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Notations

a, A, α : caractère italique (romain ou grec) : scalaire
a, A, α : caractère italique gras (romain ou grec) : vecteur

(à l’exception du tenseur des contraintes σ et de son déviateur s)
A : majuscule droite grasse : matrice, tenseur d’ordre 2
A : majuscule calligraphiée : tenseur d’ordre supérieur à 2

ou une courbe C(ξ), ou une surface S(ξ,η)
ȧ : dérivée SRS ou eulérienne : liée à un point de l’espace (x constant)
◦a : dérivée SRG : liée à un point de la grille de calcul (χ constant)
•a : dérivée SRM ou totale ou matérielle : liée à une particule matérielle

(X constant)
∇χa : = ∂a/∂χ : gradient relatif aux coordonnées χ
∇a : =∇x a : gradient relatif aux coordonnées spatiales x

aL : grandeur relative à la configuration lagrangienne
aE : grandeur relative à la configuration eulérienne
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Chapitre 1

Introduction

1.1 Contexte

Lors de la simulation de grandes transformations d’un milieu continu par la méthode
des éléments finis, le choix initial d’une description cinématique de celui-ci est important et
conditionne parfois le bon déroulement du calcul. Certaines équations, faciles à résoudre
dans un formalisme particulier, peuvent devenir très difficiles à satisfaire dans un autre.

La formulation lagrangienne, pour laquelle le maillage suit la matière, semble être le
choix naturel en mécanique du solide puisqu’elle permet de suivre chaque particule maté-
rielle au cours de la déformation. Elle facilite ainsi le traitement de matériaux complexes
dont le comportement dépend de l’histoire du chargement. Cependant, utiliser un maillage
qui subit les mêmes grandes déformations que la matière risque évidemment de détériorer
la qualité des mailles et donc la précision associée. Les éléments finis peuvent même se
distordre jusqu’à provoquer l’arrêt du calcul.

Pour étudier de très grandes déformations et éviter ce problème, les équations peuvent
être reformulées en utilisant une description cinématique eulérienne où le maillage est fixe
dans l’espace et la matière s’écoule à travers celui-ci. Formulation naturelle en mécanique
des fluides, elle garantit une qualité de maillage constante quel que soit le niveau de ci-
saillement du milieu continu, au prix de termes convectifs additionnels dans les équations.

Dans ce travail, nous nous plaçons dans certains cas particuliers de la mécanique du
solide où la formulation lagrangienne montre ses limitations et pour lesquels la formulation
eulérienne n’est néanmoins pas des mieux adaptées.

Le premier cas se rencontre lorsque le maillage a subi de trop grandes distorsions et que
la qualité des résultats en souffre. À titre d’exemple, la figure 1.1 montre une simulation
axisymétrique de forgeage arrêtée à la suite d’un écrasement excessif des éléments sous le
poinçon. La description eulérienne est une solution rapidement écartée au vu de son inca-
pacité à suivre précisément les frontières libres du solide et des difficultés de gestion des va-
riables d’hérédité liées à la plasticité des métaux. Une autre solution, brutale mais efficace,
consiste à remailler le solide en cours de calcul, c’est-à-dire définir un nouveau maillage,
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forgeage

arrêt du calcul
(jacobien négatif)

FIGURE 1.1 – Simulation lagrangienne de forgeage. Arrêt du calcul par distorsion du maillage.

meilleur que le précédent, tout en conservant sa frontière. Cette opération, lorsqu’elle est
possible, est très coûteuse. De plus, à trois dimensions, des solutions complètement automa-
tisées de remaillage n’existent actuellement que pour des éléments tétraédriques et ceux-ci
ne sont adaptés qu’aux procédés de mise à forme massifs de type forgeage où aucune direc-
tion de l’espace ne peut être privilégiée a priori (voir, par exemple, Cescutti [48] et Chenot
et al. [49]). Enfin, dans le cas d’un remaillage, les résultats intermédiaires du calcul doivent
être transportés de l’ancien maillage vers le nouveau en prenant garde à limiter l’inévitable
erreur de diffusion. La solution qui consiste à remailler est peut-être dans certains cas utile,
mais elle est généralement trop radicale pour être optimale.

zone d'intérêt

blocs planeurssens d'avancement de la tôle

maillage utile uniquement au
de la simulationdémarrage

FIGURE 1.2 – Simulation lagrangienne de planage sous traction. Maillage inutilement long.

Le deuxième cas particulier où une description lagrangienne n’est pas idéale se ren-
contre lors de la simulation de procédés de mise à forme stationnaires tels que le laminage,
le profilage ou le planage (figure 1.2). Pour ceux-ci, la qualité du maillage n’est générale-
ment pas en cause puisque les déformations subies ne sont pas extrêmes. Par contre, le cal-
cul de la solution stationnaire nécessite l’utilisation d’un maillage suffisamment long pour
éliminer tous les effets transitoires qui apparaissent au démarrage du processus. Lorsqu’un
régime stable est atteint, la partie aval du maillage, qui n’a servi qu’à amorcer le calcul,
est simplement ignorée lors de l’analyse des résultats alors qu’elle a alourdi la résolution
du système d’équations tout au long du déroulement de la simulation. Au final, le calcul
lagrangien, bien que réalisable, devient très coûteux en temps de calcul et en mémoire. No-
tons qu’ici aussi, une description eulérienne n’est pas envisageable à cause des difficultés
liées à la détermination des surfaces libres et des conditions de contact sur maillage fixe.
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Le formalisme Arbitraire Lagrangien Eulérien (ALE) a été développé pour résoudre,
entre autres, ces deux problèmes en découplant le mouvement du maillage et celui de la
matière. La cinématique du maillage devient ainsi un paramètre supplémentaire sur lequel
on peut jouer pour, d’une part, optimiser la forme des mailles et, d’autre part, minimiser la
taille du modèle en concentrant les éléments finis aux endroits où ils sont les plus utiles.
On peut ainsi imaginer de garder continûment un bon maillage au cours du calcul ou de
restreindre le mouvement de celui-ci dans une seule direction pour modéliser un procédé
stationnaire. Les descriptions classiques lagrangienne et eulérienne deviennent alors des
cas particuliers de ce formalisme général en fixant le maillage à la matière ou en annulant
sa vitesse.

Ce travail de thèse se concentre donc sur le développement d’une formulation ALE gé-
nérale, simple et efficace au sein du programme Metafor [1, 125, 146, 156, 168]. Ce code
de calcul non linéaire, initialement dédié à la simulation numérique de la mise à forme
des métaux (« METAl FORming ») dont il tire son nom, permet de modéliser les grandes
transformations de solides par la méthode des éléments finis en prenant en compte les
principales sources de non-linéarités (matériaux complexes, contact, grands déplacements,
thermomécanique). Il rassemble la totalité des nombreux travaux de recherches du labora-
toire Mécanique Numérique Non Linéaire (LTAS-MN2L) de l’Université de Liège.

Par formulation ALE générale, on entend une formulation qui peut être utilisée pour
tous les problèmes lagrangiens habituellement modélisés dans Metafor, qu’ils soient réso-
lus de manière implicite ou explicite, qu’ils utilisent des éléments finis simples ou plus
complexes, qu’ils soient thermomécaniques ou non, qu’ils soient 2D ou 3D, qu’ils fassent
intervenir des matériaux simples ou plus sophistiqués, etc. Bien souvent, les implémenta-
tions du formalisme ALE sont sujettes à de nombreuses limitations pratiques qui réduisent
ainsi significativement l’intérêt de la méthode. Pour ne citer qu’un exemple, le logiciel Aba-
qus [55] restreint l’utilisation du formalisme ALE à des modèles constitués exclusivement
d’éléments finis sous-intégrés. Seule sa version explicite permet de définir des frontières
eulériennes, au travers desquelles la matière peut s’écouler. Dans son domaine d’applica-
tion, Metafor se distingue des autres codes notamment par la disponibilité d’éléments EAS
(Enhanced Assumed Strain) qui permettent une prise en compte améliorée des flexions et
cisaillement. Une formulation ALE dans Metafor doit pouvoir prendre en compte ce type
particulier d’élément fini.

L’utilisation du formalisme ALE doit également rester simple d’emploi. La mise en don-
nées d’un modèle ALE est généralement beaucoup plus complexe qu’un modèle lagrangien
équivalent. C’est, d’après nous, le plus grand frein à une utilisation plus généralisée du for-
malisme ALE dans la communauté des utilisateurs de la méthode des éléments finis. Cet
aspect, beaucoup trop technique pour être détaillé ici, reste cependant un point à ne pas
négliger.

L’implémentation du formalisme ALE doit enfin être efficace pour pouvoir concurrencer
les simulations lagrangiennes traditionnelles en termes de temps de calcul. Même si ce n’est
pas le seul, un des buts du formalisme ALE est la réduction de ce temps de calcul sur de
gros modèles 3D. Tout au long de ce manuscrit, nous ne perdrons donc jamais de vue que
l’objectif final du travail est la réalisation de simulations dans un contexte industriel. Nous
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écarterons ainsi toutes les solutions qui, bien qu’élégantes d’un point de vue scientifique,
sont inapplicables en pratique parce que trop coûteuses.

Ces trois points permettent d’expliquer pourquoi, malgré des fondements mathéma-
tiques mis au point et validés depuis longtemps (en mécanique du solide non linéaire, la
publication de Benson [22], datant de 1989, fait déjà un tour quasi exhaustif du sujet),
le formalisme ALE n’est encore que très rarement utilisé pour modéliser des opérations de
mise à forme. Un des objectifs de cette thèse est de supprimer tous ces obstacles. Elle a
également pour but de démontrer qu’il est aujourd’hui possible de bénéficier des atouts du
formalisme ALE pour modéliser des procédés industriels de grande taille.

1.2 Applications visées

Au niveau des applications numériques, le but de ce travail n’est pas d’étudier un nou-
veau procédé particulier, mais plutôt adapter des modèles lagrangiens existants, déjà bien
validés, au formalisme ALE. Il s’agit principalement de simulations de mise à forme de
produits minces (sheet metal forming) tels que le planage, le laminage et le profilage de
tôles d’acier, pour lesquels les éléments quadrangulaires et hexaédriques de Metafor sont
les mieux adaptés.

D’autres procédés tels que le forgeage ou l’extrusion nécessiteraient, comme nous l’avons
déjà mentionné, l’utilisation de tétraèdres. Ce type d’élément n’est pas disponible actuelle-
ment dans Metafor. Nous avons cependant toujours gardé à l’esprit la possibilité d’étendre
les méthodes numériques aux tétraèdres. L’ajout futur d’un élément tétraédrique ne devrait
donc pas poser de problème. Les techniques présentées dans les chapitres suivants peuvent
être adaptées sans mal à cette nouvelle géométrie d’élément fini.

L’application numérique principale de ce travail de thèse est un modèle ALE d’une ligne
de profilage à froid. La géométrie des outils peut être conçue à l’aide de COPRA Roll For-
ming [56], le logiciel phare de conception dans le domaine, et importée par la suite dans
Metafor. Ceci permet d’obtenir un modèle tout à fait générique permettant de traiter la
majorité des profils rencontrés dans l’industrie.
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1.3 Originalités de la thèse

La littérature sur le formalisme ALE étant déjà très fournie, il est intéressant de souli-
gner ici les originalités qui démarquent ce travail des autres. Les deux phases de l’algorithme
(la gestion du maillage et le transfert des données) ont fait l’objet de nombreux dévelop-
pements pour permettre l’utilisation du formalisme dans un grand nombre d’applications
différentes.

Gestion du maillage

• La méthode de classification des nœuds (section 3.1.2) permettant leur tri et l’appli-
cation d’une méthode de repositionnement adéquate est une extension à trois dimen-
sions des macrorégions ALE définies par Ponthot [168]. Ce classement automatique,
rarement abordé dans la littérature, permet de résoudre le problème complexe de
l’introduction des données supplémentaires définissant le mouvement du maillage.
De ce fait, il permet également l’utilisation du formalisme dans de grands modèles
3D de manière simple.
• Beaucoup d’auteurs semblent faire l’hypothèse que la frontière du maillage reste la-

grangienne (tout en autorisant, bien sûr, un glissement du maillage le long de celle-ci)
ou purement eulérienne. L’algorithme de gestion du maillage proposé dans ce travail
permet un déplacement des frontières à travers lesquelles un flux de matière existe.
Ces frontières, appelées frontières eulériennes (section 3.5.3), sont remaillées en cal-
culant l’intersection du maillage avec une surface prédéfinie, éventuellement mobile.
Ce traitement est original dans le cadre du formalisme ALE.
• Pour la simulation de la mise à forme de produits minces, le traitement original des

arêtes parallèles décrit à la section 3.3.4 permet de conserver un maillage structuré
dont les lignes restent orthogonales tout au long du calcul malgré la présence de
fortes flexions.
• Pour pouvoir aborder des problèmes tridimensionnels, il est nécessaire de pouvoir

repositionner des nœuds sur des surfaces courbes tout en conservant au mieux leurs
formes. Notre algorithme consiste à construire une surface composite du troisième
degré sur le maillage de la surface et à déplacer les nœuds sur celle-ci. Cette technique
originale (section 3.5.2) est tout à fait générale et applicable à n’importe quel maillage
surfacique composé de quadrangles, qu’il soit structuré ou non.
• Parmi la large gamme de méthodes itératives de relocalisation de nœuds disponibles,

seules quelques-unes permettent de traiter le cas de maillages structurés et locale-
ment raffinés qui sont couramment rencontrés dans les applications qui nous inté-
ressent (on parle de graded elements en anglais). Malheureusement, ces méthodes
possèdent une vitesse de convergence déplorable et sont donc difficilement utilisables
en pratique. C’est la raison pour laquelle nous avons mis au point une nouvelle mé-
thode de lissage (section 3.4.3), basée sur un lissage laplacien pondéré, qui permet de
conserver les différences de tailles de mailles imposées par l’utilisateur tout en étant
beaucoup plus rapide que les précédentes.
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Transfert des données

• Les algorithmes ALE de transfert des grandeurs aux points de Gauss les plus élaborés
utilisent une reconstruction linéaire du champ inconnu et sont précis au second ordre.
Cependant, ils nécessitent l’utilisation exclusive d’éléments finis sous-intégrés, c’est-
à-dire un seul point de Gauss par élément. Nous avons étendu ce type de schéma à
des éléments finis possédant plusieurs points de Gauss en s’inspirant de la démarche
de Huerta et Casadei [114] dans le cas d’une reconstruction constante du champ
inconnu. L’algorithme résultant (section 4.5.5) est original et permet l’utilisation de
toute la gamme d’éléments finis lagrangiens, y compris les éléments EAS.
• Ce nouvel algorithme de convection a ensuite été adapté au transfert des grandeurs

nodales (températures, vitesses et accélérations) tout en gardant le même ordre de
précision. Ceci permet l’utilisation de tout type de schémas d’intégration temporelle,
en incluant éventuellement, si le modèle le demande, les effets thermiques. Un schéma
similaire a récemment été publié par Benson [26] à deux dimensions. Notre implé-
mentation est tridimensionnelle et plus générale (section 4.5.6).
• La création des maillages auxiliaires nécessaires à la résolution des problèmes de

convection (section 4.4.4) est entièrement automatisée et donc transparente lors de
l’utilisation du formalisme ALE quelle que soit la dimension spatiale du problème, 2D
ou 3D, et le type de maillage, structuré ou non. Ce gros travail technique d’automa-
tisation explique en partie pourquoi il existe si peu de publications sur le formalisme
ALE à trois dimensions à l’heure actuelle.
• Une analyse poussée de l’influence des conditions aux limites et des flux parasites au

niveau des surfaces libres a été menée pour permettre une prise en compte de grandes
rotations entre le mouvement du maillage et celui de la matière (sections 4.7.2
et 4.7.3). Ce problème n’a jamais été abordé, à notre connaissance, dans la litté-
rature relative au formalisme ALE. Il doit pourtant être pris en compte et résolu pour
aborder la plupart des procédés stationnaires.
• Une méthode de gestion simple, mais efficace, du contact et du frottement a été mise

au point (section 4.6). Elle n’a jamais été publiée auparavant et fonctionne aussi bien
pour le contact entre un outil rigide et une surface maillée déformable que pour le
contact entre deux surfaces déformables.

Applications

• L’utilisation d’éléments EAS en formalisme ALE est une première.
• La majorité des publications ALE se borne aujourd’hui à montrer la faisabilité d’une

simulation sur un procédé spécifique. Nous sommes allés beaucoup plus loin dans ce
travail en comparant dans les détails (courbes de frottement, courbes d’allongements
locaux, etc.) les résultats ALE avec ceux fournis par des simulations lagrangiennes
traditionnelles et, lorsque c’est possible, des mesures expérimentales.
• Les modèles ALE de planeuse et de profileuse sont tout à fait originaux. Le modèle de

double extrusion, bien que 2D, est original par sa gestion complexe du mouvement
du maillage et la précision obtenue sur le frottement.
• Les modèles stationnaires incluent la prise en compte de conditions aux limites non

nulles, telles que des tractions en entrée et en sortie pour les simulations de planage
et de laminage.
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1.4 Structure du manuscrit

Suite à ce chapitre introductif, le chapitre 2 introduit les bases théoriques du formalisme
ALE en réécrivant les équations classiques de conservation d’un milieu continu dans le
cas d’un mouvement arbitraire du maillage. Les différentes techniques de résolution de
ces nouvelles équations sont brièvement abordées. On distingue l’approche couplée, pour
laquelle les équations sont résolues telles qu’elles, de l’approche par partition de l’opérateur
eulérien-lagrangien (operator split), qui permet de traiter les effets convectifs séparément.
Comme la majorité des auteurs, nous choisissons cette dernière manière de procéder. La
résolution est scindée en deux phases : une phase lagrangienne, pendant laquelle le maillage
suit la matière, et une deuxième phase, nommée abusivement phase eulérienne, qui consiste
dans un premier temps à redéfinir un nouveau maillage et dans un second à y transférer
les grandeurs importantes pour continuer le calcul. Ces deux étapes de la phase eulérienne
font chacune l’objet d’un chapitre distinct.

La première étape de la phase eulérienne est détaillée au chapitre 3. On y décrit les
méthodes utilisées pour déplacer les nœuds et définir ainsi la nouvelle configuration du
maillage (appelée maillage eulérien). Les méthodes de repositionnement de nœuds peuvent
être classées de manière hiérarchique en fonction de la dimension de l’entité géométrique
sur laquelle ils reposent : nœud de coin, nœud d’arête, nœud de surface ou nœud de vo-
lume. Les méthodes similaires sont comparées entre elles à l’aide de tests simples de con-
vection sur des maillages quasi eulériens pour déterminer leur efficacité, leur robustesse et
leur précision. La mise au point d’une méthode de traitement des maillages surfaciques non
plans est une étape cruciale pour pouvoir aborder plus tard des simulations 3D de procédés
stationnaires.

Le chapitre 4 est consacré à la seconde étape de la phase eulérienne qui consiste à trans-
férer les grandeurs définies aux points de Gauss et aux nœuds du maillage lagrangien vers
le nouveau maillage construit précédemment. Parmi les méthodes de transfert disponibles,
nous nous concentrons exclusivement sur les schémas dérivés de la méthode des volumes
finis. Ceux-ci ont l’avantage de posséder des propriétés intéressantes de conservation de la
grandeur convectée au prix d’une structuration des données relativement complexe pour
les mettre en œuvre dans un code initialement dédié aux éléments finis. Malheureusement,
les schémas précis au deuxième ordre sont conçus pour être utilisés avec des éléments
possédant un seul point d’intégration. En nous inspirant d’un schéma du premier ordre
développé par Huerta, Casadei et Donéa [47, 114] applicable à des éléments à plusieurs
points de Gauss, nous proposons de combiner ces approches pour obtenir finalement un
schéma du second ordre utilisable quel que soit le nombre de points d’intégration. Le pro-
blème du contact avec frottement est également abordé. Ce chapitre se termine par une
étude détaillée des effets dissipatifs du schéma et de l’influence des conditions aux limites
utilisées sur les frontières libres.

Après cette partie théorique, nous abordons au chapitre 5 une série d’applications qui
ont pour but l’étude détaillée des différents paramètres qui interviennent dans l’élaboration
de modèles ALE de procédés de mise à forme. Ces résultats permettront de concevoir plus
facilement le modèle 3D d’une ligne de profilage industrielle dans le chapitre suivant. Nous
débutons ces applications par deux benchmarks incontournables : la barre de Taylor et la
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barre d’Hopkinson. Ces tests montrent l’intérêt du formalisme ALE pour la conservation
d’un maillage de bonne qualité lors d’un impact ou d’une striction. L’application suivante
est un test de double extrusion qui emploie une manière originale pour contourner la né-
cessité d’un remaillage complet de la structure pendant la simulation. Ce problème permet
également de valider la prise en compte du frottement sur un maillage mobile. Nous pas-
sons ensuite à des modèles quasi eulériens pour lesquels les effets convectifs sont dominants
et qui nous rapprochent ainsi du profilage. Un modèle 2D de laminage incluant les défor-
mations des cylindres est présenté. Les résultats lagrangiens et ALE sont comparés à des
résultats obtenus grâce au code stationnaire eulérien LAM3 dédié au laminage. Le dernier
modèle de ce chapitre est un modèle de planeuse sous traction. Il met en évidence la né-
cessité d’un schéma de convection précis pour calculer l’allongement longitudinal subi par
la tôle.

Enfin, le dernier chapitre est dédié à la description d’un modèle 3D d’une ligne continue
de profilage. Grâce à une interface avec le logiciel de conception COPRA, ce modèle est
très général et permet la simulation de nombreux types de profilés. Après une validation
des résultats ALE grâce à un modèle lagrangien et des mesures expérimentales obtenues
lors d’essais sur une ligne pilote d’ArcelorMittal, nous montrons les avantages du modèle
ALE sur différents profils industriels complexes pour lesquels le formalisme lagrangien est
difficilement utilisable et parfois même incapable de fournir des résultats.

8



Chapitre 2

Formalisme Arbitraire Lagrangien
Eulérien

2.1 Introduction

Ce chapitre se concentre sur les fondements théoriques de la formulation Arbitraire
Lagrangienne Eulérienne (ALE) et la manière de résoudre les équations en mécanique du
solide. Après un rappel des formulations lagrangienne et eulérienne, l’équation fondamen-
tale ALE est présentée. Les lois de conservations sont réécrites pour un maillage mobile
possédant une vitesse arbitraire. Les algorithmes de résolution couplée sont détaillés, puis
abandonnés au profit d’une partition des opérateurs. Celle-ci permet de traiter l’étape la-
grangienne du problème grâce aux méthodes numériques couramment utilisées en méca-
nique du solide, et l’étape de convection en s’aidant des techniques eulériennes développées
notamment en mécanique des fluides. Ce faisant, on peut alors faire confiance, pour cha-
cune de ces parties, à des algorithmes robustes et mûrement testés.

2.2 Descriptions cinématiques d’un milieu continu

2.2.1 Formalismes lagrangien et eulérien

La description cinématique lagrangienne est obtenue en définissant un système de réfé-
rence lié à la matière appelé Système de Référence Matériel (SRM). Lors de la transformation,
une particule matérielle du milieu continu est repérée par ses coordonnées matière notées X ,
c’est-à-dire ses coordonnées spatiales dans la configuration de référence, à l’instant t = t0.
Si cette configuration est la configuration initiale, on parle de formulation lagrangienne
totale. Il peut s’agir également de la dernière configuration à l’équilibre connue ; on parle
alors de formulation lagrangienne actualisée.
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CHAPITRE 2. FORMALISME ARBITRAIRE LAGRANGIEN EULÉRIEN

V( )t0
V( )t

X
x

f

configuration de référence configuration courante

FIGURE 2.1 – Description lagrangienne du mouvement. Le maillage suit la matière (en gris) au cours de la
déformation.

À l’instant t > t0, la configuration de la matière peut être déduite de la configuration de
référence en t = t0 par la loi du mouvement (figure 2.1)

x = φ(X , t) (2.1)

Cette équation, projette tous les points du volume de référenceV0 = V(t0) sur le volume
à l’instant t que l’on dénote V(t). En calculant les dérivées de cette équation par rapport à
X ou t , on obtient l’expression du jacobien (le tenseur gradient de déformations F) et de la
vitesse matérielle v .

F(X , t) =
∂φ

∂X

�
�
�
�

t

v(X , t) =
∂φ

∂ t

�
�
�
�
X

(2.2)

avec J = detF supposé fini et non nul pour tout t ≥ t0, ce qui suppose que la relation
inverse φ−1 existe et donc que la relation (2.1) est biunivoque.

En formalisme lagrangien, les lois de conservation et de comportement du milieu con-
tinu sont exprimées explicitement en fonction des coordonnées matérielles X et, de ce fait,
bénéficient de l’absence de termes convectifs. Leur résolution par la méthode des éléments
finis est effectuée en définissant un maillage pour lequel chaque nœud est toujours lié à la
même particule matérielle. La frontière du maillage délimite donc parfaitement, et à tout
instant, la frontière matérielle du corps étudié. Les conditions aux limites s’appliquent ainsi
directement aux nœuds du maillage et l’équation de conservation de la masse est automa-
tiquement satisfaite. Enfin, cette description cinématique est idéale pour le traitement du
comportement irréversible des matériaux puisque chaque point de Gauss représente, lui
aussi, toujours la même particule matérielle lors de la simulation.

Le formalisme lagrangien s’avère donc être le choix naturel pour traiter les problèmes
de mise à forme des matériaux où les conditions aux limites, telles que des conditions
de contact unilatéral avec des outils, et les lois constitutives peuvent être très complexes.
Cependant, lier le mouvement du maillage à celui d’un corps subissant de très grandes dé-
formations entraîne inévitablement une dégradation progressive des éléments finis au cours
de la simulation. Les distorsions du maillage réduisent alors la précision de la discrétisation
spatiale et peuvent même provoquer l’arrêt prématuré du calcul si l’application (2.1) n’est
plus biunivoque (detF ≤ 0). L’écrasement des mailles induit également un ralentissement
notoire de la simulation lorsqu’un schéma explicite est utilisé. Dans ce cas, la taille maxi-
male du pas de temps qui garantit la stabilité du schéma est une fonction de l’inverse de la
plus petite distance entre deux nœuds.
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Un autre problème apparaît lors de la simulation de procédés stationnaires qui néces-
sitent un très grand nombre de mailles lagrangiennes pour démarrer la simulation, calculer
une phase transitoire, et finalement converger vers un état stabilisé. Dans ce cas de figure,
le maillage ne peut généralement pas être optimisé dans la direction de l’écoulement et
doit être choisi suffisamment fin pour garantir la convergence du calcul transitoire et une
bonne précision sur la solution stationnaire finale. Un maillage uniforme dans le sens de
l’écoulement est alors souvent le meilleur choix. Ce type de modèle est d’autant plus coû-
teux en termes de mémoire utilisée et de temps de calcul que la zone stationnaire d’intérêt
est grande.

Pour remédier à ces problèmes, on pourrait être tenté d’utiliser une description ciné-
matique eulérienne qui consiste à définir un système de référence fixe dans l’espace, le
Système de Référence Spatial (SRS), et non plus lié au mouvement de la matière. Les lois de
conservation sont alors écrites en fonction des coordonnées spatiales x et du temps, entraî-
nant l’apparition de termes convectifs. Ces derniers traduisent le fait que chaque point de
la grille de calcul voit défiler de nombreuses particules matérielles au cours du temps. Du
point de vue mathématique, ce formalisme est bien sûr tout à fait équivalent au formalisme
lagrangien.

Utiliser le formalisme eulérien permet de supporter sans problèmes numériques les
grandes distorsions du matériau puisque les mailles restent toujours indéformables et sont
choisies au début du calcul pour être bien conditionnées. D’autre part, les difficultés liées
à la taille du maillage d’un procédé stationnaire n’apparaissent pas non plus puisqu’il est
théoriquement possible de mailler uniquement la zone d’intérêt et laisser la matière s’écou-
ler à travers celle-ci.

Néanmoins, le formalisme eulérien est difficilement utilisable en dehors de la mécanique
des fluides. Outre la nécessité de traiter efficacement les termes convectifs supplémentaires
dans les équations du mouvement et les lois constitutives, la gestion des surfaces libres
pose un gros problème pour le traitement eulérien des solides. En effet, ces frontières ne
coïncident généralement pas avec la grille de calcul et leurs positions doivent être calculées
à chaque instant pour y appliquer d’éventuelles conditions aux limites. On est donc, en
général, limité à des problèmes où les frontières sont fixes et connues a priori.

2.2.2 Formalisme Arbitraire Lagrangien Eulérien

Ce bref rappel des deux descriptions classiques du mouvement a pour but de prouver la
nécessité, dans certains cas, d’utiliser un formalisme plus général. Celui-ci doit conserver les
avantages des formalismes lagrangien et eulérien et pouvoir s’y particulariser si la situation
le requiert. Il s’agit de la formulation Arbitraire Lagrangienne-Eulérienne (ALE) également
appelée formulation mixte eulérienne-lagrangienne.

On y définit un nouveau système de référence, appelé Système de Référence de Grille
(SRG) ou système de référence de calcul, qui peut se mouvoir indépendamment de la ma-
tière et du système de référence spatial. On introduit ainsi un découplage entre le mouve-
ment de la matière et celui du maillage. Grâce à cela, il est par exemple possible de garder
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CHAPITRE 2. FORMALISME ARBITRAIRE LAGRANGIEN EULÉRIEN

un maillage de bonne qualité tout au long du calcul à l’intérieur d’un domaine étudié malgré
de grandes déformations matérielles. On peut aussi imaginer, pour les problèmes station-
naires, de permettre à la matière de traverser certaines frontières du maillage pour limiter
artificiellement le domaine étudié à une certaine portion de l’espace.

eulérien

lagrangien

ALE

x

x

x

x

x

x

y

y y

y

yy

t t> 0
t t= 0

FIGURE 2.2 – Les trois formalismes utilisés en mécanique des milieux continus. À gauche, la configuration au
temps de référence t0. À droite, un instant ultérieur.

La figure 2.2 montre de manière schématique les trois formalismes appliqués à la défor-
mation d’un solide. À gauche les configurations de référence de la matière et du maillage
en t = t0 pour chaque formalisme. À droite, une configuration à un instant t ultérieur.
Dans le cas eulérien, le solide étudié quitte l’espace maillé. En formalisme lagrangien, le
maillage a subi des distorsions excessives. En formalisme ALE, le maillage a été adapté tout
en respectant les frontières du solide.

La formulation ALE n’est pas nouvelle : elle a tout d’abord été introduite pour traiter
des problèmes gouvernés par les équations de Navier-Stokes (Noh [157] en 1964, Frank
et Lazarus [74] en 1964 et Trulio [195] en 1966) par la méthode des différences finies.
À cette époque, chaque région était soit purement lagrangienne, soit purement eulérienne.
Un peu plus tard, toujours en mécanique des fluides, Hirt, Amsden et Cook [111] étendent
la formulation en permettant les premiers mouvements relatifs arbitraires entre le maillage
et la matière.

La formulation ALE est ensuite appliquée à la méthode des éléments finis dans le cadre
de problèmes d’interactions fluide-structure (Donéa [61, 63], Belytschko [18], Liu [139,
141]). Pour ces auteurs, seul le fluide est traité en formalisme ALE. Le solide et l’interface
sont lagrangiens.

12



CHAPITRE 2. FORMALISME ARBITRAIRE LAGRANGIEN EULÉRIEN

Le traitement du solide par le formalisme ALE est ensuite abordé par différents auteurs
(Schreurs et al. [180], Huétink [119, 121], Liu et Belytschko [142, 143], Benson [22],
Ponthot [165, 166], etc.). Depuis lors, les techniques numériques de résolution des équa-
tions de la mécanique du solide en formalisme ALE ont continuellement été améliorées et
appliquées à des opérations de mise à forme de plus en plus complexes (Benson [24, 26],
Huerta et al. [64, 114, 175], Huétink et al. [3, 83, 187, 206], Fourment et al. [95, 164]
Pantalé [161, 162], Ponthot [168, 171], Boman [31–33, 35] parmi beaucoup d’autres).

Plusieurs dénominations sont utilisées pour parler des différentes méthodes de réso-
lution et des hypothèses effectuées. Benson distingue par exemple la formulation S-ALE
(ou Simple-ALE, c’est-à-dire un seul matériau par élément et des frontières exclusivement
lagrangiennes) et MMALE (formulation générale multi-matériau).

Aujourd’hui, malgré tous ces développements, le formalisme ALE est loin d’être systé-
matiquement utilisé en mécanique du solide non linéaire. Les difficultés principales restent
la définition d’un mouvement de maillage approprié et la prise en compte des conditions
aux limites (mouvement des nœuds sur les surfaces libres, prise en compte du contact avec
ou sans frottement, gestion du flux de matière en entrée et en sortie du maillage). Des
implémentations sont disponibles dans les codes de calcul commerciaux (LS-DYNA [103],
Abaqus [55], par exemple), mais elles souffrent toujours de fortes limitations : générale-
ment, le formalisme ALE ne peut être utilisé qu’avec certaines combinaisons particulières
d’éléments finis, de conditions aux limites et de schémas d’intégrations. De plus, le caractère
arbitraire du formalisme, qui permet à l’utilisateur, en théorie, de déplacer le maillage selon
ses désirs, est très difficile à interfacer dans un programme général qui ne peut proposer
qu’une liste limitée de méthodes de repositionnement de nœuds. La définition du mouve-
ment du maillage nécessite donc généralement un gros travail de prétraitement par rapport
à une simulation lagrangienne et se heurte souvent à l’absence de méthodes adéquates pour
le problème considéré.

Mathématiquement, chaque particule d’un milieu continu peut être repérée de manière
univoque dans un des trois systèmes de référence définis précédemment : soit X , les coor-
données dans le système de référence matériel (SRM), x les coordonnées dans le système
de référence spatial (SRS) et χ les coordonnées relatives à la grille de calcul et appelées
coordonnées SRG.

On définit le volume V∗(t0) occupé par le maillage en t = t0 qui vient se superposer au
volume V(t) au temps t (figure 2.3). Autrement dit, les domaines V∗(t) et V(t) sont définis
de telle manière à ce qu’ils coïncident spatialement au temps t . Ils contiennent néanmoins,
en toute généralité, un ensemble différent de particules en t = t0. Le volume V est appelé
volume matériel puisqu’il contient toujours les mêmes particules de matière. Le volume V∗

est appelé volume particulaire parce qu’il contient toujours les mêmes particules SRG.

Les points de l’ensemble V(t) peuvent être obtenus à partir de ceux de l’ensemble V∗(t0)

par la relation
x = φ∗(χ , t) (2.3)

Cette équation traduit la cinématique propre au maillage utilisé. De cette dernière rela-
tion, on peut déduire une matrice jacobienne F∗, tout comme on a défini le tenseur gradients
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e1
e2
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V( )t
0

V( )=t V* t( )

X
x

matière

grille de calculc

f

f*

V*( )t0

configuration
courante

FIGURE 2.3 – Cinématique de la matière (en gris) et de la grille de calcul.

de déformation F pour la transformation (2.1).

F∗ =
∂x

∂χ
(2.4)

avec les mêmes conditions que précédemment sur le jacobien J∗ = detF∗ pour garantir la
biunivocité de φ∗.

Les volumesV et V∗ peuvent être reliés entre eux en combinant les deux transformations
(2.1) et (2.3) :

χ = φ∗−1(x , t) = φ∗−1(φ(X , t), t) =ψ∗(X , t) (2.5)

où l’on a introduit l’application ψ∗ dont on peut également définir la matrice jacobienne et
son déterminant qui doit être, encore une fois, fini et non nul.

Il est facile de retrouver la formulation lagrangienne en identifiant, partout et en tout
instant, les vecteurs χ aux vecteurs X . L’applicationψ∗ se réduit alors à la fonction identité
et le SRG est confondu avec le SRM. La formulation eulérienne, quant à elle, est obtenue
en identifiant les vecteurs χ aux vecteurs x . Le SRG est, cette fois, confondu avec le SRS.

Suivant le système de référence auquel l’observateur est lié, une grandeur physique
arbitraire f peut être exprimée de plusieurs manières. Par exemple, en coordonnées la-
grangiennes, on a f = fL(X , t). De même, en coordonnées eulériennes, f = fE(x , t) et
enfin, si on choisit le SRG, on écrit f = fG(χ , t). Toutes ces grandeurs sont égales et liées
entre elles par les relations (2.1), (2.3) et (2.5). Dans la suite, nous omettrons les indices
L, E et G pour simplifier l’écriture.

Plaçons-nous sur la grille de calcul pour observer les variations temporelles de f . À
chaque instant, et pour chaque point SRG, la valeur de grandeur f est donnée par f =
f (χ , t). La variation SRG de f au point SRG χ durant l’incrément temporel∆t est appelée
la variation SRG de f et est donnée par ∆G f = f (χ , t +∆t)− f (χ , t). On définit alors la
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dérivée SRG, notée ici
◦
f , par

∂ f

∂ t

�
�
�
�
χ

=
◦
f = lim

∆t→0

∆G f

∆t
(2.6)

En particulier, si f représente la position courante x , on obtient la vitesse de grille ou la
vitesse SRG, v∗ :

v∗(χ , t) = ◦x =
∂x (χ , t)

∂ t

�
�
�
�
χ

=
∂φ∗(χ , t)

∂ t

�
�
�
�
χ

(2.7)

où la notation v∗ est utilisée pour insister sur l’analogie avec la vitesse matérielle v .

Pour pouvoir déduire les lois de conservation d’un milieu continu en formalisme ALE,
nous avons besoin de calculer les dérivées particulaires relatives aux systèmes de référence
qui viennent d’être introduits. Pour la grandeur physique arbitraire f , la relation entre la
dérivée temporelle pour un observateur lié au SRM (notée

•
f ou D f /Dt) et celle pour un

observateur lié au SRG (notée
◦
f ) peut être évaluée en appliquant la règle de dérivation de

fonctions composées :

•
f =
∂ f (χ , t)

∂ t

�
�
�
�
X

=
∂ f (ψ∗(X , t), t)

∂ t

�
�
�
�
X

=
∂ f

∂ t

�
�
�
�
ψ∗
+
∂ψ∗

∂ t

�
�
�
�
X

·
∂ f

∂ψ∗

=
∂ f

∂ t

�
�
�
�
χ

+ w ·∇χ f (2.8)

où w est la vitesse d’une particule matérielle mesurée dans le SRG. L’intérêt de cette relation
est limité puisque l’évaluation du gradient de f par rapport aux coordonnées SRG n’est pas
commode en pratique. Pour obtenir une relation similaire qui fait intervenir le gradient
spatial de f , on réécrit les deux dérivées de la manière suivante : pour le SRM, la dérivée
totale (ou matérielle) se calcule par :

•
f =
∂ f (x , t)

∂ t

�
�
�
�
X

=
∂ f (φ(X , t), t)

∂ t

�
�
�
�
X

=
∂ f

∂ t

�
�
�
�
φ

+
∂φ

∂ t

�
�
�
�
X

·
∂ f

∂φ

=
∂ f

∂ t

�
�
�
�
x

+ v ·∇x f (2.9)

Pour le SRG, on a, de manière similaire :

◦
f=
∂ f

∂ t

�
�
�
�
x

+ v ∗ ·∇x f (2.10)

En prenant simplement la différence entre ces deux dernières expressions, on obtient :

•
f=
◦
f +(v − v ∗) ·∇x f (2.11)

On définit alors la vitesse convective par c = v − v ∗, qui n’est rien d’autre que la vi-
tesse relative entre le SRM et le SRG, ou la vitesse d’une particule matérielle vue depuis le
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SRG. Finalement, la relation fondamentale reliant les dérivées dans les deux systèmes de
référence s’écrit :

∂ f

∂ t

�
�
�
�
X

=
∂ f

∂ t

�
�
�
�
χ

+ c ·∇x f ou
•
f =

◦
f + c ·∇x f (2.12)

Cette relation permet de retrouver les deux cas particuliers importants contenus dans la
formulation ALE :
• la formulation lagrangienne, pour laquelle on a : v∗ = v ou c = 0. Le maillage est

lié à la matière et on retrouve la dérivée matérielle
◦
f =

•
f , ce qui est logique puisque

X = χ pour tout t .
• la formulation eulérienne, pour laquelle on a : v ∗ = 0 ou c = v . Le maillage est fixe

dans l’espace et on retrouve la formule de la dérivée particulaire :

∂ f

∂ t

�
�
�
�
χ=x

=
∂ f

∂ t

�
�
�
�
X

− v ·∇x f (2.13)

Il est important de ne pas confondre les vitesses c et w . En remplaçant f par la position
x dans la relation (2.8), on obtient :

c = v − v ∗ =
∂x

∂χ
w (2.14)

qui montre que w et c sont identiques uniquement dans le cas où le SRG est animé d’un
mouvement de translation uniforme (∂x/∂χ = I) par rapport au SRM.

2.3 Lois de conservation en formulation ALE

En utilisant la relation fondamentale (2.12), nous pouvons déduire les lois de conserva-
tion d’un milieu continu exprimées sous forme ALE à partir des mêmes équations exprimées
en formalisme lagrangien. On obtient des équations tout à fait similaires à la formulation
eulérienne où la vitesse relative entre le maillage et la matière remplace la vitesse totale
dans l’expression des dérivées matérielles. C’est pour cette raison que la formulation ALE
est également appelée formulation quasi eulérienne par Belytschko et al. [20].

Conservation de la masse :

∂ρ

∂ t

�
�
�
�
χ

+ c ·∇ρ+ρ∇ · v = 0 (2.15)

Conservation de la quantité de mouvement :

ρ

�

∂v

∂ t

�
�
�
�
χ

+ (c ·∇) v
�

=∇ ·σ+ρ b (2.16)

Conservation du moment de la quantité de mouvement :

σ = σT (2.17)
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Conservation de l’énergie :

ρ

�

∂u

∂ t

�
�
�
�
χ

+ c ·∇u

�

= σ : D+ρ r +∇ · q (2.18)

où ρ est la masse volumique, σ est le tenseur des contraintes de Cauchy, b sont les charges
volumiques mécaniques, u représente l’énergie interne spécifique, r sont les sources volu-
miques de chaleur, D est le tenseur taux de déformation et q le flux de chaleur.

Pour compléter le système, il faut ajouter à ces équations, les lois constitutives décrivant
le comportement du matériau étudié. Dans le cadre de la mécanique du solide en grandes
transformations, celles-ci sont généralement écrites sous forme différentielle et relient une
dérivée objective du tenseur des contraintes au taux de déformation. En choisissant par
exemple la dérivée de Jaumann, notée σ∇J , on peut écrire pour un problème purement
mécanique :

σ∇J = σ̇−Wσ+σW =H : D (2.19)

où σ̇ est la dérivée matérielle du tenseur des contraintes de Cauchy, D et W sont les parties
symétrique et antisymétrique du tenseur gradient des vitesses (L= Ḟ F−1 = D+W) et H est
un tenseur matériel caractérisant le matériau et dépendant des paramètres constitutifs, des
contraintes et de l’histoire du chargement.

