous ses élé-
ments diagonaux non nuls.

Cette derniere équation peut d’ailleurs étre également utilisée dans le cas régulier ou
le systétme AT A est invertible puisque qu’elle est équivalente a une résolution par moindres
carrés. Le cas pathologique peut donc étre tout simplement ignoré lors de la résolution.

4.5.4.4 Limiteur de flux

Le limiteur de flux le plus utilisé dans le contexte de la méthode des volumes finis est
celui de Barth et Jespersen [15]. Il consiste a réécrire la reconstruction linéaire (4.92) en'y
ajoutant un scalaire ¢; dont la valeur est comprise entre O et 1 :

ol(x)=6+ ¢, Vo -(x —x,) (4.115)

Une valeur de ¢; = 0 correspond a une reconstruction constante précise au premier ordre
et toujours monotone. Elle sera utilisée pour les endroits ou o varie brusquement. La va-
leur de ¢; = 1 permet de retrouver la relation (4.92) et donc le schéma précis au second
ordre quand o varie faiblement. La condition de monotonicité du schéma peut étre traduite
localement sur la cellule i en identifiant la valeur minimum et le maximum de o sur le sten-
cil de reconstruction précédemment utilisé (y compris la valeur G,). Soient ™" et g™~
ces extrema. On obtient une expression du limiteur ¢ pour chaque frontiére j (aréte ou
facette) de la cellule :

0 _ : oMmix—g, . . -
d)i = min (1,m) S1 Vai-(x(f)—xi)>0

() _ . oMin_g, . . _
d)i = min (1,m S1 VO‘i-(x(J)_xi)<O (4.116)
oV = 1 si Vo, -(x¥ -x)=0

Le limiteur ¢; est égal au minimum de ces valeurs :

¢; = min ¢ (4.117)

J

Le point d’évaluation x” de (4.116) sur chaque frontiere correspond au point d’inté-
gration du flux a travers celle-ci. Puisque nous utilisons un seul point d’intégration, ce point
correspond au centre de la facette. Grace au fait que la vitesse de convection est connue en
tout point, il est possible d’améliorer le limiteur comme cela a été fait pour le limiteur de
Van Leer unidimensionnel (équation (4.100)) : dans le cas d’un flux sortant a travers une
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frontiere, I'évaluation de (4.116) peut étre effectuée au centre du volume balayé au lieu
du centre de la frontiere. Le gradient résultant est ainsi plus important en valeur absolue
(pour s’en convaincre, comparer Vo sur les figures 4.44 et 4.45) et la précision du schéma
est augmentée.

Dans le cadre du formalisme ALE, ce limiteur, couplé a un calcul par moindres carrés du
gradient, est utilisé par Garimella et al. [81] et Kucharik et al. [133] pour des simulations
concernant la dynamique des gaz et des plasmas. Olovsson et al. [159] utilisent également
cette méthode pour simuler la découpe de métaux a deux dimensions.

4.5.5 Gestion de plusieurs points de Gauss par élément fini

La plupart des éléments finis utilisés en mécanique non linéaire nécessitent plusieurs
points de Gauss pour étre intégrés correctement. Le schéma de transfert précédent doit donc
étre adapté en conséquence. Nous proposons d’utiliser 'approche imaginée par Huerta dans
le cadre de I'algorithme de Godunov (section 4.4.4) qui consiste a diviser chaque élément
fini en un nombre de volumes finis égal au nombre de points de Gauss. En pratique, dans
les cas qui nous intéressent, on utilise deux points de Gauss par direction de I’espace, c’est-
a-dire quatre points a 2D et huit points a 3D. Cette extension est une originalité de ce travail
de these.

La découpe des éléments finis est un argument supplémentaire pour ’'abandon de la mé-
thode du calcul du gradient par I'utilisation de coordonnées volumiques (section 4.5.4.2).
Pour rappel, ces dernieres nécessitent une découpe de chaque volume fini en quatre ou huit
sous-volumes. L'utilisation de coordonnées volumiques pour des éléments non sous-intégrés
entrainerait la création d’'un maillage auxiliaire quatre fois plus raffiné dans chaque direc-
tion que le maillage élément fini initial (ce qui correspond dans le cas 3D a découper chaque
hexaédre en 64 sous-cellules et utiliser un total de 512 points d’intégration pour calculer
exactement tous ces volumes).

reconstruction a partir reconstruction a partir
NOo . ANOo . Ao . .
cellule i+1 des points de Gauss du point milieu des
<> cellules
. .
cellule 1 i
[ ]
H H x xXr J/ €T
— —p—> — £ > —h— - >
PG1 PG2 xl "'EH—I xi wH»l

élément fini

FIGURE 4.54 — Reconstruction linéaire sur les deux cellules d’'un élément fini a deux points de Gauss. La
reconstruction peut étre basée sur la position de chaque point de Gauss ou sur la position du milieu de
chaque cellule.

Puisque les points de Gauss de I’élément ne sont pas positionnés au centre des cellules, le
choix du point x;, origine de la reconstruction linéaire, peut sembler ambigu. La figure 4.54
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montre schématiquement deux possibilités dans le cas d’'un élément 1D a deux points de
Gauss.

La premiere est d’utiliser la position réelle du point de Gauss. Dans ce cas, la recons-
truction du champ o interpole correctement la valeur au point de Gauss. A ce moment, le
schéma (4.95) n’est pas équivalent a I'expression intégrale (4.94). Il peut se réécrire :

E E Erl E E _ L L Lrl L L
i —xil o Glxiy +x71) = Dy —x71 07 (Gl +x71)
+[xl.L —xf] al.L_l %[XIL +xf])
_[xiL+1 - xl'E+1:| O-iL(%[xiLH + xiE+1:|) (4.118)
En exprimant que :
ol GIxf, +xi D) =0f (%)) +Voi (Gxf, +x[1— %) (4.119)

ou )'cf est la position du point de Gauss lié a la cellule i, qui ne correspond plus au centre
de celle-ci, on constate que le schéma n’est plus explicite, car le premier membre dépend
du gradient de la solution Vo?. Il devient donc trop coliteux pour étre utilisé dans le cadre
du formalisme ALE. Négliger ce gradient dans le premier membre rend le schéma non
consistant (o; peut varier pour un déplacement convectif nul) et ne peut pas non plus étre
envisage.

La seconde possibilité est d’utiliser le centre de gravité de la cellule. En considérant
la valeur au point de Gauss comme une moyenne sur la cellule et non plus comme une
valeur ponctuelle, la reconstruction peut étre effectuée autour du barycentre. Dans ce cas,
le schéma est consistant et, malgré 'approximation faite, I'intégrale du champ est toujours
conservée lors du transfert. Cette deuxiéme solution est celle qui a été retenue pour ce
travail.

Sur maillage régulier, 'écart entre le point de Gauss et le centre de gravité de la cellule
introduit une perte de précision similaire a celle que I'on obtiendrait sur un maillage irré-
gulier (voir section 4.4.4). A cette erreur s’ajoute une erreur sur le calcul du gradient qui
est évalué comme si la valeur au point de Gauss était centrée sur la cellule.

En reprenant le test effectué précédemment a la section 4.4.2 qui consiste a translater
un signal carré sur un maillage fixe, on peut visualiser 'erreur commise sur un cas concret.
La géométrie est toujours représentée sur la figure 4.16, page 116. La figure 4.55 montre les
solutions obtenues pour £ = 0.5 (point de Gauss centré sur le volume), & = +/3/3 (position
des points de Gauss d’éléments intégrés par deux points de Gauss). Ces solutions sont
comparées, d'une part, a la courbe obtenue avec £ = 0.9 qui correspond a un décentrage
amplifié et, d’autre part, a la solution obtenue avec le schéma de Godunov. Puisque nous
avons choisi d’utiliser un point de collocation toujours centré, quelle que soit la position
des points de Gauss des éléments sur lesquels sont définies les cellules, le décentrage du
point de Gauss peut intervenir uniquement a deux moments dans le calcul. Le premier est
'assignation des conditions initiales au démarrage de I'algorithme. Dans le cas de ce profil
tres particulier qui est constant par morceau (0 ou 1), le décentrage n’influence pas le calcul.
Le deuxiéme moment est I'affichage de la courbe finale ot les valeurs moyennes des cellules
sont relocalisées aux positions réelles des points de Gauss. Il en résulte des oscillations

146



CHAPITRE 4. TRANSFERT DES DONNEES
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0.2 —— Godunov - £ =0.5
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FIGURE 4.55 — Convection d’un signal carré du un maillage fixe. Influence de la position des points de Gauss
des éléments finis sur la solution finale. La valeur §& = 0.5 correspond a des cellules construites sur un
élément fini a un point de Gauss. La valeur & = +/3/3 correspond a la position obtenue avec des éléments
finis a deux points de Gauss.

d’autant plus fortes que le décalage du point de Gauss est important. Néanmoins, si on
tracait a l'instant final les trois solutions obtenues par reconstruction constante en utilisant
les milieux des cellules comme abscisses, les trois courbes seraient tout a fait identiques.

Cet exemple justifie 'emploi d'un schéma utilisant une reconstruction linéaire dans le
cas d’éléments finis a plusieurs points de Gauss méme si la position de ces derniers ne
correspond pas exactement a la position des point de collocation utilisés pour les cellules
de transfert. Le schéma résultant reste précis et conservatif.

4.5.6 Transfert des grandeurs nodales

Le transfert des grandeurs nodales peut étre effectué par le méme algorithme que ce-
lui utilisé pour les points de Gauss en utilisant le maillage auxiliaire dual décrit a la sec-
tion 4.4.5.

barycentre de la cellule

associée
noeud

FIGURE 4.56 — Décalage entre la position d’un nceud et celle du centre de gravité de la cellule associée (en
grisé) du maillage auxiliaire dual utilisé pour le transfert des grandeurs nodales. Cet écart est d’autant
plus important que la taille des mailles varie fortement autour du neceud.
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Le fait d’utiliser une reconstruction linéaire entraine le méme probléme que celui ren-
contré pour les points de Gauss : la position du nceud n’est pas obligatoirement confondue
avec le barycentre de la cellule associée si le maillage n’est pas structuré et régulier. La
discussion précédente sur 'influence de ce décalage sur la solution est donc également va-
lable et d’autant plus pertinente, dans le cas de la convection des valeurs nodales, que les
valeurs de décentrage peuvent étre beaucoup plus importantes quand un nceud est entouré
de mailles de tailles tres différentes (figure 4.56).

4.5.7 Conditions aux limites

Méme lorsqu’on utilise une reconstruction constante, le schéma de transfert vu comme
opérateur de projection défini par I'équation (4.91) n’est pas tout a fait équivalent au
schéma de Godunov (4.60). En particulier, il nécessite une nouvelle réflexion sur I'appli-
cation des conditions aux limites au niveau des surfaces libres. A cet endroit, I'opération
de relocalisation des noeuds est délicate et introduit inévitablement des flux parasites si la
frontiére est courbe et discrétisée par des éléments linéaires.

Une maniere intuitive de traiter ces flux parasites est de les considérer nuls, puisqu’ils
doivent idéalement I'étre, et appliquer le schéma tel quel. Imaginons un élément 1D adja-
cent a une frontiere dont le volume diminue légerement a cause d’une erreur de reposition-
nement (voir la figure 4.57 ot AV = V! — V¥ a été amplifié). A deux ou trois dimensions, il
s’agirait de l'erreur locale commise sur la position d’'un nceud de frontiere par une approxi-
mation spline de celle-ci (’'exemple est ici unidimensionnel pour faciliter sa représentation).

Dans le cas du schéma de transfert par projection de Benson (4.91), en imposant AV =
0 bien qu’il ne soit géométriquement pas nul, on obtient of V = ¢! V. Lintégrale de o
est conservée sur le volume et l'erreur faite sur le flux est convertie en une augmentation
de la valeur de o dans la cellule adjacente a la frontiére.

Par contre, dans le cas du schéma de Godunov proposé par Huerta et al. (4.60), on
obtient simplement of = ¢! etla valeur de o reste inchangée. Lerreur de repositionnement
du nceud frontiére n’influence donc pas directement la valeur de o sur la cellule.

Retrouver le comportement de I'algorithme de Godunov avec la méthode de projection
est possible en considérant que le champ o se prolonge a I'extérieur du domaine maillé
et en calculant correctement la valeur des flux parasites. Dans le cas de 'exemple de la
figure 4.57, celui-ci serait soustrait explicitement au bilan de conservation de la grandeur
o sur le maillage.

Lorsqu’on utilise le schéma de transfert par projection (le seul des deux permettant une
reconstruction linéaire du champ inconnu), il est donc nécessaire de faire un choix au ni-
veau de la gestion des flux de frontiére : soit privilégier la conservation de o au prix d’une
propagation des erreurs géométriques AV sur la valeur des cellules proches de la frontiere,
soit éviter cette propagation en gardant a I'esprit que I'intégrale de o n’est alors plus conser-
vée. C’est cette deuxiéme solution que nous avons choisie pour notre implémentation. Ce
choix sera justifié par un exemple numérique a la section 4.7.3.
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FiGURE 4.57 — Comparaison de Uinfluence des flux parasites sur les deux schémas (Godunov, équation (4.60)
et projection, équation (4.91)) dans le cas d’'un probléme unidimensionnel. A gauche la configuration
lagrangienne d’'une maille dont un nceud est sur la frontiére. La valeur du champ o sur la maille est
tracée en ordonnée. La maille subit un rétrécissement dil a une erreur de repositionnement. Il en résulte
une diminution géométrique de sa longueur, notée AV. Imposer AV = 0 dans le schéma de Godunov

n’influence pas la valeur de o dans la cellule. Par contre, la méme hypothése entraine une augmentation
de la valeur de o pour le schéma de projection.
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4.6 Gestion du contact avec frottement

Une bonne gestion du contact et du frottement est capitale lors de la simulation de
procédés de mise a forme. Il est donc important de pouvoir prendre en compte ce type de
condition aux limites en formalisme ALE pour pouvoir aborder des problémes industriels.
Paradoxalement, dans la littérature, trés peu d’auteurs proposent un algorithme général
pour gérer le contact en formalisme ALE. Le probleme du frottement est encore moins fré-
quemment abordé (voir le travail d’'Haber et Hariandja [96], Huétink et al. [121], Liu et al.
[145], Nackenhorst [152] et Guerdoux [95] pour avoir une vue quasi exhaustive du su-
jet, soit un pourcentage treés faible des articles consacrés a ’ALE). Le code Abaqus [55]
par exemple, bien que proposant du contact en formalisme ALE, ne décrit pas la maniere
dont celui-ci est géré. Il est aussi intéressant de remarquer que beaucoup d’auteurs (Ben-
son, Huerta, Donéa, Wisselink pour ne citer que ceux dont nous avons déja parlé dans ce
travail) se focalisent sur la convection des grandeurs aux points de Gauss en négligeant
le probleme du contact. Ceci limite donc le champ d’application de leurs méthodes et les
modeles numériques qui en découlent dans le cadre de la mise a forme sont inévitablement
trés simples.

Donéa et al. [64] font remarquer que le formalisme ALE permet souvent d’éviter 1'utili-
sation d’algorithmes de contact complexes et coliteux. Lorsque des noeuds peuvent glisser
sans frottement le long de la surface d’un outil, le contact peut alors étre remplacé par
des fixations appropriées sur le maillage. Il étudie dans ce contexte des problemes de poin-
connement et d’extrusion. Malheureusement, lorsque le frottement ne peut étre négligé ou
lorsque le procédé est plus complexe, la formulation ALE doit pouvoir prendre en charge
un contact quelconque. C’est I'objet de cette section.

4.6.1 Contact

Dans un premier temps, nous considérons uniquement le probleme de contact sans frot-
tement. Il peut se résumer a une condition de non-pénétration des surfaces potentiellement
en contact.

surface maitre

noeud
esclave

FIGURE 4.58 — Traitement du contact par pénalisation. Une légére pénétration gy du nceud dans la surface
maitre est tolérée. La force normale f est proportionnelle a cette pénétration.

En formalisme lagrangien, il est courant d’utiliser une méthode de pénalisation qui con-
siste a autoriser une légere pénétration des surfaces en contact (figure 4.58). Dans cette
méthode tres simple et tres efficace, chaque noeud de la premiere surface (appelée surface
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esclave), qui a pénétré dans la seconde (appelée surface maitre), se voit attribuer une force
normale qui tend a le ramener sur la surface maitre. L'intensité de la force varie générale-
ment de maniére linéaire avec la distance du nceud a la surface. On appelle cette distance
la pénétration normale ou plus simplement le gap normal, noté g, . La force s’écrit donc :

fz\(;Xt = —QAayx &N (4.120)

ol1 f¢** est la force de contact, composante normale de la force nodale externe f, et a, est

le coefficient de pénalisation qui doit étre choisi judicieusement par 'utilisateur de la mé-
thode. Une valeur trop faible entrainera des pénétrations importantes et une modélisation
peu physique de la réalité. Une valeur trop élevée provoquera un mauvais conditionnement
du systeme d’équations a résoudre et des difficultés de convergence.

Dans le cadre du formalisme ALE, a la fin de chaque pas de temps, les nceuds de contact
doivent étre repositionnés, comme tout autre nceud. Il faut donc décider s’ils doivent étre
traités différemment des autres nceuds de la frontiere du solide qui ne sont pas en contact.
En d’autres termes, il faut se demander s’il est nécessaire d’introduire un traitement spéci-
fique des noeuds de contact dans les algorithmes de repositionnement de nceuds de surface.
Aymone et al. [13] et Ponthot [168] proposent de procéder en deux temps : tout d’abord, les
neeuds sont repositionnés sans tenir compte du contact. Les méthodes utilisées conservent
la géométrie de la frontiere et donc conservent aussi la géométrie des zones de contact.
On corrige ensuite leur position pour vérifier 'égalité (4.120) et I'équilibre local du noeud
suivant la normale a la surface. Par exemple, sous 'hypothése quasi statique, on écrit :

ext __ rint

Ay

ou Agy est la correction de position du nceud selon la normale a la surface de contact
et £ et F'* sont les forces normales externes et internes calculées apres relocalisation
des noeuds et transfert des grandeurs aux points de Gauss. Dans le cas dynamique, des
expressions similaires faisant également intervenir la force d’inertie normale fl\i,nert peuvent
étre écrites en fonction du schéma d’intégration temporel utilisé.

De maniére plus simple, 'équation (4.121) peut s’écrire :

int

gt = —al (4.122)
N

olt g = gr + Agy. Cette méthode pose plusieurs problemes. Le premier vient de la modifi-
cation de géométrie induite par le déplacement du nceud. Méme si celui-ci est, la plupart du
temps, de tres faible amplitude vu la grandeur du parametre a,, il va introduire une erreur
indésirable sur le volume total du maillage. Le second probléme peut survenir lorsqu’on
observe de grands déplacements convectifs tangentiels a la surface de contact. Certains
neeuds, initialement en contact lors de la phase lagrangienne peuvent quitter la zone de
contact lors de l'opération de repositionnement. Dans ce cas, une correction par rapport
a la surface ne peut que détériorer la géométrie du maillage. On peut ainsi observer des
neceuds proches des extrémités des zones de contact qui sont attirés artificiellement par
les surfaces maitres si on applique brutalement cette méthode. La situation inverse pour
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laquelle un noeud entre dans une zone de contact apres repositionnement est également
envisageable, mais moins problématique. Enfin, dans le cas de contact entre deux surfaces
déformables ou en cas d’autocontact, cette méthode produira des résultats erronés si on uti-
lise une approche symétrique (appelée aussi double passe) ou les surfaces sont considérées
a la fois comme maitre et esclave.

Remarquons enfin que cette méthode ne garantit de toute facon pas I’équilibre nor-
mal au noeud en contact puisque la force interne apparaissant dans ’équation (4.122) est
également fonction du gap gf,.

La solution la plus efficace a ces problemes est simplement de ne pas tenir compte du
contact normal lors de 'opération de repositionnement de noeud. Le défaut d’équilibre qui
en résulte peut étre vu comme un résidu d’équilibre additionnel qui sera éliminé a I'incré-
ment temporel suivant. Cette solution a I'avantage de ne jamais perturber le maillage en
fonction du contact. Elle est également applicable en cas de contact entre deux surfaces dé-
formables. Il faut cependant étre conscient que les forces de contact qui seraient calculées
par I’équation (4.120) apres repositionnement des nceuds n’ont aucun sens physique. Utili-
ser ces forces pour calculer une résultante sur un outil produira des résultats inévitablement
erronés.

En pratique, la seule maniére fiable d’obtenir les forces normales de contact sur la confi-
guration eulérienne du maillage est d’exprimer I’équilibre de chaque nceud de contact. La
force de contact f¢** est ainsi recalculée, non plus par I'équation (4.120), mais en annu-
lant fictivement le résidu d’équilibre normal a la surface. On obtient de cette maniere, en

fonction du schéma d’intégration temporelle utilisé, une expression du type :

f[\(;xt — ]\i[nt + ]\i[nert (4123)
qui permet de recalculer f¢* en fonction des forces internes et des forces d’inerties. Evi-
demment, ces dernieres doivent étre préalablement réévaluées sur le nouveau maillage.
Lexpression (4.123) est utilisée quelle que soit la position du nceud potentiellement en

contact apres relocalisation, qu’il soit géométriquement en contact (g, < 0) ou pas.

4.6.2 Frottement

Sl est possible, a peu de choses prées, d’ignorer le contact dans la direction normale
lors de T'utilisation du formalisme ALE, la situation est tres différente dans la direction
tangentielle. En effet, lorsqu’un frottement doit étre calculé, sa valeur dépend de I'histoire
du chargement. Autrement dit, il est généralement impossible de déduire une force de
frottement en connaissant uniquement la position des nceuds de la frontiére. Cette histoire
doit étre transférée du maillage lagrangien vers le maillage eulérien pour pouvoir recalculer
le frottement sur le nouveau maillage et continuer le calcul.

La modélisation numérique du frottement est un sujet tres vaste et tres complexe. Par
manque de données expérimentales et par ignorance des phénomeénes microscopiques qui
se produisent aux interfaces, le frottement est fréquemment modélisé par une simple loi de
Coulomb :

fr<ufy (4.124)
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ol f; est la norme de la force nodale de frottement, f, est la force normale calculée par
la résolution du probleme de contact et u le coefficient de frottement généralement choisi
constant.

FIGURE 4.59 - Traitement du frottement par pénalisation. La force tangentielle f est déduite du gap tangen-
tiel g qui est la distance de la projection du nceud en contact sur la surface maitre au point de collement
X col-

Pour résoudre cette inégalité et ainsi déterminer la valeur locale du frottement, nous
utilisons une nouvelle fois la méthode de la pénalisation (figure 4.59). Elle consiste a calcu-
ler la force de frottement en fonction d'un gap tangentiel g, relatif a la position initiale x .
du neeud sur la surface maitre. Cette position initiale correspond, dans le cas lagrangien, a
la position géométrique de la prise de contact. On écrit :

f]ik:aT &r :aTllxproj_xcolH (4125)

ou ay est un coefficient de pénalisation choisi par l'utilisateur et x,; est la projection du
neeud en contact sur la surface maitre. Celui-ci doit étre idéalement tres élevé pour que
le gap soit faible. L'utilisateur est cependant limité dans son choix puisqu’une trop grande
valeur entraine une mauvaise convergence du processus itératif de résolution.

La valeur de la force calculée par I'équation (4.125) doit étre ensuite éventuellement
corrigée dans une deuxiéme étape similaire a l'algorithme du retour radial utilisé pour
intégrer les équations de la plasticité :

fr>ufy — fr=ufy (contactglissant) (4.126)
frsufy — fr=f; (contact collant) (4.127)

La direction de la force de frottement est celle de x ., — x ;. Dans le cas d’un contact glis-
sant, le gap est réactualisé a 'aide de I'équation (4.127). Ceci permet au nceud de retrouver
un état collant si la force diminue. Cela revient a déplacer fictivement la position initiale
X . du neeud sur la surface maitre. Cette position est rebaptisée point de collement.

On remarque donc que la valeur du gap tangentiel g, ou, plus précisément, la posi-
tion du point de collement (la valeur du gap ne suffit pas, il faut également connaitre sa
direction), est un parametre interne qu’il faut conserver au méme titre qu'une valeur de
contrainte dans le cas de l'intégration de lois constitutives sur les éléments volumiques du
maillage. Remarquons qu’il s’agit de deux scalaires a 3D (coordonnées du point de colle-
ment sur la surface maitre) et ceux-ci doivent donc étre transférés vers le nouveau maillage.

Une premiére idée serait d’utiliser les algorithmes de transport décrits aux sections pré-
cédentes. La méthode des volumes finis peut étre adaptée et appliquée sur les maillages
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surfaciques des frontieres potentiellement en contact. La difficulté principale vient du fait
que les maillages sont courbes et que les flux entre volumes sont donc mal définis. Dans le
cas de fortes courbures, le frottement pourrait étre localement mal calculé.

La méthode proposée est une extension de la méthode de Aymone et al. [13] et Ponthot
[168] appliquée cette fois dans le plan tangent. Dans ce cas, la méthode ne modifie pas la
position du nceud de contact, mais joue sur celle du point de collement. Aucune erreur géo-
métrique n’est donc a craindre. En pratique, la force de frottement est déduite de I’équilibre
du nceud dans le plan tangent a la surface maitre :

;Xt: int+ ;nert (4128)

L'expression exacte de la force dépend du schéma d’intégration temporelle utilisé a par-
tir duquel on extrait les forces externes au temps courant. La force obtenue peut éventuel-
lement violer la loi de Coulomb. Il pourrait étre envisageable de la limiter au seuil imposé
par cette loi, déduit de la force normale précédemment calculée. Nous avons choisi de ne
pas faire cette correction locale pour ne pas influencer les efforts résultants qui pourraient
en étre déduits. En effet, on se retrouverait dans une situation ou la force de contact dé-
pendrait de la surface (maitre ou esclave) sur laquelle on la mesure.

De cette valeur de la force nodale de frottement, une nouvelle valeur du gap tangentiel
peut étre déduite :

ext

g =1 (4.129)

ar
qui permet de recalculer la position du nouveau point de collement en projetant le point
X poi + &7 f /1| f 7|l sur la surface maitre.

Dans le cas de deux surfaces déformables maillées, la méthode fonctionne sans mo-
dification. Il faut cependant noter que seule une approche simple passe peut étre utilisée
pour obtenir un frottement nodal en accord avec la loi de Coulomb (4.124). Ceci est va-
lable également en formalisme lagrangien et ne constitue donc aucunement une limitation
a la méthode : lors d’'une approche double passe, les forces provenant de chaque passe se
somment vectoriellement et le résultat en un nceud particulier ne vérifie généralement plus
a la loi de frottement.

Il est également possible d’utiliser d’autres lois de frottement, comme la loi de Tresca :
T<MT o, (4.130)

ol 7 est le cisaillement a I'interface induit par le frottement, m est un coefficient générale-
ment constant et 7, est la limite d’écoulement en cisaillement du matériau. Puisque cette
loi est exprimée en termes de cisaillements et non de forces, l'algorithme précédent doit
étre légerement adapté. Les cisaillements sont simplement calculés a partir des forces tan-
gentielles en divisant ces dernieres par une aire de contact entourant chaque nceud. Celle-ci
est déduite de la construction d’un maillage dual surfacique.

Un autre type de loi peut étre utile lorsque le probleme mécanique est résolu en termes
de vitesses au lieu de la formulation en déplacements telle que nous ’avons choisie. Guer-
doux [95] utilise, dans le cadre de son implémentation du formalisme ALE, une expression
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alternative des lois de Coulomb et Tresca basée sur une loi visqueuse de Norton-Hoff (voir
aussi la synthese de Chenot et al. [50] pour une vue générale du traitement du contact et
du frottement dans le cadre d’'une formulation en vitesses) :

T=K|lv, [PV (4.131)

8
ou v, est la vitesse de glissement et p est un coefficient de sensibilité a la vitesse de glis-
sement. La valeur de K est calculée de la maniere suivante pour retrouver une loi de Cou-
lomb :

K=po, si po, < T, (4.132)
K=7Tpx SI UO,> T (4.133)
ou o, est la contrainte normale. Dans ce cas, le comportement en frottement est pure-
ment visqueux et les forces de frottement peuvent étre déduites directement des vitesses de
glissement qui ont été préalablement transférées du maillage lagrangien vers le maillage
eulérien. Ce type de loi ne nécessite donc aucun traitement particulier en formalisme ALE
puisqu’aucune variable d’hérédité n’intervient dans I'expression du frottement.

Liu et al. [145] utilisent un modeéle de frottement plus complexe incluant une modéli-
sation du lubrifiant et 'influence des rugosités des surfaces en contact. Il s’agit d'un modele
eulérien que nous avons étendu au formalisme ALE (Boman et Ponthot [31, 32, 33]). Pour
ce type de loi également, le frottement dépend uniquement des vitesses de glissement et il
n’y a donc aucune variable d’hérédité a transférer d'un maillage vers 'autre.

Pour terminer, citons deux approches légérement différentes du probleme de contact
avec frottement en formalisme ALE.

Haber et Hariandja [96] présentent un élément de contact qui requiert que les noeuds
des surfaces en contact correspondent exactement (on parle de contact nceud a noeud).
Grace a la liberté qu’offre le formalisme ALE sur la position des nceuds du maillage, ils
proposent de déplacer les noeuds des surfaces pour respecter cette contrainte et satisfaire
ainsi I’équilibre local au niveau des arétes en contact. Cette méthode impose donc une
contrainte forte sur le mouvement du maillage dans les zones de contact, ce qui limite son
champ d’application.

Huétink et al. [121] développent également un élément de contact spécifique pour
lequel la zone de contact est modélisée par une tres fine couche de matiére constituée
d’un matériau élastoplastique. Les contraintes calculées dans ce matériau auxiliaire corres-
pondent aux contraintes de contact et de frottement. Elles sont convectées d’'un maillage a
I'autre de maniére similaire a ce qui est fait pour les contraintes des deux solides en contact.

Ces deux méthodes ont l'inconvénient d’étre intéressantes uniquement en formalisme
ALE pour des conditions de contact particulieres (peu de glissement, zone de contact évo-
luant peu au cours du calcul, etc.). De plus, vu leur complexité, elles sont difficilement
applicables a trois dimensions.
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4.7 Exemples numériques

Pour illustrer les différents aspects discutés précédemment, nous étudions trois tests
simples de convection a deux dimensions. Ceux-ci pourraient étre effectués sans aucune
difficulté a 3D, mais cela n’apporterait rien de plus a I'analyse tout en rendant la présenta-
tion des résultats plus complexe.

Schéma #1 Schéma #2 | Schéma #3
Méthode Godunov — équation (4.60) | Projection — équation (4.104)
Auteurs Huerta, Casadei et Benson [22]
Donéa [115]
Reconstruction constante constante | linéaire

TaBLEAU 4.2 — Dénomination des différents schémas de transfert pour les exemples numeériques.

Le tableau 4.2 résume les différents schémas que nous avons a notre disposition et qui
seront comparés dans un test de translation et deux tests de rotation. Le premier schéma
(Godunov) est celui proposé par Huerta, Casadei et Donéa. Le second est le schéma de
Benson, basé sur un opérateur de projection et utilisant une reconstruction constante. Nous
verrons qu’il n’est pas toujours identique au premier schéma. Le troisiéme utilise une re-
construction linéaire.

Chaque schéma posséde plusieurs variantes en fonction de la précision avec laquelle
sont calculés les flux internes et de la maniere utilisée pour gérer les flux parasites sur
les frontieres libres. Le but de cette section est de déterminer les qualités respectives des
trois schémas et de faire un choix parmi les variantes de calcul des flux et de gestion de
conditions aux limites.

4.7.1 Translation 2D

Le premier test est la translation uniforme d’une discontinuité a travers un maillage eu-
lérien. On considere un domaine carré de c6té L = 1 mm. La vitesse convective c est inclinée
selon la diagonale du carré. C’est la situation la plus défavorable concernant 'apparition de
diffusion transverse.

Y solution exacte

- opET=1 :

FIGURE 4.60 — Géométrie du test de translation sur maillage fixe et solution stationnaire exacte.
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Le maillage est constitué de 20x20 mailles carrées. On utilise des éléments finis de type
SRI (voir section 4.3.3) permettant de s’intéresser, d'une part, a la pression (p) qui est sous-
intégrée et, d’autre part, a une grandeur déviatorique (la déformation plastique équivalente
P, par exemple) définie sur quatre points de Gauss par élément fini. Le champ de tempé-
rature (T) est également présent en chaque noeud. La convection de toutes les grandeurs
requiert donc trois maillages auxiliaires : un maillage de 20x20 volumes finis pour la pres-
sion et un maillage de 40x40 volumes pour les grandeurs déviatoriques et le maillage dual
du premier pour le transfert de la température. Initialement, tous les champs sont nuls. Les
conditions aux limites sont appliquées en x = 0 et y = 0. On choisit une valeur nulle en
x = 0 et une valeur unitaire en y = 0. La solution finale obtenue aprés un déplacement
d™" = (L, L) est comparée avec la solution exacte représentée sur la figure 4.60.

Puisque les flux de coin ne sont pas pris en compte, la condition CFL se traduit ici par
I'équation (4.62) :

l

1
2

1
C= Fmel.:l—z(zdl)sl = d< (4.134)

AV;<0

ou [ est la longueur d’une aréte d’un volume fini et d = (d, d) est le déplacement convectif
sur un pas de temps (d™" = nd ou n est le nombre de pas). Puisque les problémes de
convection sont résolus simultanément et que le maillage auxiliaire utilisé pour le transfert
de &P est deux fois plus dense que celui pour la pression, la condition de stabilité la plus
restrictive est celle impliquant les arétes les plus petites. En d’autres mots, si le transfert
de la déformation plastique est effectué avec un nombre C = 1, le transfert de la pression
sera résolu avec un nombre C = 1/2. Quant au maillage dual utilisé pour la température, il
possede des mailles de tailles différentes puisque les volumes autour des noeuds de frontiere
sont plus petits que ceux autour des nceuds internes au domaine. On choisit d =[/2, c’est-
a-dire le pas maximum admissible garantissant la stabilité. La solution stationnaire finale
ne dépend pas de ce parametre contrairement a la solution transitoire qui souffre d’autant
plus de diffusion que d est petit.

Pour un mouvement de translation uniforme, le schéma de Huerta et al. (Godunov) et
le schéma de Benson avec reconstruction constante sont identiques (schéma #1 et #2 du
tableau 4.2) . Nous utilisons donc ici uniquement le schéma de Benson et nous compa-
rons les deux types de reconstruction. La figure 4.61 montre le champ de pression obtenu
en régime stationnaire si on utilise une reconstruction constante ou une reconstruction li-
néaire. Comme on peut s’y attendre, la deuxiéme solution est largement meilleure puisque
le gradient modélisant la discontinuité sur la diagonale est beaucoup plus raide (il devrait
étre idéalement vertical). La diffusion transverse, visible sur les deux solutions par la dimi-
nution progressive du gradient de la discontinuité lorsqu’on s’éloigne de l'origine, est due
a l'orientation oblique du déplacement convectif par rapport aux lignes du maillage. Les
résultats de la figure 4.64 permettent de la quantifier facilement en comparant les pentes
des isovaleurs. En I'absence de diffusion, ces lignes doivent étre paralleles a la diagonale
du domaine.

Le tracé de ces isovaleurs a requis un lissage nodal des champs aux points de Gauss.
Ce lissage provoque une légere divergence de ces lignes prés des frontieres. La figure 4.62
illustre la raison sur un exemple numérique simple : bien que les valeurs du champ repré-
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diffusion

transverse p

pression
(0.0) 0.0 0.5 1.0 (0,0)
| I .

FIGURE 4.61 — Résultats obtenus pour le test de convection pour le champ de pression stationnaire (un point
de Gauss par élément fini) avec une reconstruction constante (a gauche) et linéaire (a droite).

maillage EF

3.5 2.5 1.5 0.0
valeur cellule 1 cellules
3| /-2/-1 «—
2.0 1.0 0 0.5

1 “ valeur nodale

L ‘ 15 (moyenne) barycentre
2 Y
0 0 }e/ 2.5 /< Ik ‘
3 | isovaleur noeud frontiére

noeud interne

FIGURE 4.62 — Divergence des isovaleurs calculées FIGURE 4.63 - Cellules construites autour des

sur un champ lissé aux neceuds. Les valeurs no- neeuds : les cellules internes sont centrées sur les
dales sont simplement obtenues en moyennant neeuds alors que celles de la frontiére ne le sont
les valeurs des cellules adjacentes. pas.

senté sur cette figure soient constantes en parcourant les cellules le long de lignes inclinées
a 45 degrés, on constate que les isovaleurs calculées a partir du champ nodal associé (ob-
tenu par une moyenne des valeurs des cellules adjacentes) divergent légerement sur les
éléments frontieres.

Dans le cas du transport nodal, la variation de pente des isovaleurs a proximité des fron-
tieres est similaire mais d’une toute autre nature : elle est due cette fois a la différence entre
les cellules construites autour des nceuds internes et celles construites autour des nceuds
sur la frontiere (figure 4.63). Pour ces dernieres, le point de collocation, confondu avec le
neceud, n’est pas au barycentre de la cellule. On observe le phénomene déja plusieurs fois
rencontré (section 4.4.4 et 4.5.5) : sur ces cellules frontiere, la valeur calculée correspond
a une moyenne spatiale de la solution, idéalement localisée au barycentre de la cellule. Re-
présenter cette solution sur le bord de la cellule et non au barycentre provoque un décalage
qui se traduit également par une discontinuité dans les pentes des isovaleurs.
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Les résultats obtenus pour la pression sur la figure 4.61 sont fort similaires a ceux ob-
tenus pour la température puisque les deux maillages auxiliaires sont similaires (en dehors
des frontieres). Dans le cas des grandeurs déviatoriques, la pente de la discontinuité est
plus raide et la diffusion transverse est moins importante parce que le maillage est plus fin.

La figure 4.65 montre I'influence du maillage sur le champ de pression final en y = L/2.
Les deux types de reconstruction sont comparés. La courbe obtenue est d’autant plus raide
que le maillage est fin. Utiliser une reconstruction linéaire avec 20 mailles sur L provoque
moins de diffusion qu'une reconstruction constante avec un maillage quatre fois plus fin.
Notons encore une fois que le nombre de Courant C utilisé (ici C = 1, c’est-a-dire d =1/2)
n’a aucune influence sur ces courbes.

4.7.2 Rotation 2D

Le second test consiste a étudier la rotation d'un champ de pression connu sur un mail-
lage régulier et eulérien. Il met en évidence la diffusion obtenue dans le cas d'un mouve-
ment de rotation de la matiere par rapport au maillage. La géométrie du test est représentée
sur la figure 4.66. Il s’agit d'un carré de c6té L = 1 mm et maillé a 'aide de 50x 50 éléments.
La pression initiale est partout nulle, sauf dans un cercle centré sur le carré et de rayon 1/4
mm ou la valeur de la pression est unitaire. On impose une rotation uniforme autour du
centre du carré de 360 degrés en 100 pas de temps. Le nombre de Courant maximum est
fixé a 0.9 (on obtient ainsi 7 sous-pas de convection a chaque incrément temporel). La solu-
tion exacte est identique a la solution initiale. Idéalement, les valeurs de pression devraient
rester constantes au cours du temps.

Dans un premier temps, les flux sont calculés de maniere exacte (relation (4.68)). La
figure 4.67 montre les champs de pression obtenus aprés un tour complet en utilisant une
reconstruction constante et une reconstruction linéaire. La frontiere circulaire de la solution
exacte est superposée aux deux maillages pour faciliter la comparaison. Ces mémes champs
de pression sont tracés selon une coupe y = L/2 sur la figure 4.68. Comme on pouvait
s’y attendre, la diffusion obtenue en utilisant une reconstruction linéaire est largement
moindre que celle obtenue par reconstruction constante. Par contre, de maniére moins
intuitive, on peut montrer que ces résultats sont trés peu influencés par le nombre de pas
de temps utilisés (les mémes résultats sont obtenus avec 700 pas de temps et 1 sous-pas de
convection par exemple).

Ce test est également intéressant pour montrer les différences qui existent entre le
schéma de Godunov développé par Huerta (schéma #1 du tableau 4.2) et le schéma obtenu
par Benson en traitant la convection comme un opérateur de projection avec une recons-
truction constante (schéma #2 du tableau 4.2). Dans le cas d’'une translation uniforme,
ces deux schémas sont tout a fait identiques. Nous allons voir que la situation est parfois
différente dans le cas d’une rotation.

A la section 4.4.7, nous avons détaillé le calcul des volumes et des flux pour conclure
qu’il est préférable d’utiliser une intégration exacte de ces grandeurs. Idéalement, les flux
a travers les frontieres sont donc évalués en calculant le volume balayé par la frontiere.
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reconstruction constante reconstruction linéaire

/

grandeur 1 PG (p)
N

grandeur 4 PG (g)

grandeur nodale (7)

0.000 0.250 0.500 0.750 1.00

FIGURE 4.64 - Résultats obtenus pour le test de convection en fonction du type de grandeur et du schéma
utilisé.
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FIGURE 4.65 — Influence du maillage et du type de reconstruction sur la solution finale le long d’'une coupe en
y=1L/2

X

FIGURE 4.66 — Géométrie et maillage du test de rotation. En fonction de la position de son centre (a Uintérieur
ou a lextérieur du cercle), chaque maille se voit attribuer une pression initiale constante. La frontiére du
cercle est donc d’autant mieux représentée que le maillage est fin. Dans le cas présenté, Ueffet de discrétisa-
tion est nettement visible.

Si a deux dimensions, ce calcul est simple, il requiert par contre une coliteuse intégration
numérique a trois dimensions qui pourrait justifier une simplification dans le but d’accélérer
I'algorithme. Un flux a travers une frontiére peut étre vu alors comme le produit de la
surface de la frontiere et du déplacement convectif normal a celle-ci. En utilisant la frontiere
dans sa configuration lagrangienne ou eulérienne, on obtient deux manieres simplifiées de
calculer le flux (notées respectivement flux simplifié L et flux simplifié E sur les figures).

Les deux algorithmes ne réagissent pas du tout de la méme maniére face a cette simpli-
fication. Dans le cas de I'algorithme de Godunov tel que présenté par Huerta, la maniere
dont le flux est calculé a un impact minime sur la solution obtenue (figure 4.69). L'équa-
tion (4.60) montre que o évolue uniquement en fonction des variations spatiales de o’.
En particulier, si le champ o' est spatialement constant (aiL = o), la valeur du volume
balayé AV, n’a aucune influence sur la valeur de . Il est donc tout & fait envisageable
d’utiliser un flux simplifié pour ce schéma, méme dans le cas de grandes rotations.

Par contre, I'utilisation de flux simplifiés sur le schéma de Benson pose de sérieux pro-
blémes. En effet, celui-ci fait implicitement ’hypothése que VI = VE + > AV;. Si les flux
sont mal calculés, cette relation n’est pas vérifiée. La figure 4.70 montre les profils de pres-
sion dans la coupe y = L/2 au temps final pour les différentes méthodes de calcul des
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FIGURE 4.67 — Résultats obtenus pour le test de rotation en fonction du schéma utilisé. Le cercle de pression
initial est superposé aux maillages.
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FIGURE 4.68 — Coupe en y = L, /2. Comparaison ~ FIGURE 4.69 — Influence de la précision sur le calcul
des solutions obtenues par reconstruction con- des flux. Schéma de Huerta (schéma #1)
stante et linéaire (flux exacts).
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flux et pour une reconstruction constante. On constate que seul un calcul exact des flux
permet d’obtenir une solution proche de celles fournies par I'autre schéma (les deux sché-
mas donnent exactement les mémes solutions dans le cas du calcul exact des flux). La
figure 4.71 montre des résultats équivalents dans le cas d’'une reconstruction linéaire. Ler-
reur sur le calcul du flux se traduit par un flux parasite centrifuge ou centripete suivant que
'on utilise la position lagrangienne ou eulérienne des frontiéres.

T e e e O 1
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04 o 0.4F b
. '
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F1GURE 4.70 - Influence de la précision sur le calcul ~ FIGURE 4.71 — Influence de la précision sur le calcul
des flux. Schéma de Benson avec reconstruction des flux. Schéma de Benson avec reconstruction
constante (schéma #2) linéaire (schéma #3)

En conclusion, les schémas de convection exprimés sous la forme d’'un opérateur de
projection (schémas #2 et #3 du tableau 4.2) sont beaucoup plus sensibles a la précision
du calcul des flux que le schéma de Godunov (schéma #1). Il est donc important d’utiliser
un calcul exact des volumes balayés lorsque le mouvement relatif entre la matiere et le

maillage est une rotation. En conséquence, nous utiliserons dorénavant toujours un calcul
exact des flux.
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4.7.3 Expansion et rotation 2D

Ce test est une simulation de la rotation uniforme d'un champ de contraintes plus com-
plexe sur un maillage fixe. Il permet de mettre en évidence le réle des conditions aux limites
sur la qualité de la convection.

mesures
&«

R

out™

R fixé
radialement

-180. s,.[MPa] 180.
[ I e
FIGURE 4.72 — Géométrie du test de convection. Une FIGURE 4.73 — Champ de contrainte déviatorique
pression interne p est appliquée et la paroi ex- Sy obtenu aprés application de la pression p
terne du cylindre est mise en rotation. Le mail- juste avant le début de la rotation.

lage reste fixe.

Il s’agit d’'un cylindre de rayon interne R;, = 1 mm et de rayon externe R,,, = 2 mm
traité en état plan de déformation (figure 4.72). Il est constitué d’'un matériau élastique
linéaire (E = 200 GPa et v = 0.3). On utilise un maillage relativement grossier de 40
éléments sur la circonférence et 8 éléments dans I'épaisseur. Dans un premier temps, la
surface externe du cylindre est fixe et une pression interne p = 300 MPa est appliquée pour
obtenir le champ des contraintes déviatoriques s,., tracé sur la figure 4.73 (pour rappel, s,.,
est une grandeur définie sur 2x2 points de Gauss par quadrangle). Ensuite, dans un second
temps, la paroi externe subit une rotation imposée a vitesse constante. Le maillage par
contre reste fixe selon la direction circonférentielle. On autorise cependant un déplacement
radial des noeuds. Mathématiquement, si (r,6) sont les coordonnées polaires des noeuds,
cela signifie r* = r! et 0 = 0(t = 0).

D’un point de vue physique, le champ s, ne présente pas un grand intérét puisqu’il est
exprimé dans un systeme de coordonnées cartésiennes et que le probleme a une symétrie
cylindrique. Par contre, en ce qui concerne la convection, il n’est pas spatialement constant
et présente donc une difficulté. La solution exacte du probleme de convection est équiva-
lente a la solution a la fin de la mise en charge (figure 4.73). Les valeurs de s,, doivent
rester constantes au cours du temps quel que soit le point considéré.

On utilise le schéma de Benson. La figure 4.74 compare les solutions obtenues apres
3/2 tours (600 pas de temps) avec une reconstruction constante trés diffusive et une re-
construction linéaire qui permet de conserver globalement I'allure du champ de contrainte
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FIGURE 4.74 — Champ de contraintes déviatoriques s,, obtenu aprés une rotation de 3/2 tours pour un
schéma utilisant une reconstruction constante ou linéaire.

au cours du temps. Obtenir ces derniers résultats n’est pas immédiat. En effet, ils sont forte-
ment conditionnés par la maniere dont sont gérées les conditions aux limites sur les parois
interne et externe du cylindre. Comme nous I'avons expliqué a la section 4.5.7, il est cou-
rant d’observer des flux parasites au travers des frontieres du maillage. Dans le cas de cet
exemple, malgré le fait que les volumes AV, soient calculés de maniere exacte, il existe des
flux parasites a travers les frontieres en rotation et ceux-ci peuvent perturber la convec-
tion. Ces flux proviennent de la découpe des éléments finis en plusieurs sous-volumes. La
figure 4.75 montre le flux de frontiere dans le cas d’'une grandeur définie en un seul point
de Gauss par élément fini. Dans ce cas, un seul volume fini est défini par élément pour la
convection et, si 'aréte frontiere subit une rotation rigide, le flux résultant, qui est propor-
tionnel a l'aire du « quadrangle » (diabolo) formé par l'aréte lagrangienne et eulérienne, est
nul. Il n’y a donc aucune condition aux limites a prendre en compte. Par contre, si chaque
élément possede quatre points de Gauss, la découpe en quatre sous-volumes entraine I'ap-
parition de flux parasites (figure 4.76) parce que les arétes de ces derniers ne suivent pas
exactement la courbure de la frontiere.

Cette erreur géométrique provoque I'apparition d'un flux entrant dans le maillage dans
un sous élément et un flux sortant dans son voisin. On pourrait donc naivement éliminer ces
flux en imposant AV, = 0 sur ces frontiéres problématiques. L'autre solution est de considé-
rer que le champ a transférer se prolonge au-dela des frontieres et imposer un flux non nul.
La prolongation du champ consiste soit a assigner la valeur moyenne de la cellule frontiere
au dela de son aréte frontiére, soit a évaluer la reconstruction au-dela de 'aréte frontiere.
Ces deux méthodes donnent des résultats tres similaires et nous ne les distinguerons pas.

Il est intéressant de remarquer que ce probléme ne se pose pas lorsqu’on utilise le
schéma de Godunov (schéma #1 du tableau 4.2). En effet, les deux maniéres de trai-
ter ces flux parasites sont numériquement équivalentes. En retournant a 'équation (4.60)
page 115, on remarque que le flux calculé a travers une frontiere de cellule i est le produit
du volume balayé AV, et de la différence des valeurs des cellules adjacentes (o} —o*). 1l
ne s’agit pas du flux de o mais plutot du flux de la variation de o a travers I'aréte. Pour le
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Zconfig. config:,
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L1 cellule eulérienne lagrangienne

FIGURE 4.75 - Flux de frontiére dans le cas d’une FIGURE 4.76 — Flux de frontiére dans le cas d’'une
grandeur définie en un point de Gauss par élé- grandeur définie en quatre points de Gauss par
ment fini. élément fini.

schéma de Benson, le flux qui est calculé par '’équation (4.106) est bien le flux de o. Les
grandeurs calculées sont donc différentes dans les deux cas.

Les deux maniéres de gérer les conditions aux limites sont comparées sur la figure 4.77
pour le schéma de Benson avec reconstruction linéaire. On observe I’évolution de la con-
trainte déviatorique s, et la pression p. Ces champs ont été reportés sur la verticale pour
faciliter la visualisation. Ils sont définis en 2x2 points de Gauss (éléments SRI a dilatation
constante — voir section 4.3.3) et les valeurs ponctuelles ont été extrapolées aux nceuds pour
obtenir localement un champ continu sur chaque élément (mais discontinu entre ceux-ci).
L'imposition d’un flux nul (a gauche sur la figure) provoque I'apparition d’oscillations dans
la solution a proximité des frontiéres. La seconde maniere de calculer le flux, moins intui-
tive, permet d’obtenir une solution lisse (a droite sur la figure).

Le probléme d’oscillation sur le champ de pression n’apparait évidemment pas lorsqu’on
utilise un élément fini a pression constante. Il est intéressant de remarquer que, méme avec
les conditions aux limites appropriées, le champ p, bien que trés proche d’'une constante,
n’est pas tout a fait constant. Cette erreur est certainement due au couplage entre toutes les
grandeurs convectées a travers les équations d’équilibre. Ainsi, une erreur de convection sur
une composante des contraintes influence les forces internes et indirectement l'incrément
de contrainte du pas de temps suivant.

En regardant de maniere plus précise I'évolution de s,, et p en un point particulier, il
est possible de se faire une idée de I'erreur commise par les différentes méthodes de cal-
cul au cours de la simulation. Le point choisi est sur la frontiere externe du cylindre en
(x,y) = (0,R,,,) (point dénommé mesure sur la figure 4.72). On y observe I’évolution de
s, (figure 4.78) et p (figure 4.79) en fonction de 'angle de rotation. La solution de réfé-
rence est celle obtenue a la fin de la phase d’application de la pression. Une fois encore,
on constate I'intérét d’utiliser une reconstruction linéaire : la solution obtenue par I'algo-
rithme de Godunov s’éloigne tres vite de la valeur obtenue en fin de chargement (désignée
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FIGURE 4.77 - Solutions obtenues par le schéma utilisant une reconstruction linéaire. Les conditions aux
limites, sur la paroi externe et interne du cylindre, sont gérées en imposant un flux nul sur les frontiéres
(a gauche) ou en considérant que le champ se prolonge au-dela des frontiéres du maillage (a droite). Les
champs de contraintes déviatoriques s, (en haut) et de pression p (en bas) sont cette fois représentés en
3D en reportant leurs valeurs selon la verticale. La solution en haut a droite est celle représentée sur la

figure 4.74
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F1GURE 4.78 - Evolution de s, au point de mesure
en fonction du schéma et de la maniére d’appli-
quer les conditions aux limites.

FIGURE 4.79 — Evolution de p au point de mesure en
fonction du schéma et de la maniére d’appliquer
les conditions aux limites.

par I'horizontale Référence sur les figures). Annuler le flux aux frontiéres bien qu’il ne soit
pas nul (courbes Flux nul) détériore la solution. On peut obtenir cependant une solution

presque constante et tres proche de la solution de référence en calculant le flux parasite a
travers la frontiére (courbes Flux non nul).
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FIGURE 4.80 — Variation de rayon au cours de la
rotation en fonction du schéma et de la maniére
d’appliquer les conditions aux limites.

FIGURE 4.81 - Influence du nombre de pas lagran-
giens pour effectuer la simulation compléte (re-
construction linéaire, flux non nuls, C,,,,=0.9).

Il est intéressant de regarder I'impact des erreurs commises lors de la convection sur la
géométrie du cylindre. En effet, celles-ci perturbent I'équilibre et provoquent indirectement
une variation du rayon de la paroi interne du cylindre sur laquelle s’applique la pression.
La figure 4.80 montre la variation du rayon interne au cours du temps. On constate que le
traitement des conditions aux limites a une influence non négligeable sur la valeur du rayon
interne. Annuler le flux aux frontiéres entraine une forte augmentation du rayon interne
par rapport a la solution obtenue en calculant les flux parasites.

Pour terminer, la figure 4.81 montre 'influence du nombre de pas de temps pour effec-
tuer les 3/2 tours de la simulation. On voit que si on diminue le nombre de pas, la solution
s’écarte d’avantage de la solution de référence. Néanmoins, ’échelle de cette figure montre
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que lerreur commise reste extrémement faible. Celle-ci pourrait encore étre diminuée en
utilisant un maillage plus fin.

En conclusion, cet exemple montre que, contrairement au schéma de Godunov, le sché-
ma de Benson, utilisant une reconstruction constante ou linéaire, nécessite un calcul exact
des flux parasites sur les frontiéres aussi faibles soient-ils. C’est a cette condition, et a la
condition de calculer exactement les volumes balayés AV (voir la conclusion de 'exemple
de rotation précédent), que le schéma de Benson utilisant une reconstruction constante
(schéma #2) est équivalent au schéma de Godunov (schéma #1). C’est également sous
ces conditions que le schéma de Benson (schéma #3) est utilisable dans des applications
industrielles. Nous utiliserons toujours le résultat de cette analyse dans la suite de ce travail.
On distinguera donc uniquement deux schémas :

e Le schéma a reconstruction constante : nommé aussi schéma de Godunov, correspon-
dant soit au schéma #1 soit au schéma #2 avec un calcul correct des volumes balayés
et des flux parasites a travers les surfaces frontieres.

e Le schéma a reconstruction linéaire : le schéma #3 utilisant toujours un calcul correct
des volumes balayés et des flux parasites a travers les surfaces frontieres.

169



CHAPITRE 4. TRANSFERT DES DONNEES

4.8 Conclusions

Ce chapitre s’est focalisé sur la deuxiéme étape de la phase eulérienne de I’algorithme
ALE qui consiste a transférer les grandeurs définies sur le maillage lagrangien vers le nou-
veau maillage.

Apres avoir décrit les différentes méthodes couramment utilisées dans la littérature,
nous sommes arrivés a la conclusion qu’il n’existait pas de méthode de transfert qui soit
précise tout en étant adaptée aux éléments finis quadrangulaires ou hexaédriques non tota-
lement sous-intégrés. Mis a part dans le cas d’une intégration explicite des équations d’équi-
libre, les éléments finis classiquement utilisés en mécanique du solide possédent plusieurs
points de Gauss.

En s’inspirant d’'une technique de découpe d’éléments finis en plusieurs volumes finis
utilisée dans le cadre d’'un schéma de Godunov précis au premier ordre (Huerta, Casadei
et Donéa [47, 114]), nous avons adapté un schéma précis au second ordre (Benson [22])
initialement prévu pour des éléments a un seul point de Gauss. Le schéma obtenu est com-
patible avec des éléments a plusieurs point de Gauss et peut donc étre utilisé aussi bien avec
des schémas d’intégration temporelle implicites qu’explicites des équations d’équilibre. On
peut également envisager I'utilisation d’éléments finis complexes tels que les éléments EAS.
Cette extension est donc tout a fait originale.

Le schéma de transfert est également utilisable pour le transfert des valeurs nodales
telles que la température, le champ de vitesses et d’accélérations. De plus, grace a une
construction automatique des maillages auxiliaires de cellules de transfert, le schéma est
étendu sans difficultés a trois dimensions. Cette facon de traiter de maniere identique la
convection de toutes les grandeurs (nodales ou aux points de Gauss) quelle que soit la
dimension (2D ou 3D) est une difficulté technique qui a été surmontée grace a une implé-
mentation orientée objets. Celle-ci permet de traduire la réalité mathématique (le schéma
s’écrit de maniere identique dans tous ces cas) directement dans le code grace a une structu-
ration des données adéquate. Contrairement a la majorité des auteurs, nous pouvons ainsi
utiliser les formalisme ALE pour tous les modeéles numériques de Metafor sans exception,
quelle que soit leur nature.

Nous nous sommes attardés sur l'influence de la position du point de collocation dans
chaque volume fini puisque, dans le cas d’éléments finis a plusieurs points de Gauss, ce
dernier est 1égerement décentré. Ce décentrage provoque de légeres oscillations mais ne
perturbe pas globalement les résultats. Cette étude, qui n’avait pas été faite par les au-
teurs de la technique de découpe d’éléments finis en plusieurs volumes finis, permet de se
rassurer sur la validité de la méthode avant son extension au second ordre.

Le probleme du contact avec frottement, composante majeure des problemes de mise a
forme qui nous intéressent, a également été abordé bien qu’il soit souvent passé sous silence
dans la littérature sur le formalisme ALE. Une technique simple et efficace de recalcul de la
position de glissement des nceuds en contact a été mise au point. Elle est applicable dans
tous les cas (2D, 3D, outils rigides ou déformables) et permet de calculer précisément le
frottement sur des zones de contact ot le maillage ne suit pas le mouvement de la matiere.
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Enfin, le précision nécessaire pour calculer les volumes balayés et la maniere de gérer
les flux parasites a travers des frontieres du maillage ont été discutées longuement parce
qu’elles constituent la clef pour 'obtention d’un algorithme de transfert précis et robuste,
quelle que soit le mouvement du maillage par rapport a celui de la matiere. En particulier,
nous avons vu que des précautions particulieres doivent étre prises dans le cas de grandes
rotations. Ces aspects numériques, qui peuvent étre a premiere vue considérés comme des
détails d'implémentation bien qu’ils n’en soient pas, n’avaient curieusement jamais été étu-
diés auparavant et constituent donc un apport original de ce travail de thése.
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Chapitre 5

Applications numériques

5.1 Introduction

Ce chapitre présente différentes applications numériques dans le but de valider les al-
gorithmes décrits dans les chapitres précédents. Pour chacun de ceux-ci, nous comparons
de maniere détaillée les résultats obtenus en formalisme ALE et ceux fournis par un modele
lagrangien équivalent, lorsqu’il est réalisable.

Bien qu’ils soient majoritairement bidimensionnels, les modéles numériques de ce cha-
pitre couvrent la majorité des problemes que I'on peut rencontrer en formalisme ALE, c’est-
a-dire : le choix optimal d’'une méthode de repositionnement de nceud et d’un algorithme
de convection, le choix des variables a transférer, le probleme des conditions aux limites,
etc. Uordre de présentation de ces applications numériques n’est pas anodin. Il correspond
a une augmentation progressive de la difficulté pour se rapprocher, au final, de I'applica-
tion principale de cette these présentée au chapitre suivant : la simulation ALE du profilage.
Pour chaque probleme nous essayons de tirer parti des conclusions des applications précé-
dentes. Les premiéres impliquent des mouvements convectifs faibles qui nous permettent
de focaliser notre attention sur la gestion du maillage. Les suivantes se rapprochent du
profilage par la présence d’effets convectifs plus importants.

Les deux premiers exemples consistent a modéliser deux cas-tests de référence du for-
malisme ALE : I'impact de Taylor et la striction d’'une barre d’Hopkinson. Le premier pro-
bleme démontre l'intérét de pouvoir controler la taille des mailles en cours de calcul lors
d’écrasements importants pour limiter la diminution du pas de temps critique d’'un schéma
d’intégration temporelle explicite. Il démontre aussi la nécessité de transférer le champ des
vitesses nodales pour conserver I'énergie cinétique du projectile lors de la phase de reposi-
tionnement des noeuds. Le second test effectué en dynamique rapide, un essai de traction
d’une barre d’Hopkinson, montre que notre implémentation est capable de traiter des pro-
blemes thermomécaniques en ajoutant simplement les températures nodales a la liste des
grandeurs a transférer. Le formalisme ALE permet de retrouver ainsi les résultats lagran-
giens avec un maillage initialement beaucoup plus grossier, tout en conservant une bonne
précision sur la géométrie de la zone de striction en fin de calcul.
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L'exemple suivant illustre I'utilisation du formalisme ALE comme choix alternatif au re-
maillage complet d’'une piece subissant de tres grandes déformations. Il s’agit d'un modele
de double extrusion. Ce procédé est utilisé comme test tribologique pour comparer des
lubrifiants entre eux dans des conditions proches de celles rencontrées en forgeage. Le frot-
tement joue donc un réle prépondérant dans cette modélisation et sa prise en compte doit
étre inévitablement précise pour obtenir des résultats de simulation corrects. En pratique,
le changement radical de géométrie de ’échantillon extrudé est anticipé par I'ajout de do-
maines ALE auxiliaires de tres faible épaisseur et finement maillés qui peuvent recevoir un
flux de matiére au cours de la simulation pour se gonfler dans la direction d’extrusion. Les
résultats ALE sont comparés avec ceux de la littérature provenant d’essais expérimentaux
et de simulations numériques avec remaillage.

Nous présentons ensuite un modele de laminage. Il permet de valider a nouveau la
gestion du frottement en formalisme ALE. Contrairement aux simulations précédentes, il
s’agit d’'un procédé stationnaire et le maillage est quasi eulérien : il reste fixe dans la
direction de laminage et le matériau s’écoule au travers de celui-ci. On observe ainsi de
tres grands déplacements convectifs. ['état stationnaire calculé par le modele ALE est com-
paré précisément avec la solution lagrangienne et celle provenant du code eulérien LAM3
dédié au laminage. Nous montrons aussi I'intérét de limiter la taille de I'incrément tem-
porel en formalisme ALE pour éviter les oscillations temporelles dans la solution. Dans
un deuxieme temps, les simulations sont effectuées avec des cylindres déformables. Tout
comme la bande, ceux-ci peuvent étre traité en formalisme ALE pour réduire le nombre de
mailles nécessaires au calcul. Néanmoins, vu la petitesse du modele 2D présenté ici, il est
difficile d’obtenir un temps CPU inférieur a celui d’un calcul lagrangien optimisé équivalent.

La derniere application numérique de ce chapitre concerne le planage sous traction de
toles d’acier. Il s’agit d'un procédé stationnaire permettant de réduire les défauts de forme
d’une tole en fin de ligne de production en lui faisant subir une série de flexions alternées
entre des rouleaux. Contrairement aux applications précédentes pour lesquelles le schéma
de Godunov est amplement suffisant pour obtenir des résultats précis, nous montrons qu’il
est nécessaire d’utiliser le schéma de convection avec reconstruction linéaire du champ
inconnu pour retrouver la valeur lagrangienne de I'allongement longitudinal apres retour
élastique. Le probléme de la position des frontieres eulériennes et de la nature des fixations
aux extrémités amont et aval du maillage est étudié. A partir ’'un maillage ALE 2D opti-
misé, un modele tridimensionnel est créé. Contrairement a son homologue 2D, il permet
de calculer la courbure de la tole dans le sens travers et la réduction de largeur.
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5.2 Impact et striction d’un barreau cylindrique

5.2.1 Introduction

Cette section présente deux premieres applications pour lesquelles les effets d’inertie
sont prépondérants et ne peuvent donc certainement pas étre négligés. Le premier est 'im-
pact d’un barreau cylindrique sur une paroi rigide (encore appelé barre de Taylor). Il met
en évidence 'importance du transfert du champ de vitesses entre les maillages lagrangien
et eulérien pendant I'étape de convection de l'algorithme ALE. Il montre aussi I'intérét du
formalisme ALE dans le cadre d’'un schéma d’intégration explicite ou la taille maximale du
pas de temps, qui garantit la stabilité, est directement liée a la taille du plus petit élément
du maillage. En évitant ’écrasement excessif des mailles grace au formalisme ALE, on peut
donc diminuer le nombre d’incréments temporels nécessaires a la simulation et ainsi réduire
le temps de calcul total.

Le second probleme, le test d’Hopkinson, est un test de traction a haute vitesse entrai-
nant une forte striction de I'’échantillon. II est traité par un schéma d’intégration implicite
thermomécanique étagé et requiert donc le transfert du champ de température (et de sa
dérivée temporelle). Appliqué a ce probleme, le formalisme ALE permet de conserver un
nombre suffisant de mailles dans la zone de striction pour capter de maniere précise la
courbure géométrique et les variations de température locales, tout en utilisant un nombre
total de mailles réduit. Pour une qualité de solution égale, on peut donc diminuer le temps
de calcul du modeéle numérique en utilisant le formalisme ALE.

5.2.2 Barre de Taylor
5.2.2.1 Introduction

La simulation de la barre de Taylor est certainement un des problémes les plus étudiés
en formalisme ALE (voir Aymone [12], Benson [22], Huerta et Casadei [114], Liu et al.
[143], Ponthot [168], Potapov [172], etc.). Malgré le nombre d’auteurs et la simplicité
apparente de ce test d'impact, peu d’entre eux arrivent a obtenir des résultats identiques en
formalisme lagrangien et ALE.

N
>
v

paroi
rigide
R $ v, r{
P o , v
échantillon cylindrique en cuivre

FIGURE 5.1 — Géométrie axisymétrique de U'impact de la barre de Taylor. Un barreau cylindrique dont la vitesse
est connue vient percuter un mur rigide. On observe la variation de sa hauteur h et la variation du rayon
de sa base aprés impact.
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Comme nous allons le montrer, les deux conditions nécessaires pour obtenir un accord
presque parfait entre les deux méthodes de calcul est d'une part le transfert du champ de
vitesse et d’autre part un maillage adéquat.

5.2.2.2 Modele numérique

Le probléeme de la barre de Taylor consiste a simuler I'impact d’'un projectile cylindrique
sur une paroi rigide. La géométrie initiale du test est représentée sur la figure 5.1. Les di-
mensions du barreau sont h = 32.4 mm et R = 3.2 mm. La vitesse d'impact est v, = 227
m/s. Léchantillon est en cuivre (E = 117 GPa, v = 0.35, p = 8930 kg/m?) dont le com-
portement plastique est modélisé par une loi d’écrouissage linéaire o, = 400+ 100 £¢” MPa.
Le probleme est axisymétrique si bien qu'une seule demi-section nécessite notre attention.
Le maillage de référence est représenté sur la figure 5.2 au dessus de 'axe de symétrie.
Il est régulier et composé de 50x5 mailles quadrangulaires. Nous utiliserons également
un maillage optimisé pour le modele ALE comportant le méme nombre de mailles. Elles
sont cependant distribuées suivant une progression géométrique telle que les mailles ve-
nant s’écraser sur la paroi sont quatre fois plus petites que celles a 'extrémité opposée du
barreau (figure 5.2, sous l'axe). Le frottement entre I'échantillon et la paroi est négligé
pour pouvoir traiter le contact par des fixations nodales appropriées. Celles-ci remplacent
avantageusement les éléments de contact traditionnels. On utilise des éléments finis SRI a
dilatation constante.

maillage lagrangien/ALE

T

%46 maillage ALE optimisé 1

FIGURE 5.2 — Maillages utilisés en formalisme lagrangien et ALE. Le maillage du dessus est le maillage de
référence. Le second maillage (en dessous) posséde le méme nombre de mailles que le premier.

La simulation débute au moment précis ou le contact entre la barre et la paroi est établi.
Elle se termine apres 80 us, lorsque la totalité de I'énergie cinétique initiale a été dissipée.
Pour l'intégration temporelle, un schéma explicite est choisi dans le but d’illustrer I'intérét
du formalisme ALE dans ce contexte. Le pas de temps est calculé automatiquement comme
une fraction (0.95) du pas de temps critique déduit de la condition CFL du schéma.

Concernant le modéle ALE, le mouvement du maillage est défini de la maniere suivante :
les nceuds des arétes sont repositionnés par la méthode des splines et les nceuds internes
par la méthode d’interpolation transfinie. C’est la méthode traditionnellement utilisé dans
la littérature. Une seconde méthode sera également utilisée dans le cas du maillage ALE
optimisé. Les nouvelles positions des nceuds de I'axe de symétrie seront obtenues par pro-
jection sur 'axe de symétrie des nouvelles positions des nceuds de I'aréte opposée, corres-
pondant a la surface extérieure du barreau. Ceci permet de conserver les lignes de maillage
horizontales tout au long de la simulation (voir le maillage ALE optimisé, a droite sur la
figure 5.3).
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Un test des deux schémas de convection montre que I'utilisation d’'une reconstruction
linéaire apporte un tres léger gain de précision dans les résultats par rapport a une re-
construction constante. Par contre, le temps de calcul augmente considérablement (voir
tableau 5.1). Nous choisissons donc le schéma de Godunov pour cette étude.

Vu la petitesse du pas de temps critique et le nombre important d’incréments qui en
résulte, les déplacements sont tres faibles sur un seul pas de temps. Il est donc important de
ne pas activer I'algorithme ALE a la fin de chaque pas de temps. En conséquence, on décide
d’effectuer le repositionnement des nceuds et le transfert une fois tous les 30 incréments,
sauf mention contraire.

5.2.2.3 Résultats

Nous comparons quatre simulations différentes. La premiere est le modele lagrangien
qui constitue notre solution de référence. La seconde est une simulation ALE pour laquelle
le champ de vitesse n’est pas convecté lors de la phase de transfert. Cette simplification
est courante dans la littérature (Aymone [12], Huerta et Casadei [114], Liu et al. [143],
Ponthot [168] parmi les auteurs précédemment cités). La troisieme simulation montrera
les différences obtenues dans les résultats lorsqu’on effectue cette convection. Enfin, la
derniere simulation est une optimisation du modele précédent.

La figure 5.3 montre le champ de déformation plastique équivalente et la géométrie du
barreau a la fin des simulations. Les trois modeles ALE sont chacun comparés a la solution
lagrangienne. Celle-ci possede des mailles fortement écrasées au voisinage de la paroi.
Les modeles ALE permettent de conserver des mailles de plus grande taille. La premiere
simulation ALE, pour laquelle on a négligé le transport des vitesses, est visiblement moins
écrasée. Une superposition du maillage ALE et de la solution lagrangienne est présentée a la
figure 5.4. On constate que la hauteur finale obtenue est supérieure (+2.1%) d’une valeur
Ooh proche a la taille d'une maille entiére. Au niveau du contact, le barreau s’est moins
élargi radialement (-9.4%). La différence entre les deux formalismes (notée 6R) est aussi
bien visible sur la figure 5.3 . A ce stade, on pourrait étre tenté de conclure (Ponthot [168])
que cette différence résulte du meilleur conditionnement des mailles ALE par rapport aux
mailles lagrangiennes tres aplaties. Le résultat ALE serait donc meilleur que le résultat
lagrangien. Nous allons montrer que ce raisonnement est faux.

En transférant les vitesses du maillage lagrangien vers le maillage eulérien a chaque
activation de I'algorithme ALE, la différence entre les résultats des deux formalismes dimi-
nue significativement (figure 5.3). Les isovaleurs de déformation plastique de ce nouveau
modele ALE sont, cette fois, beaucoup plus proches de celles obtenues en formalisme la-
grangien. Ce résultat est donc meilleur que le précédent. L'utilisation de grandes mailles
a la base du projectile a certainement un effet bénéfique sur la taille du pas de temps
maximum admissible pour intégrer explicitement les équations d’équilibre. Néanmoins, ces
grandes mailles sont incapables de représenter les forts gradients de déformation et les
variations de courbure de la surface externe de I’échantillon observés dans la solution la-
grangienne. Pour obtenir une meilleure correspondance entre les résultats lagrangien et
ALE, il suffit d’optimiser le maillage en concentrant les mailles a la base du cylindre. Le
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Déformation plastique équivalente ()
0.0 1.50 3.0

R - .
ALE | Lag. ALE | Lag. ALE | Lag.

conv opti.
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FIGURE 5.3 — Comparaison des déformées et du champ de déformation plastique équivalente €P pour les
modéles ALE et le modéle lagrangien de référence.
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nouveau maillage (maillage « optimisé » de la figure 5.2) est le résultat d'un compromis
entre de nombreuses mailles pour décrire correctement la solution et des mailles de grande
taille pour conserver un pas de temps de taille raisonnable. Ce dernier modele ALE fournit
une solution presque identique a celle obtenue en formalisme lagrangien.

oh

FIGURE 5.4 — Erreur géométrique résultant de Uoubli du transport des vitesses. Le maillage ALE, en noir; est
superposé a la solution lagrangienne de référence, en couleur.

Les figures suivantes confirment ces premieres observations. La variation de hauteur
du projectile au cours de I'impact est représentée sur la figure 5.5. Les courbes des quatre
simulations sont tres proches, mais celle relative a la simulation sans convection de vitesse
(notée ALE (-v)) s’écarte légerement des autres lors des 20 dernieres microsecondes de
la simulation. La nécessité de transporter la vitesse est également mise en évidence sur
la figure 5.6 qui montre I'évolution du rayon de la barre cylindrique mesuré a sa base,
sur la paroi rigide. On constate néanmoins que cette convection n’est pas suffisante pour
retrouver exactement la valeur lagrangienne. Le maillage ALE optimisé fournit une courbe
qui se confond avec la simulation de référence.

0 \ 4
——Lag
——ALE (-v)
-2/ —ALE ||
- = = ALE opti. 3f
-4+ 4 _
B £
E -6 E 2
c o
< <
_8t
1L ——Lag
1ol ——ALE (-v)
10 ——ALE
- - -ALE opti.
-12 ‘ : ‘ 0 : : .
0 20 40 60 80 0 20 40 60 80
temps [u s] temps [u s]

FIGURE 5.5 - Variation de hauteur de la barre lors FIGURE 5.6 - Variation de rayon de la barre mesuré
de limpact. a sa base, sur la paroi rigide.

En l'absence de transfert du champ de vitesse, la valeur des vitesses est simplement
conservée en chaque noeud pendant la phase de redéfinition d'un nouveau maillage. Dans
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ce cas, puisque le mouvement du maillage est opposé a celui de la matiere, le champ de
vitesse est translaté dans la direction opposée a celle de la paroi. Par exemple, la vitesse
faible d'un nceud proche de la paroi sera ainsi attribuée a une zone matérielle dont la
vitesse est plus importante. Il en résulte une perte d’énergie cinétique a chaque activation
de l'algorithme ALE. Cette perte apparait clairement sur la figure 5.7. Si on effectue un

zoom (figure 5.9). On constate bien les sauts d’énergie lors de la définition d’'un nouveau
maillage tous les 30 pas de temps.

40 ‘ ‘
—Lag 18/ —Lag |
—— ALE (~v) ——ALE (-v)
—ALE —ALE
30t - - - ALE opti. [ 177 - - - ALE opti. ||
— 161
= =
£20 £ 15
L L
14}
101 13l activationde — .
I'algorithme ALE
0 ‘ ‘ ‘ 12} | ‘ | N
0 20 40 60 80 28 30 32 34

temps [u s] temps [u s]

FIGURE 5.7 — Variation de lénergie cinétique au

FIGURE 5.8 - Variation de lénergie cinétique au
cours des simulations.

cours des simulations (zoom sur la figure 5.7).

La figure 5.9 montre I'évolution de la taille du pas de temps pour les quatre simulations.
L'écrasement des mailles du modele lagrangien entraine de tres petits pas (le pas de temps
est déja divisé par 6 apres 20us). Les solutions ALE obtenues sur le méme maillage per-
mettent d’utiliser des pas jusqu’a 8 fois plus grands vers la fin du calcul, au prix d’une perte
de qualité de la solution. Le maillage optimisé se situe entre ces deux situations extrémes.

0.14 :
—Lag

0.12 ——ALE (-v) |
—ALE
- = =ALE opti. ||

0 20 40 60 80
temps [u s]

FiGURE 5.9 - Taille du pas de temps au cours des simulations.
Le tableau 5.1 rassemble quelques résultats sous forme numérique. Nous commentons

principalement les temps de calcul. Toutes les simulations ont été effectuées sur la machine
PC1 de 'annexe A. On remarque que tous les modeles ALE sont plus rapides que le modele
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lagrangien (entre 3 et 6 fois plus rapides si on écarte le modele sans la convection des
vitesses). Lorsqu’on utilise un schéma d’intégration explicite, le formalisme ALE peut donc
entrainer de tres gros gains de temps de calcul, méme sur des problemes de petite taille,
pour autant que certaines mailles s’écrasent fortement. C’est certainement pour cette raison
par exemple que le formalisme ALE est plus riche dans la version explicite du code de calcul
Abaqus que dans sa version implicite. Dans le cas de Metafor, cette conclusion doit étre
modérée par le fait que le schéma explicite n’est pas optimisé.

Conv.| Nbre | Hauteur Rayon Temps CPU
v de pas | hy [mm] | Ry [mm] CPU ALE [%]

Lagrangien - 7129 21.42 7.12 1’24” (1.00) 0
ALE non 985 21.86 6.45 12”7 (0.14) 9
ALE oui 1114 21.50 7.01 15”7 (0.18) 17
ALE (maillage optimisé) oui | 2264 21.47 7.12 317 (0.37) 16
ALE (rec. lin.) oui 1132 21.41 7.04 22” (0.26) 37
ALE (rec. lin., maillage opti.) oui | 2287 21.43 7.14 44” (0.52) 38
ALE (tous les 10 incréments) oui 2725 21.48 7.10 45” (0.54) 29
ALE Ponthot [168] non | 1463 21.87 6.51
ALE Aymone [12] non 22.06 6.38
ALE Potapov [172] oui 21.43 7.11

TABLEAU 5.1 — Résultats obtenus pour les différentes simulations de la barre de Taylor. Comparaison avec les
résultats de la littérature.

L'amélioration de la solution apportée par le schéma de convection utilisant une re-
construction linéaire est visible sur la hauteur finale de la barre h; qui est tres proche de
la valeur lagrangienne alors qu'un maillage uniforme est utilisé. On voit cependant que le
maillage devrait étre optimisé pour obtenir un rayon final R, correct.

La fréquence d’activation de I'algorithme ALE a une influence directe sur le temps de
calcul. Si on l'active trop souvent, le temps est majoritairement passé dans les routines
ALE qui sont relativement cofiteuses par rapport a un pas de temps explicite lagrangien.
Inversement, si on l'active trop peu, le maillage s’écrase trop et la taille du pas de temps di-
minue. Il existe donc une fréquence optimale d’activation (proche de la valeur utilisée pour
ces tests). Pour des simulations plus lourdes, il serait tout a fait envisageable de calculer
cette fréquence en fonction de 1’évolution de la taille du pas de temps critique de I'algo-
rithme d’intégration temporelle pour essayer de diminuer encore le nombre d’activations
de l'algorithme ALE et, finalement, le temps de calcul.

Si on compare nos résultats avec ceux de la littérature, on remarque aisément qu’ils sont
treés proches lorsque I'algorithme utilisé prend en compte la convection des vitesses.
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5.2.3 Barre d’Hopkinson
5.2.3.1 Introduction

Le test de la barre d’Hopkinson (voir Zhao [211] ou Verleysen et Degrieck [201] parmi
d’autres), désignée par Split Hopkinson Pressure Bar (SHPB en anglais) lorsqu’elle est utili-
sée en compression et Split Hopkinson Tensile Bar (SHTB en anglais) lorsqu’elle est utilisée
en traction, permet de caractériser le comportement des matériaux a de grandes vitesses
de déformation (entre 100 et 5000 s !). Son principe est schématisé sur la figure 5.10.
Un échantillon est collé entre deux longues barres métalliques. Un impacteur tubulaire est
envoyé a grande vitesse sur une butée a 'extrémité de la barre d’entrée grace a un systeme
de propulsion pneumatique. I'onde de traction, qui est ainsi créée, se propage en direc-
tion de I'échantillon. Lorsqu’elle atteint ce dernier, elle est partiellement transmise vers la
deuxieme barre et partiellement réfléchie. Sous I'action de ces ondes I’échantillon se dé-
forme, éventuellement jusqu’a rupture si le chargement est suffisant. Les signaux, mesurées
a laide de deux jauges de déformation placées sur les deux barres, permettent de déduire
le déplacement des extrémités de I’échantillon pendant le test.

onde réfléchie
> >

onde transmise . impacteur
4 onde incidente
N

<
<

butée

tubulaire

<
<

barre de sortie

barre d'entrée :

FiGURE 5.10 - Principe du test de la barre d’Hopkinson utilisée en traction (Verleysen et Degrieck [201 ]). Une
onde de traction incidente, créée par un impacteur tubulaire propulsé a trés grande vitesse sur Uextrémité
d’une barre, se propage le long de celle-ci. Lorsqu’elle atteint U'échantillon, cette onde se scinde en une onde
réfléchie et une onde transmise qui provoquent un chargement en traction avec des vitesses de déformation
de Uordre de 100 et 5000 s~ 1.

Dans un modele éléments finis en formalisme lagrangien, la zone de striction, tres lo-
calisée, est généralement décrite par quelques rangées de mailles, voire une seule lorsque
le maillage est grossier. Il en résulte une erreur géométrique et une erreur sur les champs
discrétisés qui augmentent au fur et a mesure que la section se réduit. Le formalisme ALE
peut étre utilisé pour simuler avec plus de précision cette zone de striction en conservant
un maillage régulier au cours de la simulation.

Des problémes similaires de striction ont déja été étudiés en formalisme ALE par Huerta
et Casadei [114], Ponthot [168, 169], Rodriguez-Ferran et al. [175, 176]. Par rapport aux
modeles de ces auteurs et par rapport au probleme précédent de I'impact de la barre de
Taylor (section 5.2.2), ce probleme a la particularité de présenter une loi d’écrouissage
beaucoup plus complexe avec une forte composante visqueuse. De plus, les effets ther-
miques sont également pris en compte pour démontrer la capacité de notre algorithme a
traiter le champ de température comme tout autre champ nodal.
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5.2.3.2 Modeéle numérique

La géométrie du test étudié est celle du dispositif expérimental de Noble et al. [155].
Un modele élément fini axisymétrique, représenté sur la figure 5.11, a été mis au point
par Noble et al. dans le but de comparer la pertinence de deux lois de comportement
visqueuses thermomécaniques : Johnson-Cook [126] et Zerilli-Armstrong [210]. Nous re-
prenons ici le modeéle similaire développé récemment par Jeunechamps [125] dans Metafor
que nous adaptons au formalisme ALE. Les dimensions de I’échantillon sont reprises dans
le tableau 5.2.

8> %
1.7R

&

N\
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n, mailles

FIGURE 5.11 — Géométrie axisymétrique du test de traction de Noble et al. [155]. Les valeurs numériques des
dimensions sont reprises dans le tableau 5.2

L, [mm] | L, [mm] | Ly [mm] | R [mm]
10.16 0.9525 2.0 1.5875

TABLEAU 5.2 — Dimensions du test de traction représenté sur la figure 5.11.

Le chargement du spécimen est modélisé par 'imposition d’'un déplacement a 'extrémité
droite de I'échantillon. Ce déplacement est obtenu par intégration de la courbe de vitesse
v(t) déduite des jauges de déformation (figure 5.12) et produit une vitesse de déformation
de l'ordre de 2500 s™*.

vitesse [m/s]
o

rupture

10+ (180ms)A
—— expérience
—e— vitesse imposée v(t)
0 50 100 150 200
temps [ms]

FIGURE 5.12 - Vitesse imposée v(t) a Uextrémité droite de la barre (Noble et al. [155]).

La rupture de I’échantillon se produit expérimentalement apres 180 us mais elle n’est
pas modélisée. La simulation est poursuivie jusqu’a 200 us. Le maillage, tracé sur la fi-
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gure 5.11, est constitué d’éléments quadrangulaires de type SRI a dilatation constante. Une
zone de raffinement de longueur L, est définie au centre de I’échantillon pour tenter de
capter au mieux la striction. La valeur de n, fixe le nombre d’éléments le long de cette zone
et sera le principal parametre de cette étude.

Le matériau dont est constitué I’échantillon est un fer de type REMCO. Son compor-
tement est modélisé par une loi de Zerilli-Armstrong identifiée par Goldthorpe [90] (ta-
bleau 5.3). L'intégration temporelle est réalisée par un schéma thermomécanique étagé iso-
therme (Armero et Simo [5]) pour lequel I'équilibre mécanique est résolu avec le champ de
température du pas de temps précédent et suivi d'une résolution thermique pure. La partie
mécanique est intégrée par un schéma implicite de Chung-Hulbert [52] avec a,, = —0.97
et ap = 0.01. La partie thermique utilise un schéma du trapéze généralisé (section 4.3.2).
La température initiale est uniforme et fixée a T(t = 0) =293 K.

Module d’Young (E) [GPa] 193
Coefficient de Poisson (v) 0.29
Masse volumique (p) [kg m~3] 7870
Conductivité thermique (k) [Wm K] 80.2
Chaleur spécifique (c) [J kg K] 449
Coefficient d’expansion thermique (o) [K™!']| 1.1810°°
Facteur de Taylor-Quinney (f3) 0.9

Loi de Zerilli-Armstrong
oy =0y + Cs(8°)" + Coexp(—C3 T + C,4 T In€P)
Cs =357(1.13 —0.000445 T') MPa
0, [MPa] C, [MPa] Cy [KT] C, [K'] n
50 1130 0.00515 0.000262 0.52

TABLEAU 5.3 — Paramétres du matériau.

Transformer ce modele lagrangien en modeéle ALE consiste a définir le mouvement du
nouveau maillage et un schéma de transport. Dans ce cas particulier, il est inutile de gé-
rer la totalité du maillage en formalisme ALE. Seule la partie centrale, ou le maillage est
raffiné, nécessite notre attention. On définit un domaine ALE uniquement sur cette zone
(figure 5.13), le reste de I’échantillon restant lagrangien. Cette optimisation conduit a des
maillages auxiliaires réduits et donc une légere économie de mémoire et de temps de cal-
cul. La méthode des splines est utilisée pour redéfinir le maillage des deux lignes paralleles
horizontales du domaine ALE en cours de calcul. Les nceuds internes sont repositionnés par
la méthode d’interpolation transfinie.

L,

< N
<

spline
. ALE .
Lagrangien Lagrangien
MIT

spline

FIGURE 5.13 - Définition d'un domaine ALE restreint autour de la zone ou la striction est attendue.
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Concernant la convection, les deux types de reconstruction (constante et linéaire) seront
comparés. Nous utilisons par défaut une reconstruction constante puisque le mouvement
relatif entre le maillage et la matiere n’est pas important. Les mémes parametres de schéma
sont utilisés pour la convection des grandeurs nodales (6 valeurs : les vitesses v,,v,, les
accélérations a,,a,, la température T et sa dérivée temporelle T) et les grandeurs aux
points de Gauss (6 valeurs : les contraintes déviatoriques s,,., s la pression p, la
déformation plastique P et la masse volumique p).

xxs Sxys Syy>

5.2.3.3 Résultats

Nous comparons tout d’abord les déformées et les champs de température obtenus par
les deux formalismes avec le méme maillage de départ (n, = 40) a l'instant de la rupture
expérimentale en t = 180us (figure 5.14). Les lignes d’isovaleurs de la déformée supé-
rieure (lagrangienne) et de la déformée inférieure (ALE) sont similaires mis a part aux
alentours de la striction. A cet endroit, les mailles lagrangiennes se sont allongées et ne
permettent plus de représenter correctement la courbure de ’échantillon. En formalisme
ALE, des mailles de bonne qualité ont été conservées. On peut donc s’attendre a des résul-
tats ALE plus précis que les résultats lagrangiens pour un nombre de mailles identique. La
différence entre les deux maillages est encore plus visible au temps final de la simulation
(t =200 us) comme le montre la figure 5.16.

Une des particularités de ce test de traction est la présence d’'un décalage vers la droite
de la zone de striction par rapport au milieu de 'éprouvette. Ce décalage de 'endroit de
rupture est noté 6 sur la figure 5.14 et est bien observé expérimentalement. Il s’agit d’'un
effet dynamique : '’éprouvette numérique se brise en son milieu si les forces d’inertie sont
négligées. La position de rupture calculée est identique pour les deux formalismes. N’ayant
pas de valeur chiffrée de la position expérimentale de la rupture, nous avons superposé, sur
la figure 5.15, le maillage ALE déformé en t = 180 us avec le cliché expérimental de Noble
et al. [155] a cet instant précis. On remarque un bon accord entre les résultats numériques
et 'expérience.

Intéressons-nous maintenant a ’évolution temporelle de la force résultante horizontale
sur 'extrémité droite de ’échantillon. La figure 5.17 montre cette force pour différents
maillages lagrangiens, de plus en plus fins (n, = 40, 80, 160 et 320), et pour le maillage
ALE présenté précédemment (n, = 40). Au fur et a mesure que le maillage s’affine, la
courbe de force lagrangienne se rapproche de celle obtenue en formalisme ALE.

Pour ces mémes simulations, les figures 5.18 et 5.19 représentent respectivement le pro-
fil de température a la surface de I'échantillon et la forme de cette surface en t = 180 us. Les
courbes lagrangiennes sont d’autant plus lisses que le maillage utilisé est fin. Elles semblent
tendre vers la solution obtenue avec le maillage relativement grossier du modele ALE. On
peut donc sans conteste affirmer que les résultats ALE sont trés précis. Le formalisme ALE
permet d’éviter I'utilisation d’un maillage tres fin pour représenter correctement la striction
du spécimen juste avant la rupture.
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milieu de
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Variation de température AT [K] ALE
105. 210. 315.
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FIGURE 5.14 — Comparaison des simulations lagrangienne et ALE pour n, =40 (t = 180 us).

milieu de
l'éprouvette

t = 180 us

FiGure 5.15 — Comparaison de la gé¢ométrie du modéle ALE (et, en particulier, de la position de la zone de
striction) en t = 180 us avec le cliché expérimental de Noble et al. [155] a cet instant.
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t =200 us
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FIGURE 5.16 — Comparaison des simulations lagrangienne et ALE pour n, =40 (t = 200 us).
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FIGURE 5.17 - Force de traction en fonction du déplacement pour différents maillages lagrangiens et pour le
maillage grossier ALE.
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FiGURE 5.18 - Température surfacique de la barre
en t = 180 us pour différents maillages lagran-
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FIGURE 5.19 — Géométrie de la barre en t = 180 us
pour différents maillages lagrangiens et pour le
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TaBLEAU 5.4 — Comparaison des temps de calcul des modeéles lagrangiens et ALE en fonction du maillage et

Type de Convection | Maillage Temps
reconstruction v,a n, CPU

Lagrangien - - 40 47” (1.00)
- - 80 1°06” (1.40)
- - 160 1’44” (2.21)
- - 320 313”7 (4.11)
ALE constante oui 40 1'13” (1.55)
linéaire oui 40 2’07” (2.70)
constante non 40 1’077 (1.43)

des paramétres de convection utilisés.

Au vu des résultats précédents, obtenus avec un schéma de convection de Godunov, on
imagine facilement que I'utilisation d’'un schéma du second ordre n’améliorera pas significa-
tivement la solution puisque les courbes ALE se superposent déja aux courbes lagrangiennes
obtenues avec un maillage tres fin. Il est cependant possible d’optimiser encore le modele
en négligeant la convection des vitesses et des accélérations nodales. Les résultats obtenus
sont, encore une fois, identiques au modele ALE de référence. Le tableau 5.4 rassemble les
temps de calcul de toutes les simulations présentées (machine PC1 de 'annexe A). Une fois
optimisé, le modele ALE permet d’obtenir des résultats similaires a un calcul lagrangien
raffiné de 193 s en un temps environ trois fois moindre. Il serait envisageable de réduire
encore le temps de calcul en activant I'algorithme ALE uniquement lorsque la qualité des
mailles se dégrade, c’est-a-dire a la fin de la simulation. Nous n’avons pas poussé I'optimi-

sation du modele jusqu’a ce point.
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5.2.4 Conclusions

Les deux problémes présentés dans cette section ont permis de mettre en évidence la
capacité de l'algorithme ALE a prendre en compte de maniere précise les effets d’inertie
et thermiques. Pour rappel, ceux-ci nécessitent la convection des valeurs nodales (vitesses,
accélérations et températures) du maillage lagrangien vers le maillage eulérien lors de
la phase de transfert. Dans les deux cas, malgré le nombre peu élevé d’éléments finis, le
formalisme ALE permet d’obtenir des temps de calcul plus faibles que ceux obtenus par des
modeles lagrangiens équivalents.

Contrairement a ce qu’il est courant de lire dans la littérature (voir notamment Benson
[22]), le schéma de convection de Godunov est amplement suffisant pour obtenir une tres
bonne concordance des résultats ALE avec les résultats lagrangiens car les déplacements
convectifs sont faibles. Puisqu’il est beaucoup moins coliteux que le schéma utilisant une
reconstruction linéaire, le schéma de Godunov semble donc étre sans conteste le meilleur
choix en termes de rapport qualité/prix.

L'impact de la barre de Taylor montre I'utilité du formalisme ALE en dynamique expli-
cite. Le contrble de la qualité des éléments finis en cours de calcul permet de conserver
une taille de pas de temps raisonnable méme si la matiere subit des écrasements séveres.
Le temps CPU est ainsi réduit par rapport a la simulation lagrangienne équivalente. Bien
qu’étant une application classique du formalisme ALE, nous avons essayé de la présenter
de maniere originale en insistant, d'une part, sur la nécessité de transférer le champ des
vitesses pour conserver I'énergie cinétique au cours de la phase de transfert ALE et, d’autre
part, sur 'importance d’utiliser un maillage optimisé pour retrouver les résultats lagran-
giens. Il est en effet courant de lire dans la littérature que les différences entre les deux
formalismes s’expliquent par le fait que les mailles lagrangiennes seraient tres mal condi-
tionnées en fin de calcul et donc fourniraient des résultats imprécis. Nous avons démontré
qu’il n’en est rien : en formalisme ALE, le repositionnement conduit a des éléments finis de
trop grosse taille qui sont incapables de représenter correctement les forts gradients dans
la solution, pres de la zone de contact.

Dans le cas du test de la barre d’Hopkinson, le formalisme ALE permet d’éviter une
mauvaise représentation de la frontiere géométrique lorsqu’elle subit de trés grandes dé-
formations. Le maintien d'un maillage de bonne qualité dans la zone de striction, dont la
position exacte est inconnue a priori, garantit un calcul précis de I'’évolution des champs
inconnus a cet endroit. Le modele présenté se distingue de ceux de la littérature par sa
complexité du point de vue de la loi de comportement du matériau (thermoviscoplasticité),
de la prise en compte des effets thermiques et des effets d’inertie.
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5.3 Double extrusion (DCET)

5.3.1 Introduction

Nous proposons d’étudier dans cette section un procédé de double extrusion. Cette ap-
plication met en évidence l'intérét du formalisme ALE dans des situations ou la matiére
subit de tres grandes déformations. Une simulation lagrangienne, dans ce contexte, né-
cessite inévitablement la redéfinition d’'un nouveau maillage lorsque la qualité des mailles
pose probleme pour poursuivre le calcul. Ces remaillages sont cofliteux, difficiles a mettre
en ceuvre, et nécessitent encore souvent l'intervention de l'utilisateur. Le formalisme ALE
est donc vu ici comme une alternative au remaillage.

Le procédé d’extrusion étudié est un test tribologique classique pour les opérations de
forgeage. Un des moyens habituellement utilisés pour quantifier le frottement pour ce type
de procédé est le test de 'anneau (ring compression test — voir Male et Cockcroft [147]). Il
consiste a écraser un anneau plat (voir figure 5.20) jusqu’a une épaisseur prescrite. Si le
frottement est nul, 'anneau se déforme avec une vitesse dont 'amplitude est proportion-
nelle a la distance a son axe. Plus le frottement est important, plus ce mouvement sera
freiné. Il en résultera un rayon interne moindre (r, < r; sur la figure) et ce dernier peut
servir de mesure indirecte du frottement. Cependant, ce test tribologique représente assez
mal les conditions de contact et I'importance des déformations que I'on retrouve dans une
opération de forgeage a froid pour laquelle il est courant d’atteindre des pressions de I'ordre
de 2.5 GPa, des températures de surface de plus de 600°C et des déformations locales de
surfaces jusqu’a 3000% (voir Bay [16]).

| o, Lol
frottement faible (bonne lubrification) frottement important (mauvaise lubrification)

FIGURE 5.20 - Principe du test tribologique de Uanneau (Sofuoglu et Rasty [184]).

Le test de double extrusion (Double Cup Extrusion Test ou DCET) a été mis au point par
Geiger [82] pour se rapprocher des conditions réelles de forgeage, tout en conservant une
mesure simple et géométrique de 'image du frottement. Le test consiste a placer un échan-
tillon métallique cylindrique dans une matrice creuse de méme rayon (voir figure 5.21). Un
poincon inférieur fixe et un poincon supérieur mobile viennent emboutir de part et d’autre
I’échantillon. Le matériau ainsi écrasé n’a pas d’autre choix que de s’écouler le long des
deux poincons. Si les contacts étaient parfaitement lubrifiés, c’est-a-dire si le frottement
était nul, la matiere s’écoulerait de maniere symétrique vers le haut et vers le bas. On ob-
tiendrait ainsi une piece forgée dont la section, en forme de H, aurait des branches (h; et
h,) de méme hauteur.

En pratique, le frottement induit une dissymétrie dans le procédé et on obtient plutot
des sections semblables a celles représentées sur la figure 5.22. La hauteur supérieure h,
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poincon supérieur
échantillon mobile
cylindrique \
h,
& "
/
paroi fixe poingon inférieur fixe

FIGURE 5.21 - Test de double extrusion (DCET) FIGURE 5.22 — Echantillon déformé aprés DCET
d’apreés Schrader et al. [178]. (Gariety et al. [80]).

est plus grande que la hauteur inférieure h,. Le frottement peut donc étre quantifié par le
rapport des hauteurs h,/h, (cup height ratio, en anglais). Plus ce nombre est important,
plus le frottement est important.

Une premiére application de ce test est de classer une série de lubrifiants en fonction de
leur efficacité. Gariety et al. [80] comparent quatre lubrifiants grace au test de double ex-
trusion et détermine celui qui est le plus efficace dans un contexte de forgeage. Ils étudient
également la possibilité de grippage en visualisant les rainures sur les surfaces libres apres
chaque test.

La seconde application est de déterminer un coefficient de frottement unique m (loi
de Tresca — équation (4.130)) par voie numérique, a 'aide de simulations par la méthode
des éléments finis. En tracant la valeur de h;/h, en fonction du déplacement du poin¢on
et en utilisant une série de valeurs de coefficients m, on obtient un faisceau de courbes
numériques de calibration qui peut étre utilisé pour déterminer la valeur du frottement
par comparaison avec des mesures expérimentales (Tan et al. [189], Buschhausen et al.
[46], Forcellese et al. [73]). Les plus téméraires pourraient méme imaginer utiliser cette
valeur de frottement pour effectuer, par la suite, des simulations numériques de forgeage
plus complexes pour lesquelles le méme matériau et le méme lubrifiant sont utilisés. Remar-
quons que les simulations des auteurs précédemment cités sont toutes effectuées a 'aide du
logiciel DEFORM-2D [181] qui inclut un remailleur automatique générant des quadrangles.

La pertinence du test de double extrusion est discutable. En effet, 'écoulement de ma-
tiere est principalement influencé par le frottement entre '’échantillon et la paroi. Le frot-
tement sous le nez des poingons, pour lequel le contact pourrait étre représentatif d'une
opération de forgeage, joue un role beaucoup moins important sur la dissymétrie finale de
I’échantillon. Certains auteurs (notamment Schrader et al. [178]) pensent que les pressions
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qui s’exercent sur la paroi ne justifient pas 'utilisation d’'une loi de Tresca et qu'une loi de
Coulomb serait plus adaptée. Néanmoins, quoi qu’il en soit, ce test est tout de méme tres
intéressant d’un point de vue numérique, d'une part, pour montrer I'intérét du formalisme
ALE qui permet dans ce cas d’éviter le remaillage et pour, d’autre part, vérifier la précision
de I'algorithme de calcul des forces de frottement sur un maillage mobile (voir section 4.6).

5.3.2 Modele numérique
5.3.2.1 Modeles ALE d’extrusion

La simulation d’'une opération d’extrusion par le formalisme ALE a déja été envisagée par
Huétink et al. [121]. Il s’agit plus précisément de tréfilage. Le probleme est axisymétrique
et le maillage est eulérien. Ces auteurs s’intéressent a la solution stationnaire. Plus tard,
Van Haaren et al. [199] et Geijselaers et Huétink [84] construisent un modele d’extrusion
dans le but de tester leurs schémas de convection respectifs. Le maillage est, a nouveau, fixe
et le calcul est poursuivi jusqu’a 'obtention d’'une solution stationnaire. Le dépouillement
des résultats n’est pas tres poussé : seul le champ de déformation plastique est visualisé pour
quantifier la diffusion numérique des schémas. En particulier, le probleme du frottement
n’est pas discuté.

7

8 mm W/

- |:>

P
T v
wﬁnm
3 mm

77

FIGURE 5.23 — Géométrie axisymétrique du test d’extrusion de Ponthot [169]. Un échantillon cylindrique est
contraint a s’écouler dans un canal plus étroit pour le transformer en un cylindre creux. Sa géométrie au
début et a la fin du procédé est radicalement différente.

/

Des modeles transitoires d’extrusion ont également été mis au point par Atzema et Hué-
tink [10] et Ponthot [169]. Le formalisme ALE peut étre également utile dans ce cas en
utilisant une astuce. Cette fois, le maillage n’est plus eulérien. Puisqu’en formalisme ALE, il
est nécessaire d’utiliser un maillage dont la topologie et le nombre de mailles ne changent
pas pendant la simulation, on peut imaginer utiliser la connaissance approximative de la
forme finale de l'objet extrudé. Pour illustrer la méthode de gestion de maillage, le modele
d’extrusion de Ponthot est présenté sur la figure 5.23. Le probleme est axisymétrique. Un
poing¢on vient contraindre un échantillon cylindrique a s’écouler dans un conduit en forme
d’anneau placé a hauteur de la périphérie de I’échantillon. Le matériau est élastoplastique
(E = 200 GPa, v = 0.3, 0, = 210 4+ 10&P MPa) et le frottement sur les frontiéres est
représenté par une loi de Coulomb avec un coefficient de frottement yu = 0.15.
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= sommels lagrangiens
I

B sommets eulériens / 7
— lignes eulériennes

FIGURE 5.24 — Repositionnement des nceuds. Vu la forme simple du poingon fixe, la création du nouveau
maillage est facilitée. La ligne et les points en rouge sont eulériens. Les autres lignes qui contiennent au
moins un point rouge utilisent la méthode des splines.

On s’attend a obtenir une solution transitoire pouvant étre représentée par deux do-
maines quadrangulaires (figure 5.27) : un domaine correspondant a la matiére qui reste
a extruder entre les poingons, et un autre qui contient la matiére déja extrudée entre le
poincon fixe et la paroi fixe. Initialement, le deuxiéme domaine est vide. Pour conserver
un maillage unique au cours du calcul, Ponthot propose de donner une tres 1égere épais-
seur (h =0.01 mm) a ce deuxieéme domaine et de le mailler. Nous appellerons ce domaine
le domaine auxiliaire. Les mailles ainsi définies sont donc extrémement plates, mais elles
vont pouvoir « gonfler » suite a l'afflux de matiére provenant du premier domaine. Le re-
positionnement des nceuds est assez simple (voir figure 5.24). La majorité des sommets
sont lagrangiens. Seuls deux sommets sont eulériens. La ligne décrivant le nez du poin-
con supérieur et celle dans son prolongement, séparant les deux domaines, sont également
eulériennes. Les nceuds des autres lignes peuvent étre repositionnés par la méthode des
splines (section 3.3.2). Quant aux nceuds internes, ils sont repositionnés par interpolation
transfinie (section 3.4.1).

70 : . : 0.035
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Force [kN]

0.01r

—— Boman || 0.005;

— Ponthot
0 2 4 6 8 0 2 4 6 8
Déplacement du poingon [mm] Déplacement du poingon [mm]

FiGURE 5.25 — Force d’extrusion en fonction de  FIGURE 5.26 — Taille du pas de temps au cours de la
lavancement du poingon. Comparaison avec la simulation.
simulation de Ponthot [169].
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FIGURE 5.27 — Résultats du test d’extrusion de Ponthot [169] pour une avancée du poingon jusqu'a 95% de

Uépaisseur initiale du cylindre (H).
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La figure 5.27 montre le déroulement de la simulation. Bien entendu, cette technique
présente des inconvénients. Tout d’abord, il est nécessaire de connaitre de maniere précise
la direction d’écoulement de la matiere. De plus, on constate que, le nombre d’éléments
dans le domaine auxiliaire étant fixé a priori, ceux-ci deviennent de plus en plus longs au
cours de la simulation et la géométrie des nouvelles surfaces est donc de plus en plus gros-
sierement décrite. Enfin, il n’est pas possible d’extruder la totalité de la matiére. Le maillage
du premier domaine doit contenir toujours le méme nombre d’éléments dont I'épaisseur di-
minue continuellement. La gestion de ces éléments plats, que cela soit au début du calcul
dans le deuxiéme domaine ou a la fin du calcul dans le premier domaine, entraine des pro-
blemes de convergence. D’'une part, les éléments finis sont moins bien conditionnés pour
la phase lagrangienne du calcul ALE et d’autre part le critere de stabilité du schéma de
convection est tres restrictif sur le déplacement maximal admissible du poincon (on fixe
C™™ = 0.9 et C!' = 2 — voir section 4.4.8). On observe donc & une taille de pas de temps
trés faible en début et en fin de calcul (figure 5.26). La figure 5.25 montre la force qui
s’exerce sur le poincon au cours de 'opération d’extrusion. On compare la courbe obtenue
avec celle présentée par Ponthot [169]. L'allure des deux courbes est trés similaire et la
force finale est identique. Le décalage entre les deux courbes peut s’expliquer notamment
par des différences au niveau de l'algorithme ALE de frottement.

Malgré ces limitations, cette méthode de gestion de maillage reste séduisante pour les
modeles qui permettent son utilisation. Par exemple, Gadala et al. [78] ont utilisé égale-
ment cette technique pour calculer la forme d’'un copeau métallique dans le contexte de la
simulation de I'usinage par le formalisme ALE.

5.3.2.2 Géométrie et parametres

Considérons maintenant le test de double extrusion. Nous utilisons la géométrie d’ou-
tils mise au point a I’Engineering Research Center (ERC) de I'Ohio State University pour
évaluer les propriétés de divers lubrifiants (Buschhausen et al. [46]). Le poincon est re-
présenté sur la figure 5.28 et les valeurs numériques sont fournies au tableau 5.5. Elles
correspondent au travail de Schrader et al. [178]. Le poingon est beaucoup plus complexe
que celui utilisé par Ponthot. Bien que Buschhausen et al. [46] affirment que la forme du
poincon n’a pas une grande influence sur résultat de la simulation numérique (sa forme est
optimisée expérimentalement pour favoriser '’écoulement radial du lubrifiant, qui n’est pas
modélisé ici), nous conservons cette géométrie complexe pour démontrer les capacités de
notre algorithme de repositionnement de noeuds.

Poincon Echantillon

D, Dy D, R h, @ B d, hy
[mm] | [mm] | [mm] | [mm] | [mm] [°] (] [mm] | [mm]
15.88 9.53 15.72 1.17 1.57 10.0 5.0 31.75 31.75

TABLEAU 5.5 — Géométrie du test d’extrusion de Schrader et al. [178]. Les paramétres sont ceux de la fi-
gure 5.28
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A S

FIGURE 5.28 — Géométrie du poingon utilisé par Tan et al. [189] et Schrader et al. [178].

Le diametre initial de ’échantillon cylindrique est égal a sa hauteur et le diametre du
conteneur est égal a celui de I'échantillon. On définit le rapport d’extrusion r = D?/ dg
comme le rapport de la surface de la base du poincon et de la surface supérieure de I’échan-
tillon. La valeur déduite du tableau 5.5 vaut r = 0.25 et est idéale pour observer des va-
riations importantes dans les résultats suite aux variations des conditions de frottement
(Schrader et al. [178]).

Le matériau utilisé est un acier (AISI 1018) dont le comportement élastique est stan-
dard : module d’Young E = 200 GPa et coefficient de Poisson v = 0.3. Son écrouissage est
isotrope et modélisé par une loi du type :

oy =K(&P)" (5.1)

ol K =735 MPa et n = 0.17. Cette loi a été certainement identifiée sur un test de traction
pour lequel on a négligé la partie élastique. Elle est utilisée ici telle quelle malgré le fait que
la limite élastique initiale soit nulle.

On choisit une loi de frottement de Tresca T = m oy /+/3 (section 4.6.2). Pour rappel, le
test d’extrusion est censé fournir la valeur de ce coefficient de frottement supposé constant
m par identification des courbes expérimentales aux courbes obtenues numériquement en
balayant une gamme de valeurs de m. Dans nos simulations, ce coefficient est pris par
défaut a m = 0.05. On voit directement qu'un probleme se pose : la limite d’élasticité
utilisée dans la loi de Tresca est généralement la limite d’élasticité initiale du matériau
(voir par exemple les simulations DCET de Tan et al. [189]) qui est nulle dans ce cas-ci.
Schrader et al. n’expliquent pas comment ils fixent alors la valeur du frottement.

Une premiére possibilité est d’utiliser la valeur courante de la limite d’élasticité. Cepen-
dant, cette valeur est définie aux points de Gauss des éléments voisins des nceuds de contact
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et non directement en ceux-ci. Il faut donc idéalement extrapoler la limite d’élasticité des
points de Gauss vers les nceuds en question. En conséquence, la valeur du frottement en
un noeud dépend des positions de tous les noeuds des éléments voisins et une nouvelle
matrice de raideur, plus complexe, doit étre écrite si on veut conserver une convergence
quadratique.