En isolant la dérivée matérielle, non objective, dans le premier membre, on obtient :

σ̇ =
∂σ

∂ t

�
�
�
�
χ

+ (c ·∇)σ =H : D+Wσ−σW (2.20)

À cet ensemble d’équations viennent s’ajouter des conditions aux limites essentielles sur
les déplacements (x(t) = x̄ (t) sur Γx ) et les températures (T (t) = T̄ (t) sur ΓT ) et des
conditions aux limites naturelles sur les tractions de surface (σ · n = t̄ sur Γt ) et le flux de
chaleur (q(t) · n = q̄(t) sur Γq)

Enfin, à côté de ces équations modélisant la physique du milieu continu, il faut définir
le mouvement de la grille de calcul par v ∗ = v ∗(χ , t) avec, comme seule contrainte, des
équations de compatibilité entre la frontière du maillage et celle de la matière :

v ∗ · n = v · n (2.21)

où n est la normale externe à la frontière.
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2.4 Résolution des équations

2.4.1 Résolution des équations couplées

Les méthodes numériques mises en œuvre pour résoudre les équations qui régissent le
milieu continu dépendent fortement de la nature de celui-ci et du type de chargement en-
visagé. On rencontre principalement deux problèmes lors de l’élaboration d’un algorithme
de résolution des équations couplées.

Le premier problème vient de la définition du mouvement du maillage qui peut, soit
être choisi et imposé, soit dépendre de la déformation a priori inconnue du matériau en-
visagé. Définir complètement le mouvement du maillage au préalable simplifie, bien sûr,
énormément le processus de résolution, mais limite considérablement le champ d’applica-
tion de la méthode. Inversement, si le mouvement du maillage est inconnu et dépend de la
configuration courante du matériau, le champ de vitesse v∗ vient s’ajouter aux inconnues
du problème, alourdissant la résolution du système d’équations.

Le deuxième problème est la présence de termes convectifs dans les équations. Ceux-
ci doivent être traités par des méthodes numériques appropriées pour éviter l’apparition
d’oscillations numériques indésirables dans la solution. De plus, ces termes produisent des
matrices fortement non symétriques lors de leur discrétisation spatiale et donc requièrent
des solveurs appropriés. Au niveau des lois constitutives, ces termes convectifs rendent le
traitement des matériaux à mémoire beaucoup plus complexe.

2.4.1.1 Discrétisation spatiale

Pour résoudre le système des équations de conservation par la méthode des éléments
finis, on est amené à écrire celles-ci sous forme faible. Par exemple, l’équation de conserva-
tion de la quantité de mouvement (2.16) peut être multipliée par une fonction cinématique-
ment admissible δu et intégrée sur le volume courant V(t). Après intégration par parties,
on obtient, de cette manière, le principe des travaux virtuels en formalisme ALE.

∫

V(t)

ρ
◦v i δui dV+

∫

V(t)

ρ c j

∂vi

∂x j
δui dV +

∫

V(t)

∂δui

∂x j
σi j dV

=

∫

V(t)

ρ bi δui dV+

∫

S(t)

t i δui dS (2.22)

avec S, la surface frontière du volume V et t i = σi jn j, les tractions de surface. Ici, nous
avons implicitement choisi de formuler le problème en termes de déplacements u, comme
c’est généralement le cas en mécanique du solide. On peut également choisir le champ de
vitesses comme inconnue principale en définissant un champ de vitesses cinématiquement
admissible. On obtient alors le principe des puissances virtuelles. Équivalents d’un point de
vue mathématique, le choix de formuler le problème en vitesses ou en déplacements peut
faciliter ou au contraire rendre plus difficile certaines parties de l’algorithme de résolution
ALE (voir par exemple la gestion du frottement, section 4.6).
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Le principe de travaux virtuels (2.22) peut se mettre sous la forme simplifiée

δM +δC +δW int = δW ext (2.23)

Par rapport à la forme lagrangienne, on remarque l’apparition d’un terme convectif, δC ,
qui s’annule avec la vitesse relative c entre le maillage et la matière.

L’introduction de fonctions de forme permet alors de discrétiser spatialement le principe
des travaux virtuels. En exprimant le résultat sous la forme habituelle d’un résidu d’équilibre
r , on obtient la forme matricielle suivante

r =M ◦
v +C v + f int− f ext (2.24)

où M est la matrice des masses, C regroupe les termes convectifs et f int et f ext sont respecti-
vement les forces internes et externes. Les expressions détaillées de ces matrices et vecteurs
sont tout à fait classiques (voir par exemple Ponthot [168] ou Belytschko et al. [20]).

2.4.1.2 Forces d’inertie

Lorsque le problème est traité sous l’hypothèse quasi statique, c’est-à-dire lorsque les
phénomènes d’inertie sont négligeables (δM + δC = 0), le terme de convection δC dispa-
raît avec le terme δM . Les équations du mouvement sont alors identiques à celles écrites
en formulation lagrangienne, bien que l’expression de la loi constitutive du matériau (2.20)
contienne cependant toujours un terme convectif. Contrairement aux autres termes convec-
tifs, ce dernier fait intervenir la dérivée spatiale des contraintes. Or, les contraintes sont des
inconnues faibles du problème et ne sont connues qu’aux points de Gauss de chaque élé-
ment. Le gradient n’est donc pas directement calculable.

Dans le cas où les forces d’inertie ne peuvent pas être négligées, l’équation de conserva-
tion de la masse doit être prise en compte et discrétisée spatialement comme l’équation de
la quantité de mouvement. C’est une difficulté supplémentaire par rapport au formalisme
lagrangien pour lequel la matrice des masses est toujours constante au cours du calcul et la
loi de conservation (2.15) se réduit à une simple équation locale permettant de calculer la
densité courante :

ρ(X , t) J(X , t) = ρ(X , 0) J(X , 0) (2.25)

Si on modélise un matériau élastoplastique, on peut, en première approximation, utiliser
une densité constante en négligeant la variation de volume due à l’élasticité. Grâce à cela, la
matrice des masses évolue uniquement en fonction de la géométrie du maillage et l’équation
de conservation de la masse ne doit plus être discrétisée.
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2.4.1.3 Mouvement de maillage connu a priori

Dans le cas très particulier où le mouvement du maillage est connu, la principale dif-
ficulté est d’évaluer le terme convectif présent dans les équations constitutives (2.20).
Puisque les contraintes ne sont connues qu’en certains points discrets, une approximation
de leur gradient doit donc être calculée à partir de ces valeurs ponctuelles.

Liu et al. [142] proposent de remplacer l’équation (2.20) par un nouveau système de
deux équations en introduisant une nouvelle inconnue Y définie comme le produit du dé-
viateur du champ de contrainte et de la vitesse convective :

Yi jk
Í

= si j ck (2.26)

Cette équation, mise sous forme faible et discrétisée en utilisant des fonctions de forme
constantes par élément pour le déviateur des contraintes s s’écrit :

My y = Ny s (2.27)

Le vecteur y est ensuite réinjecté dans l’équation constitutive discrétisée. Cette manière
de procéder permet d’obtenir une approximation globale du gradient des contraintes sous la
forme d’une expression matricielle. La même technique est appliquée à toutes les variables
internes du matériau. Enfin, pour éviter les oscillations, Liu utilise des fonctions de forme
SUPG (Brooks et Hughes [38]) pour évaluer tous les termes convectifs apparaissant dans
les équations.

D’autres méthodes peuvent être utilisées pour évaluer ce gradient de contraintes. Cer-
taines d’entre elles seront détaillées à la section 4.2.1.1. Huétink et al. [121] proposent, par
exemple, de construire une approximation continue du champ de contrainte sur chaque élé-
ment par moindres carrés. Les valeurs des contraintes obtenues en un nœud pour tous les
éléments adjacents à ce nœud sont ensuite moyennées pour obtenir un champ global con-
tinu dont on peut calculer le gradient spatial. Cette méthode, qui peut être assimilée à un
lissage local et global des contraintes (voir Hinton et Campbell [110]), introduit une dif-
fusion qui peut être contrôlée en pondérant les deux opérations précédentes, pour lutter
contre les oscillations dues aux termes convectifs. Cependant, contrairement à la méthode
SUPG utilisée par Liu, la méthode de Huétink est isotrope et souffre donc de diffusion
transverse.

Remarquons que, lorsque le problème est résolu de manière explicite, certains auteurs
(Pantalé [160] par exemple) calculent la vitesse du maillage en se basant sur la configu-
ration au pas de temps précédent puisque la taille du pas de temps est généralement très
petite. De cette manière, la vitesse du maillage ne dépend pas directement de la vitesse
matérielle qui reste la seule inconnue du problème.
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2.4.1.4 Mouvement de maillage inconnu a priori

Il est donc possible, dans des cas particuliers simples où le mouvement du système de ré-
férence peut être fixé a priori, de résoudre directement les équations ALE. Cependant, dans
la majorité des cas qui nous intéressent, il est impossible de fixer a priori le mouvement
de la grille de calcul. Le maillage doit pouvoir être adapté en fonction des déformations
du matériau et suivre ses frontières qui peuvent subir l’influence de conditions aux limites
fortement non linéaires (du contact par exemple). Le mouvement du maillage constitue
donc généralement une inconnue supplémentaire qui vient s’ajouter aux inconnues tradi-
tionnelles de la mécanique des milieux continus.

Plaçons-nous dans le cas simplifié d’un problème purement mécanique sous hypothèse
quasi statique. L’équation (2.24) est habituellement résolue grâce à un algorithme itéra-
tif de Newton-Raphson. Puisque le mouvement du maillage est inconnu, il est nécessaire
d’introduire deux jeux d’inconnues par nœud : les déplacements matière uM et les dépla-
cements maillage uG. En effet, on peut montrer (voir Ponthot [168]) que cette équation se
linéarise sous la forme suivante :

KG∆x G +KM ∆x M = −r (2.28)

où KM et la matrice de raideur tangente relative aux déplacements de la matière et KG, celle
relative aux déplacements du maillage ; x G et x G représentent respectivement l’incrément
de déplacement de la matière et du maillage.

Le système d’équations linéaires (2.28) possède exactement deux fois plus d’inconnues
que d’équations. Il faut donc ajouter des équations supplémentaires qui vont fermer le
système et qui décrivent le mouvement du maillage. Cette opération est appelée processus
de détermination SRG (Schreurs et al. [180]). On obtient ainsi un système linéarisé du type

�
KM KG

0 KSRG

��
∆x M

∆x G

�

=

�
−r 1

−r 2

�

(2.29)

avec des équations de contraintes sur les frontières qui permettent de garantir le respect de
la géométrie de la frontière au cours du temps. L’équation (2.21) linéarisée et exprimée en
termes d’incréments de déplacements peut s’écrire :

(∆x G −∆x M ) · n = 0 (2.30)

où la normale n est supposée constante durant l’incrément.
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2.4.1.5 Difficultés

Si on essaye de résoudre les équations (2.29) et (2.30) telles qu’elles viennent d’être
introduites, on se trouve face à plusieurs difficultés :

Remarquons tout d’abord qu’une méthode de résolution étagée n’est pas applicable :
en effet, déduire les déplacements du maillage à partir du deuxième groupe d’équations
de (2.29) et les injecter dans le premier groupe n’est pas une bonne idée puisque la solu-
tion obtenue ne vérifiera pas nécessairement les contraintes de compatibilité des frontières
(2.30). Le système à résoudre possède donc inévitablement deux fois plus d’inconnues que
son homologue lagrangien. Le temps de calcul sera donc plus important ; ce qui diminue
l’intérêt de la méthode si le but de l’utilisation du formalisme ALE est une réduction de
temps de calcul.

t t= n

t t= n+1

relocalisation
des noeudspas lagrangien

particules identiques particules différentes

FIGURE 2.4 – Problème lors de l’intégration des lois constitutives.

L’intégration des lois constitutives pose en outre un problème majeur pour la résolution
couplée. En effet, imaginons que la solution du système linéarisé (2.29) a été calculée. À
partir de la configuration du maillage de l’itération précédente, on peut déduire la nouvelle
position du maillage (x + ∆x G) et des nouvelles positions matérielles (x +∆x M). Dans
cette nouvelle configuration, les nouveaux points de Gauss du nouveau maillage ne cor-
respondent plus aux mêmes particules matérielles que celles qui se trouvaient aux points
de Gauss du maillage de l’itération précédente. Or, les lois constitutives décrivant les maté-
riaux solides ne peuvent être intégrées qu’en suivant la même particule matérielle au cours
d’un incrément temporel. Quant aux équations d’équilibre (2.24), elles nécessitent l’éva-
luation des forces internes qui dépendent du champ de contraintes aux points de Gauss du
maillage. Pour résoudre ce problème, Schreurs et al. [179, 180] proposent de calculer les
contraintes sur un maillage auxiliaire qui se déplace avec la matière au cours des itérations.
Les contraintes aux points de Gauss de la grille de calcul sont déduites à tout instant par
interpolation des valeurs du maillage auxiliaire.

Dans un tel cas de figure, le processus de détermination SRG doit être linéarisable pour
pouvoir être inclus dans la matrice d’itération de Newton-Raphson. En pratique, on est
donc limité à des mouvements relativement simples. Schreurs et al. [180] proposent de
définir sur le SRG un matériau fictif élastique isotrope qui régit les déplacements des nœuds
internes du maillage en fonction des déplacements des frontières. Gadala et Wang [76, 78]
proposent d’exprimer les vitesses nodales du maillage comme une fonction linéaire des
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vitesses matérielles. Cette relation est basée sur une interpolation transfinie des frontières
et permet d’éliminer la vitesse du maillage des équations.

Au niveau des conditions aux limites, trouver des déplacements qui satisfont la relation
(2.30) ne garantit pas toujours la conservation de la frontière du domaine matériel. En effet,
la relation (2.21) qui doit être vérifiée s’écrit en termes de vitesses et doit idéalement être
vérifiée à tout instant. Utiliser l’équation linéarisée (2.30) dans le cas d’une frontière non
rectiligne ou qui subit des rotations entraîne inévitablement des flux parasites de matière à
travers le maillage.

2.4.2 Partition de l’opérateur eulérien-lagrangien

Pour résoudre d’une manière beaucoup plus simple le système d’équations (2.24), il
est possible de partitionner l’opérateur eulérien-lagrangien (on parle d’operator split en
anglais) et d’effectuer une résolution séquentielle des équations en deux temps. Cette ma-
nière de faire a été initialement proposée par Donéa [61] dans le cadre de la mécanique
des fluides et par Benson [22], Baaijens [14] (sous le nom de Updated-ALE ou U-ALE) et
Huétink [119] dans le cadre de la mécanique du solide. Depuis lors, la quasi-totalité des
auteurs et des codes de calcul utilise cette méthode pour résoudre les équations ALE.

L’idée est très simple : pour chaque incrément temporel, on procède en deux étapes dis-
tinctes : dans la première étape, appelée phase lagrangienne, le maillage suit la matière. Si
une méthode implicite est utilisée, cette étape se termine lorsque l’équilibre est vérifié. À ce
moment, la deuxième étape, appelée phase eulérienne, peut commencer. Elle consiste à dé-
finir une nouvelle position pour les nœuds du maillage et à transporter toutes les grandeurs
nécessaires à la poursuite du calcul, du maillage lagrangien vers le nouveau maillage.

On obtient ainsi un algorithme qui est beaucoup plus rapide, plus général et même plus
robuste que son homologue totalement couplé, au prix d’une légère perte de précision sur la
solution obtenue (voir Chorin et al. [51]). Cette dernière affirmation est discutable, d’après
Benson [26], tant les schémas de transfert actuels sont précis et différents d’une simple
intégration temporelle (méthodes de projections par exemple – voir section 4.5.1).

Il est important de remarquer que ce type d’approche découplée pour résoudre des équa-
tions complexes est régulièrement utilisé en mécanique non linéaire. La technique du retour
radial (Ponthot [170]) utilisée pour intégrer le comportement plastique des matériaux ou
les schémas thermomécaniques étagés (Armero et Simo [5]) en sont deux exemples cou-
rants.
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2.4.2.1 Phase lagrangienne

La puissance de la méthode découplée réside dans le fait que la phase lagrangienne de
l’algorithme ALE est tout à fait identique à celle d’un calcul purement lagrangien. Les points
de la grille de calcul χ suivent les particules matérielles X . On peut donc utiliser, pendant
cette phase, toutes les méthodes et tous les schémas disponibles pour une simulation clas-
sique. Par exemple, la thermique peut être prise en compte ainsi que les effets d’inertie,
et ce, à l’aide de schémas maintenant bien établis. Des conditions aux limites complexes
comme le contact avec des outils rigides ou déformables peuvent être envisagées.

En pratique, on résout, pendant cette phase, l’équation (2.22) sans le terme convectif
δC . Le principe des travaux virtuels semi-discrétisé (2.24) devient :

r =M ◦
v + f int − f ext avec ◦

v =
•
v (2.31)

Un avantage considérable de la résolution séquentielle dans le cas dynamique est que la
matrice des masses est, cette fois, constante durant la phase lagrangienne et l’équation de
conservation de la masse (2.15) ne doit pas être discrétisée. Seule une simple mise à jour
de la matrice des masses à la fin de chaque pas de temps est nécessaire.

Au niveau des équations constitutives, les termes convectifs disparaissent également.
L’équation (2.20) devient :

c = 0 ⇒
∂σ

∂ t

�
�
�
�
χ

=H : D+Wσ−σW (2.32)

Elle doit être intégrée pour obtenir ce que nous appellerons les contraintes lagrangiennes
σL, c’est-à-dire, plus précisément, les contraintes obtenues après la phase lagrangienne.

2.4.2.2 Phase eulérienne

Lorsqu’une configuration lagrangienne équilibrée est obtenue, la phase eulérienne (Ben-
son [22]), ou phase ALE, peut commencer. Cette phase est en fait composée de plusieurs
sous-étapes qui ont pour but de redéfinir une nouvelle configuration équilibrée sur un nou-
veau maillage. On considérera ensuite que cette configuration est une bonne approximation
de la solution du système d’équations couplées ALE défini à la section 2.3.

La première tâche est de déterminer, pour une configuration équilibrée obtenue lors
de la phase lagrangienne, une nouvelle position du maillage en fonction de la configura-
tion lagrangienne précédemment calculée. Vu la liberté laissée par le formalisme pour le
mouvement du maillage, de nombreux algorithmes sont applicables (lissage, remaillage,
schémas de transport, etc.) et le choix de ceux-ci dépend fortement du processus simulé et
de l’effet recherché. En conséquence, pour un code de calcul généraliste, il est important
d’offrir une large gamme de méthodes de repositionnement de nœuds. Les méthodes mises
en œuvre doivent préserver la topologie du maillage, c’est-à-dire conserver le nombre de
nœuds et de mailles ainsi que les relations de voisinage. L’opération consiste donc unique-
ment à modifier la position de chaque nœud et non redéfinir complètement un nouveau
maillage.
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Une attention toute particulière doit être apportée au respect des frontières matérielles
(équation (2.21)) pour éviter de modifier la masse totale du système et sa géométrie lors de
la définition du nouveau maillage. Dans le cas de la simulation de procédés stationnaires,
de minimes erreurs géométriques à ce niveau peuvent s’accumuler au cours de l’intégration
temporelle et provoquer, au final, une perte ou un gain continu de matière qui détériore la
solution. Nous détaillons les méthodes qui ont été développées dans le cadre de ce travail
dans le chapitre 3.

Dans le cas d’une formulation en vitesses, il est nécessaire de faire à ce moment un
choix d’inconnues (voir par exemple Guerdoux [95], Philippe [164], Traoré [194]) : soit
résoudre le problème de repositionnement en termes de vitesses de grille (on parle alors de
splitting cinématique pour lequel on détermine v∗ = v∗(v)), soit le résoudre en termes de
déplacements (ou splitting géométrique : la position du maillage dans la phase lagrangienne
est calculée par intégration temporelle de v , les nœuds sont déplacés et les vitesses du
maillage v∗ en sont déduites). Dans le cas d’une formulation lagrangienne en déplacements,
comme c’est le cas pour cette thèse, il semble naturel de résoudre également le problème
en termes de déplacements. Cette méthode permet de mieux contrôler les flux à travers les
frontières.

La deuxième tâche de la phase eulérienne est le transport de la solution lagrangienne
vers le nouveau maillage. Mathématiquement, pour les équations constitutives, il s’agit de
résoudre (2.20) sans second membre (il n’y a en effet plus aucune déformation dans cette
phase) :

∂σ

∂ t

�
�
�
�
χ

+ (c ·∇)σ = 0 (2.33)

avec comme condition initiale σ = σL. La variable t qui apparaît dans cette équation est un
temps fictif pendant lequel le maillage se déplace de sa position lagrangienne à sa nouvelle
position. Une autre manière équivalente d’exprimer cette relation est d’écrire simplement :

∂σ

∂ t

�
�
�
�
x

= 0 (2.34)

qui signifie que le champ de contraintes est spatialement constant pendant la phase eulé-
rienne alors que le maillage évolue. Le problème est donc de le représenter « au mieux » sur
la nouvelle grille de calcul, c’est-à-dire pour que le résidu d’équilibre recalculé sur la nou-
velle grille après transfert des contraintes soit très proche de zéro. L’équation (2.33) décrit
le problème sous forme d’une équation de convection pure, tandis que l’équation (2.34) est
une équation d’interpolation (remapping en anglais) qui met l’accent sur la préservation du
champ inconnu pendant l’étape de transfert. Remarquons que ces équations sont décou-
plées et que chaque composante du tenseur des contraintes peut être traitée séparément.
Il s’agit donc de six équations scalaires indépendantes. Celles-ci ne garantissent donc pas
la conservation des invariants du tenseur σ. Par exemple, le résultat de la convection de la
contrainte équivalente de Von-Mises donnerait une valeur différente de celle recalculée à
partir du tenseur convecté composante par composante.

En pratique, il faut transporter toutes les grandeurs nécessaires au bon déroulement de
la suite du calcul, c’est-à-dire toutes celles nécessaires à la réévaluation du résidu d’équilibre
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(2.31) sur le nouveau maillage. Le nombre de grandeurs dépend donc du type de problème
(présence du champ thermique, calcul dynamique, loi constitutive du matériau, type d’élé-
ment fini, etc.). Pour chacune d’elles, on doit résoudre une équation scalaire du type (2.33)
ou (2.34). Il peut s’agir de grandeurs nodales (températures, vitesses, etc.) ou de grandeurs
définies aux points de Gauss (variables internes du matériau, densité, etc.). La précision re-
quise pour cette étape est d’autant plus grande que le mouvement du maillage est fortement
différent de celui de la matière (c’est le cas d’un écoulement sur un maillage purement eu-
lérien par exemple). Les techniques de transfert sont similaires à celles utilisées dans le
cas d’un remaillage complet du problème. Cependant, elles peuvent être rendues considé-
rablement plus rapides en tirant profit du caractère constant de la topologie du maillage.
Les difficultés rencontrées proviennent principalement du nombre de points d’intégrations
utilisés par élément fini, de la dimension du problème et de la structure du maillage. Le
chapitre 4 est consacré exclusivement au traitement du transport en formalisme ALE.

La dernière tâche de la phase eulérienne de l’algorithme ALE consiste à réévaluer l’équi-
libre du milieu continu sur le nouveau maillage. Le nouveau résidu est un indicateur de
l’erreur commise lors des deux tâches eulériennes précédentes. Un aspect important pour
les simulations de mise à forme qui nous intéressent est la gestion des nœuds en contact et
le recalcul des forces de frottement. Il peut être aussi nécessaire de recalculer la matrice des
masses sur le nouveau maillage si on utilise un schéma d’intégration dynamique. On peut
également profiter de ce moment pour effectuer quelques corrections locales sur les valeurs
précédemment transportées (vérification du critère de plasticité après transport, remise à
zéro d’une déformation plastique devenue accidentellement négative, etc.).

Dans le cas d’un algorithme d’intégration temporelle explicite, les déplacements lors
d’un pas de temps sont généralement très faibles. Pour réduire le temps de calcul, la phase
eulérienne peut être activée tous les n pas de temps.

2.4.2.3 Algorithme ALE

La figure 2.5 représente un organigramme qui résume les différentes étapes du calcul
non linéaire d’une structure par le formalisme ALE. On peut y observer la séparation nette
des phases lagrangienne et eulérienne. Cette séparation peut être rendue tout aussi nette
dans l’implémentation de l’algorithme, rendant la maintenance et l’évolution du code rela-
tivement aisée.

Aujourd’hui, le partitionnement de l’opérateur ALE est unanimement utilisé dans le
cadre de la mécanique du solide en grandes transformations. Une variante, proposée par
Wisselink et Huetink [206, 207], consiste à activer la phase eulérienne à toutes les itéra-
tions de la boucle de Newton-Raphson. Il affirme qu’on peut ainsi mieux contrôler la qualité
de la solution puisque le test de convergence sur le résidu se fait après la phase eulérienne.
Cependant, cette méthode est inévitablement plus coûteuse puisque l’algorithme ALE est
activé plus souvent. De plus, la convergence quadratique de Newton-Raphson est perdue
(le processus de détermination SRG ne peut pas être dérivé exactement). Enfin, l’intégra-
tion des lois constitutives doit inévitablement nécessiter une procédure pour déterminer la
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FIGURE 2.5 – Les deux phases d’un calcul en formalisme ALE.

position des particules matérielles à chaque itération. Cette procédure relativise fortement
le gain de précision obtenu sur le résidu final.

2.5 Conclusions

Ce chapitre a présenté de manière très générale les équations de conservation d’un mi-
lieu continu en formalisme ALE et la manière de les résoudre, en deux temps, par séparation
des opérateurs lagrangien et eulérien. Les implémentations de la formulation ALE se diffé-
rencient par les méthodes utilisées pour gérer le maillage, les algorithmes de transport et
la gestion des conditions aux limites telles que le contact et les frontières eulériennes. Les
deux chapitres suivants décrivent en détail ces différents points.
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Chapitre 3

Gestion du maillage

3.1 Introduction

3.1.1 Généralités

Dans ce chapitre, nous considérons qu’un incrément temporel a été calculé avec succès à
partir de l’instant t lors de la première phase lagrangienne de l’algorithme ALE (figure 2.5).
Une configuration équilibrée, que nous appellerons configuration lagrangienne, est dispo-
nible à l’instant t + ∆t et la phase eulérienne peut débuter. La première tâche consiste
à redéfinir un nouveau maillage, appelé configuration eulérienne, en déplaçant les nœuds
pour atteindre l’objectif voulu :
• Il peut s’agir de minimiser les distorsions des éléments finis en cours de calcul pour

améliorer la précision de la solution finale ou simplement éviter un arrêt préma-
turé du calcul (jacobien négatif). On utilisera dans ce cas les méthodes de lissage et
d’optimisation de maillages utilisées traditionnellement par de nombreux outils de
prétraitement. On parle aussi de méthodes de bougé de nœuds (Frey et George [75]).
• On peut aussi imaginer de déplacer les mailles pour les concentrer au niveau des

zones les plus sollicitées (r-adaptation). Ce type de repositionnement peut être ma-
nuel lorsque le processus est suffisamment simple pour que l’on puisse prédire les
zones qui nécessitent une concentration de mailles. Il peut être aussi automatisé
en le faisant dépendre directement des valeurs des inconnues sur le maillage. Par
exemple, certains auteurs (voir Ponthot [168], Askes et Sluys [7], Guerdoux [95],
parmi d’autres) adaptent le maillage pour suivre les forts gradients de déformation
plastique ou minimiser l’erreur sur la solution. Dans le cadre de ce travail, nous
ne nous intéressons pas à l’adaptation automatique de maillage. Le mouvement des
nœuds est uniquement fonction de la géométrie déformée du maillage après la phase
lagrangienne. Il ne dépend jamais de la valeur des inconnues.
• Enfin, dans le cas de problèmes quasi eulériens, le but est simplement de garder

un maillage plus ou moins fixe dans la direction de l’écoulement de matière. Si le
problème est purement eulérien, la relocalisation des nœuds est alors une opération
triviale qui consiste à identifier le nouveau maillage à celui du début du pas de temps.
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La formulation ALE laisse une très grande liberté dans la définition du mouvement du
maillage tant que l’on prend garde à préserver les frontières matérielles du milieu continu
étudié. Nous nous limitons ici à une formulation ALE monomatériau (appelée S-ALE ou
Simple ALE par Benson [22]). Cela signifie que, bien qu’il soit possible de considérer un
problème comprenant plusieurs matériaux différents, il n’est pas permis de créer un nou-
veau maillage pour lequel certaines mailles contiendraient plusieurs matériaux à la fois.
Autrement dit, les frontières entre les différents matériaux devront être préservées lors de
l’opération de repositionnement des nœuds. Un nœud de cette frontière pourra donc glisser
le long de celle-ci, mais ne pourra jamais la traverser.

Des formulations eulériennes ou ALE multimatériaux existent (Multi-Material ALE ou
MMALE Benson [25]) mais elles nécessitent des techniques sophistiquées pour, d’une part,
déterminer les frontières entre les corps en présence (boundary tracking [55], X-FEM [202],
etc.) et, d’autre part, gérer les interactions entre ceux-ci. Les applications ciblées par l’ALE
multimatériaux (interactions de nombreux corps solides dans un fluide par exemple) sont
très différentes de celles qui nous intéressent ici. Quant aux maillages utilisés, ce sont gé-
néralement des grilles eulériennes structurées. Le problème de définition d’un nouveau
maillage ne se pose donc pas.

Les méthodes de repositionnement de nœuds utilisées en formalisme ALE doivent être
précises, robustes et rapides. Une grande précision signifie la bonne conservation des fron-
tières de la structure et donc du volume total du maillage. Vu que l’algorithme sera activé
à chaque pas de temps, une petite erreur peut s’accumuler et détériorer considérablement
la solution finale. C’est d’autant plus important dans le cas de la recherche de solutions
stationnaires. La robustesse est nécessaire pour les méthodes qui nécessitent des opéra-
tions qui peuvent échouer comme des projections ou des recherches d’intersections. Il est
à ce moment capital de pouvoir continuer le calcul (en divisant l’incrément temporel par
exemple). Enfin, les méthodes doivent être rapides à l’exécution pour rester compétitives
face à un calcul lagrangien équivalent lorsque celui-ci est envisageable.

Ce chapitre décrit les méthodes mises en œuvre dans le cadre de ce travail. Nous nous
concentrons sur les maillages de quadrangles ou d’hexaèdres, pouvant être éventuellement
localement raffinés. Les méthodes sont rassemblées suivant un ordre logique correspondant
à la nature du nœud dans la structure (coin, arête, face ou volume). Un effort important
a été fourni pour obtenir une méthode originale de repositionnement de nœuds sur les
surfaces courbes tridimensionnelles et une gestion efficace des frontières eulériennes. Ces
deux points sont capitaux pour pouvoir aborder des problèmes stationnaires tridimension-
nels tels que le profilage.
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3.1.2 Classification des nœuds

Une difficulté pratique majeure de l’utilisation du formalisme ALE réside dans la défini-
tion du mouvement du maillage via un jeu de données simple. En effet, suivant la nature
du nœud dans le maillage, les techniques utilisées pour le repositionner peuvent être très
différentes. Par exemple, un nœud de la surface du maillage est généralement contraint
de rester sur celle-ci, tandis qu’un nœud interne peut être déplacé avec plus de liberté. En
outre, les arêtes vives et les coins du solide étudié doivent pouvoir être préservés. Il est
donc très important de connaître la position du nœud dans le maillage (nœud de volume,
de surface, d’arête ou de coin) pour appliquer une méthode qui respecte les contraintes
sur son mouvement. Ce problème de détection peut être résolu de deux manières : soit
automatiquement, soit manuellement.

3.1.2.1 Détection automatique de la nature des nœuds

Dans le but d’alléger la mise en données, certains auteurs (Aymone et al. [12, 13],
Guerdoux [95], Abaqus [55], parmi d’autres) essayent de déterminer automatiquement la
position de chaque nœud dans le maillage pour appliquer ensuite une méthode appropriée.

Aymone et al. [12, 13] utilisent par exemple le nombre N d’éléments voisins à un nœud
pour déterminer sa nature (figure 3.1). Un nœud de coin possède un seul élément voisin,
un nœud sur une arête en possède deux, etc. Cette manière de faire ne fonctionne que si le
maillage est structuré.

N=2

N=1

N=3

N=4

nature du noeud:

N

N

N

N

= 1 coin

= 2 arête vive

= 3, 4 surface

> 4 volume

®

®

®

®

FIGURE 3.1 – Détection de la nature des nœuds sur maillage structuré d’un quart de cylindre (Aymone et
al. [12, 13]). La méthode utilisée pour repositionner le nœud dépend directement du nombre N d’éléments
voisins.

La méthode peut être généralisée au cas non structuré. Les nœuds internes sont faciles
à repérer puisque chaque facette aboutissant à un tel nœud possède deux éléments voisins.
Une autre méthode pour détecter les nœuds internes est présentée par Belytschko et Liu
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[19] et utilisable lorsque les liens entre éléments voisins ne sont pas disponibles. Elle con-
siste à effectuer un assemblage des éléments finis pour lequel les forces en chaque nœud
sont remplacées par la somme des normales unitaires aboutissant au nœud. Le résultat de
cette opération permet d’identifier les nœuds internes puisque ceux-ci ont une résultante
nulle.

Les nœuds restants sont nécessairement sur une surface. Parmi ceux-ci, les arêtes vives
et les coins (nommés geometric features dans Abaqus [55]) sont détectés en mesurant les
angles internes formés par les arêtes aboutissant au nœud. Dans le cadre d’une formula-
tion en vitesses, Guerdoux [95] calcule les normales en les identifiant aux vecteurs propres
d’un système résultant d’un problème de minimisation locale du flux à travers la frontière.
Le nombre de normales à utiliser est déduit d’un critère sur les valeurs propres corres-
pondantes. Cette détection peut être effectuée, soit une seule fois au début du calcul, soit
continuellement pour pouvoir prendre en compte la formation d’arêtes vives et de coins.

n n
n nq> Iq

q< Iq

coin désactivécoin activé

FIGURE 3.2 – Détection automatique de coins (d’après le manuel Abaqus [55]). L’angle θ1 est la valeur limite
de l’angle entre deux arêtes à partir de laquelle le coin qu’elles forment est considéré comme une réelle
discontinuité de la surface. Ce coin est alors activé, ce qui signifie qu’il est considéré lagrangien pour le
préserver au cours de l’opération de repositionnement.

Applicable directement à tout type de maillage quel que soit sa complexité, cette façon
de faire est idéale lorsque le seul but de la formulation ALE est d’améliorer globalement
la qualité du maillage en cours de calcul tout en préservant ses frontières et ses arêtes.
C’est également l’unique méthode facilement utilisable lorsqu’on envisage de simuler des
procédés où le solide étudié subit un changement de forme radical pour lequel de nouvelles
arêtes ou de nouvelles surfaces peuvent apparaître (simulation du forgeage, de la découpe
de métaux, etc.).

La détection automatique montre cependant ses limites lorsque des déplacements plus
complexes doivent être définis ou lorsque l’on autorise la matière à traverser le maillage
(voir frontières eulériennes, section 3.5.3). Dans ce cas, certains nœuds doivent être ma-
nuellement écartés de la procédure pour être traités séparément. En effet, vu le caractère
global et automatique de la détection, tous les nœuds de même nature se voient générale-
ment attribuer la même méthode de repositionnement. S’il nécessite un traitement distinct,
un nœud de surface frontière doit donc être préalablement désigné comme tel.

Enfin, la détection des arêtes vives et des coins peut échouer, car elle repose sur une
valeur d’angle (ou de valeur propre) limite qui doit être fixée intuitivement au début du
calcul et qui dépend de la finesse du maillage utilisé (angle θ1 sur la figure 3.2).

32



CHAPITRE 3. GESTION DU MAILLAGE

En conclusion, ce type de méthode est uniquement nécessaire pour des procédés où la
géométrie du corps déformable change fondamentalement au cours du calcul. L’apparente
simplicité des méthodes automatiques est séduisante et pourrait faire croire qu’elles en-
traînent un gain de temps dans la conception des modèles ALE. Il n’en est rien : les essais
que nous avons effectués au cours de ce travail avec le logiciel Abaqus nous ont montré
qu’il est très difficile de rendre la détection complètement automatique et indépendante de
la finesse du maillage. La détection erronée d’un coin ou d’une arête vive peut, en effet,
avoir des conséquences importantes sur les résultats.

3.1.2.2 Classification hiérarchique basée sur la géométrie

Pour pouvoir traiter sans ambiguïté et avec plus de souplesse le problème de détection
de la nature des nœuds, nous avons choisi de nous baser directement sur la définition
géométrique du milieu continu obtenu par l’outil de CAO qui a servi à la mailler. L’idée
n’est pas neuve : pour des problèmes bidimensionnels, Ponthot [168] suggère de découper
le maillage en se basant sur ses constituants géométriques. Il définit des lignes maîtresses et
des domaines ALE pour lesquels l’utilisateur doit explicitement spécifier le type de méthode
à utiliser.

sommet

arête

face

volume

sommet
arête
face
volume

FIGURE 3.3 – Classification des nœuds fournie par l’outil de CAO. Chaque nœud est lié à une et une seule
entité géométrique (sommet, arête, face ou volume) définissant le quart de cylindre et ses sous-domaines.
Cette description ne distingue pas les discontinuités réelles de la structure des entités auxiliaires utiles à la
construction des sous-domaines (une arête n’est pas nécessairement une arête vive, un sommet n’est pas
nécessairement un coin, etc.)

Nous nous sommes inspirés de cette idée et nous l’avons étendue à trois dimensions : on
considère que chaque nœud possède une et une seule entité géométrique dont il est issu.
Il peut s’agir d’un point (un sommet), d’une ligne (une arête), d’une surface (une face) ou
d’un volume. Ces liens entre la géométrie et le maillage sont généralement fournis par le
mailleur utilisé. Si un nœud est à l’intersection de plusieurs entités, il est considéré comme
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lié uniquement à leur intersection. Cela revient à dire que le maillage des entités géomé-
triques n’inclut pas leurs frontières. Ainsi, en parcourant toutes les entités géométriques les
unes après les autres, on balaye une et une seule fois tous les nœuds du maillage.

La figure 3.3 montre la géométrie utilisée pour mailler un quart de cylindre. Pour obte-
nir un maillage structuré, le solide a été décomposé en trois sous-domaines hexaédriques
permettant l’utilisation d’un mailleur transfini. À ce stade, aucune distinction n’est faite
entre les sommets représentant un coin de la structure ou les sommets auxiliaires utilisés
pour la découpe du volume en sous-volume. On ne distingue pas non plus les arêtes vives
des autres arêtes ou les faces externes des faces internes. La classification des nœuds dé-
crite ici est simplement celle qui découle des opérations de maillage et qui est fournie telle
qu’elle par l’outil de CAO utilisé.

Par rapport à une méthode de détection automatique, cette manière de faire possède
l’avantage de regrouper les nœuds qui appartiennent à une même arête, une même face ou
un même volume. Pour chaque groupe, on pourra alors choisir de traiter tous les nœuds
simultanément et utiliser des techniques de reconstruction du maillage (méthode d’inter-
polation transfinie pour nœuds internes, section 3.4.1 ou la méthode des splines pour les
nœuds d’arêtes vives, section 3.3.2) qui ne peuvent pas être utilisées lorsque les nœuds ne
sont pas ordonnés.

Notre classification des nœuds fonctionne donc uniquement lorsqu’une description géo-
métrique des zones non lagrangiennes est disponible. Si ce n’est pas le cas, il reste la possibi-
lité de travailler sur des sélections automatiques ou manuelles de nœuds. Notons cependant
que l’utilisation de ces informations géométriques est naturelle dans un code EF spécialisé
en mise à forme des matériaux puisque, même en formalisme lagrangien, toute la géomé-
trie du modèle est généralement déjà importée pour la gestion des outils rigides et la prise
en compte des conditions aux limites.

Enfin, comme nous l’avons souligné précédemment, des simulations de coupe ou de
forgeage pour lesquelles de nouvelles entités apparaissent ou disparaissent en cours de
calcul, requièrent des méthodes plus automatiques et ne seront pas abordées dans ce travail
(également parce qu’elles requièrent un outil de remaillage dont nous ne disposons pas).

3.1.3 Classification des méthodes

Les méthodes de repositionnement de nœuds présentées dans ce chapitre découlent di-
rectement de la classification des nœuds décrite précédemment. Chaque entité géométrique
peut se voir attribuer une méthode spécifique de repositionnement qui est appliquée à tous
ses nœuds. Généralement, le concepteur du modèle ALE choisira de parcourir les nœuds de
manière hiérarchique et commencera donc par ceux des sommets et des arêtes, pour termi-
ner par les nœuds internes aux faces et des volumes. En effet, il semble naturel par exemple
de repositionner les nœuds d’une arête après avoir préalablement traité ses extrémités.

Cependant, cette manière de faire n’est pas toujours suffisante pour pouvoir traiter les
maillages qui proviennent d’une géométrie décomposée en de nombreux sous-domaines. La
figure 3.4 met en évidence les entités géométriques (en rouge sur la figure) qui délimitent
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sommet
auxiliaire

face
auxiliaire

arête
auxiliaire

FIGURE 3.4 – Entités géométriques auxiliaires
constituant le quart de cylindre (en rouge).
Ces entités, qui délimitent les différents sous-
domaines de maillage, ne peuvent généralement
pas être traitées séparément des entités princi-
pales (en noir).

méthode 2 (3 faces +3 arêtes + 1 sommet)

méthode 1 (2 arêtes + 1 sommet)

FIGURE 3.5 – Fusion d’entités géométriques compo-
sant le quart de cylindre. Les entités en bleu sont
rassemblées pour leur appliquer collectivement
une méthode d’arête vive. L’ensemble des nœuds
des entités en rouge font l’objet d’une unique mé-
thode surfacique.

les trois sous-domaines utilisés pour mailler un quart de cylindre. Cette décomposition est
artificielle et n’est utile que dans le but de faciliter l’opération de maillage. Comme nous
le verrons plus loin dans ce chapitre, le repositionnement des nœuds reposant sur ces dé-
coupes dépend généralement de la position de nœuds des entités adjacentes. Il est donc
nécessaire de regrouper ces différents nœuds ou, d’une manière équivalente, appliquer une
méthode sur plusieurs entités géométriques à la fois. Par exemple, dans le cas du quart de
cylindre, on appliquera une méthode permettant de conserver la forme des arêtes vives sur
les nœuds de deux arêtes et un sommet (en bleu sur la figure 3.5). D’une manière simi-
laire, tous les nœuds de la face supérieure seront traités simultanément en appliquant une
méthode surfacique aux nœuds des entités qui la composent (en rouge sur la figure 3.5).
Ce rassemblement d’entités géométrique est effectué uniquement lorsque c’est nécessaire.
C’est une opération manuelle très simple puisqu’elle consiste à assigner la même méthode à
plusieurs entités adjacentes. La réorganisation des nœuds des différentes entités en une liste
commune, ordonnée si nécessaire, et utilisable par un algorithme unique est automatique.

On distinguera donc dans la suite les méthodes permettant de gérer les coins de la
structure (section 3.2), les méthodes relatives aux arêtes vives (section 3.3) qui peuvent
être éventuellement composées de plusieurs arêtes et sommets auxiliaires, les méthodes
relatives aux surfaces (section 3.5) qui regroupent plusieurs faces, arêtes et sommets auxi-
liaires et, finalement, les méthodes volumiques (section 3.4).
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3.1.4 Maillages utilisés

Bien qu’aujourd’hui de nombreux types d’éléments finis soient utilisables dans le cadre
de simulation numérique en mécanique non linéaire du solide, Metafor (Ponthot [168]),
depuis sa création, privilégie quasi exclusivement les éléments quadrangulaires (2D) et
hexaédriques (3D) isoparamétriques linéaires. En comparaison aux triangles ou tétraèdres,
ces éléments sont généralement plus précis et permettent d’utiliser des maillages structurés
particulièrement adaptés, entre autres, à la modélisation de processus de formage de tôles
minces. Leur principale faiblesse vient de l’absence de mailleurs automatiques robustes en
3D qui empêche leur utilisation sur des géométries très complexes ou sur des procédés
nécessitant du remaillage comme le forgeage. Quant aux éléments de degré plus élevé, ils
posent des problèmes au niveau de la gestion du contact et sont donc rarement utilisés.

maillage structuré non uniforme

maillage non structuré

bande

cylindre

FIGURE 3.6 – Exemple de maillages utilisés dans Metafor (simulation 2D du laminage d’une tôle mince). Le
cylindre est modélisé par un maillage non structuré de quadrangles. Le maillage de la bande a été généré
par un mailleur structuré (transfini). Dans les deux cas, la taille des mailles n’est pas constante et les
variations de taille doivent être préservées lors de l’opération de repositionnement de nœuds.

Nous nous concentrons donc uniquement sur les méthodes de repositionnement de
nœuds applicables aux maillages de quadrangles et d’hexaèdres linéaires. Ces maillages
peuvent être structurés ou non (figure 3.6). Cependant, dans la plupart des cas, lorsque c’est
possible, nous utilisons un maillage localement structuré généré par un mailleur transfini
(voir section 3.4.1). La taille des mailles est alors définie le long de directions orthogonales,
permettant ainsi des zones de raffinement qu’il faut pouvoir préserver lors de l’opération
de repositionnement des nœuds. On obtient ainsi un maillage anisotrope dont la forme de
l’élément idéal est parallélépipédique plutôt que cubique. Or, la plupart des méthodes de lis-
sage dont s’inspirent les méthodes de repositionnement des nœuds utilisées en formalisme
ALE sont conçues pour uniformiser la taille des mailles ; ce que nous ne voulons pas faire
ici, puisque cette différence de taille est recherchée pour concentrer le maillage là où c’est
utile. Il faut donc utiliser des méthodes spécifiques de repositionnement qui conservent le
rapport des tailles de mailles ou adapter les méthodes de lissage traditionnelles.
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3.2 Traitement des coins

En mécanique du solide, un grand nombre d’auteurs (voir Aymone [12] ou Potapov
[172] par exemple) considèrent que tous les coins du maillage sont lagrangiens. Il suffit
alors de conserver leur position acquise en fin de phase lagrangienne. Le coin de la structure
est ainsi préservé. C’est le cas le plus simple qui convient généralement lorsque la frontière
du domaine de calcul coïncide avec celle du domaine matériel tout au long de la simulation.
Tous les autres cas de repositionnement vont inévitablement entraîner un flux de matière à
travers les arêtes aboutissant à ce coin.

Si le coin est eulérien, il suffit de le repositionner à sa position initiale. On peut égale-
ment choisir de fixer le nœud selon une direction pour limiter son mouvement dans un plan
perpendiculaire à celle-ci. Cependant, dans les cas où le maillage possède une frontière que
la matière peut traverser, ces types de repositionnement simples ne sont généralement pas
suffisants.

frontière eulérienne avalfrontière eulérienne amont

translation uniforme

zone d'intérêt

matière

matière
zone maillée

quasi-eulériennex
y

modèle ALE

FIGURE 3.7 – Définition d’une zone quasi eulérienne. La translation uniforme d’un solide est observée dans
une zone spatialement fixe grâce au formalisme ALE. Le maillage peut être réduit à cette zone d’intérêt
délimitée par deux frontières eulériennes. Contrairement au cas lagrangien, la détermination de la surface
libre et ses extrémités n’est pas triviale.

Pour illustrer cela, considérons le solide à section variable (y = y(x)) représenté sur la
figure 3.7 qui est animé d’un mouvement de translation uniforme vers la droite. Il ne subit
aucune déformation. Imaginons que l’on veuille observer le passage de la matière dans
une zone spatialement fixe appelée zone d’intérêt sur la figure et délimitée par deux lignes
verticales, les frontières eulériennes. Le formalisme ALE peut être utilisé pour modéliser le
passage de la matière entre ces deux lignes en définissant un maillage du solide réduit à
cette zone. On économise ainsi la création d’un long maillage. Dans la zone d’intérêt, le
mouvement des nœuds sera quasi eulérien puisqu’ils doivent être maintenus fixes dans le
sens de l’écoulement. Seules leurs positions verticales doivent être adaptées pour permettre
une représentation correcte de la frontière libre du solide en translation. Bien que cette
frontière n’évolue pas dans un repère lié au mouvement de la matière, elle nécessite un
calcul dans un repère indépendant.
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La figure 3.8 décompose les deux phases de l’algorithme ALE. Pendant la phase lagran-
gienne, le maillage suit la matière et traverse la frontière aval. Pour reconstruire le nouveau
maillage (en grisé sur la figure), qui doit nécessairement être localisé entre les deux fron-
tières, il faut, d’une part, étirer le maillage jusqu’à la frontière amont pour combler le vide
qui s’est créé et, d’autre part, calculer l’intersection du maillage lagrangien avec la frontière
aval pour le découper et régénérer un maillage sur la zone d’intérêt uniquement.

configuration
lagrangienne

configuration
eulérienne

x
y

déplacement durant la
phase lagrangienne

n1 n1

n2 n2imposé
(amont)

intersection
(aval)amont aval

FIGURE 3.8 – Repositionnement d’un coin sur une frontière eulérienne. Les configurations lagrangienne et
eulérienne du maillage sont représentées en grisé. Le mouvement du nœud n1 en amont de l’écoulement est
imposé par la géométrie connue du solide qui entre dans la zone maillée. Le nœud du coin opposé n2, en
aval, est repositionné à l’intersection du maillage (dans sa configuration lagrangienne) et de la frontière
eulérienne aval.

En amont, le mouvement du nœud doit être explicitement imposé. C’est une condition
aux limites qui dépend de la forme connue de la structure qui entre dans la zone d’intérêt.
En aval, il est important de ne pas appliquer de fixations. On pourrait par exemple être tenté
de définir une condition du type (x E , y E) = (xfrontière, y L) où les exposants L, E désignent
respectivement les positions avant et après repositionnement. Cependant, cette condition
est trop simple (y E ne diminuerait jamais dans le cas présenté – voir figure 3.9) pour
décrire le mouvement du nœud sur la frontière qui doit impérativement suivre la position
de la frontière libre. La position correcte du nœud est donnée par l’intersection de l’arête
supérieure et de la frontière eulérienne. Cette technique sera approfondie et généralisée au
cas de surfaces 3D à la section 3.5.3.

n2

amont aval mauvaise
projection

FIGURE 3.9 – Le nœud n2 ne peut pas être simplement projeté orthogonalement sur la frontière eulérienne
aval parce que, dans ce cas, son ordonnée ne diminue jamais. Le maillage se déforme anormalement à
proximité de la frontière et ne décrit plus la surface matérielle (en pointillé).
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3.3 Traitement des arêtes vives

Lorsque les nœuds des coins de la structure ont été repositionnés, ceux provenant du
maillage des arêtes peuvent être traités à leur tour. Nous nous intéressons ici uniquement
aux arêtes vives du maillage qui doivent être préservées tout au long du calcul. Ce type de
ligne est appelé sliding edge dans Abaqus [55] parce que les nœuds peuvent glisser sur elle,
mais ne peuvent pas s’en écarter. Les autres arêtes sont des lignes auxiliaires reposant sur
des faces ou traversant des volumes (voir section 3.1.3) et sont donc traités plus tard, en
même temps que ceux-ci.

Le problème consiste à redistribuer les nœuds de l’arête le long de celle-ci tout en
conservant au mieux sa forme. Puisque nous utilisons exclusivement des éléments finis
à géométrie linéaire, l’arête est discrétisée par une ligne brisée formée par une succession
de segments de droite. Si l’arête n’est pas rectiligne, le déplacement de ses nœuds risque de
provoquer une modification du volume comme le montre schématiquement la figure 3.10
dans le cas d’une arête formée de trois segments.

configuration lagrangienne

repositionnement naïf

conservation du volume
=( )

pertes de matière
gains de matière

matière

extérieur

FIGURE 3.10 – Problème de conservation du volume lors du repositionnement de nœuds sur les arêtes vives.
Un repositionnement naïf des nœuds sur la ligne brisée représentant la frontière provoque dans ce cas-ci
des pertes de matières. Celles-ci peuvent être minimisées en utilisant des méthodes de repositionnement
plus élaborées.

Un repositionnement simple le long de la ligne brisée entraîne une variation de volume
importante qui se traduira par une perte ou un gain de matière au cours du calcul. En
permettant aux nœuds de quitter la ligne brisée, les pertes peuvent compenser les gains et
le volume global est conservé. La difficulté est donc de déplacer les nœuds de telle manière
à ce que le volume soit globalement préservé tout en essayant de conserver la courbure
locale de l’arête.

Les nœuds peuvent être redistribués de différentes façons suivant l’effet désiré. On peut
par exemple les concentrer dans les zones qui le nécessitent pour améliorer la qualité de
la solution (voir Ponthot [166, 167, 168], Askes et Sluys [7], Askes et al. [8], Guerdoux
[95], par exemple). Dans le cadre de ce travail, nous nous bornons à redistribuer chaque
nœud en fonction de son abscisse curviligne initiale sur l’arête. Un maillage régulier reste
ainsi régulier et une zone de raffinement est conservée tout au long du calcul. La difficulté
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principale d’une méthode d’adaptation n’est pas sa mise en œuvre, puisqu’elle revient à
calculer une liste d’abscisses curvilignes, mais de trouver un critère pertinent de raffinement
du maillage le long de la direction de l’arête pour la simulation envisagée.

3.3.1 Remaillage par cercles

Cette méthode, décrite par Ponthot [168], s’apparente à un remaillage. Elle consiste à
approximer localement, pour chacun de ses nœuds, le maillage non lisse de l’arête par un
cercle. Les nœuds sont tout d’abord repositionnés le long de la ligne brisée décrivant l’arête
en respectant les abscisses curvilignes voulues (ce que nous appelons repositionnement naïf
sur la figure 3.10). Ils sont ensuite chacun projetés sur le cercle construit autour d’eux à
partir des trois nœuds les plus proches.

R

x3

x1

x2

p

p'

c

FIGURE 3.11 – Rediscrétisation d’une arête vive par la méthode des cercles. Les points x 1, x 2 et x 3 corres-
pondent aux positions des nœuds de la frontière après la phase lagrangienne.

La figure 3.11 détaille cette procédure : pour chaque nœud, on détermine tout d’abord
la position p ′ le long de la configuration lagrangienne de l’arête calculée en fonction de
l’abscisse curviligne désirée. Les deux nœuds aux extrémités du segment qui contient p ′

sont notés x 1 et x 2. Un troisième nœud x 3 est identifié comme étant le plus proche de
p ′ (en dehors de x 1 et x 2). La nouvelle position p du nœud est donnée par l’intersection
du cercle passant par les nœuds x 1, x 2, x 3 et le rayon passant par p ′. On procède ainsi
pour tous les nœuds de l’arête à remailler. Cette méthode a l’avantage d’être directe et très
rapide.
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3.3.2 Remaillage par spline

Une extension de la méthode des cercles peut être obtenue en augmentant le degré de
l’approximation locale utilisée. En construisant une spline cubique à partir de la configu-
ration lagrangienne des nœuds de l’arête, le repositionnement des nœuds se réduit à une
simple opération de maillage de cette courbe.

configuration lagrangienne

configuration remaillée

FIGURE 3.12 – Rediscrétisation d’une arête vive par la méthode des splines. Une spline cubique est construite
à partir des positions lagrangiennes des nœuds de l’arête. Le repositionnement consiste à remailler cette
courbe aux abscisses curvilignes voulues.

La figure 3.12 montre schématiquement le principe de la méthode. La spline cubique
est simplement construite sur les nœuds de la ligne et évaluée aux abscisses voulues pour
obtenir les nouvelles positions. Une méthode de ce type a été initialement utilisée dans le
cadre du formalisme ALE par Huétink et van der Lugt [120] et Huétink et al. [121].

ui+1

xi+1

ui

xi

x( )x

FIGURE 3.13 – Segment de spline cubique défini par les positions de ses deux extrémités x i et x i+1 et les deux
vecteurs tangents unitaires u i et u i+1 en ces points.

Soient N points x i (i = 1, ..., N) sur lesquels on veut construire une courbe. Supposons
également connus en tous les points le vecteur tangent unitaire u i (i = 1, ..., N). Consi-
dérons le segment [x i, x i+1], paramétré localement par ξ ∈ [0, 1] (figure 3.13). On peut
construire le morceau de courbe suivant entre ces deux points :

x(ξ) = µ0(ξ) x i +µ1(ξ) x i+1+µ2(ξ)u i +µ3(ξ)u i+1 (3.1)

où les µi sont les fonctions d’Hermite :

µ0(ξ) = (1+ 2ξ) (1− ξ)2 (3.2)

µ1(ξ) = (3− 2ξ)ξ2 (3.3)

µ2(ξ) = ξ (1− ξ)2 (3.4)

µ3(ξ) = (ξ− 1)ξ2 (3.5)

L’unicité de la tangente u i en chaque point x i assure la continuité C1 de la courbe
assemblée. Pour faciliter le remaillage, il est préférable de disposer d’une paramétrisation
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naturelle de la courbe (c’est-à-dire en fonction de son abscisse curviligne s ∈ [0, L]). Mailler
la courbe revient alors à évaluer celle-ci aux abscisses voulues. Pour ce faire, on peut utiliser
l’approximation de McConalogue [149] :

x(t) = µ0(
t

T
) x i +µ1(

t

T
) x i+1 +µ2(

t

T
) T u i +µ3(

t

T
) T u i+1 (3.6)

où les vecteurs u i sont unitaires et t ∈ [0, T] avec

T =
3

e

hp

f 2 + 2 g e− f
i

(3.7)

et

f = (x i+1 − x i).(u i+1 − u i) (3.8)

g = ||x i+1− x i||2 (3.9)

e = g −
1

2
||u i+1 + u i||2 (3.10)

Cette expression donne en fait une très bonne approximation de la longueur du segment
de spline [x i, x i+1] (T ⋍ L). De plus, on peut vérifier que d t/ds ⋍ 1, c’est-à-dire que le
paramètre t est très proche de l’abscisse curviligne s.

Dxi -1xi -1

xi+1Dxi

xi
ui

FIGURE 3.14 – Détermination de la tangente u i au point x i . Elle correspond à la tangente à une courbe du
second degré passant par les points x i−1, x i et x i+1 et évaluée en x i .

Les vecteurs tangents u i en chaque point peuvent être calculés en faisant passer une
approximation de Lagrange du deuxième degré par trois points successifs et en évaluant la
tangente de cette courbe au point milieu ou aux points extrêmes (figure 3.14). On obtient :

u i =
v i

||v i||
v i = (1−α)∆x i−1+α∆x i (3.11)

avec

α =
||∆x i||2

||∆x i−1||2 + ||∆x i||2
(3.12)

où
∆x i = x i+1 − x i (3.13)

En début et en fin de courbe, on utilise un schéma décentré, avec :

v0 = (x 1− x 0)−α0 (x 2− x 1) (3.14)
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et

α0 =
||∆x 0||2

(||∆x 0||+ ||∆x 1||)2− ||∆x 0||2
(3.15)

pour le premier point et

v N = (x N − x N−1) + αN (x N−1− x N−2) (3.16)

et

αN =
||∆x N−1||2

(||∆x N−2||+ ||∆x N−1||)2 − ||∆x N−1||2
(3.17)

pour le dernier point.

Par rapport à d’autres types de courbes d’ordre élevé (B-Splines, NURBS – voir par
exemple Prautzsch et al. [173]), les splines de McConalogue semblent être un très bon
choix puisque leur paramétrisation quasi naturelle permet d’évaluer les distances entre
nœuds sans calculer d’intégrales et d’obtenir en conséquence une vitesse d’exécution proche
de la méthode des cercles présentée précédemment. En contrepartie, la courbure locale
n’est pas contrôlable et n’est continue aux nœuds que si ceux-ci sont régulièrement espa-
cés.

cercle
spline

FIGURE 3.15 – Approximation d’un cercle par une spline fermée de McConalogue définie par quatre points.

Pour illustrer l’approximation obtenue par les splines de McConalogue, nous l’utilisons
sur quatre points placés sur un cercle (figure 3.15), l’approximation par spline donne une
géométrie assez proche d’un cercle.

Un problème de remaillage peut survenir lorsque l’arête vive dont on veut repositionner
les nœuds traverse une frontière eulérienne (figure 3.16). Dans ce cas, si le déplacement
de l’arête est suffisamment important pour que, durant la phase lagrangienne, plusieurs
nœuds franchissent la frontière, il est important de ne pas tenir compte de ceux-ci lors
de la création de la spline. Cette modification de la méthode étant fastidieuse et surtout
coûteuse, nous utiliserons donc généralement des maillages dont les mailles sont suffisam-
ment grandes près des frontières eulériennes pour éviter ce problème et garantir qu’un seul
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nœud traverse la frontière lors du pas lagrangien. Cette approximation peut se justifier par
le fait qu’au delà de la frontière eulérienne aval, le mouvement de la matière est peut être
généralement considéré comme un déplacement de corps rigide.

configuration
initiale

configuration
lagrangienne

construction
de la spline

noeuds
ignorés

frontière
amont

frontière
aval

d
d

FIGURE 3.16 – Arête vive franchissant une frontière eulérienne. Plusieurs nœuds ont franchi la frontière
eulérienne aval lors de la phase lagrangienne. Ils doivent être ignorés dans la construction de la spline
cubique.

3.3.3 Autres méthodes

De nombreux auteurs (Stoker [187], Geijselaers [83], Gadala et al. [78] parmi d’autres)
se bornent à résoudre de manière directe l’équation (2.21). Pour rappel :

v ∗ · n = v · n (3.18)

qui exprime que la vitesse normale du maillage est identique à celle de la matière. Remar-
quons que c’est la seule possibilité si on essaye de résoudre les équations ALE de manière
couplée, même si les auteurs cités ci-dessus utilisent une partition de l’opérateur.

n

plan tangent

xi

E xi

L

xi-1

xi+1

normale
consistanten

ngauche

ndroite

xi

xi-1

xi+1

=

FIGURE 3.17 – Remaillage d’une arête vive à l’aide de l’équation (2.21). La normale consistante définit un
plan tangent sur lequel le nœud x i peut être repositionné tout en conservant le volume du maillage.

Le problème provient de la définition de la normale n à la surface externe évaluée
au nœud. Puisque la frontière du maillage est une ligne brisée, cette normale n’est pas
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définie de manière unique. Il est cependant possible de définir une normale moyenne et en
déduire un plan tangent. Le meilleur choix est d’utiliser la normale consistante (Engelman
et al. [67]) définie par la somme des normales de part et d’autre du nœud, pondérée par la
longueur des arêtes respectives (voir figure 3.17) :

n = (x i − x i−1)∧ ez + (x i+1 − x i)∧ ez (3.19)

Par construction, cette normale est perpendiculaire au segment (x i+1, x i−1). Le déplace-
ment du nœud x i sur la tangente qui en découle (pour vérifier l’équation (2.21)) n’entraî-
nera donc aucune variation du volume du maillage. Malheureusement, ce raisonnement
est valide uniquement si on déplace un seul nœud. En effet, si x i+1 et x i−1 sont eux aussi
repositionnés, ce qui constitue le cas général, cette conservation n’est plus garantie et la
méthode provoquera inévitablement de grandes variations de volume parasites. On ne peut
donc utiliser cette méthode que pour des procédés où la vitesse tangentielle du maillage
par rapport à la matière est faible (le forgeage, par exemple, sauf exception). Il n’est donc
pas envisageable de traiter des cas industriels où apparaissent des mouvements de surfaces
libres complexes avec cette technique.

Pour améliorer la méthode, Guerdoux [95] projette, de manière plus ou moins sophis-
tiquée, la nouvelle position du nœud sur le maillage de la configuration lagrangienne. Il
travaille en termes de positions dans une formulation initialement en vitesses (splitting
géométrique – voir section 2.4.2.2). Cela a pour effet d’éviter les instabilités, mais n’amé-
liore pas les variations de volume indésirables.

Benson [23] redistribue simplement les nœuds le long de la ligne brisée décrivant la
frontière libre du maillage (le repositionnement naïf, sur la figure 3.10). Il tolère ainsi une
erreur sur la conservation du volume qu’il juge faible.

Geijselaers [83] calcule l’intersection de la frontière avec une direction fixée a priori
pour chaque nœud. Puisqu’il utilise des éléments quadratiques, la frontière est mieux dé-
crite que dans le cas linéaire et les variations de volume sont donc plus faibles. Sa méthode
est cependant peu générale et limitée à des simulations quasi eulériennes.

La simplicité des méthodes tirées de la littérature provient certainement d’une difficulté
technique liée à la description souvent trop simplifiée du maillage dans les codes éléments
finis. En effet, pour pouvoir appliquer des méthodes globales, telles que la méthode des
arcs ou des splines, traitant l’arête dans son intégralité, il est indispensable de pouvoir
isoler les nœuds de celle-ci et de les trier efficacement. Les deux méthodes utilisées dans
ce travail, quoique simples dans leur principe, nécessitent donc une structure de données
suffisamment riche pour être mise en œuvre, structure qui fait défaut dans la majorité des
codes de calcul.

Aymone [12] propose une méthode similaire à la méthode des cercles : pour reposition-
ner un nœud sur une arête vive, il choisit de faire passer une interpolation du second degré
par celui-ci et ses deux voisins directs (figure 3.18). Le nœud est repositionné à l’abscisse
curviligne ξ ∈ [−1, 1] qui tend à uniformiser la taille des mailles voisines :

ξ∗i =
di−1 − di

di−1 + di
où di = ||x i − x i−1|| (3.20)
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FIGURE 3.18 – Interpolation locale du second degré (Aymone [12]). Les points x i−1,x i ,x i+1 représentent les
positions lagrangiennes des nœuds de l’arête vive. La valeur de ξ∗ est calculée pour uniformiser le maillage.

Cette procédure de lissage est locale et donc itérative. Néanmoins, Aymone n’effectue qu’un
seul passage sur tous les nœuds ; ce qui limite l’utilisation de la méthode à des déplacements
tangentiels faibles des nœuds du maillage.

Wisselink et Huétink [207] adoptent une méthode originale dans le cas particulier où la
frontière peut se mettre sous la forme d’une fonction y = f (x). Dans ce cas, le problème de
repositionnement de nœuds peut être vu comme un problème de convection unidimension-
nel qu’ils résolvent par un schéma explicite de Lax-Wendroff. Les oscillations sont évitées
à l’aide de limiteurs de flux appropriés. De cette manière, ils abordent le problème de re-
positionnement de nœuds par le même algorithme que celui utilisé pour le transfert des
données (chapitre 4). Cette technique a été implémentée et testée dans Metafor par Duvi-
vier [66]. Elle provoque une erreur de diffusion largement plus élevée que la méthode des
arcs ou des splines. De plus, son extension à tout type de maillage (arête tridimensionnelle
ou ne pouvant pas se mettre sous forme de fonction) n’est pas évidente. En particulier, cette
méthode serait incapable de simuler le test présenté à la section 3.3.5.2 puisque le profil
considéré possède des tangentes verticales.

3.3.4 Remaillage de lignes parallèles

Remailler une ligne en conservant l’abscisse curviligne de chaque nœud tout au long du
calcul peut provoquer des distorsions indésirables du maillage volumique adjacent. Consi-
dérons par exemple une tôle mince que l’on veut faire s’enrouler autour de trois cylindres
(figure 3.19). Initialement, la tôle est plane et sa géométrie est un simple rectangle maillé
uniformément. La simulation consiste à faire descendre le cylindre du milieu pour imposer
une forte imbrication à la tôle. Celle-ci fléchit et vient s’enrouler autour des cylindres.

Si les nœuds des lignes supérieure et inférieure sont gérés indépendamment par la
méthode des arcs (section 3.3.1) ou des splines (section 3.3.2), on obtient le maillage
représenté sur la figure 3.19. Les éléments quadrangulaires sont cisaillés par la procédure
parce que l’espacement entre chaque nœud a été maintenu constant pour respecter les
abscisses curvilignes de la configuration initiale. Or, le maillage idéal, pour éliminer toute
diffusion transverse suite au transfert des données (voir section 4.7.1), devrait être un
maillage d’éléments presque rectangulaires dont les lignes décrivent d’une part les sections
droites de la tôle et d’autre part les trajectoires des particules de matière. Il serait obtenu
en alignant les nœuds des deux lignes opposées représentant les surfaces supérieure et
inférieure de la tôle avec le point de l’axe du cylindre le plus proche. De cette manière, les
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configuration
initiale

configuration
après imbrication

FIGURE 3.19 – Dégradation de la qualité des mailles dans le cas de l’imbrication d’une tôle entre trois cylindres.
Les maillages des deux lignes représentant la surface supérieure et la surface inférieure de la tôle sont
maintenus réguliers. Ceci provoque l’apparition de mailles quadrangulaires fortement cisaillées.

1. maillage initial 2. spline à mi-épaisseur

3. projection sur les frontières 4. maillage final

FIGURE 3.20 – Procédure de remaillage de deux arêtes parallèles. À partir du maillage initial des deux lignes
(1), on construit une spline à mi-épaisseur en moyennant la position des nœuds en vis-à-vis. Ces points
à mi-distance sont relocalisés sur la spline (2) et ensuite projeté sur les deux lignes (3) pour obtenir le
maillage final (4).

FIGURE 3.21 – Maillage obtenu avec la méthode spécifique de repositionnement sur lignes parallèles. Les lignes
du maillage sont perpendiculaires entre elles et les éléments sont partout proches de rectangles.
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arêtes internes du maillage seraient plus ou moins perpendiculaires à celles du maillage des
deux lignes.

Pour obtenir ce résultat de manière générale, c’est-à-dire sans introduire explicitement
le rayon des cylindres dans les calculs, on peut procéder comme suit (figure 3.20) : imagi-
nons deux lignes parallèles discrétisées avec une même distribution de nœuds. On construit
une spline de McConalogue (équation (3.6)) située à mi-distance de celles-ci en définissant
une série de points équidistants de chaque paire de nœuds en vis-à-vis. Cette spline est
ensuite discrétisée en utilisant les abscisses curvilignes initiales des nœuds des deux lignes
frontière. On obtient ainsi une nouvelle position des points à mi-épaisseur. Il suffit alors de
projeter ces nouveaux points de part et d’autre sur les frontières. Pour éviter les variations
de volume, on utilise à nouveau une approximation spline des deux lignes frontière. Le ca-
ractère orthogonal des projections permettra d’obtenir des éléments proches de rectangles.

Cette méthode, appliquée au problème d’imbrication décrit précédemment, fournit le
maillage représenté sur la figure 3.21.

3.3.5 Tests de convection

Nous proposons d’étudier brièvement les méthodes de rediscrétisation d’arêtes sur deux
tests de convection. Ceux-ci nous permettront de nous faire une idée sur leur capacité
respective à propager une forme géométrique sur un maillage fixe (quasi eulérien).

3.3.5.1 Convection d’une sinusoïde

Le premier test s’effectue sur un maillage initialement rectiligne de longueur L = 100
mm représenté schématiquement sur la figure 3.22. On impose une vitesse de matière
constante selon x et uniforme : v = 2 mm/s. Le domaine maillé est fixe dans l’espace :
ses extrémités sont eulériennes (x(t) = x(t0)). En amont du domaine maillé, on impose
la géométrie de la matière qui entre dans le maillage par une fonction du type y(x0, t) =
A sinω t avec A= 10 mm et ω= 10 vπ/L.

zone quasi eulérienne (longueur L)

v y x t A t( , )= sin0 w

x0 x

y

FIGURE 3.22 – Géométrie du test de convection d’une sinusoïde par les méthodes des arcs et des splines.

On utilise un maillage uniforme de ne = 300 mailles sur la longueur L. Un pas de temps
constant est fixé à ∆t = L/(2ne v). La matière avance donc d’une demi-maille par pas de
temps. Le déplacement final de la sinusoïde est de 0.8L le long de la direction horizontale
et la solution finale est comparée à la solution analytique y(x , t) = A sin(ω (t − x/v)) sur
la figure 3.23.
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FIGURE 3.23 – Géométrie finale du test de convection après un déplacement de 80 mm. Les solutions ob-
tenues par la méthode des arcs et des splines sont comparées à la solution exacte et à celle obtenue en
repositionnant les nœuds directement sur la ligne brisée (repositionnement naïf).

Comme on pouvait s’y attendre, la méthode de repositionnement naïve, consistant à
repositionner le nœud directement sur la ligne brisée décrivant la frontière, provoque une
détérioration considérable de la forme de la solution au cours de sa translation. Par contre,
on constate que les deux solutions obtenues par les méthodes des arcs et des splines sont
très proches de la solution exacte du problème. Néanmoins, les amplitudes calculées dimi-
nuent légèrement lorsqu’on s’éloigne de l’origine. La phase de la sinusoïde est par contre
bien respectée.
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FIGURE 3.24 – Zoom sur le premier extremum de la solution finale du test de convection. Aucune des méthodes
n’est capable de représenter correctement la discontinuité de pente observée en x = 80 mm dans la solution
exacte.

Le point anguleux situé en x = 80 mm pose évidemment un problème aux algorithmes.
Les profils ont subi un lissage indésirable mais inévitable et ceci provoque une erreur qui
s’est propagée en amont, si bien que le premier extremum des solutions numériques (celui
le plus à droite) est assez mal représenté par rapport aux précédents (voir figure 3.24).
Pour ce test de convection particulier, la méthode des splines donne un résultat plus proche
de la solution analytique que la méthode des arcs.
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3.3.5.2 Convection d’un profil complexe

Le second test consiste à translater un profil courbe construit initialement à l’aide d’une
spline. La géométrie est représentée sur la figure 3.25.

zone quasi eulérienne (longueur L)

v

x

y

l

h

FIGURE 3.25 – Géométrie du test de convection d’un profil complexe construit à l’aide de deux splines de
McConalogue. Les tangentes aux trois points définissant la spline sont choisies horizontales et unitaires.

Il a été construit pour mettre en avant la capacité des deux méthodes à traiter des fron-
tières possédant une très forte courbure (le profil possède plusieurs points où les tangentes
sont verticales). On choisit l = h = 10 mm. Le profil est initialement positionné en x = 10
mm. Les autres paramètres sont identiques à ceux du cas précédent. Après une translation
de 80 mm (c’est-à-dire après avoir parcouru 240 nœuds du maillage), les courbes résul-
tant de l’utilisation des deux algorithmes de repositionnement de nœuds sont analysées
(figure 3.26).
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FIGURE 3.26 – Solutions obtenues après un déplacement total du profil de 80 mm. Les méthodes des splines et
des arcs fournissent une solution proche de la solution exacte en comparaison à la méthode naïve.

Encore une fois, on remarque que la géométrie est globalement bien conservée par les
deux méthodes. On préférera cependant à nouveau la méthode des splines qui donne une
solution plus proche de la solution exacte. Quant au repositionnement naïf, il provoque une
très forte diffusion et semble donc tout à fait inadapté pour traiter la convection d’un profil
complexe sur de longues distances.
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3.4 Traitement des volumes

Dans cette section, nous détaillons les méthodes de repositionnement qui s’appliquent
aux nœuds internes du maillage. Ceux-ci sont liés à un domaine plan à 2D ou à un volume
à 3D. Cette étape intervient après le repositionnement des nœuds des frontières du mail-
lage. Cependant, déplacer un nœud dans un volume est une opération plus simple que le
déplacer sur une surface. Nous présentons donc tout d’abord les méthodes volumiques. Les
méthodes surfaciques seront déduites des méthodes volumiques en ajoutant une contrainte
de conservation de la forme de la frontière au cours du processus.

Il serait possible de démarrer le repositionnement des nœuds volumiques en détermi-
nant préalablement ceux dont le mouvement est susceptible d’améliorer le maillage. Par
exemple, Benson [22] calcule à 2D pour chaque nœud une valeur de distorsion volumique
et en cisaillement. Son maillage idéal est un maillage régulier composé d’éléments carrés.
Ce genre de critère est fastidieux à mettre en place pour un maillage quelconque. Cette
sélection n’est pas utile pour des calculs quasi eulériens pour lesquels la plupart des nœuds
sont constamment en mouvement pendant la phase lagrangienne et doivent donc tous être
repositionnés.

Benson [23] limite également le déplacement maximal admissible d’un nœud en fonc-
tion de la stabilité du schéma de convection utilisé par la suite. Dans ce travail, nous choi-
sirons plutôt de modifier le schéma de convection (section 4.4.8) pour respecter le critère
de stabilité quel que soit l’amplitude du déplacement des nœuds. On peut aussi condition-
ner le déplacement d’un nœud à l’augmentation locale d’un critère de qualité des éléments
adjacents (constrained Laplacian ou smart Laplacian – George [86]). Ces techniques ne se-
ront pas utilisées parce qu’elles ne nous ont pas semblé nécessaires pour les applications
envisagées.

3.4.1 Méthode d’interpolation transfinie (MIT)

Si le maillage volumique initial de la structure a été généré par un mailleur structuré
de type transfini, il est possible de redistribuer les nœuds internes en exécutant à nouveau
ce même type de mailleur. L’avantage d’une telle méthode est sa simplicité et sa rapidité
d’exécution.

La méthode d’interpolation transfinie (Gordon et Hall [91]) a été initialement utilisée
dans le cadre de la méthode des éléments finis par Haber et al. [97]. Elle a été reprise
par la suite, en formalisme ALE, par de nombreux auteurs (Koh et al. [131], Ponthot [166,
168], Gadala et Wang [76], Gadala et al. [78], Akkerman [3], Aymone [12], etc.) vu son
efficacité. Dans ce travail, nous l’utilisons aussi bien à 2D qu’à 3D.

À deux dimensions, si la surface F est limitée par quatre courbes, P1(ξ), P2(ξ), Q1(η) et
Q2(η), on définit un projecteur Π qui transforme un carré de côté unitaire en une surface
approchée qui rencontre exactement les quatre arcs frontières. Par définition, on appelle
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interpolant bilinéaire de Lagrange de la surface F le projecteur suivant :

Π(F) = (1−η)P1(ξ) +ηP2(ξ) + (1− ξ)Q1(η) + ξQ2(η)

−ξηF(1, 1)− (1− ξ) (1−η)F(0, 0)

+(1− ξ)ηF(0, 1)− ξ (1−η)F(1, 0), (3.21)

avec 0 ≤ ξ ≤ 1 et 0 ≤ η ≤ 1. On parle de méthode algébrique de génération de maillage
en opposition aux méthodes elliptiques, qui consistent à résoudre un système d’équations
aux dérivées partielles, telle que la méthode de Laplace dont est dérivé le lissage laplacien
(section 3.4.2).

F

Q2

Q1

P1 P2

FIGURE 3.27 – Maillage transfini d’une domaine 2D F délimité par les quatres courbes P1, P2, Q1 et Q2.

Si les lignes en vis-à-vis sont maillées avec un nombre identique de nœuds (M nœuds
sur P1, P2 et N nœuds sur Q1, Q2), l’équation (3.21) peut être discrétisée en utilisant
ξm = (m− 1)/(M − 1) et ηn = (n− 1)/(N − 1). La position des nœuds internes peut être
ainsi déduite des positions des nœuds de la frontière en faisant varier m ∈ [2, M − 1] et
n ∈ [2, N − 1]. Remarquons que, sur le contour, les coordonnées (ξ,η) ainsi calculées ne
correspondent pas nécessairement aux abscisses curvilignes réelles des nœuds.

À trois dimensions, on peut obtenir une relation similaire à l’équation (3.21) (voir Gor-
don et Hall [91]). Une fois discrétisée, la position du nœud interne dépend des positions
de 26 nœuds (1 nœud sur chaque sommet, chaque arête et chaque face du domaine hexa-
édrique). Des variantes existent pour mailler des domaines triangulaires, tétraédriques et
pentaédriques (George [86]).

La méthode d’interpolation transfinie, utilisée dans le cadre du repositionnement des
nœuds, donne généralement de très bons résultats parce qu’elle est directe et très simple.
Elle ne nécessite pas d’itération pour obtenir le nouveau maillage contrairement à toutes
les méthodes présentées ci-après. En conséquence, elle est aussi très rapide.

De plus, elle permet de remailler des domaines très complexes pour autant que l’on
partitionne ceux-ci en sous-domaines (ou macrorégions – Ponthot [168]) quadrangulaires
(2D) ou hexaédriques (3D). Ce positionnement est généralement requis lors de la création
du maillage initial, quel que soit le formalisme utilisé par la suite (lagrangien ou ALE).
Utiliser cette méthode en formalisme ALE ne demande donc pas de travail supplémentaire.

Malheureusement, des inconvénients et limitations existent :

• Le maillage doit être structuré, c’est-à-dire que chaque nœud interne doit être entouré
à deux dimensions de quatre mailles quadrangulaires et à trois dimensions de huit
mailles hexaédriques.
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• Le mailleur doit être accessible à partir des routines ALE. En particulier, il est impor-
tant de régénérer les nœuds dans le même ordre que celui utilisé lors du maillage
initial sous peine de devoir modifier les connexions entre éléments et réorganiser les
degrés de liberté du problème. On voit ici l’intérêt de posséder un mailleur transfini
en interne dans le code de calcul. Dans le cas contraire, une réorganisation des nœuds
doit être préalablement effectuée.
• Cette méthode ne conserve pas nécessairement les tailles relatives des mailles au mi-

lieu du domaine. Le repositionnement des nœuds sur les arêtes influence grandement
le mouvement des nœuds internes. En particulier, si on applique cette méthode pour
une surface 3D non plane, la surface obtenue après remaillage peut être très diffé-
rente de la surface initiale. Comme cette méthode ignore complètement la courbure
interne de la surface en se basant uniquement sur la géométrie de ses frontières, cette
méthode, utilisée telle qu’elle, est inadaptée au repositionnement des nœuds sur des
surfaces non planes.
• Enfin, dans le cas de frontières fortement concaves par exemple, le projecteur peut ne

plus être biunivoque et le domaine maillé peut alors déborder au delà de ses frontières
(on parle d’overspill – voir Gordon et Hall [91]).

3.4.2 Lissage laplacien

Le lissage laplacien, également appelé lissage barycentrique, est certainement la plus
simple et la plus populaire des méthodes d’amélioration de la qualité des mailles. Dans
le cadre du formalisme ALE, elle est régulièrement utilisée en combinaison avec d’autres
méthodes (voir Hermann [108], Stoker et al. [186], Pantalé et al. [162], Wisselink [206],
parmi d’autres)

Elle correspond à la résolution d’une équation de Laplace pour chacune des coordonnées
des nœuds du maillage en imposant comme conditions aux limites les positions connues des
nœuds frontière. Par exemple, à deux dimensions pour un maillage structuré :









∂2x

∂ξ2 +
∂2 x

∂η2 = 0

∂2 y

∂ξ2
+
∂2 y

∂η2
= 0

(3.22)

où x , y sont les coordonnées spatiales et ξ, η sont les coordonnées des nœuds dans
un espace logique déduit de la numérotation des nœuds (figure 3.28). En discrétisant les
dérivées secondes par différences finies et en isolant la position du nœud central x 0, on
obtient :

x 0 =
1

4

4∑

i=1

x i (3.23)

Cette relation exprime la position d’un nœud en fonction de celle de ses quatre voisins. En
l’écrivant pour tous les nœuds internes du maillage, on obtient un système d’équations à
résoudre (voir section 3.4.11). Chaque nœud est ainsi repositionné au barycentre de ses
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voisins. Cette équation peut également être utilisée pour générer un maillage structuré sur
un domaine dont on connaît les nœuds frontière (George [86]). On parle alors de méthode
elliptique de génération de maillage.

La relation (3.23) est facilement généralisée au cas de n nœuds voisins :

x 0 =
1

n

n∑

i=1

x i (3.24)

x

h y

x

x x= ( , )x h

y y= ( , )x h

FIGURE 3.28 – Coordonnées logiques (ξ,η) et spatiales (x , y) utilisées pour le lissage laplacien. Les coordon-
nées logiques correspondent à la numérotation (ξ =colonne, η=ligne) des nœuds du maillage qui est donc
nécessairement structuré.

Plusieurs variantes existent en fonction des nœuds voisins utilisés. On peut ainsi utiliser
uniquement les nœuds reliés au nœud central par une arête, c’est-à-dire les voisins directs,
ou prendre en compte les nœuds qui sont diagonalement opposés sur chaque élément voisin
(Hyun et Lindgren [123]).

Appliqué tel quel sur un maillage quelconque, le lissage laplacien ne préserve pas les
rapports entre les volumes des mailles voisines et tend à uniformiser le volume de toutes
les mailles. En effet, le système d’équations (3.22) traduit mathématiquement une minimi-
sation de la variation de la densité du maillage.

avant lissage après lissage

x0

x0

FIGURE 3.29 – Problème du lissage laplacien près d’une frontière fortement concave. Après lissage, le nœud
déplacé est situé au delà de la frontière, provoquant un retournement partiel des mailles en rouge.