La deuxieme possibilité est de prendre une valeur moyenne de la limite d’élasticité
de ce matériau. L'acier AISI 1018, sous forme de barreau cylindrique extrudé a froid, est
répertorié sur matweb [148] avec une limite d’élasticité initiale de 370 MPa. En utilisant
cette valeur, nous retrouvons des résultats proches de ceux de Schrader et al. [178] alors
que la premiere technique nous fournit des résultats sensiblement différents. On constate
donc qu’il existe un certain degré d’incertitude quant aux parametres effectivement utilisés
dans la littérature.

Le probleme est traité sous les hypothéses axisymétrique et quasi statique (la vitesse du
poincon est de I'ordre de 10 mm/s, c’est-a-dire largement insuffisante pour que les effets
d’inertie soient importants), avec des éléments quadrangulaires de type SRI a dilatation
constante. Les deux poincons et le conteneur sont rigides. Des coefficients de pénalisation
du contact et du frottement sont déterminés par essai et erreur : py = 610* MPa/mm et
pr = 610° MPa/mm (paroi du conteneur) et py = 210* MPa/mm et p; = 210> MPa/mm
(poincons). L'échantillon est maillé régulierement avec des mailles de 1 mm selon I'axe
d’extrusion sur 0.3 mm (52 mailles dans la direction radiale et 31 sur la hauteur). Tout
comme le modele d’extrusion de Ponthot, nous anticipons la déformation en ajoutant des
domaines auxiliaires maillés de tres faible épaisseur a coté des deux poingons (15 mailles
sur une hauteur € = 0.2 mm - voir figure 5.30).

En ce qui concerne le formalisme ALE, le transfert des données consiste a convecter les
contraintes (p, s,,, S, S,,) et la déformation plastique équivalente £°. On a donc au total
cing grandeurs scalaires définies sur 2x2 points de Gauss par élément fini. I'algorithme
ALE génére donc un seul maillage auxiliaire de volumes finis. Par défaut, nous utilisons
lalgorithme de Godunov avec un nombre de Courant maximum C™* = 0.5 et C = 2. On
obtient ainsi au maximum quatre sous-pas de convection par pas de temps.

5.3.2.3 Mouvement du maillage

Le mouvement du maillage est bien plus complexe que dans le cas d’extrusion simple.
La difficulté principale est de définir le mouvement de la ligne rouge représentée sur la
figure 5.29 qui représente la surface de I'échantillon sous le poing¢on et son prolongement.
Contrairement a son homologue sur la figure 5.24, elle ne peut pas étre eulérienne puisque
le poincon est cette fois mobile. De plus, vu sa géométrie légerement convexe, le poincon
n’est pas entierement en contact avec la surface de I'échantillon au début du calcul. 1l existe
un faible espace, initialement vide, qui doit étre comblé lors du démarrage de I'extrusion.

On pourrait imaginer fixer simplement le mouvement radial du nceud p; de la figu-
re 5.29. La position du nceud p, serait telle que les deux noeuds aient a tout instant la
méme ordonnée. Les autres sommets de la géométrie seraient lagrangiens. Cette solution
ne fonctionne malheureusement pas parce qu'’il existe un flux de matiere inévitable entre les
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espace
initialement vide

— et I

W
s N1 /%

FIGURE 5.29 — Repositionnement des nceuds. Contrairement au cas de la figure 5.24, la ligne rouge ne peut
plus étre eulérienne.

deux domaines et celui-ci déforme de maniere excessive le maillage fin lors du démarrage
du calcul. Les figures 5.30 et 5.31 illustrent le phénomene. Au début du calcul, la ligne
verticale au dessus du nceud p, est tres finement maillée. Lors des premiers instants de
la simulation, cette ligne se déforme, car la premiere maille du domaine auxiliaire recoit
tous les flux parasites dus au repositionnement du nceud p,. Ces flux sont tres faibles dans
I'absolu, mais, par rapport au volume des mailles initialement plates du domaine auxiliaire,
ils sont suffisants pour détériorer le maillage auxiliaire et rendre le remaillage de la ligne
verticale impossible. Cette ligne sera donc remaillée comme si elle était droite jusqu’a ce
que le nceud p; entre en contact avec le poincon.

poingcon poingon ligne déformée

. . (difficile a remailler)
ligne verticale . .

approximation
droite
utilisée pour
remailler p

FIGURE 5.30 — Zoom sur le domaine auxiliaire su- FIGURE 5.31 - Déformation excessive des mailles
périeur, finement maillé, a Uinstant initial. auxiliaires au début du calcul si les neeuds de
la ligne rouge suivent le mouvement réel de la

matiere.

La simulation se déroule donc en deux phases. La premiere a pour but de combler
I'espace vide et de retrouver une configuration similaire au test d’extrusion simple pour
lequel le poincon est entierement en contact avec I’échantillon. Pendant cette phase, le
déplacement radial du nceud p, (figure 5.29) est nul et le nceud p, est lagrangien. La ligne
a la verticale au dessus de p; est remaillée comme si elle restait droite pour garantir un
bon maillage sur la frontiere. On tolere donc ainsi un 1éger flux de matiére temporaire a cet
endroit.
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La deuxiéme phase débute lorsque le nceud p, entre en contact avec le poincon. A ce
moment, le déplacement vertical du nceud p,, ainsi que celui de tous les nceuds de la ligne
(p1,P»), sont égalés a celui de p,. Cette ligne suit donc le mouvement du poingon. Quant
a la ligne verticale problématique, elle est maintenant remaillée a I'aide d’'une spline pour
suivre précisément la frontiére de la matiere extrudée.

Cette stratégie en deux temps est appliquée également a la partie inférieure de I'échan-
tillon. Lorsque du frottement existe et que le probléme est non symétrique, les deux transi-
tions d'une phase de remaillage a I'autre pour les faces supérieure et inférieure de I’échan-
tillon ne se produisent pas simultanément. Cela ne pose pas de probléme en pratique.

Enfin, de maniére plus classique, les courbes délimitant la frontiére de I'échantillon sont
remaillées a l'aide de splines. Les noeuds internes du domaine principal sont repositionnés
par la méthode de Giuliani (section 3.4.5). Cette méthode a été choisie, car elle fournit le
maillage final le plus régulier dans ce cas précis. On effectue cinq itérations sur tous les
neceuds par pas de temps avec un coefficient de surrelaxation «w = 1.5 (section 3.4.11). Les
deux domaines auxiliaires sont remaillés continuellement a 'aide de la méthode d’interpo-
lation transfinie (section 3.4.1).

5.3.3 Résultats
5.3.3.1 Comparaison de trois modeles

Commencons par comparer le modele ALE du test de double extrusion qui vient d’étre
présenté, d’'une part, a un modele lagrangien et, d’autre part, un modele ALE consistant
simplement a lisser les nceuds du maillage, sans utiliser les deux domaines auxiliaires (que
nous nommons modeéle ALE simple). Ceci nous permettra de valider la gestion spécifique du
maillage qui vient d’étre décrite sur les premiers instants du calcul.

Le déplacement du poincon s (stroke) est limité a 8 mm pour que les trois simulations
puissent fournir des résultats. La figure 5.32 montre la solution lagrangienne. Le maillage
est fortement déformé au niveau du nez du poingon. En analysant plus finement cet endroit
(figure 5.33), on constate que le maillage pénétre fortement dans le poincon. La gestion
nodale du contact est en cause : la surface de ’échantillon subit localement de tres grandes
élongations et le maillage de la surface s’étire jusqu’a ne plus pouvoir suivre la courbure du
rayon. Puisqu’aucune vérification de contact ne s’effectue sur les arétes reliant ces noeuds,
celles-ci peuvent librement traverser le poingon et provoquent ainsi une forte erreur sur la
géométrie de I’échantillon.

La figure 5.34 représente les résultats obtenus avec un modele ALE simple, sans do-
maines auxiliaires : le maillage est identique a celui utilisé pour la simulation lagrangienne.
Les nceuds frontiere sont repositionnés a l'aide de la méthode des splines pour éviter le
probleme d’élongation des arétes en contact précédemment rencontré. Les nceuds internes
sont repositionnés, apres de nombreux essais, en utilisant un mélange de deux opérateurs
de lissage (section 3.4.9) : un lissage équipotentiel pour 70% et un lissage par volumes
pondérés pour 30%. Le lissage équipotentiel (section 3.4.6) permet de jouer sur la perpen-
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o noeuds
en contact

Déformation plastique
0.0 équivalente (&")

FIGURE 5.32 — Solution lagrangienne pour une des- FiGURE 5.33 - Simulation lagrangienne. Zoom au
cente de poingon de 8 mm. Cette simulation per- niveau du rayon du poingon ot le contact est trés
met de valider les résultats ALE au début du cal- mal pris en compte.

cul. Les lignes en pointillés correspondent a la
configuration initiale.

dicularité des lignes de maillage. La méthode des volumes pondérés (section 3.4.4) permet
d’égaliser le volume des éléments adjacents. Chacune des deux méthodes, utilisée seule,
ne permet pas de déplacer le poingon aussi loin : la figure 5.36 montre qu'’il est possible
de déplacer le poincon de s,,,, = 5.5 mm avec un lissage équipotentiel, de 5.7 mm avec
un lissage par volumes pondérés et de 9.8 mm avec une combinaison appropriée des deux
méthodes. On est donc, dans tous les cas, tres loin du déplacement expérimental de 27 mm
et, méme si on y arrivait, les coefficients du lissage ne conviendraient que pour un seul jeu
de parametres (c’est-a-dire une seule valeur du frottement m). Il n’est donc pas question de
continuer dans cette voie qui parait sans issue.

La figure 5.35 montre les résultats obtenus avec l'utilisation des deux domaines auxi-
liaires finement maillés pour un déplacement de poincon de 8 mm. Cette fois, le maillage
reste de bonne qualité. On constate également que le champ de déformation plastique
équivalente est tres similaire a celui obtenu par le modele ALE simple. La frontiére de
I’échantillon déformé est similaire. Bien entendu, les hauteurs extrudées sont légérement
différentes puisque le premier modéle ALE démarre a I'instant t, avec des hauteurs non
nulles (h,(t,) = h,(t,) = €). Pour supprimer cette erreur, on décide d’utiliser une mesure
différente des deux hauteurs extrudées, qui ne tient pas compte de la hauteur initiale des
domaines auxiliaires (voir figure 5.37).

Il est possible de comparer plus précisément ces trois modeles. La figure 5.38 montre
I'évolution de h; et h, en fonction de la distance parcourue par le poincon. Les deux modeéles
ALE fournissent des résultats tres proches et qui suivent la tendance du modele lagrangien
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FiGURE 5.34 - Simulation ALE aprés une descente FIGURE 5.35 — Simulation ALE apreés une descente
de poingon de 8 mm. Utilisation d’un seul do- de poingon de 8 mm. Utilisation de deux do-
maine maillé et d'un opérateur de lissage com- maines auxiliaires.
plexe (un lissage équipotentiel pour 70% et un
lissage par volumes pondérés pour 30%).

0.7 équipotentiel +

équipotentiel volumes pondérés 0.3 volumes pondérés

Déformation plastique
0.0 équivalente (&") 3.0

FIGURE 5.36 — Comparaison de Uefficacité des méthodes de repositionnement de nceuds. Le cercle rouge in-
dique, dans chaque cas, la zone critique ot le maillage se détériore le plus rapidement. Cet exemple dé-
montre Uintérét d’utiliser une combinaison de méthodes de lissage.
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e¢ AN | h, = Ay,

1Ay, el

FIGURE 5.37 — Détermination des hauteurs extrudées h, et h, dans le cas du modéle ALE avec domaines
auxiliaires. Les hauteurs initiales € ne doivent pas intervenir dans le calcul.

au début du calcul. Au dela d’'une descente de poincon s = 5 mm, le modele lagrangien pré-
sente une erreur trop importante sur la géométrie de I'échantillon et les courbes divergent
vu la pénétration du matériau dans le poincon. Malgré la correction effectuée sur la me-
sure des hauteurs, le modele ALE avec domaines auxiliaires fournit des valeurs légérement
différentes du modele ALE simple. Cette erreur (0.14 mm sur h; et -0.08 mm sur h, en
s = 9.8 mm) provient vraisemblablement de la longueur de contact de I’échantillon sur le
conteneur : le modele ALE a trois domaines subit inévitablement plus de frottement que son
homologue simplifié. La différence se répercute sur la figure 5.39 qui représente le rapport
des hauteurs. La tendance générale de la courbe au début de la simulation est cependant
respectée.

10
8t i
E 6
~ <
= h, =
w_ 4
e
2r —ALE I 051 —ALE
—— ALE simple —— ALE simple
—— Lagrangien —— Lagrangien
0 i i i T T 0 i i i T T
0 2 4 6 8 10 0 2 4 6 8 10
Déplacement du poingon [mm] Déplacement du poingon [mm]
FiGURE 5.38 — Comparaison de U'évolution des hau- F1GURE 5.39 — Comparaison de évolution du rap-
teurs h; et h, pour les trois modéles. port des hauteurs hy et h,.

Au niveau des résultantes des forces verticales mesurées sur les outils (figure 5.40),
les courbes des trois modéles concordent au début du calcul. A partir de s = 5 mm, la
solution lagrangienne ne représente plus la réalité a cause des pénétrations excessives de
la matiere dans le poincon. Par contre, la solution du modele ALE simple donne des forces
proches de I'autre modele ALE jusqu’a I'arrét du calcul. Enfin, comme nous le pressentions,
les forces calculées par le modele ALE a trois domaines sont tres légérement supérieures a
celles obtenues par les deux autres modeles (+1.3% pour la force sur le conteneur). Cette
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différence, pratiquement invisible sur la figure, pourrait étre encore réduite en diminuant
la valeur de ¢, au prix d’un ralentissement de la convergence au début du calcul et donc
d’une augmentation du temps de calcul total.

3 :

——ALE

— ALE simple _Feup
2.5| —— Lagrangien y

N

—_
T

Forces verticales [kN]
(&)}

0.5 fFeont
y
~
0O 2 4 6 8 10

Déplacement du poingon [mm]

FIGURE 5.40 — Résultantes des forces verticales sur le poingon supérieur F ;”p, inférieur F}i,"f et sur le conteneur
F ™™ pour les trois modéles.

Cette premiere étude nous permet donc d’affirmer que le frottement est évalué de ma-
niere correcte en formalisme ALE, puisque les résultats lagrangiens sont retrouvés dans les
premiers instants du calcul.

5.3.3.2 Simulation complete

Poursuivons la simulation de l'extrusion jusqu’a une descente de poincon s = 29 mm,
c’est-a-dire 91% de la hauteur initiale de I’échantillon. La figure 5.41 montre les déformées
obtenues pour trois coefficients de frottement m (m = 0,m = 0.05 et m = 0.1). Comme
on peut s’y attendre, la hauteur h, est d’autant plus grande que le coefficient de frottement
est élevé. Par conservation du volume, en négligeant la déformation élastique, I'inverse est
vrai pour h,. Il faut garder a I'esprit que cette conservation n’est pas automatiquement vé-
rifiée en formalisme ALE. En analysant de plus prés la variation de volume du maillage, on
constate qu’il augmente légerement au cours de la simulation. Le tableau 5.6 montre diffé-
rentes valeurs de volumes : le volume ajouté par les deux domaines auxiliaires représente
environ 1% du volume initial exact de I'échantillon. A la fin de la simulation, on obtient
un volume déformé qui a augmenté d’environ 0.5% au lieu d’une 1égere perte de volume
due a I'élasticité a laquelle on pourrait s’attendre intuitivement. Cette variation provient
principalement des flux parasites de matiere lors du remaillage des lignes frontiere. Une
partie de cette erreur peut également étre expliquée par des erreurs numériques du schéma
de transfert. La variation de volume est toujours de méme signe et augmente légerement
avec la valeur du frottement m.

D’apres son concepteur, Geiger [82], I'intérét du test de double extrusion est d’identifier
un coefficient de frottement pour le lubrifiant utilisé. Pour ce faire, on effectue un test et une
série de simulations en faisant varier le coefficient de frottement m. La figure 5.42 montre
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% V/V,
[mm?®] %100 [%]
Volume initial exact Vj, 25137 100.00
Volume ajouté 238 0.95
Volume initial du modele 25375 100.95
Volume final du modeéle (m = 0.00) 25492 101.41
Volume final du modele (m = 0.05) 25500 101.44
Volume final du modele (m = 0.10) 25525 101.54

TABLEAU 5.6 — Variation de volume au cours de la simulation ALE du test de double extrusion aprés une
descente de poingon de 29 mm (m = 0.05).

Déformation plastique
0.0 équivalente (") 3.0

FIGURE 5.41 — Déformées finales obtenues pour différentes valeurs du coefficient de frottement m.

le faisceau de courbes obtenu. Les valeurs expérimentales (trois mesures ponctuelles) ob-
tenues par Schrader et al. [178] pour cette géométrie ont été superposées aux courbes. On
constate, dans ce cas particulier, que la valeur du frottement qui permet de s’approcher des
mesures expérimentales est 1égerement supérieure a m = 0.05.

204



CHAPITRE 5. APPLICATIONS NUMERIQUES

45
4
3.5 ‘m=0.2
3 ~m=0.15 - 1
25 ~ m=0.1
= 2 o m=0.075 |
i5 S m=005 |
’ m=0.025
1 m=0.0
0.5 ]
0 i i i T T T
0 5 10 15 20 25 30

Déplacement du poingon [mm]

FIGURE 5.42 — Faisceau de courbes de rapport de hauteurs d’extrusion obtenues par simulation numeérique
pour différentes valeurs du coefficient de frottement m. Une valeur de m est déduite des mesures expeéri-
mentales.

5.3.3.3 Temps de calcul et précision du transfert

En utilisant le frottement par défaut (m = 0.05), le probléme nécessite 346 pas de temps
et 422 itérations de Newton-Raphson. Le temps de calcul total est de 545” sur PC1 (voir
annexe A). Ce temps varie tres peu en fonction du coefficient de frottement. Par contre, il
dépend fortement du choix du schéma de convection utilisé pour la phase de transfert ALE.
En effet, si on décide d’'utiliser une reconstruction linéaire au lieu d’'une reconstruction
constante, le temps de calcul passe a 12’22”, alors que le nombre de pas de temps reste
identique. Cette augmentation est donc due uniquement au calcul du gradient des champs
a convecter et a leur utilisation pour le calcul des flux.

0% 0%

B Lagrangien

E Repos. des noeuds

O Convection ALE
E Contact/Frottement

reconstruction reconstruction
constante linéaire

F1GURE 5.43 - Repartition du temps CPU en fonction du schéma de convection utilisé pour la phase de transfert
ALE (simulation DCET compléte, s = 29 mm, m = 0.05).

La figure 5.43 montre la proportion des différentes étapes du calcul ALE. La phase la-
grangienne dure 3 minutes. Le repositionnement des nceuds est ici tres rapide (24”), malgré
le fait que nous utilisons une des méthodes les plus cofliteuses (Giuliani) et que nous n’avons
pas cherché a optimiser le nombre d’itérations de lissage. Pour ce type de probleme, le trans-
fert des données est, de loin, ’étape la plus coliteuse de la phase ALE. En choisissant un
schéma du second ordre, 73% du temps CPU total est utilisé pour transférer les grandeurs
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aux points de Gauss du maillage lagrangien vers le nouveau maillage. Enfin, pour étre com-
plet, signalons que le traitement des nceuds de contact et I'’évaluation du frottement sur la
nouvelle configuration, qui intervient juste apres le transfert, sont excessivement rapides
(1” au total) vu le petit nombre de noeuds a considérer.

Puisque le schéma du second ordre cofite si cher, il est important de voir ce qu’il apporte
en termes de précision sur la solution. Au niveau des grandeurs qui nous intéressent dans
le cadre de ce probléme, la différence est infime : on mesure un rapport final de hauteurs
h,/h, = 1.6186 pour le schéma de Godunov et h;/h, = 1.6170 pour la reconstruction
linéaire. Cette variation des résultats est beaucoup plus faible que celle qu’'on obtient en
divisant par exemple les coefficients de pénalisation du contact par deux (h;/h, = 1.663).

reconstruction
linéaire avec
v’l’ O-T"I' = 0

reconstruction reconstruction
constante

linéaire

o, [MPa]

-2500 -1750 -1000 -250 500

FIGURE 5.44 — Comparaison des résultats (contraintes radiales) en fonction du type de reconstruction utilisée
pour le transfert des grandeurs aux points de Gauss.

Il est intéressant d’illustrer ici les éventuelles instabilités du schéma utilisant une re-
construction linéaire lorsque le probléme est axisymétrique et que les flux radiaux sont
importants (section 4.5.3). C’est précisément le cas pour ce modeéle puisque la matiére ini-
tialement pres de I'axe de symétrie s’écoule radialement vers I'extérieur pour contourner le
nez du poincon. La figure 5.44 montre le champ de contraintes radiales o,, pour différents
types de reconstruction. La reconstruction constante (schéma de Godunov) est notre solu-
tion de référence. Utiliser une reconstruction linéaire classique pour laquelle le gradient est
calculé comme si on était a 2D, en état plan de déformation) provoque des oscillations dans
la solution. Cette zone d’instabilité correspond justement a 'endroit ot la vitesse radiale re-
lative entre le maillage et la matiére est la plus importante. De plus, lors de I'analyse du
temps CPU, nous venons de voir que ces perturbations n’influencent pas la grandeur ma-
croscopique qui nous intéresse ici (h;/h,). Néanmoins, si on désire tout de méme éviter ces
oscillations, il est possible d’annuler la composante radiale du gradient. On obtient alors
un champ de contrainte o, similaire a celui obtenu par reconstruction constante sous le
nez du poincon et plus proche de celui obtenu par reconstruction linéaire classique au ni-
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veau de la matiere extrudée. Le rapport des hauteurs obtenu est extrémement proche des
précédents (h,/h, = 1.6178). Toutefois, vu le temps de calcul, il est préférable d’utiliser
un schéma de Godunov pour ce type de modele. Cette conclusion est en contradiction avec
certaines publications (Benson [22, 26] par exemple) qui rejettent des le départ I'utilisation
d’'un schéma du premier ordre pour traiter la convection. Cette application montre que le
schéma de Godunov peut étre une solution économique et précise, y compris dans des cas
ol le mouvement du maillage et de la matiere sont tres différents.

5.3.3.4 Comparaison des résultats ALE avec ceux de Schrader et al.

Nous terminons I'étude du test de double extrusion par une comparaison des résultats
obtenus par le formalisme ALE et les résultats publiés par Schrader et al. [178]. Ils utilisent
le logiciel DEFORM-2D, dédié a la simulation de procédés de forge, et qui propose un
algorithme de remaillage quadrangulaire automatique permettant d’éviter les distorsions
excessives des mailles au cours du calcul. Les techniques numériques que nous comparons
sont donc tout a fait différentes.

- max
hy

max

FIGURE 5.45 — Les deux maniéres de mesurer la hauteur h; pour le modéle ALE : soit la hauteur maximale
R (position de mesure r variable en fonction du temps), soit la valeur de hy sur la paroi du conteneur
(toujours en r,,,.). Simulation correspondant a m = 0.05 et n = 0.

Schrader et al. étudient l'influence du coefficient d’écrouissage n du matériau (équa-
tion (5.1)) sur le rapport des hauteurs et les pressions de contact pour la valeur de frotte-
ment m = 0.05. La figure 5.46 montre les courbes de rapport de hauteurs obtenues pour
n = 0.17 (la référence) et n = 0.0 (matériau parfaitement plastique). Pour nos résultats
ALE, nous avons tracé deux courbes pour chaque valeur du coefficient n. La premiére cor-
respond a la valeur de h mesurée sur la paroi du conteneur en r = r,,, = d,/2. La seconde
est la valeur maximale de h mesurée en un r variable au cours de la simulation. La fi-
gure 5.45 représente la déformée finale de la simulation avec un coefficient d’écrouissage
n = 0 et pour laquelle la position du maximum n’est pas sur la paroi du conteneur. En fonc-
tion de la forme de cette surface libre et de 'endroit ot on calcule h, la valeur du rapport
h,/h, peut varier fortement, surtout au début du calcul quand h est petit. Pour chaque va-
leur de n, sur la figure 5.46, les deux courbes ALE encadrent la courbe obtenue par Schrader
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avec DEFORM-2D. De plus, ces trois courbes convergent vers une valeur finale commune
du ratio des hauteurs.

4 T T T T 1200
poingon inf. poingon sup.
10001 1
@ 800r 1
o
=3
_5 600~ 1
[7]
%]
o
S 400r ]
- - -Bomanh
max 200+ —_— ]
0.51 —— Schrader Boman
o exp —— Schrader
0 : ; ; ; 0 ; y
0 5 10 15 20 25 0 10 20 30
Déplacement du poingon [mm] Y [mm]

FiGURE 5.46 — Influence du coefficient d’écrouissage FIGURE 5.47 — Pressions mesurées sur la paroi du

n du matériau sur le rapport des hauteurs au conteneur apres 8 mm d’écrasement pour deux
cours de la simulation (m = 0.05). valeurs du coefficient d’écrouissage du matériau
et m = 0.05.

Il est intéressant de tracer les pressions de contact calculées sur la paroi du conteneur
cylindrique pour n =0 et n = 0.17. La figure 5.47 présente ces pressions apres un déplace-
ment du poincon supérieur de 8 mm. On observe un tres bon accord avec les résultats de
Schrader et al. dans la zone située entre les deux poincons. Les courbes sont, par contre,
différentes a hauteur des poingons. L’allure générale des courbes est toutefois identique.

th0=1.25

1.5¢
h /d =0.75
1 l/ 0 ——Boman h(rmax) i
- - -Bomanh
max
0.5r —— Schrader
O exp
0 i i i T
0 5 10 15 20 25

Déplacement du poingon [mm]

FiGURE 5.48 — Influence de la hauteur initiale h, de Uéchantillon cylindrique sur le ratio des hauteurs. Le
frottement est constant m = 0.05.

Schrader et al. étudient également l'influence de la hauteur initiale h, de I’échantillon
sur les résultats. La figure 5.48 montre les courbes obtenues pour des rapports h,/d, de
0.75, 1.0 (la référence) et 1.25. Cette fois-ci encore, nous retrouvons des valeurs trés
proches de celles publiées dans la littérature. La différence la plus importante est obser-
vée pour le rapport hy/d, = 0.75 pour lequel la valeur du ratio h,/h, calculé grace au
modele ALE sous-estime d’environ 5% celle calculée par DEFORM-2D. Vu Il'incertitude sur
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la maniére dont Schrader et al. calculent le frottement (et sur la limite d’élasticité initiale
du matériau) et sur les parametres numériques utilisés dans leur publication (la gestion du
frottement n’est pas non plus évidente dans le contexte d’'un remaillage), cette différence
n’est pas importante et on peut conclure a un trés bon accord entre les résultats obtenus
par le formalisme ALE et ceux obtenus par remaillage.

5.3.4 Conclusions

Nous avons construit un modele du test de double extrusion (DCET) pour lequel le
formalisme ALE permet de s’affranchir d'une série de remaillages au cours de la simulation.
Cette application numérique est également intéressante pour valider la gestion du contact
avec frottement sur un maillage dont le mouvement ne suit pas celui de la matiere puisque
le procédé DCET est un test tribologique. Une erreur sur la prise en compte locale du
frottement se répercute donc immédiatement sur les grandeurs mesurées.

Pour pouvoir conserver une topologie de maillage constante, condition nécessaire pour
utiliser le formalisme ALE, il est nécessaire d’ajouter au maillage initial de I’échantillon
cylindrique a extruder deux domaines auxiliaires finement maillés dont I'épaisseur est aussi
petite que possible. Ces mailles recoivent un flux de matiére et se déploient au fur et a
mesure que le poincon supérieur descend. Bien que cette technique de gestion de maillage
ne soit pas originale (Gadala et al. [78], Ponthot [169]), c’est la premiére fois qu’elle est
appliquée a un procédé de géométrie complexe. En effet, le nez des poingons n’ont pas été
simplifiés dans notre modele : ils ne sont pas plans et leur courbure entraine une difficulté
supplémentaire dans la définition du mouvement du maillage.

Cette application nous a également permis une nouvelle fois de montrer qu'un schéma
du second ordre n’est pas toujours nécessaire et que le choix de la précision de la méthode
de transfert choisie peut avoir une influence importante sur le temps de calcul. Pour cette
application particuliere, I'utilisation d’'une reconstruction linéaire des champs inconnus est
pres de quatre fois plus cotliteuse que le schéma de Godunov et donne des valeurs similaires
du rapport d’extrusion.

Enfin, nous avons validé le modele ALE en comparant nos résultats, d’'une part, a ceux
d’un modele lagrangien limité aux premiers millimetres de descente du poincon et, d’autre
part, a ceux obtenus par le code commercial DEFORM-2D intégrant une procédure de re-
maillage automatique. On observe un tres bon accord des résultats provenant de ces tech-
niques numériques pourtant radicalement différentes.
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5.4 Laminage

5.4.1 Introduction

Cette section présente un modele bidimensionnel de laminage utilisant le formalisme
ALE. Le laminage est un procédé de mise a forme qui intervient en amont de la produc-
tion de nombreuses pieces dans le domaine du transport, du batiment et de 'emballage.
L'opération consiste a réduire I'épaisseur d’'une téle grace a des cylindres en rotation qui
la déforment plastiquement. Dans le cas de la production de téles minces d’acier, la réduc-
tion débute dans un laminoir a chaud ot I'épaisseur des brames d’acier est progressivement
réduite de plusieurs dizaines de centimetres a quelques millimetres. Des épaisseurs plus
faibles (de l'ordre du millimetre, voire moins) peuvent étre obtenues grace a un passage
dans une succession de cages de laminage a froid. Vu I'importance de ce procédé en termes
de quantité de production, il est treés important de comprendre tous les phénomenes phy-
siques qui entrent en jeu pour controler la qualité du produit et, en particulier, ses caracté-
ristiques géométriques et mécaniques.

Pour ce travail de these, la simulation du laminage est intéressante a plusieurs points
de vue. Tout d’abord, il s’agit d’'un procédé stationnaire qui nous permet de tester le forma-
lisme ALE sur un maillage quasi eulérien pour lequel on s’attend a de grands déplacements
convectifs. De plus, le frottement joue un grand role et c’est donc une nouvelle occasion
de valider I'algorithme de contact, cette fois dans le cadre d’'un contact entre des corps
déformables (la tole d'une part et les cylindres de l'autre). Enfin, ce probleme permet de
montrer la généralité de notre implémentation en utilisant un maillage non structuré de
quadrangles pour la modélisation des cylindres.

Dans la littérature, on trouve de nombreux types de modeles du laminage (voir par
exemple la synthése de Montmitonnet [150]) et, parmi ceux-ci, des modeles eulériens,
lagrangiens ou ALE. La formulation la plus intuitive est certainement la formulation eulé-
rienne qui permet d’éviter le calcul d’'un état transitoire précédant la solution stationnaire
recherchée. Si on utilise la méthode des éléments finis, les équations stationnaires sont ré-
solues sur un maillage fixe et régulier qui peut étre optimisé spatialement pour maximiser
la précision des calculs. La géométrie des surfaces libres peut étre éventuellement corrigée
itérativement pour prendre en compte le retour élastique en sortie d’emprise a 'aide de
techniques telles que la méthode des lignes de courant (voir par exemple Kim et al. [127]).
Si les cylindres sont déformables, une boucle supplémentaire permet d’itérer sur leur géo-
métrie (Hacquin et al. [100]). Cette procédure, appelée méthode itérative stationnaire, est
utilisée notamment dans le logiciel LAM3 (Hacquin [98], Hacquin et al. [99]) par rapport
auquel nous voulons comparer nos résultats. Elle présente I'avantage d’étre tres rapide.

Des modeles lagrangiens existent également (voir Liu et al. [137], Galantucci et Tri-
carico [79], Lee [134] parmi de nombreux autres) et sont généralement incontournables
lorsqu’il s’agit d’étudier des phénomenes transitoires tels que la formation de défauts géo-
métriques. Cette formulation est également plus simple a mettre en ceuvre dans les codes
commerciaux (Abaqus [55], ANSYS [4], DEFORM-3D [181], Forge3 [193], etc.) que les
méthodes eulériennes dont les équations ont généralement été fortement particularisées
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au procédé de laminage. Les nouvelles techniques numériques comme de nouveaux élé-
ments finis, de nouveaux solveurs, de nouveaux schémas d’intégrations sont généralement
testées et implémentées dans des codes lagrangiens, plus généraux. Ces méthodes doivent
étre dupliquées dans les codes eulériens spécialisés en laminage pour étre utilisables. Pour
un simple souci de maintenance des codes de calcul de laminage en parallele aux codes
plus généralistes lagrangiens, on serait donc tenté d’utiliser ces derniers pour modéliser le
laminage si ceux-ci n’étaient pas si lents par rapport a leurs homologues eulériens.

Le formalisme ALE apparait comme une alternative possible : il permet de profiter auto-
matiquement des avancées techniques introduites dans la partie lagrangienne du code tout
en possédant certains avantages des codes eulériens. En particulier, il est possible d’utiliser
un maillage spatialement optimisé dont le nombre de mailles est réduit. Néanmoins, dans
ce cas, 'approche est inévitablement transitoire et il y a donc peu de chance d’égaler les
performances d’un calcul itératif stationnaire. C’est dans cette optique de diminution de la
maintenance de codes que Philippe [164] a récemment testé le code ALE Forge3 comme
remplacant potentiel du code eulérien LAM3.

Plusieurs modeles ALE de laminage sont déja apparus dans la littérature. Liu, Hu et
Belytchko [113, 140, 144] proposent un modele 2D en état plan de déformation. Leur
but est d’introduire une prise en compte sophistiquée du contact lubrifié par résolution
de I'équation de Reynolds. Huétink et al. [122] effectuent des simulations 2D pour les-
quelles le cylindre est cette fois déformable. Le contact avec frottement est modélisé par
une couche d’éléments de contact spéciaux dont I'épaisseur est tres faible. Les pressions et
cisaillements sont transférés comme s’il s’agissait d’éléments volumiques traditionnels. Plus
tard, Gadala et Wang [77] illustrent leur algorithme ALE avec un modele simple de lami-
nage. Leur modele ne semble cependant pas tres général puisqu’il est nécessaire d’effectuer
des itérations supplémentaires pour localiser le point neutre et adapter les conditions aux
limites en conséquence. Wisselink et Huétink [208] présentent un procédé 1égerement dif-
férent, le laminage a profilés (shape rolling). Leurs simulations sont tridimensionnelles et
leur travail est concentré sur la détermination des surfaces libres de la téle. Enfin, le modele
de Philippe [164], précédemment cité, est un modele 3D relativement complet qui prend
en compte le cédage, c’est-a-dire la déformation élastique des cylindres et de la cage du
laminoir. Par contre, un maillage isotrope d’éléments tétraédriques, peu adapté a un écou-
lement rectiligne, est utilisé. De plus, les tractions imposées en entrée et en sortie, qui sont
pourtant des parametres importants du procédé, sont négligées.

Curieusement, la plupart des auteurs de modeles ALE précités analysent les résultats
obtenus de maniere tres sommaire, laissant penser que le seul fait d’obtenir une solution
est suffisant. Par exemple, seule Philippe [164] compare ses résultats avec la solution équi-
valente lagrangienne. Et, malheureusement, cette comparaison se limite principalement a
la force de laminage, c’est-a-dire la force verticale exercée par les cylindres sur la tole.
Les autres valeurs, telles que le champ de pression, de cisaillement ou de glissement, sont
ignorées.

Bien que plus simple d’'un point de vue géométrique (2D état plan de déformation), le
modele présenté ici va nous permettre de combler cette lacune en comparant de maniere
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précise les solutions lagrangienne et ALE obtenues par Metafor d’une part et les solutions
obtenues par LAM3 d’autre part.

Une originalité de notre modele est de pouvoir prendre en compte de maniere simple
les tractions d’entrée et de sortie imposées par le procédé.

5.4.2 Modele numérique

Nous considérons deux jeux réalistes de parametres : un cas de laminage a chaud (LaC)
d’une tble épaisse et un cas de laminage a froid (LaF) d’une tble plus mince. Une fois
paramétrée, la géométrie des deux problémes est similaire. Elle est représentée sur la fi-
gure 5.49. Le modele est 2D, en état plan de déformation, et symétrique. Seule la moitié
supérieure de la géométrie sera donc modélisée. Les parameétres des deux procédés sont
rassemblés dans le tableau 5.7. L'origine des axes est choisie sur le plan de symétrie, a la
verticale des axes des cylindres.

A cylindre A
M R vt supérieur \4
O A
N L
* A %ﬁ _—— v/

T h, bande v, h, » T x
< , ; f - | —> —>
traction ! ______E__________________________\L_______j traction
d'entrée ====="~Ymmmmmmmmmmos ’L LT de sortie

Pl ] loﬁgueur d’emprl’ise cylindre™~~ .
inférieur
FIGURE 5.49 — Géométrie de l'opération de laminage.
LaC LaF
Epaisseur d’entrée (h,) [mm] 36.83 3.184
Epaisseur de sortie (h,) [mm] 24.37 2.053
Rayon des cylindres (R) [mm] 341.8 263.2
Vitesse de rotation (v,)  [mm/s] 1420 3333.3
Traction d’entrée (T,) [MPa] 0 40
Traction d’entrée (T,) [MPa] 0 120
Limite d’élasticité (o) [MPa] 144 248.5
Loi d’écrouissage (o) [MPa] - oy = [(355+131¢P)
(1-0.3exp(—11&P))]
Frottement (u, m) [MPa] m = 0.4 (Tresca) u = 0.075 (Coulomb)

TABLEAU 5.7 — Paramétres utilisés pour le cas du laminage a chaud (LaC) et le cas du laminage a froid (LaF).

Le matériau est un acier élastoplastique dont les parametres élastiques sont pris égaux
aux valeurs classiques a température ambiante (E = 210 GPa, v = 0.3) bien que cela soit
discutable dans le cas a chaud. Les cylindres peuvent étre considérés rigides ou déformables
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selon les cas envisagés. Le frottement entre la bande et le cylindre est modélisé par une loi
de Tresca dans le cas a froid (parametre m) et une loi de Coulomb dans le cas a chaud
(parametre w).

I |
4y frontiére 1 frontiére
4 amont 4 aval
rle y R r/2 r/2
mailles . . s
—D J L™ /A
A . < _— =
n, mailles x
v —»
modeéle lagrangien modéle ALE

FiGURE 5.50 - Longueur de la bande et zones de maillage pour les simulations en formalisme lagrangien (a
gauche) et ALE (a droite). Le maillage ALE est délimité par deux frontiéres eulériennes (en blew).

Nous construisons donc un modele lagrangien et un modele ALE dans le but de com-
parer les résultats des deux formalismes. La longueur de bande modélisée en formalisme
lagrangien dépend de I'angle de contact théorique

6 =acos((R—r/2)/R) (5.2)

et de la longueur de contact [ = Rsin6 ou R est le diametre non déformé du cylindre et
r = h, — h, est la réduction exprimée en mm (voir figure 5.50). La longueur du modele
AlLE estde L,+ 21+ L, ou L, et L, sont des longueurs utilisées pour éloigner les extrémités
du maillage de 'emprise; ceci afin d’éviter l'influence de certaines conditions aux limites
sur les résultats. La zone sous le cylindre est maillée avec n, mailles par longueur [ et n,
mailles dans I’épaisseur. Les deux zones extrémes peuvent étre maillées plus grossierement.
Le modele lagrangien, quant a lui, nécessite une longueur de bande plus importante qui
doit étre maillée tout aussi finement que la zone initialement sous le cylindre. La longueur
supplémentaire vaut n X [ ou n est le nombre de longueurs d’emprise que I'on désire (ap-
proximativement) laminer au cours de la simulation lorsque la vitesse est établie. Le modele
lagrangien comporte donc n X n, X n, mailles supplémentaires.

Une simulation se déroule en trois phases distinctes représentées schématiquement sur
la figure 5.51 : au temps initial t,, le maillage de la demi-t6le possede une épaisseur
uniforme h,/2 et le cylindre est positionné contre la surface de celle-ci (son centre en
¥y = R+ h,/2). La premiére phase (t € [t,,t;]) dure une période que nous appellerons
6t =1/v, et consiste a écraser la tole par le cylindre en imposant a ce dernier un dépla-
cement vertical vers le bas de r/2. Pendant la seconde phase supposée de méme durée, le
cylindre commence a tourner pour atteindre la vitesse v,. Son accélération angulaire est
constante. Au méme moment, les tractions d’entrée et de sortie sont progressivement ap-
pliquées de maniere linéaire jusqu’a la valeur voulue (T, et T,). La derniere phase consiste
a maintenir constantes la vitesse du cylindre et les tractions pendant un temps égal anot.

Le schéma d’intégration utilisé est dynamique implicite (Chung-Hulbert, parametres par
défaut — voir section 4.3.2). Les effets thermiques ne sont pas pris en compte. Les éléments
finis sont partiellement sous-intégrés (SRI).
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t=t, t, =146t t,=t+nét
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| T, T,
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" écrasement ' Lo rmseen ’ * laminage ’
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FIGURE 5.51 — Déroulement de la simulation. Au dessus, le modéle lagrangien et en dessous, le modéle ALE.
De gauche a droite : (a) t, : état initial non déformé et libre de toute précontrainte, (b) t, — t; : phase
d’écrasement, (c) t; — to : phase d’accélération et d’application des tractions T, et T, et (d) t, — tg :
phase finale de recherche de Uétat stationnaire.

En formalisme ALE, le mouvement du maillage est défini entre les deux frontieres eu-
lériennes verticales représentées sur la figure 5.50. La ligne verticale de la section amont
est eulérienne, car on suppose que sa épaisseur ne varie pas malgré la traction aval. La
ligne de la section aval nécessite le calcul de l'intersection du maillage avec la frontiere
aval (voir section 3.5.3). La surface libre est remaillée a 'aide d’'une spline. Les nceuds de
I'axe de symétrie sont eulériens et les noeuds internes sont repositionnés par interpolation
transfinie.
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5.4.3 Laminage a chaud - cylindre rigide

Nous considérons tout d’abord le probléme du laminage a chaud. Les cylindres sont sup-
posés indéformables et ils ne sont donc pas maillés. Ce test nécessite des pénalités normales
py et tangentes p, de 310* et 10* MPa/mm.

La présentation de cette étude suit la maniére avec laquelle un modele ALE est géné-
ralement mis au point : dans un premier temps, nous utiliserons un maillage ALE avec
des éléments de taille constante et identique a celui d’'un modeéle lagrangien de référence.
Les premiéres simulations permettent de vérifier que les deux formalismes fournissent les
mémes résultats. Ensuite, apres cette vérification, le modele ALE peut étre optimisé en
jouant sur le schéma de convection et les grandeurs a transférer, la taille du pas de temps,
la durée de simulation nécessaire pour atteindre 1’état stationnaire et la finesse du maillage.

5.4.3.1 Choix du schéma de transfert

Vu I'épaisseur de la bande, les champs inconnus (contraintes, déformation plastique,
vitesses, etc.) ne seront pas constants sur une section. La téle nécessite donc un maillage
de plusieurs mailles sur I'épaisseur (n, = 9) qui est intéressant pour étudier I'influence du
schéma de transfert utilisé en formalisme ALE. Parallélement a cette étude, nous comparons
les résultats ALE et lagrangien en utilisant un maillage uniforme n, = 30. Ces simulations
sont effectuées sur un temps suffisamment long pour atteindre sans aucun doute I’état
stationnaire (n = 3). Le maillage et le temps de simulation seront optimisés par la suite.

Les figures 5.52 comparent I’évolution des résultats lagrangiens (demi-tole inférieure)
et ALE avec une reconstruction constante (demi-tdle supérieure) en représentant quelques
instants clefs des simulations. A la fin de la phase d’écrasement, en t = t;, les deux solutions
sont tres similaires. On voit a cet instant que le maillage lagrangien s’est allongé de part et
d’autre du cylindre. Par contre, le maillage ALE est resté confiné entre les deux frontieres
eulériennes et, grace a cela, les mailles possedent toujours une taille constante le long de
I'axe de symétrie. Une quantité d’acier a donc quitté le maillage ALE et son volume total
a diminué en conséquence. Lors de la mise en rotation du cylindre (t € [t,,t5]), la tole
est entrainée par frottement. En formalisme lagrangien, les mailles se déplacent vers la
droite et celles qui étaient initialement en aval du cylindre subissent un mouvement proche
d’une translation rigide. La zone plastifiée « en forme de croix » qui était a la verticale du
cylindre a la fin de 'écrasement est toujours bien visible et les mailles qui la supportent ne
subissent quasi aucune déformation. En particulier, on identifie toujours la forme circulaire
du cylindre sur la surface libre de la bande.

Bien entendu, sur le maillage ALE qui reste fixe selon la direction de laminage, il n’est
pas du tout évident de faire ces mémes observations. Les résultats dépendent d’une part
de la qualité du transport des grandeurs aux points de Gauss et, d’autre part, de la qualité
du remaillage de la surface libre. On remarque donc quelques différences dans la solution
ALE : au fur et a mesure que le cylindre tourne, les valeurs de la déformation plastique équi-
valente P de zone plastique en forme de croix tendent a s'uniformiser a cause du schéma
de Godunov qui est trés diffusif. Avant de sortir du maillage, le maximum de la déforma-
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FIGURE 5.53 — Déroulement de la simulation du laminage a chaud. ALE reconstruction linéaire au dessus et
lagrangien en dessous.




CHAPITRE 5. APPLICATIONS NUMERIQUES

tion plastique a diminué de plus de 25%. Inversement, les zones peu plastifiées voient leur
valeur £ augmenter puisque le schéma est conservatif. Au niveau de la surface libre, en
formalisme ALE, on constate que la forme circulaire se déplace a la bonne vitesse par com-
paraison a la solution lagrangienne. La forme de la surface est préservée a 'exception de
son extrémité aval ou la pente de la surface varie brusquement et forme un angle plus vif
en formalisme lagrangien. Le remaillage par spline a donc lissé cet angle. Heureusement,
cet effet indésirable n’a aucune influence sur la solution stationnaire finalement obtenue en
t =t,.

Intéressons-nous maintenant au déroulement de la simulation lorsqu’on utilise une mé-
thode plus précise pour le transfert des grandeurs aux points de Gauss, c’est-a-dire une
reconstruction linéaire et non plus constante des champs inconnus. La figure 5.53 montre
les résultats aux mémes instants que ceux qui ont été choisis précédemment. On constate
immédiatement que la qualité de la convection est largement supérieure : la zone plastique
en forme de croix est maintenant beaucoup mieux transportée sur le maillage fixe. Les dif-
férences entre les solutions lagrangiennes et ALE sont a peine perceptibles alors que les
maillages sont différents. Néanmoins, la solution finale obtenue en t = t, + 36t est iden-
tique a celle obtenue par le schéma utilisant une reconstruction constante. On peut méme
affirmer que la solution sur la portion de bande située sous la zone de contact avec le cy-
lindre, c’est-a-dire dans I'emprise de laminage, est toujours correctement représentée, quels
que soient le schéma et l'instant considéré. Ce résultat est important, car il laisse supposer
qu’il n’est pas utile d’utiliser le coliteux schéma du second ordre pour calculer précisément
la solution dans 'emprise du laminoir vu sa petite taille. Par contre, si on s'intéresse a des
effets transitoires sur des longueurs plus importantes, comme ici le déplacement d’'une zone
plastifiée, le schéma de Godunov n’est plus suffisant.

Les résultats suivants vont permettre de confirmer cette conclusion. Nous analysons de
maniere précise les différentes grandeurs intéressantes dans 'emprise d'un laminoir. Pour
chacune d’entre elles, les solutions ALE obtenues par reconstruction constante et linéaire
sont comparées a la solution lagrangienne et a la solution fournie par le code spécialisé en
simulation du laminage LAMS3.

La figure 5.54 montre le champ de pression le long de 'emprise a I'instant final. Les
quatre solutions sont tres semblables si on ignore les oscillations des courbes ALE au début
de la zone de contact. Ces oscillations se retrouvent également sur la figure 5.55 qui repré-
sente le cisaillement. Comme nous allons I'expliquer, elles sont provoquées par la méthode
des splines qui est utilisée pour repositionner les noeuds de la surface libre.

La figure 5.57 montre le maillage linéique de la surface de la bande a I'instant final de
la simulation (t = t4). Pour rappel, l'origine de axe x correspond a la verticale des axes des
cylindres.

La géométrie lagrangienne (courbe bleue sur la figure 5.57) forme un angle vif au pre-
mier nceud de la zone de contact. La spline utilisée sur cette ligne brisée pour repositionner
les nceuds possede, par construction, une normale continue. Elle est donc incapable de re-
produire fidélement cette discontinuité de pente. Elle oscille entre les nceuds lagrangiens et
ces oscillations se propagent de part et d’autre de 'angle vif. En conséquence, le nouveau
maillage généré sur cette courbe oscille inévitablement. Le défaut de forme se répercute
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ensuite sur les champs de pression et de cisaillement parce que la téle qui entre dans I'em-
prise est 1égerement ondulée. Vu que l'origine des oscillations est purement géométrique,
on peut imaginer limiter 'étendue de la zone problématique en raffinant le maillage (voir
section 5.4.3.5). Le probléme apparait également avec la méthode des arcs (section 3.3.1)
pour laquelle 'amplitude des oscillations est identique.
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FIGURE 5.56 — La surface du maillage lagrangien
forme un angle vif at%® avec le cylindre, en
amont d’emprise. Cet angle pose probleme a la
méthode de repositionnement de nceud utilisée
en ALE. Les oscillations qui en résultent, bien que
trés faibles, se répercutent significativement sur
les champs de pression et cisaillement.
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FIGURE 5.57 — Détail de la géométrie dans la
zone dentrée en t = tq. Léchelle selon y a
été volontairement amplifiée pour permettre une
meilleure visualisation des oscillations en forma-
lisme ALE.

Sur la figure 5.55, on observe un léger décalage en sortie d’emprise entre la courbe obte-
nue par LAMS3 et les autres courbes obtenues par Metafor. Ce décalage peut avoir plusieurs
causes. Tout d’abord, les résultats de LAM3 dont on dispose ont été obtenus avec seulement
20 mailles dans 'emprise, ce qui semble tres peu pour modéliser précisément la longueur
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de contact. Ensuite, la gestion du contact est différente dans les deux codes. La méthode
de pénalisation utilisée dans Metafor provoque de 1égeres pénétrations du cylindre dans
la bande et, de ce fait, surestime toujours légérement la longueur de contact réelle. Enfin,
nous n’avons pas d’information sur les parametres élastiques utilisés dans LAM3, ni sur la
maniere dont le retour élastique en sortie d’emprise est géré dans ce code.

Sur cette méme figure, un deuxieme écart est également bien visible au niveau du point
neutre ou cisaillement est nul. Sans connaitre les détails d’implémentation du frottement
dans LAM3, nous pensons que cet écart est dii a la différence d’algorithmes utilisés dans les
deux codes. Il est intéressant par exemple de noter que LAM3 permet un léger dépassement
de la limite de Tresca 7,,,, (de 'ordre de 1 MPa).

Le cisaillement ALE peut aussi étre supérieur a la limite imposée par la loi de frottement
(IT] > 7,,.) car, en formalisme ALE, la force de frottement correspond a la force interne
calculée en intégrant les contraintes obtenues apres convection sur les éléments adjacents
au noeud de contact. Malgré les oscillations, on peut donc conclure de cette remarque que
le schéma de Godunov est suffisant pour représenter correctement le frottement puisque les
courbes de cisaillement obtenues par reconstruction linéaire et constante sont superposées.

La force de laminage peut étre tracée tout au long des simulations. La figure 5.58 com-
pare les courbes ainsi obtenues. Cette fois encore, les valeurs sont trés proches du résultat
calculé par LAM3. Le fait que la force lagrangienne soit la plus éloignée du résultat LAM3
que les résultats ALE est un hasard et nous ne pouvons pas conclure a une meilleure préci-
sion du formalisme ALE.

On pourrait aussi penser que la solution ALE présentée ici est meilleure, car elle ne varie
pas au cours du temps. Ce n’est pas le cas : les oscillations lagrangiennes proviennent de
'arrivée de nouveaux nceuds dans 'emprise (prises de contact) et du départ d’autres en aval
de la zone de contact (pertes de contact). En formalisme lagrangien, la position du premier
et du dernier nceud en contact varie donc continuellement, produisant un changement
continu de configuration de contact et, de ce fait, des oscillations temporelles dans les
résultats.

En formalisme eulérien (LAM3), le maillage étant fixe, la solution correspond a une
configuration de contact particuliere fixée par la position initiale des nceuds de 'emprise.
La valeur de la force résultante verticale est unique, mais elle pourrait étre facilement mo-
difiée en déplacant tres 1égerement les noeuds de contact et en redémarrant la méme simu-
lation. Les forces nodales seraient ainsi légerement différentes et leur somme également.
La création du maillage initial nécessite donc une certaine réflexion lors de la création du
modele.

Quant a la solution ALE, la configuration de contact est fonction de la finesse du mail-
lage, mais aussi du pas de temps At utilisé lors de I'intégration temporelle. Généralement,
dans le code Metafor, on utilise une taille de pas de temps qui est adaptée continuellement
et de maniere automatique au cours du calcul en fonction de la vitesse de convergence de la
simulation : si le processus de Newton-Raphson converge rapidement a un instant donné,
la taille du pas de temps est augmentée pour la suite de la simulation, sinon elle est main-
tenu constante ou elle est diminuée selon les cas. Puisque nous utilisons un algorithme de
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FIGURE 5.58 — Evolution temporelle de la force de ~ FIGURE 5.59 — Variation de la force ALE avec l'in-

laminage (LaC). La valeur stationnaire de LAM3 crément de déplacement maximal autorisé d,q,
est tracée comme une constante au cours du (les simulations ALE utilisent une reconstruction
temps. linéaire).

résolution ALE basé sur la séparation des opérateurs, cette taille de pas de temps variable
va induire un changement de configuration de contact d'un incrément temporel a I'autre
a la fin de la phase lagrangienne. Ces variations vont se répercuter sur la configuration
eulérienne obtenue apres repositionnement des nceuds et, au final, sur la force résultante
de laminage. La seule maniere d’obtenir une courbe parfaitement lisse en formalisme ALE
est donc d’utiliser un pas de temps constant. En pratique, pour obtenir ce résultat, il faut
limiter la taille du pas de temps At a une valeur préétablie (notée At ,.), généralement
exprimée en fonction de la taille des mailles dans la direction d’écoulement de la matiere.

Par exemple, la figure 5.59 montre I'évolution de la force de laminage calculée pour
deux tailles de pas de temps maximum At = d,..({/n,)/v, ou d,,, peut étre vu comme
l'incrément de déplacement horizontal d’'une maille sur le pas de temps par rapport a sa
longueur initiale selon x. Autrement dit, en fixant d_,, = 0.1, on limite approximativement
le déplacement d’'une maille a 10% de sa longueur. On constate que les deux courbes ALE
sont tres différentes. La courbe d,, = 0.1 est la courbe obtenue avec une reconstruction
linéaire et présentée précédemment. Elle est tout a fait constante apres la phase transitoire
de 0.1 s. Par contre, la courbe d,,,, = 0.2 oscille avec une période qui est principalement
fonction de la stratégie de gestion du pas de temps variable. Il est donc important de fixer
la taille maximum du pas de temps si on veut obtenir des résultats stationnaires. Outre
I'aspect plus régulier des courbes obtenues, la variation cyclique de pas de temps entraine
une convergence globale moins bonne du calcul et au final un temps CPU supérieur.