L’inconvénient majeur du lissage laplacien est qu’il attire les nœuds internes du mail-
lage vers les zones concaves de la frontière (figure 3.29). Il est donc nécessaire d’avoir à
disposition d’autres types de méthodes pour pouvoir traiter les cas pathologiques.
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3.4.3 Lissage laplacien pondéré

Une variante de la méthode du lissage laplacien consiste à pondérer les termes de l’équa-
tion (3.24). On parle de lissage laplacien pondéré. Il s’écrit :

x 0 =
1

∑

wi

n∑

i=1

wi x i (3.25)

Comme précédemment, cette relation relie la position d’un nœud x i à celle de ses n voisins.
Les poids wi permettent de modifier le comportement du lissage. Nous proposons ici de
mettre au point une nouvelle méthode qui tire parti de cette liberté pour obtenir un lissage
qui conserverait les proportions des différentes mailles d’un maillage structuré localement
raffiné. En faisant cela, nous ne tentons pas d’améliorer un maillage qui serait initialement
de mauvaise qualité, mais plutôt conserver la qualité et la densité variable d’un maillage
au cours du temps. L’idée est donc de calculer des poids wi sur le maillage initial pour
retrouver un maillage similaire lors du processus de lissage ultérieur.

x1

l1
l2

x2

x0

FIGURE 3.30 – Cas unidimensionnel. Conservation des longueurs de deux segments adjacents. On cherche la
position du nœud x 0 pour le rapport des longueurs l1 et l2 soit conservé quel que soit le mouvement des
nœuds x 1 et x 2

À une dimension (figure 3.30), pour conserver la position du nœud x 0 sur le segment
(x 1, x 2) et ainsi conserver le rapport des longueurs des deux arêtes entourant x 0, il faut
que le nœud conserve ses coordonnées barycentriques sur ce segment lors du lissage, quelle
que soient les positions de x 1 et x 2 :

x 0 =
1

l1 + l2

�
l2 x 1 + l1 x 2

�
(3.26)

où l1 et l2 sont les longueurs initiales des arêtes (x 1, x 0) et (x 2, x 0). On en déduit des poids
constants w1 = l2 et w2 = l1.

Au-delà d’une seule dimension, la situation se complique. Par exemple, dans le plan,
on pourrait raisonner de la même manière lorsque le nœud est entouré de trois arêtes : il
suffirait de calculer ses coordonnées barycentriques initiales par rapport à ses trois nœuds
voisins et les injecter dans (3.25) pour lisser le maillage déformé et obtenir ainsi un nou-
veau maillage similaire au maillage initial. Les coordonnées barycentriques s’obtiennent
aisément en calculant les aires des sous triangles formés par les arêtes (voir figure 3.31).
On obtient ainsi w1 = A23, w2 = A31, w3 = A23 où Ai j est l’aire du triangle dont les sommets
sont x 0, x i, x j.

Ai j =
(x i − x)∧ (x j − x )

2
(3.27)

avec Ai j = −A ji.
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x2

x1

x3

A23

A31
A12 x0

FIGURE 3.31 – Cas bidimensionnel. Le nœud x 0 entouré de trois mailles voisines (en pointillé). Le nœud peut
être repéré par ses coordonnées barycentriques (w1 = A23, w2 = A31, w3 = A23) en définissant un triangle
dont les sommets sont ses trois nœuds voisins x1, x2 et x3.

Cependant, en ce qui nous concerne, le cas le plus intéressant dans le plan est celui d’un
nœud entouré par quatre arêtes. Dans ce cas, les poids wi ne peuvent plus être déterminés
de manière unique. Pour trouver une solution particulière, on peut étendre le concept de
barycentre au cas de quatre arêtes voisines (figure 3.32). En utilisant ses diagonales, le
quadrangle x 1, x 2, x 3, x 4 peut être divisé deux fois en deux triangles. Pour chacun de ces
quatre triangles, la position de x 0 peut être exprimée en fonction des sommets du triangle.
En additionnant ces relations, on obtient :

x 0 =
1

2A

�
(A23 + A34+ A24) x 1+ (A34 + A41 + A31) x 2

+(A12 + A41+ A42) x 3+ (A12 + A23 + A13) x 4

� (3.28)

où A =
∑

Ai j. Ces poids, faisant intervenir toutes les combinaisons possibles des sous tri-
angles construits sur les cinq nœuds, peuvent être calculés sur la configuration initiale et
utilisés pour repositionner les nœuds. Si le nombre d’arêtes est plus important, il suffit de
découper le polygone correspondant en une série de triangles et déterminer les nouveaux
poids. On se rend compte que les calculs deviennent rapidement très lourds. C’est d’autant
plus vrai si on veut étendre la méthode à trois dimensions. Dans ce cas, les coordonnées
barycentriques sont calculées sur des tétraèdres construits autour du nœud à déplacer. Ajou-
tons à cela qu’en pratique, pour des raisons d’économie de mémoire, il n’est pas question
de stocker les poids correspondant au lissage de chaque nœud. Les poids doivent donc être
calculés à chaque évaluation de la formule (3.25).

x2

x1

x3

x4A23

A12

A34

A13

A24

A41x0

x2

x1

x3

x4

x2

x1

x3

x4

FIGURE 3.32 – Cas bidimensionnel. Le nœud x 0 entouré de quatre mailles voisines (en pointillé). La position
du nœud peut également être exprimée comme une combinaison linéaire de la position de ses quatre voisins
en faisant intervenir les aires Ai j . Cependant cette combinaison linéaire n’est pas unique.

56



CHAPITRE 3. GESTION DU MAILLAGE

Pour ces raisons, il est important de trouver des poids wi beaucoup plus simples qui
garantissent la conservation des rapports des longueurs des arêtes dans le cas rencontré le
plus fréquemment : un maillage structuré et localement raffiné (figure 3.33). Pour celui-ci,
les mailles sont, pour la plupart, rectangulaires et tous les angles sont proches de 90 degrés.

x1

x4

x3

x2

l1

l2

l3

l4 x0

FIGURE 3.33 – Cas courant d’un maillage structuré dont les mailles (en pointillé) sont proches de rectangles.
On cherche à repositionner le nœud x 0 pour conserver les longueurs des arêtes li quel que soit la position
des nœuds voisins x i .

L’idée est de repartir de l’équation (3.26) et de l’écrire pour les segments (x 1, x 3) et
(x 2, x 4), considérés comme rectilignes :

(l1 + l3) x 0 = l3 x 1 + l1 x 3 (3.29)

(l2 + l4) x 0 = l4 x 2 + l2 x 4 (3.30)

en multipliant les équations respectivement par (l2 l4) et (l1 l3) et en les additionnant, on
obtient la valeur des poids en identifiant les coefficients de chaque nœud :

wi =

n∏

k 6=i

lk (3.31)

Cette expression des poids est extrêmement simple à évaluer. De plus, écrite sous cette
forme, elle peut être utilisée aussi bien à 2D qu’à 3D, sur des maillages structurés ou non.

3.4.4 Méthode des volumes pondérés

Une variante populaire au lissage laplacien est d’effectuer les calculs non plus avec les
nœuds voisins, mais avec les centres de gravité des éléments adjacents. On parle alors
de la méthode des volumes pondérés (ou des aires pondérées à deux dimensions). C’est
la méthode par défaut utilisée par Abaqus [55] (sous le nom de volume smoothing) en
formalisme ALE. Elle s’écrit, pour un nœud possédant N éléments voisins :

x 0 =
1
∑

Vi

N∑

i=1

Vi c i (3.32)

où Vi et c i sont respectivement le volume de l’élément adjacent i et la position de son
centre de gravité. Pour simplifier la formulation, on utilisera généralement le barycentre
des nœuds des éléments voisins plutôt que leurs centres de gravité.
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FIGURE 3.34 – Méthode des volumes pondérés. La position d’un nœud x 0 est calculée en fonction des bary-
centres c i des éléments adjacents.

Cette méthode utilise donc tous les nœuds des éléments comprenant le nœud à repo-
sitionner et permet dans certains cas où le maillage possède des frontières à géométrie
complexe et fortes courbures, d’obtenir une meilleure qualité de maillage qu’avec le lissage
laplacien traditionnel. En effet, le nœud central sera attiré plus fortement vers les éléments
possédant un grand volume. Dans le cas de la figure 3.29, les poids des éléments de la
couche frontière seront plus faibles que ceux des éléments de la deuxième couche. Le nœud
sera donc repositionné moins loin de sa position initiale.

Par contre, loin des frontières, tout comme le lissage laplacien, la méthode des volumes
pondérés tend à uniformiser les aires des éléments voisins.

3.4.5 Méthode de Giuliani

La méthode de Giuliani [87] est une méthode de lissage basée sur l’optimisation de
la forme des éléments comprenant un nœud donné. L’algorithme donne itérativement, à
chaque nœud, la position qui minimise l’écrasement et le cisaillement des éléments adja-
cents. Il peut être utilisé dans le cas de maillages mixtes constitués de triangles et qua-
drangles à 2D ou de tétraèdres et hexaèdres à 3D.

x0

x1

x2

x3

x4

b h

d

FIGURE 3.35 – Méthode de Giuliani à deux dimensions. Elle consiste à optimiser itérativement la forme des
triangles (en gris foncé) construits autour de chaque nœud. La position du nœud x 0 est donc fonction des
positions de ses voisins directs. À droite, les différentes grandeurs intervenant dans le calcul de la fonction
objectif à minimiser.

À deux dimensions, on construit, pour un nœud donné, un ensemble de triangles à
l’aide des arêtes successives aboutissant au nœud (zone plus foncée sur la figure 3.35). Ces
triangles forment une zone polygonale autour du nœud. On s’intéresse au minimum de la
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fonction :

E(x 0) =

N∑

1

�

h− h̄

h̄

�2

︸ ︷︷ ︸

écrasement

+

N∑

1

�
2 d

b̄

�2

︸ ︷︷ ︸

cisaillement

(3.33)

où N est le nombre de triangles, h est la hauteur de chaque triangle aboutissant au nœud,
h̄ est la hauteur moyenne, b̄ est la base moyenne et d est la distance entre le nœud et
la position du nœud si le triangle était isocèle tout en conservant sa hauteur. Le premier
terme de l’expression est une mesure de l’écrasement moyen des triangles et le second est
une mesure du cisaillement moyen.

En explicitant h et d en fonction de la position du nœud et en minimisant E par rapport
à x 0, on obtient une expression analytique de la nouvelle position optimale du nœud en
fonction de ses voisins directs. Des développements similaires (voir Giuliani [87]) peuvent
être effectués dans le cas 3D en construisant les tétraèdres sur les arêtes de chaque élément
voisin du nœud au lieu de triangles. La solution est plus complexe, mais reste analytique.

L’avantage de cette méthode par rapport au lissage laplacien est qu’elle prend en compte
le cisaillement des mailles et permet ainsi d’éviter des retournements de mailles dans cer-
tains cas pathologiques. Elle est donc plus robuste, mais plus coûteuse. Par contre, tout
comme la version originale du lissage laplacien, la méthode de Giuliani tend à uniformiser
les tailles des mailles. Elle n’est donc pas applicable dans le cas de maillages structurés loca-
lement raffinés. De plus, contrairement au lissage laplacien, elle est difficilement modifiable
pour pouvoir traiter ce genre de cas.

Dans le cadre du formalisme ALE, l’algorithme de Giuliani est utilisé, entre autres, par
Huerta et Casadei [47, 114], Potapov [172] et Pantalé et al. [161].

3.4.6 Lissage équipotentiel

Le lissage équipotentiel (Farrashkhalvat et Miles [70], Hyun et Lindgren [123], Winslow
[205]) peut être vu comme un cas particulier du lissage laplacien. On se place dans le cas
particulier, mais très courant, d’un maillage structuré. Un système d’équations elliptiques,
similaire à (3.22), est écrit pour les variables ξ(x , y), η(x , y) au lieu de x(ξ,η), y(ξ,η) :









∂2ξ

∂x2
+
∂2ξ

∂ y2
= 0

∂2η

∂x2
+
∂2η

∂ y2
= 0

(3.34)

Ce nouveau système génère un réseau de lignes équipotentielles (ξ = constante, η =
constante) mutuellement orthogonales. Sa solution a également les propriétés intéressantes
de minimiser la courbure locale des lignes traversant le maillage et de garantir qu’aucun
extremum de ξ ou η n’apparaîtra dans le domaine. On peut donc espérer éviter le problème
du lissage laplacien près des frontières concaves (figure 3.29). Pour obtenir les positions
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FIGURE 3.36 – Numérotation des nœuds pour le lissage équipotentiel à deux dimensions.

cartésiennes des nœuds, le système doit être inversé. On obtient ainsi les équations de
Winslow [205] :









g22

∂2x

∂ξ2
− 2g12

∂2x

∂ξ∂η
+ g11

∂2x

∂η2
= 0

g22

∂2 y

∂ξ2
− 2g12

∂2 y

∂ξ∂η
+ g11

∂2 y

∂η2
= 0

(3.35)

avec

g11 = (
∂x

∂ξ
)2+ (

∂ y

∂ξ
)2

g12 =
∂x

∂ξ

∂x

∂η
+
∂ y

∂ξ

∂ y

∂η
(3.36)

g22 = (
∂x

∂η
)2 + (

∂ y

∂η
)2

Des équations similaires peuvent être obtenues en 3D (Hallquist [102]). En discrétisant
les dérivées de (3.35) par de simples différences finies, on obtient les poids suivants à
utiliser dans l’équation (3.24) :

w1 = w5 =
1

2
[(x2− x6) (x4− x8)] + [(y2 − y6) (y4 − y8)]

w2 = w6 =
1

4
[(x4− x8)

2+ (y4 − y8)
2]

w4 = w8 =
1

4
[(x2− x6)

2+ (y2 − y6)
2]

w3 = w7 =−w5

(3.37)

Le lissage équipotentiel peut être adapté au cas de maillages à densité variable en ajou-
tant un second membre adéquat aux équations du système (3.22). On obtient ainsi des
équations de Poisson à résoudre (voir Thompson, Thames et Mastin [192]). Dans le cadre
du formalisme ALE, le lissage équipotentiel est utilisé par Benson [22] et les codes LS-
DYNA [102] et Abaqus [55, 162].
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3.4.7 Lissage isoparamétrique

Cette méthode (Hermann [108], Hyun et Lindgren [123]) repositionne un nœud du
maillage x 0 au centre d’un élément isoparamétrique fictif qui est construit à l’aide des
nœuds voisins. Pour un maillage régulier, cela revient à utiliser localement la méthode d’in-
terpolation transfinie (3.21) sur une grille limitée aux éléments voisins du nœud. Le lissage
isoparamétrique permet ainsi de préserver les zones raffinées dans un maillage structuré
puisqu’il ne tend pas à uniformiser la taille des mailles voisines.

Tout comme le lissage laplacien, cette méthode est généralisée au cas de maillages non
structurés :

x 0 =
1

N

N∑

i=1

(x i
1 + x i

3 − x i
2) (3.38)

où les nœuds x 1, x 2, x 3 sont choisis comme sur la figure 3.37 et N est le nombre d’éléments
adjacents au nœud.

i
x3

i

x2

i

x0

x1

i

FIGURE 3.37 – Numérotation des nœuds de l’élément i adjacent au nœud x 0 pour le lissage isoparamétrique
à deux dimensions.

Il est possible de pondérer de manière différente la participation des nœuds diagona-
lement opposés au nœud central. on parle alors de lissage isoparamétrique pondéré (Her-
mann [108]) :

x 0 =
1

(2−w)N

N∑

i=1

(x i
1 + x i

3−w x i
2) (3.39)

où w est compris entre 0 et 1. Si w vaut 0, on retrouve le lissage laplacien classique. Si w
vaut 1, on a le lissage isoparamétrique décrit ci-dessus. La méthode peut être également
étendue à trois dimensions sans difficulté.
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3.4.8 Autres méthodes

De nombreuses autres méthodes de lissage existent. Parmi celles-ci, citons la méthode
area pull présentée par Hyun et Lindgren [123]. Le déplacement d’un nœud est fonction
de la différence des aires des éléments qui l’entourent dans le but d’égaliser toutes les aires
des mailles. Utilisée seule, cette méthode de lissage se révèle instable sur des maillages
quadrangulaires.

Zhou et Shimada [212] présentent une méthode 2D originale qui consiste à modifier
itérativement la position des nœuds pour égaler progressivement les angles adjacents du
maillage et tendre idéalement vers des mailles carrées (ou équilatérales dans le cas de
triangles). On espère arriver ainsi à éliminer les angles proches de 0 et 180 degrés. Bien
qu’elle donne, d’après son auteur, de bons résultats sur des maillages non structurés de
triangles, cette méthode est, elle aussi, très instable lorsqu’elle est appliquée à des mailles
quadrangulaires. Ceci paraît intuitivement logique puisqu’aucun contrôle de la longueur
des arêtes n’est effectué.

En pratique, malgré leurs défauts, ces deux méthodes peuvent être tout de même utili-
sées en combinaison avec d’autres (section 3.4.9) pour modifier légèrement leur comporte-
ment et apporter à la méthode combinée leur objectif respectif de qualité.

3.4.9 Combinaison de méthodes

Pour obtenir un contrôle maximal sur la qualité du maillage, il est parfois intéressant
de combiner les méthodes précédentes pour obtenir une nouvelle méthode qui peut être
mieux appropriée pour une application spécifique. Si on utilise simultanément les méthodes
de lissage A et B et que celles-ci fournissent les positions x A

0 et x B
0 pour le nœud central,

la nouvelle position x 0 est calculée par une combinaison linéaire des positions grâce à un
poids w.

x 0 = (1−w) x A
0+w x B

0 (3.40)

Cette manière de créer une nouvelle méthode peut fournir de très bons résultats bien que
la valeur w optimale ne peut être déduite que par essai-erreur et intuition.
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3.4.10 Comparaison des méthodes

Cette section a pour but d’illustrer les différentes méthodes de lissage volumique précé-
demment décrites sur un exemple afin de montrer leurs qualités et défauts respectifs. Nous
les comparons sur une géométrie simple bidimensionnelle : une demi-couronne maillée à
l’aide de différents mailleurs.

La figure 3.38 présente le cas d’un maillage structuré généré par un mailleur trans-
fini classique. La couronne est maillée avec 5×10 éléments initialement trapézoïdaux. On
constate que le lissage laplacien donne le pire maillage : les nœuds sont attirés par la fron-
tière concave et les mailles frontière sont écrasées. Ce phénomène est amplifié par le fait
que le nombre de mailles sur la demi-circonférence est faible. La méthode transfinie et le
lissage isoparamétrique donnent évidemment un maillage identique au maillage initial. Le
lissage équipotentiel donne aussi un bon résultat. Parmi les méthodes pouvant gérer plus
de quatre arêtes par nœud, le meilleur résultat est obtenu par l’algorithme de Giuliani.

Si on s’intéresse à un maillage structuré, mais localement raffiné (figure 3.39), la plu-
part des méthodes déforment le maillage original puisqu’elles ont tendance à uniformiser
la taille des mailles voisines. Par contre, tout comme précédemment, les méthodes transfi-
nie et isoparamétrique donnent les mêmes résultats avec un maillage initial conservé. Les
maillages obtenus par les autres méthodes sont tous semblables, mis à part celui de la mé-
thode du laplacien pondéré dont les poids ont été spécialement calculés pour conserver au
mieux le rapport des longueurs des arêtes dans ce cas spécifique. Le fait d’utiliser l’équation
simplifiée (3.31) au lieu de l’équation (3.28) explique les légères différences constatées par
rapport au maillage initial.

Le cas d’un maillage non structuré est présenté sur la figure 3.40 pour les méthodes qui
le permettent. Les maillages obtenus à l’aide de l’algorithme de Giuliani et des aires pondé-
rées sont très similaires entre eux et meilleurs (les aires des mailles ont été homogénéisées)
que celui obtenu par lissage laplacien traditionnel. Le lissage laplacien pondéré détériore,
quant à lui, légèrement le maillage initial. Le lissage isoparamétrique produit un maillage
invalide. Ces deux dernières méthodes, bien que techniquement applicables à des maillages
non structurés, doivent être définitivement écartées pour ce type de maillages.

Le tableau 3.1 résume le champ d’application des méthodes de repositionnement pré-
sentées dans cette section. Toutes les méthodes sont utilisables sur un maillage structuré
dont la taille de maille est constante. Seuls la méthode d’interpolation transfinie, le lissage
isoparamétrique et le laplacien pondéré avec des poids spécifiques permettent de conserver
les zones de raffinement d’un maillage structuré dont la taille de maille est variable. Enfin,
le lissage laplacien, la méthode des volumes pondérés et la méthode de Giuliani permettent
de gérer les maillages non structurés. Armé de cet ensemble de méthodes, il est possible
de résoudre la plupart des problèmes de repositionnement que l’on peut rencontrer dans le
cas de maillages de quadrangles ou d’hexaèdres.
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transfini laplacien

laplacien
pondéré

volumes
pondérés
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isoparamétrique

FIGURE 3.38 – Comparaison des méthodes volumiques sur un maillage structuré régulier d’une demi-couronne.
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transfini laplacien

laplacien
pondéré
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FIGURE 3.39 – Comparaison des méthodes volumiques sur un maillage structuré localement raffiné d’une
demi-couronne.
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initial laplacien

laplacien
pondéré

volumes
pondérés

Giuliani isoparamétrique

FIGURE 3.40 – Comparaison des méthodes volumiques sur un maillage non structuré d’une demi couronne.

maillage maillage maillage
structuré - constant structuré - variable non structuré

interpolation transfinie 3 3 7

laplacien 3 7 3

laplacien pondéré 3 3 7

volumes pondérés 3 7 3

Giuliani 3 7 3

équipotentiel 3 7 7

isoparamétrique 3 3 7

TABLEAU 3.1 – Possibilité d’utilisation des différentes méthodes de lissage en fonction du type de maillage.
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3.4.11 Résolution du système d’équations

3.4.11.1 Algorithme SOR

Mise à part la méthode d’interpolation transfinie, les méthodes présentées ci-dessus
sont des méthodes locales liant la position d’un nœud à celle de ses proches voisins. Pour
résoudre l’ensemble des équations, on peut, dans les cas les plus simples, utiliser une mé-
thode directe qui consiste à inverser le système. Cependant, dès que l’on utilise des mé-
thodes plus complexes que le lissage laplacien, ce système n’est plus linéaire et il devient
plus compliqué à résoudre. De plus, même dans le cas d’un système linéaire, le temps de
résolution et la mémoire nécessaire risquent d’être élevés.

Pour ces deux raisons, on adopte généralement des méthodes itératives de résolution
qui ne nécessitent pas le stockage de la matrice du système. Parmi ces méthodes, la méthode
de Gauss-Seidel (voir par exemple Saad [177]) semble être la plus appropriée. Elle consiste
à résoudre le système, équation après équation, en utilisant continuellement les valeurs des
inconnues les plus à jour dont on dispose. En pratique, cela consiste à effectuer un lissage
local en chaque nœud en modifiant continuellement les nouvelles positions des nœuds. Si
le système est linéaire, de type A x = b, la méthode s’écrit pour l’itération k :

x (k) = (D− L)−1
�

U x (k−1)+ b
�

(3.41)

où A = D − L − U et D, −L, −U sont respectivement les parties diagonale, inférieure et
supérieure de la matrice du système A.

Pour améliorer la convergence de la méthode de Gauss-Seidel, il est possible d’extrapo-
ler la solution à chaque itération en utilisant l’équation :

x
(k)
i =ω x̄

(k)
i + (1−ω) x

(k−1)
i (3.42)

où ω est un facteur d’extrapolation et x̄ (k) est la solution de Gauss-Seidel à l’itération k. La
nouvelle méthode est appelée SOR (Successive OverRelaxation) et converge si ω est dans
l’intervalle (0, 2) (et si la matrice du système A est symétrique et définie positive). La valeur
optimale de ω dépend du rayon spectral de la matrice d’itération (voir Saad [177]) qui est
difficilement calculable. Dans notre cas, elle dépend de l’aspect du maillage.

Idéalement, un critère d’arrêt permet de limiter le nombre d’itérations. En pratique,
dans le cadre du lissage de maillages, son utilité est discutable puisqu’il n’est souvent pas
utile d’atteindre la convergence pour obtenir un résultat acceptable. Dans la plupart des
cas où le but du lissage est d’améliorer la qualité des mailles, seules quelques itérations
sont donc nécessaires. Par contre, dans le cas de la simulation de processus stationnaires ou
quasi eulériens, la qualité du maillage est généralement déjà correcte à la fin de la phase
lagrangienne. Le but de l’opération de repositionnement n’est plus de lisser le maillage mais
bien de le déplacer dans la direction opposée à celle de l’écoulement de matière. On ne peut
donc pas se limiter à quelques itérations si on souhaite obtenir un maillage plus ou moins
fixe dans la direction de l’écoulement.
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3.4.11.2 Exemple numérique

Pour illustrer les difficultés rencontrées lors de la résolution du système d’équations,
nous proposons d’étudier un des cas les plus défavorables : il s’agit de la simulation d’une
translation uniforme d’un matériau à travers un maillage fixe localement raffiné. Ce type
d’application est une version simplifiée des modèles utilisés pour la simulation de processus
stationnaires.

Pour cette étude, nous utilisons le domaine carré de longueur unitaire (L = 1 mm)
représenté sur la figure 3.41 et un mouvement de matière du bas en haut. Le maillage sur
chaque ligne est défini par la fonction de taille suivante :

L(s) = Lmax−δ exp
�

(s− p/L)2 (L/α)2 ln(0.1)
�

(3.43)

avec les paramètres δ = 0.08 mm, p = 0.5 mm, α = 0.25 mm et Lmax = 0.1 mm. Les mailles
les plus grandes sont de l’ordre de 0.1 mm et les plus petites de 0.02 mm.

FIGURE 3.41 – Maillage initial du carré. L’utilisation
de mailles plus petites au centre va pénaliser for-
tement les méthodes itératives de lissage.

FIGURE 3.42 – Maillage après le pas lagrangien et
le repositionnement des nœuds des lignes de la
frontière du domaine maillé.

Comme tout calcul ALE, on effectue tout d’abord un pas lagrangien qui consiste à dé-
placer le maillage vers le haut. L’incrément de déplacement est fixé arbitrairement à 0.09
mm, soit 90% de la plus grande taille de maille. Ensuite, la phase ALE commence et on re-
positionne tout d’abord les nœuds des arêtes à l’aide d’une méthode eulérienne. Les nœuds
de la frontière se retrouvent donc à leur position initiale et on obtient transitoirement le
maillage de la figure 3.42. C’est à ce moment qu’intervient l’opérateur de lissage surfa-
cique. Bien sûr, il n’est pas question ici d’utiliser une méthode directe comme la méthode
eulérienne ou le mailleur transfini pour repositionner les nœuds internes du maillage. Nous
considérons que ces deux méthodes ne sont pas disponibles. C’est le cas par exemple pour
le repositionnement de nœuds sur des surfaces à forte courbure (voir section 3.5), même si
elles ont été initialement maillées par un mailleur transfini.
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Deux méthodes itératives peuvent être utilisées pour repositionner les nœuds du mail-
lage de la figure 3.42 tout en conservant la taille des mailles : le lissage isoparamétrique
(section 3.4.7) et le lissage laplacien pondéré avec les poids adéquats (section 3.4.3). Les
autres méthodes itératives tendent à uniformiser la taille des mailles.

FIGURE 3.43 – Laplacien pondéré. Maillage obtenu
après 20 itérations.

FIGURE 3.44 – Lissage isoparamétrique. Maillage
obtenu après 20 itérations.

FIGURE 3.45 – Laplacien pondéré avec surrelaxation
(ω = 1.8). Maillage obtenu après 20 itérations.

FIGURE 3.46 – Lissage isoparamétrique avec surre-
laxation (ω = 1.8). Maillage obtenu après 20
itérations.

Si on compare les deux méthodes à nombre d’itérations identique, on constate que le
lissage laplacien (figure 3.43) converge beaucoup plus vite que le lissage isoparamétrique
(figure 3.44). Après 20 itérations, les deux solutions obtenues sont encore assez éloignées
du maillage initial. Ceci est dû à la présence des petites mailles dans la zone de raffinement
puisque celles-ci entraînent un déplacement moyen de l’ordre de la taille de la plus petite
arête lors de chaque itération.
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Remarquons également que la solution obtenue par lissage isoparamétrique est forte-
ment non symétrique et beaucoup plus irrégulière que celle obtenue par lissage laplacien
pondéré.

Les figures 3.45 et 3.46 illustrent l’accélération obtenue par surrelaxation. On utilise
un coefficient ω = 1.8. La vitesse de convergence est grandement améliorée et le maillage
obtenu par lissage laplacien est, cette fois, très proche du maillage initial. Appliquée au le
lissage isoparamétrique, la surrelaxation amplifie également le déplacement final obtenu,
mais aussi les irrégularités et la dissymétrie. La figure 3.47 montre l’évolution de la norme
de la différence des positions courantes et initiales des nœuds du maillage pour les deux
méthodes et pour différentes valeurs de ω. Le lissage laplacien pondéré converge toujours
plus rapidement que le lissage isoparamétrique.
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FIGURE 3.47 – Vitesses de convergence du laplacien
pondéré et du lissage isoparamétrique pour dif-
férents coefficients de surrelaxation.
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FIGURE 3.48 – Vitesses de convergence de toutes les
méthodes itératives pour un maillage régulier.

En conclusion, lorsque les méthodes directes ne sont pas exploitables (voir section 3.5),
le lissage laplacien pondéré semble être la meilleure méthode de lissage itérative à notre
disposition pour traiter le cas très courant de maillages quasi eulériens structurés et locale-
ment raffinés.

En pratique, dans le cadre du formalisme ALE et de simulations quasi eulériennes, un
moyen radical pour accélérer la convergence du repositionnement des nœuds est de choi-
sir, comme première approximation, la configuration finale du dernier lissage effectué. En
d’autres mots, on démarre le lissage avec la configuration maillage du début du pas de
temps et non celle de la fin du pas lagrangien. À ce moment, le nombre d’itérations né-
cessaires est réduit à un minimum (1 ou 2 suffisent), y compris dans le cas de très grands
déplacements matière.

Si on effectue la même étude sur un maillage structuré régulier, on peut comparer
la vitesse de convergence de toutes les méthodes. La figure 3.48 montre les courbes de
convergence obtenues. La plupart des méthodes sont équivalentes. Seules deux méthodes
se distinguent : le lissage isoparamétrique est largement plus lent que les autres, ce qui
le rend très peu attrayant en pratique, et la méthode des volumes pondérés est la plus
rapide. Il est également intéressant de comparer les méthodes en fonction de leur coût CPU
par nœud et par itération (figure 3.49). À ce point de vue, on constate par exemple qu’un
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FIGURE 3.49 – Temps CPU des différentes méthodes itératives.

simple lissage laplacien est 6 fois plus rapide qu’un algorithme de Giuliani. Remarquons
également que le lissage équipotentiel est relativement coûteux malgré sa simplicité parce
qu’il nécessite une identification et un tri préalable des nœuds voisins.
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3.5 Traitement des surfaces

3.5.1 Surfaces planes

Commençons par le cas simple de surfaces planes tri-dimensionnelles. La majorité des
méthodes de la section 3.4 peuvent être utilisées telle quelles, au prix de calculer à trois
dimensions les aires et les longueurs qui interviennent dans leur formulation. Pour les mé-
thodes plus complexes à mettre en œuvre, comme la méthode de Giuliani, on peut effectuer
un changement de repère approprié pour travailler dans le plan du maillage surfacique, quel
que soit son orientation dans l’espace.

x

y

z
o

n

ex

eh

p

FIGURE 3.50 – Lissage de surfaces planes. Définition d’un repère 2D en fonction d’un point de passage o et de
la normale n au plan.

Ce plan est défini par une origine o et par une normale n. À partir de ces deux données,
on peut construire un repère (eξ, eη) orthonormé dans le plan et appliquer la méthode
lissage 2D choisie dans le plan. À chaque fois qu’une position est requise, on la projette
dans le plan. Par exemple, le point p x = (px , py , pz) devient :

(pξ, pη) = pξ =
�

(p x − o) · eξ, (p x − o) · eη
�

(3.44)

Lorsque la nouvelle position du point pξ est obtenue dans le repère 2D de la surface, on
la transforme dans le repère global 3D par :

p x = o + (pξ · t x) t x + (pξ · t y) t y (3.45)

De cette manière, n’importe quelle méthode 2D est utilisable sans modification dans un
plan quelconque.
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3.5.2 Surfaces non planes

3.5.2.1 Introduction

Après avoir étudié les méthodes de repositionnement de nœuds internes et étendu
celles-ci à des surfaces planes d’orientation arbitraire dans un espace à trois dimensions,
il nous reste à traiter le cas de surfaces non planes. Ce cas englobe les surfaces initialement
planes qui se déforment au cours de la simulation. Le problème de repositionnement de
nœuds devient alors beaucoup plus complexe qu’à deux dimensions parce qu’il faut non
seulement améliorer la qualité du maillage, mais aussi préserver au mieux la courbure en
tout point pour éviter que la succession des opérations de lissage entraîne une augmenta-
tion ou une diminution du volume total du corps que l’on déforme. Ce problème est l’ex-
tension 3D du repositionnement des nœuds sur une arête vive étudié à la section 3.3. Il est
assez peu discuté dans la littérature bien qu’il s’agisse d’une étape essentielle et inévitable
dans la mise en place d’un algorithme ALE 3D général. C’est, d’après nous, la principale dif-
ficulté à surmonter pour étendre une implémentation ALE 2D au cas 3D. Sans une méthode
de repositionnement efficace sur les frontières, on est limité à des géométries simples où
tous les nœuds des surfaces sont lagrangiens (voir par exemple Potapov [172])

La majorité des auteurs qui abordent des problèmes 3D utilisent la relation (2.21) pour
contraindre le mouvement du maillage dans le plan tangent à celui-ci (pour rappel, v∗ ·n =
v · n). La nouvelle position du nœud est éventuellement reprojetée sur la configuration
lagrangienne de la surface du maillage (Guerdoux [95]). Cette manière de faire est, bien
entendu, beaucoup trop simpliste pour conserver précisément la forme de la surface et pour
éviter les flux parasites de matière à travers celle-ci. En particulier, on peut vérifier que si
la vitesse relative du maillage par rapport à la matière a une composante tangentielle trop
importante, cette méthode devient instable lorsque la surface est courbe.

Parmi les méthodes plus élaborées, Aymone [11] étend l’algorithme qu’il utilise sur les
arêtes vives (figure 3.18) en l’appliquant successivement dans les deux directions orthogo-
nales définies par les lignes du maillage. Il se limite donc au cas de maillages surfaciques
quadrangulaires structurés. Bien que très simple (et donc certainement très rapide), ce type
de méthode est également limité aux vitesses tangentielles faibles puisque l’approximation
de la surface est reconstruite uniquement dans le voisinage du nœud à déplacer.

Philippe [164] utilise une approximation quadratique locale de la surface du maillage
construite sur chaque facette de la frontière du domaine ALE. La position du nœud après
lissage est projetée sur ces surfaces en vue de conserver au mieux la courbure obtenue en fin
de pas lagrangien. Malheureusement, pour simplifier le problème de projection, la surface
du second degré est remplacée par une discrétisation linéaire par morceau qui diminue
grandement la précision et donc l’intérêt de la méthode.

La méthode la plus sophistiquée est proposée par Traoré [194]. Dans le cadre du lami-
nage circulaire, il reconstruit, sur la configuration lagrangienne, une approximation NURBS
de la totalité de la surface externe du solide modélisé. Cette approximation unique inclut
même les discontinuités telles que les arêtes vives, si bien que le traitement de celles-ci
n’est qu’un cas particulier du cas surfacique. En pratique, chaque nœud se voit attribuer
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des coordonnées réduites sur l’approximation NURBS. Pour obtenir un mouvement quasi
eulérien du maillage, il suffit alors de conserver ces coordonnées au cours du temps. La sur-
face NURBS est actualisée à chaque incrément temporel et le repositionnement de nœud
consiste « simplement » à évaluer cette surface pour chaque nœud. Cette méthode est d’une
précision redoutable dans le cas du laminage circulaire. Cependant, elle ne semble pas
facilement généralisable à tout type de géométrie d’un point de vue technique.

3.5.2.2 Principe de la méthode proposée

La méthode de relocalisation proposée dans cette section est originale. Elle consiste à
étendre toutes les méthodes (itératives ou non) de relocalisation volumiques décrites à la
section 3.4 en les appliquant sur une approximation spline de la surface. Cette approxi-
mation se base sur les splines de McConalogue dont nous avons montré l’efficacité pour le
traitement des arêtes vives (section 3.3).

Un effort particulier a été fourni pour obtenir un algorithme très robuste et capable de
repositionner les nœuds quel que soit l’amplitude du déplacement relatif entre le maillage
et la matière. En effet, bien souvent, ce type d’algorithme est limité à un déplacement relatif
qui ne dépasse pas la taille d’une maille. Cette limitation peut être très restrictive sur la taille
du pas de temps lorsqu’on utilise des maillages localement raffinés. Une recherche efficace
des projections lointaines nous permet ainsi d’éviter l’utilisation de nombreux « sous-pas
de temps » (Philippe [164]) qui peuvent se révéler très coûteux puisque leur nombre est
inversement proportionnel à la longueur de la plus petite arête du maillage surfacique.

Supposons que l’on doive repositionner un nœud donné sur une surface maillée. Nous
nous limitons ici aux maillages quadrangulaires bien qu’il soit possible, sans aucune diffi-
culté, d’étendre la procédure à des maillages contenant des triangles. Ce maillage surfacique
a été déformé au cours du pas lagrangien qui vient de se terminer. Il faut donc trouver une
nouvelle position des nœuds qui va, d’une part, améliorer la qualité du maillage et, d’autre
part, minimiser les erreurs sur la courbure. La figure 3.51 illustre la situation en montrant
le maillage autour d’un nœud de la surface. On a choisi de représenter quatre mailles surfa-
ciques adjacentes au point, mais ce n’est pas une hypothèse qu’il est nécessaire de vérifier.

Pour pouvoir utiliser les méthodes de la section 3.4 sans modification, il faudrait idéale-
ment posséder une paramétrisation de la surface décrite par le maillage. Il suffirait alors de
repositionner le nœud dans le plan des paramètres de la surface pour obtenir sa nouvelle
position spatiale et corriger ensuite la courbure locale. Cette paramétrisation est calculable
pour des surfaces à topologie rectangulaire (voir par exemple Traoré [194]) mais elle est
complexe et coûteuse. Nous nous limiterons donc à une approximation locale.
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FIGURE 3.51 – Maillage surfacique lagrangien au-
tour d’un nœud donné (limité aux facettes adja-
centes).
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FIGURE 3.52 – Calcul de la normale n au nœud par
une moyenne des normales n i des facettes voi-
sines (normale consistante).

3.5.2.3 Lissage dans le plan tangent

Considérons tout d’abord le cas des méthodes de lissage itératives telles que le lissage
laplacien (section 3.4.2). Dans un premier temps, nous allons déterminer un plan tangent
à la surface. C’est, bien sûr, une approximation puisque la surface n’a pas une normale
continue aux nœuds. Il s’agit donc de calculer une normale moyenne au point considéré.
Pour ce faire, nous calculons, pour chaque maille i adjacente au point, la normale n i à cette
facette (voir figure 3.52). Cette normale est calculée par produit vectoriel des deux arêtes
de la facette aboutissant au nœud (n i = d1 ∧ d2) pour que la norme de la normale obtenue
représente d’une manière grossière la surface de la facette (c’est uniquement le cas si la
facette est un parallélogramme). L’approximation de la normale au nœud est obtenue en
sommant toutes ces normales provenant des facettes adjacentes (n =

∑

n i). On obtient
ainsi une extension 3D de la normale consistante définie précédemment (figure 3.17).

Le maillage surfacique traité est censé ne contenir aucune arête vive et aucun coin. Dans
le cas contraire, ces discontinuités seraient ignorées et lissées dans la suite de la procédure.
Ceci n’est pas restrictif : si un nœud appartient à une arête, intersection de deux faces à
traiter, la méthode de repositionnement sera appliquée séquentiellement aux deux faces
et deux normales distinctes seront calculées pour chaque nœud de cette arête. Par contre,
nous faisons l’hypothèse qu’aucune nouvelle arête vive n’apparaît au cours de la simulation.

Une fois la normale n déterminée, le problème peut être résolu localement par n’importe
quelle méthode de lissage 2D. Plus précisément, pour chaque nœud à déplacer, on projette
sur le plan tangent tous les nœuds voisins nécessaires au lissage grâce à la relation (3.44)
et on résout le problème dans ce plan. La nouvelle position du nœud se trouve évidemment
sur le plan tangent (voir figure 3.53).
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n
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tangent

FIGURE 3.53 – Déplacement du nœud dans le plan
tangent. Tous les nœuds nécessaires au lissage
sont projetés dans le plan et le problème est ré-
solu par une méthode 2D quelconque.

surface
spline

FIGURE 3.54 – Projection du résultat du lissage
(point rouge) sur la surface spline interpolante.

3.5.2.4 Construction de la surface spline

Il reste alors à déplacer le point obtenu précédemment par lissage dans le plan pour
conserver la courbure locale de la surface. Pour y arriver, nous créons une surface spline (en
français, une surface composite) sur l’ensemble des facettes du maillage surfacique. Idéa-
lement, pour obtenir une surface dont la tangente est continue quelle que soit la position
des mailles, il serait nécessaire d’utiliser, au moins, une interpolation cubique. Celle-ci est
coûteuse et, en conséquence, nous avons décidé d’utiliser une interpolation bilinéaire entre
splines cubiques. Elle ne garantit pas la continuité de la normale, mais donne tout de même
une très bonne approximation de la courbure.

La première étape consiste à calculer une normale en chaque nœud de la surface. Cette
normale est choisie identique à celle utilisée pour l’opération de lissage dans le plan tan-
gent. Elle peut donc être calculée au début de la procédure de lissage et utilisée, d’une part,
pour le lissage et, d’autre part, pour la création de la surface.

Ensuite, à chaque arête linéaire du maillage surfacique, on associe une spline de McCo-
nalogue (courbe du troisième degré définie par l’équation (3.6)) en déduisant les tangentes
u i des normales précédemment calculées. Chaque arête est traitée indépendamment des
autres. La figure 3.55 montre schématiquement la construction des deux tangentes u1 et u2

relatives à une arête (x 1, x 2) du maillage. Elles sont obtenues par projection de cette arête
sur les deux plans tangents définis par les normales n1 et n2 en x 1 et x 2. Si d = x 2 − x 1,
on a :

u i =
d − (d · n i)n i

||d − (d · n i)n i||
i = 1, 2 (3.46)

Cette manière de calculer les tangentes diffère légèrement de celle utilisée pour re-
mailler les arêtes vives (section 3.3). En effet, pour rappel, l’ordonnancement des nœuds
sur les arêtes vives permettait de faire passer une parabole par trois points consécutifs et
d’en déduire une tangente. Dans le cas du maillage de surface, il n’est pas toujours pos-
sible de trier les nœuds et, lorsque c’est faisable (dans le cas d’un maillage structuré), c’est
techniquement complexe et coûteux. Nous verrons sur un exemple (section 3.5.2.8) que les
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FIGURE 3.55 – Construction d’un segment du spline C sur l’arête d du maillage surfacique. Les tangentes u1

et u2 sont calculées par projection de l’arête d sur les plans tangents définis par n1 et n2.

tangentes utilisées ici sont tout aussi précises que celles utilisées dans le cas des arêtes vives
mis à part aux bords de la surface.
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FIGURE 3.56 – Un élément surfacique et son patch de Coons associé.

Après avoir construit les arêtes cubiques, chaque facette du maillage surfacique se voit
attribuer un patch de Coons [53], noté S(ξ,η), interpolant les splines Ci (figure 3.56) :

S(ξ,η) = (1− ξ)C4(η) + uC2(η) + (1− v)C1(ξ) + v C3(ξ)

−
�
(1− ξ)(1−η) x 1 + ξ (1−η) x 2+ ξη x 3+ (1− ξ)η x 4

�
(3.47)

Ces patches sont créés au début du calcul lors de l’étape de prétraitement. Ils sont
ensuite mis à jour en réévaluant les normales lorsque les nœuds se déplacent. La topologie
du maillage restant identique au cours de la simulation, les liens de voisinage, nécessaires
à la plupart des méthodes de lissage, ne doivent pas être recréés.

77



CHAPITRE 3. GESTION DU MAILLAGE

3.5.2.5 Exemple

À titre d’illustration, la figure 3.57 montre un maillage surfacique créé à partir d’un mail-
lage structuré d’un carré de 4×4 mailles. Trois nœuds internes du maillage plan ont ensuite
été déplacés verticalement de manière arbitraire. La figure 3.58 montre la surface spline
obtenue par notre algorithme de génération de surface à partir de ce maillage particulier.
le résultat est évidemment beaucoup plus lisse que le maillage original.

FIGURE 3.57 – Exemple d’un maillage surfacique
3D construit à partir d’un maillage régulier d’un
carré duquel trois nœuds ont été déplacés hors
plan.

FIGURE 3.58 – Surface spline construite sur le mail-
lage de la figure 3.57.

FIGURE 3.59 – Surface spline construite sur le mail-
lage d’un carré dont le nœud central a été dé-
placé perpendiculairement au plan.

normale discontinue

FIGURE 3.60 – Vue de profil de la surface de la fi-
gure 3.59 pour mettre en évidence une disconti-
nuité de normale.

La figure 3.59 montre un maillage similaire où nous avons, cette fois, déplacé qu’un
seul nœud interne selon la verticale. Sur cette dernière figure, on voit bien l’influence de
la position de ce nœud sur la courbure des patches voisins. La position du nœud influence
non seulement la surface spline des éléments adjacents, mais aussi les voisins de ces élé-
ments par l’intermédiaire de la normale. La surface obtenue ne possède pas une symétrie
de révolution.
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La figure 3.60 montre la surface de la figure 3.59 sous un autre angle. Ceci nous permet
de faire remarquer que la normale à la surface n’est pas toujours continue au passage d’une
arête à l’autre. Pour obtenir cette continuité, nous aurions dû interpoler au troisième degré
les quatre splines formant un patch ; ce qui serait vraiment très coûteux en temps de calcul.
Remarquons que, même aux nœuds, les dérivées ne sont continues que dans le cas très
particulier d’un maillage régulier non déformé.

Malgré les quelques défauts de continuité et de symétrie énumérés ci-dessus, nous pen-
sons que l’utilisation d’une telle surface d’approximation est très intéressante et constitue
un bon compromis entre précision et simplicité d’utilisation. En effet, par rapport à une sur-
face composée de patches de Coons bilinéaires, la surface spline semble mieux représenter
une surface réelle et donc permet d’éviter les pertes ou gains de volume dus au remaillage.
De plus, par rapport à une surface dont la dérivée est continue, notre solution a l’avantage
d’être assez simple et rapide à évaluer numériquement, au prix d’une difficulté accrue lors
des opérations de projection. La section suivante est dédiée à la résolution de ce problème.

3.5.2.6 Projection sur la surface

Une fois le lissage effectué dans le plan tangent, la nouvelle position du nœud est pro-
jetée sur la surface spline. Cette opération, qui peut paraître simple à première vue, est en
fait relativement compliquée si on veut qu’elle soit robuste et rapide. Elle peut donc être
vue comme la source principale de problèmes lors de l’exécution de méthode.

Tout d’abord, effectuer une projection sur une surface du troisième degré est une opé-
ration assez coûteuse en temps de calcul. La surface étant non linéaire, l’opération de pro-
jection s’effectue par un algorithme de Newton-Raphson pour lequel on doit fournir une
approximation initiale de la solution, sans quoi celle-ci risque de ne pas être trouvée si la
surface possède une forte courbure. Cette première estimation de la projection est calculée
par une méthode de grille qui consiste à évaluer la position de la surface en des abscisses
curvilignes prédéfinies (ξ et η = 0, 1/3, 2/3, 1, soient 16 évaluations qui sont un minimum
pour garantir la convergence) et de garder le point le plus proche de la projection. L’algo-
rithme de Newton Raphson nécessite, quant à lui, l’évaluation des deux dérivées premières
et quatre dérivées secondes de l’équation (3.47) à chaque itération.

De plus, projeter sur une surface composite nécessite un algorithme de recherche effi-
cace pour éviter de projeter inutilement le point sur un trop grand nombre de patches. Une
première possibilité pour simplifier la méthode serait de limiter la recherche de la projection
sur les mailles adjacentes au point à projeter. Ceci entraîne une limite dans le déplacement
maximal d’une maille lors du lissage. En d’autres termes, si on fait cette hypothèse, les
mailles ne peuvent pas se déplacer de plus de la longueur d’une maille lors du lissage. Cette
hypothèse n’est pas très restrictive tant que le maillage utilisé est grossier. Par contre, si
on veut le raffiner, l’opération de lissage limite le déplacement maximum admissible des
mailles et donc aussi, indirectement, le pas de temps. En conséquence, le temps total de la
simulation augmente.

Une méthode de recherche de projection améliorée, permettant des déplacements re-
latifs entre le maillage et la matière d’amplitude tout à fait arbitraire, est décrite sur la
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FIGURE 3.61 – Recherche du meilleur ensemble de facettes pour effectuer la projection. Le nœud x L
1 est reposi-

tionné en x ∗1 lors du lissage dans le plan tangent et doit être projeté sur la spline. Une première tentative de
projection est effectuée (a) sur les patches voisins du nœud. Si celle-ci échoue, on se déplace sur le maillage
(b) en testant la distance des nœuds voisins à x ∗1. La plus courte distance donne la meilleure direction
de recherche et le prochain ensemble de patches actifs. Cette recherche s’arrête lorsque la distance la plus
courte est celle du nœud central (c). A ce moment, la projection est effectuée avec succès sur les patches
adjacents au dernier nœud.
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figure 3.61. Imaginons que le point x 1 se soit déplacé pendant la phase lagrangienne en
x L

1 et qu’il soit ensuite repositionné en x ∗1 lors du lissage 2D dans le plan tangent. À de
rares exceptions près, le point x ∗1 ne se situe pas sur maillage surfacique et il faut donc le
projeter sur la surface spline préalablement construite. Pour trouver le patch qui contient
la projection, nous tentons une première projection sur les mailles qui sont grisées sur le
dessin, c’est-à-dire celles qui sont adjacentes à la position lagrangienne x L

1 du nœud. Si une
projection est trouvée à ce stade, la procédure s’arrête ici et on passe au lissage du nœud
suivant. Dans ce cas-ci, on constate qu’aucun des patches grisés ne contient la projection.
Écartons directement l’idée de projeter successivement sur tous les patches de la surface
(une surface d’un test industriel peut posséder plusieurs dizaines de milliers de patches).
Nous allons donc essayer de trouver le meilleur nœud à partir duquel on pourra appliquer
l’ancien algorithme, c’est-à-dire se limiter à une projection sur les patches adjacents au
nœud. L’idée est simple : on se déplace dans le maillage en suivant les arêtes. La direction
du déplacement est celle de l’arête dont l’extrémité est la plus proche de x ∗1. On procède
ainsi itérativement jusqu’à ce que la distance minimale soit obtenue au point central. À ce
moment, la projection est effectuée sur les patches voisins du dernier point. En procédant
de la sorte, il est très improbable que la projection de x ∗1 ne soient pas localisée sur les
patches voisins. Dans les très rares cas où cela arriverait ou dans le cas ou la recherche
échoue, la phase lagrangienne est recalculée avec un pas de temps plus petit. Il est impor-
tant d’insister sur le fait qu’au plus deux tentatives de projection sont faites par nœud. La
recherche du meilleur nœud central n’implique que des calculs de distances.

Une dernière difficulté provient de la simplification que nous avons faite pour la surface
spline : par construction, la surface spline est de continuité C0. Autrement dit, la normale
n’est pas toujours continue entre deux facettes. Et même si elle l’est presque, il est possible
que la projection n’existe pas. Ce manque de continuité de la normale est assez compliqué
à résoudre. Heureusement, dans Metafor, un problème très similaire a déjà été résolu dans
le cas de l’algorithme de contact entre surfaces déformables (Graillet et Ponthot [92]). En
effet, lorsque deux maillages surfaciques peuvent entrer en contact l’un avec l’autre, une
projection des nœuds de la première surface doit être calculée sur la seconde. Les mailles
utilisées étant, dans ce cas, bilinéaires, il est très courant d’obtenir soit une projection mul-
tiple, soit aucune projection (voir figure 3.62).

p

p2'
p1'

p

p2'
p1'

FIGURE 3.62 – Absence de projection et projection multiple sur
une surface à normale non continue.

L’algorithme utilisé pour déterminer les nœuds potentiellement en contact est le sui-
vant : pour chaque projection, les limites de toutes les surfaces sont étendues pour pouvoir
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localiser des projections qui sont faiblement en dehors de celles-ci. Plus précisément, si une
surface quadrangulaire initiale est paramétrée pour des valeurs des coordonnées réduites ξ
et η variant entre 0 et 1, on accepte les projections sur une plage de valeurs [−δ, 1+δ] où
δ est un paramètre déterminé par la bonne pratique (actuellement δ = 310−2). Contraire-
ment au cas d’une surface lisse où la première projection trouvée est toujours considérée
comme la bonne, toutes les projections sont conservées en mémoire et traitées en fonction
des différents cas qui peuvent se présenter :

• Il n’y a eu aucune projection détectée, même en agrandissant légèrement les patches
à l’aide du paramètre δ. Dans ce cas, on considère que la projection n’existe pas.
• Il n’y a qu’une seule projection et elle est à l’intérieur d’un patch : on est dans le cas

le plus simple et la projection trouvée est celle retenue.
• Il y a plusieurs projections détectées sur des arêtes ou sur des sommets (à la tolérance
δ près), on agit alors en réduisant toutes les projections en une seule, soit sur l’arête
concernée, soit sur le sommet.

Nous proposons donc d’utiliser ce type de méthode de projection qui a fait ses preuves
dans le cadre du traitement du contact.

3.5.2.7 Méthode directe

L’opérateur de lissage résultant de ces améliorations est très robuste. Il reste cependant
assez coûteux vu le nombre d’opérations nécessaires à sa mise en œuvre. On voit donc ici
l’intérêt d’utiliser une méthode de lissage 2D qui nécessite peu d’itérations. En particulier,
dans le cas d’un maillage structuré généré par la méthode d’interpolation transfinie, il est
parfois possible d’utiliser ce même mailleur pour repositionner les nœuds (section 3.4.1). À
ce moment, la méthode de repositionnement de nœuds sur surfaces courbes devient directe
et consiste à générer un nouveau maillage entre les arêtes délimitant la surface. On projette
alors simplement le maillage transfini sur l’approximation spline de la surface lagrangienne,
construite comme précédemment.

maillage
surfacique

interpolation transfinie
des frontières

projection (orthogonale)
des noeuds sur la surface

FIGURE 3.63 – Projection de l’interpolation transfinie sur le maillage de surface. Ceci n’est possible que si le
maillage généré par interpolation transfinie, basé uniquement sur la forme des frontières de la surface, n’est
pas trop éloigné de la surface. Autrement, la projection orthogonale des nœuds peut fournir un maillage
de très mauvaise qualité ou même échouer.
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Ce maillage étant une simple interpolation bilinéaire des arêtes, il ne prend pas en
compte la courbure réelle de la surface loin de ses frontières. La figure 3.63 montre un
exemple de surface en forme de sinusoïde dont la frontière est carrée. L’interpolation trans-
finie des frontières fournit un maillage plan qui est très différent de la forme du maillage
surfacique. L’opération de projection orthogonale des nœuds de l’interpolation sur le mail-
lage lagrangien peut donc facilement échouer et on doit alors avoir recours à des méthodes
de lissage itératives.

3.5.2.8 Test de convection

Tout comme nous l’avons fait pour le remaillage des arêtes vives (section 3.3.5), il est
intéressant de mesurer l’efficacité de la méthode de repositionnement proposée via un test
de convection. Il s’agit de faire se déplacer une géométrie connue à travers un maillage
quasi eulérien. Initialement, le domaine maillé est plan et rectangulaire (longueur L = 30
mm et largeur l = 4 mm). On définit une vitesse matière v = 2 mm/s constante selon la
direction de la longueur. La géométrie à translater est de type sinusoïdal. Elle est imposée en
tant que condition limite sur la frontière du maillage en amont de l’écoulement de matière
par l’équation

z(y, t) = A sin(ω t) sin(π y/l) (3.48)

où A= 2 mm est l’amplitude de la sinusoïde et ω est choisi pour obtenir cinq pulsations le
long du domaine (ω = 10 vπ/L s−1). Même sur maillage structuré, ce type de géométrie
empêche l’utilisation de la méthode directe d’interpolation transfinie (section 3.4.1). En
effet, à tout moment, l’interpolation bilinéaire des frontières est très éloignée de la forme
réelle de la surface, si bien que toute tentative de projection est irrémédiablement vouée
à l’échec. Nous sommes donc réduits à utiliser les méthodes de lissage itératives pour re-
positionner les nœuds. Parmi celles-ci, nous choisissons un lissage laplacien limité à 10
itérations avec un coefficient de surrelaxation de ω = 1.5. Pour accélérer la convergence,
le lissage est initialisé avec la position des nœuds au pas de temps précédent. Pour des
raisons pratiques, la surface est extrudée selon z d’une hauteur h = 0.1 mm pour obtenir
un volume parallélépipédique et pouvoir ainsi simuler ce test de convection comme un pro-
blème ordinaire tridimensionnel résolu à l’aide d’éléments finis 3D. Les surfaces supérieure
et inférieure sont donc identiques et traitées de la même manière.

Pour insister sur la généralité de notre algorithme, nous utilisons un maillage surfacique
quadrangulaire non structuré isotrope dont la taille de maille moyenne vaut Le = 0.25 mm.
À chaque pas de temps, l’incrément de déplacement vaut Le/4. La simulation est arrêtée
après un déplacement total de 1.05 L. La figure 3.64 montre le déroulement du calcul.
La géométrie imposée en amont par un mouvement vertical de la frontière du maillage se
translate à la vitesse v d’avancement de la matière bien que le maillage soit globalement
fixe.

On peut comparer la solution finale obtenue et la solution analytique du problème dans
le sens longitudinal. La figure 3.65 montre la sinusoïde exacte pour la surface supérieure du
maillage (la face inférieure est décalée d’une hauteur h) superposée à deux solutions obte-
nues pour deux tailles de mailles différentes (Le = 0.25 mm et Le = 0.1 mm). Tout d’abord,
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-2.00-2.00 -1.00-1.00 0.0000.0 1.001.00 2.002.00
déplacement vertical

déplacem
ent matière

x

y

z

déplacement vertical
imposé en amont = ( , )z z y t

t t= 0

t t= fin

v

FIGURE 3.64 – Convection sur un maillage non structuré d’une géométrie connue, imposée par des conditions
aux limites appropriées. Configurations à différents instants (Le = 0.25 mm).

solution analytiqueerreur amont

FIGURE 3.65 – Comparaison du profil longitudinal obtenu en t = tfin avec la solution analytique pour deux
maillages différents (Le = 0.25 mm et Le = 0.1 mm).
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il est intéressant de constater que, dans les deux cas, la phase de la sinusoïde obtenue est
très proche de celle voulue. Néanmoins, l’amplitude du profil obtenu s’écarte de celle de
la solution de référence. Cet écart, mesuré au premier maximum et noté erreur amont sur
la figure 3.65, est assez important et apparaît dès la première oscillation de la sinusoïde
suivant la frontière amont. Plus loin en aval, on observe une diminution d’amplitude con-
stante, mais beaucoup plus faible (cette diffusion est d’autant plus faible que le maillage
est fin). La méthode de repositionnement surfacique provoque donc une erreur de prise en
compte de la condition amont non négligeable. Puisque cette erreur n’est pas apparue dans
le test de convection de la section 3.3.5 relatif au remaillage des arêtes, nous supposons
qu’elle provient de la différence de méthode utilisée pour le calcul des normales aux nœuds
des extrémités de la surface. La méthode 1D utilisée pour les arêtes, qui utilise un schéma
à trois points, est nécessairement plus précise que le schéma à deux points utilisé pour les
surfaces. Cette différence est illustrée sur la figure 3.66.

x0 x0

x1 x1

x2 x2

n0 n0

algorithme 1D
(arêtes)

algorithme 2D
(surfaces)

FIGURE 3.66 – Différence de calcul de la normale aux nœuds extrêmes pour les arêtes (algorithme 1D) et pour
les surfaces (algorithme 2D).

Dans le sens transverse, le profil aval (x = L) est comparé au profil amont (x = 0) sur
la figure 3.67. Comme on pouvait s’y attendre, on constate que la diffusion est d’autant plus
faible que le maillage utilisé est fin.
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FIGURE 3.67 – Comparaison du profil transverse avec la solution analytique.

En conclusion, la méthode de relocalisation des nœuds sur les surfaces courbes permet
de convecter une géométrie donnée sur un maillage fixe avec peu de diffusion pourvu que
le maillage utilisé soit suffisamment fin. Le calcul simpliste des normales sur les bords de la
surface provoque cependant une erreur importante dans la prise en compte du déplacement
de la frontière.
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Remarquons enfin que ce test est certainement un des cas les plus complexes à traiter
puisqu’il s’agit d’un problème transitoire où tous les nœuds du maillage subissent de grands
déplacements tout au long du calcul. Il est donc nécessaire d’utiliser de nombreuses itéra-
tions de lissage malgré la surrelaxation. La méthode devient ainsi très coûteuse. À titre de
comparaison vis-à-vis des méthodes de lissage dans le plan (pour rappel, le tableau 3.49
montre des temps de l’ordre de 0.5 à 4 µs), le temps CPU moyen sur ce test de convection
est de 727 µs/nœud/itération.

Pour des problèmes stationnaires, le maillage subit de faibles déplacements et on peut
alors généralement se contenter de quelques itérations de lissage. Enfin, dans tous les cas,
il est important d’utiliser une méthode directe lorsque le problème le permet (mailleur
transfini suivi d’une projection). C’est la méthode la plus rapide à notre disposition.

3.5.3 Frontières eulériennes

Les nœuds situés sur des frontières eulériennes, c’est-à-dire des surfaces à travers les-
quelles la matière peut s’écouler, nécessitent un traitement particulier. Le problème a déjà
été abordé lors du repositionnement des coins du maillage. À trois dimensions, il est com-
mode de traiter simultanément tous les nœuds de ce type de frontière en utilisant la mé-
thode décrite à la section 3.2.

sens d'avancement

FIGURE 3.68 – Découpe du maillage par une frontière eulérienne.

La figure 3.68 représente un maillage qui s’est déplacé au-delà d’une frontière plane
délimitant un domaine quasi eulérien. Une simple projection orthogonale des nœuds qui
ont traversé la frontière sur la surface provoque une distorsion des éléments adjacents et ne
permet pas de respecter la frontière réelle de la matière. Il faut donc calculer l’intersection
du maillage avec le plan frontière. Pour simplifier le problème, nous faisons l’hypothèse que
les nœuds du maillage de frontière n’ont qu’une seule arête hors du plan de la frontière et
que cette arête est plus ou moins perpendiculaire à la frontière. De plus, cette arête ne doit
pas avoir franchi entièrement la frontière. Cette seconde hypothèse est moins restrictive que
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la première. Pour la contourner, il suffit de mailler le domaine avec des mailles suffisamment
longues à proximité du plan frontière (une seule rangée de longues mailles suffit).

intersection
lissage
dans le plan

arête la plus
perpendiculaire

plan frontière
(a) (b) (c)

FIGURE 3.69 – Calcul de l’intersection du maillage sur une frontière eulérienne. Pour chaque nœud initiale-
ment sur la frontière et qui a traversé celle-ci pendant la phase lagrangienne, on détermine l’arête la plus
perpendiculaire au plan frontière (a). Le nœud est repositionné à l’intersection de cette arête et du plan
(b). Lorsque tous les nœuds ont été traités, on effectue un lissage dans le plan frontière (c).

Le calcul de l’intersection consiste, pour chaque nœud de la frontière, à calculer l’in-
tersection de l’arête perpendiculaire à la frontière avec celle-ci et à le repositionner à cet
endroit. Si un nœud posséde plusieurs arêtes hors du plan de la frontière ou si l’arête n’est
pas perpendiculaire au plan (figure 3.69), il est toujours possible d’utiliser la méthode pro-
posée en sélectionnant l’arête la plus perpendiculaire. Dans ce cas, la qualité du maillage
surfacique obtenu risque de se dégrader. Il faut alors combiner la méthode avec un lissage
dans le plan de la frontière. La méthode résultante est générale et efficace. Elle a été utilisée
avec succès dans le test de convection de la section 3.5.2.8.
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3.6 Conclusions

Ce chapitre recense les nombreuses méthodes de repositionnement de nœud qui nous
seront utiles pour pourvoir gérer le maillage dans les simulations visées par ce travail. Il
s’agit principalement de procédés stationnaires tels que la mise à forme de tôles minces
(laminage, planage ou profilage).

La difficulté principale de ce genre de modèle, au niveau de la cinématique du maillage,
est le déplacement des nœuds sur les surfaces libres. D’une part, cette opération doit préser-
ver la forme de la surface et, d’autre part, les différences de densités de mailles, imposées
volontairement par l’utilisateur dans le but d’affiner la solution dans les zones de déforma-
tion et de contact, doivent être préservées. Pour résoudre le premier problème, nous avons
mis au point un algorithme efficace et robuste basé sur la reconstruction d’une surface spline
à partir du maillage surfacique en question. Le problème de conservation du raffinement
du maillage est résolu par l’utilisation d’un lissage laplacien pondéré de manière originale.
Ce nouvel algorithme est beaucoup plus performant que les méthodes traditionnelles, no-
tamment le lissage isoparamétrique. Il permet ainsi, dans le cas de procédés stationnaires,
de trouver, en quelques itérations, une nouvelle configuration du maillage de surface. Cette
rapidité compense le coût relativement élevé de gestion de surface spline.

Enfin, nous nous sommes attardé sur la gestion des conditions aux limites, sujet ra-
rement abordé dans la littérature concernant le formalisme ALE. La mise au point d’une
méthode simple et efficace de découpe de maillage par une frontière eulérienne en aval du
processus garantit des résultats qui sont peu influencés par la position de cette frontière.
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Chapitre 4

Transfert des données

4.1 Introduction

Ce chapitre décrit la deuxième étape de la phase eulérienne de l’algorithme de résolu-
tion ALE par séparation des opérateurs. Suite à la première étape lagrangienne, un nouveau
maillage a été construit par repositionnement des nœuds (chapitre 3). Il est ensuite néces-
saire de transférer les valeurs définies sur le maillage lagrangien vers le nouveau maillage,
que nous appelons de manière concise, comme Benson [26], le maillage eulérien. Pour rap-
pel (voir chapitre 2, équation (2.33)), ce transfert peut s’écrire mathématiquement sous la
forme d’un système d’équations scalaires indépendantes :

∂σ

∂ t

�
�
�
�
χ

+ c ·∇σ = 0 (4.1)

où c est la vitesse relative de la matière par rapport au maillage (équation (2.14)) et σ dé-
signe une des grandeurs à transférer. Il peut s’agir d’un champ défini aux nœuds du maillage
(vitesse, température, etc.) ou de valeurs aux points d’intégration des éléments finis (com-
posante du tenseur des contraintes, variables d’hérédité du matériau, masse volumique,
etc.). La variable t désigne ici un temps fictif pendant lequel s’effectue la convection des
données d’un maillage à l’autre.

De manière équivalente, cette étape peut être également vue comme un problème d’in-
terpolation (ou de projection) entre deux maillages :

∂σ

∂ t

�
�
�
�
x

= 0 (4.2)

qui exprime simplement que le champ à transférer ne doit pas être modifié lors de la phase
de transfert lorsqu’on se place en un point géométrique x donné.

Quelle que soit l’approche utilisée, la résolution de ces équations, bien que d’apparence
simple, pose plusieurs problèmes. Le principal vient du fait que le champ à transférer n’est
généralement pas suffisamment continu.

89



CHAPITRE 4. TRANSFERT DES DONNÉES

D’une part les champs nodaux sont continus, mais leur gradient est discontinu à la fron-
tière des éléments. Une interpolation naïve d’un maillage vers l’autre entraînera donc des
erreurs importantes. La figure 4.1 le montre dans le cas d’un maillage régulier unidimen-
sionnel. Le champ à transférer σ est tracé en ordonnée. Les éléments finis, en abscisse, ont
des fonctions de forme linéaires et les valeurs aux nœuds x L

i permettent de tracer le champ
linéaire par morceaux σL représenté en noir sur la figure. L’interpolation du champ aux
nouvelles positions des nœuds x E

i donne la courbe σE .

s s
L

s
E

x

xi

Exi

L

élément fini
noeud

valeur au noeud

FIGURE 4.1 – Interpolation d’un champ nodal de
continuité C0. En abscisse, les éléments finis. En
ordonnée, la variable à transférer. En noir, le
champ avant transfert. En rouge, le champ après
un transfert par interpolation naïve.

s

x

s
L

s
E

élément fini
point de Gauss

valeur au
point de Gauss

FIGURE 4.2 – Interpolation d’un champ aux points
de Gauss. Le champ à transférer, en noir, est cette
fois un ensemble de valeurs discrètes. Les valeurs
en rouge représentent le champ σ obtenu après
transfert par une méthode quelconque.

D’autre part, les valeurs aux points de Gauss sont des inconnues faibles du problème
et sont, par conséquent, uniquement connues en ces points. On est donc en présence de
valeurs discrètes qui doivent être évaluées en des points où elles ne sont pas définies. La
figure 4.2 illustre schématiquement la situation dans un cas simple. Tout comme la figure
précédente, il s’agit d’un maillage unidimensionnel tracé en abscisse pour lequel on a re-
porté les valeurs du champ inconnu σ en ordonnée. En noir, les valeurs σL sont les valeurs
discrètes à transférer vers les nouvelles positions des points de Gauss. En utilisant une des
techniques parmi celles décrites dans ce chapitre, on obtient les valeurs en rouge sur la
figure.

Dans le cas des valeurs aux points de Gauss, toutes les méthodes de transfert néces-
sitent donc une étape préalable de reconstruction d’un champ continu au voisinage des
points Gauss. Il peut s’agir d’une reconstruction globale d’un champ continu sur la totalité
du maillage ou d’une reconstruction locale, éventuellement discontinue aux frontières des
éléments finis, mais suffisamment continue à l’intérieur de ceux-ci pour permettre l’éva-
luation de la grandeur à transférer et de son gradient. La qualité de cette approximation
influence directement la précision de la méthode de transfert utilisée dans un second temps.

Parmi les méthodes de transfert disponibles, il est important de choisir celles qui pré-
servent localement la monotonicité du champ transféré. En effet, le caractère hyperbolique
de l’équation (4.1) nécessite un décentrage vers l’amont (upwind) de la discrétisation des
dérivées spatiales. Si on n’y prend garde, de nouveaux maxima ou minima peuvent appa-
raître. En mécanique non linéaire, certaines grandeurs ont un domaine de valeurs admis-
sibles qu’il est important de respecter. Par exemple, la déformation plastique équivalente est
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un scalaire non négatif. Si la méthode de transfert provoque l’apparition d’une valeur néga-
tive, il faut inévitablement la corriger pour éviter les problèmes qui pourraient survenir au
niveau de la gestion ultérieure du matériau. Si le schéma de transfert est conservatif, c’est-
à-dire s’il conserve l’intégrale de la solution sur le domaine de calcul, cette conservation
sera certainement perdue lors de la correction. L’apparition d’un nouveau maximum de dé-
formation plastique peut également être problématique. Le matériau a subi un écrouissage
additionnel qui le rendra donc artificiellement plus dur pour le reste de la simulation.

De plus, la vitesse d’exécution joue un rôle important dans le choix d’une méthode.
Lorsque le formalisme ALE est utilisé comme une alternative au formalisme lagrangien,
le but est généralement de gagner du temps de calcul par rapport à ce dernier. On doit
donc se limiter à des algorithmes simples et rapides. Dans ce contexte, il est par exemple
difficilement envisageable d’utiliser des méthodes d’intégration implicites pour résoudre le
problème de transfert (4.1).

Enfin, Benson [22], un des pionniers dans le domaine du traitement de cette phase
convective de l’algorithme ALE, insiste également sur l’importance de la consistance (la
solution reste identique si c = 0), la précision et la stabilité du schéma. Ces qualificatifs
peuvent sembler évidents, au premier abord. Il faut cependant être conscient que des sché-
mas inconsistent, imprécis, voire même instables ont couramment été utilisés par le passé
dans ce contexte.

Dans le cadre de ce travail, nous avons choisi de mettre au point une nouvelle méthode
de transfert en partant de celle proposée par Huerta, Casadei et Donéa [47, 114, 115]. Leur
approche est basée sur la méthode des volumes finis qui, outre sa simplicité, possède l’in-
térêt majeur de conservation de l’intégrale du champ transféré. Elle permet aussi de traiter
de manière naturelle le décentrage amont nécessaire à l’évaluation des termes convectifs.

Cette méthode de transfert, telle que décrite par ses auteurs, est seulement du premier
ordre et provoque, dans certains cas, une diffusion trop importante pour obtenir des résul-
tats précis sur de longues distances de convection. Elle a cependant l’avantage indéniable
de pouvoir traiter des éléments finis à plus d’un point de Gauss grâce à un maillage de
volumes finis approprié.

Pour l’améliorer, nous choisissons de reformuler le problème sous la forme d’un pro-
blème d’interpolation (équation (4.2)) mais nous conservons le maillage de volumes finis
proposé par Huerta, Casadei et Donéa. De cette manière, il est possible d’obtenir un schéma
du second ordre, beaucoup plus précis, mais toujours mathématiquement très simple. Ce
schéma original peut être vu comme une généralisation aux cas 3D implicites et aux élé-
ments à plus d’un point de Gauss de celui utilisé par Benson [22] en dynamique explicite à
deux dimensions pour des éléments finis sous-intégrés.
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4.2 Revue bibliographique

Avant de nous attarder sur l’algorithme choisi dans ce travail pour effectuer le trans-
fert des valeurs d’un maillage vers l’autre, nous passons en revue les différentes méthodes
présentes dans la littérature. Elles peuvent être classées principalement en deux grandes
familles.

n1
n2

n3

e1e n n n n1 1 2 3 4=[ , , , ]

n4

FIGURE 4.3 – Description « éléments finis » d’un
maillage. La définition de l’élément e1 est une
simple liste ordonnée de ses quatre nœuds
n1, n2, n3, n4. Il n’est pas possible de connaître
les éléments voisins de e1 sans parcourir tous les
éléments du maillage.
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FIGURE 4.4 – Description « volumes finis » d’un
maillage. La définition du volume v1 est la liste
de ses frontières a1, a2, a3, a4. Chacune de ces
arêtes possède des liens directs vers les deux vo-
lumes voisins.

La première famille se base sur la représentation « éléments finis » du maillage et con-
siste généralement à reconstruire un champ global continu de la grandeur à transférer. Le
succès de ces méthodes parmi les mécaniciens du solide (Huétink [119] et Ponthot [168],
par exemple) s’explique par le fait qu’elles nécessitent uniquement la description topolo-
gique simplifiée du maillage que l’on retrouve dans les codes éléments finis lagrangiens,
c’est-à-dire une liste de nœuds suivie d’une liste d’éléments, ces derniers étant définis par
leurs nœuds respectifs (figure 4.3). Cette manière de stocker la topologie du maillage est
amplement suffisante pour appliquer la méthode des éléments finis. Cependant, elle ne
fournit aucune notion de voisinage. Il n’est par exemple pas possible de déterminer faci-
lement les éléments voisins d’un élément donné sans parcourir toute la liste d’éléments.
Cette famille de méthodes de transfert travaille donc uniquement sur les deux tableaux dis-
ponibles dans le cadre de la méthode des éléments finis : la liste de tous les nœuds ou la
liste des nœuds d’un élément donné.

La deuxième famille de méthodes provient du savoir-faire des mécaniciens des fluides
(Benson [22] et Donéa [62], parmi d’autres) et de la méthode des volumes finis. La des-
cription topologique d’un maillage de volumes finis est radicalement différente de celle
d’un maillage d’éléments finis (voir par exemple Beall et Shephard [17]) : il est consti-
tué d’une liste globale d’arêtes (facettes en 3D) et chaque volume est défini par la liste
des entités constituant sa frontière (figure 4.4). Ici, les relations de voisinage sont direc-
tement utilisables et permettent de traiter localement les termes convectifs entre chaque
volume de manière très simple. Malheureusement, ce type de représentation n’est généra-
lement pas disponible dans un code éléments finis lagrangien. L’utilisation de ces méthodes
de transfert nécessite donc de faire coexister une double représentation du maillage. Une
autre difficulté vient de la différence entre le nombre de points de collocation d’un volume
fini et du nombre de points de Gauss d’un élément fini. Généralement, on utilise un seul
point par volume alors qu’il est courant, dans le cas de codes implicites, d’utiliser plusieurs
points de Gauss par élément fini. La majorité des auteurs qui choisissent la méthode des
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volumes finis, malgré la difficulté liée à la représentation du maillage, se bornent à utiliser
un seul point de Gauss par élément fini pour garantir la correspondance avec le point de
collocation du volume fini correspondant. Ceci explique qu’à l’heure actuelle, malgré les
qualités évidentes des schémas de type « volumes finis » en termes de simplicité mathéma-
tique et de précision, de nombreux auteurs utilisent toujours des méthodes basées sur une
représentation éléments finis du maillage.

Dans la suite, nous nous focaliserons principalement sur le problème du transfert des va-
leurs aux points de Gauss comme le font la plupart des auteurs. Le transfert des grandeurs
nodales est généralement considéré dans la littérature comme un cas particulier à celui des
valeurs aux points de Gauss et il est donc traité de manière similaire. En effet, les méthodes
utilisables pour transférer ou interpoler un champ discret sont facilement adaptables au cas
d’un champ continu, mais l’inverse n’est évidemment pas vrai. Il est donc commode d’uti-
liser le même type d’algorithme dans les deux cas si c’est possible. Remarquons également
que la majorité des grandeurs à transférer pour les opérations de mise à forme qui nous
intéressent sont localisées aux points de Gauss (ce point sera détaillé à la section 4.3). En
particulier, si le problème ne possède pas de champ thermique et que les forces d’inertie
sont négligeables, aucune grandeur nodale ne doit être transférée.

4.2.1 Méthodes de type « éléments finis »

4.2.1.1 Reconstruction d’un champ continu

Le transfert des grandeurs aux points de Gauss nécessite d’abord la reconstruction d’un
champ continu à partir de valeurs discrètes. Pour ce faire, la technique la plus simple con-
siste, pour chaque élément fini, à extrapoler aux nœuds les grandeurs aux points de Gauss
par la méthode des moindres carrés (voir par exemple Hinton et Campbell [110], Huétink
et al. [121], Wisselink et Huétink [207], Ponthot [168], Aymone et al. [11, 13]) en écrivant
pour chaque point de Gauss j de l’élément i :

σ
PG, j
i =

n∑

I=1

N I
i (x

PG, j)σ
Nod,I
i (4.3)

où N I
i (x ) est la Ième fonction de forme de l’élément i, σPG, j

i est la valeur de σ évaluée au jème

point de Gauss de l’élément i et σNod,I
i est la valeur inconnue de σ au nœud I de l’élément

i et n est le nombre de nœuds de l’élément. En rassemblant les valeurs de σ aux points de
Gauss et aux nœuds de l’élément i dans des vecteurs, on peut écrire :

σPG
i = Φiσ

Nod
i (4.4)

où Φi est une matrice qui regroupe les valeurs des fonctions de forme N I
i évaluées aux

points de Gauss. Le système est inversé, en utilisant la méthode des moindres carrés si
nécessaire, pour déterminer les valeurs nodales à partir des valeurs aux points de Gauss.
De cette manière, le champ obtenu est continu sur chaque élément. La figure 4.5 illustre
cette opération pour un champ unidimensionnel et des éléments à deux points de Gauss. On
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FIGURE 4.5 – Champ σ continu par élément.
Chaque nœud, mis à part les extrémités du mail-
lage, possède deux valeurs de σ. Il est possible
d’obtenir des valeurs négatives à partir de va-
leurs toutes positives.
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FIGURE 4.6 – Champ globalement continu obtenu
en moyennant les valeurs nodales des éléments
voisins. Si on évalue ce champ aux points de
Gauss, la valeur a changé (les schémas basés
sur ce type de reconstruction ne sont pas consis-
tants).

constate que, malgré des valeurs initialement toutes positives, l’extrapolation peut produire
des valeurs négatives.

Pour rendre le champ globalement continu sur tout le maillage, les valeurs nodales
par élément obtenues lors de l’étape précédente sont simplement moyennées aux nœuds
(figure 4.6). Pour chaque nœud on peut écrire :

σNod =
1

n

N∑

i=1

σNod
i (4.5)

où σNod est la valeur nodale unique au nœud et N est le nombre d’éléments qui contiennent
le nœud. Cette technique est couramment utilisée en post-traitement pour visualiser de ma-
nière continue les champs discrets et donc généralement déjà codée dans un programme
élément fini lagrangien traditionnel. Cependant, il est facile de comprendre que ce type de
reconstruction est beaucoup trop grossier pour être utilisé dans un schéma de convection
ou d’interpolation. En particulier, elle n’est pas consistante à cause de l’opération de moyen-
nage : la reconstruction globale ne permet pas de retrouver les valeurs initiales aux points
de Gauss lorsqu’elle est évaluée en ceux-ci.

patch topologique
noeud central
points de Gauss voisins

FIGURE 4.7 – Superconvergent Patch Recovery (SPR) d’après Guerdoux [95]. La valeur du champ au nœud
central est déduite des valeurs aux points de Gauss voisins par interpolation d’ordre élevé.

Dans le cadre du formalisme ALE, Guerdoux [95] propose une technique de recouvre-
ment par patch élémentaire (également appelée Superconvergent Patch Recovery – Zienkie-
wicz et Zhu [213]). Elle consiste à reconstruire une approximation polynômiale locale du
champ à partir des valeurs connues dans un voisinage du point considéré (figure 4.7).

σ(x ) = P(x ) · a (4.6)
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où P est une base polynômiale d’ordre donné et a, un vecteur de coefficients qui sont déter-
minés par moindres carrés. Cette approximation, construite autour d’un nœud à l’aide des
valeurs aux points de Gauss voisins, permet de définir une valeur nodale plus précise que
la technique précédente, mais elle nécessite d’avoir à disposition des relations de voisinage
entre éléments. La méthode peut être également utilisée autour d’une position quelconque
en déterminant les points de Gauss les plus proches.

4.2.1.2 Transfert par interpolation

La méthode de transfert la plus intuitive consiste à effectuer une interpolation entre
les deux maillages. Elle ne nécessite aucune hypothèse sur les deux maillages. Ce type de
technique est donc également utilisé après un remaillage complet pour lequel le nombre de
nœuds et le nombre d’éléments changent.

Après avoir reconstruit un champ continu sur le maillage lagrangien si nécessaire, il
suffit d’évaluer ce champ pour tous les points du nouveau maillage dont on veut connaître la
valeur. La difficulté principale est alors de rechercher, pour chacun de ces points, l’élément
du maillage lagrangien dans lequel il est localisé. Il est donc nécessaire de mettre en place
des techniques de recherche performantes pour pouvoir utiliser efficacement cette méthode
(voir, par exemple, Jansen et al. [124], Krause et Rank [132] pour des maillages 2D et
Aymone et al. [13] dans le cas de maillages 3D d’hexaèdres). La précision obtenue est
fonction de la qualité de la reconstruction préalablement utilisée. On obtient par exemple,
pour un champ reconstruit sur l’élément i par (4.4) :

σE = σPG
i = Φiσ

Nod (4.7)

ou, de manière équivalente, pour le seul point de Gauss j,

σE = σ
PG, j
i = NσNod (4.8)

où N = N i(x
PG, j) est la ligne j de la matrice Φi.

Nous verrons qu’il est possible d’améliorer cette méthode en faisant l’hypothèse d’une
topologie de maillage constante au cours de l’interpolation (section 4.5). Dans ce cas, la
recherche de l’élément contenant le point à interpoler n’est plus nécessaire, ce qui accélère
notablement la recherche.

4.2.1.3 Intégration au premier ordre

En effectuant un développement en série de Taylor du champ σ autour du point consi-
déré ou en intégrant l’équation (4.1) au premier ordre, on obtient :

σE = σL − d ·∇σ = σL −∆t c ·∇σ (4.9)

où σE et σL sont respectivement les valeurs du champ sur le nouveau et sur l’ancien mail-
lage et d, que l’on appelle déplacement convectif, est le vecteur joignant la position lagran-
gienne du point à la nouvelle position (figure 4.8). Cette relation simple permet d’effectuer
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le transfert des données tant que le déplacement de la matière par rapport au maillage reste
faible. Le principal avantage de cette technique est d’être consistante, ce qui se démontre
de manière évidente si d = 0.

configuration
eulérienne

configuration
lagrangienne

s
E

s
L d

FIGURE 4.8 – Définition du déplacement convectif comme le vecteur reliant la position lagrangienne (avant
repositionnement des nœuds) d’un point du maillage à sa position eulérienne (après repositionnement des
nœuds).

Ponthot [168] et Aymone et al. [13] utilisent cette méthode pour transférer les valeurs
aux points de Gauss dans leur implémentation respective du formalisme ALE. Le gradient
est évalué à partir du champ continu reconstruit par extrapolation et moyenné aux nœuds
(équation (4.8)). Aucun décentrage n’étant effectué, le schéma obtenu est inconditionnel-
lement instable.

Pour améliorer la stabilité, Huétink et al. [121] et plus récemment Wisselink et Huétink
[208] proposent la méthode WLGS (weighted local and global smoothing) qui consiste à
pondérer l’opération d’extrapolation (local smoothing - équation (4.8)) et l’opération de
transfert calculée avec le gradient du champ global lissé (global smoothing - équation (4.9)).
En utilisant les mêmes notations que précédemment, on obtient, pour le point de Gauss j
de l’élément i (les indices ont été supprimés pour alléger l’écriture) :

σE = (1−α)
�

σL + d · (BTσNod)
�

+α
�

NσNod
�

(4.10)

où B et la matrice des gradients des fonctions de forme de l’élément évaluée au point de
Gauss considéré et α est le coefficient de pondération, calculé en fonction du nombre de
Courant (C ≤ α(C)≤ 2C). On remarque en particulier que ce schéma est consistant (σE =

σL si C = 0). Huétink montre que cette pondération introduit une diffusion artificielle
qui stabilise le schéma. Le terme de diffusion est d’autant plus grand que le déplacement
convectif est important. En combinant une méthode instable et une méthode trop diffusive,
on obtient une méthode stable, mais toujours peu convaincante en termes de précision.