La figure 5.60 montre la valeur du glissement le long de 'emprise a I'instant final ¢t = t5.
Le glissement g(x) est la différence de vitesse entre la bande et le cylindre rapportée a
la vitesse du cylindre. Il est calculé par g(x) = (v(x) — v,)/v, ot v(x) est évalué sur la
surface de la bande. C’est donc une image du champ de vitesses. Cette grandeur est bien
connue des lamineurs puisqu’elle est facilement mesurable expérimentalement en entrée
et en sortie d’emprise. Dans des conditions normales de laminage stable (sans patinage),
le glissement est toujours négatif en entrée d’emprise et, dans des conditions normales et
stables de laminage (sans patinage), il est positif en sortie. Les quatre courbes ont la méme
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FIGURE 5.60 — Profil de glissement le long de U'emprise au temps final (LaC).

allure. Elles permettent de localiser la zone de 'emprise pour laquelle la vitesse de la bande
est égale a la vitesse du cylindre (zone neutre). Cette zone correspond bien a celle ou le
cisaillement |7| < 7., sur la figure 5.55.

max

5.4.3.2 Effets d’inertie

Avant de comparer les temps de calcul, il est intéressant d’effectuer une premiére opti-
misation du modele ALE sans toucher au maillage (n, = 30) et a la durée de la simulation
(n = 3). 1l est tout d’abord important de savoir si le probleme requiert le transfert des
vitesses et des accélérations pour pouvoir éventuellement économiser la convection de 4
scalaires et la création d'un maillage auxiliaire de convection. Le tableau 5.8 montre la
variation des résultats obtenus (force de laminage, glissement et épaisseur en sortie d’em-
prise) et les temps de calcul pour les deux schémas de convection (reconstruction constante
et linéaire) lorsqu’on transfére ou non les grandeurs nodales. Les temps de calculs de toutes
les simulations Metafor de laminage sont relatifs a la machine PC1 de I'annexe A.

Degré de la Conv. Nb. pas / Temps Force | Glissement ~ épaisseur
Reconstruction| aetv | itérations | CPU [s] | [N/mm] | aval [%] | sortie [mm]
constante oui 998/2116 282 11679 4.86 24.4107
constante non 982/923 178 11679 4.86 24.4107
linéaire oui 1016/2113 653 11660 4.84 24.4100
linéaire non 956/1325 502 11661 4.85 24.4100

TABLEAU 5.8 — Effet de la convection des champs nodaux (a et v) sur les résultats pour les deux types de
schéma de convection (d,, = 0.15).

On constate que le temps de calcul diminue significativement lorsqu’on ne se préoc-
cupe pas des vitesses et accélérations. D’'une part, le nombre de variables a transférer est
moindre et, d’autre part, cette simplification a un effet bénéfique sur la convergence du cal-
cul lagrangien. Le nombre total d’itérations est divisé par un facteur proche de 2. Ceci peut
s’expliquer par le fait que le prédicteur utilisé pour calculer une premiére approximation
des positions x"! au temps t"t! (équation (4.29)) est plus proche de la solution équilibrée
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quand on ne transfére pas les grandeurs nodales. En effet, dans ce cas, lorsqu’on est en ré-
gime stationnaire et que le pas de temps est constant comme c’est le cas ici pour une bonne
partie du calcul, les vitesses v" et les accélérations a” utilisées dans cette équation sont déja
les vitesses et accélérations de I'équilibre recherché (v"t! et a"*!). Pendant cette phase sta-
tionnaire, le calcul ALE converge tres rapidement et nécessite, lors de chaque pas de temps,
entre O et 1 itération pour parvenir a I'équilibre alors que le calcul avec les vitesses et accé-
lérations correctes, tout comme le calcul lagrangien, requiert de 1 a 3 itérations a chaque
pas de temps.

Bien entendu, ne pas transférer les grandeurs nodales n’est permis que si les effets
dynamiques sont négligeables. C’est le cas pour ce probleme de laminage puisqu’on constate
que les valeurs obtenues ne dépendent pas du transfert des vitesses et des accélérations. On
pourrait alors se demander si un schéma quasi statique ne serait pas plus approprié qu’un
schéma dynamique implicite puisqu’on éviterait ainsi de recalculer la matrice des masses
et les forces d’inertie a chaque pas de temps. Ce n’est pas le cas : bien que n’ayant aucune
influence visible sur les valeurs numériques des résultats finaux, les effets d’inertie ont
un effet stabilisateur sur le déroulement du calcul et permettent par exemple I'utilisation
de coefficients de pénalisation plus élevés pour le contact et le frottement. Les transitions
entre les différentes phases de calcul s’effectuent beaucoup plus facilement en dynamique
que sous '’hypothese quasi statique.

5.4.3.3 Controle de la taille du pas de temps

Suite a la remarque concernant le controle du pas de temps en formalisme ALE et son
influence sur la présence d’oscillations temporelles dans les résultats stationnaires (voir
figure 5.59), il semble intéressant d’étudier ce parametre puisqu’il a un impact direct sur
le temps de calcul. Le pas de temps At est fixé dans le modele par l'intermédiaire de
d . image du déplacement maximal d’un nceud au cours d’'un pas de temps par rapport
a la taille d’'une maille dans la direction de laminage. On espere ainsi obtenir une valeur
indépendante du maillage.

dax oscill.? | Nb. pas / Temps Force Glissement| épaisseur
itérations CPU [s] [N/mm] aval [%] | sortie [mm]
0.10 non 1377/1500 662 11973 5.09 24.4102
0.15 non 956/1325 502 11661 4.85 24.4100
0.20 oui 1041/2903 535 11389 4.16 24.4026
10.0 oui 1314/4048 687 11367 4.99 24.4028

TABLEAU 5.9 — Recherche de la valeur optimale du paramétre d,,,, fixant la taille du pas de temps maximum
de la simulation (formalisme ALE, reconstruction linéaire).

Le tableau 5.9 présente les résultats de quatre simulations pour des valeurs de d,,,
valant 0.1, 0.15, 0.2 et 10. La derniere valeur est suffisamment grande pour que le pas de
temps effectivement utilisé qui dépend de la vitesse de convergence ne soit jamais limité.
Lorsque d,,,, est faible, le pas de temps reste petit et la simulation nécessite de nombreux
pas de temps. Cependant, la solution varie peu d’'un pas de temps a l'autre et le nombre
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d’itérations est relativement petit. Si d,,, augmente, le nombre de pas de temps diminue
jusqu’a une valeur optimale ot des oscillations temporelles apparaissent. Cette variation de
la taille du pas de temps se traduit par une convergence plus irréguliere (c’est-a-dire un
nombre d’itérations plus grand) et, en conséquence, un temps de calcul total plus élevé.

D’apres nos essais, d,,,, = 0.15 est la valeur qui fournit le temps de calcul minimum et
c’est donc celle-ci que nous utiliserons dans la suite de cette étude.

5.4.3.4 Temps de calcul

Le tableau 5.10 résume les résultats précédents et compare les temps de calcul obtenus
en formalisme lagrangien, ALE et par le code LAM3. Bien que les valeurs numériques fi-
nales de la force de laminage, du glissement et de I'épaisseur soient tres proches les unes
des autres, les temps CPU varient fortement en fonction de la méthode choisie. Pour les
parametres utilisés (maillage et durée de simulation) et malgré les optimisations précé-
dentes, le modele lagrangien est toujours plus rapide que les simulations en formalisme
ALE. Les temps CPU de LAM3 ne sont pas directement comparables a ceux de Metafor, car,
n’ayant pas un acces direct au logiciel, les simulations LAM3 ont été effectuées sur une
autre machine (PC2 de I'annexe A).

Nb. pas / Temps Force Glissement | épaisseur

itérations CPU [s] [N/mm] aval [%] | sortie [mm]
Lagrangien 769/1741 138 11818 4.11 24.4108
ALE (rec. cst.) 982/923 178 11679 4.86 24.4107
ALE (rec. lin.) 956/1325 502 11661 4.85 24.4100
LAMS3 - 79 11692 5.45 24.3700

TABLEAU 5.10 - Résultats numeériques et temps CPU des simulations.

Le choix d’'une reconstruction linéaire peut étre définitivement écarté vu la différence
de cofit pour un gain nul en précision sur la solution stationnaire.

5.4.3.5 Optimisation du maillage

Apres avoir vérifié la concordance des résultats obtenus en formalisme lagrangien et
ALE en utilisant un maillage régulier et une durée de simulation suffisamment longue, il
est maintenant intéressant de jouer sur ces deux parametres pour obtenir plus rapidement
les résultats.

En fonction des courbes précédentes d’évolution de la force de laminage, le temps de
simulation peut étre réduit par l'intermédiaire du parametre n. On diminue donc ce dernier
den=3an=0.2.

Le maillage du modele ALE est optimisé, comme le montre la figure 5.61, en utilisant un
nombre de mailles réduit dans 'emprise (n, = 20). La zone d’entrée et de sortie d’'emprise
est maillée avec des éléments trois fois plus courts (n, = 60) pour que la longueur de
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< > ALE optimisé

Lagrangien fin
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FIGURE 5.61 — Au dessus, maillage ALE optimisé pour réduire le temps de calcul et, en dessous, maillage
lagrangien équivalent (n = 0.2).

contact soit plus précisément calculée. Ce maillage plus fin permettra également de mieux
représenter la géométrie de la tdle en amont du cylindre et de diminuer les oscillations
générées par le remaillage de la surface libre de la t6le. La partie aval est maillée de maniere
plus grossiere (n, = 10). Un maillage lagrangien est également construit en utilisant des
mailles équivalant aux plus petites mailles ALE tout le long de la longueur a laminer. Vu la

petitesse de n, le maillage lagrangien n’est cette fois pas beaucoup plus long que le maillage
ALE.

Les figures 5.62 et 5.63 montrent les profils de pression et de cisaillement obtenus
sur les deux nouveaux maillages. Ceux-ci sont tres similaires. La solution ALE obtenue
précédemment pour un maillage n, = 30 est également tracée sur ces figures. Elle permet
de constater que, bien qu’elles soient toujours présentes, les oscillations possedent cette
fois une amplitude beaucoup plus faible et se propagent moins loin dans 'emprise que
précédemment.
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FIGURE 5.62 — Réduction des oscillations de pres-  FIGURE 5.63 — Réduction des oscillations de cisaille-
sion en entrée d’emprise (Courbe verte a compa- ment en entrée d’emprise (Courbe verte a com-
rer avec les résultats précédents en rouge). parer avec les résultats précédents en rouge).
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Le tableau 5.11 compare les résultats stationnaires obtenus et les temps de calcul. Les
deux modeles fournissent des valeurs trés proches pour un temps de calcul identique.

Nb. pas / Temps Force Glissement | épaisseur

itérations CPU [s] [N/mm] aval [%] | sortie [mm]
Lagrangien fin 586/971 52 12036 4.98 24.4111
ALE optimisé 343/731 52 11991 4.26 24.4092

TABLEAU 5.11 - Résultats numériques et temps CPU des simulations.

Remarquons que, contrairement a beaucoup d’auteurs, nous avons la franchise de com-
parer ici un modele ALE optimisé a un modele lagrangien équivalent, également optimisé.
Il serait en effet tres simple de choisir un temps de simulation beaucoup plus long (n > 0.2)
qui pénaliserait inutilement le calcul lagrangien et gonflerait artificiellement son temps de
calcul pour conclure a la supériorité du formalisme ALE sur le formalisme lagrangien.
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5.4.4 Laminage a froid - cylindre déformable

Le test suivant consiste a modéliser un cas de laminage a froid avec un cylindre défor-
mable. Il permet de valider la gestion du contact entre deux corps déformables en forma-
lisme ALE. Il démontre aussi la possibilité de prendre en compte des tractions d’entrée et
de sortie sur la bande dans un modele ALE de laminage.

Les conclusions tirées de I’étude du laminage a chaud sont directement appliquées : seul
le schéma de Godunov est utilisé vu son cofit réduit. Le schéma d’intégration est dynamique
(Chung-Hulbert), mais les accélérations et les vitesses nodales ne sont pas transférées.

La faible épaisseur de la bande permet de se passer de l'utilisation des zones raffinées
horizontalement en ALE. Aucune oscillation n’apparait, car I'angle formé par la tble et le
cylindre au début de la zone de contact est beaucoup plus faible que dans le cas précédent.
Nous utilisons donc un maillage de 30 mailles sur la longueur d’emprise (n, = 30) et
seulement quatre mailles sur I'épaisseur (n, =4).
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FIGURE 5.64 — Correction de la traction de surface a appliquer a Uextrémité aval non déformée du maillage
lagrangien pour obtenir la traction surfacique T, voulue en sortie d’emprise.

Les tractions imposées entrainent quelques subtilités dans la conception du modele.
Pour le modele lagrangien, la surface sur laquelle s’applique la traction aval n’est jamais
déformée au cours de la simulation (voir figure 5.64), contrairement a la réalité ou a un
modele eulérien. La valeur appliquée a cet extrémité du maillage doit donc étre corrigée
par un facteur h,/h, pour obtenir une traction de surface T, en sortie d’emprise dans la zone
ol I'épaisseur a été réduite.

En formalisme ALE, on peut soit choisir d’appliquer la traction lagrangienne corrigée
et arréter la simulation suffisamment t6t pour que la section aval ne se déforme pas, soit
appliquer la traction eulérienne et attendre suffisamment longtemps pour que I'épaisseur
de la section soit (approximativement) égale a h,. C’est cette derniere maniere de faire
que nous avons choisie. Le nombre minimal de longueurs d’emprise a laminer est donc
forcément plus important (n = 2) que dans le cas précédent.

Les coefficients de pénalisation du contact sont adaptés aux nouveaux parametres (py =
10° et p; = 10* MPa/mm).
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5.4.4.1 Maillage du cylindre

Le cylindre est cette fois déformable et il est donc nécessaire de le mailler. Pour ce faire,
nous utilisons un maillage a densité variable dont les tailles de mailles sont indiquées sur
la figure 5.65. Un axe cylindrique rigide de rayon R; = R/5 permet d’imposer la rotation du
cylindre a l'aide de déplacement imposés appropriés. L'angle 6 correspond, comme précé-
demment, a 'angle de la zone de contact calculé analytiquement sans tenir compte de la
déformation du cylindre (équation (5.2)). La valeur de 6 correspond a la taille de maille lo-
cale par rapport a la taille de celles de la bande dans la direction de laminage. Par exemple,
au niveau de la portion du cylindre qui sera en contact avec la bande durant la simulation,
on fixe 6 = 2, c’est-a-dire que les mailles du cylindre sont deux fois plus longues que celles
de la bande a cet endroit. Pour rappel, le contact est traité par une approche maitre-esclave
ou la frontiere externe du cylindre est la surface maitre et les nceuds de la bande sont des
nceuds esclaves. Dans ce contexte, le maillage de la bande doit étre préférablement plus fin
que celui du cylindre pour éviter des pénétrations indésirables des nceuds du cylindre dans
celle-ci (6 > 1).

6 =2-100

0=2

FIGURE 5.65 — Définition de la densité de maillage du cylindre complet. Les valeurs de 6 indiquées a divers
endroits correspondent a la taille locale de maille rapportée a la taille de maille de la bande au niveau de
Uemprise. Langle 6 correspond a la longueur approximative de contact calculée analytiquement.

Les maillages obtenus pour le modele lagrangien et le modele ALE sont représentés
respectivement sur les figures 5.66 et 5.67. Afin d’améliorer la clarté de I'illustration, le
maillage lagrangien a été dessiné pour n = 5 pour qu’il differe significativement du maillage
ALE, et non n = 2, la valeur utilisée dans les simulations ALE et lagrangiennes. Remarquons
qu'une fois encore, pour obtenir une comparaison qui a du sens, nous ne nous contentons
pas d’optimiser le maillage ALE mais nous optimisons aussi le maillage lagrangien du cy-
lindre.

Bien qu’il soit entierement maillé, le cylindre du modéle ALE n’est pas lagrangien : un
repositionnement des nceuds est mis en place pour que leur mouvement soit essentielle-
ment radial. Pour y arriver, le contour du cylindre est remaillé a 'aide de la méthode des
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FIGURE 5.66 — Maillage lagrangien du cylindre com- FIGURE 5.67 — Maillage ALE du cylindre complet
plet (n =15). (quel que soit n).

splines ou des arcs en commencant le remaillage par le nceud opposé a 'emprise (p, sur la
figure 5.65). Celui-ci est repositionné de sorte que son angle polaire initial soit conservé. Les
neceuds internes sont déplacés a I'aide d’une seule itération d’un lissage laplacien initialisé
avec leurs positions au pas de temps précédent.

5.4.4.2 Remaillage de la surface du cylindre

Le repositionnement des noeuds de la surface du cylindre peut entrainer des problemes
géométriques si on n’utilise pas la méthode adéquate. Comme pour la plupart des modeles
ALE, nous avons tout d’abord choisi la méthode des splines qui est généralement le meilleur
choix. Dans ce cas particulier, cette méthode entraine une déformation progressive et non
physique de la surface du cylindre et, finalement, une erreur sur la position de la zone de
contact. La figure 5.68 montre deux instants de la simulation. Le premier instant (partie
supérieure de la figure) correspond au moment ou la vitesse nominale de laminage est
atteinte (t = t,). La longueur de contact est similaire a ce qui serait obtenu par un modele
lagrangien. Le deuxieme instant (partie inférieure de la figure) est un apercu de la solution
apres le passage de deux longueurs d’emprise (t = t,+20t). Bien que la forme du cylindre
semble toujours correcte a premiere vue, la zone de contact est cette fois plus petite. Le
remaillage a trés légerement déformé le cylindre et cette erreur a de grosses conséquences
sur la solution.

La cause de ce phénomene est lié a 'approximation de McConalogue (équation (3.7))
pour calculer les longueurs sur cette spline. La paramétrisation des splines de McConalogue
est « quasi intrinseque », c’est-a-dire qu’elle correspond presque a la longueur mesurée sur
la courbe. Nous voyons ici les conséquences de cette approximation. Dans le cas de ce
maillage particulier du cylindre ot la taille des mailles varie du simple au centuple, il serait
intéressant de calculer exactement les longueurs curvilignes par une intégration numérique
précise.
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t=t
Contrainte équivalente de Von Mises [MPa]
0.0 100. 200. 300. 400.
L - [T t=t+2At
1 ~N i

FIGURE 5.68 — Probléme de remaillage du cylindre avec la méthode des splines. Comparaison des longueurs
de contact obtenues a deux instants différents. Ces longueurs sont matérialisées par les fléches noires.

Ayant a notre disposition une méthode de repositionnement alternative, nous n’avons
pas pris la peine d’améliorer le remaillage par spline. La méthode des arcs permet d’obtenir
un maillage stationnaire sans déformation parasite du cylindre de laminage.

20 w 600
~———ALE arcs
— ALE splines
= 500 ]
£ 15
£ T 400/ :
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£ 10} 5 300 ]
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S s f
2 100} ]
~——ALE arcs
—— ALE splines
0 1 2 3 4 -20 -15 -10 -5 0 5
temps [xdt s] X [mm]

FiGURE 5.69 — Evolution de la force de laminage. FIGURE 5.70 - Pression au temps final le long

Probléme du remaillage par spline (LaF — n = de Uemprise. Probléme du remaillage par spline

2). (LaF - n=2).

La figure 5.69 montre I’évolution de la force de laminage au cours de deux calculs effec-
tués respectivement a l'aide de la méthode des splines et celle des arcs. La solution fournie
par les arcs tend bien vers une constante alors que l'autre solution diminue sans cesse. Le
champ de pression obtenu apres laminage de deux longueurs d’emprise est représenté sur
la figure 5.70. On voit tres clairement la réduction de la taille de la zone de contact. Dans
la suite, pour ce modeéle, nous n’utilisons donc plus que la méthode des arcs.
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5.4.4.3 Résultats

Les résultats numériques des simulations sont présentés dans cette section. Nous com-
parons les modeles lagrangien et ALE entre eux et les valeurs fournies par le code eulérien
LAM3. Ce dernier a 'avantage de permettre le contréle précis de ’épaisseur de la bande en
sortie par une boucle d’itérations supplémentaire sur la position du cylindre visant a obtenir
la hauteur h, désirée. Pour les modeles lagrangien et ALE, cette boucle automatique n’existe
pas. Le cylindre est initialement positionné comme s’il était rigide. Sa déformation fournit
donc une tble plus épaisse en sortie que celle voulue. Une deuxiéme simulation est alors
effectuée en corrigeant la position verticale du cylindre d’une distance égale a I'erreur pré-
cédemment commise. Idéalement il faudrait itérer de cette facon jusqu’a ce que I'épaisseur
soit correcte en sortie. En pratique, pour ce cas précis, une seule itération est nécessaire.

600 w w w w 50 ‘ . :
500} \ ] ,/\
/\ \\ . P
T 400/ s/ : \ . L
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& 3007 ] T of
o
o 5
a. 200 ALE initial 5 ALE initial
Lag. initial -25¢ Lag. initial
100t —— ALE corrigé B —— ALE corrigé ~
——Lag. corrigé —— Lag. corrigé Z,
LAM3 LAM3
i T T i -50 T i i i
—%O -15 -10 -5 0 5 -20 -15 -10 -5 0 5
X [mm] X [mm]
FIGURE 5.71 - Pressions le long de U'emprise, obte- FIGURE 5.72 - Cisaillements le long de Uemprise,
nues avant et apres correction de la position du obtenus avant et aprés correction de la position
cylindre déformable (LaF). du cylindre déformable (LaF).

Le champ de pression et de cisaillement sont représentés respectivement sur la fi-
gure 5.71 et 5.74 pour les différentes simulations. On constate un parfait accord entre
les solutions obtenues par le formalisme lagrangien et ALE. Le premier ensemble de simu-
lations, effectué avec une position de cylindre choisie comme s’il était rigide, donne une
sous-estimation de la longueur d’emprise réelle. Une fois que la position est corrigée, la
zone de contact s’agrandit et on retrouve les courbes correspondantes fournies par LAM3.
Remarquons que le probleme d’oscillations parasites dans la solution ALE en début d’em-
prise n’apparait pas, contrairement au cas de laminage a chaud, puisque I’épaisseur est
beaucoup plus faible.

L'évolution temporelle de la force de laminage est représentée sur la figure 5.73. La
forme de ces courbes au début de la simulation dépend fortement de procédure de mise
en charge du probleme et seule sa valeur stabilisée est importante. On remarque immé-
diatement que les courbes sont bien plus lisses que celles obtenues précédemment dans le
cas du laminage a chaud. En particulier, les courbes lagrangiennes présentent moins d’os-
cillations alors que le pas de temps maximum utilisé est relativement grand (pour rappel
dh.x=0.5 contre 0.15 pour le laminage a chaud). Pour une position de cylindre donnée,
le 1éger décalage entre les courbes ALE et lagrangienne provient de la différence entre les
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FIGURE 5.73 - Forces de laminage le long de l'em- FIGURE 5.74 — Glissements le long de 'emprise, ob-
prise, obtenues avant et aprés correction de la tenus avant et apres correction de la position du
position du cylindre déformable (LAF). cylindre déformable (LaF).

valeurs des tractions aval appliquées en formalisme ALE et lagrangien. La traction ALE est
momentanément plus importante au début du calcul lorsque I’épaisseur en sortie ne s’est
pas encore stabilisée a se valeur finale. La force de laminage est donc temporairement plus
faible qu’en formalisme lagrangien. De maniere logique et conformément aux profils de
pression, la force résultante augmente avec la correction de position du cylindre.

La figure 5.74 montre le glissement le long de 'emprise. L'allure globale des courbes
est identique et correspond a celle de LAM3. La courbe correspondant au test lagrangien
corrigé est 1égerement décalée par rapport aux autres. Ce décalage ne signifie pas que cette
simulation est moins bonne que les autres : le champ de vitesses est certainement la gran-
deur la moins stable parmi celles présentées. Au lieu de considérer la valeur du glissement
au temps final, il serait peut-étre plus judicieux de calculer une moyenne temporelle de
cette grandeur pour lisser les variations de vitesse des noeuds de contact et obtenir des ré-
sultats moyens, ou de tels décalages n’apparaitraient plus. Cette remarque est également
valable pour les autres grandeurs qui oscillent au cours du temps (la force en lagrangien
lorsque c’est le cas). Pour une grandeur définie le long de 'emprise, cette moyenne est cer-
tainement beaucoup plus simple a effectuer dans le cas du formalisme ALE puisque ce sont
toujours les mémes noeuds qui sont en contact. Néanmoins, les résultats présentés ici ne
sont pas moyennés.

La géométrie de la bande le long de I'emprise est tracée sur la figure 5.75. Encore
une fois, les courbes lagrangiennes et ALE correspondant a une méme position de cylindre
sont tres proches. On retrouve le profil d’épaisseur de LAM3 pour la deuxieme série de
simulations ou la position du cylindre est corrigée.

Le tableau 5.12 rassemble les valeurs numériques de la force de laminage, du glisse-
ment aval et de I'épaisseur en sortie, ainsi que le temps de calcul de chaque simulation et
la qualité de sa convergence. Il est intéressant de noter que, comme précédemment, les
simulations ALE nécessitent généralement moins d’itérations que les modeles lagrangiens
équivalents. Le temps de calcul ALE est cependant supérieur ou, au mieux, égal au temps
de calcul lagrangien, principalement a cause de la cofiteuse opération de convection des
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FIGURE 5.75 — Profils d’épaisseur pour les différentes simulations et comparaison avec LAM3 (LaF).

Nb. pas / Temps Force Glissement épaisseur

itérations CPU [s] [N/mm] aval [%] sortie [mm]
ALE 235/426 58 7755 5.45 2.2331 (+0.18010)
Lagrangien 225/687 53 7971 5.61 2.2283 (+0.17531)
ALE corrigé 240/459 54 8943 5.56 2.0684 (+0.01539)
Lag. corrigé 239/759 54 8900 4.84 2.0595 (4+0.00653)
LAM3 - 89 8951 6.86 2.053 (+0.0)

TABLEAU 5.12 - Résultats numériques et temps CPU des simulations. Les épaisseurs entre parentheéses indiquent
Uécart avec la valeur voulue en sortie.

grandeurs aux points de Gauss de la phase de transport de I'algorithme ALE (50% du temps
de calcul total pour ce test). Ce n’est que pour des problemes de taille plus importante
que l'on pourra espérer obtenir des résultats plus rapidement en formalisme ALE qu’en
formalisme lagrangien. En effet, le temps CPU de 'algorithme de convection augmente li-
néairement avec le nombre total d’éléments finis du modele alors que le temps CPU de la
phase lagrangienne augmente plus rapidement (au moins quadratiquement avec un solveur
linéaire direct classique). Le temps CPU de LAM3 doit étre regardé avec précaution puis-
qu’il correspond a une machine de calcul différente des simulations Metafor (PC2 au lieu
de PC1 de I'annexe A)
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5.4.4.4 Maillage alternatif du cylindre

Une autre maniere de mailler le cylindre est présentée sur les figures 5.76 et 5.77. Seul
un secteur est inclus dans le modéle dans le but de diminuer le nombre de mailles et ré-
duire ainsi le temps de calcul. Le mouvement des noeuds est confiné entre deux frontieres
eulériennes. Celles-ci sont mobiles durant la premiere phase du calcul pour suivre le mou-
vement vertical du cylindre.

5= 2

FIGURE 5.76 — Maillage d’'un secteur de cylindre. FIGURE 5.77 - Maillage ALE d’un secteur de cylindre
Le paramétre & correspond a la taille de maille (a=4).
par rapport a celle de la bande. Langle total du
secteur vaut (2a + 3)0 ou 6 correspond a une
longueur d’emprise.

La difficulté principale est d’imposer des conditions aux limites adéquates. Pendant la
phase lagrangienne, la vitesse de rotation des nceuds de ces frontieres doit étre égalée a
celle du cylindre pour modéliser la présence de la portion du cylindre ignorée. Pendant
la phase eulérienne, une valeur appropriée du tenseur des contraintes doit étre appliquée
sur la frontiere amont. Puisque le cylindre se déforme, les contraintes sont partout diffé-
rentes de zéro et difficilement calculables a priori. Nous utilisons donc la technique utilisée
également pour fixer les contraintes sur la frontiére amont de la bande : la valeur utilisée
localement est celle de ’élément adjacent, en aval de la frontiere. Comme nous ’avons sou-
ligné a la section 4.4.6, cette maniere de faire est bien pratique, mais elle nécessite que la
dérivée de la grandeur évaluée sur la frontiere dans la direction de I’écoulement de matiere
soit nulle ou proche de zéro. Plus le secteur est petit, c’est-a-dire plus on veut diminuer le
nombre total de mailles, et moins cette condition est vérifiée puisqu’on se rapproche de la
zone de contact ou les gradients de contraintes sont importants.

La simulation ALE est effectuée avec ce nouveau type de maillage pour le cylindre. On
choisit @ = 4 (voir figure 5.76), cest-a-dire un secteur correspondant a (2a + 3) = 11
longueurs d’emprise. On obtient ainsi un maillage de 294 quadrangles au lieu des 433 du
maillage précédent, c’est-a-dire un nombre proche de celui de la bande (292 éléments). Les
résultats sont montrés sur les figures 5.78 et 5.79. La premiere figure permet de comparer
les champs de contraintes équivalentes de Von Mises oy,; obtenus avec les modeles la-
grangien et ALE. Les isovaleurs sont tres semblables. Pour ces deux simulations, un secteur
équivalant au maillage alternatif du cylindre a été mis en évidence pour permettre une com-
paraison avec la figure 5.79. Cette figure représente le méme champ de contraintes sur le
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maillage réduit apres laminage de 2 et 10 longueurs d’emprise. On constate qu’apres deux
longueurs d’emprise, le champ de contrainte est proche de ceux obtenus avec un maillage
du cylindre entier. Néanmoins, on remarque une influence tres nette de la frontiére amont.
Les isovaleurs deviennent perpendiculaires a la frontiére a cause de I'application des condi-
tions aux limites. La situation empire apres laminage de 10 longueurs d’emprise. Une zone
de fortes contraintes se développe au coin inférieur amont du secteur de cylindre. Il pro-
vient d'un flux de matiére parasite provoqué par une erreur de repositionnement du coin
en question.

7 = t+2 At - t=t+2 At
lagrangien | ‘ ALE ,

0.0 oy [MPa] 300.
[ . - .

FiGURE 5.78 — Champs de contrainte équivalente de Von Mises obtenus en formalisme lagrangien et ALE avec
un cylindre maillé complétement aprés passage de 2 longueurs d’emprise. Un secteur est mis en évidence
pour faciliter la comparaison avec la figure 5.79.

300.

Oynm

[MPa)

0.0

t=t+2At t=1,+10 At

FIGURE 5.79 — Champs de contrainte équivalente de Von Mises obtenus en formalisme ALE sur un secteur
maillé aprés passage de 2 et 10 longueurs d’emprise.

D’'une maniere étonnante, ces deux problemes n’influencent aucunement les autres
grandeurs mesurées. Par exemple, les figures 5.80 et 5.81 représentent respectivement la
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pression et le glissement le long de 'emprise. Méme apres laminage d’une longueur d’em-
prise excessive (10 longueurs d’emprise au lieu de 2), et alors que les contraintes dans le
cylindre sont fausses, la pression calculée est identique a celle obtenue avec un maillage de
cylindre complet. Le glissement calculé est également tres proche.
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FiGURE 5.80 — Courbes de pression le long de l'em- FiGURE 5.81 - Courbes de glissement le long de l'em-

prise, obtenues avec les deux types de maillages prise, obtenues avec les deux types de maillages

du cylindre. de cylindre.

Néanmoins, le tableau 5.13 montre que le gain de temps CPU est nul. Les gains effectués
sur le nombre d’éléments sont compensés par une convergence légérement moins bonne du
modele réduit. Il est donc préférable d’utiliser un maillage complet du cylindre et de jouer
sur la taille des mailles pour diminuer le temps de calcul. En effet, pour d’autres parametres
de procédé, la mauvaise gestion des conditions aux limites pourrait avoir des conséquences
plus importantes sur les résultats.

Nb. pas / | Temps Force Glissement épaisseur

itérations | CPU [s] | [N/mm] | aval [%] sortie [mm]
cylindre complet 240/459 54 8943 5.56 2.0684 (+0.01539)
secteur 248/460 54 8789 5.45 2.0630 (+0.00998)

TaBLEAU 5.13 — Comparaison des deux types de maillages de cylindre en formalisme ALE.
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5.4.5 Conclusions

Cette étude de deux cas de laminage a permis de montrer les difficultés rencontrées lors
de I'élaboration d’'un modele ALE d’un procédé stationnaire. Par rapport a une simulation
pour laquelle le formalisme ALE est utilisé uniquement pour améliorer la qualité des mailles
(sections 5.2.2 et 5.3) ou une simulation lagrangienne classique, plusieurs nouveaux points
doivent étre gardés a 'esprit.

La taille du pas de temps peut jouer un réle important sur la qualité de la convergence
et la stabilité des résultats. Nous avons vu qu'une simulation ALE converge généralement
mieux que la simulation lagrangienne équivalente, c’est-a-dire qu’elle nécessite moins d’ité-
rations a chaque pas de temps. Si un algorithme d’adaptation automatique du pas de temps
est utilisé, celui-ci risque d’augmenter rapidement et d’avoir finalement un effet néfaste sur
la convergence. C’est par exemple le cas quand le pas de temps est suffisamment grand
pour changer radicalement la configuration de contact entre les maillages lagrangiens et
eulériens. On assiste alors a des oscillations du pas de temps qui se répercutent sur les ré-
sultats numériques. Paradoxalement, en formalisme ALE, il est donc souvent important de
limiter la taille maximale du pas de temps pour diminuer le temps de calcul.

La gestion des conditions aux limites est importante : 'exemple du maillage partiel du
cylindre nous a montré que les frontieres du domaine modélisé doivent impérativement étre
suffisamment loin des zones de fortes déformations plastiques. Pour éloigner ces frontieres,
I'utilisation de maillages a densité variable permet d’éviter d’alourdir le probléeme et de
concentrer les éléments finis uniquement aux endroits nécessaires.

Nous avons également insisté sur I'importance du choix du schéma de transfert. Pour
la simulation du laminage stationnaire, il est inutile d’utiliser un schéma du second ordre.
Ce dernier est beaucoup trop cofiteux pour étre rentable dans le cas de petits modeles 2D.
De plus, il est préférable de ne pas transférer les vitesses et les accélérations si les effets
d’inertie ne sont pas importants. Cela diminue le cofit de I'algorithme de transfert tout en
améliorant la convergence de la phase lagrangienne.

Concernant la qualité des résultats ALE, ils sont tout a fait comparables et aussi fiables
que ceux obtenus par un modele lagrangien ou eulérien (LAM3) similaire. Remarquons
aussi que 'approche de Metafor semble plus robuste que celle de LAM3 puisqu’il n’a pas été
possible par exemple d’obtenir des résultats dans le cas laminage a chaud avec cylindre dé-
formable avec LAM3. Pour Metafor, ces parametres ne posent aucune difficulté particuliére.

Enfin, une fois le maillage optimisé, le temps de calcul obtenu par le formalisme ALE est
proche de celui du modele lagrangien équivalent (et optimisé) et de celui obtenu par LAM3
sur une machine similaire (mais différente). Pour des problemes de plus grande taille, on
peut donc espérer obtenir un temps de calcul ALE inférieur au calcul lagrangien. C’est ce
que nous essayons de démontrer dans les applications suivantes de procédés stationnaires
(planage et profilage).
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5.5 Planage sous traction

5.5.1 Introduction

Cette section présente un modele de planage sous traction de toles d’acier. Ce procédé
permet de réduire significativement les contraintes résiduelles présentes dans la tole apres,
notamment, une opération de laminage. Ces contraintes peuvent provoquer des déforma-
tions indésirables lors de la découpe. Son deuxiéme but est de corriger les défauts de forme
de la bande, représentés sur la figure 5.82, tels que la tuile (courbure dans le sens travers),
le cintre (courbure dans le sens travers), le twist (torsion), le centre long (ondulations au
centre), les bords longs (ondulations en rives), etc. Il est en effet capital pour le produc-
teur d’acier de pouvoir contrdler la planéité de son produit pour vérifier que les tolérances
demandées par ses clients sont bien atteintes. Ces défauts proviennent non seulement du
caractére non homogene du matériau, mais aussi des différents réglages des étapes de fa-
brication de l'acier.

‘ m
tuile cintre twist centre long bords longs

FIGURE 5.82 — Défauts de forme couramment rencontrés sur des produits longs (d’aprés Theis [191 ]).

Pour comprendre le principe du planage, imaginons une tole présentant un défaut de
type « centre long » telle que celui schématisé sur la figure 5.83. Isolons deux types de fibres
(on appelle fibre une ligne imaginaire de matiere alignée sur la direction longitudinale de
la tole). La premiére, au milieu, en bleu sur la figure, est une fibre trop longue qui est en
compression. La seconde, proche du bord de la tdle, en rouge sur la figure, est une fibre plus
courte qui est en traction. La différence de longueur provoque une ondulation indésirable
au centre de la tole et qui doit étre éliminée. Le procédé de planage consiste a plastifier ces
fibres et les allonger suffisamment pour qu’apres I'opération, elles aient la méme longueur.
Cela se traduit par les variations de contraintes et déformations tracées sur le graphe (o, €)
de la figure 5.83 (cas d’'un matériau élastique parfaitement plastique).

Pour atteindre cet allongement (généralement de 'ordre de 1 a 2 %), la tole subit une
succession de flexions alternées d’amplitudes généralement décroissantes sur une série de
rouleaux. La figure 5.84 montre une t6le en flexion et le profil de contraintes longitudinales
correspondant a un matériau élastique parfaitement plastique. La partie supérieure de la
fibre neutre est en traction et la partie inférieure en compression. Si la flexion est suffi-
sante, la tole peut plastifier a partir de ses deux surfaces. Les deux bandes plastiques sont
d’autant plus épaisses que la flexion est importante. Le rapport entre I'épaisseur plastifiée
et 'épaisseur totale est appelé taux de plastification.

En ajoutant une traction (on parle alors de planage sous traction), la fibre neutre se
déplace vers l'intérieur de la courbure a chaque flexion comme le montre la figure 5.85. Le
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défaut avant o,
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§L corrigé
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allongement

FiGURE 5.83 - Principe du planage. La fibre en bleu est plus longue que les fibres rouges (on parle de « centre
long »). Pour corriger ce défaut, on allonge toutes les fibres jusqu’a plastification pour égaliser leurs lon-

gueurs.
traction traction
O-Y
_____________________________ plastique .
S — / T X~ f—
. —7 S~ élastique oy
fibre —Oy plastique Oy
neutre compression compression

FIGURE 5.84 - Tole en flexion. Profil des contraintes FIGURE 5.85 — Décalage de la fibre neutre vers Uinté-
longitudinales. rieur de la courbure lorsqu’on applique une trac-
tion.

profil de contraintes longitudinales n’est plus symétrique et il est donc possible de plastifier
la totalité de la section si nécessaire.

Malgré 'importance de ce procédé dans 'industrie, la simulation numérique du planage
n’est pas courante. Des modeles bidimensionnels analytiques ou semi-analytiques existent
(voir par exemple Doege et al. [60]), mais ils montrent leurs limites lorsque des matériaux
complexes ou des défauts tridimensionnels sont envisagés. Le retour élastique est égale-
ment difficile a prédire avec ce type d’approche.

Quelques modeles utilisant la méthode des éléments finis apparaissent dans la littéra-
ture. Huh et al. [118] modélisent une planeuse limitée a trois rouleaux avec les éléments
finis volumiques sous-intégrés d’Abaqus [55]. Ils étudient l'influence du maillage utilisé et
I'effet de la position des rouleaux sur 'allongement obtenu. Park et Hwang [163] effectuent
des simulations a 'aide d’éléments de coque 3D. Ils tentent de prédire le cintre de la tble
apres planage en fonction de son cintre initial. Les résultats numériques sont validés avec
des mesures expérimentales. Li et al. [135] modélisent 'apparition de tuile en aval de leur
dispositif de planage et I'influence d'un ensemble de rouleaux supplémentaires (un bloc
anti-tuile) pour la limiter. Ils font remarquer la nécessité d’utiliser une approche 3D (élé-
ments de coque dans le logiciel MSC.MARC [151]) pour résoudre ce probleme. Trull [196]
étudie avec Abaqus I’élimination de bords longs dans une planeuse. Le retour élastique et
la distribution des contraintes résiduelles sont étudiés en détail.

Tous ces modeles utilisent le formalisme lagrangien. Nous proposons donc de construire
un modele ALE de planeuse pour valider les méthodes de calcul mises au point dans ce
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travail. Comme nous allons le voir, le planage sous traction est un procédé stationnaire plus
complexe que le laminage du point de vue de la gestion du maillage et du transfert des
grandeurs aux points de Gauss.

5.5.2 Création du modele
5.5.2.1 Géométrie du procédé

La géométrie utilisée pour ce modele est celle d’'une planeuse pilote installée au centre
de recherches d’ArcelorMittal (Maizieres-lés-Metz, France) pour laquelle nous disposons de
résultats expérimentaux. Sa géométrie est décrite sur la figure 5.86. Une particularité de ce
schéma est le sens d’avancement de la bande qui est de la droite vers la gauche. Pour rester
compatibles avec les données d’ArcelorMittal, nous conservons ce sens dans notre modele.

La planeuse mesure environ quatorze metres de long. Seule la partie centrale ou se
trouvent les deux blocs planeurs est modélisée. Les autres rouleaux font partie du systéme
de bobinage et permettent également d’imposer les tractions. Nous faisons donc implici-
tement 'hypothese que la déformation de la bande sur ces cylindres de plus grand rayon
reste élastique. Cette hypothese pourrait étre remise en cause pour des tbles relativement
épaisses.

< ~14 m >

systéme de bobinage blocs planeurs systéme de bobinage

et de traction aval = /\ """"""" et de traction amont
[

zone
modélisée

< 321 mm—>

& —

cylindres d'appui
amont/aval

FIGURE 5.86 — Géométrie de la planeuse pilote d’ArcelorMittal (Maiziéres-les-Metz, France). Seule la partie
centrale, c’est-a-dire les deux blocs planeurs, sont modélisés. On considere que la téle ne subit pas de
plastification sur les autres rouleaux.

Contrairement a une planeuse industrielle qui permet de corriger la forme d’une tdle
possédant des défauts et des contraintes résiduelles hétérogenes, cette planeuse pilote est
utilisée dans ce cas-ci pour étudier l'influence des réglages (la position des rouleaux et
les tractions appliquées) sur la planéité en sortie d’une téle initialement sans défaut. Les
grandeurs mesurées sont I'allongement en sortie apres retour élastique et les « pertes par
flexion », c’est-a-dire la différence entre les forces mesurées en entrée et en sortie en cours
de planage.

La figure 5.87 détaille la géométrie des deux blocs planeurs. Ils sont chacun constitués
d’un rouleau supérieur de 40 mm de diameétre dont 'axe est fixe et d'un rouleau inférieur
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FiGURE 5.87 — Position des rouleaux dans la zone modélisée et définition des imbrications i, et i;. La gauche
et la droite sont désignés respectivement par 'aval et 'amont de la planeuse. Les distances réelles ne sont
pas respectées pour améliorer la lisibilité du schéma.

de méme taille pouvant étre translaté verticalement vers le haut. Ce déplacement vertical,
mesuré a partir des positions de référence indiquées au tableau 5.14, est appelé imbrication.
Evidemment, plus I'imbrication imposée au niveau d’un bloc planeur est importante, plus la
flexion subie par la tole sera grande. Entrainés par le mouvement de la bande, les rouleaux
sont libres de tourner sur leur axe. Pour simplifier le modeéle, on négligera la déformation
des rouleaux ainsi qu'un éventuel cédage du dispositif supportant leurs axes. Le frottement
sera également négligé, ce qui permet de fixer la rotation des rouleaux.

ch cs3 Cy c
x [mm] 0 81 200 281
y [mm] 26.74 -20 26.79 -20

TaBLEAU 5.14 - Position de référence des axes des rouleaux. Lorigine est prise a la verticale du quatriéme
rouleau et au niveau de la ligne de passe (horizontale reliant la surface supérieure des deux rouleaux
d’appui situés de part et d’autre des blocs planeurs — voir figure 5.86).

5.5.2.2 Longueur du modele

Le probléme est tout d’abord traité a deux dimensions, sous I’hypothese d’état plan de
déformation. Un modele tridimensionnel sera construit par la suite sur base des résultats 2D
obtenus et d'un maillage optimisé (voir section 5.5.3.6). Afin de comparer les formalismes
ALE et lagrangien, deux modeles 2D distincts sont mis au point. La géométrie du modele
lagrangien est représentée sur la figure 5.88. Le maillage de la longueur de t6le nécessaire
a la simulation lagrangienne se décompose en quatre zones :

e Une premiere zone de taille L,, (ou longueur machine) qui correspond a la taille de
la zone de planage, c’est-a-dire la distance entre le premier et le quatriéme rouleau,
soit 281 mm pour cette planeuse pilote. Cette portion de toOle est initialement entre
les rouleaux.

e Une zone de L, = aL,, (ou longueur de planage) ou a est le nombre de longueurs
machine que 'on veut faire passer dans la planeuse.

e Une zone de longueur L, .., en entrée de planeuse, qui permet d’éloigner 'extrémité
amont du maillage du premier rouleau. Cette longueur permet d’éviter une influence
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trop importante de la fixation verticale de 'extrémité de la tole sur la solution obtenue
en fin de calcul.

e Une zone de longueur L,,,, en sortie de planeuse, qui joue le méme role que la zone
précédente vis-a-vis du quatrieme rouleau en début de calcul.

Laval Lm L = OéL anunt L

P m

L

aval sprb m amont

@ @ = + @ @ 4
® O | ® O |
longueur a passer frontiére frontiére
dans la planeuse aval amont

FIGURE 5.88 — Longueur du modéle lagrangien et FIGURE 5.89 - Longueur du modéle ALE et zones de
zones de maillage associées. maillage associées.

Pour un procédé stationnaire tel que celui-ci, le but du formalisme ALE est de diminuer
la longueur totale du modele et concentrer les mailles, en jouant sur leur taille, dans les
endroits les plus sollicités pour obtenir, au final, un temps de calcul plus faible que dans
le cas lagrangien. Comme le montre la figure 5.89, le modele ALE peut s’affranchir de la
deuxieme zone de longueur L, puisque le mouvement du maillage est quasi eulérien, c’est-
a-dire qu’il restera plus ou moins fixe selon la direction d’avancement de la tole (x). Par
contre, si on désire simuler le retour élastique pour pouvoir calculer la valeur du cintre
apres planage, il est nécessaire d’ajouter une zone supplémentaire en sortie de planeuse
(notée Ly, longueur de springback, ou retour élastique). Cette zone devra étre maillée plus
finement que les deux zones d’extrémités L, ... et L., pour garder une certaine précision
dans la description géométrique de la courbure de la téle.

Pour délimiter le domaine ALE dans lequel est confiné le maillage, on définit, aux deux
extrémités de la longueur de tole modélisée, deux frontieres eulériennes a travers lesquelles
la matiere pourra s’écouler.

5.5.2.3 Maillage

Le maillage de la tole est composé de quadrangles, générés par interpolation transfinie,
qui serviront de support a des éléments finis de type EAS (voir section 4.3.3). Ces derniers,
bien plus complexes que les éléments traditionnels partiellement sous-intégrés (SRI), sont
indispensables pour représenter avec précision I'état de flexion de la tdle en cours de pla-
nage. Une autre solution serait d’utiliser des éléments de coque mais Metafor n’en possede
pas. De plus, dans ce cas précis, nous verrons que la téle est relativement épaisse. En parti-
culier, son épaisseur n’est pas négligeable vis-a-vis de la distance qui sépare les rouleaux de
chaque bloc planeur et négliger celle-ci introduirait des erreurs géométriques. Les éléments
volumiques que nous utilisons sont donc bien adaptés.

Le maillage de la tdle est défini par le nombre de mailles dans I'épaisseur (n,) et la taille
longitudinale de celles-ci (L; ) dans chacune des zones décrites précédemment. Pour pou-
voir comparer efficacement les résultats des formalismes ALE et lagrangien sans influence
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du maillage, nous définissons, dans un premier temps, un maillage relativement fin et iden-
tique dans les deux cas. On utilise n, = 8 mailles sur I'épaisseur. Les longueurs de la géo-
métrie et des mailles sont rassemblées dans le tableau 5.15. La longueur de t6le passant
dans la planeuse est fixée a a = 2 longueurs machine.

Le maillage sera ensuite optimisé dans un second temps pour diminuer le cofit des deux
modeles. En procédant de la sorte, il sera plus facile d’analyser les différences dans les
résultats numériques sans soupconner a tout instant un effet de maillage.

L aval L sprb L m L p L amont
Lagrangien 50 - 281 2 x 281 =562 150
ALE 16 284 281 - 150

L :val L :prb L ren L; L :mont
Lagrangien 4 - 1 1 4
ALE 4 1 1 - 4

TaBLEAU 5.15 — Longueurs des zones de maillage (L) et tailles longitudinales des mailles dans ces zones

(LY,,,.») pour les deux modeéles. Toutes les longueurs sont exprimées en [mm].

5.5.2.4 Chargement et phases de calcul

Le déroulement d’un calcul peut se décomposer en cinq phases (la phase i se déroule
det=t;,_; at=t; letemps t, étant le temps initial). Les figures 5.90 et 5.91 les décrivent
respectivement dans le cas lagrangien et ALE. Nous commencons par décrire les phases du
calcul lagrangien (figure 5.90) et nous insisterons sur les différences du modele ALE par la
suite.

Dans la configuration initiale, en t = t,, la tole lagrangienne est rectiligne et placée
sur la ligne de passe, entre les rouleaux qui sont localisés a leur position de référence
(tableau 5.14). La tdle est juste en contact avec les rouleaux inférieurs en y = 0. Il existe
un léger espace entre la surface supérieure de la t6le et les rouleaux supérieurs qui dépend
de I'épaisseur de la tole.

Il est nécessaire, déja a ce stade, de faire un choix au niveau des fixations de la tble
a ses extrémités. Expérimentalement, une valeur de traction est prescrite par 'opérateur.
Celle-ci va étre appliquée comme contre-traction, en amont de la planeuse, par le systéme
de pilotage du procédé. La tOle va ensuite étre tractée, en aval, a une vitesse imposée. Les
valeurs des forces de traction sont mesurées de maniére continue en amont et en aval du
procédé. La valeur de la traction aval ne correspond pas exactement a la valeur de la « trac-
tion consigne ». Dans le modele numérique, il est donc possible de choisir de tirer la tole en
aval par un déplacement imposé a son extrémité et d’appliquer la contre-traction mesurée
en amont ou l'inverse, c’est-a-dire pousser la téle par un déplacement imposé a son extré-
mité amont et appliquer la traction aval mesurée. Si le modele était parfait et les mesures
exactes, les deux solutions seraient tout a fait identiques, mais ce n’est évidemment pas le
cas. Nous avons choisi la premiere solution, car elle correspond mieux a la procédure expé-
rimentale et qu’elle est beaucoup plus stable numériquement que la seconde. Les fixations
sur la figure 5.90 traduisent cette maniere de procéder.
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FIGURE 5.90 — Etapes du calcul lagrangien. La simulation est divisée en cinq phases a partir de la configuration
initiale en t, ot la téle est plane et ot les rouleaux occupent leur position de référence : U'imposition des
tractions, Uimposition des imbrications, le planage, la relaxation de la traction amont et enfin le retour
élastique. Les fixations en rouge correspondent a des déplacements imposés non nuls.
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Pour atteindre la configuration de planage ot la tole est sous traction et enroulée autour
des rouleaux, il est commode de procéder en deux temps (phase 1 et phase 2). La premiere
phase (t € [t,, t,]) consiste a augmenter progressivement la traction amont sur 'extrémité
correspondante du maillage jusqu’a la valeur mesurée expérimentalement. Apres plusieurs
essais de différentes stratégies de chargement du modele, il nous est apparu qu'’il est béné-
fique d’appliquer également une fraction de I'imbrication des rouleaux inférieurs pendant
cette phase. Nous déplacons donc verticalement les rouleaux d’'un déplacement i;/2 pour
le premier rouleau et i;/2 pour le troisiéme. Expérimentalement, en cours de planage, I'ex-
trémité amont de la tole atteint y = 0 en x = 2141 mm, soit un peu moins de 2 metres en
amont du premier rouleau. La t6le arrive donc sur le premier rouleau avec un angle proche
de zéro degrés par rapport a I’horizontale. Il est donc nécessaire, pour conserver cette hori-
zontalité en entrée, de déplacer également I'extrémité amont du maillage selon la verticale.
Lamplitude de ce déplacement est identique a celui du premier rouleau. La durée de cette
premiere phase est fixée arbitrairement a une seconde.

La deuxieme phase (t € [t,t,]) consiste a appliquer le reste des imbrications pres-
crites aux deux rouleaux inférieurs et a 'extrémité amont du maillage tout en conservant
la traction amont fixée a sa valeur mesurée. A la fin de cette phase, qui dure également une
seconde, la tole est en position pour démarrer 'opération de planage proprement dite.

Pendant la troisiéme phase (t € [t,, t;]), un déplacement est imposé au niveau de I'ex-
trémité aval du maillage a la vitesse v de I'essai expérimental correspondant. Une longueur
L, de tole passe dans la planeuse et la traction amont est maintenue constante.

Apres cette phase et en préparation a la simulation du retour élastique qui va suivre,
la traction amont est progressivement diminuée jusqu’a suppression complete pendant une
quatriéme phase (t € [t5,t,]) qui dure une seconde. La tdle se détend et son extrémité
amont avance légerement vers les rouleaux. Apres cette étape, il est déja possible de mesu-
rer avec précision I'allongement longitudinal subi par la téle.

Enfin, le calcul se termine par une derniére phase de retour élastique pour laquelle les
fixations de I'extrémité aval du maillage sont supprimées. Puisque seule la courbure de la
tole en sortie nous intéresse, la partie de la tdle qui est toujours entre les rouleaux est
completement fixée pour empécher les vibrations indésirables. Si on procede de la sorte,
I'extrémité aval de la tole va commencer a osciller longtemps autour d’'une nouvelle position
d’équilibre. Puisque seule cette configuration d’équilibre, pour laquelle I'énergie cinétique
est nulle, nous intéresse, il est nécessaire d’introduire de la dissipation numérique dans le
modele. La maniere la plus simple est d’ajouter des éléments d’amortissement sur les nceuds
de la partie L,,,. Ces éléments, représentés sous forme d’amortisseurs sur la figure 5.90,
produisent une force qui est a tout moment opposée a la vitesse du nceud (f = —Av). Un
coefficient d’amortissement A, choisi empiriquement égal 4 107° N m™2 s, permet de limiter
le temps de cette cinquieme phase a cinq secondes.

Le calcul en formalisme ALE se déroule de maniére similaire (figure 5.91). Le maillage
est délimité a tout moment par les deux frontiéres eulériennes verticales a ses extrémités.
Lors des deux premiéres phases (t € [t, t,]), une quantité de matiére, fonction de la valeur
des imbrications et de la traction, entre dans le maillage par 'extrémité amont. La longueur
de t6le modélisée est donc 1égerement plus grande en t = t, qu’a I'instant initial.
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FIGURE 5.91 — Etapes du calcul ALE. Elles peuvent étre mises en correspondance avec les étapes du calcul
lagrangien représentées sur la figure 5.90. Seule la derniére phase du calcul, correspondant au retour
élastique, est effectuée en formalisme lagrangien a partir de la configuration du maillage ALE obtenue au
temps t = ty.
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Pendant la troisieme phase, c’est-a-dire la phase de planage, les positions des fixations
aux extrémités du maillage ne changent pas, contrairement au cas lagrangien pour lequel
Pextrémité amont se rapproche et I'extrémité aval s’éloigne des rouleaux. A un instant par-
ticulier donné, ceci peut provoquer une légere différence de courbure entre la tole lagran-
gienne et la tole ALE correspondante. Nous verrons que cette différence de position des
conditions aux limites des deux modeles peut étre a l'origine de différences numériques
dans certains résultats de calcul, comme la valeur du cintre par exemple.