Stoker [187], Guerdoux [95], Philippe [164] utilisent également une intégration au
premier ordre pour transférer les valeurs nodales sur des maillages tétraédriques. Le gra-
dient est évalué dans l’élément amont pour éviter les oscillations. La méthode résultante
est stable, mais on observe cependant une forte diffusion.
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4.2.1.4 Schéma de Lax-Wendroff

Huerta, Casadei et Donéa [47, 116] proposent d’intégrer temporellement l’équation
de convection par un schéma de Lax-Wendroff. Il est obtenu classiquement en effectuant
un développement en série de Taylor au second ordre où les dérivées temporelles sont
remplacées par des dérivées spatiales grâce à l’équation originale (4.1) :

σE = σL − c j∆t
∂σ

∂x j
+
∆t2

2
ci c j

∂

∂x i

∂σ

∂x j
avec i, j = 1, 2, 3 (4.11)

Cette équation contient non seulement la dérivée première du champ σ mais également sa
dérivée seconde. Ces dérivées sont évaluées en utilisant la méthode des résidus pondérés
sur la relation : ∫

Ve

N I
∇σ dV = −

∫

Ve

σ∇N I dV +

∫

Se

N I σn dS (4.12)

où Ve est le volume d’un élément fini, Se sa frontière et N I , les fonctions de forme de
l’élément. Les intégrales sur la frontière de l’élément sont évaluées en extrapolant σ à
l’aide des fonctions de forme élémentaires. On évite ainsi l’accès explicite aux éléments
voisins pour calculer le gradient et cette méthode reste donc de type « éléments finis » bien
que la relation (4.12) soit généralement utilisée pour une formulation en volumes finis.
Cette procédure peut être vue comme un lissage du gradient de σ. Une fois discrétisées
et assemblées, les équations forment un système qui est diagonalisé et résolu pour fournir
des valeurs nodales de ∇σ. Ces valeurs sont alors interpolées aux points de Gauss pour
permettre l’évaluation de (4.11).

Le schéma résultant est simple et applicable à des éléments finis à plusieurs points de
Gauss. Il possède cependant une précision qui n’est pas du second ordre contrairement à
un schéma de Lax-Wendroff classique à cause de l’opération de lissage du gradient. De plus,
rien n’empêche l’apparition de nouveaux maxima dans la solution.

Cette méthode est également recommandée par Belytschko et al. [20] dans les cas où la
résolution couplée qu’ils proposent (basée sur l’équation (2.27) – voir aussi Liu et al. [142])
devient trop complexe à mettre en œuvre.
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4.2.2 Méthodes de type « volumes finis »

Les méthodes suivantes se basent sur une reconstruction locale du champ σ à partir
des valeurs aux points de Gauss. Elles nécessitent toutes un accès direct aux valeurs des
éléments voisins pour construire cette approximation. Elles requièrent donc un stockage
de la structure de maillage de type « volumes finis » (figure 4.4). Ces méthodes mélangent
généralement des schémas convectifs (intégration temporelle de l’équation (4.1)) et des
schémas d’interpolation (intégration spatiale de l’équation (4.2)) si bien que la distinction
entre les deux approches est souvent difficile à faire.

Les volumes finis possèdent généralement un seul point de collocation en leur centre.
Si on veut résoudre le problème de transfert en utilisant un maillage de volumes finis iden-
tique à celui utilisé par la méthode des éléments finis, on est limité à l’utilisation d’éléments
sous-intégrés, c’est-à-dire possédant un seul point de Gauss, pour avoir une correspondance
entre le point de collocation du volume et le point d’intégration de l’élément.

On distingue donc les méthodes qui ne gèrent qu’un seul point de Gauss par élément
fini de celles qui peuvent en gérer plusieurs.

4.2.2.1 Un point de Gauss par élément

Le pionnier dans le domaine est Benson [22] qui, dès 1989, met au point un algorithme
simple et peu diffusif basé sur l’expression de la conservation de la grandeur à transférer :

∫

V

σE dV=

∫

V

σL dV (4.13)

où V est le volume du domaine de calcul.

En considérant un champ constant par élément et en écrivant cette relation pour chaque
élément du nouveau maillage, Benson exprime la nouvelle valeur de σ en fonction des
valeurs des éléments adjacents. Par exemple, dans le cas de la figure 4.9, on a, pour la
grandeur σE

0 que l’on cherche à déterminer :

V EσE
0 = V0σ

L
0 +∆V6σ

L
6 +∆V7σ

L
7 +∆V8σ

L
8

= V LσL
0 − (∆V2 +∆V3 +∆V4)σ

L
0 +∆V6σ

L
6 +∆V7σ

L
7 +∆V8σ

L
8 (4.14)

Mis à part le cas unidimensionnel, la méthode est cependant complexe à mettre en
œuvre, car elle nécessite le calcul de l’intersection des deux maillages pour évaluer les ∆Vi

(voir Grandy [93]). C’est pourquoi la plupart des implémentations négligent par exemple
les flux de coin (∆V7 et ∆V3 sur la figure 4.9). Ce schéma est précis au premier ordre.

Pour obtenir un schéma du second ordre, Benson utilise une approximation linéaire de
σ sur chaque élément. Le gradient ∇σL

i , constant sur chaque élément, peut être calculé
de différentes façons. Benson propose d’utiliser une reconstruction locale parabolique qui
correspond au schéma MUSCL (Monotone Upstream-centered Scheme for Conservation Laws)
de Van Leer [200]. Pour éviter les oscillations et stabiliser le schéma, la valeur du gradient
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FIGURE 4.9 – Opérateur de projection 2D par Benson. On a représenté une seule maille (en gras) du maillage
en configuration eulérienne. La valeur de σ sur cette maille est déduite des valeurs dans la maille lagran-
gienne correspondante et dans les mailles adjacentes 6, 7 et 8. Si le déplacement convectif est faible, les
volumes d’intersection des deux maillages peuvent être vus comme des flux entrant et sortant de la maille
eulérienne.

est localement modifiée dans les zones où la solution varie brusquement (on parle de limi-
teur de flux). Ce type de reconstruction fournit un schéma précis au second ordre partout
où le champ inconnu varie peu et du premier ordre partout ailleurs. Grâce au limiteur de
flux, la monotonicité de la solution est préservée, c’est-à-dire que le schéma garantit l’ab-
sence d’oscillations dans la solution si le champ initial en est dépourvu. Cette méthode a été
récemment étendue au cas de maillages non structurés de quadrangles, toujours par Ben-
son [26]. Dans ce cas plus complexe, certaines parties du calcul, comme la détermination
du gradient du champ inconnu, sont effectuées à une dimension selon chaque direction
du maillage. La nécessité d’utiliser un seul point de Gauss par élément est le point faible
majeur de cet algorithme de transfert.

Van der Helm et al. [198] proposent une méthode similaire basée sur un schéma de
Lax Wendroff. Il s’agit d’un schéma unidimensionnel auquel on ajoute un limiteur de flux
de type Van Leer pour éviter les oscillations typiques d’une approximation du second ordre.
La méthode est étendue à deux dimensions en appliquant le schéma simultanément dans
les deux directions orthogonales du maillage, que l’on suppose structuré et constitué de
quadrangles. En pratique, on observe une diffusion d’autant plus grande que la vitesse
de convection n’est pas alignée sur la grille de calcul. De plus, le limiteur de Van Leer
étant calculé uniquement dans deux directions orthogonales, il ne garantit pas toujours
l’absence d’oscillations dans la solution. Enfin, tout comme la précédente, cette méthode
est applicable uniquement à des éléments sous-intégrés.

Geijselaers et Huétink [83, 85] proposent un algorithme implicite de type Discontinuous
Galerkin sur maillage 2D d’éléments triangulaires. Le schéma utilise deux paramètres à fixer
par l’utilisateur qui contrôlent sa diffusion et sa stabilité. Cette méthode semble coûteuse
vu son caractère implicite et ne préserve pas la monotonicité de la solution.
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Huerta, Casadei et Donéa [115] utilisent l’approche convective et discrétisent spatia-
lement l’équation de convection (4.1) par un schéma de Godunov du premier ordre. Le
schéma obtenu correspond à l’algorithme d’interpolation de Benson (équation (4.14)) pour
lequel les gradients de la valeur à transférer seraient nuls. La formulation a été étendue au
cas tridimensionnel par Potapov [172]. Le schéma proposé est cependant du premier ordre
et présente donc une forte diffusion.

Le code de calcul Abaqus/Explicit [55] utilise également un schéma de transfert de type
volumes finis (voir par exemple les simulations de découpe des métaux par Pantalé et al.
[162]) mais, encore une fois, seul l’élément sous-intégré est utilisable pour une analyse
ALE.

4.2.2.2 Extensions à plusieurs points de Gauss

Mis à part les codes de dynamique rapide, qui utilisent quasi exclusivement des éléments
sous-intégrés couplés à des algorithmes explicites d’intégration temporelle, et qui peuvent
donc se contenter d’un schéma de transfert faisant l’hypothèse d’un seul point de Gauss par
élément, il est nécessaire d’étendre les algorithmes précédents au cas d’éléments possédant
plusieurs points de Gauss. Ce type d’élément plus riche est généralement utilisé lorsqu’on
décide d’intégrer de manière implicite les équations d’équilibre.

Plusieurs tentatives existent pour coupler les schémas précédents à l’utilisation d’élé-
ments finis à plusieurs points de Gauss. Par exemple, pour adapter leur méthode de Godu-
nov au cas de quadrangles à quatre points de Gauss, Huerta, Casadei et Donéa [47, 114]
divisent chaque élément fini quadrangulaire en quatre cellules à l’aide de ses médianes.
Chaque point de Gauss se voit ainsi attribuer un volume fini pour lequel on applique
la méthode de transfert initialement proposée. Cette méthode, nommée par ses auteurs
Godunov-like update, a été utilisée par la suite avec succès par Rodriguez-Ferran et Huerta
[174], Rodriguez-Ferran et al. [175] et Askes et al. [8, 9]. La difficulté principale de mise
en œuvre est la création, idéalement automatique, du maillage de volumes finis à partir du
maillage des éléments finis. Ceci explique que, mis à part dans ce travail de thèse, aucune
extension 3D de la méthode n’a été publiée à ce jour.

Van Haaren et al. [199] adaptent la méthode de Benson pour des maillages 2D composés
d’éléments triangulaires quadratiques à trois points de Gauss. Ces trois points permettent de
calculer directement un gradient ∇σL

i pour chaque triangle (figure 4.10). Une mise à jour,
similaire à l’équation (4.14), est appliquée à la valeur moyenne de l’élément. Pour pouvoir
mettre à jour les valeurs des trois points de Gauss à partir de cette valeur moyenne, il est
nécessaire de recalculer un nouveau gradient ∇σE

i . Celui-ci est obtenu par moindres carrés
ou par application du théorème de Green-Gauss à partir des valeurs σE dans les éléments
voisins.

Stocker et al. [186, 187] tentent d’étendre la technique précédente pour des qua-
drangles à quatre points de Gauss. Pour déterminer le gradient deσ à partir de ceux-ci, trois
points sont nécessaires et suffisants. Le problème est donc surdéterminé (voir figure 4.11)
et doit être résolu localement par moindres carrés. En conséquence, la reconstruction li-
néaire de la solution est déjà entachée d’erreurs. Pire, le champ final après transport est,

100



CHAPITRE 4. TRANSFERT DES DONNÉES

x

y

s

s
1

s
2

s
3

Ñs

FIGURE 4.10 – Calcul de ∇σ sur un triangle à trois
points de Gauss (Van Haaren et al. [199]). Le
gradient est calculé sur chaque triangle indé-
pendamment à l’aide des trois valeurs aux trois
points de Gauss.
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FIGURE 4.11 – Calcul de ∇σ sur un quadrangle
à quatre points de Gauss (Stocker et al. [186,
187]). Le gradient est calculé indépendamment
dans chaque élément par moindres carrés car le
problème est surdéterminé.

par construction, toujours linéaire, quel que soit le champ initial. Autrement dit :

σE = σE
0 +∇σ0 ·∆x (4.15)

où σE
0 est la nouvelle valeur moyenne de σ au centre de l’élément, ∇σ0 et le nouveau

gradient et∆x est le vecteur reliant le point de Gauss au centre de l’élément. Ceci empêche
l’extension de cette méthode à trois dimensions où il est, certes, possible mais pas très
judicieux de contraindre les huit valeurs des points de Gauss d’un hexaèdre à vérifier une
telle équation.

Nous constatons donc qu’à l’heure actuelle aucune méthode idéale n’existe pour trans-
férer de manière précise les grandeurs d’un maillage dans le cas d’éléments finis à plusieurs
points de Gauss. La méthode de Stoker fait une hypothèse très restrictive sur le gradient
du champ convecté. La méthode de type Godunov proposée par Huerta et al. est, quant à
elle, beaucoup plus générale dans le traitement de la multiplicité des points de Gauss, mais
elle n’a jamais été étendue au second ordre vu la difficulté technique liée à la gestion du
maillage auxiliaire nécessaire de volumes finis.
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4.2.3 Autres méthodes

Pour être complet, nous décrivons ici brièvement une méthode originale de convection
que nous avons développée au début de ce travail de thèse et qui a été abandonnée par la
suite. Son principe est très simple : puisque la forte diffusion introduite par les méthodes de
la section 4.2.1 vient principalement des étapes successives d’extrapolation vers les nœuds
et d’interpolation vers les points de Gauss, il suffit de résoudre le problème de convection
directement sur les points de Gauss sans passer par les nœuds. Un nouveau maillage dont
les sommets sont les points de Gauss du maillage lagrangien est créé à partir du maillage
de la structure. L’équation (4.1) est discrétisée par la méthode des éléments finis sur ce
maillage auxiliaire.

Points de Gauss du maillage lagrangien

FIGURE 4.12 – Maillages auxiliaires (en rouge) construits sur les points de Gauss du maillage de base pour
des éléments à quatre points de Gauss (à gauche) et à un seul point de Gauss (à droite).

À titre d’illustration, la figure 4.12 représente deux maillages auxiliaires utilisés pour des
éléments quadrangulaires possédant un ou quatre points de Gauss. Les maillages obtenus
sont composés exclusivement de quadrangles si le maillage initial est structuré. De plus,
si par endroits, le maillage initial est composé d’une seule couche d’éléments sous-intégrés
(ou partiellement sous-intégrés), le maillage auxiliaire dégénère et comporte des éléments
linéiques. La construction automatique des maillages auxiliaires n’est pas simple et requiert
la disponibilité des relations de voisinage entre éléments.

Sur le maillage auxiliaire, on utilise une discrétisation spatiale de type SUPG (Stream-
line Upwind Petrov Galerkin – voir Brooks et Hughes [38, 117]) pour éviter les oscilla-
tions numériques. Cette méthode consiste à modifier la formulation standard de Galerkin
en ajoutant aux fonctions de pondération un terme de décentrage « amont » agissant uni-
quement dans la direction de l’écoulement. Il est donc possible d’éviter ainsi la diffusion
transverse que l’on observe avec la majorité des méthodes classiques (y compris la méthode
des volumes finis présentée à la section 4.2.2).

La méthode standard de Galerkin et la méthode SUPG sont des cas particuliers de la
méthode des résidus pondérés. Celle-ci consiste à multiplier l’équation (4.1) par des fonc-
tions de pondération ωI(x ) et ensuite à intégrer le résultat sur le volume total V du milieu

102



CHAPITRE 4. TRANSFERT DES DONNÉES

continu (ou de l’élément) :
∫

V

ωI ∂σ

∂ t
dV+

∫

V

ωI c ·∇σ dV = 0 (4.16)

La méthode SUPG consiste à choisir les fonctions test ωi suivantes :

ωI = N I +
k̄

‖c‖2 c ·∇N I (4.17)

où les N I sont les fonctions de forme classiques utilisées pour discrétiser le champ inconnu
(σ(x , t) =

∑

N I(x )σI(t)),σI(t) est la valeur deσ au nœud I et k̄ est un paramètre scalaire
de la méthode qui permet de contrôler la quantité de diffusion anisotrope introduite par
le schéma dans le sens de l’écoulement. Ce paramètre peut être rendu adimensionnel en
utilisant la relation suivante (Hughes [117]) :

k̄ = α
�
|c · h1|+ |c · h2|

�
(4.18)

où α est un nouveau paramètre et les vecteurs h1 et h2 sont définis sur la figure 4.13 dans
le cas d’un quadrangle.

c

h1

h2

FIGURE 4.13 – Grandeurs intervenant dans l’évaluation du coefficient k̄ (c est la vitesse de convection).

En remplaçant (4.17) dans (4.16), on obtient le système d’équations semi-discrétisées
suivant :

C σ̇+Kσ = 0 (4.19)

où les matrices C et K sont évaluées et assemblées sur le maillage auxiliaire relatif à la gran-
deur σ. Vu son coût, une intégration implicite des équations (4.19) n’est pas envisageable
dans le cadre du formalisme ALE. On utilise donc un schéma d’Euler explicite après avoir
diagonalisé la matrice C.

Vu qu’il n’introduit pas de diffusion transverse, ce schéma donne des résultats intéres-
sants (Boman et Ponthot [28, 29, 30]). Une méthode similaire a été récemment utilisée
avec succès par Okazawa et al. [158] pour la résolution de problèmes eulériens en méca-
nique du solide. Néanmoins, nous l’avons rapidement abandonnée au profit des méthodes
volumes finis pour plusieurs raisons.

La première concerne la limitation sur le type de maillages utilisable. Seuls des maillages
structurés sont envisageables si on veut garder un maillage auxiliaire composé d’un seul
type d’élément. Une extension à des maillages non structurés est possible en décomposant
tous les polygones non quadrangulaires en triangles mais elle complique sérieusement la
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création automatique du maillage auxiliaire. La dégénérescence du maillage dans le cas
d’éléments à un points de Gauss ne possédant que deux voisins est aussi problématique.

De plus, l’application des conditions aux limites est techniquement complexe. Celles-ci
doivent être imposées aux nœuds frontière du maillage auxiliaire où la matière entre dans
le maillage (c · n < 0). Puisque c varie au cours de la simulation, ces conditions varient
également dans le temps et la taille du système (4.19) n’est pas constante.

Enfin, le schéma obtenu ne préserve pas la monotonicité de la solution. Il est donc
fréquent d’obtenir des oscillations parasites dans les résultats. L’amplitude de celles-ci peut
être influencée par un choix judicieux de k̄ (ou α) mais il n’est pas possible de les supprimer
complètement. C’est la raison principale pour laquelle ce schéma a été abandonné.

4.3 Grandeurs à transférer

Nous énumérons, dans cette section, les différentes grandeurs qui doivent être transfé-
rées du maillage lagrangien vers le maillage eulérien. Le nombre et la nature de celles-ci
dépendent principalement de la loi constitutive, du schéma d’intégration temporelle et du
type d’élément fini utilisés pour la simulation.

4.3.1 Lois constitutives

Dans le cadre de la simulation de procédés de mise à forme, il est courant de rencontrer
des lois constitutives complexes modélisant le comportement non linéaire et irréversible
des matériaux rencontrés. La majorité des grandeurs à transférer sont celles qui permettent
de calculer les forces internes f int sur le nouveau maillage et de continuer le calcul. Ces
valeurs sont stockées aux points de Gauss de chaque élément fini. Le nombre de ceux-ci
dépend du type d’élément fini utilisé.

Pour les matériaux hypoélastiques que nous utilisons dans ce travail, il est nécessaire de
transférer tout d’abord le tenseur des contraintes de Cauchy σ qui est généralement scindé
en sa trace (la pression hydrostatique p = tr(σ)/3) et sa partie déviatorique s = σ − p I.
Les forces internes peuvent alors être recalculées par (voir par exemple Ponthot [168]) :

f int
I i =

∫

V(t)

BI jσ ji dV (4.20)

où les indices majuscules sont relatifs aux nœuds du maillage et les indices minuscules aux
directions de l’espace. La matrice BI i = ∂N

I/∂x i des dérivées des fonctions de forme N est
recalculée sur le nouveau maillage.

Les variables d’hérédité du matériau doivent également être transférées, d’une part,
pour obtenir la solution sur le nouveau maillage et, d’autre part, pour permettre la conti-
nuation du processus d’intégration temporelle des lois constitutives qui peut s’exprimer sous
la forme simplifiée :

σn+1(x n+1,q n+1) = σn(x n,q n) +∆σn (4.21)
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où l’exposant n est relatif à l’incrément temporel et où q est un vecteur regroupant les va-
riables d’hérédité. Pour les lois les plus courantes, il s’agit de la déformation (visco)plastique
équivalente ǭvp, sa dérivée ˙̄ǫvp si la loi est visqueuse, un éventuel tenseur de backstress α
si l’écrouissage est cinématique, etc. Remarquons qu’il n’est pas nécessaire de transférer la
limite d’élasticité puisque celle-ci est une fonction des autres variables internes.

Les composantes des tenseurs sont traitées comme des scalaires tout à fait indépen-
dants. Un tenseur symétrique tel que σ génère donc six problèmes de convection à trois
dimensions et quatre en état plan de déformation (σx x , σx y , σy y , σzz). De ce fait, après le
transfert, il n’y a par exemple aucune garantie que les contraintes respectent le critère de
plasticité utilisé. Lorsque celui-ci est violé, Ponthot [168] suggère d’utiliser la méthode du
retour radial (Ponthot [170]) après transfert pour ramener les contraintes sur la surface de
charge calculée à partir de la nouvelle valeur de ǭvp. Cette procédure n’a pas été appliquée
dans le cadre de ce travail car elle ne nous a pas semblé utile : en utilisant un schéma de
transfert précis, le critère de plasticité ne peut être que faiblement violé et, de plus, cet
éventuel écart est automatiquement corrigé lors de l’incrément temporel suivant.

4.3.2 Schémas d’intégration temporelle

Le nombre de grandeurs à transférer dépend aussi du schéma d’intégration temporelle
utilisé pour intégrer les équations de conservation. Considérons tout d’abord un problème
purement mécanique. Les équations d’équilibre discrétisées à résoudre peuvent s’écrire sous
la forme simple suivante :

f inert + f int = f ext (4.22)

où f inert, f int et f ext sont respectivement les forces d’inertie, les forces internes et les forces
externes. Le cas le plus simple est l’hypothèse quasistatique pour laquelle les forces d’inertie
f inert = M a sont négligées (M est la matrice des masses et a le vecteur des accélérations
nodales). Il n’y a alors aucune variable supplémentaire à considérer.

Le cas dynamique est plus complexe. Il est tout d’abord nécessaire de recalculer la ma-
trice des masses M intervenant dans l’expression des forces d’inertie. Son expression est la
suivante :

M =

∫

V(t)

ρ(t)NTN dV (4.23)

où ρ est la masse volumique et N est la matrice des fonctions de forme. Dans un calcul
purement lagrangien, cette matrice peut être calculée une fois pour toutes sur la configura-
tion initiale puisque, par conservation de la masse (ρ dV = ρ0 dV0), celle-ci est constante
au cours du temps.

En formalisme ALE, réévaluer la matrice des masses demande donc d’évaluer la masse
volumique courante ρ(t). Le calcul de cette grandeur n’est jamais nécessaire en formalisme
lagrangien. Il faut donc calculer ρ(t) à la fin de chaque pas lagrangien et ajouter cette
grandeur à la liste des variables à transférer. En pratique, si la compressibilité des matériaux
utilisés est très faible, on peut faire l’hypothèse que la densité ne varie pas et recalculer la
matrice des masses en utilisant la masse volumique initiale.
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Les forces externes, elles s’écrivent d’après l’équation (2.22) :

f ext =

∫

V(t)

ρ bi δui dV+

∫

S(t)

t i δui dS (4.24)

Les forces volumiques doivent donc être recalculées à l’aide de la nouvelle masse volumique
et les tractions de surface doivent être intégrées sur la nouvelle géométrie des éléments. Le
recalcul des forces de contact et du frottement nécessite une procédure particulière décrite
à la section 4.6.

Les équations d’équilibre peuvent être intégrées en dynamique par des schémas impli-
cites ou explicites. Le schéma explicite le plus courant est obtenu par différences centrées.
La matrice des masses est diagonalisée et l’accélération est calculée à partir des équations
d’équilibre :

an =M−1
�

f ext− f int
�

(4.25)

On en déduit successivement les vitesses et les positions :

v n+1/2 = v n−1/2 +∆t an (4.26)

x n+1 = x n+∆t v n+1/2 (4.27)

Pour ce schéma, seule la vitesse doit être transférée du maillage lagrangien vers le nou-
veau maillage. Convecter indépendamment la masse volumique et la vitesse est un choix.
Benson [24, 26] préfère plutôt convecter la quantité de mouvement, produit de ces deux
grandeurs, pour pouvoir mieux en garantir la conservation lors de l’opération de transfert.

Le schéma dynamique implicite que nous utilisons fait partie de la famille des algo-
rithmes α-généralisés. Il s’agit du schéma de Chung-Hulbert [52] qui s’écrit :

�
1−αM

�
M an+1 +αM M an+

�
1−αF

� �

f int(x n+1, v n+1)− f ext(x n+1, v n+1)
�

+αF

�

f int(x n, v n)− f ext(x n, v n)
�

= 0 (4.28)

où αM et αF sont des paramètres. Les schémas de Newmark [154] (αM = αF = 0), Hilber-
Hugues-Taylor [109] (αM = 0) et Wood-Bossak-Zienkiewicz [209] (αF = 0) en sont des cas
particuliers. Les relations entre positions, vitesses et accélérations s’écrivent :

x n+1 = x n+∆t v n+ (
1

2
− β)∆t2an+ β∆t2an+1 (4.29)

v n+1 = v n+ (1− γ)∆tan+ γ∆tan+1 (4.30)

où β et γ sont également des paramètres du schéma. Dans Metafor, les valeurs par défaut
du schéma de Chung-Hulbert sont fixées à αM = −0.97, αF = 0.01, β0 = 0.25, γ0 = 0.5
avec β = β0 (1−αM +αF)

2 et γ= γ0 (1− 2αM + 2αF )
2.

Une intégration implicite des équations d’équilibre requiert donc le transfert de la vitesse
v n et de l’accélération an pour calculer le pas de temps n+ 1.
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Si le problème est thermomécanique, il est nécessaire de transférer également le champ
de température T défini aux nœuds du maillage. Sans rentrer dans les détails (voir Adam
[1] et Jeunechamps [125]), les équations d’équilibre thermique peuvent se mettre sous la
forme (4.22) avec cette fois f inert = C Ṫ . Deux schémas sont utilisés pour les résoudre : le
schéma du trapèze généralisé (STG) et le schéma du point milieu généralisé (SMG) (voir
Hogge [112]).

Le schéma du trapèze généralisé consiste à exprimer la dérivée de la température de la
manière suivante :

Ṫ
n+1
=

T n+1 − T n− (1− θ )∆t Ṫ
n

θ ∆t
(4.31)

où θ ∈ [0, 1] est un paramètre du schéma. Il est donc nécessaire de transférer également la
dérivée de la température de l’ancien maillage vers le nouveau.

Pour le schéma du point milieu généralisé, l’équilibre est calculé en tn+θ = tn + θ∆t à
l’aide des températures T n+θ = (1− θ )T n + θ T n+1 et on utilise l’expression suivante pour
calculer la dérivée temporelle de la température :

Ṫ
n+θ
=

T n+1 − T n

∆t
(4.32)

où la dérivée Ṫ
n

n’intervient pas. On peut donc se contenter de ne transférer que la tempé-
rature dans le cas de ce schéma.

4.3.3 Éléments

Le type d’élément fini utilisé peut influencer directement le nombre de grandeurs à
transférer. Nous utilisons principalement trois formulations différentes.

La première est appelée SRI (sous-intégration sélective – Selective Reduced Integration).
Elle consiste à sous-intégrer la partie volumique des contraintes lors du calcul des forces in-
ternes. Ceci permet d’éviter les problèmes liés au locking de l’élément fini standard lorsqu’il
est intégré complètement. Le tenseur σ est décomposé en sa partie déviatorique s , intégrée
à l’aide de deux points de Gauss par direction de l’espace (les points de Gauss déviatoriques),
et la pression p intégrée avec un seul point de Gauss (le point de Gauss volumique). On
parle donc d’élément SRI à pression constante. À partir des six composantes du tenseur des
contraintes σ, on se retrouve avec sept grandeurs pour la convection (les six composantes
du tenseur s et la pression p). Deux méthodes sont envisageables. La première consiste à
transférer tous ces scalaires de manière indépendante. Le risque est alors que la trace du
tenseur s après convection ne soit plus nulle. La seconde méthode est de privilégier une
direction (par exemple z) et de ne pas effectuer le transfert de szz qui est alors déduit de sx x

et sy y après convection en imposant une trace nulle. En pratique, si l’algorithme de transfert
est précis, la trace de s reste toujours proche de zéro. On peut cependant économiser un
problème de convection en imposant une trace nulle. C’est donc cette seconde méthode qui
sera généralement utilisée par unique souci de rapidité d’exécution.

Le second type d’élément est une variante de l’élément SRI tel que décrit précédem-
ment. La pression est cette fois calculée, aux mêmes points de Gauss que le déviateur des

107



CHAPITRE 4. TRANSFERT DES DONNÉES

contraintes, à partir d’un incrément de volume unique pour l’élément. Cet incrément de vo-
lume est calculé au centre de l’élément et reporté sur les points de Gauss déviatoriques. On
parle d’élément SRI à dilatation constante. Cette fois, le tenseur des contraintes est intégra-
lement défini sur les mêmes points de Gauss. On peut dont choisir de transférer directement
le tenseur des contraintes σ ou son déviateur s et la pression p de manière séparée. En pra-
tique, dans le code, vu que le tenseur des contraintes est toujours décomposé quel que soit
le type d’élément, il est techniquement plus simple de choisir cette dernière méthode.

Le troisième type d’élément est appelé EAS (Enhanced Assumed Strain – Glaser et Ar-
mero [88], Simo et al. [183] – voir Bui et al. [42] et Adam et Ponthot [2] pour l’implé-
mentation de l’élément EAS dans Metafor). Il permet d’éliminer de manière plus efficace le
locking volumique et le locking en cisaillement que la méthode de sous-intégration sélective
SRI au prix d’une formulation mathématiquement beaucoup plus complexe. Ces éléments
EAS possèdent un enrichissement au niveau du tenseur gradient de déformations F (voir
équation (2.2)) qui est calculé, dans l’espace isoparamétrique (variables ξ), par :

Ftot(ξ) = F(ξ) + F(0)FEAS (4.33)

où F est le gradient de déformation compatible et F(0) est ce tenseur évalué en ξ = 0, c’est-
à-dire au centre de l’élément. Le terme FEAS est défini dans la configuration de référence à
partir d’une transformation du tenseur Fmodes. Elle s’écrit, selon Simo et al. [183] :

FEAS =

�
detJ0(0)

det J0

�

J0(0)F
modes J−1

0 (0) (4.34)

où J = ∂x/∂ξ et J0 est ce tenseur évalué dans la configuration de référence. Le tenseur
Fmodes est défini par une somme pondérée des modes de déformation augmentés Fmode

i :

Fmodes =

M∑

m=1

αm Fmode
m (4.35)

où les αi sont des scalaires qui contrôlent l’importance de l’activation de chacun des M
modes d’enrichissement. L’expression des tenseurs Fmode

m est connue. Par exemple, à deux
dimensions, en se limitant aux modes de base (des modes « étendus » peuvent être ajoutés
pour améliorer encore la formulation), on a :

Fmodes
vol,1 =

�
ξ 0
0 0

�

Fmodes
vol,2 =

�
0 0
0 η

�

(4.36)

où ξ,η sont les composantes du vecteur ξ. Ces deux modes sont les modes volumiques
auxquels s’ajoutent les deux modes de cisaillement suivant :

Fmodes
cis,1 =

�
0 0
ξ 0

�

Fmodes
cis,2 =

�
0 η

0 0

�

(4.37)

Des expressions similaires existent pour les problèmes 3D (voir par exemple Adam et Pon-
thot [2]). Dans ce cas, on utilise trois modes volumiques et six modes de cisaillement.
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Les paramètres αm sont des nouvelles inconnues, internes à chaque élément. Elles sont
déterminées localement en imposant que les forces internes provenant des modes d’enri-
chissement doivent être nulles. Les forces internes mécaniques au nœud I de l’élément sont
alors calculées par :

f int
I =

∫

V

σ btot
I dV (4.38)

où le vecteur btot
I est calculé par :

btot
I = F−T

�

J−T
0

∂N I

∂ξ
+ (FEAS)T J−T

0 (0)
∂N I

∂ξ
(0)

�

= bI + bEAS
I (4.39)

où N I(ξ) désigne la fonction de forme relative au nœud I de l’élément. Cette expression
fait intervenir de nombreuses grandeurs inconnues sur le nouveau maillage. Le premier
terme est le vecteur bI classique (bI correspond à une ligne de la matrice B de l’équation
(4.20)) qui dépend uniquement de la géométrie du maillage courant. Le second terme
n’existe que si certains modes EAS sont actifs et introduit une contribution qui dépend des
configurations du maillage lagrangien au début et à la fin du pas de temps. Recalculer les
forces internes sur le nouveau maillage n’est donc pas simple dans ce cas de figure. On
pourrait imaginer de convecter les grandeurs manquantes. Ce n’est cependant pas possible
en pratique, car elles sont intrinsèquement liées à la géométrie du maillage sur lequel elles
sont définies et n’ont plus aucun sens sur un autre maillage.

s
L=Cte

s
E=Cte

1 12 23 3

l L
l

E

configuration lagrangienne configuration eulérienne

x

FIGURE 4.14 – Problème de recalcul des forces en EAS. Une barre unidimensionnelle est discrétisée par deux
éléments finis. Cet exemple démontre que le vecteur bI ne peut pas être transféré d’un maillage à l’autre
pour recalculer les forces sur le nouveau maillage.

Pour s’en convaincre, considérons le problème unidimensionnel d’une barre de section
A en traction simple schématisé sur la figure 4.14. En configuration lagrangienne (à gauche
sur la figure), le champ de contrainte est constant et vaut σ. La force nodale au nœud 1
vaut

f L
1 =

∫

V L

σL bL
1 dV = σ bL

1 V L = σ
−1

l L
(l L A) = −σA (4.40)

Si on définit un nouveau maillage de la barre en déplaçant le nœud 2 vers le nœud 1 (à
droite sur la figure) et que l’on décide de transférer σ et b1, on peut montrer que ces deux
grandeurs vont rester constantes sur l’élément 1-2. La force nodale sur le premier nœud du
second maillage vaut alors

f E
1 =

∫

V E

σL bL
1 dV =

lE

l L
f L
1 (4.41)

On obtient ainsi une force incorrecte qui dépend de la position du nœud 2. Ceci démontre
que le vecteur bI , et de manière similaire le vecteur bEAS

I , ne peuvent pas être simplement
transférés d’un maillage à l’autre pour recalculer les forces.
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Pour contourner ce problème, il est nécessaire d’exprimer le vecteur bEAS
I en fonction de

bI . On écrit, à l’aide de la relation (4.39) :

bEAS
I = F−T (FEAS)T J−T

0 (0)
∂N I

∂ξ
(0) (4.42)

En multipliant le second membre de cette relation par le scalaire suivant

1=

�

∂N I

∂ξ

�T

JT
0 FT

bI
︷ ︸︸ ︷

F−T J−T
0

∂N I

∂ξ
�

∂N I

∂ξ

�T
∂N I

∂ξ

(4.43)

les forces internes peuvent alors se réécrire sous la forme

f int
I =

∫

V

(σ+ σ̃) bI dV (4.44)

où σ̃ est un tenseur non symétrique de contraintes additionnelles dues aux modes EAS et
calculé par :

σ̃ = σ

F−T (FEAS)T J−T
0 (0)

∂N I

∂ξ
(0)

�

∂N I

∂ξ

�T

JT
0 FT

�

∂N I

∂ξ

�T
∂N I

∂ξ

(4.45)

Ce tenseur peut être calculé en chaque point de Gauss du maillage lagrangien et trans-
féré vers le nouveau maillage dans le but de recalculer les forces internes en fin de pas
de temps. Comme σ̃ est non symétrique, son transfert est très coûteux et peut être évité
dans les cas où le recalcul de la valeur des forces n’est pas obligatoire. En effet, l’évaluation
exacte des forces en fin de pas est nécessaire uniquement lors de l’utilisation d’un schéma
dynamique implicite (équation (4.28) quand αF 6= 0), lors de l’utilisation d’une loi de frot-
tement (voir section 4.6) ou lorsque l’on s’intéresse explicitement à celles-ci (pour le calcul
d’une réaction par exemple). Dans les autres cas, les forces internes peuvent ne pas être re-
calculées précisément sur le nouveau maillage et la suite du calcul n’en sera pas perturbée.
En effet, les valeurs des modes EAS αi dépendent uniquement de l’incrément de charge
subi par l’élément sur le pas de temps courant et ne sont donc pas des variables d’hérédité.

Cette combinaison des éléments EAS et du formalisme ALE est une contribution origi-
nale de cette thèse.
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4.3.4 Autres grandeurs

À côté des grandeurs utiles à la poursuite du calcul, il est parfois intéressant d’en trans-
férer d’autres dans un but de post-traitement. C’est le cas, par exemple, des déformations
totales. En formalisme lagrangien, il est très courant de calculer des déformations surfa-
ciques locales en se basant sur les positions courantes des nœuds du maillage. On modélise
ainsi la mesure effectuée par une jauge de déformation expérimentale. Bien entendu, il
n’est pas question d’utiliser cette méthode en formalisme ALE puisque le maillage ne suit
pas les déformations de la matière. On peut contourner cette difficulté en calculant un ten-
seur de déformation obtenu à partir du tenseur des gradients de déformation totale au pas
de temps n. Ce dernier est calculé incrémentalement par la décomposition multiplicative :

F(0→n) = F(n−1→n) F(0→n−1) (4.46)

où F(i→ j) = ∂x ( j)/∂x (i) est la matrice jacobienne de la transformation entre la configuration
x ( j) au pas j et la configuration x (i) au pas i. On peut en déduire, entre autres, le tenseur
des déformations de Green Lagrange par EGL = 1

2
(FT F− I).

Le calcul des déformations en ALE nécessite donc le transfert du tenseur non symé-
trique F(0→n), c’est-à-dire neuf scalaires supplémentaires pour un problème tridimension-
nel. Il s’agit d’une augmentation non négligeable de la charge de calcul, similaire à celle
produite par un calcul utilisant des éléments EAS. Il est donc important de savoir a priori si
la connaissance des déformations est nécessaire pour, si ce n’est le cas, éliminer le coûteux
transfert du tenseur F.

Notons enfin que ce transfert est, bien entendu, inévitable lors de l’utilisation d’un
matériau hyperélastique. Néanmoins, dans ce cas, il n’est pas nécessaire de transférer les
contraintes.
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4.3.5 Exemple

Pour illustrer le choix des variables à convecter, imaginons un problème mécanique 2D
quasistatique discrétisé avec des éléments de type SRI. Le matériau utilisé est élastoplas-
tique à écrouissage linéaire. Les champs à convecter sont, d’une part, la pression p définie
au point de Gauss volumique de l’élément et, d’autre part, les composantes du déviateur s

des contraintes de Cauchy et la déformation plastique équivalente ǭp aux points de Gauss
déviatoriques, soit au total cinq grandeurs scalaires par élément fini. Le tableau 4.1 montre
l’évolution de ce nombre si on modifie certains paramètres du problème. On peut donc
facilement avoir plus de 30 grandeurs à convecter pour un problème plus complexe.

PG
volumique

PG
déviatoriques

nœuds Total

SRI 2D
matériau élastoplastique

p sx x , sx y ,
sy y , ǭp

– 5

+ dynamique implicite
(Chung Hulbert)

– – +vx , vy ,
ax , ay

+4 = 9

+ calcul des déformations – +Fx x , Fx y ,
Fy x , Fy y

– +4= 13

2D→ 3D – +sxz , syz,
Fxz, Fyz,

Fzx , Fz y , Fzz

+vz, az +9= 22

+ thermique – – +T , Ṫ +2= 24

SRI→ EAS – +σ̃x x , σ̃x y ,
σ̃xz

σ̃y x , σ̃y y , σ̃yz

σ̃zx , σ̃z y , σ̃zz

– +9= 33

+ écrouissage cinématique
(1 tenseur de back-stress)

– +αx x , αx y , αxz

αy y , αyz

– +5= 38

TABLEAU 4.1 – Evolution du nombre de variables à convecter en fonction du type de problème.
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4.4 Méthode de Godunov

Nous reprenons dans cette section les travaux effectués par Huerta, Casadei et Do-
néa [47, 114, 115] pour résoudre le problème de transport des grandeurs aux points de
Gauss par la méthode des volumes finis ou, plus précisément, la méthode de Godunov.

4.4.1 Discrétisation de l’équation

Soit un domaine de calcul V subdivisé en cellules de contrôle V . Ces cellules sont des
polyèdres (des polygones à 2D) tout à fait quelconques. Le champ scalaire σ (une des
grandeurs à convecter dont nous avons parlé à la section 4.3) est défini sur V au temps t
et vaut σL. On recherche sa valeur σE en t +∆t grâce à l’équation (4.1). Celle-ci peut être
réécrite sous forme conservative en définissant le produit Y = σ c :

∂σ

∂ t
+∇ · Y = σ∇ · c (4.47)

La méthode des volumes finis consiste à construire une forme faible en intégrant direc-
tement cette relation sur le volume V :

∫

V

(
∂σ

∂ t
+∇ · Y) dV =

∫

V

(σ∇ · c) dV (4.48)

La méthode de Godunov [89] consiste à choisir une approximation constante de σ sur
chaque cellule de contrôle de volume V . On peut également écrire une équation valable
pour chaque cellule en remplaçant simplement V par V dans l’équation (4.48). En appli-
quant ensuite le théorème de Green pour transformer les intégrales des dérivées spatiales
de Y et c en intégrales sur la frontière de la cellule, on obtient :

∫

V

∂σ

∂ t
dV = σ̄

∮

S

c · n dS −
∮

S

Y · n dS (4.49)

où σ̄ est la valeur de σ dans la cellule V , S est la frontière et n est la normale extérieure
unitaire. Le champ σ et sa dérivée temporelle sont supposés spatialement constants sur le
volume V . La relation (4.49) devient :

∂σ̄

∂ t
V = σ̄

∮

S

c · n dS −
∮

S

Y · n dS (4.50)

L’intégrale sur la frontière complète S de la cellule de contrôle peut être transformée en une
somme d’intégrales sur les N sous-surfaces Si qui la composent (S =

⋃

Si). On remplace
ensuite Y par sa valeur sur la frontière (Y = σS

i c où σS
i désigne la valeur de σ sur Si). On

obtient ainsi :

∂σ̄

∂ t
=

1

V

N∑

i=1

 

(σ̄−σS
i )

∫

Si

c · n dSi

!

=
1

V

N∑

i=1

(σ̄−σS
i ) fi (4.51)
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où l’on a introduit le flux fi =
∫

Si
c ·n dSi. Puisque σ est discontinu au passage des frontières

entre volumes, la valeur de σS
i n’est pas bien définie. On choisit donc de l’exprimer comme

une combinaison de la valeur de σ dans la cellule traitée (σ̄) et la valeur σ dans la cellule
voisine partageant la frontière Si (valeur notée σi).

σS
i =

1+α sign( fi)

2
σ̄+

1−α sign( fi)

2
σi (4.52)

où α est un paramètre de décentrage (upwind) pouvant être choisi dans l’intervalle [0,1].
La valeur α = 0 correspond à la valeur moyenne des deux volumes voisins et fournit donc
un schéma centré. Si α = 1, la valeur de σ sur la frontière est évaluée uniquement dans le
volume amont par rapport à la direction de convection et le schéma résultant sera totale-
ment décentré (full upwind ou full donor scheme ou simplement donor cell).

Finalement, en substituant l’équation (4.52) dans (4.51), on obtient :

∂σ̄

∂ t
=

1

2V

N∑

i=1

fi(σi − σ̄)(1−α sign( fi)) (4.53)

Grâce à cette méthode, on arrive donc à décomposer un problème initialement tridi-
mensionnel ou bidimensionnel en une série de problèmes unidimensionnels définis aux
interfaces des cellules de contrôle dans les directions normales à celles-ci. Il reste à discréti-
ser temporellement l’équation obtenue. On utilise pour ce faire un schéma d’Euler explicite
pour lequel les valeurs géométriques V et fi sont évaluées sur la configuration finale.

σE = σL +
∆t

2V E

N∑

i=1

f E
i (σ

L
i −σL)(1−α sign( fi)) (4.54)

où l’exposant E correspond à la solution « eulérienne » recherchée en t +∆t et l’exposant
L désigne le champ « lagrangien » à l’instant t .

L’intégration explicite est une nécessité dans le cadre du formalisme ALE pour garantir
une résolution rapide du problème. Tout en simplifiant grandement les calculs, cela limite
considérablement la quantité de mémoire nécessaire par rapport à une résolution implicite
puisqu’il n’y a pas de système d’équations à inverser. Par contre, on obtient ainsi une stabilité
conditionnelle du schéma.

4.4.2 Précision et stabilité

En termes de précision temporelle, le schéma (4.54) est du premier ordre. Il est égale-
ment du premier ordre spatialement. En effet, si on le particularise au cas unidimensionnel
sur un maillage uniforme pour une vitesse c constante, on obtient :

σE
m = σ

L
m−

c∆t

2h

�

−(σL
m−1−σL

m)(1+α) + (σ
L
m+1 −σL

m)(1−α)
�

(4.55)

où l’indice m est relatif à la position spatiale dans la grille de calcul et h est la distance
séparant deux points sur cette grille. En définissant le nombre de Courant (ou nombre CFL)
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par le rapport C = c∆t/h et en réarrangeant les termes, on transforme cette combinaison
de deux dérivées décentrées avant et arrière en une dérivée centrée et un opérateur de
diffusion.

σE
m = σ

L
m−

C

2
(σL

m+1 −σL
m−1) +

Cα

2
(σL

m+1− 2σL
m+σ

L
m−1) (4.56)

Cette diffusion contrôlée par le paramètre α permet de stabiliser le schéma centré obtenu
avec α = 0. On essaye ainsi de se rapprocher d’un schéma du deuxième ordre bien que le
schéma tel qu’il est décrit par l’équation (4.56) soit toujours du premier ordre. Une analyse
classique de Von Neuman (voir Boman [27]) donne la limite de stabilité du schéma (4.56)
(condition CFL) :

0 ≤ C ≤ α (4.57)

On voit donc que le déplacement convectif maximal admissible sera d’autant plus grand
que α est grand. En particulier, si α= 0, le schéma est inconditionnellement instable.

Un autre aspect très intéressant est la préservation de la monotonicité de la solution,
c’est-à-dire que si le champ σL est une fonction monotone, alors σE conservera cette pro-
priété. Autrement dit, le schéma ne créera pas d’oscillations dans la solution si celle-ci n’en
possède pas initialement. De plus, il n’amplifiera pas les extrema existants. Dans le cadre
plus général de la mécanique du solide, il est souhaitable que le schéma de transfert utilisé
ait cette qualité et ne crée donc jamais de nouveaux minima ou maxima dans la solution,
ne serait-ce que pour garantir que les variables convectées restent dans leur domaine de
validité physique (par exemple, conserver une déformation plastique positive).

Godunov [89] a montré que les schémas préservant la monotonicité de la solution sont,
au mieux, du premier ordre (Godunov’s order barrier theorem – voir aussi Wesseling [204]).
Les schémas d’ordre supérieur ne possèdent cette propriété que dans le cas très particulier
où C = 1. La condition nécessaire et suffisante de préservation de la monotonicité est
obtenue en exprimant le schéma sous la forme :

σE =
∑

i

γiσ
L
m+i (4.58)

Elle s’écrit alors simplement γi ≥ 0. Dans le cas du schéma (4.54) on obtient ainsi α ≥ 1.
En combinant cette relation avec la condition CFL (4.57), on déduit que la seule valeur
du paramètre d’upwind α qui fournit un schéma stable sans oscillations est α = 1. Nous
utiliserons donc exclusivement cette valeur pour les applications. Le schéma devient alors :

σE = σL +
1

V E

N∑

i=1

∆Vi(σ
L
i −σL)

(1− sign(∆Vi))

2
(4.59)

= σL +
1

V E

∑

∆Vi<0

∆Vi(σ
L
i −σL) (4.60)

où le temps artificiel a été supprimé en remplaçant les flux fi par les volumes∆Vi = fi∆t et
où la somme est limitée aux termes pour lesquels ces volumes sont négatifs (flux entrants).

À deux dimensions ou plus, la condition CFL (4.57) est toujours valide si le nombre de
Courant est calculé de la manière suivante :

C(α) = −
1

V E

N∑

i=1

∆Vi

(1−α sign(∆Vi))

2
≤ α (4.61)
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V
E

S VD i
DVi <0

configuration
eulérienne

configuration
lagrangienne

FIGURE 4.15 – Evaluation de la limite de stabilité à 2D. La somme des volumes en gris, représentant le flux qui
entre dans la cellule, ne peut pas être supérieur au volume de la cellule dans sa configuration eulérienne
(hachuré).

On obtient pour α = 1 l’expression :

C =−
1

V E

∑

∆Vi<0

∆Vi ≤ 1 (4.62)

La condition de stabilité C ≤ 1 exprime que la somme des volumes balayés par les
arêtes entrant dans la cellule ne peut pas excéder son propre volume. Sur un maillage
non régulier, la condition est applicable à chaque cellule. On obtient donc min(C) ≤ 1.
Autrement dit, pour une translation uniforme d’un maillage non régulier, c’est la valeur
de C de la plus petite maille qui impose la limite de stabilité et, de ce fait, la valeur du
déplacement convectif maximal admissible.

x

s

L = 300 mm, 300 cellules

l = 0.1L

0

d Ltot = 0.7

1

FIGURE 4.16 – Description du test de convection 1D
d’un signal carré sur une distance égale à 7× sa
largeur.

200 220 240 260 280 300

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Position [mm]

σ

α=1

α=0.5

FIGURE 4.17 – Influence du paramètre de décen-
trage α sur la solution finale (α varie de 0.5 à 1
par pas de 0.1 – C=0.5).

La figure 4.16 montre la géométrie d’un test de convection simple unidimensionnel sur
un maillage eulérien de longueur L constitué de 300 cellules identiques. Il s’agit de la
translation d’un signal carré de largeur l = L/10 sur une distance dtot = 0.7 L. Le nombre
de Courant C est choisi égal à 0.5. La figure 4.17 montre le résultat de la convection pour
différentes valeurs de α comprises entre C et 1. Les valeurs proches de C provoquent des
oscillations, tandis que les valeurs plus élevées de α induisent une dissipation numérique
importante.
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230 240 250 260 270 280

0

0.2

0.4

0.6

0.8

1
C=1

C=0.02

C=0.9

Position [mm]

σ

FIGURE 4.18 – Influence du nombre de Courant C sur la forme finale du signal (α = 1 et C = 0.02, 0.1, 0.5,
0.8, 0.9, 1). La solution exacte est obtenue pour C = 1.

La figure 4.18 montre l’influence du nombre de Courant sur la solution finale pour une
valeur unitaire du paramètre de décentrage α. La diffusion est d’autant plus importante que
C est faible. En particulier, si C = 1, la solution exacte est obtenue.

4.4.3 Elements à un point de Gauss

La résolution par volumes finis se prête particulièrement bien au transfert des grandeurs
aux points de Gauss si on utilise des éléments finis sous-intégrés (un seul point de Gauss).
Dans ce cas, le maillage des volumes finis coïncide exactement avec le maillage des élé-
ments finis comme le montre la figure 4.19. La valeur moyenne du volume est la valeur du
point de Gauss de l’élément correspondant. Les volumes ainsi définis sont appelées cellules
barycentriques (on parle de cell-centered finite volumes).

maillage des éléments finis maillage des volumes finis

noeud

point de Gauss

point de collocation

volume fini1

FIGURE 4.19 – Elements finis à un seul point de Gauss et maillage associé de volumes finis utilisé pour le
transfert des grandeurs. Un volume fini a été grisé pour faciliter la comparaison avec les figures 4.21
et 4.30.
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4.4.4 Extension à plus d’un point de Gauss

Lorsqu’on utilise une intégration plus riche des éléments finis (deux points de Gauss par
direction), la situation devient plus complexe et la formulation précédente ne peut plus être
appliquée telle quelle. Huerta, Casadei et Donéa [47, 114] proposent deux méthodes pour
surmonter la difficulté.

La première consiste à étendre la méthode précédente en définissant une approximation
bilinéaire du champ σ à convecter au lieu de l’approximation constante. Les fonctions de
forme N I suivantes permettent d’interpoler exactement les valeurs aux points de Gauss
dans le cas d’un quadrangle et de quatre points d’intégration :

N I(ξ,η) =
1

4

�

1+
ξ

ξI

��

1+
η

ηI

�

(4.63)

où (ξ,η) sont les coordonnées réduites du quadrangle considéré et (ξI ,ηI), les coordonnées
du point de Gauss I . Une nouvelle forme intégrale est créée à partir de (4.47) en multipliant
cette relation par une fonction test ω(x ) et en l’intégrant sur le volume V d’une cellule.
Puisque σ n’est plus constant sur la cellule de contrôle, on obtient cette fois :

∫

V

ω
∂σ

∂ t
dV =

∮

S

ω (σ c · n) dS +

∫

V

∇ω · Y dV −
∮

S

ω (Y · n) dS (4.64)

Cette relation est discrétisée spatialement en choisissant ω = N I puis temporellement
par un schéma d’Euler explicite pour obtenir une équation matricielle pour chaque élément :

MσE =MσL +∆t (CσL − f ) (4.65)

où M est une matrice diagonale et f regroupe les intégrales de surface, évaluées sur les
frontières de la cellule de contrôle à l’aide d’une expression similaire à (4.52). On obtient
ainsi une relation légèrement plus complexe que (4.54) qui a l’avantage de conserver la
coïncidence entre le maillage élément fini utilisé pour la phase lagrangienne et le maillage
volume fini de la phase de transport.

Cependant, d’après ses auteurs, cette extension directe de la méthode de Godunov n’in-
troduit pas suffisamment de dissipation et se révèle instable en pratique. Des oscillations
parasites apparaissent pour des déplacements convectifs importants. Ce comportement est
prévisible puisque la méthode utilisée s’apparente à une reconstruction linéaire locale sur
chaque élément qui rend le schéma comparable à un schéma du second ordre (voir sec-
tion 4.5 ci-après).

Huerta, Casadei et Donéa proposent une deuxième manière d’étendre la méthode de
Godunov aux quadrangles à quatre points de Gauss. Séduits par la simplicité mathématique
du schéma initial, ils définissent un nouveau maillage en divisant chaque élément fini en
quatre volumes finis à l’aide de ses médianes. En procédant de la sorte, chaque point de
Gauss possède sa propre cellule dont le volume est proportionnel au domaine d’influence (et
au poids d’intégration) du point de Gauss sur l’élément. En considérant que σ est constant
sur ce volume, la relation (4.54) est utilisable sans modification et conserve en particulier
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noeud
point de Gauss
échange externe
échange interne

FIGURE 4.20 – Division d’un quadrangle à quatre points de Gauss en quatre volumes en reliant les milieux
des côtés opposés. L’algorithme résultant est appelé Godunov-like par ses auteurs (Huerta, Casadei et
Donéa [47, 114]).

ses propriétés de monotonicité quand α = 1. La difficulté de la méthode est ainsi reportée
dans la construction de ce maillage auxiliaire et de la structure de données nécessaire pour
mettre les deux maillages en corrélation.

maillage des éléments finis maillage des volumes finis

noeud

point de Gauss

point de collocation

volume fini1

FIGURE 4.21 – Elements finis à quatre points de Gauss et maillage associé de volumes finis. Un volume fini a
été grisé pour faciliter la comparaison avec les figures 4.19 et 4.30.

Pour mettre en œuvre le schéma, Huerta, Casadei et Donéa proposent de distinguer
les flux fi échangés à travers les arêtes internes d’un élément fini (flèches noires sur la fi-
gure 4.20) de ceux échangés avec un élément voisin (flèches blanches). Ceci laisse supposer
que le maillage auxiliaire utilisé pour la méthode des volumes finis n’est jamais explicite-
ment créé lors de l’implémentation du schéma.

L’algorithme revient alors à boucler sur chaque élément fini et à calculer tous les échan-
ges internes puis tous les échanges externes. Pour ces derniers il est nécessaire, d’une part,
de déterminer les voisins de l’élément et, d’autre part, d’identifier les points de Gauss en
vis-à-vis. En effet, chaque élément fini peut être orienté de manière quelconque par rapport
à ses voisins comme le montre la figure 4.22 (se référer à Benson [26] pour les détails
d’implémentation et les difficultés liées à ces orientations relatives d’éléments pour des
maillages 2D non structurés). Cette manière de procéder, que nous avons utilisée lors d’une
première implémentation 2D, présente l’avantage d’être économe en mémoire puisque seul
le maillage élément fini est requis. Elle est cependant difficilement transposable à trois di-
mensions où les configurations des éléments les uns par rapport aux autres se multiplient.
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FIGURE 4.22 – Deux orientations (sur les quatre possibles à 2D) de deux éléments quadrangulaires voisins.
Sans construction et stockage du maillage auxiliaire, l’algorithme de transfert doit pouvoir déduire à tout
instant les points de Gauss en vis-à-vis pour le calcul des flux à travers les arêtes.

Il est donc beaucoup plus confortable de créer explicitement le maillage auxiliaire à
partir du maillage des éléments finis. On obtient ainsi un algorithme plus clair, plus rapide
(les sommets du maillage et les relations de voisinage ne sont calculés qu’une seule fois) et
plus général au prix d’une consommation de mémoire plus importante.

FIGURE 4.23 – Division d’un hexaèdre à huit points de Gauss en huit volumes finis hexaédriques. Chaque face
est divisée en quatre quadrangles en reliant le milieu des arêtes opposées, comme à 2D. Les points milieu
des faces opposées de l’hexaèdre sont ensuite reliées au barycentre des huit sommets de ce dernier.

L’extension 3D aux hexaèdres à plusieurs points de Gauss est conceptuellement immé-
diate. La figure 4.23 montre un élément fini hexaédrique découpé en huit volumes finis
autour de ses huit points d’intégration. Pour un maillage donné, chaque élément est dé-
coupé de la sorte et ses volumes sont assemblés dans une nouvelle structure de maillage.
Des liens sont créés entre chaque volume et les grandeurs à convecter au point de Gauss
correspondant. Une fois l’étape complexe de création du maillage auxiliaire effectuée, l’al-
gorithme de convection se réduit à deux étapes :
• une boucle sur les frontières des cellules pour le calcul de ∆Vi.
• une boucle sur les cellules pour la mise à jour de la valeur de σ en fonction des ∆Vi

calculés précédemment.

Il est important de remarquer qu’en divisant chaque élément fini de cette manière, la
position du point de Gauss n’est pas exactement le barycentre du volume fini qui l’entoure.
En effet, lors d’une intégration à deux points de Gauss par direction, ceux-ci sont position-
nés en ξ = ±

p
3/3 ⋍ 0.5774 où ξ ∈ [−1, 1] est la coordonnée réduite dans la direction

considérée. L’erreur commise par cette différence peut être facilement illustrée dans un cas
unidimensionnel.
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FIGURE 4.24 – Profil initial du test de convection.
Le maillage de volumes finis est régulier et fixe.
Le profil possède une vitesse constante uniforme
vers la droite.

x

1 élément fini 1 volume finiv

point de Gauss EF

(= )point de collocation VF

FIGURE 4.25 – Utilisation d’un point de collocation
centré sur le volume (cas d’un élément fini à un
seul point de Gauss).
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FIGURE 4.26 – Utilisation d’un point de collocation
décentré. Configuration initiale. Chaque volume
fini est cette fois la moitié d’un élément fini.

x

q

FIGURE 4.27 – Utilisation d’un point de collocation
décentré. Solution obtenue en un temps t > t0

(l’erreur est volontairement amplifiée).

La figure 4.24 montre le profil initial d’un test de convection simple. Ce profil a pour
équation σ(x) = σ0 + β x . Il se translate vers la droite à une vitesse v. Le maillage des
volumes finis est régulier et fixe dans l’espace. La solution exacte de ce problème est donnée
par σ(x , t) = σ0 + β (x − v t).

Dans un premier temps, on considère que le point de collocation des volumes est cen-
tré. Dans le cadre du formalisme ALE, cela correspond à l’utilisation d’éléments finis sous-
intégrés (un point de Gauss centré sur chaque élément). La reconstruction obtenue est
représentée sur la figure 4.25. La solution obtenue aux points de Gauss de cette manière
est la solution exacte car les flux ∆Vi (σ

L
i+1 − σL

i ) calculés sur les frontières des volumes
sont tous identiques.

Dans un second temps, on utilise des éléments finis à deux points de Gauss. Pour garder
la même taille de volumes finis, les éléments finis sont choisis deux fois plus grands que
précédemment. Le point de collocation de chaque cellule est ainsi légèrement décentré
(figure 4.26) soit en avant, soit en arrière, de manière alternée. Les flux calculés sur les
frontières des cellules ne sont plus tous identiques et, vu leur périodicité (un flux trop
important est suivi d’un flux trop faible), la solution oscille autour de la solution exacte
comme le montre très schématiquement la figure 4.27. Néanmoins, il est intéressant de
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constater que l’intégrale de solution reconstruite sur chaque élément fini à partir des valeurs
aux points de Gauss coïncide toujours avec l’intégrale de la solution exacte. Le schéma à
donc légèrement perdu en précision mais il est toujours conservatif.
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FIGURE 4.28 – Variation de l’angle θ au cours du
temps pour différentes positions ξ du point de
collocation (C = 0.1).
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FIGURE 4.29 – Variation de l’angle θ au cours du
temps pour différentes valeurs du nombre de
Courant C (ξ =

p
3/3).

Pour illustrer ceci, une simulation numérique a été effectuée pour une pente initiale
β = 1 et pour des cellules de taille 1 mm. La figure 4.28 montre l’évolution de la pente de
la solution, interne à un élément fini (θ sur la figure 4.27) en fonction du déplacement pour
plusieurs positions du point de collocation (on choisit un nombre de Courant C = 0.1). On
constate, pour une position ξ donnée, que la valeur de la pente converge progressivement
vers une valeur stable. Cette valeur asymptotique est d’autant plus éloignée de la valeur
initiale θ = α = 1 que la position du point de Gauss est décentrée. En particulier, si le point
de collocation est sur la frontière, la pente finale est la moitié de la pente initiale.

La figure 4.29 montre la même courbe pour une valeur de ξ =
p

3/3 (c’est-à-dire la po-
sition utilisée en pratique pour des éléments à deux points de Gauss) et plusieurs nombres
de Courant. La convergence de β est monotone tant que C ≤ 0.5. Au delà, l’angle oscille
autour de la valeur asymptotique. Dans le cas particulier où C = 1 (le contenu d’une cellule
est transporté entièrement dans la cellule suivante), l’angle oscille continuellement entre
deux valeurs.

Le fait que les points de Gauss ne soient pas centrés dans les cellules lorsqu’on utilise
deux points de Gauss par élément fini entraîne donc une perte de précision locale. Celle-ci
est tout à fait comparable à celle qui serait obtenue en utilisant des points de collocation
centrés sur un maillage non régulier. De plus, cette erreur est relativement faible puisque
ξ =
p

3/3 ⋍ 0.5774 est proche de ξ = 0.5. En conclusion, le phénomène doit être gardé à
l’esprit mais il ne sera généralement pas visible sur les résultats de nos simulations.
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4.4.5 Transfert des grandeurs nodales

Le problème de transfert des grandeurs nodales est plus simple que celui relatif aux
grandeurs des points de Gauss puisque l’on dispose déjà d’une grille de calcul sur laquelle
le champ à convecter est partout défini et continu. On pourrait donc par exemple discrétiser
l’équation (4.1) par une méthode de type SUPG comme nous l’avons fait à la section 4.2.3
à la différence près que, cette fois, aucun maillage auxiliaire n’est nécessaire. Cependant,
il est possible, avec peu d’effort, d’adapter le schéma de Godunov utilisé pour les points de
Gauss et bénéficier ainsi de ses avantages.

Le problème ainsi posé revient à définir un maillage de volumes finis pour lequel les
nœuds du maillage des éléments finis deviennent les points de collocation. Ces cellules sont
appelées median dual cell-vertex ou cellules INRIA (Dervieux [59]). Elles sont construites en
divisant chaque élément du maillage en un nombre de cellules égal à son nombre de nœud
en utilisant le barycentre de l’élément, de ses facettes et de ses arêtes. Toutes les cellules
adjacentes à un nœud sont ensuite fusionnées pour former un polygone (un polyèdre en
3D) englobant le nœud en question. On obtient ainsi le maillage dual du maillage élément
fini.

maillage des éléments finis maillage des volumes finis

noeud

point de Gauss

point de collocation

volume fini1

FIGURE 4.30 – Elements finis et maillage de volumes finis associé aux nœuds. Un volume fini a été grisé pour
faciliter la comparaison avec les figures 4.19 et 4.21.

À titre d’illustration, la figure 4.30 montre un maillage quadrangulaire non structuré
et son maillage dual composé de cellules INRIA. Si le maillage initial est quelconque, il y
a peu de chance pour que le nœud soit le centre de gravité de la cellule ainsi créée. Seul
un maillage structuré parfaitement régulier permettrait d’obtenir cette correspondance. On
peut s’attendre donc à une perte de précision locale du schéma telle que décrite à la sec-
tion 4.4.4.

Encore une fois, la principale difficulté de l’algorithme de convection se situe dans la
gestion du maillage auxiliaire. En pratique, on peut décider de ne pas créer une structure
dédiée et de gérer les échanges entre cellules dans chaque élément fini. Dans le cas des cel-
lules INRIA, tous les transferts sont des transferts internes (flèches noires de la figure 4.20).
Il n’y a pas de transfert entre éléments finis voisins si bien qu’il est relativement simple de
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gérer de cette façon des problèmes 3D (Potapov [172]). En particulier, le problème d’orien-
tation d’éléments voisins (figure 4.22) n’existe pas.

Dans notre implémentation, nous avons préféré construire le maillage dual en début
de calcul pour obtenir plus de souplesse au détriment de la quantité de mémoire utilisée.
Il en découle par exemple que la même routine de convection peut être utilisée pour le
transfert nodal ou le transfert des valeurs aux points de Gauss ; seul le maillage donné est
différent. La construction du maillage dual est simplifiée par le fait que nous disposons
généralement de la découpe des éléments finis en cellules barycentriques autour des points
de Gauss. Le maillage INRIA est donc simplement construit en fusionnant toutes les cellules
barycentriques adjacentes à un nœud. Cette opération de fusion consiste à déterminer la
frontière de chaque cellule INRIA en éliminant les facettes internes communes à plusieurs
cellules barycentriques qui la composent.

4.4.6 Prise en compte des conditions aux limites

L’équation (4.1) est hyperbolique. Il est donc nécessaire d’imposer des conditions aux
limites sur les frontières pour lesquelles c ·n ≤ 0 ou plus simplement d ·n ≤ 0. Ce problème
est très peu discuté dans la littérature relative au formalisme ALE. La figure 4.31 illustre
schématiquement la détermination des portions de frontière sur lesquelles des conditions
aux limites doivent être imposées. Le nombre de ces zones est fonction du type de reposi-
tionnement choisi et peut varier au cours de la simulation.

d

d

d

n

n

n
configuration
lagrangienne

configuration
eulérienne

conditions aux
limites nécessaires

FIGURE 4.31 – Zone d’application des conditions aux limites. Elle est déterminée simplement grâce au signe
des flux ∆Vi calculés sur la frontière.

Localement, au niveau de la frontière Si d’une cellule donnée, le problème de détermi-
nation de ces zones est fonction du signe de :

∆Vi =

∫

Si

d · n dSi (4.66)

Lorsque ∆Vi < 0, il faut imposer la valeur de σL
i à l’extérieur du maillage des volumes

finis, au delà de la frontière Si (équation (4.60)). Cette manière d’imposer les conditions
aux limites par la valeur d’un flux est naturelle dans une résolution par la méthode des
volumes finis et très pratique. On parle d’imposition faible des conditions aux limites par
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opposition à ce que l’on fait généralement dans la méthode des éléments finis où la valeur
est directement assignée aux nœuds du maillage.

Dans le cas de l’équation (4.59) pour laquelle α 6= 1, le schéma demande une valeur de
σL

i même si ∆Vi > 0. Le plus simple, dans ce cas, est de choisir σL
i = σ

L où de manière
équivalente α = 1 pour le flux de matière vers l’extérieur du maillage.

On pourrait penser qu’il suffit donc de définir une valeur à l’extérieur du maillage pour
tous les champs à transférer. Par exemple, fixer le tenseur des contraintes σ au tenseur
nul, la déformation plastique ǭp à zéro, etc. Ceci correspondrait à imposer que la nouvelle
matière qui entre dans le maillage à un moment donné est toujours vierge. En pratique, la
situation est plus complexe.

maillage eulérien
maillage lagrangien
gain de matière
perte de matière

approximation spline
de la frontière

FIGURE 4.32 – Flux de matière parasites dus aux repositionnement des nœuds sur les frontières libres.

Un problème important vient du caractère discontinu de la normale à la frontière ex-
terne du maillage. Lorsque des éléments à géométrie linéaire sont utilisés, il est difficile
de préserver la forme des frontières libres du maillage pour lesquelles aucun flux de ma-
tière n’est permis. Les arêtes des maillages lagrangien et eulérien sont des lignes brisées
qui doivent correspondre au mieux les unes aux autres. Bien que les techniques de reposi-
tionnement présentées au chapitre 3 (section 3.3.2 pour les arêtes et section 3.5.2 pour les
surfaces) permettent de conserver globalement le volume du maillage, elles n’évitent pas
des variations locales de volumes. Ces erreurs sur la géométrie de la frontière se traduisent
par des flux de matière parasites inévitables dès que celle-ci est courbe (figure 4.32). Dans
ce cas, imposer des conditions aux limites correspondant à de la matière vierge va perturber
la solution. C’est d’autant plus vrai dans le cas de la simulation de procédés stationnaires.
En effet, pour ceux-ci, le maillage tend vers une configuration fixe au cours des incréments
temporels pour laquelle les déplacements du maillage et de la matière se stabilisent. Les
flux parasites sont toujours localement de même signe et s’accumulent inévitablement au
cours de la simulation. Il est donc très important de perturber un minimum la solution au
voisinage de la frontière. Ce résultat est obtenu en choisissant σL

i = σ
L ou ∆Vi = 0.

Un deuxième problème courant concernant les conditions aux limites est rencontré
lorsque la matière qui entre dans le maillage n’est pas vierge. Imaginons par exemple une
simulation de laminage pour laquelle une traction amont et aval doit être imposée (fi-
gure 4.33). Il est intéressant de ne mailler qu’une zone restreinte autour de l’emprise du
laminoir qui sera délimitée par deux frontières eulériennes (section 3.5.3). Des conditions
d’entrée appropriées, reflétant l’état de la bande en amont du maillage, doivent être dé-
terminées. Une première solution consiste à calculer analytiquement l’état de contrainte
représentant l’état du matériau sous traction. Ce n’est pas l’idéal car on est alors limité à
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FIGURE 4.33 – Entrée de matière contrainte dans le maillage. Cas du laminage. La traction amont entraîne
un état de contrainte non nul pour la matière qui entre dans la zone maillée.

des cas simples (linéaires). De plus, si la traction doit varier au cours de la simulation, cette
méthode nécessite la mise en place de conditions aux limites variables.

Plus simplement, la méthode retenue consiste à appliquer, comme condition aux limite,
une valeur identique à la valeur dans la cellule frontière, c’est-à-dire, une fois encore σL

i =

σL . Cette solution peut paraître dangereuse du point de vue de la stabilité du schéma
puisqu’elle fait dépendre l’état de la matière entrant dans le maillage de son état en aval.
Cependant, si on s’assure que

∇σ · n ∼= 0 (4.67)

c’est-à-dire que σ ne varie pas selon la normale à la frontière dans un voisinage de celle-
ci, cette méthode reste stable et permet d’éviter des calculs fastidieux et inévitablement
approximatifs. Respecter la condition (4.67) revient, en pratique, à éloigner suffisamment
les frontières eulériennes de l’emprise de laminoir.

En conclusion, dans la majorité des cas, l’imposition des conditions aux limites pour le
schéma de Godunov revient à étendre le champ σ à l’extérieur du maillage à l’aide des
valeurs des cellules frontières. Dans les cas restants, il est toujours possible d’appliquer une
valeur prédéfinie pouvant dépendre éventuellement du temps et de la position sur la fron-
tière. Ceci est fait en ajoutant préalablement une couche de volumes finis supplémentaires
à l’extérieur de la frontière comme représenté en vert sur la figure 4.34.

frontière

couche de volumes
sur la frontière

c

s s= ( , )x t

FIGURE 4.34 – Imposition des conditions aux limites. Création d’une couche de volumes finis supplémentaire
au delà de la frontière. La fonction σ(x , t) peut être imposée de manière tout à fait générale, tant de
manière spatiale que temporelle.
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4.4.7 Calcul des volumes et des flux

Pour obtenir une précision maximale, les volumes doivent idéalement être calculés exac-
tement. À deux dimensions, on utilise les expressions suivantes (Benson [22] – voir aussi
la figure 4.35) :

V = 1
2
(x 31 ∧ x 42) · e3 (4.68)

V = 1
6

�
(r1 + r2+ r3)(x 21 ∧ x 31) + (r1+ r3 + r4)(x 31 ∧ x 41) · e3

�
(4.69)

respectivement pour les quadrangles plans et axisymétriques, où x i j = x i − x j. À trois
dimensions, on utilise une intégration de Gauss à deux points de Gauss dans chaque di-
rection. Une intégration à un point de Gauss est envisageable si les mailles hexaédriques
restent régulières, c’est-à-dire, si leurs faces restent planes.

x1

x2

x4

x3

r1

r2

r4

r3

FIGURE 4.35 – Notations utilisées pour le calcul des volumes.

Le calcul des flux échangés à travers la frontière Si d’un volume fini passe par l’éva-
luation de ∆Vi par l’équation (4.66). En considérant que la géométrie de la frontière est
linéaire (2D) ou bilinéaire (3D), on peut exprimer la surface Si sous la forme d’une inter-
polation de ses sommets :

Si(ξ,η) =
n∑

I=1

N I(ξ,η) x I (4.70)

où N I(ξ,η) sont les fonctions d’interpolation et x I , les n sommets de la frontière Si. En écri-
vant cette relation pour les configurations lagrangienne et eulérienne, puis en soustrayant
les deux expressions, on obtient l’expression du déplacement convectif sur la surface :

d(ξ,η) =
n∑

I=1

N I(ξ,η)d I (4.71)

En introduisant cette expression dans (4.66), on a :

∆Vi =

∫

Si

n∑

I=1

N I(ξ,η)d I · n dSi (4.72)

Dans le cas 2D, l’intégrant est linéaire et on obtient, en utilisant un seul point de Gauss :

∆Vi = n · (
d1 + d2

2
) = (e3 ∧ (x 2 − x 1)) · (

d1 + d2

2
) (4.73)
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FIGURE 4.36 – Calcul et visualisation du flux ∆V à travers une frontière (surface grisée). La normale de
référence utilisée ici est la normale de la frontière eulérienne. Le flux peut être visualisé soit en projetant
les vecteurs d sur la direction normale n (on obtient ainsi un trapèze), soit en déplaçant l’arête eulérienne
au milieu de l’arête lagrangienne (on obtient un parallélogramme dont l’aire est identique au trapèze).

Si cette intégrale est effectuée sur la configuration eulérienne de la facette (Si = SE
i , n =

nE), la figure 4.36 représente deux manières de visualiser le volume calculé.

Dans le cas axisymétrique, en définissant l’expression δ = d · n, l’intégrale est effectuée
analytiquement :

∆Vi =

∫ L

0

δ r ds (4.74)

= L
�

1
3
(δ1r1+δ2r2) +

1
6
(δ1r2+ δ2r1)

�

(4.75)

où L est la longueur de l’arête, s l’abscisse curviligne et r1 et r2 les rayons aux points x E
1 et

x E
2 .
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FIGURE 4.37 – Comparaison des flux (surfaces grises) calculés à partir de la normale eulérienne (à gauche) ou
lagrangienne (à droite). Les flux sont différents si la frontière a subi une rotation ou si sa taille a changé.

Le choix de la configuration à utiliser pour évaluer l’intégrale (maillage lagrangien ou
eulérien) n’est pas du tout anodin si la frontière a subi une rotation lors de l’opération de
repositionnement (figure 4.37). Dans ce cas, les deux valeurs calculées peuvent être très
différentes l’une de l’autre. C’est également le cas sous l’hypothèse axisymétrique lorsque la
frontière subit un mouvement radial. Enfin, si un mouvement de rotation est observé pour
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les facettes de la frontière du maillage, une mauvaise évaluation de l’intégrale entraînera un
flux local parasite de matière qui est susceptible de perturber les résultats. En particulier, si
on imagine une cellule carrée qui subit une rotation rigide de 90 degrés, il semble important
que les flux calculés sur sa frontière soient bien tous nuls.

La solution à ce problème de choix de configuration, inspirée du travail de Benson
[22], est d’utiliser le volume balayé par la frontière au cours de l’opération de reposition-
nement. Ce volume est également appelé volume de transport. Le mouvement de la facette
est interpolé linéairement entre les deux configurations. On utilise donc finalement des for-
mules identiques à celles utilisées pour calculer les volumes des cellules (équations (4.68)
et (4.69)). À trois dimensions, une intégration complète s’impose dans ce cas-ci car les vo-
lumes balayés sont généralement beaucoup moins réguliers que ceux des cellules. L’évalua-
tion du volume balayé devient très coûteuse et Benson [26] recommande alors de multiplier
simplement le déplacement normal moyen par l’aire de la facette dans une configuration
choisie.
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FIGURE 4.38 – Calcul du volume balayé par la facette au cours de l’opération de repositionnement. Cette ma-
nière de calculer le flux permet notamment d’obtenir un flux nul à travers une arête lorsque les extrémités
de celle-ci se déplacent sur un cercle.

Une méthode alternative consiste à utiliser la normale moyenne n = (nE + n L)/2 dans
l’expression (4.73). On obtient ainsi à 2D :

∆Vi = (
nE + n L

2
) · (

d1+ d2

2
) (4.76)

= 1
2

�

(x L
2 − x R

1)∧ (x L
1 − x R

2)
�

· e3 (4.77)

qui est l’expression du volume balayé obtenu par (4.68).
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4.4.8 Algorithme

Comme nous utilisons un schéma d’intégration explicite pour résoudre l’équation de
convection, il n’est pas possible d’utiliser des pas de temps aussi grands que l’on veut. En
particulier, le pas de temps imposé par l’intégration temporelle mécanique peut être trop
grand et provoquer une instabilité lors de la résolution du problème de convection si on n’y
prend garde.

Pour contourner le problème, nous avons décidé d’effectuer des sous-pas lors de la phase
de convection (et uniquement celle-ci). L’utilisateur peut contrôler ce mécanisme en spé-
cifiant une condition CFL à ne pas dépasser. Soit C crit la valeur du nombre de Courant
maximum admissible. La condition s’exprime par C ≤ C crit. La première étape est donc de
calculer le nombre de Courant maximum sur le maillage Cmax =maxi Ci où Ci est évalué à
l’aide de l’expression (4.61). En exprimant Cmax ≤ C crit, on peut en déduire le nombre de
sous-pas nécessaire n = Cmax/C crit arrondi à l’entier supérieur.

Une fois ce nombre de sous-pas calculé, les positions des deux maillages sont calculées
par interpolation linéaire, à défaut de pouvoir faire mieux, entre la configuration lagran-
gienne (x L) et la configuration eulérienne (x E). Le premier sous-pas s’effectue avec les
positions :

x E
1 = x L +

1

n
(x E − x L) (4.78)

x L
1 = x L (4.79)

et les suivants :

x E
i+1 = x E

i + (x
E
i − x L

i ) (4.80)

x L
i+1 = x E

i (4.81)

où i ∈ [1, n− 1] est le numéro du sous-pas. Avant chaque sous-pas, les points auxiliaires
des maillages de volumes finis provenant de la découpe des éléments sont mis à jour en
fonction des positions nodales. Si les valeurs des conditions aux limites sont variables, elles
doivent également être adaptées à chaque sous-pas.

Le nombre de sous-pas est variable et dépend fortement du type de problème envisagé.
Par exemple, pour un problème où le formalisme ALE est uniquement utilisé pour lisser le
maillage, les déplacements convectifs sont généralement faibles sur un incrément temporel
et le nombre de sous-pas est généralement constant et égal à un. Par contre, pour des pro-
blèmes quasi eulériens ou pour des problèmes possédant des zones très finement maillées
(pour rappel, le nombre C se calcule sur la plus petite maille du maillage), le nombre de
sous-pas peut être plus élevé (n > 10).
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4.5 Extension au second ordre

4.5.1 Le transfert vu comme un opérateur de projection

Pour améliorer le schéma de Godunov présenté précédemment (section 4.4), il est com-
mode de reformuler le problème de transfert comme une opération de projection en le ré-
solvant sous la forme (4.2). Cette équation exprime que le champ σ ne doit pas être modifié
pendant la phase de transfert. Cette approche, initialement utilisée par Benson [22, 26],
présente l’avantage d’éviter toute intégration temporelle dans l’algorithme de résolution.

Considérons un volume V auquel correspond deux maillages constitués de cellules de
volume Vi (il nous arrivera de désigner la cellule par son volume ; on parlera ainsi de la
cellule Vi). La valeur du champ scalaire σ s’exprime, sur ces cellules, par σ(x ) = Ni(x )σi.
Dans le cadre du formalisme ALE, les deux maillages sont évidemment les maillages eulé-
rien et lagrangien dont les grandeurs sont distinguées respectivement par les exposants E
et L.

En toute généralité, une projection du maillage lagrangien vers le maillage eulérien
débute en construisant une mesure de l’erreur e(x ) définie en tout point du volume V :

e(x ) = N E
i (x)σ

E
i − N L

i (x )σ
L
i (4.82)

Projeter le champ σ d’un maillage sur l’autre revient à annuler une norme de cette erreur
sur le volume V : ∫

V

ωi(x) e(x ) dV = 0 (4.83)

où lesωi(x ) sont des fonctions de pondération et où on considère, sans perte de généralité,
que V = VL = VE. La qualité de l’algorithme obtenu est fonction de la norme choisie
par l’intermédiaire des fonctions ωi(x ) et de la qualité de l’interpolation du champ par
l’intermédiaire des fonctions Ni(x ). En s’assurant que

∑

iωi = 1 sur V, annuler la norme
de l’erreur revient à égaler l’intégrale du champ σ sur le volume V :

∫

V

σE dV=

∫

V

σL dV (4.84)

Dans ce contexte, le schéma de Godunov peut être réécrit comme un opérateur de
projection pour lequel les fonctionsωi(x) et Ni(x ) sont identiques et constantes par cellule.
Discontinues à travers les frontières, elles valent 1 sur la cellule i et sont nulles partout
ailleurs. On obtient ainsi une équation pour le volume i :

∫

V E
i

σE
i dV =

∫

V E
i

σL dV (4.85)

où les deux membres de l’équation sont intégrés sur la configuration eulérienne de la cellule
i. Cette relation donne donc explicitement la valeur de σE

i sur cette cellule. L’intégrale du
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second membre est décomposée en une somme d’intégrales sur les volumes définis par les
intersections des deux maillages (voir figure 4.39) :

∫

V E
i

σE
i dV =

∫

V L
i

σL dV +
∑

j 6=i

∫

V L
j

⋂

V E
i

σL dV −
∑

j 6=i

∫

V L
i

⋂

V E
j

σL dV (4.86)

maillage
eulérien

maillage
lagrangien

= + -V
E

i

V
L

i

FIGURE 4.39 – Décomposition des intégrales intervenant dans l’algorithme de projection. Lorsque les deux
maillages ont la même topologie, cette décomposition permet d’éviter la coûteuse opération de localisation
des zones de recouvrement des mailles du premier maillage sur le second. Néanmoins, le champ d’applica-
tion de la méthode se voit alors limité à des déplacements convectifs inférieurs à la taille d’une maille.

Par rapport à une approche utilisant la méthode des volumes finis (section 4.4), la
dérivée temporelle est donc remplacée par des intégrales spatiales. La précision de la mé-
thode dépend ainsi, d’une part, de la qualité de l’intégration numérique de ces intégrales et,
d’autre part, de la qualité de la reconstruction de la solution utilisée (via les fonctions Ni(x )

qui, jusqu’à présent, sont constantes). En particulier, si le champ σ, défini sur le maillage
lagrangien, peut être représenté de manière exacte sur le maillage eulérien, l’opérateur de
projection n’introduira aucune erreur. Par contre, la précision de l’approche convective, qui
consistait à intégrer une dérivée temporelle (section 4.4), est inévitablement limitée par
l’ordre du schéma d’intégration temporelle utilisé.