La derniére phase du modele ALE nécessite I'utilisation du formalisme lagrangien. En
effet, le retour élastique peut, dans certains cas, provoquer des courbures telles que la tole
ne franchit plus la frontiére eulérienne aval. Cet exemple permet de montrer la souplesse
avec laquelle notre implémentation gere le passage d’un formalisme a un autre en cours de
calcul.

5.5.2.5 Maillage et conditions aux limites ALE

En formalisme ALE, la redéfinition du nouveau maillage et la gestion des conditions
aux limites posent quelques difficultés au niveau des frontieres en amont et en aval de la
planeuse.

frontiére frontiére avancement
config t=t, Eﬁ eulérienne aval N eulérienne aval < -
g o5
<—>  TTe--
T L n mailles
phase lagrangienne
t=1., Lag. t
\ m mailles
phase ALE >
t= tz \
T 8>\ 32 d'autant plus
v * faible que

se déplace!

Vg
la fization éf\ n grand et m petit

(a) une seule fixation en sortie (b) plusieurs fixations en sortie

FIGURE 5.92 - Gestion des fixations matiére en sortie de planeuse au cours de la phase lagrangienne de
lalgorithme ALE. A gauche (a), une unique fixation verticale est utilisée. Celle-ci va inévitablement se
déplacer verticalement si la tdle posséde une courbure au voisinage de la frontiére eulérienne. Pour éviter
ce déplacement, il est nécessaire de fixer verticalement plusieurs nceuds (b) pour garantir la conservation
de Uhorizontalité de la surface inférieure de la tdle lors de la définition du maillage eulérien.

En aval, le maillage est géré par la méthode de repositionnement des nceuds sur les
frontiéres eulériennes (section 3.5.3). Pour rappel, cette méthode consiste a calculer I'in-

247



CHAPITRE 5. APPLICATIONS NUMERIQUES

tersection du maillage lagrangien avec la frontiére eulérienne. La figure 5.92 en montre le
principe : la tble, initialement en amont de frontiere eulérienne, franchit celle-ci pendant
la phase lagrangienne du pas de temps. La partie du maillage qui a dépassé la frontiere
est supprimée pour que domaine de calcul reste intégralement en amont de celle-ci. La
procédure est répétée a chaque pas de temps. Si la tole possede une courbure au voisi-
nage de la frontiére et qu’elle n’est pas tout a fait perpendiculaire a celle-ci (figure 5.92
(a)), la méthode de repositionnement de nceuds va entrainer un déplacement vertical de
I'extrémité de la tole. La fixation utilisée pendant la phase lagrangienne pour bloquer le
mouvement vertical de 'extrémité de la téle (on parle de fixation matiére) n’empéche donc
pas un déplacement vertical du maillage. Ce déplacement ne pourrait étre empéché que par
une fixation maillage qui consisterait a fixer la coordonnée correspondante du noceud lors de
I'opération de remaillage. Une telle fixation n’est cependant pas possible a mettre en place
ici, car elle ne respecterait pas la géométrie de la tole. Ce probleme a déja été illustré a la
figure 3.9, page 38.

Si on veut tout de méme maintenir la position verticale de 'extrémité aval de la tole au
cours de calcul, pour que, d’une certaine maniéere, 'appui sur le premier rouleau du systéme
de bobinage en aval de la planeuse soit modélisé, il faut que la tole reste parfaitement
horizontale lorsqu’elle traverse la frontiére pendant la phase lagrangienne. La solution est
de définir, non pas une, plusieurs fixations matiére sur les nceuds de la surface de la tole
pour forcer son horizontalité. La figure 5.92 (b) décrit la situation. Les noeuds surfaciques
de n mailles sont fixés verticalement. Méme si la longueur fixée est beaucoup plus grande
que la distance convective, cette maniére de faire ne garantit pas exactement le respect
de cette condition en sortie. En effet, si la tole dessinée sur la figure 5.92 était tout a fait
rigide, sa translation uniforme vers la gauche entrainerait inévitablement le mouvement
de l'extrémité aval du maillage que I'on veut éviter, quel que soit le nombre de fixations
verticales. Néanmoins, vu sa flexibilité, la tole se déforme au voisinage de la frontiére et elle
reste ainsi tres proche de 'horizontale voulue. Le déplacement observé est donc tres faible
et tout a fait acceptable pour modéliser le rouleau d’appui aval. Annuler complétement
le déplacement vertical de la section aval nécessiterait la définition d'une série d’outils
de guidage de la tOle au niveau de la frontiere eulérienne et de conditions de contact
appropriées. Cette derniere méthode serait relativement cofiteuse et c’est pourquoi nous
nous contenterons de simples fixations.

En amont, un probleme similaire se pose : il est nécessaire de modéliser I'influence de
I'appui sur le dernier rouleau du systeme de bobinage en amont des blocs planeurs. Cette
fois, l'utilisation d’une fixation maillage sur 'extrémité amont du maillage de la tdle est
envisageable. Elle est méme nécessaire puisqu’en amont de ’écoulement, il est obligatoire
de prescrire la géométrie de la tdle qui entre dans le domaine de calcul. C’est une condition
aux limites indispensable. Cependant, puisque nous avons choisi d’appliquer la traction
a cet endroit, 'extrémité du maillage sur la frontiere eulérienne amont doit représenter
exactement une section droite de la tole comme le montre la figure 5.93. En effet, si ce
n’est pas le cas, la traction appliquée sur le maillage pendant la phase lagrangienne, ne sera
pas alignée sur la direction longitudinale de la t6le. La traction appliquée longitudinalement
sera donc moindre et accompagnée d’un cisaillement indésirable. Pour éviter de devoir faire
varier |'orientation de la traction en fonction de I'angle d’entrée (a priori inconnu) de la téle
dans le domaine de calcul, il est donc commode de fixer cette fois encore une série de noeuds
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frontiére frontiére
eulérienne amont avancement eulérienne amont

orthogonale
\ P maillage T8

amont L amont

avancement ‘ \r
<— B et &
lirection

. . D S—
longitudinale n mailles
de la tole
(a) une seule fixation en entrée (b) plusieurs fixations en entrée

FIGURE 5.93 — Gestion des fixations au niveau de la frontiére eulérienne amont. Si une seule fixation du
maillage est utilisée (a), la ligne verticale définissant Uextrémité aval du maillage peut ne pas correspondre
pas a une section droite, orthogonale a la direction longitudinale de la téle. Dans ce cas, la force de traction
sur Uextrémité aval est incorrectement transmise a la tole. Il est donc nécessaire de fixer plusieurs neeuds
consécutifs (b) pour garantir la perpendicularité de la tdle avec la frontiére.

le long de la surface inférieure de la tole, au lieu d’'un seul. La tOle, en entrée, reste ainsi
horizontale et la traction est correctement appliquée.

Cette remarque sur les forces montre également un intérét supplémentaire de la fixa-
tion verticale de plusieurs nceuds de I'extrémité aval de la tole : la frontiere du maillage
représentera aussi, a cet endroit et a tout moment, une section droite de la téle. Ainsi, la
valeur de la force longitudinale aval (la traction aval) pourra étre directement identifiée a
la force horizontale qui s’exerce sur 'extrémité aval du maillage.

Ces deux problemes de fixations, en amont et en aval de la planeuse, se retrouvent dans
la modélisation quasi eulérienne de n’importe quel procédé stationnaire par le formalisme
ALE. Les fixations supplémentaires sont censées représenter des points de passage de la
tole qui sont, dans la réalité, beaucoup plus éloignés du procédé que I'endroit ou on les
modélise. Il est donc toujours important d’étudier I'influence de la position de ces fixations
sur la solution obtenue, c’est-a-dire, en d’autre mots, la position des frontieres eulériennes
ou, plus précisément dans le cas du planage, les valeurs de L, et L, Si une variation
trop importante des résultats est observée, il faut alors agrandir la zone quasi eulérienne
maillée pour éloigner ces conditions aux limites et s’approcher ainsi de la position réelle
des fixations.

Pour conclure sur la gestion des fixations verticales en amont et en aval du modele,
notons que, si le probleme est symétrique selon un plan horizontal, comme c’est le cas
pour le modele de laminage présenté a la section 5.4, les fixations verticales relatives a la
symétrie permettent de contourner toutes ces difficultés.

Une fois les nceuds sur les frontieres eulériennes repositionnés, la méthode des splines
ou sa variante pour le remaillage simultané d’arétes paralleles (section 3.3.4), est mise en
ceuvre. La premiere est rapide, mais provoque I'apparition de mailles fortement cisaillées.
La seconde, plus complexe et plus lente, permet d’obtenir au final un maillage qui a le
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méme aspect que le maillage lagrangien correspondant, pour lequel la perpendicularité des
lignes reste approximativement préservée malgré la flexion de la tole.

Quant aux nceuds volumiques, ils sont repositionnés par la méthode d’interpolation
transfinie qui est le meilleur choix pour un maillage structuré qui se déforme peu, tel que
celui-ci.

Grace a cet ensemble de méthodes de repositionnement de noeuds, le maillage peut ainsi
de déplacer verticalement entre les deux frontiéres eulériennes pour suivre les flexions de
la tole, mais il reste globalement fixe selon la direction horizontale.

5.5.2.6 Contact et intégration temporelle

Un intérét du maillage quasi eulérien utilisé pour le modele ALE est la réduction du
nombre d’éléments de contact qu’il entraine par rapport a son homologue lagrangien. En
effet, comme le montre la figure 5.94 qui représente le premier bloc planeur et le maillage
de la tole a linstant t = t,, seuls les nceuds initialement a proximité d’un rouleau sont
susceptibles d’étre en contact avec ce dernier (et uniquement lui) au cours du calcul. En
pratique, puisque la position exacte des contacts entre la tole et les rouleaux est inconnue,
I'ensemble des nceuds définis comme potentiellement en contact sont ceux dont I’abscisse
de la position initiale est comprise entre ¢; — R; et ¢; + R; ou ¢; et R; sont respectivement
I'abscisse de I'axe et le rayon du rouleau i. En formalisme lagrangien, par contre, chaque
rouleau génere une zone de contact dont la longueur est au minimum L,, la longueur de
bande tirée a travers la planeuse. Pour faciliter la mise en données, cette longueur sera
étendue a la longueur du maillage dans le cas lagrangien. Pour le maillage de référence
choisi, on obtient ainsi 3668 éléments de contact dans le cas lagrangien contre seulement
160 dans le cas ALE. Le coefficient de pénalisation pour le contact est fixé a 500 MPa/mm.

zone de contact
ALFE avec
le rouleau sup.

\

\

zone de contact
ALE avec
le rouleau inf.

Fi1GURE 5.94 - Définition des éléments de contact en formalisme ALE. Grdce au faible mouvement des nceuds
dans la direction horizontale, seuls les nceuds directement a proximité d’un rouleau nécessitent Uactivation
de Ualgorithme de détection du contact, contrairement au cas lagrangien ot la quasi-totalité des nceuds la
surface de la téle doit étre sans cesse testée.

Le schéma d’intégration temporelle est le schéma dynamique implicite de Chung-Hulbert
avec les parametres par défaut définis a la section 4.3.2. Le pas de temps At est va-
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riable pendant toutes les phases de calcul sauf pour la phase de planage proprement dite
(t € [t,, t3] ol une valeur maximale est calculée par At = L d,,,,/V ol dy,, peut étre
vu comme I'incrément maximal de déplacement autorisé sur un pas de temps par rapport a
la longueur initiale d'une maille. Cette limite est nécessaire pour d’une part éviter les oscil-
lations temporelles dans les résultats ALE (voir section 5.4.3.3) et les oscillations spatiales
dans les résultats lagrangiens et, d’autre part, pour garantir une erreur d’intégration tem-
porelle réduite pour les deux formalismes. Nous choisissons par défaut d.,, = 0.3. Cette
valeur sera optimisée dans le cas du modele 3D a la section 5.5.3.6.

5.5.2.7 Matériau et réglages de la planeuse

La bande fait 2.2 mm d’épaisseur (e) et 150 mm de large (I). Le matériau utilisé est un
acier a haute limite élastique de type DP600. Ses parametres élastiques sont E = 220 GPa
et v=0.3. Son écrouissage, supposé isotrope, est identifié a partir de I'essai expérimental
de traction représenté sur la figure 5.95. Cet essai de traction est modélisé puis simulé par
Metafor en choisissant une loi d’écrouissage linéaire par morceaux dont les points (€7, o)
sont des parametres inconnus. Grace a un algorithme d’identification paramétrique et des
abscisses &P préalablement bien choisies, on obtient la courbe d’écrouissage représentée
sur la figure 5.96 dont les valeurs numériques sont rassemblées dans le tableau 5.16. Cet
algorithme minimise d’écart entre la courbe de traction expérimentale et celle obtenue par
voie numérique.
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FIGURE 5.95 — Courbe expérimentale de traction du FIGURE 5.96 - Loi d’écrouissage isotrope déduite de
DP600 (e = 2.2 mm et [ =150 mm). la courbe de traction de la figure 5.95.

&2[10°3] o 4 8 16 32 64 | 100
oy [MPa] | 500 | 507.5 | 513.1 | 547.3 | 598.5 | 653.8 | 684.2

TABLEAU 5.16 — Valeurs numériques utilisées pour définir la loi d’écrouissage isotrope du DP60O.

Les quatre configurations expérimentales de planage (valeurs de la traction consigne
et des imbrications), que nous tentons de simuler en formalisme ALE et lagrangien, sont

251



CHAPITRE 5. APPLICATIONS NUMERIQUES

notées Réglages A, B, C et D. Ces réglages sont décrits dans le tableau 5.17 qui reprend éga-
lement les principaux résultats expérimentaux (voir Ben Najah [21]). La vitesse de planage
est identique pour chaque configuration et fixée a v = 50 m/min.

Imbrications | Traction Mesures expérimentales
i is Teonsigne | Tamont | Tavar | Pertes par | Allongement
[mm]  [mm] | [kg] | [kg] | [kg] | flexion [kg] [%]
réglages A 40 20 3000 | 3250 | 4750 1500 2.19-2.31
Réglages B | 40 30 1500 1700 | 3000 1300 1.16-1.32
Réglages C | 40 5 1500 1650 | 2250 600 0.22-0.34
Réglages D | 40 5 3000 | 3300 | 4200 900 1.20-1.32

TABLEAU 5.17 — Valeurs des réglages expérimentaux, des forces mesurées en cours de planage et des allon-
gements obtenus en sortie de planeuse apres retour élastique. Les unités des forces [kg] sont reproduites
ici telles qu’elles ont été fournies par ArcelorMittal. Chaque configuration a fait Uobjet de quatre mesures
d’allongement (on a indiqué la valeur minimum et maximum de Uallongement mesuré).

5.5.2.8 Convection ALE

Lalgorithme de convection choisi par défaut est le schéma du second ordre utilisant une
reconstruction linéaire. En plus des variables liées au matériau et au calcul des forces in-
ternes (tenseur des contraintes et déformation plastique équivalente, soit cinq grandeurs),
il est nécessaire, pour ce modele particulier, de transférer le tenseur des gradients de dé-
formation totale F (section 4.3.4) pour permettre le calcul de I'allongement subi par la
téle au cours du planage. En effet, contrairement au cas lagrangien ou cette valeur peut
étre déduite simplement de la position initiale et finale des noeuds, I'allongement longi-
tudinal en formalisme ALE est identifié a la composante xx du tenseur des déformations
de Green-Lagrange E°". Il nécessite donc d’ajouter quatre scalaires (F,,, Fy,,F,,F,)ala
liste des grandeurs a transférer, c’est-a-dire neuf grandeurs au total. Le tenseur ¢ relatif aux
contraintes EAS (section 4.3.3) n’est pas transféré par souci d’économie. Il en va de méme
pour les vitesses et les accélérations nodales, car les phénomenes d’inertie ne risquent pas
d’influencer les résultats obtenus.

Le nombre de Courant maximum autorisé est fixé a C,,,, = 0.8. Cette valeur ne devrait
pas étre atteinte en cours de calcul puisque I'incrément temporel a été fixé en fonction du
déplacement convectif maximal d,, = 0.3. Comme chaque élément fini est divisé en 2 x 2
cellules de convection, le nombre de Courant devrait étre proche C = 2d,,, = 0.6 < C,.,
pour toutes les cellules de convection pendant la phase de planage.

Enfin, 'entrée de matiére dans le maillage a travers la frontiere eulérienne amont re-
quiert la définition de conditions aux limites sur les grandeurs a convecter. Ces valeurs ne
peuvent bien stir pas étre prises nulles (ou unitaires pour F,, et F,, ) puisque la t6le subit
une traction en entrée de planeuse. La technique utilisée pour prendre en compte automa-
tiquement cette traction d’entrée dans les valeurs des conditions aux limites est décrite a la
section 4.4.6. Lors de la mise au point du modeéle et pour des cas de charge non présentés
ici, il est apparu intéressant d’imposer explicitement une valeur nulle pour les grandeurs
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F,, et F,,. Ceci permet d’éviter la propagation de légers cisaillements parasites (ES;“) dans
la solution.

5.5.3 Résultats
5.5.3.1 Forces et allongement

Les premiéres simulations présentées concernent les quatre configurations de planage
expérimentales avec les parameétres par défaut précédemment détaillés dans le tableau 5.17.
Le but de ces simulations est double : d’'une part, comparer les formalismes lagrangien et
ALE entre eux et, d’autre part, valider les résultats des deux modeles avec les mesures
expérimentales disponibles.

Les courbes d’allongement longitudinal (figures 5.97 a 5.100) correspondent aux va-
leurs de la déformation de Green-Lagrange ES; mesurée le long de la fibre moyenne de la
tdle, au temps t = t, qui précéde la phase de retour élastique. A cet instant, la traction a été
completement relachée et la valeur de cet allongement moyen est déja trés proche de celui
que I'on pourra mesurer sur la configuration finale en t = ts. La derniere phase de retour
élastique (t € [t,, t5]) n’est donc pas effectuée dans un premier temps. Elle sera étudiée en
détail par la suite et fera 'objet d'une section séparée (section 5.5.3.4).

Chaque courbe d’allongement longitudinal a une forme similaire. Il est important de se
rappeler a ce stade que le sens d’avancement de la tole est opposé au sens conventionnel de
lecture. Si on observe par exemple la figure 5.97, on identifie assez facilement, de droite a
gauche, la position des axes des rouleaux de la planeuse au niveau desquels I'allongement
augmente par a-coups. En sortie de planeuse, en x = 0, l'allongement est stabilisé sur
une distance d’environ 300 mm. C’est la valeur de ce palier qui peut étre comparée a la
valeur d’allongement stationnaire mesuré expérimentalement. La suite de la courbe (x <
—300 mm) présente quatre pics d’allongement qui correspondent a 'empreinte des quatre
rouleaux de planage produite lors de la phase d’imbrication initiale (t € [¢t,, t,]). Comme le
montre la figure 5.97, le premier pic est bien distant de L, par rapport au premier rouleau
de la planeuse.

Les résultats du modele ALE et du modele lagrangien sont tres proches. Les courbes
sont presque a chaque fois juxtaposées. Le modeéle ALE étant plus petit que son homologue
lagrangien, on remarque également que la courbe ALE est plus courte et, en particulier,
les trois premiers pics d’allongement sont déja passés en t = t, au-dela de la frontiére
eulérienne aval. Ils n’apparaissent donc plus dans la solution. La concordance des résultats
est cependant moins bonne pour les résultats obtenus avec les réglages C (figure 5.99) ou
un écart est bien visible au niveau du palier d’allongement. Une simulation avec un maillage
plus fin permettrait certainement de rapprocher les deux courbes.

Les valeurs expérimentales d’allongement sont indiquées sur les figures 5.97 a 5.100.
Bien que les valeurs numériques ne correspondent pas exactement aux mesures expérimen-
tales, les écarts entre celles-ci sont faibles.
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FIGURE 5.99 — Réglages C — Allongements longitu-
dinaux (Effc ) sur la fibre moyenne le long de la
téle en t = t,.

La figure 5.101 rassemble, sur un méme graphe, les allongements longitudinaux me-
surés en x = —100 mm pour les simulations ALE et lagrangienne ainsi que les valeurs
expérimentales. Les tendances sont bien respectées : le réglage D est identique au réglage
A, mise a part I'imbrication du deuxieme bloc planeur qui est moindre. L'allongement cal-
culé par les simulations est moindre tout comme I’allongement mesuré.

Il est intéressant de comparer également la valeurs des forces. En amont, la force est
imposée et la valeur obtenue est donc égale, aux erreurs numériques pres, a T,,..- En aval,
la force T,,,; résulte du déplacement imposé des nceuds de I'extrémité amont du maillage.
Sur la figure 5.102, on compare I’évolution des pertes par flexion, c’est-a-dire la différence
de ces deux forces horizontales, au cours de la phase de planage. On constate que, pour
toutes les configurations de planage (A, B, C ou D), la force ALE est toujours légerement
supérieure a la force lagrangienne. Cependant, cette derniére augmente tres légerement au
cours du calcul et vient rejoindre la force ALE en t = t,. Ce temps correspond au moment ot
I'extrémité amont des deux modeles est positionnée de maniere identique par rapport aux
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FiGURE 5.101 — Comparaison des allongements longitudinaux en sortie de planeuse, mesurés sur la fibre
moyenne en x = —100 mm, aprés relaxation des forces en t = t,.
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FiGURE 5.102 — Evolution des pertes par flexion au FiGURrE 5.103 - Comparaison des pertes par flexion
cours de la phase de planage (t € [ty, t3]). en cours de planage (t € [t5,t4]).

blocs planeurs (a une distance L, du premier rouleau). Les écarts entre les courbes des
deux formalismes peuvent donc s’expliquer en partie par le fait que la longueur du maillage
ainsi que la gestion des conditions aux limites en aval et en amont de la planeuse sont dif-
férentes pour les deux modeles. On remarque également que les courbes ALE relatives aux
réglages A et B présentent plusieurs oscillations apres le passage d'une longueur machine
L,, alors que les courbes lagrangiennes n’en présentent pas. Il s’agit en fait de perturbations
qui correspondent exactement au passage des zones fortement plastifiées suite a la phase
d’imbrication initiale au niveau de la frontiere eulérienne aval. Pour s’en convaincre, nous
avons tracé sur la figure 5.102 des lignes verticales (vertes) qui indiquent le passage des
zones initialement sous les rouleaux a travers cette frontiére. Les variations de force cor-
respondent bien a ces instants. De plus, les réglages C et D, pour lesquels I'imbrication du
deuxieme bloc planeur est tres faible, sont beaucoup plus lisses que celles des réglages A et
B.

La figure 5.103 rassemble les valeurs lagrangiennes et ALE des pertes par flexion en
t = t, et les compare avec les valeurs mesurées lors des essais expérimentaux. On constate
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qu’il existe un écart assez important entre les résultats numériques et 'expérience. Néan-
moins, une fois encore, les tendances (augmentations et diminutions de forces en fonction
des réglages) sont respectées et la concordance entre les résultats des deux modéles numé-
riques est toujours tres bonne. Ceci laisse supposer, si on ne tient pas compte des erreurs de
mesure, que certains aspects du procédés, et plus particulierement la loi de comportement
du matériau (écrouissage cinématique, anisotropie, viscosité, etc.), pourraient étre mieux
modélisés.

5.5.3.2 Influence des méthodes de gestion de maillage ALE

Apres avoir validé le modele ALE par rapport a un modele lagrangien similaire et aux
mesures expérimentales, il semble utile d’envisager comment varient ces résultats avec les
différents choix qui ont été faits au niveau du repositionnement des noeuds et des conditions
aux limites (section 5.5.2.5).

Par exemple, on peut comparer la technique de remaillage par spline pour repositionner
les nceuds sur les frontieres supérieure et inférieure de la t6le et la technique de remaillage
de courbes paralleles. La figure 5.104 montre les deux maillages obtenus en t = t,, c’est-
a-dire a la fin de la phase de planage, lorsque la traction amont est toujours effective (ré-
glages A). Le maillage de quadrangles que fournit la deuxieme méthode semble intuitive-
ment meilleur que le premier. Il n’en demeure pas moins que cette apparente qualité n’est
qu’esthétique et donc subjective, car les solutions obtenues sur les deux maillages, qu’il
s’agisse du champ de déformation plastique équivalente tel que montré sur cette figure ou
des courbes d’allongement longitudinal, sont tout a fait identiques dans les deux cas.

Pour ces deux simulations particulieres, I'utilisation de la méthode complexe de reposi-
tionnement simultanée de noeuds sur courbes paralléles représente 7% du temps de calcul
total, contre 0.2% dans le cas de deux simples splines découplées. Ce choix a donc une
influence significative sur la vitesse de cette simulation numérique. Elle aura évidemment
un impact moindre pour les simulations 3D que nous présentons a la section 5.5.3.6.

Un autre point a éclaircir est I'influence de la taille du domaine ALE maillé sur la solution
finale obtenue. Puisque la longueur du maillage utilisé en formalisme ALE est inférieure
a celle du modele lagrangien et, plus encore, a celle du procédé réel, 'application des
conditions aux limites, qui modélisent les appuis de la t6le sur les rouleaux des systemes de
bobinage, se fait a une position qui est relativement proche des blocs planeurs. La nécessité
d’imposer la perpendicularité de la téle avec les deux frontieres eulériennes par deux séries
de fixations influence inévitablement les résultats dans le domaine de calcul quasi eulérien.

La figure 5.105 montre les courbes d’allongement obtenues en t = t, pour différentes
valeurs de la longueur L, ... Pour rappel, cette longueur est la distance qui sépare le pre-
mier rouleau de la planeuse de 'extrémité amont du maillage, sur laquelle sont appliquées
les conditions aux limites d’entrée. Comme on pouvait s’y attendre, la valeur de I'allon-
gement en sortie de planeuse, c’est-a-dire la valeur du palier horizontal sur la figure, est
d’autant plus proche de la valeur lagrangienne que les conditions aux limites s’éloignent
de la planeuse. Pour L, .. = 150 mm, il est utile de se rappeler que la position des condi-
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glages A).

tions aux limites ALE correspond exactement a la position de 'extrémité mobile du maillage
lagrangien en fin de calcul.

A la section 5.5.2.5, la maniére de fixer la téle en amont et en aval du maillage a été
décrite. En particulier, nous avons insisté sur 'importance de maintenir la téle perpendicu-
laire a la frontiere eulérienne amont pour permettre que I'extrémité du maillage sur lequel
on applique la traction représente bien une section droite de la tole. La figure 5.106 montre
lI'influence des fixations a cet endroit. Sur cette figure, nous appelons fixations #1 le fait de
ne fixer quun seul noeud verticalement au niveau de la frontiére. Les fixations #2 consistent
a fixer une série de nceuds en aval de la frontiere pour que la tole conserve son horizonta-
lité. On constate que, si on ne fixe qu'un seul nceud, I'allongement en entrée de planeuse
(x > 281 mm) au temps t = t, n’est pas nul, alors qu’a cet instant la traction a été sup-
primée. De plus, cette méme courbe d’allongement n’est pas aussi lisse que dans le cas de
référence au niveau de la sortie de la planeuse. Elle présente une légere imperfection dont
la distance a la frontiere amont vaut précisément la longueur de planage L,. Il s’agit donc
d’un allongement parasite créé sur la frontiere amont pendant la phase d’imbrication ini-
tiale (t € [t,, t,]) et qui s’est propagé a travers le maillage ALE lors de la phase de planage

(t € [ty t3]).

Bien entendu, pour ce cas précis, ces imperfections dans les résultats ALE sont relative-
ment petites et ne modifient pas significativement la valeur de I'allongement fourni par la
simulation. Cependant, il nous a semblé tout de méme utile d’éliminer ces défauts, car leur
amplitude dépend directement, et de maniere peu prévisible, des parametres du procédé.
IIs pourraient donc étre bien plus importants pour d’autres opérations de planage.

Le probleme d’allongement non nul en entrée de planeuse est certainement le plus pré-
occupant puisque, cette grandeur (ESY) étant calculé de maniére incrémentale a partir du
tenseur des gradients de déformation F, I'erreur associée n’est pas localisée aux environs
de la frontieére amont : elle est susceptible de se propager en aval, comme tout autre gran-
deur convectée, et de modifier ainsi la valeur finale de I'allongement mesuré en sortie de
planeuse.
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5.5.3.3 Schéma de convection

Apres avoir présenté les premiers résultats obtenus grace a l'utilisation du schéma de
convection le plus précis que nous avons a notre disposition, c’est-a-dire celui utilisant une
reconstruction linéaire des champs a transférer, il semble utile d’étudier I'influence de la
méthode de convection sur la solution obtenue et, plus précisément, I'allongement de la
fibre moyenne en sortie de planeuse. En effet, 'algorithme de Godunov, qui utilise une
reconstruction constante, compense sa précision limitée par une vitesse d’exécution élevée.
Comme pour la section précédente et sans perte de généralité, seul le cas des réglages A est
étudié.

Pour enrichir cette étude, les simulations ALE sont exécutées a nouveau en utilisant la
méthode de Godunov et les trois maniéres de calculer le flux convectif présentées a la sec-
tion 4.4.7. Pour rappel, le flux a travers une aréte d’'une cellule de convection autour d'un
point de Gauss est proportionnel a d.n ot d est le déplacement convectif et n est la normale
non normée a l'aréte (sa norme vaut la longueur de I'aréte). Les trois maniéres de calcu-
ler le flux découlent du choix de cette normale : On peut privilégier soit la configuration
lagrangienne de la normale n*, soit sa configuration eulérienne n®, soit une combinaison
des deux (n* + nf)/2. On appellera abusivement flux exact le flux qui découle de ce der-
nier choix, car d.n correspond alors a l'aire exacte du quadrangle construit en reliant les
configurations lagrangienne et eulérienne de I'aréte entre elles. C’est la maniere de faire
par défaut lorsqu’on utilise le schéma de Godunov.
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FIGURE 5.107 — Comparaison des allongements lon- FiGURe 5.108 - Profil d’allongement longitudinal
gitudinaux obtenus (Effc) en t = t4 pour diffeé- (Effc) a travers Uépaisseur, le long d’'une section
rentes méthodes de convection. droite en x = —100 mm en t = t, pour diffé-

rentes méthodes de convection.

La figure 5.107 compare les allongements de la fibre moyenne le long de la tole en
t = t, pour le modele ALE en utilisant les différents schémas de convection et pour le
modele lagrangien. La courbe la plus proche de la référence lagrangienne est, sans sur-
prise, celle obtenue par reconstruction linéaire. Néanmoins, il est intéressant de remarquer
que l'algorithme de Godunov couplé a un calcul des flux basé sur la normale eulérienne
(flux E sur la figure) est également trés proche de l'allongement lagrangien. L'utilisation
du calcul par défaut du flux (flux exact) sous-estime I'allongement en sortie de planeuse.
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Quant a la méthode utilisant la normale dans sa configuration lagrangienne (flux L), elle
s’éloigne encore plus de la solution attendue. La solution obtenue par calcul exact des flux
est équidistante des deux autres.

Il Phase lagrangienne
[ Repositionnement des noeuds
I Convection

Lagrangien

ALE Lin. Rec.

ALE Godunov

4000 6000 8000
CPU [s]

0 2000

FIGURE 5.109 - Influence du schéma de convection ALE sur le temps de calcul de la simulation. Comparaison
avec le temps de calcul lagrangien. Les trois étapes du calcul ALE (phase lagrangienne, repositionnement
des nceuds et convection) ont été mesurées séparément.

La figure 5.109 compare les temps de calcul des modeles lagrangien, ALE avec recons-
truction linéaire et ALE avec reconstruction constante (Godunov). Les différentes phases
du calcul ALE sont chronométrées de maniere séparée pour mettre en évidence leur impor-
tance relative. La méthode choisie pour le calcul des flux n’influence pas significativement le
temps de calcul de I'algorithme de transfert de Godunov. Nous avons donc représenté qu’un
seul calcul avec cet algorithme sur la figure. On constate que le schéma de Godunov per-
met d’obtenir une simulation trés rapide par rapport au schéma du second ordre (le temps
CPU total vaut 1h04’ contre 1h59’, soit un gain proche d’'un facteur 2!). Le temps de calcul
est méme inférieur a celui de la simulation lagrangienne. On remarque non seulement un
gain tres important au niveau de la phase de convection, comme on pouvait s’y attendre,
mais aussi un gain plus faible dans la phase de repositionnement de nceud. Ce dernier gain
ne peut étre di qu’a la méthode de repositionnement des noeuds sur les arétes paralleles
qui utilise un algorithme de projection itératif. Il semblerait donc que les projections sur
les splines seraient plus rapides dans le cas de I'algorithme de Godunov que dans le cas
de la reconstruction linéaire. Nous n’avons pas pris la peine d’analyser plus en détail cette
observation.

Vu la vitesse du schéma de Godunov par rapport au schéma du second ordre et la
précision inattendue des résultats obtenus en privilégiant la normale eulérienne, il semble
important d’étudier plus précisément l'influence de la méthode de calcul du flux sur les
résultats de la simulation de planage.

Il existe en fait deux phénomenes intéressants liés a la méthode de calcul des flux
convectifs pour le schéma de Godunov. Le premier est le décalage vertical bien visible entre
les différentes courbes des figures 5.107 et 5.108. Il s’explique par le fait que la tole subit
un allongement et donc, par effet de Poisson, une réduction d’épaisseur. Dans les zones
subissant un allongement, les arétes qui sont perpendiculaires au mouvement sont plus
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FiGURE 5.110 - Comparaison des flux calculés a Uaide de la configuration lagrangienne ou eulérienne d’'une
aréte perpendiculaire au mouvement convectif et dont la longueur diminue dans le sens de U'écoulement.

courtes dans leur configuration lagrangienne que dans leur configuration eulérienne (voir
figure 5.110). Le flux calculé a partir de l'aréte eulérienne est donc toujours plus important
que le flux basé sur 'aréte lagrangienne. Le flux exact étant la moyenne des deux, il semble
donc normal que la courbe d’allongement associée soit équidistante des deux autres.

Un deuxieme phénomene, beaucoup moins important, mérite d’étre signalé puisqu’il est
bien visible sur les profils d’allongement a travers I'épaisseur. La figure 5.108 montre ces
profils dans une section située en x = —100 mm, c’est a dire dans la zone de sortie, 1ége-
rement en aval du dernier rouleau de la planeuse. Le long de cette section, la distribution
lagrangienne d’allongement est rectiligne. Cela signifie que cette section droite est restée
droite au cours du calcul. La courbe obtenue par reconstruction linéaire est proche de cette
droite. On observe de tres 1égeres variations de pente aux extrémités du profil (vers y, =0
mm et y, = 2.2 mm) qui sont dues a la présence de tres 1égers flux parasites transverses a
travers les frontieres du maillage. La courbe obtenue par le schéma de Godunov couplé a
un calcul exact des flux présente cette méme forme caractéristique, méme si elle est décalée
vers le bas et que l'influence des frontieres est plus marqué (le schéma de Godunov est plus
diffusif). Si on observe maintenant, sur cette méme figure, les deux courbes obtenues en
privilégiant une configuration particuliere de normale lors du calcul des flux, on constate
que leurs courbures sont différentes. L'une est convexe, 'autre est concave. Ceci laisse sup-
poser que les flux transverses, dans le sens de I'épaisseur, sont différents dans chacun des
cas.

» d.n' < 0 d.n"> 0

facette lagrangienne T ee—eeooooT - facette eulérienne

FiGURE 5.111 - Comparaison des flux calculés a Uaide de la configuration lagrangienne ou eulérienne d’'une
aréte alignée sur la direction du mouvement convectif.
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Pour mieux comprendre la raison de ces différences, la figure 5.111 montre de maniere
schématique les grandeurs géométriques qui interviennent dans le calcul du flux lorsqu'une
aréte, alignée sur une fibre longitudinale de la tOle, subit une rotation. En fonction de
configuration de la normale choisie, le flux calculé a travers I'aréte, qui devrait étre idéa-
lement nul, sera soit un flux centrifuge (normale lagrangienne), soit centripete (normale
eulérienne). La direction des flux transverses est donc bien opposée lorsqu’on choisit une
normale ou l'autre.

Bien entendu, les deux phénomenes se combinent puisque les arétes qui effectuent une
rotation lors de la flexion subissent également un allongement.
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FiGURe 5.112 - Profil de déformation plastique ~ FIGURE 5.113 — Profil de pression hydrostatique

équivalente (&P) le long d’une section droite en (p = tr(g)) le long d’une section droite en
x = —100 mm en t = t, pour différentes mé- x = —100 mm en t = t, pour différentes mé-
thodes de convection. thodes de convection.

D’autres types de résultats peuvent étre également analysés. Sur les figures 5.112 et
5.113 sont représentés les profils de déformation plastique équivalente a travers I'épaisseur
le long d’une section située en x = —100 mm au temps t = t,. Les deux grandeurs sont
globalement bien représentées par tous les schémas de convection. Les différences ne sont
pas aussi visibles que dans le cas de I'allongement longitudinal. Sur le profil de déformation
plastique, on peut noter une nouvelle fois les deux phénomenes précédemment décrits
pour le schéma de Godunov. D’une part, la déformation plastique sur la fibre moyenne
est surévaluée par l'utilisation d’un flux eulérien, car celui-ci surestime la valeur du flux
réel. D’autre part, les profils ALE résultant d’un calcul eulérien ou lagrangien du flux sont
beaucoup moins symétriques par rapport a la fibre moyenne que la solution lagrangienne
ou que les solutions ALE obtenues par un calcul exact des flux. Ceci trahit la présence de flux
transverses de signes opposés dans ces deux méthodes qui privilégient une configuration
d’aréte particuliere.

Bien que I'allongement longitudinal calculé par I'algorithme de Godunov soit plus proche
de la solution lagrangienne lorsque le flux est calculé a 'aide de la configuration eulérienne
des arétes des cellules de convection, il serait dangereux d’en déduire qu'’il est préférable
d’utiliser cette méthode de calcul. Il s’agit en fait d'un heureux hasard : le schéma de Godu-
nov classique, utilisant un calcul exact des flux, provoque une diffusion excessive et, de ce
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fait, génere des allongements longitudinaux moindres que les résultats de référence. Dans
le contexte particulier de ce probleme et pour cette valeur particuliere d’allongement qui
nous intéresse, le choix de la normale eulérienne provoque une surestimation des flux qui
vient compenser I'erreur de diffusion.
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FIGURE 5.114 - Réduction d’épaisseur (E%, ) lelong  FIGURE 5.115 - Convection des pics d’allongements
de la fibre moyenne de la téle en t = t,. provoqués par U'imbrication initiale. On a utilisé
pour ce faire un modele ALE plus long (L, =

450 mm, t = ty).

Si la valeur observée était, par exemple, la réduction d’épaisseur, c’est-a-dire la défor-
mation de Green-Lagrange ES)L/ selon I'épaisseur, évaluée le long de la fibre moyenne de la
tole (voir figure 5.114), on conclurait qu'un calcul lagrangien du flux donne cette fois de
meilleurs résultats.

Pour terminer, ce comparatif des schémas de convection, un modele ALE plus long a
été construit pour comparer la qualité de convection des pics d’allongement longitudinaux
créés au niveau des rouleaux lors de la phase d’imbrication initiale. Ces pics sont toujours
clairement visibles sur la courbe d’allongement longitudinal lagrangienne. Le modele ALE
plus long permet de conserver ces pics dans la zone de calcul sans qu’ils passent outre la
frontiére aval. La figure 5.115 compare ces profils a l'instant t = t,. Il est intéressant de
noter que les valeurs stabilisées de I'allongement en sortie de planeuse sont identiques a
celles précédemment calculées avec un modele ALE plus court. Quant aux pics, ils sont
évidemment mieux représentés par le schéma utilisant une reconstruction linéaire qu’avec
le schéma de Godunow.

En conclusion, pour ce modele de planage sous traction, il semble donc préférable d’uti-
liser le schéma de convection utilisant une reconstruction linéaire si la valeur de I'allonge-
ment longitudinal est un résultat important de 'étude que 'on méne sur la planeuse (c’est
généralement le cas). Contrairement aux applications numériques précédentes, ce schéma
apporte une nette amélioration des résultats obtenus par rapport au schéma de Godunov,
car lui seul permet de retrouver précisément les résultats lagrangiens correspondants.
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5.5.3.4 Retour élastique

Apres avoir étudié les résultats de la simulation jusqu’au temps t = t,, nous analysons la
derniere phase du calcul qui consiste a relacher les fixations a I'extrémité aval du maillage.
Pendant cette phase, la t6le est sous I'action de ses contraintes résiduelles apres planage et
elle se courbe pour retrouver une nouvelle position d’équilibre. Quel que soit le formalisme
utilisé dans la premiere partie de la simulation, cette étape est réalisée dans les deux cas
en formalisme lagrangien. Elle permet de mesurer indirectement la qualité de la solution
précédemment fournie par le modeéle ALE vis-a-vis du modele lagrangien de référence par
la mesure d’'une grandeur géométrique simple : la courbure de la tole dans le plan ver-
tical de 1’étude apres retour élastique, c’est-a-dire son cintre résiduel. Par la suite et par
souci de simplicité, nous appellerons résultats ALE les résultats obtenus a partir de la confi-
guration en t = t, du modele ALE bien que cette derniere phase de retour élastique soit
lagrangienne. Les réglages A de la planeuse sont utilisés par défaut.

Pour rappel, des éléments spéciaux d’amortissement sont introduits dans le modele au
niveau des nceuds proches de l'extrémité de la tole, sur une longueur L,,,. Cet artifice
de calcul permet une dissipation rapide (moins de 5 secondes) de I’énergie libérée par la
suppression des fixations. De plus, la totalité des noeuds des deux maillage en amont de
x = 0 est fixée pour éviter le calcul inutile des vibrations de la tole entre les rouleaux.
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FIGURE 5.116 — Comparaison de la forme finale FiGURE 5.117 - Cintre (rayon de courbure) mesuré
apres retour élastique des deux téles en fonction le long de la téle dans sa configuration finale en
du formalisme précédemment utilisé pour modé- t=ts.
liser le planage.

La figure 5.116 représente les deux géométries de la tole a l'instant t = t; obtenues a
partir des modeles ALE et lagrangien. A premiére vue, sur cette figure, les deux courbures
de la tole en sortie de planeuse semblent assez différentes. L'écart entre les deux courbes
est en effet assez important et semble suggérer que les contraintes résiduelles du modele
ALE ont été précédemment mal calculées. En fait, il n’en est rien : si on trace, pour les
deux simulations, la valeur du rayon de courbure de la téle, calculée localement en chaque
point le long de celle-ci (figure 5.117), on constate un trés bon accord des valeurs du cintre
calculé dans une zone autour de x = —100 mm. Au dela en aval (x < —150 mm), les
courbes se séparent et le cintre ALE est supérieur au cintre lagrangien. Si on revient a la
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figure 5.116, I'écart entre les deux tbles est amplifié par le fait que les fixations au niveau de
la sortie de la planeuse ne sont pas identiques. Vu la longueur différente des deux modeles,
les inclinaisons des deux téles en x = 0 mm sont légérement différentes. En fixant les nceuds
a partir de l'origine des axes, on fixe donc également la pente de la tole a cet endroit. Une
simple rotation rigide d’une tole par rapport a 'autre autour de x = 0 mm pourrait donc
mieux traduire la concordance des courbures en sortie de planeuse.
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FIGURE 5.118 — Forme finale de la tble apres retour ~ FIGURE 5.119 — Cintre résiduel aprés retour élas-
élastique en t = t5 (modéle ALE plus long). tique en t = t5 (modéle ALE plus long).

La divergence des deux courbes de cintre résiduel apres retour élastique est due a la dif-
férence de longueur des deux modeles. Pour le modele ALE, nous avons vu que la présence
de fixations au niveau de la frontiere eulérienne aval n’influence pas la valeur de I'allonge-
ment calculé en sortie de planeuse. Par contre, ces fixations influencent assez significative-
ment la valeur du cintre résiduel ou, du moins, la longueur sur laquelle il correspond au
cintre du modele lagrangien. Pour obtenir une meilleure correspondance et étendre cette
zone ou les valeurs de cintre sont identiques, il est nécessaire d’allonger le modele ALE.
Les figures 5.120 et 5.121 montrent les nouvelles courbes ALE obtenues pour une longueur
de maillage en sortie de planeuse plus importante (Ly,;, = 584 mm au lieu de 284 mm).
Les maillages ALE et lagrangien ont ainsi approximativement la méme longueur et leurs
extrémités sont positionnées de maniere identique en t = t,. Cette fois, les deux géomé-
tries sont tres proches et les valeurs de cintre correspondent sur une large zone. On peut
méme observer la présence de variations similaires de courbure au dela de ¢, , — L, c’est
a dire la position approximative de 'empreinte du premier rouleau sur la tole lors de la
phase d’imbrication initiale. Pour le modele ALE, cette relative précision sur les courbures
au niveau des empreintes est le résultat, d’'une part, de la précision de la convection de
I’état de contrainte local de la tole par I'algorithme de transfert des grandeurs aux points
de Gauss et, d’autre part, de la précision de la convection de la courbure de la surface par
'algorithme de relocalisation de nceuds des surfaces supérieure et inférieure de la tole.

Il est important de noter que le rayon de courbure de la tole mesuré le long de celle-ci
en sortie de planeuse n’est pas constant, ni en formalisme lagrangien, ni en formalisme
ALE. Sa variation spatiale dépend de la taille du modele en aval de la planeuse et de la
longueur de planage L,, y compris dans le cas lagrangien. Pour mieux modéliser la procédé
réel, il faudrait donc idéalement ajouter au minimum le premier cylindre d’appui en aval de
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la planeuse et tirer suffisamment de téle pour que la partie initialement sous les rouleaux
arrive a ce cylindre. Le cintre résiduel serait alors mesuré au dela du cylindre d’appui qui, vu
sa courbure opposée a celle de la tole et 'épaisseur de cette derniere, peut éventuellement
jouer un role sur la valeur finale du cintre mesuré.

Cette amélioration du modele ne sera pas envisagée dans ce travail. Nous nous bornons
donc ici a tirer uniquement o = 2 longueurs pour conserver des simulations relativement
courtes. Le plus important ici est de vérifier la concordance entre les résultats ALE et lagran-
gien. Par la suite, nous choisirons donc simplement une abscisse particuliere (x = —100
mm) pour évaluer le cintre tout en gardant a I'esprit que le modele doit étre amélioré pour
étre représentatif d’'une valeur stationnaire de cette grandeur.
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FIGURE 5.120 - Forme finale de la téle apreés retour ~ FIGURE 5.121 — Cintre résiduel aprés retour élas-
élastique en t = t;. Comparaison des différents tique en t = ts. Comparaison des différents sché-
schémas de convection. mas de convection.

Pour compléter I'étude des schémas de convection (section 5.5.3.3), les figures 5.120
et 5.121 présentent les courbes de cintre résiduel obtenues par les différents schémas de
convection. Il est tres intéressant de voir que le schéma de Godunov est tout a fait capable
de retrouver les résultats lagrangiens sur la zone en sortie de planeuse tant qu’on utilise
une évaluation exacte des flux convectifs. Bien évidemment, ce schéma du premier ordre
modélise beaucoup moins bien les phénomenes transitoires mais il ne nous intéressent pas
dans le cadre de cette étude. En particulier, 'empreinte du premier rouleau sur la tole,
visible par le pic autour de x = —300 mm sur la figure 5.121, est moins bien représentée
qu’avec l'algorithme de convection précis au second ordre.

Les valeurs des allongements longitudinaux mesurés le long de la fibre moyenne sont
identiques (a 0.02% pres) a ceux mesurés précédemment en t = t,. Ils ne sont donc pas
présentés ici.

Pour terminer cette section concernant la phase de retour élastique, la figure 5.122 ras-
semble les valeurs des cintres mesurés en x = —100 mm pour les quatre types de réglages
(voir tableau 5.17) et pour les formalismes ALE et lagrangien. On observe une correspon-
dance relativement bonne entre les deux résultats des deux modeles. L'écart plus important
obtenu avec les réglages C est prévisible puisqu’un écart similaire avait déja été observé au
niveau de I'allongement longitudinal (voir figure 5.101).
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FiGURE 5.122 - Valeurs des cintres résiduels en t = tg pour les différents réglages expérimentaux de la
planeuse (tableau 5.17).

5.5.3.5 Optimisation du modele 2D

Avant de passer a la création d'un modele 3D, inévitablement beaucoup plus cofliteux,
les modeles 2D ALE et lagrangien peuvent étre optimisés en termes de temps de calcul.
Nous choisissons de modifier uniquement le nombre d’éléments. Il serait en effet possible
également de modifier la taille des modeles, la durée de la simulation et tous les parametres
numériques intervenant dans le calcul (la précision de I'algorithme de Newton-Raphson, la
précision de I'intégration temporelle via la taille du pas de temps, le coefficient de pénalisa-
tion du contact, la précision de résolution des modes internes EAS, etc.). La limite de cette
opération d’optimisation est uniquement fonction de la précision avec laquelle on veut ob-
tenir les résultats, c’est-a-dire dans ce cas-ci, 'allongement, le cintre et les pertes par flexion.
Il est en effet inutile d’obtenir des valeurs numériques de forces précises au Newton pres
alors que le systeme de mesure de la machine fournit visiblement une force multiple de 50
kg (500 Newtons ?) et applique la traction consigne avec une erreur moyenne de 200 kg
(voir tableau 5.17).

Pour alléger les futures simulations 3D nous choisissons de diminuer le nombre d’élé-
ments dans 1'épaisseur de 8 a 6 (ny = 6) pour les deux modeles. Cette modification nous
permettra également de mesurer la sensibilité des résultats vis-a-vis de ce parameétre.

Le maillage lagrangien peut étre facilement optimisé en utilisant des mailles plus longues
dans la zone d’imbrication initiale (L,,). En utilisant des mailles deux fois plus grandes, on
diminue significativement le nombre de mailles total du modele sans pour autant détériorer
la convergence numérique de la phase d’imbrication initiale.

Le maillage ALE peut étre optimisé en utilisant un maillage a densité variable et en
concentrant les mailles aux endroits ou elles sont nécessaires, c’est-a-dire dans les zones ou
la t6le est en contact avec les rouleaux et ou elle subit des flexions. Ailleurs, la téle peut étre
discrétisée plus grossierement puisqu’en ces endroits, les contraintes et les déformations
varient faiblement. La portion de tole sur laquelle on mesure le cintre (L) nécessite un
maillage plus fin que les zones extrémes (L, €t L,..); le but de ces derniere n’étant
que d’éloigner les conditions aux limites de la planeuse. Il est toutefois possible d’utiliser

267



CHAPITRE 5. APPLICATIONS NUMERIQUES

des mailles plus longues que celles utilisées au niveau des zones de contact. Les nouvelles
longueurs des zones de maillage optimisées ainsi que la taille des mailles dans ces zones
sont indiquées dans le tableau 5.18.

L aval L sprb L m L p L amont
Lagrangien 50 - 281 2x 281 =562 150
ALE 16 — 150 284 — 150 281 - 150

Lzeival L seprb L fn L; Lzeimont
Lagrangien 4 - 1—-2 1 4
ALE 4 1—3 1 — variable - 4

TaBLEAU 5.18 - Optimisation des zones de maillage et des tailles de maille en vue d’une diminution du temps
de calcul (modification du tableau 5.15). Toutes les longueurs sont exprimées en [mm].

FiGURE 5.123 - Calcul analytique de la longueur et de la position des zones de contact le long de la tdle afin
de pouvoir y définir un maillage plus fin (la géométrie réelle n’est pas respectée pour améliorer la lisibilité
de la figure).

La densité variable du maillage ALE sur la longueur L,, est définie en calculant analyti-
quement la position des zones de contact entre la tole et les rouleaux. Ceci est possible en
faisant une approximation sur la géométrie de la tole en cours de planage qui est considérée
comme parfaitement tendue entre les rouleaux et d’épaisseur nulle. Sous ces hypotheses,
les angles de contact et les longueurs correspondantes peuvent étre calculés a 'aide d’opé-
rations trigonométriques élémentaires a partir des positions initiales des rouleaux corrigées
en fonction des imbrications. La figure 5.123 représente schématiquement le deuxiéme bloc
planeur et les longueurs de contact correspondantes. Ces longueurs deviennent le support
d’un maillage fin. Elles sont agrandies pour compenser les hypothéses précédemment faites
et pour garantir une prise de contact correcte au début du calcul quand la téle n’est pas
encore fléchie. A titre d’illustration, la figure 5.124 montre le maillage obtenu au niveau du
deuxieme bloc planeur en appliquant cette méthode.

La figure 5.125 montre les allongements longitudinaux calculés en formalisme lagran-
gien et ALE avec les nouveaux maillages optimisés vis-a-vis du temps de calcul. On observe
un léger décalage entre les anciens et les nouveaux résultats qui est di principalement a la
réduction du nombre d’éléments dans I’épaisseur. Par contre, on peut voir que la nouvelle
répartition des mailles du modele ALE n’a pas d’influence sur la valeur de 'allongement me-
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FIGURE 5.124 — Maillage ALE optimisé de la téle au niveau du deuxiéeme bloc planeur (t = t, - réglages A).
Les mailles de 1 mm permettent une prise en compte preécise du contact et de la flexion imposée par chaque
rouleau. Partout ailleurs, des mailles plus grandes sont suffisantes.

suré puisque la courbe ALE est superposée a la courbe lagrangienne du maillage lagrangien
optimisé.
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FiGURE 5.125 — Comparaison des allongements lon- FiGURE 5.126 — Comparaison des cintres résiduels
gitudinaux pour les modeéles de référence et les pour les modéles de référence et les modéles op-
modeéles optimisés (t = ts, réglages A). timisés (t = ts, réglages A).

Le cintre résiduel le long de la t6le mesuré apres retour élastique est tracé sur la fi-
gure 5.126 pour les différentes simulations. Les modeéles optimisés fournissent les mémes
courbures en sortie de planeuse que les modeles de référence précédemment étudiés.

De maniere plus précise, le tableau 5.19 rassemble les temps de calcul et les valeurs
numériques des résultats principaux fournis par les différents modeles. Le temps CPU né-
cessaire a la phase finale de retour élastique (t € [t,, t5]) n'est pas comptabilisé dans ce
tableau parce qu’il dépend fortement de la valeur du facteur d’amortissement A choisie et
que nous n’avons pas essayé de trouver la valeur optimale pour les différents maillages. Ce
temps CPU varie d’une a dix minutes suivant les cas.

Si on compare les différentes simulations entre elles, on constate qu’elles fournissent
toutes des valeurs tres proches pour le cintre résiduel mesuré en x = —100 mm sur la
configuration finale et pour les forces représentée ici par la valeur des pertes par flexion.
Par contre, les valeurs obtenues pour I'allongement longitudinal dépendent du maillage et
du schéma de convection choisi.
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Nb. pas / Temps CPU Nombre | Allong' | Cintre | Pertes
itérations d’élém. [%] [mm)] [ke]
Modele initial
Lagrangien 1982/6233 | 1h27’18” (1.00) 7328 2.02 293 1171
ALE 1977/2315 | 1h58’58” (1.36) 5200 2.05 281 1187
ALE (Godunov) 1977/2048 | 1h03’46” (0.73) 5200 1.75 284 1191
Modele optimisé
Lagrangien 1997/6202 | 1h20’40” (1.00) 4566 2.20 287 1180
ALE 1997/3271 48°44” (0.60) 1818 2.17 284 1190
ALE (Godunov) 1985/2788 29°08” (0.36) 1818 1.85 285 1191
ALE (+ long) 1992/3272 56’59” (0.71) 2418 2.17 281 1190

TaBLEAU 5.19 — Comparaison des résultats numériques et des temps de calcul pour différents modéles (ré-
glages A) avant et apreés optimisation du maillage. Les temps CPU sont mesurés sur PC3 (tableau A.1).

Les simulations lagrangiennes nécessitent beaucoup plus d’itérations a chaque pas de
temps que celles en formalisme ALE. Ce phénomeéne avait déja été remarqué pour les simu-
lations précédentes de laminage. Il est d{i au fait que les vitesses et les accélérations nodales
ne sont volontairement pas convectées en ALE (voir section 5.4.3.2).

Une fois optimisé, le modeéle ALE est environ 40% plus rapide que le modele lagrangien,
optimisé lui aussi. Utiliser un maillage ALE plus long pour mieux décrire I'évolution de la
courbure de la t6le apres retour élastique cofite évidemment plus cher que le modele ALE
de référence. Néanmoins, il reste plus rapide que le modele lagrangien.

Enfin, si on tolere une perte de précision au niveau du calcul de 'allongement, 1'utilisa-
tion d’'un schéma de convection de Godunov au lieu du schéma du second ordre que nous
avons choisi par défaut, permet d’obtenir un temps de calcul pres de trois fois inférieur au
calcul lagrangien. Notons que, dans ce cas particulier, la perte de précision sur I'allonge-
ment a été, par chance, partiellement compensée par I'erreur provenant de la diminution
du nombre de mailles sur 'épaisseur. Il ne faudrait bien stir pas en déduire que le schéma de
Godunov est le meilleur choix puisque dans d’autres cas, ces erreurs numériques pourraient
s’additionner.
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5.5.3.6 Modeéle 3D

Un modele tridimensionnel du procédé de planage sous traction est créé a partir du
modele 2D précédent en effectuant une simple extrusion du maillage optimisé et de la
géométrie des rouleaux hors du plan (x, y). La direction y reste la verticale. La direction z
devient la direction transverse. Vu la symétrie du probleme, seule la moitié de la largeur est
modélisée (pour rappel, [/2 = 75 mm) et on utilise cinq éléments EAS le long de celle-ci
(n, =5).

Les fixations verticales (y) et horizontales (x) aux extrémités du modele 2D sont tra-
duites a trois dimensions par des fixations similaires sur toute la demi largeur de la tole. Le
plan de symétrie z = 0 est modélisé par des fixations appropriées sur le bord du maillage
correspondant. Le bord opposé en z = [/2 est, bien entendu, laissé libre pour permettre
les déformations dans cette direction. On s’intéressera particulierement a la valeur de la ré-
duction de largeur apres planage. Le contréle de cette largeur de bande sur ’ensemble des
machines qui composent une ligne de production d’acier, et en particulier sur une planeuse,
est un probleme complexe qui suscite un grand intérét industriel et qui ne peut évidemment
pas étre modélisé a deux dimensions.

Pour le modele ALE, le passage a trois dimensions nécessite le choix de méthodes de re-
positionnement de nceuds supplémentaires concernant les surfaces supérieure et inférieure
ainsi que le bord externe de la tole. Cette derniére surface peut étre tres bien représentée a
tout moment par une simple interpolation transfinie des lignes de sa frontiére, car son aire
est trés petite et 'influence de son éventuelle courbure interne sur le procédé devrait étre
faible. Par contre, les surfaces supérieure et inférieure de la tole sont de grande taille et
vont subir des flexions hors de leur plan initial autour de 'axe z (le cintre) et de I'axe x (la
tuile). Il est donc important de mettre en ceuvre un algorithme de repositionnement nodal
précis pour conserver partout et a tout instant une téle d’épaisseur correcte.

La méthode développée a cette fin dans ce travail de these est décrite a la section 3.5.2.
Elle est relativement cofiteuse, car elle nécessite la construction et la mise a jour continue
d’une approximation spline de la surface dont on veut repositionner les nceuds. Néanmoins,
dans le cas de ce modeéle de planage, on peut s’attendre a ce que la forme des surfaces ne
differe pas fondamentalement de la forme de leurs lignes frontiere. On est donc autorisé ici
a utiliser une méthode de repositionnement non itérative (section 3.5.2.7). Elle consiste,
dans un premier temps, a redéfinir un maillage pour chaque surface par interpolation trans-
finie, comme dans le cas du bord de la téle. Dans un deuxieme temps, pour conserver la
courbure de la surface lagrangienne, ce maillage est projeté sur une approximation spline
de celle-ci.

Les noeuds internes du maillage de la téle sont repositionnés par la méthode d’interpola-
tion transfinie. Puisque le maillage est structuré et que les déformations restent modérées,
c’est, de loin, la solution la plus efficace.

Tous les autres parametres numériques sont choisis identiques au cas bidimensionnel.
En particulier, la simulation se déroule suivant les mémes phases de calcul. Nous nous
concentrons une fois encore sur les réglages A du tableau 5.17.
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F1GURE 5.127 - Simulation 3D du planage sous traction (réglages A). Géométrie du modeéle ALE a différents
instants.
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FiGURE 5.128 — Comparaison des modeéles ALE et lagrangien en t = t, (en fin de planage, apreés suppression
de la traction) et t = tg (apreés retour élastique complet).
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La figure 5.127 montre le maillage ALE a différents instants. La répartition optimisée
des mailles provenant de I'étude du modele 2D est bien visible. La figure 5.128 permet de
comparer les résultats du modele ALE et lagrangien entre eux a deux instants clefs de la
simulation : en fin de planage avant et apres le relachement des fixations a 'extrémité aval
du maillage. Mis a part que le modele ALE est plus court, les déformées sont similaires et les
champs de déformation plastique équivalente sont aussi tres proches sauf peut-étre a proxi-
mité de la frontiere ALE. A cette extrémité, le maillage ALE posséde de plus grandes mailles
que son homologue lagrangien et 'empreinte de I'imbrication initiale du premier rouleau,
qui se trouve a cet endroit a ce moment, est moins nette qu’en formalisme lagrangien.

1 1 1 1 N
/L\;—:JE zg i Planeuse i | agrangien
; <1
2.5H Godunov 2D

——ALE 3D
Lag. 3D
Godunov 3D
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Allongement [%]
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FiGURE 5.129 — Allongement longitudinal moyen = FIGURE 5.130 - Allongement longitudinal (Effc)
(Effc) le long de la tble en t = ts. Influence de la mesuré dans une section droite située en x =
dimension du modéle et de Ualgorithme utilisé. —100 mmen t = t,.

Comparons de maniere plus précise les deux formalismes en 3D ainsi que l'influence
de la dimension du modele sur les résultats obtenus. Sur la figure 5.129 sont tracées les
courbes d’allongements longitudinaux pour différents types de modeles. L'allongement la-
grangien 3D (figure 5.129) correspond a I'allongement mesuré dans les modeles 2D. La
valeur obtenue en formalisme ALE (2.09%) est proche, mais légérement inférieure a la va-
leur lagrangienne (2.18%). Enfin, le schéma de convection de Godunov fournit un résultat
encore bien plus faible.

Apres plusieurs essais pour tenter d’expliquer la différence entre la courbe ALE (avec le
schéma du second ordre) et la courbe lagrangienne en 3D, nous pouvons dire que celle-ci
ne dépend ni de la taille longitudinale des mailles, ni de la taille du pas de temps, ni du
la longueur totale du modele ALE. La figure 5.129 montre la répartition de I'allongement
(ES}E) dans une section droite située en x = —100 mm pour ces deux modeles. La surface
d’allongement lagrangienne est proche d’un plan. Cela signifie que la section droite ini-
tialement plane reste plane et perpendiculaire a la fibre moyenne apres déformation. Par
contre, la surface d’allongement ALE est décalée vers le bas et n’est pas tout a fait plane. Sa
géométrie, en forme de S, rappelle les courbes de la figure 5.108 obtenues en jouant sur la
maniere d’évaluer les flux convectifs.

La figure 5.131 montre I'écart entre les deux surfaces (allongement lagrangien - allon-
gement ALE). La variation de courbure de la surface de cette figureen y =0 mmet y =e
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FIGURE 5.131 - Différence des deux répartitions FIGURE 5.132 - Cintre le long de la téle en t =
d’allongement d’une section représentées sur la ts. Influence de la dimension du modéle et de
figure 5.129. Ualgorithme utilisé.

mm suggere la présence de flux parasites provenant du remaillage des surfaces supérieures
et inférieures. Ce sont ces flux, d’aprés nous, qui entrainent une erreur sur I'allongement.
Le probléme n’apparaissant pas dans le cas 2D, on peut supposer que la largeur importante
des mailles est en cause. Il serait donc intéressant, mais cela n’a pas été fait, d’étudier l'in-
fluence du nombre de mailles utilisées pour discrétiser la demi-largeur (n,) sur cet écart
d’allongement.

La figure 5.132 rassemble les courbes de cintre le long de la tole pour les mémes simula-
tions que la figure 5.129. On observe un léger décalage entre les résultats 2D et les résultats
3D (une trentaine de millimetres sur la valeur du rayon). Cependant, contrairement au cas
de l'allongement longitudinal, tous les résultats 3D sont cette fois trés proches les uns des
autres, du moins a proximité du dernier rouleau de la planeuse. En particulier, la précision
du schéma de convection ne joue aucun role sur la courbure finale de la tole aprées retour
élastique.

[ Lagrangien
AL

-Lagrangien
I ALE

Défo. plastique équivalente
Pression [MPa]
o N b

Epaisseur Y ; [mm] Largeur Z, [mm] Epaisseur Y ; [mm] 00 Largeur Z, [mm]

FIGURE 5.133 — Déformation plastique équivalente ~ FIGURE 5.134 — Pression hydrostatique (p = tr(o))
(€P) mesurée dans une section droite située en mesurée dans une section droite située en x =
x =—100 mmen t = ty. —100 mmen t = t,.
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Les figures 5.133 et 5.134 représentent respectivement les profils de déformation plas-
tique équivalente et de pression hydrostatique dans la section x = —100 mm en sortie de
planeuse, juste avant la derniére phase de retour élastique (t = t,). Ces figures peuvent étre
comparées aux figures correspondantes du modele bidimensionnel (figures 5.112 et 5.113,
page 262). Elles ont une forme similaire aux profils 2D bien qu’on note ici une légére va-
riation sur la largeur. Les résultats ALE et lagrangiens sont donc tres proches.

Intéressons-nous maintenant aux résultats indisponibles dans la précédente analyse 2D :
la réduction de largeur et la courbure résiduelle de la tole dans le sens travers. Pour mesurer
la premiere de ces deux grandeurs, il est commode de réaliser une mesure de longueur
directement sur les maillages des deux modeles ALE et lagrangien. En effet, contrairement a
I'allongement longitudinal qui ne peut pas étre mesuré sur le maillage ALE par 1’élongation
de ses mailles, la réduction de largeur peut, en premiere approximation, se mesurer par la
variation de longueur d’une ligne de maillage initialement perpendiculaire a la direction x.
On fait ainsi 'hypothese que les lignes de maillage ne subissent pas de rotation autour de
I'axe z. Ce n’est cependant pas rigoureusement vrai puisque les bords de la téle en z =0 et
z =1/2 n’ont pas tout a fait la méme longueur, vu la légere courbure de la téle dans le sens
travers que nous mesurerons par la suite.

Une autre maniere de mesurer la réduction de largeur serait de moyenner une mesure
de déformation transversale. La figure 5.135 montre par exemple le champ de déformation
de Green-Lagrange ES" au temps final pour les modéles ALE et lagrangien. Les valeurs
obtenues sont tres proches. Il est intéressant de remarquer que la variation de largeur n’est
pas homogene selon celle-ci. Une étude de maillage plus poussée concernant le nombre
optimum d’éléments (n,) pour discrétiser la largeur devrait donc étre faite pour valider
définitivement les résultats présentés ci-dessous.

Lagrangien

lj’x

1.5 E(L [70)] 0
[ . - |

FIGURE 5.135 — Comparaison des champs de déformation dans le sens travers (EZGZL) obtenus par les modéles
ALE et lagrangien au temps t = t5 sur la face supérieure de la tdle.

La réduction de largeur de la t6le, mesurée le long de celle-ci en t = t; apres retour
élastique, est représentée sur la figure 5.137 pour les modeles ALE et lagrangien. Les résul-
tats d’'un modele ALE plus long (L, = 450 mm), dont la taille correspond a la longueur
totale du modele lagrangien, ainsi qu'un modele ALE, utilisant le schéma de Godunov pour
la convection, sont également représentés sur la figure. On constate un tres bon accord
entre les courbes méme si les valeurs ALE sous-estiment toujours la courbe lagrangienne.

La courbure de la tole dans le sens travers, appelée tuile (voir figure 5.136), est généra-
lement exprimée en mm/m et calculée par la distance verticale qui sépare le bord de la tble
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\_/' Yy
cintre z &Tﬂ z

FIGURE 5.136 — Visualisation du cintre résiduel et de la tuile dans la configuration finale apres retour élastique
(modéle ALE — réglages A).

a son centre, rapportée a un metre de largeur. Elle est positive si la courbure est orientée
vers le haut. La tuile finale est tracée tout le long de la téle sur la figure 5.138. Il est impor-
tant de remarquer que les valeurs de tuile calculées par les différents modéles au niveau
des rouleaux de la planeuse et entre ceux-ci sont trés proches. En aval de la planeuse, la
tuile est légerement sous-estimée par les modeles ALE si on choisit le modele lagrangien
comme référence. Tout comme pour le cintre, la description compléte de I'évolution de la
tuile nécessite un modele ALE suffisamment long. Pour le modéle ALE utilisé par défaut,
qui est relativement court par rapport au modele lagrangien, la zone en aval de x = —200
mm subit un influence assez forte des conditions aux limites et la valeur de la tuile s’éloigne
des modeles plus longs.
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F1GURE 5.137 - Variation de la réduction de largeur ~ FIGURE 5.138 — Mesure de la tuile finale le long de
observée le long de la téle dans sa configuration la téle pour les différents modéles numeériques.
finale apres retour élastique.

Terminons cette étude 3D en mentionnant les temps de calcul nécessaires aux diffé-
rentes simulations. Ces temps ainsi que les grandeurs numériques des résultats principaux
sont rassemblés dans le tableau 5.20 qui peut étre mis en parallele avec celui des simula-
tions 2D (tableau 5.19, page 270).

Pour diminuer ces temps CPU, nous avons également effectué deux simulations pour
lesquelles le pas de temps a été optimisé. Dans le cas du modele lagrangien, la taille du pas
de temps maximum autorisé a été multipliée par deux, par l'intermédiaire de la variable
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Nb. pas / Temps CPU Nombre | Allong" | Cintre | Pertes
itérations d’élém. [%] [mm] [ke]
Pas de temps maximum de référence At (d,x = 0.3)
Lagrangien 1984 /5475 15h51°50” (1.00) 22830 2.18 332 1155
ALE 1988/2016 13h21’50” (0.94) 9510 2.09 325 1160
ALE (Godunov) 1998/1881 6h50’43” (0.48) 9510 1.61 327 1168
Pas de temps optimisé Aty (dnLl‘zS = 0.6, dr‘z}i =0.45)

Lagrangien 1298/4331 11h55’33” (1.00) 22830 2.19 330 1152
ALE 1365/1511 8h18’10” (0.78) 9510 2.09 325 1162
ALE (Godunov) 1371/1408 4h11°46” (0.35) 9510 1.79 327 1168
ALE (Godunov -F) 1371/1408 3h33’12” (0.30) 9510 327 1168

TABLEAU 5.20 — Comparaison des résultats numériques et des temps de calcul pour les différents modéles 3D
(réglages A). Temps CPU mesurés sur PC3 (tableau A.1). Le cintre est mesuré en x = —100 mm.

d,.x = 0.6 au lieu de d,,, = 0.3. Pour rappel, cette variable permet de fixer indirectement
la taille maximal du déplacement convectif. Le nombre de pas de temps est ainsi réduit et la
simulation est plus rapidement effectuée. Les valeurs numériques des résultats permettent
de vérifier que I'erreur d’intégration temporelle n’augmente pas.

Dans le cas du modele ALE, il est également possible d’augmenter la taille du pas de
temps pour réduire le temps CPU. Cependant, I'utilisation de d,,, = 0.6, comme en for-
malisme lagrangien, va entrainer un nombre de Courant de l'ordre de C = 2d,, = 1.2,
c’est-a-dire un mouvement convectif plus grand que la taille d’'une cellule de convection.
On observera donc en moyenne deux sous pas de convection par pas de temps. Comme la
phase de convection est relativement coliteuse par rapport a la phase lagrangienne, il est
plus intéressant, pour diminuer le temps de calcul total, de se limiter a un seul sous pas de
convection par pas de temps en utilisant un nombre de Courant le plus proche de la limite
de stabilité du schéma (C = 1). On choisira donc d,,,, = 0.45, soit un pas convectif avec
C = 0.9 au lieu de deux pas avec C = 0.6. Le modele ALE optimisé au niveau de la taille du
pas de temps utilise donc une valeur plus petite que celle du modele lagrangien.

Le modele ALE utilisant le schéma de Godunov reste indéniablement le plus rapide. Il
souffre cependant d’une erreur importante au niveau du calcul de I'allongement longitu-
dinal en sortie de planeuse aprées retour élastique. Les valeurs des forces et du cintre sont
par contre toujours similaires, quel que soit le type de modele utilisé. Si on ne s’intéresse
pas a l'allongement, une simulation ALE, plus de trois fois plus rapide que la simulation
lagrangienne, peut étre obtenue en utilisant le schéma de Godunov et en laissant tomber la
convection du tenseur F (cette simulation est notée « Godunov -F » dans le tableau 5.20).

Pour compléter le tableau 5.20, le tableau 5.21 montre les valeurs numériques de la
réduction de largeur et la tuile pour les mémes simulations. La réduction de largeur ne varie
pas beaucoup en fonction du modele utilisé. La tuile ALE, que I'on a choisi arbitrairement
de mesurer en x = —100 mm et qui est tres faible dans ce cas de planage, est toujours
inférieure a la tuile lagrangienne. Elle ne dépend pas du schéma de convection utilisé.
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Reduction de Tuile

largeur[mm] [mm/m]

dmax = 0.3
Lagrangien 0.75 6.70
ALE 0.74 5.35
ALE (Godunov) 0.71 5.25
LAG _ ALE _

d. s =0.6,d > =0.45
Lagrangien 0.75 7.39
ALE 0.73 5.39
ALE (Godunov) 0.71 5.27
ALE (Godunov -F) 0.71 5.27

TABLEAU 5.21 — Comparaison des résultats numériques spécifiquement 3D pour différents modéles (ré-
glages A). La tuile est mesuré en x = —100 mm.

5.5.3.7 Ecrouissage mixte

Une piste pour améliorer le modele de la planeuse pilote, indépendamment du forma-
lisme utilisé et de la dimension choisie (2D ou 3D), est la prise en compte d’'un éventuel
écrouissage cinématique du matériau. En effet, la sollicitation au niveau d’une fibre longi-
tudinale de la t6le est une série de chargements et de déchargements successifs par flexion.
Bien entendu, il n’est pas possible de caractériser I'effet Bauschinger du DP600 avec la seule
courbe de traction que nous possédons (figure 5.95, page 251). Cette section n’a donc pas
pour but d’améliorer les précédents résultats, mais plutdot de montrer qu'un écrouissage
mixte peut avoir une influence non négligeable sur les résultats obtenus. Nous prouvons
aussi que notre implémentation du formalisme ALE peut gérer des matériaux plus com-
plexes sans aucun probleme.

Pour obtenir une loi d’écrouissage mixte a partir de la courbe de traction du DP600,
nous supposons que la partie cinématique de I'écrouissage est connue. Son expression est
tirée d’'une procédure d’identification complete effectuée par Haddadi et al. [101] pour
des téles DP600 de 1 mm d’épaisseur. L'écrouissage cinématique correspond a une loi de
Armstrong et Frederick [6] qui peut s’écrire sous la forme :

v 2 )
a:§th—b§Pa (5.3)

oll @ est une dérivée objective du tenseur de back-stress et D? est le taux de déformation
plastique. Les valeurs numériques des parametres sont h = 2673.36 MPa et b = 15.8 MPa.
Nous faisons I’hypothese que cette loi est également valable pour le DP600 utilisé dans les
tests de planage dont I'épaisseur est 2.2 mm.

&[0 0 | 8 | 16 32 64 | 100
oy [MPa] | 500 | 500 | 509.8 | 530.6 | 545.7 | 549

TaBLEAU 5.22 — Valeurs numériques utilisées pour définir la loi d’écrouissage cinématique du DP600.
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FIGURE 5.139 - Partie isotrope de lUécrouissage FIGURE 5.140 - Essai de traction et compression al-
mixte du DP600 identifié a partir de la courbe de ternées pour les deux comportements du DP60O.
traction de la figure 5.95 en supposant connue
la partie cinématique.

Pour obtenir, au final, la méme courbe de traction que précédemment, la partie iso-
trope de la loi d’écrouissage mixte est déterminée par l'algorithme d’identification décrit
a la section 5.5.2.7. On obtient la courbe d’écrouissage tracée sur la figure 5.139 (valeurs
numériques dans le tableau 5.22). Cet écrouissage isotrope, couplé a I'écrouissage cinéma-
tique décrit par la loi (5.3) fournit bien la courbe de traction de la figure 5.95 pour un
test de traction simple. Par contre, si on effectue une série de tractions et compressions
successives, on obtient les deux courbes de la figure 5.140 qui sont cette fois radicalement
différentes des la premiere compression.
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FIGURE 5.141 - Variation de Uallongement obser- FIGURE 5.142 - Variation de cintre observée lors de
vée lors de lutilisation d’un écrouissage mixte au lutilisation d’un écrouissage mixte au lieu d’'un
lieu d’un écrouissage isotrope pour le DP600. écrouissage isotrope pour le DP600.

Le modele ALE nécessite d’ajouter le tenseur symétrique a a la liste des grandeurs a
transférer a chaque point de Gauss (3 valeurs supplémentaires a 2D, car tr(a) = 0). On
effectue les simulations en formalisme ALE et lagrangien avec les modeles 2D pour les
réglages A de la planeuse. Les courbes d’allongement longitudinal et de cintre résiduel
apres retour élastique sont représentées respectivement sur figures 5.141 et 5.142. On a
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représenté également sur ces figures les anciennes courbes obtenues avec un écrouissage
isotrope. L'allongement mesuré diminue et le rayon de courbure résiduel augmente, suite
au changement de comportement du matériau. Vu 'amplitude des variations observées
dans les deux cas, il sera utile, pour continuer cette étude, d’identifier I'effet Bauschinger
du DP600 dans le but d’améliorer la concordance des résultats numériques et des résultats
expérimentaux.

5.5.4 Conclusions

La modélisation du planage sous traction par le formalisme ALE nous a permis de mon-
trer 'importance de l'utilisation d'un schéma de convection trés précis pour retrouver les
résultats lagrangiens correspondants. La valeur de l'allongement longitudinal de la tole
apres retour élastique est certainement la grandeur la plus sensible au choix du schéma de
convection. La méthode de Godunov, souffrant d’une forte diffusion, la sous-estime systé-
matiquement.

La maniere dont sont calculés les flux convectifs est également tres importante et pour-
tant celle-ci n’est jamais détaillée dans la littérature sur le formalisme ALE. Nous avons
montré qu’il est possible de compenser I'erreur de diffusion introduite par le schéma de
Godunov en choisissant de privilégier la configuration eulérienne lors du calcul des flux.
Dans un contexte général, ce choix est évidemment a proscrire, car il est lié a la géométrie
particuliere du procédé modélisé et a la grandeur observée. La réduction d’épaisseur, par
exemple, nécessiterait quant a elle, pour étre en accord avec le résultat lagrangien, une éva-
luation des flux sur la configuration lagrangienne. Il est donc nécessaire, plus que jamais,
d’utiliser toujours un calcul exact des flux convectifs.

Linfluence de la position des frontieres du modele quasi eulérien sur les résultats et
I'influence des conditions aux limites imposées aux extrémités du maillage ont été décrites
en détail. Des frontieres eulériennes trop proches entrainent des erreurs dans les résultats.
Celles-ci peuvent se propager sur de longues distances de la frontiere amont tout au long
du maillage perturbant ainsi la solution finale de la simulation. Les valeurs des courbures
résiduelles (cintre et tuile) nécessitent des modeles relativement longs pour étre calculées
correctement alors que des valeurs stables d’allongement ou de réduction de largeur sont
obtenues avec des maillages beaucoup plus courts.

Outre la satisfaction de la prouesse technique, I'intérét de '’ALE dans le cas de la modéli-
sation d’'un procédé tel que le planage sous traction est la réduction du temps de calcul total
des simulations. Celle-ci passe inévitablement par une optimisation du maillage. En effet, a
nombre de mailles identique, le formalisme ALE nécessite généralement plus d’opérations
que le modele lagrangien équivalent puisqu’il ajoute a la phase lagrangienne traditionnelle
une phase convective relativement cotliteuse. Dans le cas de procédés stationnaires, on peut
néanmoins compter sur une amélioration de la vitesse de convergence de la phase lagran-
gienne lorsqu’on ne transfere pas les vitesses et les accélérations nodales.

L'optimisation du maillage ALE se réalise en jouant sur sa longueur totale et sur la
répartition des éléments le long de celui-ci. Les mailles doivent étre concentrées dans les
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zones les plus sollicitées telles qu’ici les zones de contact et de flexion. Le modeéle ALE ainsi
optimisé est plus rapide que son homologue lagrangien. Cependant, les gains obtenus ne
sont pas extraordinaires pour plusieurs raisons.

Tout d’abord, ce probléme particulier nécessite l'utilisation du schéma convectif le plus
coliteux pour calculer précisément une des grandeurs les plus intéressantes (’'allongement).
Si cette valeur n’était pas requise, on pourrait sans aucun probleme utiliser le schéma de
Godunov et supprimer la convection du tenseur F, soit diminuer encore de moitié le cofit
de la convection.

Ensuite, la planeuse modélisée ici n’est ni longue, ni large. Nous avons préféré simuler
une planeuse dont nous avions une configuration expérimentale. Il est évident que pour
de plus gros modeles (nombre de blocs planeurs plus importants ou plus éloignés, tole tres
large, etc.), la phase lagrangienne sera plus coliteuse. Son cofit n’évolue pas linéairement
avec le nombre de degrés de liberté contrairement au cof(it de la convection de la phase
ALE.

Enfin, le dernier probléme est lié a la structuration des données dans le code de calcul.
Sans entrer inutilement dans les détails, on peut dire que I'acceés aux grandeurs stockées
aux points de Gauss et, dans une moindre mesure, aux noeuds n’est pas optimisée dans
Metafor pour une utilisation hors du cadre de la méthode des éléments finis. Ceci est d(i a la
généralité de notre implémentation du formalisme ALE. En effet, elle est capable de gérer
sans modification non seulement tous les matériaux, éléments et schémas d’intégrations
actuellement présents au sein du code, mais aussi tous ceux qui seront programmeés dans le
futur, concernant des grandeurs qui ne sont méme pas encore connues actuellement. Cette
généralité a un prix qui est bien visible sur les temps de calcul présentés dans ce travail.
Notons toutefois que le probleme est bien cerné et qu'une structure de données optimisée
mais tout aussi générale est en cours d’élaboration.

Parallelement a I'optimisation du code, on pourrait imaginer, pour contourner le pro-
bleme de performance, de choisir les grandeurs qui nécessitent un transfert précis. Peut
étre qu’en n’utilisant le schéma du second ordre uniquement pour le transfert du tenseur F
dont découlent les allongements, on observerait une amélioration de la valeur finale calcu-
lée tout en diminuant significativement le temps de calcul.

Pour terminer cette étude du planage, nous avons indiqué une piste parmi d’autres
pour améliorer la concordance des résultats numériques avec les résultats expérimentaux.
Il semblerait utile de modéliser I'écrouissage mixte du matériau si celui-ci présente un effet
Bauschinger prononcé.
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5.6 Conclusions

Les applications de ce chapitre, choisies aussi variées que possible, nous ont permis de
comprendre les différents problémes supplémentaires liés a I'utilisation du formalisme ALE
par rapport au formalisme lagrangien traditionnellement utilisé en mécanique du solide.
Les observations et les regles de bonne pratique qui en découlent seront appliquées dans
le chapitre suivant sur des simulations 3D de profilage. La taille beaucoup plus importante
de ce type de modéle, et les temps de calcul qui en résultent, ne permettent pas d’effectuer
de nombreuses simulations pour tester I'influence de tous les paramétres numériques en
jeu. Nous ferons donc en grande partie confiance aux conclusions de ce chapitre lors de
’élaboration du modele ALE de profilage.

Les problemes d’impact et de striction d’'une barre axisymétrique présentés en début de
chapitre sont des benchmarks du formalisme ALE. Toute implémentation de I'algorithme
ALE doit étre capable de résoudre ce type de probleme. Vu la richesse de la littérature sur
ces simulations, nous avons essayé de les aborder de maniere originale. Par exemple, nous
avons montré que, contrairement a ce qui est largement publié, les différences observées
entre les modeles ALE et lagrangien ne proviennent pas d’erreurs numériques liées au mau-
vais conditionnement des mailles lagrangiennes écrasées (ce qui laisserait supposer que le
modele ALE serait plus précis que le lagrangien). Retrouver les résultats lagrangiens grace
au modele ALE est possible mais cela nécessite non seulement le transfert des vitesses et
accélérations nodales, mais aussi un choix initial de maillage ALE particulier.

Le probléme de striction est également un test classique mais il se résume généralement
a inverser la vitesse du probléme d’impact précédent. Notre originalité se situe dans la
prise en compte des phénomenes thermomécaniques et du caractere visqueux du matériau.
Contrairement aux modeles simples de striction, la position exacte le long de I’échantillon
de la zone de striction est inconnue a priori et dépend fortement des effets d’inertie en jeu.

La simulation du test de double extrusion est basée sur l'idée d’adjoindre au maillage
initial de ’échantillon de fines couches d’éléments localisées aux endroits ot la matiére va se
déployer lors de 'extrusion. Bien que cette technique ne soit pas nouvelle, elle n’avait jamais
été appliquée, a notre connaissance, a un modeéle géométriquement aussi complexe que
celui présenté ici. De plus, puisque le résultat principal du test est un rapport de hauteurs
d’extrusion liées directement a la valeur du frottement, ce modele est idéal pour valider
la prise en compte du contact avec frottement sur un maillage non lié au mouvement de
la matiere. Les résultats obtenus par le formalisme ALE sont en tres bon accord avec les
résultats expérimentaux et ceux obtenus avec un code commercial et un algorithme de
remaillage complet en cours de calcul.

Le modele de laminage est le premier des deux modeles quasi eulériens présentés. Il a
I'avantage d’étre relativement simple par rapport au probleme de profilage visé par la suite.
Il met bien en évidence I'intérét de ne pas transférer les vitesses et les accélérations nodales
lorsque les effets d’inertie ne sont pas importants. Cela permet d’accélérer grandement le
calcul ALE en réduisant le nombre d’itérations de Newton-Raphson nécessaire a chaque pas
de temps. Bien que notre modele 2D de laminage ne soit pas aussi spectaculaire qu'un mo-
dele 3D, il nous a permis de valider une nouvelle fois, et de maniere beaucoup plus précise,
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la prise en compte des phénomenes frictionnels a I'interface téle-cylindre. Une comparaison
aussi précise que nous I'avons faite de modeles lagrangiens et ALE au niveau des champs de
pression, de cisaillement et de glissement n’est pas courante dans la littérature. C’est d’au-
tant plus vrai que le modele ALE construit dans ce travail permet de calculer également les
déformations des cylindres. Le probleme de I'application de tractions d’entrée et de sortie
est également pris en compte sans aucun probleme.

Le modele de planage sous traction est celui qui se rapproche le plus du modele de
profilage du prochain chapitre. Contrairement au cas du laminage, le modele n’est pas sy-
métrique par rapport a la fibre moyenne de la tole et les éléments finis subissent de grandes
rotations. Ce procédé n’avait jamais fait, a notre connaissance, ’objet d'une étude en forma-
lisme ALE auparavant. Nous ne nous sommes pas bornés a simuler le planage : une phase
de retour élastique a été ajoutée a la fin des simulations. Elle permet de vérifier la qualité de
la convection de I’état de contraintes de la téle le long du maillage quasi eulérien par une
mesure géométrique simple de la courbure finale. L'intérét du schéma de convection précis
utilisant une reconstruction linéaire est bien mis en avant par ces simulations, car il n’est pas
possible de retrouver la valeur de I'allongement longitudinal du modele lagrangien avec le
schéma de Godunov. Nous avons également vu de maniere pratique les conséquences d'un
mauvais calcul des flux convectifs lorsque les mailles subissent des rotations pendant la défi-
nition du nouveau maillage. Ce probleme est completement sous-estimé dans la littérature.
En fait, il passe méme completement inapercu. En effet, les simulations ALE présentées
dans la littérature sont généralement soit trop simples (pas de rotations, ni de mouvement
convectif important), soit trop complexes (I'influence des flux est alors camouflée par les
nombreuses autres erreurs de modélisation), soit enfin, les résultats ne sont pas dépouillés
de maniere précise (pas de comparaison avec un modele lagrangien équivalent).

Enfin, mis a part pour des problemes de petite taille, le temps de calcul ALE, mesuré
une fois le maillage optimisé, est plus faible que celui du modele lagrangien équivalent, lui
aussi optimisé. Des pistes ont été proposées pour améliorer encore ce gain de temps CPU.
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Chapitre 6

Application au profilage

6.1 Introduction

Ce chapitre est dédié a la mise au point d’'un modele ALE général de lignes de profilage
a froid. Ce procédé permet d’obtenir, a partir de téles planes en feuilles ou en bobine,
des produits longs de section généralement constante appelés profilés. La mise a forme est
effectuée par le passage de la tole au travers d’une série de tétes de profilage (voir figure 6.1),
appelée également passes. Elle subit ainsi une succession de pliages dans le sens transverse
qui modifient progressivement sa section et la rapprochent progressivement de la forme
finale souhaitée tout en gardant son épaisseur constante. Chacune des tétes de profilage
est composée d'un ensemble de galets a symétrie de révolution (cylindres, cones, etc.) en
rotation autour de leur axe. La position des galets est étudiée pour imposer une forme
précise a la téle lors de son passage. Dans les cas les plus simples, on distingue les galets
supérieurs, en rotation autour d’un axe supérieur, et les galets inférieurs, en rotation autour
d’un axe inférieur. Pour des profils plus complexes, tels que les profils fermés (tubes), des
galets latéraux peuvent étre ajoutés.

évolution du profilé

tétes de profilage

FIGURE 6.1 - Représentation schématique d’'une opération de profilage (Euro-profilage [69]). La tdle est
entrainée dans la profileuse et subit les flexions imposées par chaque téte de profilage. La section (son
profil) évolue pour atteindre, aprés la derniére téte, la forme désirée.
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profils étroits tubes
4 A
simple ouvert Jermé
2 ﬂ ; profils larges
compleze tres compleze pannea
N J

FIGURE 6.2 — Différents types de sections obtenues par profilage. On distingue les profils étroits (glissiéres,
poutrelles, etc.), les profils larges (panneaux pour la construction) et les profils fermés (tubes).

On retrouve des produits profilés dans de nombreux domaines qui vont de la construc-
tion de batiments (bardages, toitures, supports de planchers, glissieres, gouttieres, échafau-
dages, etc.) a I'industrie du transport (longerons, cadres de portiére, etc. — voir figure 6.3)
en passant par 'ameublement (étagéres, armoires) et ’électroménager (frigidaires, lave
vaisselles). Les profilés sont généralement classés en trois familles (voir figure 6.2) : les
profils étroits, les profils larges et les tubes.

o 4
\ A~ /
AN Pl 7 3
N 2
= i 1
= 0
o 10 9 g 7
6
. . . . 5
- Parties produztes Parties produites & @Es
par profilage autrement L 1,2
FIGURE 6.3 — Application du profilage a Uindustrie automobile. De nom- FIGURE 6.4 - Définition du
breuses piéces de la structure d’une voiture peuvent étre mises a forme procédé par la fleur de
par profilage a froid (Depauw et al. [58]). profilage (vue éclatée au-

dessus) — (Halmos [104]).

Le profilage peut étre effectué en continu, a partir d’'une bobine de métal, ou de maniere
discontinue ; on parle alors du procédé feuille-a-feuille. En formalisme ALE, nous nous inté-
ressons au calcul de régimes stationnaires et donc plutét aux lignes continues de profilage.
La figure 6.5 montre une telle ligne ainsi que les différents outils en amont (débobinage,
planage, poinconnage) et en aval (découpe, évacuation du profilé).
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femnne:
& esol B B o e i
SAETE - o] |o] [el [o] [o o] [o] [e] [o] [o] [e] [e] o ol - [(aEo o awowamawamay
‘g‘ 1
e &l
DOUBLE FLATTENER ~ PRE-PUNCH  ENTRY GUIDE ROLL FORMING MILL STRAIGHTENER CUT OFF RUN OUT TABLE
UNCOILER PRESS DIE PRESS
ACCELERATOR DIE
ACCELERATOR

FIGURE 6.5 — Schéma d’une ligne continue de profilage (Halmos [104]).

La conception d’'une ligne de profilage débute habituellement par la définition de la
fleur de profilage associée au procédé (voir figure 6.4). Il s’agit de la superposition de la
forme d’une section transverse de la tole lors de son passage au niveau de chaque téte de
profilage. La fleur comporte donc n 4 1 sections, numérotées de 0 a n ou n est le nombre
de passes. La section O est généralement rectiligne puisqu’elle correspond a la tole non
déformée en entrée de profileuse. Déterminer la fleur de profilage optimale, c’est-a-dire la
séquence de pliage et le nombre de passes nécessaires a 'obtention d’une géométrie finale
de profilé, est une tache relativement difficile qui peut étre facilitée par l'utilisation de lo-
giciels spécialisés tels que COPRA (DataM [56]). Ce programme est capable de construire
une fleur de profilage en partant de la section finale dessinée par I'utilisateur et en la dé-
pliant progressivement en suivant certaines directives. Des formules analytiques intégrées
au code permettent notamment de calculer automatiquement la variation de largeur de la
tole en fonction des nombreuses méthodes de pliage disponibles (rayon constant, rayon
variable, etc.). COPRA permet également la conception des outils jusqu’au tracé des plans
de chaque téte de profilage. Un module de calcul donne une premiere estimation de I’al-
longement longitudinal maximal qui sera atteint. Cette valeur est trés importante pour le
profileur, car elle permet de vérifier par exemple si les rives risquent de plastifier pendant
I'opération, entrainant ainsi des défauts dans le produit fini. Il est alors possible de corri-
ger le procédé en modifiant, par exemple, la séquence de pliage, en ajoutant des passes
supplémentaires ou en augmentant la distance intertéte, c’est-a-dire la distance qui sépare
deux tétes de profilage voisines. Bien qu’il soit trés pratique, ce logiciel doit étre couplé a un
modele numérique plus sophistiqué pour prédire de maniere précise I'état de la tOle apres
profilage (contraintes résiduelles), ainsi que la présence éventuelle de défauts de forme
(cintre, cambrage, twist, etc.) en vue de les corriger.

Dans le cadre de ce travail de thése, nous avons bénéficié d’une collaboration étroite
avec ArcelorMittal et plus particulierement avec le centre de recherches de Liege et le centre
Auto-applications de Montataire (France). Sur une voiture, le nombre de pieces profilées
est trés important (voir figure 6.3) et en augmentation constante avec les progres tech-
niques effectués sur les lignes de profilage. Les nouvelles normes écologiques poussent les
constructeurs automobiles a utiliser des aciers de plus en plus résistants (aciers UHSS ou
Ultra High Strength Steels, par exemple) afin de réduire le poids total du véhicule tout en
conservant sa solidité (Depauw et al. [58]). A cause de leur haute limite d’élasticité (proche
du GPa), ces aciers souffrent d’'un retour élastique tres important lors de leur mise a forme
et ce probleme doit donc étre contrélé lors de 'opération de profilage. La mise au point de
modeles numériques contribue a mieux comprendre ce phénomeéne indésirable et permet
d’étudier des pistes pour le minimiser.

287



CHAPITRE 6. APPLICATION AU PROFILAGE

Les premiers modeéles numériques de profilage sont relativement simples et peu cofiteux.
Ils consistent a décrire analytiquement la géométrie de la tOle entre les tétes de profilage par
des surfaces dont I'expression analytique est paramétrée. Kiuchi [130] utilise des fonctions
de forme sinusoidales pour interpoler la tole entre deux sections successives de la fleur
de profilage (voir également Halmos [104] et Duggal et al. [65]). Les parametres de la
surface sont calculés en exprimant la minimisation de 1’énergie de déformation. Nefussi et
Gilormini [153] développent une technique similaire avec des patches de Coons.

Les premiers modeles utilisant la méthode éléments finis tentent de simplifier le pro-
bléme pour pouvoir le traiter partiellement & deux dimensions. Brunet et al. [39, 40] mo-
délisent les déformations d’une section particuliere dans son plan lors de son passage dans
la profileuse. Ils considerent que la section est en contact avec un des galets virtuels qui se
déplaceraient avec cette section le long de ligne de profilage et qui se déformeraient de ma-
niére continue pour respecter la forme de chaque téte de profilage. Ce calcul par éléments
finis 2D, effectué en état plan de déformation, est couplé a un modele 3D de la profileuse
pour lequel la téle est maillée a 'aide d’éléments de coques. Un modele 2D similaire en état
plan généralisé est également proposé par Grisard [94].

Liu et al. [138] proposent la méthode des bandes finies (Finite Strip Method), reprise
plus tard par Han et al. [105] : cette méthode revient a utiliser des éléments finis par-
ticuliers dont le champ de déplacement longitudinal est défini par une B-spline dont les
extrémités, au niveau d’une téte et de la téte suivante, satisfont des conditions aux limites
particulieres. Cette technique permet de garder une taille du modele réduite par rapport
a un modele 3D complet, car chaque espace intertéte est calculé séparément, de maniere
séquentielle.

Néanmoins, des simulations plus réalistes du profilage requiérent inévitablement des
modeles 3D. C’est d’autant plus vrai lorsqu’on s’intéresse a des profils complexes, tels que
les tubes, ou a la modélisation de défauts de forme. Vu leur cofit, les premieres simulations
tridimensionnelles se sont limitées a un petit nombre de tétes de profilage et des tdles rela-
tivement courtes. Heislitz et al. [107] modélisent la mise a forme d’un profil en U en trois
passes a I'aide du code PAM-STAMP [68]. Ils s’intéressent a la variation de I'allongement
longitudinal et a la forme de la section apres retour élastique.

Tehrani et al. [190] étudient les facteurs entrainant I'apparition d’ondulations en rives
(bords longs) sur un profil symétrique en U grace a la version explicite d’Abaqus. Ils utilisent
des coques intégrées a I'aide de cing points de Gauss sur I'épaisseur. Ces simulations sont
reprises par Daniel et Meehan [54] en implicite.

Bui et al. [43-45] utilisent Metafor pour simuler le profilage de sections en U. Le modele
lagrangien utilisé est une version simplifiée de celui présenté dans ce travail (I’avancement
de la tole résulte de l'imposition d’'un déplacement sur les noeuds du plan de symétrie
longitudinal). Les résultats numériques sont comparés a des mesures expérimentales de la
forme du profilé apres retour élastique.

Les codes commerciaux dédiés au profilage essayent d’intégrer la totalité du processus
de gestion d’une ligne industrielle, de la création des outils, jusqu’a la résolution d’éventuels
problémes du quotidien. Dans ce but, PROFIL [197] permet d’exporter une profileuse sous
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Abaqus/Explicit pour effectuer des simulations par la méthode des éléments finis. Le leader
du marché dans ce domaine est actuellement COPRA [56] avec son module de simulation
COPRA-FEA piloté par le solveur MSC-MARC [151].

En parallele a tous ces modeles de profilage qui utilisent exclusivement le formalisme
lagrangien, on peut trouver dans la littérature des modeles stationnaires eulériens (ou quasi
eulériens). Kim et Oh [128] considerent un matériau rigide plastique et résolvent les équa-
tions stationnaires d’équilibre. La convergence de leur algorithme est facilitée en démar-
rant le calcul 3D avec la solution d’un calcul 2D préliminaire. Celui-ci est effectué sous
I'hypothese d’état plan de déformation généralisé pour lequel tous les points de la section
modélisée possedent une déformation longitudinale identique. Cette approche alternative,
commercialisée dans le code SHAPE-RF [185], a fait 'objet de quelques publications (Suk-
moo et al. [188], Kim et al. [129], Sheikh et Palavilayil [182]) qui démontrent son intérét
pour obtenir un gain significatif de temps de calcul par rapport aux modeles lagrangiens
plus classiques (quelques heures au lieu de quelques jours).

Ces modeles stationnaires sont, certes, tres rapides, mais ils souffrent en pratique d’'un
manque de généralité. Par exemple, le fait de négliger completement I'élasticité et 'écrouis-
sage du matériau peut étre vu comme un handicap majeur de SHAPE-RF face a COPRA-FEA
qui bénéficie automatiquement de toute la panoplie de lois de comportement disponibles
dans le code MSC-MARC. Cette situation est similaire a celle décrite dans le cas des mo-
deles de laminage (section 5.4) ol nous comparions le logiciel dédié au laminage station-
naire LAM3 et le code lagrangien plus généraliste Forge. Les codes stationnaires eulériens
sont généralement trés spécialisés et offrent donc un champ d’application limité qu’ils com-
pensent par une vitesse d’exécution inégalable par un code lagrangien. Ces limitations sont
telles qu’actuellement, les codes lagrangiens ont la préférence des industriels.

Dans ce contexte, et comme dans le cas du laminage, le formalisme ALE peut étre vu
comme une solution intermédiaire bénéficiant des avantages des deux approches précé-
dentes. Tout comme un maillage eulérien stationnaire, le maillage ALE reste globalement
fixe dans la direction de profilage. Il peut donc étre facilement optimisé en concentrant les
mailles au niveau des plis et des contacts avec les galets. Le nombre d’éléments de contact
du modele ALE est aussi beaucoup plus faible qu’en formalisme lagrangien puisque seuls
les nceuds qui sont initialement a proximité d’'un galet peuvent entrer en contact avec lui.
On peut ainsi s’attendre a des temps de calcul plus faibles qu’en formalisme lagrangien.

Cependant, puisque son implémentation repose sur un code lagrangien, I'algorithme
ALE bénéficie automatiquement de toutes ses avancées techniques au cours du temps,
contrairement a un code stationnaire dédié exclusivement au profilage. Les nouveaux maté-
riaux, les nouveaux éléments ou les nouveaux algorithmes développés dans la partie lagran-
gienne du code ne nécessitent pratiquement aucun développement supplémentaire pour
pouvoir étre utilisés dans les applications ALE.

Dans ce chapitre, nous décrivons un modele ALE de profilage que nous validons a I'aide
d’'un modele lagrangien équivalent et de résultats expérimentaux provenant d’une ligne pi-
lote. Nous montrons ensuite les avantages du modele ALE par rapport au modele lagrangien
sur des profils plus complexes. Nous terminons par une simulation d’une ligne industrielle
qui ne peut pas étre simulée par le modele lagrangien.
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6.2 Modele lagrangien

Le modele ALE de profilage est construit sur base d'un modele lagrangien qui a été dé-
veloppé dans le cadre d’un projet dédié a la simulation du profilage (PROMETA [34]). Nous
détaillons dans cette section la maniere dont il a été mis au point ainsi que les différents
parametres qui le définissent.

Le modéle de profilage lagrangien est congu pour pouvoir simuler n’importe quelle pro-
fileuse, quel que soit le nombre de passes. La fleur de profilage et la géométrie des galets
sont importées a partir du logiciel COPRA (DataM [56]).

6.2.1 Géométrie et maillage

Vu la longueur des lignes de profilage industrielles (qui peuvent atteindre une dizaine
de meétres), nous nous limitons, en formalisme lagrangien, au cas du profilage d’'une tole
de longueur relativement courte par rapport aux dimensions de la profileuse. On parle de
profilage feuille a feuille. La simulation du procédé continu nécessiterait de mailler unifor-
mément une t6le dont la longueur est comparable a celle de la machine ; ce qui conduirait
a des temps de calcul trop élevés.

direction

\f [ f ‘A {. ‘/‘x ". 1 .
section de mesures * . ffiib‘
(Wji—longueur) ,,,,,,,,,,, = ./ J

de profilage

plan de
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FIGURE 6.6 — Géométrie de la tble lagrangienne devant la profileuse au début du calcul (cas symétrique). Une
section de mesures définie a mi-longueur, et donc au plus loin des extrémités de la tole, permettra d’obtenir
des valeurs des champs inconnus qui se rapprochent au mieux de celles observées en profilage continu.

La figure 6.6 montre le maillage d’une tole de longueur L, largeur [ et épaisseur e devant
la premiére passe d’une profileuse. Cette ligne est étudiée a la section 6.5.1. Pour clarifier
Iillustration, nous avons choisi de représenter un profil symétrique pour lequel seule la
moitié de la largeur de la tole est modélisée. Le maillage relatif a un procédé similaire non
symétrique est simplement deux fois plus large. L'orientation particuliére des axes mérite
notre attention. Ils sont choisis pour que le plan (x, y) corresponde au plan transverse qui
sert de support a I'’étude de la fleur de profilage dans le logiciel COPRA. L'axe z est donc
la direction de profilage. Son orientation, contraire au sens d’avancement de la tole, est
déduite de 'orientation des axes x (direction transverse vers la droite) et y (verticale, vers
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le haut). Une section particuliere, située a mi-longueur et appelée sur le schéma « section
de mesures », sera continuellement observée pendant le calcul et permettra de tracer 'évo-
lution de différentes grandeurs au cours du temps (principalement les déformations, les
contraintes et la géométrie de la section). Sa position centrale est choisie pour se rappro-
cher des conditions qui seraient celles d’une ligne continue de profilage.

Wz
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FIGURE 6.7 - Création du maillage de la tdle en formalisme lagrangien. Le maillage est choisi plus dense au
niveau des plis. La position de ces zones de raffinement est déduite de la géométrie du dernier profil de la
fleur de profilage. Dans le sens longitudinal et dans Uépaisseur; le maillage est uniforme.

La figure 6.7 montre une autre vue du maillage de la figure 6.6 qui permet de s’intéres-
ser au maillage de la téle. Dans la direction longitudinale, le maillage est choisi uniforme
(taille de maille constante L?). Il est en effet difficilement imaginable de raffiner certaines
zones de la t6le selon cette direction puisque la totalité des noeuds des surfaces supérieure
et inférieure entrera en contact avec les galets a un moment ou a une autre au cours de la si-
mulation. Un maillage longitudinal trop grossier entrainerait inévitablement des problemes
de contact. On pourrait cependant choisir de raffiner le maillage autour de la section de
mesures. En pratique, d’aprés nos essais, ce n’est pas une bonne idée : les variations trop
abruptes de la taille des mailles peuvent entrainer de fortes variations longitudinales dans
les champs observés. Par contre, on peut utiliser une ou deux couches d’éléments treés courts
aux extrémités amont et aval de la tole. Cette discrétisation plus fine peut faciliter les prises
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et les pertes de contact avec les outils. Dans ce cas, leur utilité est donc purement numé-
rique.

Selon I'épaisseur, on utilise n,, éléments de tailles identiques. Actuellement, le maillage
d’une section particuliére est de type transfini et donc uniforme et régulier. Une amélio-
ration simple du modele serait d’utiliser un maillage non structuré dans chaque section.
Le nombre de mailles dans I'épaisseur serait alors variable (un nombre important dans les
zones de plis et plus faible ailleurs).

Selon la largeur (ou la demi-largeur sur la figure 6.7), le maillage est raffiné en fonction
de la position des zones de plis. Les positions respectives de celles-ci sont déterminées
a l'aide de la forme de la section a la derniére passe. Cette forme, dont la description
géométrique précise est contenue dans la fleur de profilage du procédé, correspond a la
section finale du profilé au retour élastique pres. Les coordonnées curvilignes du début et
de la fin de chaque arc sur ce dernier profil sont reportées sur la largeur de la téle. A ce
niveau, une hypothese doit étre faite sur la distribution des allongements transverses. En
effet, la largeur de la téle peut augmenter au cours des passes lors des différents pliages,
si bien que la section finale est généralement plus large que la section rectiligne initiale.
Actuellement et a défaut de mieux (la méthode semi-analytique utilisée par COPRA n’est
pas documentée), nous considérons, lors de I’établissement du modele, que I'allongement
se répartit uniformément sur la largeur du profil. Nous verrons les conséquences de cette
hypotheése sur un cas concret a la section 6.5.2. Pour compenser les éventuelles erreurs qui
en découlent, la taille de chaque zone raffinée, qui est initialement proportionnelle a la
taille de I'arc correspondant, est agrandie par un facteur @ > 1 donné. Le maillage dans la
largeur est donc défini par une longueur de maille L? hors des zones de raffinement et un
nombre de mailles unique n, dans chaque zone, indépendamment de leur largeur.
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FIGURE 6.8 — Profilage d’un élément de rack (deuxiéme téte). A gauche, les outils tels que concus par Uindustriel
avec COPRA. A droite, les outils modifiés pour faciliter la simulation numérique : (1) galet élargi, (2) et
(3) fusion de galets et suppression des faibles congés de raccordement.

La géométrie des tétes de profilage, qui deviennent dans le modele des matrices de
contact rigides, est importée automatiquement a partir de COPRA. La téte de profilage i — 1
et 1 sont distantes d’'une longueur D; appelée distance intertéte. Généralement tous les D;
sont identiques, mais ce n’est pas toujours le cas.
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FIGURE 6.9 — Profilage d’un composant d’un élément de rack (septiéme et derniére téte). A gauche, les outils tels
que concus par Uindustriel avec COPRA. A droite, les outils modifiés pour faciliter la simulation numérique :
(1) galet élargi, (2) et (3) agrandissement de congés de raccordement de trop faibles rayons, (4) création
d’un congé manquant.

L'outillage de chaque passe est composé d’'une série d’axes de rotation et des galets
associés qui ont été dessinés autour de la fleur de profilage créée dans une étape antérieure.
Cette géométrie d’outils, concue par un industriel dans le but de produire des plans précis de
galets, n’est généralement pas adaptée telle quelle a la simulation numérique. La figure 6.8
montre la deuxiéme téte de profilage de 'exemple précédemment utilisé pour décrire le
maillage (figures 6.6 et 6.7). A gauche, les outils sont importés tels qu’ils ont été définis
dans le programme COPRA. La passe est composée de deux axes et chacun possede trois
galets distincts. Pour éviter les difficultés numériques, il est important d’élargir les galets
externes (zone (1) sur la figure). En effet, des problemes de convergence peuvent apparaitre
si lextrémité du maillage de la tole entre en contact avec le bord vif du galet au cours du
calcul. Pour évaluer cette largeur supplémentaire, il faut prendre en compte la largeur du
profil a la sortie de la téte précédente.

Dans le cas de cette téte, il est également intéressant de fusionner tous les galets supé-
rieurs et tous les galets inférieurs pour obtenir finalement deux matrices de contact au lieu
de six. Industriellement, cette découpe en plusieurs galets est justifiée par une réduction
des cofits de production des outils. Numériquement, elle provoque, d’'une part, une mul-
tiplication du nombre de matrices de contact a gérer et, d’autre part, 'apparition de tres
petits congés de raccordement (rayons de 1 a 2 mm) qui pénalisent fortement la détec-
tion et la résolution des contacts. En effet, le calcul de la normale a la surface de contact
devient délicat lorsqu'un nceud de contact pénétre fortement dans les outils au niveau de
ces faibles rayons. Bien entendu, on se limite ici a des modifications géométriques qui ne
servent qu’a faciliter le traitement numérique des outils et qui n’influenceront donc pas les
résultats fournis par le modéele.

La figure 6.9 montre la derniere passe du méme procédé. Les outils sont cette fois plus
complexes. On remarque l'apparition de deux outils latéraux montés sur des axes verti-
caux. Les modifications consistent également a élargir des galets ou modifier des congés de
raccordement pour faciliter la gestion du contact.
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6.2.2 Déroulement de la simulation lagrangienne

Une fois la géométrie du modele entierement décrite, il est nécessaire de définir une
succession de phases de calcul qui correspondent aux différents changements de conditions
aux limites nécessaires pour engager la tole dans la profileuse, la profiler et la récupérer a
la sortie. Ce déroulement relativement complexe de la simulation est d(i en grande partie
a la volonté de faire avancer la téle dans la profileuse par la seule action du frottement,
comme c’est le cas dans la réalité. En effet, bien souvent (voir Bui et Ponthot [45], Heislitz
et al. [107] par exemple), la modélisation de 'avancement de la tole est effectuée par des
déplacements imposés sur les nceuds du milieu du profil, ou sur le plan de symétrie quand
le profil est symétrique. Cette maniere de faire modifie inévitablement le déplacement de
la tole dans la machine. Certains résultats du modele, comme la mesure de 'allongement
longitudinal, ne sont alors plus représentatifs de la réalité.

La simulation lagrangienne est découpée en cinq phases distinctes schématisées sur la
figure 6.10. Nous pensons qu’il est intéressant de détailler celles-ci, car nous verrons que le
modele ALE permettra de simplifier considérablement le déroulement de la simulation et
le choix des conditions aux limites.

Dans la configuration initiale (¢t = t;), la tole maillée est placée devant la profileuse de
telle maniere que son extrémité aval soit distante d'une longueur D; de la premiere téte
(cette distance est généralement comparable aux distances intertétes D;). Si on modélise
une ligne continue, la longueur de la tole est choisie suffisamment grande pour étre engagée
au minimum dans trois tétes (L > 3D si D est constant) lorsqu’elle sera dans la machine.
Son extrémité amont est completement encastrée. D’éventuelles déformations en flexion
sont évitées par la fixation d'un nceud milieu sur I'extrémité aval. Pendant la premiere
phase du calcul (¢t € [t,,t;]), le mouvement de la tole est piloté par des déplacements
imposés jusqu’a ce que son extrémité aval soit a la verticale des axes de la premiere téte en
t = t,. Pendant cette premiere phase, elle entre donc en contact avec les plus grands galets
de la premiere téte.

Dans le cas symétrique, seule une demi-largeur est maillée et des conditions aux limites
de symétrie (fixations selon x) sont appliquées sur le bord du maillage représentant le
milieu de la t6le. Ces fixations sont maintenues tout au long de la simulation.

Pour la deuxiéme phase (t € [t,, t,]), la fixation aval est lachée. La tole continue a étre
poussée par la fixation amont. L'engagement de la téle dans la premiere téte est facilité par
la rotation des galets et le frottement entre ceux-ci et la tole.

La troisieme phase (t € [t,, t;]) débute lorsque I'extrémité amont de la tole a parcouru
une distance égale i la longueur L de la tole. A ce moment, toutes les fixations sont relé-
chées et 'avancement de la t6le n’est di qu’a I'effet du frottement entre elle et les différents
galets. Cette phase se termine lorsqu’il est nécessaire de récupérer le profilé en sortie, c’est-
a-dire, plus précisément, lorsque 'extrémité amont atteint 'avant-derniere téte. Au-dela de
celle-ci, la tole n’est plus engagée que dans la derniere téte et risque de subir un mouvement
de rotation indésirable autour de celle-ci.
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FiGURE 6.10 — Déroulement du calcul lagrangien. La simulation est découpée en cinq phases. Chaque phase
correspond a un ensemble de fixations (appuis a rouleaux noirs) et des déplacements imposés (appuis a
rouleaux rouges) qui contraignent le mouvement de la téle. La transition d’'une phase a la phase suivante
est effectuée lorsqu’une extrémité de la téle franchit une distance prédéfinie.
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C’est pour cette raison que la phase suivante (t € [t5,t,]) débute en imposant des
fixations sur 'extrémité aval de la tOle. Le mouvement vertical est supprimé en fixant les
deux coins selon y. Une fixation selon x d’'un nceud au milieu de la section empéche les
mouvements latéraux.

La derniére phase (t € [t,, ts]) commence lorsque 'extrémité amont de la tole franchit
la derniere téte de profilage. La t6le est entierement profilée, mais elle peut étre toujours
partiellement en contact avec la derniere téte et doit étre dégagée de celle-ci. De nouvelles
fixations similaires aux fixations aval sont appliquées a I'extrémité amont et la tole est
déplacée d’'une distance suffisante pour garantir qu’elle n’est plus en contact avec les galets.
Le calcul se termine a cet instant.

téte #7
azre supérieur

-
l

axe latéral
gauche

axe latéral
droit

aze inférieur

FiGURE 6.11 - Calcul de la vitesse de rotation angulaire des galets pour obtenir une vitesse d’‘avancement v
constante de la téle dans la profileuse et pour pouvoir ainsi déterminer a priori la durée des phases de la
simulation. La vitesse angulaire de chaque série de galets autour d’'un axe dépend du choix d’'un rayon qui
est difficile a définir de maniére univoque. En rouge, les choix possibles ; en vert, les rayons choisis.

Du début a la fin de la simulation, les galets sont en rotation. La vitesse angulaire de
chaque outil n’est généralement pas donnée et elle doit étre déduite de la vitesse globale
d’avancement de la téle v, que I'on suppose constante au cours du processus. On calcule
donc, pour chaque axe, une vitesse de rotation 6; = v/R; ol le rayon R; est la « distance »
de la tole a I’axe. Si la valeur de ce rayon est évidente dans le cas de profils simples (profils
en U par exemple), elle peut devenir relativement difficile a définir si le profil est plus com-
plexe. La figure 6.11 montre a nouveau la derniere téte de la ligne de profilage qui nous
sert d’exemple. Les contacts entre la tole et les galets se situent a des distances tres variées
des axes de rotation. Définir un rayon unique pour chaque ensemble de galets tournant
autour d’'un méme axe a peu de sens. Néanmoins, il est nécessaire de prescrire une vitesse
de rotation de chaque outil qui permette de transporter la tole a travers la profileuse a une
vitesse constante v. Finalement, on choisit les rayons indiqués en vert sur la figure 6.11,
c’est-a-dire la distance qui sépare le milieu du profil et 'axe des galets supérieurs ou infé-
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rieurs. Pour les galets latéraux, le choix d’'un rayon est trop subjectif et nous considérons
donc que ceux-ci ne tournent pas et que leur contact est sans frottement (ce qui correspond
a modéliser grossierement une rotation libre sur leur axe).

Cette ambiguité sur la définition des vitesses de rotation des outils n’est pas un probleme
anodin : les phases de la simulation lagrangienne ont été présentées en termes de dépla-
cements de la tole. Pour des raisons pratiques, ces conditions sur les déplacements doivent
étre traduites en instants précis (t,, t,, etc.). Metafor, comme la plupart des codes éléments
finis similaires, n’est en effet pas capable, a I'’heure actuelle, de poursuivre une phase de
calcul jusqu’a ce qu'une condition donnée soit vérifiée (exemple : «la tole est arrivée a la
verticale de tel axe »). La durée de chaque phase doit donc étre précalculée. Pour ce faire,
il est nécessaire que la vitesse d’avancement de la tole, qui dépend en grande partie de la
rotation des galets et du frottement a leur contact, soit maintenue constante. Par exemple,
la derniere phase de calcul débute lorsque 'extrémité amont arrive a la derniere téte. Si le
frottement n’est pas suffisant ou si la vitesse de rotation est mal imposée, la tole ne sera pas
arrivée a I'endroit prévu a I'instant précalculé et I'imposition du nouveau jeu de fixations
de la phase suivante provoquera éventuellement I'arrét prématuré du calcul. Ce type de
probleme est décrit sur un exemple concret a la section 6.5.1.

6.2.3 Autres parametres

Le schéma d’intégration temporelle utilisé est le schéma dynamique implicite de Chung-
Hulbert avec les parameétres par défaut indiqués a la section 4.3.2. Sauf mention contraire,
on utilise des éléments EAS (Enhanced Assumed Strain — voir section 4.3.3) qui permettent
de représenter correctement la flexion de la tole avec un nombre réduit d’éléments sur
I’épaisseur. Les outils sont supposés parfaitement rigides. Le contact et le frottement sont
traités par pénalisation. La loi de Coulomb permet de résumer I'ensemble des effets fric-
tionnels par un coefficient de frottement unique u.
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6.3 Modele ALE

Cette section décrit la version ALE du modele de profilage. Comme son homologue
lagrangien, le modéle ALE permet de simuler de nombreux types de lignes de profilage
grace a une définition préalable de la fleur de profilage et des outils avec le logiciel COPRA.
Néanmoins, le procédé est abordé ici dans sa version continue : le maillage, qui reste fixe
dans la direction de profilage, traverse la totalité de la profileuse et s’étend donc sur une
distance beaucoup plus grande que dans le cas lagrangien. Paradoxalement, le nombre total
d’éléments finis utilisés sera en général plus faible qu’en formalisme lagrangien, car il est
cette fois permis de faire varier la densité des mailles le long de la machine.

6.3.1 Déroulement de la simulation

Le premier avantage du modele ALE est la simplicité du déroulement de la simulation.
Contrairement au cas lagrangien qui nécessite de décomposer la simulation en plusieurs
phases de calcul pour adapter les conditions aux limites appliquées sur la téle, le modele
ALE ne requiert qu'une seule phase durant laquelle les fixations restent constamment ac-
tives.

L one L. direction de
A Yy p . p . . y ’ 1
Vo) @y @ @ @ @ [ P A
0 z Y NG NG NG N2 \Y
R R 7 7 N P A

L ELesis

frontiére zone de frontiére

eulérienne amont retour élastique eulérienne aval

FiGURE 6.12 - Simulation du profilage en formalisme ALE. Le maillage est délimité par deux frontiéres eulé-
riennes en amont et en aval de la profileuse. Les conditions aux limites restent identiques tout au long du
calcul.

Le domaine de calcul est délimité par deux frontieres eulériennes en amont et en aval
de la profileuse, comme le montre schématiquement la figure 6.12. Ces plans frontiere
en amont et en aval sont distants respectivement de L, .. de la premiere téte et L, de
la derniere téte. Ces deux distances sont choisies suffisamment grandes, d'une part, pour
éloigner les conditions aux limites des outils (schématisées par des appuis a rouleaux sur
la figure) et, d’autre part, pour observer un retour élastique en aval de la machine qui
correspond a celui qui serait observé si la tole était désengagée de la profileuse.

La simulation démarre en t = t, avec la configuration initiale représentée sur la fi-
gure 6.12. Davancement de la téle peut étre imposé soit par la rotation des galets et le
frottement qui en résulte, soit par des déplacements appropriés aux extrémités amont et
aval de la tole (en rouge sur la figure), soit par l'action simultanée du frottement et des
déplacements aux extrémités. Grace a ces conditions aux limites, la vitesse de la t6le peut
étre controlée de maniére beaucoup plus fiable que dans le cas lagrangien. Une vitesse de
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rotation des galets mal évaluée (voir figure 6.11) influencera, bien sfir, les résultats finaux
obtenus, mais ne provoquera jamais I'arrét prématuré du calcul.

La simulation est arrétée lorsque I’état stationnaire est atteint. En pratique, nous n’avons
pas mis au point un critére automatique d’arrét qui s’avérerait certainement difficile a for-
muler mathématiquement (la solution peut 1égerement osciller dans le temps comme étu-
dié dans le cas du laminage — voir section 5.4.3.3) et coliteux a évaluer a chaque incrément
temporel. Intuitivement, le temps minimum de simulation correspond a un déplacement
convectif de Zl. D; + L., c’est-a-dire la distance qui sépare la premiere téte de 'extrémité
aval du maillage. Il faut en effet que le résultat de cette premiére flexion puisse étre mesuré
en sortie de profileuse. En pratique, il semble que I’état stationnaire soit toujours atteint
apres un déplacement de I'ordre de 1.1 a 1.5 fois cette longueur. Nous notons ce facteur A.
On calcule donc le temps final de la simulation par tg, = A (Zi D;+ Layya)/ V-

6.3.2 Maillage initial

La principale difficulté dans I’élaboration du modéle ALE de profilage est de trouver une
configuration initiale du maillage, compatible avec la position des outils, pour laquelle la
tole est déja engagée dans la profileuse. Cette configuration peut étre obtenue en « interpo-
lant » judicieusement les profils de la fleur de profilage.

" :7 geme " ;
f\prole " passe n, mailles
‘ O

extrait de la fleur +§/<24»'€/ 2

de profilage
o——o
o——0
zone de pli L o
élargie
(n, mailles) o
afR
o
(a) maillage de la courbe (b) épaississement (¢) maillage transfini
du profil du profil de la section

FiGURE 6.13 — Création du maillage 2D d’une section particuliére autour d’'un profil linéique choisi dans la
fleur de profilage de la ligne modélisée.

La procédure est assez simple et complétement automatisée. Les profils de la fleur de
profilage sont tout d’abord placés le long de la profileuse, a hauteur des passes correspon-
dantes. Ils sont donc espacés les uns des autres d’'une distance D;, la distance intertéte,
éventuellement variable d’'une téte a I'autre. On consideére alors le dernier profil a partir
duquel on veut obtenir une section maillée. Ce profil correspond a la forme finale du profilé
au retour élastique pres. La création du maillage bidimensionnel de la section est décrite
sur la figure 6.13. Le profil est représenté par une courbe qui ne possede pas d’épaisseur (fi-
gure 6.13 (a)). Sur cette courbe, on identifie les zones de pliage qui nécessitent un maillage
plus fin que le reste de la section. Le maillage de la courbe est effectué selon la méthode
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utilisée en formalisme lagrangien. Les plis sont légerement agrandis a 'aide d’'un facteur
a > 1. Ils sont ensuite maillés avec n, mailles quelle que soit leur longueur. Le reste du
profil est maillé avec des éléments de longueur L. La section est ensuite « épaissie » en
déplacant les noeuds du maillage unidimensionnel précédent d’'une distance +e/2 selon
une direction orthogonale de part et d’autre de la ligne du profil (figure 6.13 (b)). On ob-
tient ainsi deux lignes de nceuds décrivant la surface supérieure et inférieure de la tole au
niveau de la derniére téte de profilage. Le maillage 2D de la section est enfin généré par
interpolation transfinie (figure 6.13 (c)) en utilisant n, mailles sur ’épaisseur (n, n’est pas
forcément un nombre pair).

Le maillage des autres sections de la fleur de profilage suit la méme méthode a 'excep-
tion de la premiere étape : le maillage linéique du profil est déduit du maillage du profil de
la derniere passe, indépendamment cette fois de la position des plis sur ces profils intermé-
diaires. Ceci est nécessaire pour garantir un méme nombre total de mailles sur la largeur
de la t6le tout au long de celle-ci.

ﬁz

T R
& direction

de profilage

passe 1

FIGURE 6.14 — Création d’un volume a topologie hexaédrique dans chaque espace intertéte (cas d’'un profil
symétrique). Les deux sections successives sont reliées par des segments de splines cubiques de McConalogue.
Les tangentes sont unitaires et alignées sur la direction de profilage.

Une fois toutes les sections maillées, les quatre coins des sections successives précé-
demment construites sont reliés entre eux par quatre splines cubiques de McConalogue
(équation (3.1)). Les tangentes au niveau des passes sont choisies unitaires pour obtenir
une paramétrisation quasi intrinseque des courbes (voir section 3.3.2) et alignées sur la
direction de profilage (u; = (0,0,—1)). La figure 6.14 montre le volume a topologie hexa-
édrique ainsi créé dans I'espace inter-téte D; d'une opération de profilage quelconque.

Chaque segment de spline est maillé avec une densité de mailles variable. C’est ce mail-
lage variable selon z qui permettra de réduire considérablement le nombre total de mailles
du modele ALE par rapport a son homologue lagrangien. La figure 6.15 décrit la maniere
dont un espace intertéte arbitrairement choisi est découpé en zones de maillage selon la
direction de profilage. Les longueurs des zones de raffinement correspondent a deux va-
leurs de rayons Ri1 et Ri2 qui sont déduites de la géométrie des outils (rayon maximum et
minimum des galets composant la téte i) ou spécifiées explicitement par l'utilisateur. Au
niveau du petit rayon R;, on utilise un maillage généralement tres fin (longueur des mailles
[7,) pour décrire correctement les fortes variations de courbure dans cette région. Au dela
du rayon R, et jusqu’au rayon R| > R sont associées des mailles un peu plus longues
(longueur des mailles [7)), justifiées par une variation de courbure moindre, mais dont la
longueur permet tout de méme une bonne prise en compte des contacts avec les galets en
entrée et en sortie de passe. Le reste de la longueur du segment de spline est situé suffisam-
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FIGURE 6.15 - D¢éfinition de la densité variable du maillage selon la direction de profilage. Les zones de

maillage sont définies en fonction de deux rayons d’outils qui sont soit calculés automatiquement, soit
spécifiés explicitement.
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FIGURE 6.16 — Maillage ALE de la téle a partir de la fleur de profilage. Les sections successives sont maillées
puis interpolées par des splines cubiques dans chaque espace intertéte.
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ment loin des galets et peut étre maillé avec des éléments encore plus long (longueur des
mailles L?)

La longueurs de tole supplémentaire en aval de la profileuse est construite simplement
en dupliquant le dernier profil de la fleur a une distance L, au dela de la derniere passe.

Lorsque toutes les arétes du volume représentant les bords de la téle dans un espace
intertéte sont maillées, les maillages surfaciques et volumiques restants sont générés par la
méthode d’interpolation transfinie. La figure 6.16 montre le résultat obtenu sur ’exemple
de I'élément de rack utilisé pour la description du modele lagrangien. Il est trés important
d’étre conscient que ce maillage n’est que le maillage initial du modele ALE. Sa forme
particuliére n’est qu'un moyen parmi d’autres pour démarrer le calcul. La géométrie finale
et les résultats stationnaires doivent étre bien stir indépendants de ce maillage initial. Nous
vérifierons cette affirmation a la section 6.4.5 dans le cas d’un profil en U.

Sur cette figure, on remarque également trés bien la variation de la taille des mailles
selon la direction longitudinale z. En formalisme ALE, contrairement au cas lagrangien,
seules les zones de contact ou la tole subit des flexions complexes nécessitent des petites
mailles.

6.3.3 Gestion du maillage

La gestion du mouvement du maillage est similaire a celle utilisée pour le probleme
de planage (section 5.5). La section de l'extrémité amont du maillage est repositionnée
par des fixations permettant de conserver I'’horizontalité de la tole a cet endroit (voir sec-
tion 5.5.2.5). Puisqu’il n’y a pas de traction sur cette section, cette horizontalité est moins
problématique que dans le cas du planage et les fixations verticales pourraient étre sup-
primées sans détériorer les résultats. Les noeuds de la section aval sont repositionnés en
calculant I'intersection du maillage et de la frontiere eulérienne aval (section 3.5.3). Les
noeuds de la section amont sont eulériens. Ensuite, les arétes des bords latéraux sont re-
maillées a 'aide de la méthode des splines (section 3.3.2). Puisque I'épaisseur de la tdle est
faible, les surfaces des bords latéraux de la tble, tout comme celle du bord situé sur le plan
de symétrie lorsque le probleme est symétrique, sont remaillées par interpolation transfinie
sans tenir compte de leur éventuelle courbure.

Le point critique de ce modele ALE est sans conteste le repositionnement des noeuds
sur les surfaces supérieure et inférieure de la tole. En effet, dans ce cas précis, il n’est
malheureusement pas possible d’utiliser la méthode d’interpolation transfinie qui aurait
été une solution directe tres rapide. La courbure de ces deux surfaces est suffisamment
complexe pour que les maillages générées par interpolation transfinie a partir des lignes de
leurs contours soient tres différents des surfaces dans leur configuration lagrangienne (on
est dans un cas similaire a celui décrit sur la figure 3.63, page 82). Il est donc nécessaire
d’utiliser une méthode de repositionnement itérative. Comme nous l'avons montré a la
section 3.4.11, la meilleure méthode a notre disposition, dans le cas d’'un maillage structuré
localement raffiné, est le lissage laplacien pondéré (section 3.4.3), couplé a une projection
sur une approximation spline de la surface lagrangienne (section 3.5.2). Ce lissage itératif,
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qui a été spécialement développé pour cette application de profilage, est initialisé avec les
positions des nceuds dans leur configuration du début du pas de temps et ne nécessite
donc qu'un tres petit nombre d’itérations (une seule itération, par défaut), car, pour un
observateur immobile par rapport a la ligne de profilage, la forme de la téle ne varie pas
beaucoup d’un pas de temps au suivant, méme durant la phase transitoire.

6.3.4 Autres parameétres du modele ALE

Les parametres concernant le contact avec les outils sont identiques pour les modeles
ALE et lagrangien. Seul le nombre d’éléments de contact change. En effet, si, en formalisme
lagrangien, tous les nceuds d’une face de la t6le sont susceptibles d’entrer en contact avec
un galet donné, en formalisme ALE, par contre, le nombre de noeuds a tester peut étre
significativement réduit. Seuls les nceuds dont la distance est inférieure a Ri1 (défini sur
la figure 6.15) de la position de la téte i donnent lieu a des éléments de contact liés a
cette téte. Déja dans le cas de quelques tétes de profilage, on peut diviser facilement le
nombre d’éléments de contact nécessaires par un facteur 10, tout en conservant un maillage
identique au modele lagrangien.

Pour la convection des grandeurs aux points de Gauss, nous choisissons par défaut le
schéma le plus précis, c’est-a-dire celui basé sur une reconstruction linéaire du champ in-
connu. I’étude du planage (section 5.5.3.3) nous a appris que le transport sur de longues
distances de grandeurs telles que I'allongement longitudinal, qui est également important
pour le procédé de profilage, nécessite impérativement ce type de schéma bien qu’il soit
beaucoup plus cofiteux que le schéma de Godunov. Ce point sera une seconde fois vérifié a
la section 6.4.4.

Puisque les effets d’inertie ne sont pas dominants dans ce procédé, les vitesses et les
accélérations nodales ne sont pas transférées du maillage lagrangien vers le maillage eu-
lérien. Ceci permet d’économiser la convection de six scalaires, d’éviter la création et le
stockage d’un maillage auxiliaire et d’améliorer significativement la vitesse de convergence
du processus de Newton-Raphson a chaque pas de temps, comme nous 'avons montré dans
le cas du laminage stationnaire (section 5.4.3.2).

Les éléments finis utilisés sont de type EAS, comme en formalisme lagrangien. Nous
décidons de ne pas transférer le tenseur & pour alléger les calculs (section 4.3.3). Nous
vérifierons a posteriori que son transfert n’est pas nécessaire pour retrouver les résultats
lagrangiens. Par contre, la convection du tenseur non symétrique F est requise pour pouvoir
calculer les déformations sur la configuration finale.

Pour éviter les oscillations temporelles dans les résultats ALE qui, idéalement, doivent
rester identiques d’'un incrément temporel au suivant lorsque le régime stationnaire est
atteint, la taille du pas de temps At est limitée de telle sorte que la téle avance au maximum
d’une distance équivalant a la plus petite longueur de maille (I;,). Le nombre CFL maximum
Coax €st fixé a 0.8 (c’est la valeur par défaut de notre implémentation). On a ainsi, en
moyenne, un nombre CFL C = 2 (le maillage avance d’une maille et donc de 2 cellules
de convection) et donc trois (2/0.8 arrondit a I'entier supérieur) sous-pas de convection
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par pas de temps. Aucune optimisation, qui serait pourtant utile, n’a été faite a ce niveau.
Nous verrons néanmoins que, pour des raisons d’archivage sur disque, le pas de temps n’est
pas tout a fait maintenu constant et des oscillations peuvent apparaitre dans les résultats
(figure 6.45, page 324).

Enfin, contrairement au modele lagrangien pour lequel I'évolution d’une section a mi-
longueur doit étre continuellement observée au cours du calcul pour retracer le comporte-
ment de la t6le le long de la ligne de profilage, le modeéle ALE fournit immédiatement cette
information a partir de la configuration finale stationnaire du maillage. Les résultats ALE
sont donc une image de I’évolution spatiale de la solution sur cette derniere configuration
alors que les résultats lagrangiens correspondent plutét a une évolution temporelle de la
solution.

6.4 Profilage d’'un U

La premieére application des modeles de profilage ALE et lagrangien concerne la mise
a forme d’un profil en U symétrique. Ce profil, relativement simple du point de vue géo-
métrique par rapport aux formes complexes que l'on peut rencontrer sur des lignes de
production industrielles, permet de valider le modele ALE en comparant ses résultats avec,
d’une part, ceux obtenus avec le modele lagrangien et, d’autre part, avec des résultats ex-
périmentaux provenant d'un projet de recherches en partenariat avec ArcelorMittal (Bui et
Ponthot [41]).

FIGURE 6.17 - Vue générale de la  FIGURE 6.18 - Profil a la sortie de la derniére téte. La tble a été
profileuse pilote d’ArcelorMittal tramée pour faciliter les mesures de forme.
(Montataire, France).

La figure 6.17 montre une vue globale de la ligne expérimentale d’ArcelorMittal lors
d’un essai a Montataire (France). Cette profileuse possede six tétes. Elle est dédiée a I'étude
de profilés en forme de U. La figure 6.18 est un apercu d’'une tole a la sortie de la derniére
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téte. Le retour élastique est clairement visible. Ce phénomeéne, mesuré par ’écart entre
I'angle formé par les ailes du U avec la base du profil et un angle droit, est un résultat
important que les modeéles numériques doivent pouvoir prédire avec précision.

6.4.1 Parametres du procédé

La ligne de profilage étudiée comporte six tétes (15°, 32°, 50°, 68°, 80° et 90° — voir
figure 6.20) permettant de profiler une tble initialement plane (longueur L = 2000 mm,
largeur [ = 200 mm, épaisseur e = 1.6 mm) pour obtenir, en sortie, un profil symétrique
en U de 102 mm de large et dont les deux rayons de pliage valent 6 mm. La fleur de
profilage, concue grace au logiciel COPRA, est représentée sur la figure 6.19. Le procédé
est symétrique et permet donc de ne modéliser qu'une demi-largeur de téle.

Y o
90780°
— T o
e=1.6 68

aile
gauche droite 32°

15°
i L6 base 0°
102 —
H =200 >

FIGURE 6.19 - Fleur de profilage du U symétrique (rayon de pliage 6 mm). Toutes les dimensions sont en
millimétres. Le forme idéale du profil, correspondant a la derniére passe, est tracée en rouge.

Les dimensions des galets qui composent les différentes passes sont donnés sur la fi-
gure 6.20. La distance intertéte est constante et vaut D; = D = 500 mm. La vitesse du
procédé est fixée a v =0.2 m/s.

Le matériau est un acier a haute résistance de type DP1000. L'identification de son com-
portement a fait I'objet d'une étude poussée par Flores et Habraken [71, 72] décrivant
notamment un écrouissage cinématique complexe. Pour ce modele numérique de profi-
lage, nous nous limitons a un comportement isotrope (critere de plasticité de Von-Mises)
et une loi d’écrouissage isotrope simplifiée. D’apres Bui et al. [41, 44], ce comportement
est amplement suffisant pour décrire correctement le procédé. L'écrouissage du DP1000
est représenté sur la figure 6.21. Il est exprimé sous la forme d’une loi de type Swift :
oy = 1626 (0.00487 + )", Le comportement élastique est décrit par les valeurs tradi-
tionnelles pour les aciers (module d’Young E = 210 GPa, coefficient de Poisson v = 0.29).
La masse volumique du matériau vaut p = 7895 kg/m?>.

Les valeurs des différents parametres concernant les maillages ALE et lagrangien sont
rassemblées dans le tableau 6.1. A défaut de mieux, une modélisation sommaire du frot-
tement se fait a 'aide d’un coefficient de frottement de Coulomb unique pour tous les
contacts (u = 0.2). Les pénalités normales et tangentielles intervenant dans 1’algorithme
contact sont choisies respectivement égales a py = 1 GPa/mm et p; = 200 MPa/mm.

Pour faire avancer la téle en formalisme ALE, on choisit de combiner des déplacements
imposés en amont et en aval de la profileuse a 'action du frottement. Ces conditions aux

305



CHAPITRE 6. APPLICATION AU PROFILAGE

passe 1 passe 2
54.61 @210 53.68 2210
R6 R6
S A 32° \
15 A AN
< 210 < 210
1962 1|7 1981 1|7
passe 3 passe 4
52.6 2210 51.355 2210
R6 R6
50° v 60\ IV
4 N
< 210 < 210
50154 | |° 5031 | |°
passe H passe 6
50.365 2210 o 49.4 2210
R6 R6
80° A 90° /
N N
< 210 < 210
) 5074 | |° 51| [°
[

FIGURE 6.20 — Description schématique des galets de profilage. Profilage d’'un U symétrique en 6 passes.
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FIGURE 6.21 — Loi de comportement du DP1000. Test en traction simple et loi d’écrouissage du modéle.
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ALE Lag
Nombre de mailles dans I'épaisseur (n,) 2 2
Nombre de mailles dans chaque pli (n,) 5 8
Taille des mailles selon la direction de profilage (L) [mm] 20 5
Taille des mailles selon la direction transverse (L) [mm] 8 6
Facteur d’agrandissement des zones de pli (a) 1.5 1.5
Longueur supplémentaire amont (L) [mm] 500 -
Longueur supplémentaire aval (L,,;) [mm] 700 -
Taille de maille a proximité des galets (I3, =) [mm] 4 (5

TABLEAU 6.1 — Parameétres des maillages ALE et lagrangien (U symétrique rayon 6 mmy).

limites facilitent la convergence du calcul ALE et n’influencent pas les résultats finaux ob-
tenus en régime stationnaire. Pour obtenir I'état stationnaire, le calcul est effectué avec
A = 1.5, c’est-a-dire que le déplacement convectif total vaut 1.5 fois la distance qui sépare
la premiere passe de 'extrémité aval du maillage. Ce parametre n’a pas été optimisé.

6.4.2 Comparaison du déroulement des deux simulations

Nous comparons tout d’abord de maniere globale le déroulement des deux simulations.
Les résultats seront analysés plus finement par la suite. La figure 6.22 montre une vue
globale du calcul lagrangien. La tble, longue de deux metres, passe entierement dans la
profileuse. Une section particuliere, située a mi-longueur pour éviter les effets de bords, fait
I'objet de mesures en continu pendant la simulation.

La figure 6.23 montre quatre instants du calcul en formalisme ALE. Contrairement au
modele lagrangien ot la t6le doit s’engager successivement dans toutes les tétes de profilage
et ou elle subit donc inévitablement une succession de chocs contre les galets, la simulation
ALE est beaucoup moins « spectaculaire » et s’effectue de maniere plus douce sans aucune
modification apparente des zones de contact. Il serait d’ailleurs difficile de distinguer ces
quatre configurations entre elles a partir d'un point de vue aussi distant que celui choisi sur
cette figure si le champ des déformations plastiques équivalentes n’était pas affiché.

La tole est initialement engagée dans la profileuse, mais sa limite d’élasticité est spa-
tialement uniforme et identique a celle du matériau vierge qui constitue la tole plane du
modele lagrangien a I'instant initial. Lorsque la simulation démarre et bien que le maillage
soit fixe selon la direction longitudinale, la matiere avance dans la profileuse et commence
a subir de 1égeres flexions plastiques au niveau de chaque téte pour se conformer a la géo-
métrie des galets. Ces déformations plastiques, localisées uniquement dans les « zones de
plis » si le procédé a été correctement mis au point, se propagent longitudinalement a la
vitesse v d’avancement de la tole, a travers le maillage grace a 'algorithme de convection.
Lorsque le premier incrément de flexion atteint la passe suivante apres un déplacement
convectif de la taille de la distance intertéte D, la déformation plastique augmente a nou-
veau. Le régime stationnaire ne peut étre atteint que lorsque la déformation plastique créée
dans les premiers instants du calcul en premiére téte s’est propagée jusqu’a I'extrémité aval
du maillage. Puisque nous utilisons un facteur A = 1.5, cet instant précis correspond a la
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FIGURE 6.22 — Déroulement de la simulation lagrangienne. La section de mesures, mise en évidence en rouge
sur les quatre configurations choisies, est suffisamment éloignée des extrémités amont et aval de la téle
pour représenter correctement le déroulement du procédé continu malgré la longueur limitée de la tole.

troisiéme configuration représentée sur la figure 6.23 (t = 2/3 t,). On remarque, en com-
parant les valeurs des déformations plastiques avec la derniére configuration (t = t,), que
I’état stationnaire n’est pas encore atteint a ce moment. On poursuit donc le calcul jusqu’a
son terme. Les résultats le long de la profileuse sont extraits de cette derniere configura-
tion. En particulier, la forme de la section apres retour élastique est mesurée sur une section
distante de D = 500 mm en aval de la derniere téte.

La figure 6.24 montre I'extrémité aval du maillage aux mémes instants que la figure 6.23.
A Tinstant initial, la section correspond au profil parfait dont les ailes forment un angle de
90° par rapport a la base du U. Au tiers de la simulation (t = tg,/3), ’écrouissage de la
tole s’est partiellement propagé dans la zone observée sur la figure. Les bords de la tole
sont légerement ondulés. Ces oscillations géométriques se propagent également a la vitesse
v du procédé. On peut également constater que I'algorithme itératif de repositionnement
des nceuds joue correctement son réle malgré 'unique itération utilisée a chaque pas de
temps : les lignes du maillage structuré restent bien perpendiculaires entre elles. La confi-
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FIGURE 6.23 — Déroulement de la simulation ALE. La solution stationnaire correspond a la derniére confi-
guration. Le retour élastique est mesuré (sur la section en rouge) a une distance suffisamment grande de
la derniére passe pour étre représentatif de celui mesuré si la tble était complétement désengagée de la
profileuse.

guration suivante (t = 2 t,/3) correspond a un déplacement convectif de 5D + L,,,;. Enfin,
la configuration finale correspond au régime stationnaire. Le profil s’est écarté légérement
du profil en U parfait sous I'effet du retour élastique. Ce phénomene est mis en évidence
sur I'extrémité aval du maillage bien qu’il ne soit pas mesuré en pratique a cet endroit, mais
plutot légérement en amont (a 500 mm en aval de la derniere passe, c’est-a-dire 200 mm
en amont de I'extrémité) pour éviter 'influence des conditions aux limites.

Le tableau 6.2 compare les deux simulations. Bien que le modele lagrangien soit plus
court (2 m contre 3.7 m), il possede beaucoup plus d’éléments finis puisque le maillage
peut étre difficilement optimisé dans le sens de la longueur. La différence entre le nombre
d’éléments de contact nécessaires aux deux modeles est énorme (le modele ALE en com-
porte pres de 15 fois moins). La détection des contacts est donc grandement facilitée en
formalisme ALE. On constate également que le modele lagrangien nécessite environ deux
fois plus de pas de temps que la simulation ALE alors que le déplacement (convectif dans le
cas de 'ALE) est plus ou moins identique (~5.5 m) dans les deux cas. Le modele lagrangien
est pénalisé par le calcul des chocs successifs de la téle sur les tétes de profilage. Ces chocs,
dont I'étude peut étre intéressante dans un autre contexte, sont tout a fait indésirables
dans le cadre de I'étude du régime stationnaire, mais ils doivent malgré tout étre correc-
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FIGURE 6.24 — Evolution du profil a Uextrémité aval du maillage ALE. Les instants choisis correspondent a
ceux représentés sur la figure 6.23. Langle de Uaile du U par rapport a la verticale dii au retour élastique
est mis en évidence sur la derniére configuration.
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tement modélisés pour permettre un engagement correct de la téle lagrangienne dans les
outils. Nous avons également vu a plusieurs reprises (cas du planage et du laminage) que
la convergence des modeles ALE quasi eulériens est facilitée lorsqu’on choisit de ne pas
convecter les vitesses et les accélérations nodales. Le modeéle ALE de profilage bénéficie
également de cet effet.

Nb. éléments | Nb. éléments | Pas/itérations Temps CPU
volumiques de contact
Lagrangien 21320 133164 (1.00) | 7640/23022 | 4j12h29’ (1.00)
ALE 12768 8400 (0.06) 3195/9242 | 1j17h43’ (0.38)

TABLEAU 6.2 — Comparaison des modéles ALE et lagrangien (U symétrique). Les temps CPU ont été mesurés
sur PC3 (tableau A.1).

En raison de tous ces facteurs, on obtient un temps de calcul du modele ALE presque
trois fois inférieur a celui du modele lagrangien traditionnel. Lorsqu’on prend en compte la
taille des deux modeles et les difficultés de convergence du modele lagrangien, on pourrait
s’attendre intuitivement a un gain de temps de calcul encore supérieur. En fait, la partie
lagrangienne du calcul ALE ne représente que 33% du temps de calcul total de la simulation
ALE. Autrement dit, un calcul lagrangien similaire possédant le méme nombre d’éléments
que le modele ALE et nécessitant le méme nombre d’itérations serait trois fois plus rapide
que le calcul ALE. Deux tiers du temps de calcul sont donc passés dans la deuxiéme phase du
calcul ALE. Le repositionnement des nceuds utilise la méthode basée sur une reconstruction
spline des surfaces de la téle qui, malgré son unique itération, cofite tout de méme 6%
du temps CPU total. Enfin, la majorité du temps de calcul est passée dans les routines
de convection (61%). Ceci résulte, d'une part, de I'utilisation du schéma du second ordre
utilisant une reconstruction linéaire et, d’autre part, de la nécessité de convecter les neuf
composantes du tenseur F pour pouvoir calculer les allongements.

Bien entendu, chaque modeéle peut étre encore optimisé : le modele lagrangien peut
vraisemblablement étre raccourci tout en restant représentatif de I’état stationnaire au ni-
veau de sa section a mi-longueur. Son maillage peut éventuellement étre rendu plus gros-
sier. On pourrait aussi choisir de ne pas simuler le désengagement de la tole lagrangienne
dans la profileuse, comme on le fait en formalisme ALE. Parallélement, on peut certaine-
ment diminuer encore le nombre de mailles du modéle ALE en jouant sur leurs tailles et leur
distribution dans la direction longitudinale. De plus, la durée de la simulation ALE (para-
metre A) peut étre réduite. Enfin, les parameétres de convection (nombre de sous-pas, taille
du pas de temps) peuvent étre améliorés. Néanmoins, ces deux simulations démontrent
que le formalisme ALE peut conduire a un gain appréciable de temps de calcul, bien que,
comme nous le verrons dans le cas de profils plus complexes (section 6.5), ce ne soit pas le
principal avantage de ce type de modele.
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6.4.3 Validation du modele ALE

Apres la description générale des deux simulations, cette section se concentre sur les
valeurs des résultats numériques des deux modeles. Nous comparons le modéle ALE au
modele lagrangien et a des mesures expérimentales provenant d’essais effectués sur la
ligne pilote d’ArcelorMittal. On s’intéresse principalement a la trajectoire de la téle dans
la profileuse et a sa forme finale aprées retour élastique.

FIGURE 6.25 - Bras de mesure 3D articulé fixé a FIGURE 6.26 — Mesure de la géométrie d’'une section.

la ligne pilote. Ce dispositif permet de mesurer Lacquisition se fait manuellement sur une grille
a tout instant la position 3D (x, y, z) de son préalablement tracée sur la surface supérieure de
extrémité. la téle.

La figure 6.25 montre le dispositif utilisé pour I'acquisition des mesures de trajectoire.
Il s’agit d’un bras articulé permettant des mesures manuelles de coordonnées 3D de points.
Pour déterminer la trajectoire de différents points, la surface supérieure de la tole est re-
couverte d’'une grille tracée au laser. Lessai de profilage est interrompu lorsque la tble est
engagée dans les tétes 1, 2, 3 et 4. Plusieurs sections transverses et plusieurs lignes longitu-
dinales sont repérées sur la tole et numérisées a I'aide du bras (figure 6.26). Le profilage est
alors redémarré jusqu'a ce que la t6le soit engagée dans les tétes 3, 4, 5 et 6 et les espaces
intertétes restants font 'objet d’une nouvelle série de mesures. Un dernier redémarrage de
la ligne permet de terminer la mise a forme.

Une fois la téle profilée, sa forme est mesurée apres retour élastique a 'aide d’un dis-
positif de mesure 3D qui est largement plus précis que le précédent, mais qui aurait pu
difficilement étre déployé autour de la ligne pilote ol '’espace autour de la tole est rendu
difficile d’acces par la présence des outils.

La premiere comparaison que nous effectuons concerne la forme de la tole le long de la
ligne lors de I'opération de profilage. La figure 6.28 montre le profil de la tole dans le sens
longitudinal en x = 0 mm, c’est-a-dire au milieu de la largeur, dans le plan de symétrie.
Pour chaque simulation, on a tracé deux lignes superposées qui correspondent aux surfaces

312



CHAPITRE 6. APPLICATION AU PROFILAGE

FIGURE 6.27 — Echantillonnage de la surface interne du profilé par un systéme d’acquisition 3D de haute
précision.
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FIGURE 6.28 — Géométrie de la tdle le long de la ligne de profilage dans le plan de symétrie (x = 0 mm).
Pour chaque simulation on trace deux lignes qui représentent la surface supérieure et la face inférieure de
la téle. On compare ensuite ces résultats avec les mesures expérimentales effectuées uniquement sur la face
supérieure de la tole.

supérieure et inférieure de la téle. Ces deux lignes sont distantes de 1.6 mm tout au long du
procédé. Cette distance correspond est I'épaisseur de la tole. Les deux simulations donnent
des résultats trés similaires si on écarte la zone d’entrée (située en —z < 0 mm). Dans
cette zone, la section lagrangienne est mesurée lorsque la tole est toujours poussée dans la
profileuse par son extrémité amont. Pendant cette phase d’engagement, la tOle posséde une
légere courbure dont I'importance dépend de la position de 'extrémité amont. La courbure
lagrangienne est plus grande que la courbure ALE parce que I'imposition des déplacements
sur I'extrémité amont est plus éloignée de la premiere téte en formalisme lagrangien que
dans le cas du modeéle ALE.

On observe un treés bon accord entre ces courbes numériques et les positions mesurées
des points sur la ligne médiane de la tole dans le sens longitudinal a 'aide du bras articulé.
Pour obtenir cette concordance en formalisme lagrangien, il est tres important de faire
avancer la tole par 'unique action du frottement avec les outils. En effet, comme nous
I'avons déja mentionné a la section 6.2.2, une autre solution consisterait a imposer la vitesse
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longitudinale des nceuds du plan de symétrie. Bien qu’elles faciliteraient le déroulement
de la simulation lagrangienne, ces conditions alternatives empécheraient partiellement le
mouvement vertical de la tble et fausseraient donc les résultats. En formalisme ALE, ce
probléeme n’existe pas puisque les conditions peuvent étre appliquées sans probleme aux
extrémités amont et aval du maillage, c’est-a-dire loin de la zone d’intérét.
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FIGURE 6.29 - Variation de 'angle de formage d’un FiGURE 6.30 — Section finale du profilé en U aprés
profilé en U le long de la ligne de profilage. retour élastique (z = —3000 mm).

La figure 6.29 montre I’évolution de l'angle de formage du U le long de la ligne de
profilage. Cet angle est mesuré dans un plan perpendiculaire a la direction longitudinale.
Il correspond a I'angle formé par l'aile du U par rapport a sa base. Il vaut 0° lorsque la
tole est plane, loin en amont de la profileuse et devrait valoir idéalement 90° en sortie s’il
n’'y avait pas de retour élastique. Au niveau de chaque passe, la géométrie de la section
de la tole est imposée par les galets et 'angle vaut donc celui de la passe en question
(15°, 32°, 50°, etc.). Cette figure permet d’obtenir la valeur du retour élastique en sortie
par la valeur de 'angle en aval de —z = 3000 mm. Contrairement a la valeur de I'angle
lagrangien qui reste constant au-dela de cette position, 'angle obtenu par le modele ALE
augmente trés légerement a proximité de I'extrémité du maillage. Il s’agit d'un effet de
bord qui est explicable par la présence des conditions aux limites sur la section aval et qui
justifie la mesure du retour élastique dans une section située en z = —3000 mm et non pas
sur Pextrémité du modeéle ALE (en g = —3200 mm).

La section apres retour élastique est tracée sur la figure 6.30. Les deux modeles numé-
riques donnent des résultats tres similaires et ceux-ci correspondent assez bien aux mesures
expérimentales. En regardant les mesures expérimentales de plus pres, on constate qu’elles
ne sont pas parfaitement symétriques. Cette dissymétrie est principalement due a la pré-
sence des blocs moteurs qui se situent d’'un seul coté de chaque téte de profilage et qui
provoquent inévitablement, par leur poids, un 1éger cédage non symétrique des outils qui
n’est pas modélisé.

Une grandeur tres importante dans le cadre de la conception d’'une ligne de profilage
et la prévention des défauts de forme des profilés est I'allongement longitudinal subi par
la tole pendant 'opération de mise a forme. En formalisme ALE, cette grandeur ne peut
évidemment pas étre déduite de 'allongement local des mailles. On mesure donc la défor-
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mation de Green-Lagrange ESZL obtenue a partir de la convection du tenseur des gradients
de déformation F.

Pour éviter des déformations permanentes qui entraineraient inévitablement 'appari-
tion de défauts sur le produit final (cintre, ondulations en rives, etc.), il est nécessaire
que I'allongement longitudinal des bords de la tole reste a tout moment dans le domaine
élastique. La figure 6.31 montre I'évolution de cette valeur le long d’une ligne médiane lon-
gitudinale située sur la surface supérieure de la téle. Tout comme pour la trajectoire de la
tole sur le plan de symétrie (figure 6.28), 'obtention de résultats corrects est conditionnée
par une modélisation réaliste de 'avancement de la tOle. Bien que nous ne disposions pas de
mesures expérimentales pour cette grandeur, on constate que les résultats numériques des
deux modeles sont tres similaires malgré le fait que les méthodes de calcul soient tout a fait
différentes. Les maxima calculés a proximité de chaque téte sont proches, mais ils ne sont
pas tout a fait identiques. Il s’agit d’'un probléme de discrétisation spatiale dans le cas ALE
et de discrétisation temporelle dans le cas lagrangien. En effet, pour représenter correcte-
ment un maximum d’allongement, le modele ALE doit posséder un nceud situé exactement
au niveau de celui-ci. Le modele lagrangien, quant a lui, doit calculer une configuration
pour laquelle la section de mesure se trouve exactement sur la position du maximum. En
pratique, les mailles ALE ou le pas de temps lagrangien ont une taille finie et les fortes
variations d’allongement observées sont plus ou moins bien représentées par les deux mo-
deles.

La figure 6.32 montre les courbes d’allongement longitudinal tracées cette fois le long
du bord de la surface supérieure de la tole. Les variations d’allongement sont, encore une
fois, tres semblables dans le cas des deux modeles.
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6.4.4 Influence du schéma de convection

Dans les applications précédentes (chapitre 5), nous avons réguliérement conclu que
le choix du schéma de convection était une étape importante dans la création d'un modele
ALE. En effet, si le schéma utilisant une reconstruction linéaire est largement plus précis que
le schéma de Godunov utilisant une reconstruction constante, il est également beaucoup
plus coliteux, car il nécessite une approximation du gradient de toutes les grandeurs a
transférer et 'application de limiteurs de flux pour éviter des oscillations indésirables dans
la solution.

Une nouvelle simulation en formalisme ALE est effectuée avec la méthode de Godunov
pour quantifier la perte de précision liée a l'utilisation du schéma plus diffusif, mais plus
rapide. Le temps passé dans l'algorithme de convection correspond cette fois a 32% du
temps de calcul total au lieu de 61%.

La figure 6.33 montre le profil de la tole dans le sens longitudinal, a mi-largeur. La
courbe verte correspondant a la nouvelle simulation est différente des deux autres et 'écart
vis-a-vis de la solution lagrangienne de référence est d’autant plus grand que 'on s’éloigne
de la premiere téte, vers I'aval. Il atteint pres d’'un millimetre en sortie. La courbure de la
tole en entrée est également différente de celle obtenue avec le schéma de convection plus
précis alors que tous les parametres des deux autres schémas, et en particulier le maillage
et la position des conditions aux limites, sont identiques. L'influence de la méthode de
transfert des grandeurs aux points de Gauss est donc bien visible sur la trajectoire de la tole
dans la profileuse.
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FIGURE 6.33 — Géométrie de la tdle le long de la ligne de profilage dans le plan de symétrie (x = 0 mm).
Influence de la précision du schéma de convection.

Langle de formage est représenté sur la figure 6.34. Les conclusions sont identiques,
méme si les différences sont moins visibles sur cette figure a cause de 'amplitude de va-
riation de la grandeur observée. Dans le premier espace intertéte, les courbes obtenues
par les deux schémas de convection sont identiques. Cependant, au fur et a mesure qu'on
avance le long de la profileuse, I'écart entre les deux courbes s’amplifie et devient maximal
en sortie ol 'angle de formage final obtenu par I'algorithme de Godunov est supérieur aux
deux autres simulations. Il semble donc que 'erreur provoquée par 'utilisation d'un schéma
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de convection moins précis s’accumule le long de la profileuse et sera donc d’autant plus
grande que le nombre de passes est important.
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FIGURE 6.34 - Variation de U'angle de formage du U~ FIGURE 6.35 — Section finale du profilé en U apres
le long de la ligne de profilage. retour élastique (z = —3000 mm).

La figure 6.34 que nous venons d’analyser donne une idée de la géométrie de la tole
le long de la ligne de profilage par l'intermédiaire de I'angle entre les ailes et la base du
profilé en U. En réalité, le profil n’est pas parfaitement rectiligne au niveau de sa base et
de ses ailes. Cet angle est donc une moyenne et il est important de tracer plus précisément
la forme finale de la section en z = —3000 mm (figure 6.35) pour observer 'amplitude
du retour élastique. En observant la figure 6.34 a cette position longitudinale, on pourrait
penser qu’il existe un écart similaire entre les trois courbes. La figure 6.35 montre que
ce nest pas le cas : les profils obtenus a la section précédente sont quasiment superposés
alors que le profil calculé par la méthode de Godunov s’en détache distinctement. On voit
également un autre défaut dans la solution obtenue par le schéma de Godunov : la base du
U est 1égerement bombée alors que les deux autres solutions sont planes.
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FIGURE 6.36 — Section finale du profilé en U aprés retour élastique (z = —3000 mm). La direction transverse

a été dilatée pour amplifier les différences.

Lintérét d’utiliser un schéma de convection précis est encore plus évident sur la fi-
gure 6.36 ou la direction transverse a été dilatée pour permettre une meilleure comparaison
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des méthodes de calcul. Nous avons superposé les mesures expérimentales pour confirmer
nos conclusions. Cette derniere figure permet de comprendre pourquoi I'angle de formage
tracé sur la figure 6.34 pour le schéma de convection précis est supérieur a I'angle lagran-
gien : 'aile du profilé ALE tres est 1égerement courbe.
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FIGURE 6.37 — Allongement longitudinal (ES") éva- ~ FIGURE 6.38 — Allongement longitudinal (ES") éva-
lué sur la surface supérieure de la téle le long du lué sur la surface supérieure de la téle le long de
plan de symétrie. son bord.
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F1GURE 6.39 — Comparaison des champs d’allongement longitudinal obtenus en fonction des différentes mé-
thodes de calcul.

Intéressons-nous maintenant aux courbes d’allongement longitudinal. Elles sont repré-
sentées sur les figures 6.37 et 6.38. Contrairement aux comparaisons géométriques que
nous venons de faire, il n’est pas nécessaire de comparer les résultats dans les détails :
I'erreur sur 'allongement calculé par le schéma de Godunov est trés important et s'ampli-
fie constamment le long de la ligne de profilage. Si on peut tout de méme penser que les
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maxima d’allongement de la figure 6.37 ne sont pas trop mal représentés, il est par contre
trés ennuyeux que l'allongement final obtenu en sortie ne soit pas nul. En rives, sur la fi-
gure 6.38, la situation est identique : I'allongement final est négatif. La courbe obtenue par
le schéma de Godunov subit des variations similaires aux deux autres courbes, mais elle se
décale progressivement vers les valeurs négatives d’allongement.

On peut observer ce phénomene a trois dimensions sur la figure 6.39. Comme on peut
s’y attendre, la diminution d’allongement calculé par I'algorithme de Godunov est visible
sur toute la largeur de la tole.

En conclusion, si les erreurs de géométrie observées sur la solution finale obtenue par le
schéma de Godunov sont relativement faibles et peuvent éventuellement étre tolérées, ce
schéma est tout a fait incapable de représenter correctement I'évolution de I’allongement le
long de la ligne de profilage. Ce probléme de précision justifie a lui seul le travail effectué
au chapitre 4 de cette these.

6.4.5 Démarrage du calcul par « emboutissage »

Dans cette section, nous présentons une méthode alternative pour le démarrage du
calcul ALE dans ce cas précis de profilé en forme de U. Au début de ce travail, Metafor ne
possédait pas les outils nécessaires pour importer la fleur de profilage et pour mailler celle-
ci. 11 était donc difficilement concevable de démarrer une simulation ALE avec une t6le qui
n’était pas plane. Nous avons donc imaginé un autre déroulement de la simulation basé sur
un emboutissage de la tole par les galets (Boman et al. [35-37]). Cet artifice numérique
est uniquement possible dans le cas de profils tres simples et il a donc perdu son intérét
depuis la mise au point du mailleur de la tole a partir de la fleur de profilage. Néanmoins,
nous pensons que ce modele peut servir une derniére fois pour montrer que la solution
finale stationnaire obtenue par I'algorithme ALE est bien indépendante de la maniére donc
le calcul est amorcé.

Le modele ALE est tres similaire au précédent. La géométrie des outils est identique,
mais elle est cette fois créée manuellement au lieu d’étre importée a partir du logiciel
COPRA.

Le déroulement du calcul, représenté sur la figure 6.40, est totalement différent. A l'ins-
tant initial, la tole est parfaitement plane. Puisque son maillage est quasi-eulérien, elle doit
étre placée initialement au niveau de la profileuse, entre deux frontieres eulériennes. Pour
éviter I'interpénétration du maillage dans les outils, tous les galets inférieurs sont initiale-
ment déplacés vers le bas d’'une distance de 100 mm. Par contre, les galets supérieurs sont
placés a leur position réelle.

La simulation se déroule en plusieurs phases dont la durée est un multiple de D/v,
c’est-a-dire le temps nécessaire pour que la téle avance d’'une distance intertéte. En t=0,
les galets inférieurs de la premiére téte, et uniquement ceux-ci, se déplacent verticalement
vers le haut pour atteindre, en t = 0.1 D/v, leur position de référence. IIs plient (ou « em-
boutissent ») localement la téle, tout en tournant sur eux-mémes.
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FIGURE 6.40 — Déroulement d’'une simulation ALE de profilage. Au lieu de démarrer la simulation avec le
maillage complexe généré a Uaide de la fleur de profilage, on utilise cette fois une téle plane qui est emboutie
successivement par les galets inférieurs au cours des premiers instants du calcul.
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Pendant toute la simulation, la matiere composant la téle subit une translation hori-
zontale a la vitesse v, imposée sur les noeuds situés aux deux extrémités amont et aval du
maillage. Cette translation est nécessaire pour transporter le pli créé lors de ce premier em-
boutissage jusqu’a la position de la deuxieme téte. Puisque le pli se déplace avec la matiere,
la forme de la téle facilitera le second emboutissage par la deuxieme téte qui démarre a
la phase suivante, en t = D/v. Cet emboutissage dure également une faction de la durée
de la phase (0.1 D/v) pour permettre la translation du pli formé jusqu’a la troisiéme téte.
Les phases s’enchainent de cette maniere jusqu'a ce que la derniere téte soit en position.
A ce moment, les outils sont maintenus en place et le profilage se poursuit jusqu’a l'ob-
tention d’un régime stationnaire. C’est sur cette derniére configuration que les grandeurs
intéressantes (déformations, géométrie) sont mesurées le long de la ligne. La géométrie de
la section apres retour élastique est mesurée a une distance intertéte en aval de la derniere
passe, comme pour le modele précédent.

En comparaison a la simulation ALE précédente, ’évolution de la forme de la téle en
aval de la derniere téte est beaucoup plus spectaculaire, comme le montre la figure 6.41.
Apres emboutissage par la sixieme série de galets, la tole forme un angle proche de 90°
au voisinage de la téte alors qu’elle est toujours plane au niveau de l'extrémité aval du
maillage. Cette simulation peut donc étre vue aussi comme un test de robustesse de I’al-
gorithme de repositionnement de noeuds sur les surfaces courbes. En t = 7D/v, la forme
en U sortant de la derniere téte s’est déplacée d’'une distance approximativement égale a la
distance intertéte. La courbure se propage et I'extrémité du maillage commence a fléchir.
La simulation est poursuivie jusqu’au régime stationnaire en t = 12D /v.

Comparons maintenant les différentes grandeurs auxquelles nous nous étions précé-
demment intéressés. La figure 6.42 montre la trajectoire de la téle selon un profil longitu-
dinal situé a mi-largeur. Le profil obtenu est proche de celui obtenu précédemment. Il est
intéressant de remarquer que les deux solutions ALE se situent de part et d’autre de la so-
lution lagrangienne. Les différences visibles en amont et en aval de la profileuse sont dues
aux longueurs L, ... et L,..; qui ont été choisies (inutilement) plus grandes dans le cas du
modele ALE démarré par emboutissage (L,yont = Laya = 1000 mm).

Les figures 6.43 et 6.44 montrent respectivement 1’évolution de 'angle de formage et
la géométrie de la section du profilé apres retour élastique. Les tres faibles différences
observées sont certainement dues aux différences entre les maillages des deux modeles
ALE qui sont semblables, mais pas identiques.

Les allongements longitudinaux peuvent étre également comparés (figures 6.45 et 6.46).
Les courbes montrent la méme évolution de cette grandeur le long de la ligne de profilage.
Si on examine en détail les 1égeres différences entre les résultats sur la figure 6.45, on
remarque que la solution calculée par emboutissage est plus lisse que celle obtenue par
maillage de la fleur. Cette derniére présente de petites oscillations visibles dans les espaces
intertétes ou 'allongement est constant et faible. Apres analyse, il semblerait que ces per-
turbations dans la solution ALE soient dues a une variation de pas de temps en cours de
calcul. Bien que I'on essaye de les éviter en fixant une taille de pas maximale en fonction
de la longueur des mailles, il arrive que le code de calcul doive ponctuellement diviser
I'incrément temporel pour archiver la configuration sur disque. Cette brusque diminution
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FIGURE 6.41 — Evolution de la forme de la téle en aval de la derniére téte lorsqu’on démarre le modéle ALE
avec une téle initialement plane. Le retour élastique est clairement visible sur le profil final.
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modifie les conditions de contact des noeuds de la tole sur les galets et I'allongement peut
subir des variations qui sont ensuite transportées tout au long du maillage. Il serait donc
intéressant de découpler I'algorithme d’intégration temporel de la stratégie d’archivage sur
disque. D’ici 1a, nous préférons tolérer ces oscillations et nous assurer que nos longs calculs
peuvent étre redémarrés en cas coupure de courant.

Sur cette méme figure, on remarque que les valeurs maximales des pics d’allongement
ne sont pas exactement identiques. Ceci peut étre expliqué par les différences de maillage
des deux simulations. Enfin, on observe des oscillations en sortie (—z > 3000 mm) qui
laissent supposer que le régime stationnaire n’est pas tout a fait atteint dans le cas de la
simulation démarrée par emboutissage. Il aurait donc été utile de continuer la simulation
au-delade t =12D/v.

Il est intéressant de noter que, bien qu’elle semble plus complexe au niveau de la gestion
des contacts et du repositionnement des nceuds, cette simulation ALE démarrée par embou-
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tissage est effectuée en un temps CPU comparable a celui de la simulation précédente ou
I'on avait maillé la fleur de profilage (2587 pas, 5446 itérations et 1j20h00’ de calcul). Nous
ne poussons pas la comparaison des performances des deux méthodes de démarrage plus
loin puisque, d’une part, leurs parametres ne sont pas tout a fait identiques et que, d’autre
part, le modele démarré par emboutissage ne sera pas réutilisé par la suite. Il a néanmoins
permis de démontrer que la maniere de démarrer une simulation ALE a peu d’'importance
si seul le régime stationnaire doit étre analysé.

6.4.6 Simulation d’un défaut

Nous terminons cette étude du profilage d’un U en montrant la capacité de nos modeles
a prédire l'apparition de défauts. Nous disposons, pour ce faire, d'une série de mesures
expérimentales effectuées sur la ligne pilote d’ArcelorMittal. Pour provoquer I'apparition
d’un défaut, sans modifier la distance intertéte et a partir du méme jeu d’outils, on supprime
un des deux galets supérieurs au niveau de la quatrieme téte de profilage (figure 6.47).
Cette dissymétrie dans les outils va étre répercutée dans la géométrie finale du profilé. Le
probleme n’est plus symétrique et c’est donc I'occasion également de tester une premiere
fois le modele de profilage complet, sans plan de symétrie.

Lors de la description de I'importation des outils a partir du logiciel de conception CO-
PRA (section 6.2.1), nous avons expliqué les diverses modifications apportées a la géomé-
trie des galets pour faciliter leur traitement de contact. Dans le cas du profil en U, les deux
galets supérieurs, visibles sur la figure 6.17 et sur l'arriere-plan de la figure 6.47, ont été
fusionnés en une seule entité plus économique a gérer numériquement. Le retrait d’un galet
correspond donc, dans le modele, a une réduction de largeur du galet unique, résultat de
cette fusion (figure 6.48).

Une simulation ALE et une simulation lagrangienne sont effectuées pour simuler cette
nouvelle configuration de la ligne de profilage. Les parametres des maillages correspondent
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FIGURE 6.47 - Suppression d’un galet pour provo-  FIGURE 6.48 — Modélisation du retrait d'un galet
quer un défaut de symétrie dans le profil. supérieur en quatriéme téte.

aux valeurs du tableau 6.1 mis a part les valeurs de L et n, qui a ont été uniformisée
(L; =8 mm et n, = 5 pour les deux modeles).

Comparons tout d’abord la forme de la section a proximité de la quatriéme téte (fi-
gure 6.49). La mesure expérimentale au niveau de l'axe des galets étant impossible, la
forme de la section a été échantillonnée a une distance de 90 mm en aval de la téte
(z = —1590 mm) grace au bras de mesure articulé. Les profils des modeles ALE et la-
grangien sont tres proches 'un de l'autre et sont en trés bon accord avec les points mesurés
lors de l'essai sur la ligne pilote. On voit tres bien que I'absence du galet (a gauche sur la
figure pour laquelle on regarde dans le sens d’avancement de la t6le) induit un pliage par-
tiel de la tole et une forte dissymétrie qui est amplifié sur le graphe par le choix d’échelles
différentes selon x et y.
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= Le ga!et a éte sob 9 —— Lagrangien
> 30t supprimé de T o exp.
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= c 20+ Le galet a été
o 2 supprimé de ce coté
& 10} 2 qof ]
o
TR L
foo -50 0 50 100 60 40 20 0 20 40 60
Direction transverse X [mm] Direction transverse X [mm]
FIGURE 6.49 — Section transverse de la tle a proxi-  FIGURE 6.50 — Section finale du profilé en U apres
mité de la quatriéme téte (z = —1590 mm). retour élastique (z = —3000 mm).

Le profil final, obtenu apres retour élastique, est représenté sur la figure 6.50 pour les
deux simulations. Ils correspondent tous les deux aux mesures expérimentales. En particu-
lier, on constate que I'angle de retour élastique est plus important a droite qu’a gauche, ot
le galet a été retiré.
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FIGURE 6.51 — Allongement longitudinal (EZGZL) éva-
lué sur la surface supérieure de la téle le long du
bord du cété ot le galet a été supprimé.
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FIGURE 6.52 — Allongement longitudinal (Esz) éva-
lué sur la surface supérieure de la téle le long du
bord du cété ot le galet n’ a pas été supprimé.
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FIGURE 6.54 — EC" ol le galet n’a pas été supprimé.
Aucun archivage sur disque pendant le calcul
(cfr. figure 6.52).

FIGURE 6.53 — ECL oul le galet a été supprimé. Au-
cun archivage sur disque pendant le calcul (cfr.
figure 6.51).

Les figures 6.51 et 6.52 montrent les courbes d’allongement longitudinal respectivement
sur le bord gauche (ot le galet a été retiré) et sur le bord droit quand on regarde dans le sens
d’avancement de la t6le. Les résultats ALE correspondent relativement bien aux résultats
calculés par le modele lagrangien. Les oscillations des deux courbes d’allongement ALE sur
ces deux figures résultent de perturbations liées a la variation de la taille du pas de temps,
comme nous I'avons expliqué lors de I'analyse de la figure 6.45. Pour s’en convaincre, nous
avons cette fois effectué une nouvelle simulation ALE sans aucun archivage sur disque
pendant le calcul. Ces archivages imposent des temps de passage précis et sont ainsi la
source de perturbation de la taille du pas de temps. On obtient les courbes des figures 6.53
et 6.54 qui ne possedent pas oscillations.

Du point de vue de la physique du procédé, il est intéressant de voir I'effet de la suppres-
sion du galet sur ces courbes. En amont du troisieme galet (—z < 1000 mm) les courbes
des bords gauche et droit sont similaires. Elles se différencient a partir de la quatrieme téte.
Le coté de la tole ol on n’a pas retiré de galet subit un allongement tres proche de celui
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observé dans le cas symétrique (voir figure 6.32). Par contre, 'autre bord évolue de ma-
niere tout a fait différente. En particulier, on observe un pic important d’allongement avant
la cinquiéme téte (z = —2000 mm) qui n’est pas présent de 'autre coté.

Nb. éléments | Nb. éléments | Pas/itérations Temps CPU
volumiques de contact
Lagrangien 34440 212076 (1.00) | 9491/28578 | 7j02h26’ (1.00)
ALE (100 archivages) 24864 15960 (0.08) | 5514/15997 | 6j10h05” (0.90)
ALE (1 archivage) 24864 15960 (0.08) | 4821/14433 | 4j23h22” (0.70)

TABLEAU 6.3 — Comparaison des modéles ALE et lagrangien (U non symétrique). Les temps CPU ont été mesurés
sur PC3 (tableau A.1).

Les temps de calcul des deux modeles sont comparés dans le tableau 6.3. Le calcul ALE
est légerement plus rapide que le calcul lagrangien. Cette fois la différence de temps CPU
n’est pas aussi importante que dans le cas symétrique alors que les maillages comportent
plus d’éléments. Cela s’explique en partie par le fait que le maillage lagrangien est moins
fin que précédemment (voir tableau 6.2, page 311). Le calcul lagrangien non symétrique
ne comporte donc pas deux fois plus de mailles que dans le cas symétrique, alors que c’est
plus ou moins le cas pour le modele ALE. On voit également I'influence des archivages sur
disque dont nous avons parlé sur le nombre de pas de temps et le temps CPU total.

Néanmoins, il faut garder a I'esprit qu’aucun des deux modeles n’a été optimisé pour la
vitesse. Nous avons privilégié ici la qualité des résultats au détriment de la vitesse d’exécu-
tion.
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6.5 Profils plus complexes

Apres avoir étudié en détail le cas d'un U formé sur une ligne pilote, nous montrons
dans cette section la mise a forme d’autres types de profilés plus complexes. Puisque nous
ne possédons pas de résultats expérimentaux les concernant, nous insistons cette fois non
pas sur la qualité des résultats, mais plutot sur les raisons qui nous pousseraient a utiliser
le formalisme ALE au lieu du formalisme lagrangien pour effectuer ces simulations.

Nous verrons en effet que le modeéle lagrangien, tel que nous I'avons mis au point, est
bien souvent incapable de traiter des profils plus complexes qu'un simple U.

6.5.1 Elément de rack

Le premier cas présenté concerne un élément d’étagere industrielle (un rack) dont la
fleur de profilage est représentée sur la figure 6.55. Ce profil, ainsi que les galets associés,
sont le résultat d’'un exercice d’apprentissage du logiciel COPRA. Ils nous ont été trans-
mis par ArcelorMittal pour tester notre modele. Cette géométrie a déja été prise plusieurs
fois comme exemple pour illustrer la mise au point des deux modeles de profilage (les
figures 6.8 et 6.9 montrent la téte 2 et 7 de cette ligne de profilage).

6
7
3 \l,\
$
e=1.5 mm
profil final désiré
¢ 166.7 mm >

FIGURE 6.55 - Fleur de profilage de Uélément de rack. Les passes sont numeérotées suivant la convention de
COPRA qui débute par la derniére passe et termine par la téle plane, numérotée elle aussi.

Bien que ce profil soit trop complexe pour détailler ici toutes les dimensions intervenant
dans le procédé, la figure 6.56 permet de se faire une idée de la géométrie finale désirée.
Le profil posséde une épaisseur de 1.5 mm et il est formé en sept passes a partir d’'une tole
de 166.7 mm de large. La distance intertéte est constante et fixée a 350 mm.

La simulation est effectuée en formalisme lagrangien et en formalisme ALE. Par facilité,
les parametres manquants (comportement de I’acier, contact, maillage, vitesse du procédé,
etc.) sont choisis identiques a ceux utilisés pour la simulation du profil en U. Le frottement
est supprimé dans le cas ALE (u = 0) puisque ce modele le permet. En effet, comme cela
a déja été discuté précédemment (figure 6.11), nous pressentons des problemes liés a la
multiplicité des zones de frottement sur les différentes parties des outils.
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FIGURE 6.56 — Elément de rack. Dimensions du profil désiré. Toutes les longueurs sont exprimées en milli-

métres.
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FIGURE 6.57 — Ve de la sortie de la ligne de profilage a Uinstant initial et Uinstant final lorsque le régime
stationnaire est atteint. La géométrie recherchée est matérialisée par une ligne rouge.
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La simulation ALE ne pose aucun probléme particulier. Elle est effectuée en 1341 pas
de temps et 2742 itérations et le temps CPU total est de 2j03h21’. La figure 6.57 montre
la configuration initiale du maillage et la configuration finale a laquelle on a superposé
la forme idéale du profilé. On constate que le profil possede des plis qui sont mal formés
durant 'opération. Il s’agit en fait d'un mauvais design de la fleur de profilage et des outils.
Pour que ces plis possedent 'angle attendu, il est nécessaire que la téle soit soutenue cor-
rectement par les outils lors de chaque incrément de flexion a chaque passe. Dans le cas de
ce design, on peut facilement voir que ce n’est pas le cas. La figure 6.58 représente les outils
de la cinquiéme passe auxquels on a superposé le profil correspondant a la quatrieme passe,
en rouge. ’angle indiqué sur la figure ne peut pas étre formé correctement si le profil n’est
pas soutenu par des galets supplémentaires. Puisqu’il semble difficile d’ajouter un galet a
cet endroit qui serait en contact avec I'intérieur du pli, la seule solution est de corriger la
fleur de profilage et de former ce pli plus tot, lors des premieres passes. Le nombre total
de tétes devra certainement étre augmenté pour former le reste du profil. Ce travail de
correction n’a pas été effectué.

axe Supérieur téte 5

\

angle non soutenu
par un outil

a gauche de la tole
pendant le pliage !

profil téte 4
AN

axe inférieur

FiGURE 6.58 - Cinquiéme téte de profilage de la ligne étudiée. Le profil en rouge correspond a celui de la passe
précédente. On remarque que seule la face inférieure du profil est en contact avec les outils au niveau de
U'angle problématique. La téle n’est donc pas suffisamment soutenue pour étre correctement pliée.

La simulation lagrangienne est, quant a elle, tres difficile a effectuer et nécessite un
ajustement délicat de nombreux parametres (coefficients de pénalisation pour le contact et
le frottement, tolérance d’équilibre a chaque pas de temps, etc.). L'engagement de la tole
dans les différentes tétes successives est beaucoup plus difficile que dans le cas du profil
en U. En regardant la fleur, on remarque par exemple que le milieu du profil descend de
maniere continue au cours du profilage. Le profil a en effet été créé de telle maniere a ce
que le centre de gravité de la section reste a tout moment fixe pour tenter de minimiser les
allongements longitudinaux et donc I'apparition de défauts.

Concernant le frottement, on constate que la valeur choisie (u = 0.2) n’est pas suffi-
sante pour faire avancer la tole a la vitesse v = 0.2 m/s choisie. La figure 6.59 montre la
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configuration en t = t,, c’est-a-dire au moment ou le profilé est censé quitter la derniere
téte de profilage. A cet instant, le modéle prévoit I'imposition d’un déplacement sur un
neeud de l'extrémité aval du maillage. Cette nouvelle condition aux limites provoque un
allongement excessif autour du nceud en question et la simulation s’arréte prématurément.
Si on ne comptabilise pas les nombreux essais préliminaires qui ont échoué, ce premier
calcul lagrangien permettant de conclure au mauvais design des outils aura finalement
duré 6j11h29’, soit trois fois plus longtemps que la simulation ALE qui n’a nécessité aucun
ajustement de parametres numériques.

la tole est toujours engagée
dans la profileuse en t,!

@ calcul de
l'évasement

plastification .
indésirable Déformation
au niveau de | ) plastzque y
la fization! - équivalente (")
’ - 0.15 0.3
[ s |

FIGURE 6.59 - Simulation lagrangienne du profilage d’'un élément de rack. Le modéle lagrangien, tel qu’il a
été congu, nécessite que la téle avance par frottement a une vitesse constante v préalablement choisie. Dans
le cas de profilés complexes, les conditions de contact sont telles que des glissements peuvent apparaitre et
la téle peut ainsi rester engagée dans la profileuse lorsque la phase de profilage est censée étre terminée.

Bien entendu, il ne faudrait pas conclure que le modéle ALE permet de résoudre tous les
problemes liés au profilage. Ce type de modele est en effet inévitablement restreint a la si-
mulation de lignes continues. Si on est intéressé par des effets de bords tels que I'évasement
du profil a ses extrémités (end flare, en anglais — voir Halmos [104]), un modele lagrangien
est indispensable. Un exemple d’un tel défaut de forme est montré sur la figure 6.59 dans
le cas de I'élément de rack. D’autres problémes tels que la simulation du profilage de toles
prétrouées ou de la mise a forme de profils a section variable (flexible roll forming en anglais
—voir Lindgren [136]) sont difficilement imaginables en formalisme ALE.

Néanmoins, dans ce cas précis, le formalisme ALE nous a permis d’obtenir des résul-
tats et conclure au mauvais design des outils trés facilement en évitant les difficultés de
convergence parfois fatales qui ont observées en formalisme lagrangien.
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6.5.2 Traverse

La simulation du procédé suivant permet de mettre en évidence un avantage du modele
ALE lorsque la tole subit des déformations non homogenes dans la direction transverse lors
du profilage. Le profil étudié est une traverse en acier dont la fleur de profilage (7 passes)
est représentée sur la figure 6.60. Les dimensions de la section finale désirée sont reprises
sur la figure 6.61. L'épaisseur du profil est 1.6 mm. La largeur initiale de la t6le est 123.54
mm et les tétes de profilage sont espacées de 350 mm.

profil final désiré

T I/ [ [ \! T 7
4 % = ' ‘ = ﬁi‘i*

I 123.54 mm gl

FIGURE 6.60 — Fleur de profilage de la traverse. Les passes sont numeérotées suivant la convention de COPRA
qui débute par la derniére passe et termine par la téle plane, numérotée elle aussi.
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FiGURE 6.61 — Dimension du profil symétrique désiré. Toutes les longueurs sont exprimées en millimétres.

Comme pour le cas de I'élément de rack, nous complétons ces données géométriques
avec les parametres du profilé en U lorsque c’est nécessaire. Le phénomene que nous vou-
lons mettre en évidence est clairement visible sur la figure 6.62 ou le maillage ALE est
comparé au maillage lagrangien au niveau de la derniere passe. On constate que certaines
zones de raffinement du maillage lagrangien se sont décalées vers 'extérieur du profil.
La tOle a subi localement des allongements transverses a proximité des plis et les petites
mailles, qui sont nécessaires pour représenter correctement la courbure de la téle au niveau
des rayons, ont suivi ce mouvement de matiere et ne sont plus en contact avec ces rayons.
Le pli est donc finalement mal représenté en derniere passe, car il est en contact avec des
mailles de taille beaucoup plus grande. Le maillage initial de la téle a été construit en sup-
posant un élargissement homogene sur la largeur de la tole. Dans le cas de ce profilé, les
déformations ne sont pas homogénes et le probléme doit étre résolu en augmentant la taille
des zones de raffinement (parameétre a).

Par contre, en formalisme ALE, les zones de raffinement ont été placées précisément sur
les rayons lors du maillage de la fleur de profilage. Puisque le mouvement du maillage n’est
pas directement lié a celui de la matiere, les inhomogénéités d’allongement transverse ne
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|
ALE i Lagrangien

FIGURE 6.62 — Comparaison du maillage ALE et du maillage lagrangien a la sortie de la derniére téte. Le
profil lagrangien a subi un allongement transverse non homogéne qui a eu pour effet de déplacer certaines
zones finement maillées pour décrire correctement les rayons des plis. En formalisme ALE, le maillage de
la derniére passe reste positionné sur les rayons indépendamment du mouvement de la matieére.

modifient pas la position de ces zones. Elles restent donc idéalement placées et permettent
une prise en compte optimale des contacts.

Le probléeme de déplacement de zones de raffinement du maillage lagrangien est déja
bien visible sur des profils de faible largeur tels que celui-ci, mais il est encore plus im-
portant sur des profils treés larges. C’est une des raisons pour lesquelles nous n’avons pas
encore simulé ce type de profil avec nos modeles actuels de profilage. D’apres cet exemple,
on peut imaginer que, dans le cas de profils larges et complexes, le formalisme ALE faci-
litera la mise au point du maillage initial de la tole puisqu’il permet de s’affranchir de la
prédiction de I'allongement transverse pour placer et dimensionner correctement les zones
de raffinement sur la largeur de la téle. C’est donc un avantage supplémentaire indéniable
du modele ALE par rapport au modele lagrangien.
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6.5.3 Bavolet

Cette derniere application montre I'intérét de modele ALE pour simuler des lignes in-
dustrielles de profilage de plus grande taille. Ces lignes ne peuvent généralement pas étre
simulées en utilisant le formalisme lagrangien ou, du moins, en utilisant le modeéle lagran-
gien dont nous disposons. Le profil étudié est un bavolet, c’est-a-dire un élément du chéssis
d’une automobile situé sous les portieres, dont la fleur de profilage est schématisée sur la
figure 6.63. Contrairement aux profils précédents, il s’agit d’un profil non symétrique fermé.
Néanmoins, nous ne simulerons pas 'opération de soudage du profil en fin de ligne.

9 8 7 ¢

10
e

{
\

\

e=1.5 mm?
¢ 166.69 mm b

FIGURE 6.63 — Fleur de profilage du bavolet. Les passes sont numérotées suivant la convention de COPRA qui
débute par la derniére passe et termine par la téle plane, numeérotée elle aussi.

Les dimensions du profil désiré en fin d’opération sont reprises sur la figure 6.64. La
largeur initiale de la tole est 166.69 mm et son épaisseur 1.5 mm. La distance intertéte
est constante et fixée a 350 mm. Cette géométrie, qui nous a été fournie par ArcelorMittal,
correspond a une ligne de production réelle. Nous sommes donc bien au-dela de la simula-
tion d’un simple exercice COPRA ou méme d’une ligne pilote. Comme pour les applications
précédentes concernant des profils complexes, nous ne disposons malheureusement pas de
tous les parameétres nécessaires a la simulation. Nous choisissons donc de compléter ces
données géométriques par certaines valeurs reprises dans des parametres du profil en U
(section 6.4). Autrement dit, ’acier utilisé est du DP1000. La vitesse d’avancement est fixée
a v = 0.2 m/s. Par contre, pour faciliter la simulation, le frottement du modele ALE sera

négligé (u = 0).

Le profilage s’effectue en 16 passes sur une machine de plus de cinq metres de long.
Pour mieux se rendre compte de cette longueur, la figure 6.65 représente la configuration
initiale de la tole du modeéle ALE ainsi que la succession des 16 tétes de profilage.

La géométrie des outils est évidemment beaucoup plus complexe que dans le cas d’'un
profil simple en U. Pour se faire une idée de leurs formes tres variées, la figure 6.66 re-
présente la septiéme téte de profilage. Elle a été choisie pour mettre en évidence certaines
difficultés supplémentaires concernant le contact qui apparaissent dans de ce probléme.
Sur cette téte, on remarque que, contrairement aux profils précédents, le bord de la tole
est directement en contact avec les outils. Il est donc nécessaire de définir des éléments de
contact entre les noeuds de ce bord et les galets en question. Ce type de contact particulier,
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FIGURE 6.65 — Profilage du bavolet. Vue générale des 16 tétes de profilage et du maillage initial du modele
ALE (longueur totale de la machine = 5.25 m)

que nous n’avions pas rencontré auparavant, permet de bloquer latéralement le profil dans
la téte lors de son passage. On évite ainsi les problemes de pliages incomplets que nous
avons décrits dans le cas du profil de I'’élément de rack. Au niveau du contact avec ce bord,
les outils forment une encoche et possedent inévitablement un angle vif puisqu’ils décrivent
I'angle droit formé par la surface inférieure de la tole et son bord latéral. Ces coins sont évi-
demment problématiques dans le contexte de I'algorithme de contact. La normale en un
coin est discontinue et la force de contact risque donc de ne pas étre définie correctement.
Pour contourner cette difficulté, on décide alors de ne pas fusionner les galets qui forment le
coin. Chacun des galets, prolongées suffisamment pour que les contacts soient toujours bien
définis, est traitée séparément. Les galets s’interpénétrent donc dans le modele numérique.

Numériquement, cela revient a définir, pour les noeuds de I'aréte de la tole venant se
loger dans un de ces coins, deux séries distinctes d’éléments de contact. La prolongation
de ces lignes est effectuée, grace au logiciel COPRA, en méme temps que les différentes
opérations de modification de la géométrie des galets décrites a la figure 6.8.

Pour ce procédé particulier de mise a forme d’un bavolet, toutes nos tentatives pour
obtenir des résultats a 'aide du modele lagrangien ont été un vouées a I’échec. La taille du
modele devient trés importante principalement a cause des nombreux éléments de contact
qui doivent étre définis sur les surfaces de la tole. Il en faut, en effet, au minimum 16 par
neeud auxquels on doit ajouter ceux dont nous venons de parler pour le traitement des
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FIGURE 6.66 — Géométrie de la 7™ téte de la ligne de profilage du bavolet. Le bord de la tble est en contact
avec les galets supérieurs. Les arétes de ce bord sont logées a des endroits out la normale a la surface de Uoutil
est discontinue (angles vifs). Il est alors nécessaire de définir plusieurs matrices de contact indépendantes
pour gérer ces contacts complexes.

coins. La simulation lagrangienne est donc tres lente et trés gourmande en mémoire. De
plus, I'engagement de la tole dans les tétes de profilage successives est d’autant plus pro-
blématique que 'on progresse le long de la ligne de profilage. Nous sommes arrivés, au
mieux, a faire avancer la tole jusqu’a la septieme téte. Légérement en amont de celle-ci,
nous avons été surpris de constater que la téle, qui possede plus ou moins la géométrie im-
posée par la sixiéme passe, est incapable de s’engager d’elle-méme entre les galets, comme
le montre la figure 6.67. En pratique, selon les explications d’ArcelorMittal, cette ligne de
profilage est une ligne continue et 'engagement de 'extrémité de la bande n’est pas une
opération courante. Lorsque c’est nécessaire, 'opérateur de cette ligne engage I'extrémité
de la bobine manuellement a 'aide d’'un outil auxiliaire qui n’est pas modélisé ici. On est
donc dans un cas ou le modele lagrangien est incapable de fournir des résultats.

Nous abandonnons donc I'idée de simuler cette ligne en formalisme lagrangien. Nous
allons voir la facilité avec laquelle un tel procédé, malgré sa complexité géométrique, peut-
étre modélisé en formalisme ALE.

Concernant les parameétres numériques, ceux-ci sont simplifiés pour accélérer le calcul.
Nous utiliserons des éléments SRI classiques au lieu des cofiteux éléments EAS. Puisque
nous ne comptons pas dépouiller finement les résultats n’ayant pas de possibilité de compa-
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toz’re de l'extrémité
g’( la/tole lagrangienne

L 4

FIGURE 6.67 — Probléme d’engagement de la tle lagrangienne dans la 7™ téte. On constate que la tole pro-
venant de la sixiéme téte est incapable d’entrer par elle-méme dans la septiéme téte. Le modéle lagrangien
nécessite donc des outils supplémentaires pour guider Uextrémité de la téle. En formalisme ALE, la téle dont
le maillage est représenté en bleu sur la figure, est déja engagée et le probléme est automatiquement résolu.

raison expérimentale concernant ce procédé, le schéma de convection utilisé sera le schéma
de Godunov et les allongements longitudinaux ne seront pas calculés. Nous économisons
ainsi la convection des neuf composantes du tenseur F.

Nombre de mailles dans I'épaisseur (ny) 1
Nombre de mailles dans chaque pli (n,) 4
Taille des mailles selon la direction de profilage (L?) [mm] 30
Taille des mailles selon la direction transverse (L¢) [mm] 6
Facteur d’agrandissement des zones de pli (a) 1.2
Longueur supplémentaire amont (L) [mm] | 350
Longueur supplémentaire aval (L,,) [mm] | 350
Taille de maille a proximité des galets () [mm] 5
Taille de maille sous les galets (I¢,) [mm] 3

TABLEAU 6.4 — Paramétres des maillages ALE pour la simulation du bavolet.

Le maillage utilisé, long de 5950 mm (L), est décrit au tableau 6.4. La longueur des
mailles varie de 3 mm sous les galets a 30 mm dans I'espace intertéte. On obtient ainsi un
maillage comportant 25420 éléments hexaédriques, soit au total 155652 degrés de libertés.
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Le déplacement convectif total d est fixé a 1.1 fois la longueur totale du maillage L. La
simulation nécessite 2995 pas de temps et 8550 itérations et dure 3j19h01’ (sur PC3 - voir
annexe A).

d=0 ¥ d=041,,
conf. initiale

a

d=111,
conf. finale
|

Déformation plastique
0.0  €quivalente () (.13
. _ .

FIGURE 6.68 — Simulation ALE de la mise a forme d’'un bavolet. Déroulement de la simulation.

La figure 6.68 montre le déroulement de la simulation ALE. Quatre instants ont été
choisis pour décrire I'évolution de la forme de la tole en aval de la derniére téte. Au début
du calcul, la section extréme est celle de la derniere passe. Le profil est fermé, car les deux
bords de la tole sont I'un contre 'autre. Pendant la simulation, les déformations provoquées
par les différents outils se propagent le long du maillage. Le nouvel état de contraintes ob-
tenu en sortie induit un écartement des deux bords. On observe également des ondulations
importantes le long de la surface supérieure du profil. Celles-ci sont bien visibles sur la
configuration notée d = 0.9L,, (elles sont mises en évidence par les deux lignes rouges).
Enfin, la configuration finale correspond au régime stationnaire. Le profil est toujours 1ége-
rement ouvert a cause du retour élastique. Le profil obtenu en fin de simulation et le profil
en derniére téte sont superposés sur la figure 6.69.

La figure 6.70 montre une vue différente de la configuration finale pour laquelle les
outils ont été rendus translucides. On peut observer clairement la succession des zones de
raffinement au niveau des contacts avec les outils et 'évolution de la déformation plastique
équivalente tout le long du maillage suite aux différents pliages entre les galets.
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profil derniére téte

Déformation plastique

0.0 équivalente (") (.13
I .

FIGURE 6.69 — Simulation ALE de la mise a forme d’'un bavolet. Mise en évidence du retour élastique apres la
derniére passe. Le profil en rouge correspond au profil désiré.

Déformation plastique
0.0 équivalente (") (.13
I .

FIGURE 6.70 - Simulation ALE de la mise a forme d’un bavolet. Configuration finale correspondant au régime
stationnaire.
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Bien entendu, cette simulation ALE peut étre grandement améliorée. Il ne s’agit ici que
d’une étude de faisabilité qui a pour seul but de démontrer I'intérét du formalisme ALE pour
ce type de procédé. Une simulation plus précise nécessiterait I'utilisation d’éléments EAS,
du schéma de convection utilisant une reconstruction linéaire et d'un nombre de mailles
plus important dans I'épaisseur.

Il serait également treés utile de modéliser 'opération de soudage. Une premiere mé-
thode tres simple consisterait a créer un maillage ALE initial pour lequel les nceuds des
deux bords de la tole seraient fusionnés. Le comportement local du matériau et les aspects
physiques chimiques de la soudure seraient donc totalement négligés. Toutefois, cette pro-
cédure simple permettait d’obtenir par exemple une premiere prédiction des contraintes
résiduelles dans le tube ainsi formé.

Enfin, les aspects frictionnels devraient étre inclus dans le modele. Ceci demande de
rassembler de nombreux parametres supplémentaires comme, par exemple, I'identification
des axes moteurs, leur vitesse de rotation et les conditions de lubrification sur chaque galet.
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6.6 Conclusions

Ce chapitre décrit I'application principale et tout a fait originale de ce travail de these. Il
s’agit d'un modele de profilage stationnaire continu utilisant le formalisme ALE. Ce modele
peut étre complétement paramétré pour représenter de nombreuses lignes industrielles. La
mise en données est grandement facilitée par la possibilité d’'importer la fleur de profilage
et la géométrie des outils a partir du logiciel COPRA qui est une référence incontournable
dans le domaine.

La difficulté principale dans I'élaboration du modele ALE de profilage est de trouver
une configuration initiale du maillage qui permette de démarrer facilement le calcul et
d’atteindre finalement le régime stationnaire recherché. En effet, le maillage ALE est quasi
eulérien et doit rester confiné a tout instant entre les deux frontieres eulériennes situées en
amont et en aval du procédé. Pour permettre un démarrage « en douceur » de la simulation,
une configuration artificielle de la tole, proche de la configuration finale, est construite a
partir de la géométrie de la fleur de profilage. Le maillage est construit en interpolant les
sections de chaque passe dans les espaces intertétes grace a des splines cubiques. La simu-
lation ALE peut ainsi s’effectuer en une seule étape, contrairement au modeéle lagrangien
qui nécessite de nombreux changements de conditions aux limites en cours de calcul.

La validation numérique de ce modele ALE de profilage a été rendue possible grace a
l'utilisation d’'un modele lagrangien préexistant et aux résultats d’une série d’essais expéri-
mentaux effectués sur une ligne de profilage pilote d’ArcelorMittal a Montataire (France).
Dans le cas du profil particulier étudié en forme de U, il est apparu que le modele ALE
et le modele lagrangien fournissent des résultats trés similaires et ceux-ci sont en tres bon
accord avec les mesures expérimentales.

Nous avons montré que le calcul précis de la géométrie de la téle dans la profileuse,
de son angle de retour élastique et de I'évolution de I'allongement longitudinal le long de
la ligne nécessite obligatoirement I'utilisation du schéma de convection du second ordre.
Si les 1égeres erreurs géométriques résultant de l'utilisation de I'algorithme de Godunov
peuvent éventuellement étre tolérées, les valeurs calculées par ce méme algorithme pour
les allongements sont completement erronées et donc inexploitables en pratique.

L'indépendance des résultats obtenus en régime stationnaire vis-a-vis de la maniere de
débuter le calcul a été prouvée par la mise au point d'un modele ALE alternatif dédié uni-
quement aux profilés en U. Au lieu de démarrer la simulation avec un maillage relativement
complexe, la tole initiale est cette fois plane. Les galets inférieurs, initialement éloignés de
leur position de référence, viennent emboutir la tole dans une premiere phase de calcul. La
simulation est ensuite poursuivie jusqu’au régime stationnaire. Bien que le déroulement du
calcul soit complétement différent, on obtient ainsi les mémes résultats que précédemment.

Au niveau du temps de calcul, on obtient une simulation ALE plus rapide que la si-
mulation lagrangienne équivalente. Ce gain de temps s’explique par une optimisation du
maillage dans le sens longitudinal. En effet, contrairement au cas lagrangien, on peut uti-
liser cette fois des petites mailles et des éléments de contact uniquement a proximité des

341



CHAPITRE 6. APPLICATION AU PROFILAGE

galets ou la tole subit des flexions. Le reste de la tole du modele ALE peut étre maillé
beaucoup plus grossierement.

Apres cette étude détaillée de la ligne pilote, nous nous sommes intéressés a la mise a
forme de profilés plus complexes. Ceux-ci nous ont permis de mettre en évidence certains
points forts du modele ALE par rapport a son homologue lagrangien.

Le profilage de ’élément de rack permet de montrer les problémes liés a ’'avancement
de la tole lagrangienne dans la profileuse. En effet, pour pouvoir étre représentatif de la
réalité, il est nécessaire que la téle avance sans étre fixée par 'unique action du frotte-
ment. Si des contacts complexes se produisent ou si le frottement réel est mal modélisé,
des glissements apparaissent sur certains galets et la téle avance finalement a une vitesse
inférieure a celle prescrite ou méme peut éventuellement ne plus avancer du tout. Dans ces
cas pathologiques, le probleme d’avancement de la tole est résolu dans le modeéle ALE en
imposant directement la vitesse voulue sur les extrémités amont et aval du maillage.

La simulation du profilage de la traverse montre le déplacement des zones de raffine-
ment du maillage suite a des allongements transverses non homogenes sur la largeur. Les
petites mailles de ces zones ne sont plus localisées au niveau des plis et des problemes de
contact ou de précision sur la représentation géométrique des plis peuvent apparaitre. En
formalisme ALE, les déplacements transverses de matiere n’influencent pas la position du
maillage et ce probleme n’existe pas.

Enfin, la simulation du bavolet montre la possibilité de simuler des lignes industrielles
comportant un grand nombre de passes (16 dans ce cas précis). Sur ce type de profileuse,
le modeéle lagrangien montre clairement ses limites. Il est fortement pénalisé par les condi-
tions de contact tres difficiles qui apparaissent lors de I’engagement de I'extrémité amont
de la tbéle dans les outils successifs. Au final, il semble trés difficile de mener la simulation
lagrangienne a son terme alors que la simulation ALE se déroule sans surprise. Les cal-
culs sont, certes, longs (plusieurs jours), mais ils permettent d’obtenir tout de méme des
résultats malgré la complexité géométrique du procédé.
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Chapitre 7

Conclusions générales

Nous cléturons ce manuscrit par un résumé des principaux apports originaux de la
these. Nous énumérons certains développements qui pourront étre envisagées par la suite
pour améliorer les méthodes numériques et les modeles qui viennent d’étre présentés.

7.1 Rappel du contexte du travail

Le formalisme Arbitraire Lagrangien Eulérien (ALE) n’est certainement pas une nou-
velle maniére de formuler les équations d’équilibre de la mécanique des milieux continus.
Il peut étre résumé en un découplage du mouvement du maillage et de celui de la matiere :
le mouvement du maillage peut étre arbitrairement choisi pour faciliter le déroulement du
calcul envisagé. En pratique, les buts du formalisme ALE sont, d’une part, la conservation
d’un maillage régulier lors de trés grandes déformations (problémes de lissage du mail-
lage) et, d’autre part, la diminution de la taille d'un modele (problemes eulériens ou quasi
eulériens).

La technique utilisée est conceptuellement tres simple et peut étre décrite aux non-
spécialistes comme un remaillage continu du modele au cours du calcul (phase eulérienne
du « partitionnement de l'opérateur eulérien-lagrangien »). Pendant cette opération, qui
consiste a redéfinir un nouveau maillage et a transférer les données de I'ancien maillage
vers le nouveau, la topologie du maillage (nombre de nceuds et relations de voisinage entre
les mailles) reste constante, contrairement a un remaillage classique. Cette restriction est
nécessaire pour obtenir un algorithme qui peut étre activé a la fin de chaque pas de temps
tout en restant compétitif vis-a-vis des modeles lagrangiens traditionnels.

Les premiéres contributions dans ce domaine de recherches datent de 1964 (Noh [157]).
Néanmoins, plus de 40 ans apres, le formalisme ALE n’est toujours que tres marginalement
utilisé lors de I'élaboration de modeles numériques en mécanique du solide. Les raisons sont
trés diverses et nous avons tenté dans ce travail de les analyser et d’apporter des solutions
pour rendre cette méthode de calcul plus attractive et donc peut-étre plus populaire.
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7.2 Gestion du maillage

La premiere étape de la phase eulérienne de I'algorithme ALE consiste donc a reposi-
tionner les nceuds pour redéfinir un nouveau maillage. En pratique, cette étape est déja
problématique, car, d’'une part, elle nécessite un travail supplémentaire au concepteur d’'un
modele numérique et, d’autre part, le nombre de méthodes que I'on peut introduire dans
un code de calcul est inévitablement limité. Les méthodes disponibles peuvent donc ne pas
convenir pour le procédé étudié.

Bien que nous ayons tout de méme implémenté des méthodes de lissage traditionnelles
qui sont bien utiles lorsque I'on veut améliorer la qualité d’'un maillage en cours de calcul,
nous nous sommes implicitement focalisés sur le traitement du maillage de problémes 3D
quasi eulériens. Notre but était de posséder tous les éléments nécessaires a la modélisation
d’une ligne de profilage continue, qui est I'application principale visée par ce travail :

e Le probleme majeur dans ce type d’application est la gestion du maillage surfacique
du profilé. Les nceuds de chaque face doivent étre repositionnés sur la surface de la
tole tout en conservant au mieux sa forme complexe. Pour ce faire, nous avons mis au
point une méthode originale qui consiste a lisser le maillage sur une approximation de
la surface basée sur des splines cubiques. Bien que cofiteux, I'algorithme résultant est
robuste et treés précis. Cette précision est capitale, car elle permet non seulement une
bonne représentation géométrique du procédé, mais elle va aussi diminuer les flux de
matiére parasites qui peuvent détériorer considérablement la qualité du transfert des
grandeurs qui va suivre.

e Un second probleme important, dans le cadre de la simulation du profilage, provient
du type de maillage utilisé. Pour une question de précision, on utilise de préférence
un maillage structuré, aligné sur la direction de '’écoulement. Ce maillage est locale-
ment raffiné pour permettre une meilleure prise en compte des contacts. Il est donc
nécessaire de préserver la densité variable de mailles lors de 'opération de lissage
sur les surfaces. La majorité des méthodes de lissage décrites dans la littérature ont
été développées pour des maillages a densité uniforme et ont donc tendance a uni-
formiser la taille des mailles. La seule méthode utilisable (le lissage isoparamétrique)
possede une vitesse de convergence extrémement faible. Nous avons donc développé
une méthode de lissage originale, beaucoup plus rapide, qui permet de n’effectuer
qu’'une ou deux itérations sur 'ensemble des nceuds dans le cas de I'application de
profilage visée.

e Enfin, une méthode particuliere pour le traitement des extrémités du maillage a été
mise au point. Elle permet de délimiter la zone maillée par des surfaces généralement
planes nommeées frontieres eulériennes. Le maillage est reconstruit en calculant son
intersection avec ces surfaces s’il les a franchies pendant la phase lagrangienne du
pas de temps.
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7.3 Transfert des données

La deuxieme étape de la phase eulérienne de 'algorithme ALE consiste a transférer
les grandeurs définies aux noeuds et aux points de Gauss du maillage, de sa configura-
tion lagrangienne (avant repositionnement des nceuds) vers sa configuration eulérienne
(aprés repositionnement). Si on énumere les difficultés de cette étape du point de vue de la
modélisation du profilage, on constate qu’avant ce travail, il n’existait pas d’algorithme de
transfert suffisamment précis pour retrouver les résultats du modele lagrangien équivalent :

e Bien qu’il soit techniquement possible d’obtenir des résultats sur le probleme de pro-
filage par un algorithme d’intégration temporelle explicite, nous préférons utiliser
des méthodes implicites qui évitent les artifices numériques (mass/load scaling — aug-
mentation artificielle de la densité des matériaux ou de la vitesse du procédé pour
augmenter la limite de stabilité du schéma) et qui permettent de calculer de maniere
plus fine le phénomene de retour élastique. Les éléments finis hexaédriques tradition-
nellement utilisés dans ce contexte possedent plus d'un point de Gauss. Pour ce type
d’élément, seuls des schémas de transfert précis au premier ordre sont disponibles
dans la littérature (Huerta, Casadei et Donéa [47, 114, 115]). Par contre, pour les
éléments finis sous intégrés utilisés en dynamique explicite, des schémas précis au
second ordre ont été développés par Benson [22]. Nous nous sommes donc inspiré
de ces travaux pour mettre au point un schéma précis au second ordre adapté aux
hexaedres a huit points de Gauss utilisés en dynamique implicite. Ce schéma est ca-
pable de gérer également les éléments complexes de type EAS (Enhanced Assumed
Strain) qui sont nécessaires a la modélisation correcte de la flexion.

e Grace a une réflexion importante concernant 'implémentation, nous avons pu tra-
duire le fait que ce schéma de transfert s’écrit mathématiquement de maniere indé-
pendante de la dimension du probléeme (2D ou 3D) et de la nature du support des
données (nceuds ou points de Gauss). La difficulté principale de mise en ceuvre de
'algorithme de transfert est sans contexte la création automatique de maillages auxi-
liaires de cellules de convection autour des nceuds et des points de Gauss. Bien qu’il
ne s’agisse que d’'une prouesse technique, cette caractéristique de notre implémen-
tation mérite d’étre signalée, car, sans elle, nous serions limités a des applications
simples a deux dimensions comme on en rencontre encore souvent dans la littérature
sur le sujet.

e La gestion du frottement est également capitale en formalisme ALE. Une méthode
simple et originale permet de représenter correctement le collement et le glissement
de la matiere sur un maillage mobile.

¢ Enfin, nous nous sommes longuement attardés sur les « détails » de I'algorithme de
convection qui permettent de conserver sa haute précision dans le cas de rotations
convectives de grande amplitude. Il s’agit de la maniére dont les volumes et les flux
convectifs sont calculés, ainsi que la gestion des conditions aux limites lors de la
présence de flux parasites a travers les surfaces du maillage. Ces ajustements fins
de l'algorithme de convection sont indispensables pour envisager la simulation quasi
eulérienne de procédés impliquant des toles minces en flexion (planage et profilage).
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7.4 Applications

Les applications ont été volontairement présentées dans un ordre de difficulté croissante
qui nous a permis de tirer des conclusions sur de premieres simulations simples et les appli-
quer ensuite sur des modeles plus complexes. Nous ne voulons pas résumer ici une nouvelle
fois tous les détails de ces études. Nous insistons uniquement sur quelques remarques ou
« regles de bonne pratique », déduites de notre expérience, et qui vont peut-étre parfois a
contre-courant de ce que I'on peut intuitivement penser.

e Le colit de la gestion du maillage vis-a-vis du cofit de l'algorithme de convection est

généralement infime. La seule exception est le traitement des surfaces courbes pour
lesquelles I'algorithme de reconstruction de la surface spline doit étre utilisé. Dans ce
cas, il est important de réduire au minimum le nombre d’itérations de lissage.

La seule difficulté rencontrée lors du repositionnement des nceuds est apparue lors
du remaillage de la surface supérieure de la tole en laminage. La présence d'un angle
vif provoque des oscillations d’autant plus grandes que cet angle est important, c’est-
a-dire que la réduction de la tole est importante. La seule maniére de les minimiser
actuellement est de raffiner le maillage a cet endroit.

Pour I'algorithme de convection, nous avons vu a plusieurs reprises que, contraire-
ment a ce que I'on pourrait initialement penser, le schéma précis au premier ordre est
souvent largement suffisant pour retrouver les résultats lagrangiens de référence. On
peut par exemple sans crainte I'utiliser lorsque le maillage est simplement lissé pour
éviter des écrasements excessifs d’éléments finis. Méme dans le cas de modeles quasi
eulériens, ce schéma, trés économique par rapport a son homologue plus précis, peut
fournir une solution correcte, tant que I'on ne s’intéresse qu’au régime stationnaire et
que les distances de convection ne sont pas trop grandes. Le cas du laminage en est
un bel exemple. Plus la matiere s’écoule sur de longues distances a travers le maillage,
plus il devient nécessaire d’utiliser le schéma du second ordre pour obtenir une évo-
lution précise des grandeurs inconnues le long de I'écoulement sur la configuration
finale.

Le transfert des vitesses et des accélérations nodales est important uniquement dans le
cas ou I’énergie du systeme doit étre calculée précisément. Dans tous les autres cas, il
est intéressant de ne pas transférer ces valeurs non seulement parce que leur transfert
est inutilement coliteux, mais aussi parce que l'algorithme d’intégration temporelle
en bénéficie et converge beaucoup plus rapidement grace a un meilleur prédicteur au
début de chaque pas de temps.

Pour obtenir une solution ALE numériquement stable en régime stationnaire, il est
parfois utile de contréler la taille du pas de temps. Par exemple, lorsque cette taille
varie, les conditions de contact peuvent fortement évoluer. Certains nceuds peuvent
entrer en contact alors qu’ils n’étaient pas entrés en contact au pas de temps précédent
avec un pas de temps plus petit. Ces variations se répercutent inévitablement sur
les grandeurs mesurées sous la forme d’oscillations et détériorent la convergence du
calcul.

Au niveau du temps de calcul, le formalisme ALE peut étre utilisé pour diminuer le
cofit des simulations. Il faut cependant garder a I'esprit qu’a nombre de mailles égal, le
modele ALE sera généralement plus lent qu'un modele lagrangien équivalent puisque
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I'algorithme ALE nécessite une phase supplémentaire a chaque pas de temps. Le gain
de temps de calcul requiert donc souvent un travail d’optimisation de maillage. A
moins que le modele soit trés petit, on arrive ainsi le plus souvent a obtenir des
temps de calcul plus faibles qu’en formalisme lagrangien. Ces gains ne sont cependant
pas toujours extraordinaires si on compare les résultats obtenus sur ce maillage ALE
optimisé avec des résultats sur un maillage lagrangien lui aussi optimisé.

e Vu la faible valeur des réductions de temps de calcul qui sont parfois obtenus en
formalisme ALE, il semble légitime de se demander si I'effort supplémentaire de
conception d'un modele ALE est bien justifié. Nous pensons que cela dépend gran-
dement du procédé modélisé. Dans le cas du profilage par exemple, le formalisme
ALE possede indéniablement de nombreux autres avantages. Outre le gain de temps
de calcul, le modele ALE permet d’envisager des simulations de profilés tres com-
plexes qui sont difficiles, voire impossibles a modéliser en formalisme lagrangien. La
gestion du contact, du frottement et des conditions aux limites est grandement fa-
cilitée en formalisme ALE. Nous devons aussi mentionner que les routines ALE de
notre implémentation ne sont pas autant optimisées que les routines lagrangiennes.
En particulier, I'acces aux données localisées aux points de Gauss et aux noeuds est
excessivement lent et pénalise donc nos algorithmes. Les gains de temps de calcul
devront étre réévalués lorsque ce code sera optimisé.

7.5 Perspectives

Pour terminer, cette section rassemble les sujets de recherches que nous jugeons priori-

taires pour la continuation de ce travail.

e Nous nous sommes principalement intéressés aux procédés de mise a forme de toles
minces et plus particulierement a leur solution en régime établi. Dans le cas du lami-
nage, du planage ou du profilage, il serait tout a fait possible de simuler des phéno-
menes transitoires tels que des défauts de forme (ondulations, variation d’épaisseur),
des défauts dans le matériau (inhomogénéités ponctuelles), des effets dynamiques
(vibrations), etc. Pour obtenir un maillage ALE possédant moins de mailles qu'un
maillage lagrangien équivalent, il faudra cependant mettre au point des techniques
de relocalisation de nceuds plus complexes qui permettent de suivre le défaut lors
de son mouvement le long de la machine et de conserver a proximité de celui-ci un
maillage relativement fin.

e Dans le cas de procédés pour lesquels le formalisme ALE est utilisé pour controler la
qualité des mailles (extrusion, forgeage, impact, etc.), 'algorithme ALE devrait idéa-
lement étre couplé a une procédure de remaillage complet ou partiel du solide qui
se déforme. Nous avons démontré que le formalisme ALE peut retarder considérable-
ment la nécessité de remaillage, mais il arrive toujours un moment ou les transfor-
mations subies par le milieu continu sont telles que le maillage initial n’est plus du
tout adapté a la poursuite du calcul, quelle que soit la méthode de lissage utilisée. Le
code de calcul idéal possede donc les deux approches et permet de les combiner de
maniere optimale qui reste a définir.
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e Il serait également intéressant d’éliminer completement les oscillations observées sur

la surface de la tole en amont d’emprise dans le cas du laminage. Une solution élé-
gante consisterait a traiter le repositionnement des noeuds de cette surface comme
un probléme de convection (Wisselink et Huétink [208]). En utilisant un algorithme
similaire a celui développé pour la convection des grandeurs aux points de Gauss,
qui, rappelons-le, conserve la monotonicité de la solution, il serait possible d’éliminer
totalement les oscillations indésirables sans passer par un raffinement du maillage.
Nous sommes actuellement limités par les capacités de nos mailleurs quadrangu-
laires et hexaédriques pour optimiser les maillages. Il serait possible, en utilisant
un mailleur anisotrope quadrangulaire non structuré, de réduire encore largement
le nombre de mailles nécessaires dans bien des cas. Pour la simulation du profilage,
on pourrait ainsi générer des maillages 2D de section beaucoup plus complexes ot le
nombre d’éléments sur I'épaisseur serait variable selon la largeur. C’est, d’apres nous,
une étape indispensable pour pouvoir traiter efficacement le cas de profilés larges
avec notre modele.

Enfin, puisque c’est une préoccupation industrielle majeure, nous indiquons certaines
pistes pour réduire encore le temps de calcul des simulations ALE :
e Comme nous I'avons déja mentionné, I'acces aux données devrait étre optimisé. C’est

une tache purement informatique de structuration des données au sein du code qui
reste a faire.

Le schéma de convection étant explicite, il peut étre tres facilement parallélisé. Les
méthodes de lissage itératives peuvent également bénéficier de la présence de plu-
sieurs processeurs sur la machine de calcul. C’est un travail qui est déja prévu a ’heure
actuelle.

Lorsqu’on analyse le déroulement d’une simulation ALE, on constate que, dans cer-
tains cas, les déplacements convectifs sont tres faibles et qu'’il serait bénéfique de re-
porter la phase eulérienne a plus tard. On remplacerait ainsi une série de convections
trés faibles par un seul transport plus important, mais beaucoup plus économique.
La difficulté est alors de définir un critére d’activation de I'algorithme ALE qui soit
idéalement peu cofliteux a évaluer et fiable.

348



Annexe A

Machines

Il aurait été difficile d’utiliser une seule et méme machine pour effectuer tous les calculs
présentés dans ce travail. A titre d’information, nous décrivons ici brievement les caracté-
ristiques techniques des ordinateurs utilisés. Metafor est un code de calcul qui n’est pas

encore parallélisé. Le nombre de CPUs n’influence donc pas les temps de calcul.

CPU RAM oS
PC1 AMD Opteron 254, 2.8 GHz 8 Go | Win Vistab4
PC2 Intel Core2 Duo T7250 2 GHz 1 Go | Win XP
PC3 Intel Core i7-940, 3 GHz 12 Go | Linux64 Debian

TABLEAU A.1 - Description des machines utilisées dans ce travail.
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