En pratique, le calcul des volumes délimités par les intersections de deux maillages
est un problème géométrique difficile, surtout en 3D, et c’est pourquoi Benson décide de
construire sa méthode de transfert sur base d’un schéma unidimensionnel.

xxE

i xL

i xE

i+1 xL

i+1

s
L

i+1

s
L

i-1

s
L

i

flux entrant
flux sortant

FIGURE 4.40 – Opérateur de projection 1D. Reconstruction constante de σ sur chaque cellule.
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Dans le cas de la figure 4.40, l’équation (4.85) se réécrit de la manière suivante en
décomposant les intégrales :

(x E
i+1− x E

i )σ
E
i = (x L

i − x E
i )σ

L
i−1 + (x

E
i+1− x L

i )σ
L
i (4.87)

= (x L
i − x E

i )σ
L
i−1 + (x

L
i+1− x L

i )σ
L
i − (x

L
i+1 − x E

i+1)σ
L
i (4.88)

où on a fait implicitement l’hypothèse que le déplacement convectif ne dépasse pas la taille
d’une maille. À ce stade, il est intéressant de montrer l’équivalence de l’approche par pro-
jection et l’approche par volumes finis. En définissant Vi = x i+1 − x i, ∆Vi = x L

i − x E
i et en

remarquant que
V L

i = V E
i +∆Vi+1 −∆Vi (4.89)

on réécrit l’équation précédente sous la forme :

V E
i σ

E
i = (V

E +∆Vi+1 −∆Vi)σ
L
i +∆Viσ

L
i−1 −∆Vi+1σ

L
i (4.90)

c’est-à-dire en réarrangeant les termes :

σE
i = σ

L
i +

1

V E
i

∆Vi (σ
L
i−1 −σ

L
i ) (4.91)

qui est l’expression (4.60) écrite dans le cas unidimensionnel. À deux ou trois dimen-
sions, l’équivalence entre les deux méthodes n’est pas automatiquement retrouvée. Des
différences peuvent provenir de la manière dont les volumes ∆Vi sont calculés (voir sec-
tion 4.4.7). En conséquence, une relation du type (4.89) ne peut pas toujours être écrite.
Enfin, la méthode des volumes finis ne permet pas de prendre en compte naturellement les
flux de coin, c’est-à-dire les volumes adjacents qui partagent uniquement un sommet avec
la cellule (voir section 4.5.4.1), contrairement à la formulation par projection.

4.5.2 Reconstruction linéaire

Le schéma de transfert précédent, qu’il soit déduit de la méthode des volumes finis ou
qu’il vienne de la discrétisation d’un opérateur de projection, possède une précision spatiale
du premier ordre. Pour augmenter celle-ci, il est nécessaire de construire préalablement
une approximation plus élaborée du champ σ sur le maillage lagrangien. En utilisant une
reconstruction linéaire sur chaque cellule :

σL
i (x) = σ̄

L
i +∇σ

L
i · (x − x̄ i) (4.92)

où ∇σL
i est le gradient de σL supposé constant sur la cellule i. Les valeurs x̄ i et σ̄L

i sont
respectivement la position du centre de gravité de la cellule et la valeur de σL en ce point.
Elles doivent vérifier la relation :

∫

V L
i

�

σ̄L
i +∇σ

L
i · (x − x̄ i)

�

dV = V L
i σ̄

L
i (4.93)

qui revient à dire que l’intégrale sur une cellule est indépendante de la valeur du gradient.
Dans ces conditions, le schéma est conservatif quel que soit ∇σL

i .
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En injectant (4.92) dans (4.86), on obtient :
∫

V E
i

σE
i dV =

∫

V L
i

�

σ̄L
i +∇σ

L
i · (x − x̄ i)

�

dV

+
∑

j 6=i

∫

V L
j

⋂

V E
i

�

σ̄L
i +∇σ

L
i · (x − x̄ i)

�

dV

−
∑

j 6=i

∫

V L
i

⋂

V E
j

�

σ̄L
i +∇σ

L
i · (x − x̄ i)

�

dV (4.94)

Par rapport au cas précédent, les intégrales sont plus difficiles à évaluer puisque σ n’est
plus constant sur les volumes définis par l’intersection des deux maillages. À une dimension,
il est cependant possible d’utiliser une intégration à un point de Gauss et d’obtenir une
expression exacte du schéma. La figure 4.41 illustre la situation dans une configuration
similaire à celle traitée précédemment. On obtient cette fois :

[x E
i+1− x E

i ] σ
E
i ( x̄ i) = [x L

i+1− x L
i ] σ

L
i ( x̄ i)

+[x L
i − x E

i ] σ
L
i−1(

1
2
[x L

i + x E
i ])

−[x L
i+1 − x E

i+1] σ
L
i (

1
2
[x L

i+1+ x E
i+1]) (4.95)

où les deux derniers termes peuvent être vus respectivement comme un flux entrant et un
flux sortant de la cellule i.
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FIGURE 4.41 – Opérateur de projection 1D. Recons-
truction linéaire de σ sur chaque cellule.
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FIGURE 4.42 – Calcul du gradient au point x̄ L
i grâce

aux valeurs des deux cellules voisines (Van Leer
[200]).

Ce schéma unidimensionnel est une extension du schéma de Godunov proposée par
Van Leer [200]. Pour obtenir une précision du second ordre, plusieurs expressions du gra-
dient ∇σL

i sont possibles. Van Leer propose de construire une parabole qui passe par les
valeurs aux points i − 1, i, et i + 1 (figure 4.42). Le gradient est la pente de la parabole
évaluée en i. On obtient :

∇σL
i =
∂σi

∂x
=
(σi+1 −σi)∆x2

i + (σi −σi−1)∆x2
i+1

∆x i∆x i+1(∆x i +∆x i+1)
(4.96)

avec ∆x i = x̄ i − x̄ i−1. Ce gradient donne une précision du second ordre, mais ne préserve
pas la monotonicité de la solution (voir section 4.4.2). Pire, le schéma résultant est instable.
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Pour le comprendre de manière intuitive, la figure 4.43 illustre la création d’un nouveau
minimum dans la solution : le gradient calculé en x̄ L

i a une pente suffisamment négative
pour que σL

i (x
L
i+1) soit inférieur à la valeur de σ dans la cellule adjacente en amont. Cette

cellule va donc recevoir un flux négatif et la mise à jour sera telle que σ̄E
i+1 < σ̄

L
i+1. En

imaginant que toutes les cellules amont ont la même valeur, le schéma provoque ainsi
l’apparition d’un nouveau minimum dans la cellule i + 1.

x
L

i x
L

i+1x L

i-1

s
L

i

s
L

i-1

s
L

i+1=0
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L

i -1
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i+1 x
L

i+1

flux négatif

Ñs

Ñ =s
2 Dx

si =Dx c te

FIGURE 4.43 – Origine des oscillations produites par un schéma du second ordre 1D. Le flux au point x i+1 est
négatif car la reconstruction linéaire est localement négative au voisinage de ce point. Ce flux est reçu par
la cellule i+1 dont la valeur σi+1 initialement nulle va diminuer, créant ainsi un nouveau minimum dans
la solution.

Pour caractériser la monotonicité d’un schéma, on introduit le concept de variation
totale (TV ou Total Variation) de la solution :

TV(σ) =
∑

i

‖σi+1 −σi‖ (4.97)

Le schéma sera alors dit TVD (Total Variation Diminishing) lorsqu’il vérifie

TV(σE) ≤ TV(σL) (4.98)

Cette condition est plus restrictive que la simple préservation de la monotonicité. Un
schéma TVD préserve toujours la monotonicité de la solution (Harten [106]). L’inverse
n’est pas toujours vrai.

En traduisant cette condition TVD sur le schéma précédent, Van Leer déduit une nou-
velle expression du gradient, fonction des valeurs de σ dans les cellules voisines :

σ′i =
1
2

�

sign(∇̃σi) + sign(∇̃σi+1)
�

min
��
�∇σi

�
� , |∇̃σi|, |∇̃σi+1|

�

(4.99)
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∇̃σi =
σ̄L

i − σ̄L
i−1

x̄ L
i − x L

i

et ∇̃σi+1 =
σ̄L

i+1 − σ̄L
i

x L
i+1− x̄ L

i

(4.100)

où ∇σi est toujours évalué à l’aide de l’équation (4.96).

Cette nouvelle expression du gradient inclut un limiteur de flux. Le schéma qui en dé-
coule est cette fois stable et monotone. Il est connu sous le nom de schéma MUSCL (Mono-
tone Upstream-centered Scheme for Conservation Laws) de Van Leer [200]. Il est de second
ordre partout où la solution varie faiblement, c’est-à-dire lorsque les expressions (4.100)
n’interviennent pas dans l’expression du gradient σ′i. Le limiteur revient à utiliser locale-
ment un schéma du premier ordre, dans les zones où le champ σ varie brusquement, pour
garantir la monotonicité de la solution.
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FIGURE 4.44 – Utilisation d’un limiteur de flux (schéma MUSCL). Le gradient∇σ est calculé puis comparé aux
valeurs ∇̃σi et ∇̃σi+1. Dans ce cas-ci, |∇σ| > |∇̃σi+1| et le gradient doit être réduit, en valeur absolue, à
cette valeur limite. Le flux en x i+1 est ainsi positif et la valeur de σ̄i+1 ne diminuera pas.

La figure 4.44 montre le calcul du gradient limité dans le cas de l’exemple précédent.
On constate que le flux négatif est transformé en un flux inutilement positif. Il est donc
possible d’améliorer le limiteur en utilisant les expressions suivantes (Benson [22]) si le
flux sort de la cellule i :

∇̃σi =
σ̄L

i − σ̄L
i−1

x̄ L
i −

1
2
(x E

i + x L
i )

et ∇̃σi+1 =
σ̄L

i+1 − σ̄L
i

1
2
(x E

i+1+ x L
i+1)− x̄ L

i

(4.101)

Le résultat de ce nouveau limiteur est illustré sur la figure 4.45 pour laquelle seule la
valeur de ∇̃σi+1 change puisque le flux est sortant en x L

i+1.

Si on effectue le test de convection unidimensionnel de la section 4.4.2 (page 114), on
constate immédiatement l’effet de la reconstruction linéaire (figure 4.47) sur la qualité de
la convection. La solution finale est beaucoup plus proche de la solution exacte qu’avec le
schéma de Godunov.
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FIGURE 4.45 – La valeur de ∇̃σi+1 peut être amé-
liorée en calculant la valeur du gradient qui en-
traînera un flux exactement nul en x i+1.
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FIGURE 4.46 – Amélioration du limiteur de flux.
Zoom sur la partie intéressante de la figure 4.45.
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FIGURE 4.47 – Test de convection sur maillage fixe d’un signal carré sur une distance égale à 7× sa largeur.
Comparaison des solutions obtenues avec une reconstruction constante (Godunov) et linéaire (Van Leer).
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4.5.3 Schéma axisymétrique

L’extension au cas axisymétrique du schéma précédent n’est pas immédiate. En effet, si
on utilise des cellules barycentriques traditionnelles, le point de collocation est au centre
de gravité de l’élément qui correspond à la position du point de Gauss utilisé par le calcul
lagrangien. Une reconstruction linéaire de σ autour de ce point ne vérifie pas la relation
(4.93). Autrement dit, l’intégrale de σ sur la cellule dépend directement de la valeur du
gradient. Pour des éléments 1D axisymétriques, la position du point r̄i vérifiant (4.93) est
donnée par :

r̄i = rm
i +
(∆ri)

2

12 rm
i

(4.102)

où rm
i =

1
2
(ri + ri+1) et ∆ri = ri+1 − ri. Ce point est d’autant plus éloigné du barycentre

de la cellule que celle-ci est proche de l’axe de symétrie (figure 4.48). En utilisant le point
milieu rm

i au lieu de r̄i, on introduit une erreur dans le schéma. Benson [22] montre que
cette erreur commise sur le calcul des flux est indépendante de la distance à l’axe. Utiliser
r̄i n’est pas non plus une solution puisque la valeur de σ de la cellule provient de la valeur
du point de Gauss situé en rm

i .

ri

m

ri+1ri
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volumes égaux

si

FIGURE 4.48 – Choix du centre de la reconstruction
linéaire. On peut choisir le milieu du segment rm

i
ou le centre de gravité r̄i .
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FIGURE 4.49 – Calcul du flux pour un problème axi-
symétrique. L’intégrant n’est pas linéaire et re-
quiert idéalement deux points de Gauss.

En conséquence, nous décidons d’utiliser toujours le point milieu rm
i dans le cas axi-

symétrique comme centre de la reconstruction (à deux dimensions, il s’agira du centre de
gravité du volume comme s’il n’était pas axisymétrique). L’erreur qui en découle est d’au-
tant plus élevée que les flux radiaux sont importants. Dans le cas de simulations où ces flux
sont prépondérants, l’utilisation d’une reconstruction linéaire peut entraîner l’instabilité du
schéma et l’apparition d’oscillations dans la solution. Pour de tels tests, nous choisirons
d’annuler le gradient dans la direction radiale pour éviter ce phénomène. On retrouve ainsi
le schéma du premier ordre selon cette direction.

Le calcul numérique des flux axisymétriques est également plus complexe dans le cas
d’une reconstruction linéaire puisque la fonction à intégrer est du second degré en r et
nécessite donc deux points de Gauss pour être évaluée exactement à 1D (quatre points à
2D et huit à 3D). Néanmoins, par souci d’efficacité, les flux seront sous-intégrés dans tous
les cas (figure 4.49) par la relation :

∫ r L
i+1

rE
i+1

σL(r) r dr ∼= 1
2
[r L

i+1− rE
i+1] [r

L
i+1+ rE

i+1] σ
L(1

2
[r L

i+1 − rE
i+1]) (4.103)
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4.5.4 Schémas 2D et 3D

4.5.4.1 Flux de coin

Le schéma de convection de Van Leer est un schéma unidimensionnel. Une manière de
l’adapter à deux ou trois dimensions est d’utiliser la méthode des directions alternées si le
maillage est régulier et ses directions orthogonales : l’opération de transfert est alors dé-
composée en deux ou trois étapes pour lesquelles le maillage se déplace uniquement dans
ses directions principales. On retombe ainsi à une succession de problèmes unidimension-
nels résolus par le schéma (4.95).

V
E

i V
E

i

flux de coin

flux reçu de la cellule droite

calcul exact calcul simplifié

FIGURE 4.50 – Simplification du calcul des flux à 2D. Le calcul exact de l’opérateur de projection requiert l’éva-
luation des flux de coin provenant des cellules non directement voisines. Le calcul simplifié ne fait intervenir
que les cellules directement voisines, c’est-à-dire celles partageant une arête avec la cellule considérée.

Dans le cas d’un maillage quelconque, cette méthode est difficilement applicable. Même
s’il est structuré, la distorsion des mailles empêche la définition de deux directions ortho-
gonales. Il est donc nécessaire de repartir de la relation (4.94). Cependant, cette équation
nécessite la détermination de tous les volumes définis par l’intersection des maillages la-
grangien et eulérien. Pour éviter ce calcul coûteux, il est commode d’ignorer les volumes
qui ne sont pas directement adjacents à la cellule considérée. Les flux associés à ces vo-
lumes sont appelés flux de coin (voir figure 4.50). Tous les autres flux, c’est-à-dire ceux
faisant intervenir des cellules ayant une frontière commune, sont alors calculés comme dé-
crit à la section 4.4.7 et sont proportionnels au volume balayé par la frontière au cours du
déplacement du maillage.

Les flux de coin sont donc remplacés par une contribution supplémentaire venant s’ajou-
ter aux flux traversant les frontières adjacentes au coin. Cette approximation entraîne une
diffusion transverse qui est d’autant plus importante que le déplacement relatif des deux
maillages n’est pas aligné sur les directions principales de ceux-ci. Un deuxième effet né-
gatif de cette approximation est son influence sur la stabilité du schéma. En effet, les flux
à travers les arêtes sont surestimés. On peut le voir aisément sur la figure 4.50 où le flux
reçu par la cellule provenant de sa frontière droite est plus grand dans le cas du calcul
simplifié. Le critère de stabilité calculé par l’expression (4.62) sera donc beaucoup plus res-
trictif sur la taille du déplacement relatif entre les deux maillages. Par exemple, dans le cas
d’un maillage structuré régulier, si le déplacement relatif est oblique et incliné à 45 degrés
par rapport au maillage, la limite de stabilité en termes de déplacement maximal selon
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chaque direction sera divisée par deux à deux dimensions et par trois à trois dimensions.
Ces phénomènes sont illustrés dans le cas d’un exemple simple à la section 4.7.1.

La prise en compte des flux de coin sans passer par l’évaluation des volumes intersectés
est possible en utilisant un schéma de Runge Kutta à deux pas (Benson [26]) nommé RK-
MUSCL. Le premier pas correspond à la moitié du déplacement convectif total. Les flux de
coin sont ignorés. On obtient ainsi une solution intermédiaire qui est utilisée pour évaluer
les flux du deuxième pas. Celui-ci est effectué à partir de la configuration lagrangienne en
utilisant cette fois le déplacement convectif total. Ce schéma n’a pas été implémenté dans le
cadre de ce travail parce qu’il multiplie par deux le coût de l’algorithme de transfert et que
le phénomène de diffusion transverse n’a pas été un problème critique dans les applications
traitées.

À 2D ou 3D, on utilisera donc l’expression suivante du schéma :

σE
i =

1

V E
i

 

σL
i V L

i −
n∑

j=1

∆σ ji

!

(4.104)

où n est le nombre d’arêtes (2D) ou de facettes (3D) de la cellule i et ∆σ ji est le flux de σ
sortant de la cellule i à travers la frontière j :

∆σ ji =

∫

∆Vj

σL
i (x ) dV (4.105)

Cette intégrale peut être calculée en évaluant la valeur de la reconstruction de σ sur la
cellule i au barycentre du volume balayé ∆Vj et en la multipliant par la valeur du volume
∆Vj comme le montre la figure 4.51 :

∆σ ji =
�

σ̄L
i + (x

∗
j − x̄ i) ·∇σi

�

∆Vj (4.106)

On procède de la même manière à trois dimensions.

xj*
DVi

config.
lagrangienneconfig.

eulérienne

arête j

xi

FIGURE 4.51 – Evaluation du flux ∆σ ji à deux dimensions. Il est calculé comme le produit du volume ∆Vj et
de la valeur de σ évaluée au barycentre x ∗j du volume balayé.
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4.5.4.2 Gradient en coordonnées volumiques

Le problème suivant est le calcul de la reconstruction linéaire 2D ou 3D du champ σL

et donc de la détermination du gradient ∇σL. Contrairement au cas unidimensionnel, il est
difficilement possible de satisfaire la relation (4.93) avec des éléments quadrangulaires ou
hexaédriques. Dans le cas d’éléments sous-intégrés, l’unique point de Gauss est au centre
de gravité des sommets, mais ce point n’est pas toujours le centre de gravité de l’élément.
Utiliser le point de Gauss comme point de collocation du volume fini entraîne donc une
valeur de l’intégrale de σ sur l’élément qui dépend directement de la valeur calculée du
gradient. On retrouve ici le même problème que celui décrit dans le cas axisymétrique à la
section 4.5.3.

V21V11

V31V22V12
V32

V23

V1

DV21

DV22

DV23

DV24
V2

V3

V13

V33V24V14

V34

x

h

Dx1

Dx2

2 3ième
noeud de la cellule

Lag.

Eul.

FIGURE 4.52 – Coordonnées volumiques. Définition des sous-cellules Vi j et des flux ∆Vi j dans le cas de trois
cellules V1, V2 et V3. Les coordonnées volumiques s’obtiennent en sommant les volumes de toutes les sous-
cellules adjacentes à une arête.

Pour faciliter le calcul du gradient, Benson [22] propose de traiter le problème sépa-
rément dans chaque direction. En d’autres mots, à deux dimensions, au lieu de calculer le
gradient en coordonnées cartésiennes x , y, on utilise des coordonnées volumiques définies
en divisant chaque cellule en quatre quadrangles comme représenté sur la figure 4.52. Les
distances ∆x i et ∆x i+1 sont alors calculées par :

∆x i = V E
i−1,2 + V E

i−1,3 + V E
i,1+ V E

i,4 (4.107)

∆x i+1 = V E
i,2+ V E

i,3 + V E
i+1,1 + V E

i+1,4 (4.108)

où Vi, j est le volume de la jème sous-cellule de la cellule i. Chaque sous-cellule peut être
numérotée en fonction du nœud. L’indice j est le numéro interne de nœud de la cellule qui
appartient également à la sous-cellule. Les définitions ci-dessus sont donc fonction de la
numérotation interne des nœuds des cellules et des orientations des unes par rapport aux
autres.

Les composantes du gradient selon ξ et η (notés ∇ξσi et ∇ησi) sont calculées et limi-
tées par les équations unidimensionnelles de Van Leer (équations (4.95), (4.96) et (4.99))
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en remplaçant les ∆x i par les volumes correspondants. Les flux sont ensuite calculés en
utilisant un point de Gauss. Par exemple, pour le flux de σ sortant de la cellule 2 vers la
cellule 3 (noté ∆σ22 en suivant les conventions de la figure 4.52), on obtient :

∆σ22 =∆V22

�

σL
2 + (V22 + V23 +

1
2
∆V22)∇ξσ2

�

(4.109)

Ces flux sont enfin injectés dans le schéma (4.104) pour fournir la nouvelle valeur de σ
dans la cellule en configuration eulérienne.

4.5.4.3 Gradient en coordonnées cartésiennes

Le schéma de Benson a l’avantage d’être simple, précis et général. Il nécessite cependant
le calcul de nombreux sous-volumes pour évaluer le gradient dans chaque direction. À deux
dimensions, 12 volumes interviennent dans le calcul (4 internes et 2 externes par arête) et
on en compte 32 pour un hexaèdre à trois dimensions (8 internes et 4 externes par facette).
Une intégration exacte de ces volumes à 3D nécessite deux points de Gauss par direction et
par sous-volume. L’utilisation des coordonnées volumiques est donc assez coûteuse.

De plus, dans le cas d’un maillage non structuré, il est nécessaire de prendre en compte
l’orientation relative des éléments les uns par rapport aux autres pour déterminer les vo-
lumes en vis-à-vis de part et d’autre d’une frontière. Un problème équivalent a déjà été
mentionné à la section 4.4.4 (figure 4.22) lors de l’extension du schéma de Godunov à
des éléments à plusieurs points de Gauss. Ce problème d’orientation est assez fastidieux à
résoudre sans construire explicitement une structure de maillage correspondant aux sous-
volumes. D’ailleurs, il n’est pas étonnant que la récente implémentation de Benson semble
se limiter à 2D pour cette raison.

Enfin, dans le cas de maillages non structurés, l’utilisation des coordonnées volumiques
est discutable. En effet, les directions ξ et η peuvent ne plus être perpendiculaires et les
gradients ainsi calculés deviennent fortement dépendants de la géométrie du maillage.

¶Gi

¶Gi

frontière

lj

nj

Gi

Gi

si si

FIGURE 4.53 – Calcul du gradient à l’aide du théorème de Green-Gauss pour le cas d’une cellule interne (à
gauche) ou sur la frontière du domaine maillé (à droite).

Pour ces raisons, il semble plus intéressant de calculer le gradient en coordonnées car-
tésiennes. Pour ce faire, plusieurs méthodes sont possibles. La première consiste à utiliser
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le théorème de Green-Gauss (voir Barth et Jespersen [15]) :

∇σi =
1

Γ j

∮

∂Γi

σn d∂Γi (4.110)

où ∂Γi est un contour englobant la cellule i pour laquelle on veut évaluer le gradient et dé-
limitant le volume Γi. Il est construit en reliant les centres des cellules voisines. L’ensemble
de ces cellules intervenant dans le calcul du gradient constitue le stencil de reconstruction. La
figure 4.53 montre un exemple de stencil pouvant être utilisé, d’une part, pour un volume
intérieur et, d’autre part, pour un volume sur la frontière du domaine maillé. L’intégrale est
calculée par sommation des contributions de chaque segment du contour en utilisant une
méthode du trapèze :

∇σi =
1

Γi

Ni∑

j

σ̄ j + σ̄ j+1

2
l j n j (4.111)

où l j est la longueur du segment j dont la normale est n j. On peut montrer (voir par
exemple Delanaye [57]) que cette approximation du gradient est au moins du premier
ordre. Pour alléger les calculs, le stencil peut être simplifié en ne gardant que les voisins
directs, c’est-à-dire ceux partageant une arête avec la cellule pour laquelle on veut calculer
le gradient de σ. La difficulté de cette procédure est la construction du stencil à partir des
relations de voisinage entre cellules. Le stencil doit également être trié pour permettre le
parcours du contour ∂Γi « aire à gauche ». Cette étape est effectuée une seule fois pour
chaque cellule au début du calcul et le résultat est conservé en mémoire. Dans le cas où
le maillage est constitué d’une seule couche d’éléments alignés, un stencil valide ne peut
pas être construit (Γi = 0). Il faut alors envisager une méthode alternative pour calculer le
gradient. Notons enfin que l’extension 3D de la méthode n’est pas du tout immédiate et n’a
donc pas été envisagée.

Pour pouvoir traiter les problèmes tridimensionnels, il est nécessaire de procéder au-
trement. L’idée est de déterminer la valeur du gradient par moindres carrés. On construit
également un stencil de reconstruction qui inclut les voisins de la cellule. Ce stencil peut se
limiter aux voisins directs (c’est notre choix dans ce travail) ou être choisi plus riche. Soit
Ni le nombre de voisins de la cellule i. En écrivant les équations suivantes pour tous les
volumes du stencil :

σ̄i + (x̄ j − x̄ i)∇σi = σ̄ j ⇒ (x̄ j − x̄ i)∇σi = σ̄ j − σ̄i (4.112)

où j = 1, ..., Ni. On obtient un système surdéterminé de Ni équations à n inconnues (n est la
dimension de l’espace). Si on note A la matrice de ce système, l’approximation du gradient
par moindres carrés est obtenue par l’équation :

∇σi =
�

(AT A)−1AT
�

∆σi (4.113)

Cette expression du gradient est également précise au moins du premier ordre. Elle
est cependant beaucoup plus simple à mettre en œuvre que la précédente puisqu’elle ne
nécessite pas un tri des voisins. Elle est aussi plus générale puisque directement applicable
à trois dimensions.
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Enfin, le cas pathologique pour lequel le maillage est constitué d’une seule couche d’élé-
ments alignés peut être facilement contourné. En effet, dans ce cas, on a : det(AT A) = 0 et
il suffit de calculer la pseudo-inverse de la matrice du système (4.112). Celle-ci se déduit
en pratique d’une décomposition en valeurs singulières de la matrice : A = UΣVT (voir par
exemple Watkins [203]). La résolution du système s’écrit alors :

∇σi =
�

VΣ†UT
�

∆σ i (4.114)

où Σ† est la pseudo-inverse de la matrice diagonale Σ, obtenue en inversant tous ses élé-
ments diagonaux non nuls.

Cette dernière équation peut d’ailleurs être également utilisée dans le cas régulier où
le système AT A est invertible puisque qu’elle est équivalente à une résolution par moindres
carrés. Le cas pathologique peut donc être tout simplement ignoré lors de la résolution.

4.5.4.4 Limiteur de flux

Le limiteur de flux le plus utilisé dans le contexte de la méthode des volumes finis est
celui de Barth et Jespersen [15]. Il consiste à réécrire la reconstruction linéaire (4.92) en y
ajoutant un scalaire φi dont la valeur est comprise entre 0 et 1 :

σL
i (x ) = σ̄

L
i +φi∇σ

L
i · (x − x̄ i) (4.115)

Une valeur de φi = 0 correspond à une reconstruction constante précise au premier ordre
et toujours monotone. Elle sera utilisée pour les endroits où σ varie brusquement. La va-
leur de φi = 1 permet de retrouver la relation (4.92) et donc le schéma précis au second
ordre quand σ varie faiblement. La condition de monotonicité du schéma peut être traduite
localement sur la cellule i en identifiant la valeur minimum et le maximum de σ sur le sten-
cil de reconstruction précédemment utilisé (y compris la valeur σ̄i). Soient σmin et σmax

ces extrema. On obtient une expression du limiteur φ( j) pour chaque frontière j (arête ou
facette) de la cellule :

φ
( j)
i = min

�

1, σmax−σ̄i

∇σi ·(x ( j)−x̄ i)

�

si ∇σi · (x ( j) − x̄ i)> 0

φ
( j)
i = min

�

1, σmin−σ̄i

∇σi ·(x ( j)−x̄ i)

�

si ∇σi · (x ( j) − x̄ i)< 0

φ
( j)
i = 1 si ∇σi · (x ( j) − x̄ i) = 0

(4.116)

Le limiteur φi est égal au minimum de ces valeurs :

φi =min
j
φ
( j)
i (4.117)

Le point d’évaluation x ( j) de (4.116) sur chaque frontière correspond au point d’inté-
gration du flux à travers celle-ci. Puisque nous utilisons un seul point d’intégration, ce point
correspond au centre de la facette. Grâce au fait que la vitesse de convection est connue en
tout point, il est possible d’améliorer le limiteur comme cela a été fait pour le limiteur de
Van Leer unidimensionnel (équation (4.100)) : dans le cas d’un flux sortant à travers une
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frontière, l’évaluation de (4.116) peut être effectuée au centre du volume balayé au lieu
du centre de la frontière. Le gradient résultant est ainsi plus important en valeur absolue
(pour s’en convaincre, comparer ∇σ sur les figures 4.44 et 4.45) et la précision du schéma
est augmentée.

Dans le cadre du formalisme ALE, ce limiteur, couplé à un calcul par moindres carrés du
gradient, est utilisé par Garimella et al. [81] et Kucharik et al. [133] pour des simulations
concernant la dynamique des gaz et des plasmas. Olovsson et al. [159] utilisent également
cette méthode pour simuler la découpe de métaux à deux dimensions.

4.5.5 Gestion de plusieurs points de Gauss par élément fini

La plupart des éléments finis utilisés en mécanique non linéaire nécessitent plusieurs
points de Gauss pour être intégrés correctement. Le schéma de transfert précédent doit donc
être adapté en conséquence. Nous proposons d’utiliser l’approche imaginée par Huerta dans
le cadre de l’algorithme de Godunov (section 4.4.4) qui consiste à diviser chaque élément
fini en un nombre de volumes finis égal au nombre de points de Gauss. En pratique, dans
les cas qui nous intéressent, on utilise deux points de Gauss par direction de l’espace, c’est-
à-dire quatre points à 2D et huit points à 3D. Cette extension est une originalité de ce travail
de thèse.

La découpe des éléments finis est un argument supplémentaire pour l’abandon de la mé-
thode du calcul du gradient par l’utilisation de coordonnées volumiques (section 4.5.4.2).
Pour rappel, ces dernières nécessitent une découpe de chaque volume fini en quatre ou huit
sous-volumes. L’utilisation de coordonnées volumiques pour des éléments non sous-intégrés
entraînerait la création d’un maillage auxiliaire quatre fois plus raffiné dans chaque direc-
tion que le maillage élément fini initial (ce qui correspond dans le cas 3D à découper chaque
hexaèdre en 64 sous-cellules et utiliser un total de 512 points d’intégration pour calculer
exactement tous ces volumes).

x

s
reconstruction à partir
des points de Gauss

x

s
reconstruction à partir
du point milieu des
cellules

x

s

élément fini

cellule i

cellule i+1

xi
xixi+1

xi+1PG1 PG2

FIGURE 4.54 – Reconstruction linéaire sur les deux cellules d’un élément fini à deux points de Gauss. La
reconstruction peut être basée sur la position de chaque point de Gauss ou sur la position du milieu de
chaque cellule.

Puisque les points de Gauss de l’élément ne sont pas positionnés au centre des cellules, le
choix du point x̄ i, origine de la reconstruction linéaire, peut sembler ambigu. La figure 4.54
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montre schématiquement deux possibilités dans le cas d’un élément 1D à deux points de
Gauss.

La première est d’utiliser la position réelle du point de Gauss. Dans ce cas, la recons-
truction du champ σ interpole correctement la valeur au point de Gauss. À ce moment, le
schéma (4.95) n’est pas équivalent à l’expression intégrale (4.94). Il peut se réécrire :

[x E
i+1− x E

i ] σ
E
i (

1
2
[x E

i+1+ x E
i ]) = [x L

i+1− x L
i ] σ

L
i (

1
2
[x L

i+1+ x L
i ])

+[x L
i − x E

i ] σ
L
i−1(

1
2
[x L

i + x E
i ])

−[x L
i+1 − x E

i+1] σ
L
i (

1
2
[x L

i+1 + x E
i+1]) (4.118)

En exprimant que :

σE
i (

1
2
[x E

i+1+ x E
i ]) = σ

E
i ( x̄

E
i ) +∇σE

i (
1
2
[x E

i+1 + x E
i ]− x̄ E

i ) (4.119)

où x̄ E
i est la position du point de Gauss lié à la cellule i, qui ne correspond plus au centre

de celle-ci, on constate que le schéma n’est plus explicite, car le premier membre dépend
du gradient de la solution ∇σE

i . Il devient donc trop coûteux pour être utilisé dans le cadre
du formalisme ALE. Négliger ce gradient dans le premier membre rend le schéma non
consistant (σi peut varier pour un déplacement convectif nul) et ne peut pas non plus être
envisagé.

La seconde possibilité est d’utiliser le centre de gravité de la cellule. En considérant
la valeur au point de Gauss comme une moyenne sur la cellule et non plus comme une
valeur ponctuelle, la reconstruction peut être effectuée autour du barycentre. Dans ce cas,
le schéma est consistant et, malgré l’approximation faite, l’intégrale du champ est toujours
conservée lors du transfert. Cette deuxième solution est celle qui a été retenue pour ce
travail.

Sur maillage régulier, l’écart entre le point de Gauss et le centre de gravité de la cellule
introduit une perte de précision similaire à celle que l’on obtiendrait sur un maillage irré-
gulier (voir section 4.4.4). À cette erreur s’ajoute une erreur sur le calcul du gradient qui
est évalué comme si la valeur au point de Gauss était centrée sur la cellule.

En reprenant le test effectué précédemment à la section 4.4.2 qui consiste à translater
un signal carré sur un maillage fixe, on peut visualiser l’erreur commise sur un cas concret.
La géométrie est toujours représentée sur la figure 4.16, page 116. La figure 4.55 montre les
solutions obtenues pour ξ= 0.5 (point de Gauss centré sur le volume), ξ =

p
3/3 (position

des points de Gauss d’éléments intégrés par deux points de Gauss). Ces solutions sont
comparées, d’une part, à la courbe obtenue avec ξ = 0.9 qui correspond à un décentrage
amplifié et, d’autre part, à la solution obtenue avec le schéma de Godunov. Puisque nous
avons choisi d’utiliser un point de collocation toujours centré, quelle que soit la position
des points de Gauss des éléments sur lesquels sont définies les cellules, le décentrage du
point de Gauss peut intervenir uniquement à deux moments dans le calcul. Le premier est
l’assignation des conditions initiales au démarrage de l’algorithme. Dans le cas de ce profil
très particulier qui est constant par morceau (0 ou 1), le décentrage n’influence pas le calcul.
Le deuxième moment est l’affichage de la courbe finale où les valeurs moyennes des cellules
sont relocalisées aux positions réelles des points de Gauss. Il en résulte des oscillations
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FIGURE 4.55 – Convection d’un signal carré du un maillage fixe. Influence de la position des points de Gauss
des éléments finis sur la solution finale. La valeur ξ = 0.5 correspond à des cellules construites sur un
élément fini à un point de Gauss. La valeur ξ =

p
3/3 correspond à la position obtenue avec des éléments

finis à deux points de Gauss.

d’autant plus fortes que le décalage du point de Gauss est important. Néanmoins, si on
traçait à l’instant final les trois solutions obtenues par reconstruction constante en utilisant
les milieux des cellules comme abscisses, les trois courbes seraient tout à fait identiques.

Cet exemple justifie l’emploi d’un schéma utilisant une reconstruction linéaire dans le
cas d’éléments finis à plusieurs points de Gauss même si la position de ces derniers ne
correspond pas exactement à la position des point de collocation utilisés pour les cellules
de transfert. Le schéma résultant reste précis et conservatif.

4.5.6 Transfert des grandeurs nodales

Le transfert des grandeurs nodales peut être effectué par le même algorithme que ce-
lui utilisé pour les points de Gauss en utilisant le maillage auxiliaire dual décrit à la sec-
tion 4.4.5.

barycentre de la cellule
associée

noeud

FIGURE 4.56 – Décalage entre la position d’un nœud et celle du centre de gravité de la cellule associée (en
grisé) du maillage auxiliaire dual utilisé pour le transfert des grandeurs nodales. Cet écart est d’autant
plus important que la taille des mailles varie fortement autour du nœud.
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Le fait d’utiliser une reconstruction linéaire entraîne le même problème que celui ren-
contré pour les points de Gauss : la position du nœud n’est pas obligatoirement confondue
avec le barycentre de la cellule associée si le maillage n’est pas structuré et régulier. La
discussion précédente sur l’influence de ce décalage sur la solution est donc également va-
lable et d’autant plus pertinente, dans le cas de la convection des valeurs nodales, que les
valeurs de décentrage peuvent être beaucoup plus importantes quand un nœud est entouré
de mailles de tailles très différentes (figure 4.56).

4.5.7 Conditions aux limites

Même lorsqu’on utilise une reconstruction constante, le schéma de transfert vu comme
opérateur de projection défini par l’équation (4.91) n’est pas tout à fait équivalent au
schéma de Godunov (4.60). En particulier, il nécessite une nouvelle réflexion sur l’appli-
cation des conditions aux limites au niveau des surfaces libres. À cet endroit, l’opération
de relocalisation des nœuds est délicate et introduit inévitablement des flux parasites si la
frontière est courbe et discrétisée par des éléments linéaires.

Une manière intuitive de traiter ces flux parasites est de les considérer nuls, puisqu’ils
doivent idéalement l’être, et appliquer le schéma tel quel. Imaginons un élément 1D adja-
cent à une frontière dont le volume diminue légèrement à cause d’une erreur de reposition-
nement (voir la figure 4.57 où∆V = V L−V E a été amplifié). À deux ou trois dimensions, il
s’agirait de l’erreur locale commise sur la position d’un nœud de frontière par une approxi-
mation spline de celle-ci (l’exemple est ici unidimensionnel pour faciliter sa représentation).

Dans le cas du schéma de transfert par projection de Benson (4.91), en imposant ∆V =
0 bien qu’il ne soit géométriquement pas nul, on obtient σE V E = σL V L. L’intégrale de σ
est conservée sur le volume et l’erreur faite sur le flux est convertie en une augmentation
de la valeur de σ dans la cellule adjacente à la frontière.

Par contre, dans le cas du schéma de Godunov proposé par Huerta et al. (4.60), on
obtient simplementσE = σL et la valeur deσ reste inchangée. L’erreur de repositionnement
du nœud frontière n’influence donc pas directement la valeur de σ sur la cellule.

Retrouver le comportement de l’algorithme de Godunov avec la méthode de projection
est possible en considérant que le champ σ se prolonge à l’extérieur du domaine maillé
et en calculant correctement la valeur des flux parasites. Dans le cas de l’exemple de la
figure 4.57, celui-ci serait soustrait explicitement au bilan de conservation de la grandeur
σ sur le maillage.

Lorsqu’on utilise le schéma de transfert par projection (le seul des deux permettant une
reconstruction linéaire du champ inconnu), il est donc nécessaire de faire un choix au ni-
veau de la gestion des flux de frontière : soit privilégier la conservation de σ au prix d’une
propagation des erreurs géométriques∆V sur la valeur des cellules proches de la frontière,
soit éviter cette propagation en gardant à l’esprit que l’intégrale de σ n’est alors plus conser-
vée. C’est cette deuxième solution que nous avons choisie pour notre implémentation. Ce
choix sera justifié par un exemple numérique à la section 4.7.3.
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FIGURE 4.57 – Comparaison de l’influence des flux parasites sur les deux schémas (Godunov, équation (4.60)
et projection, équation (4.91)) dans le cas d’un problème unidimensionnel. À gauche la configuration
lagrangienne d’une maille dont un nœud est sur la frontière. La valeur du champ σ sur la maille est
tracée en ordonnée. La maille subit un rétrécissement dû à une erreur de repositionnement. Il en résulte
une diminution géométrique de sa longueur, notée ∆V . Imposer ∆V = 0 dans le schéma de Godunov
n’influence pas la valeur de σ dans la cellule. Par contre, la même hypothèse entraîne une augmentation
de la valeur de σ pour le schéma de projection.
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4.6 Gestion du contact avec frottement

Une bonne gestion du contact et du frottement est capitale lors de la simulation de
procédés de mise à forme. Il est donc important de pouvoir prendre en compte ce type de
condition aux limites en formalisme ALE pour pouvoir aborder des problèmes industriels.
Paradoxalement, dans la littérature, très peu d’auteurs proposent un algorithme général
pour gérer le contact en formalisme ALE. Le problème du frottement est encore moins fré-
quemment abordé (voir le travail d’Haber et Hariandja [96], Huétink et al. [121], Liu et al.
[145], Nackenhorst [152] et Guerdoux [95] pour avoir une vue quasi exhaustive du su-
jet, soit un pourcentage très faible des articles consacrés à l’ALE). Le code Abaqus [55]
par exemple, bien que proposant du contact en formalisme ALE, ne décrit pas la manière
dont celui-ci est géré. Il est aussi intéressant de remarquer que beaucoup d’auteurs (Ben-
son, Huerta, Donéa, Wisselink pour ne citer que ceux dont nous avons déjà parlé dans ce
travail) se focalisent sur la convection des grandeurs aux points de Gauss en négligeant
le problème du contact. Ceci limite donc le champ d’application de leurs méthodes et les
modèles numériques qui en découlent dans le cadre de la mise à forme sont inévitablement
très simples.

Donéa et al. [64] font remarquer que le formalisme ALE permet souvent d’éviter l’utili-
sation d’algorithmes de contact complexes et coûteux. Lorsque des nœuds peuvent glisser
sans frottement le long de la surface d’un outil, le contact peut alors être remplacé par
des fixations appropriées sur le maillage. Il étudie dans ce contexte des problèmes de poin-
çonnement et d’extrusion. Malheureusement, lorsque le frottement ne peut être négligé ou
lorsque le procédé est plus complexe, la formulation ALE doit pouvoir prendre en charge
un contact quelconque. C’est l’objet de cette section.

4.6.1 Contact

Dans un premier temps, nous considérons uniquement le problème de contact sans frot-
tement. Il peut se résumer à une condition de non-pénétration des surfaces potentiellement
en contact.

fN

surface maître

noeud
esclave

gN

n

FIGURE 4.58 – Traitement du contact par pénalisation. Une légère pénétration gN du nœud dans la surface
maître est tolérée. La force normale f N est proportionnelle à cette pénétration.

En formalisme lagrangien, il est courant d’utiliser une méthode de pénalisation qui con-
siste à autoriser une légère pénétration des surfaces en contact (figure 4.58). Dans cette
méthode très simple et très efficace, chaque nœud de la première surface (appelée surface
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esclave), qui a pénétré dans la seconde (appelée surface maître), se voit attribuer une force
normale qui tend à le ramener sur la surface maître. L’intensité de la force varie générale-
ment de manière linéaire avec la distance du nœud à la surface. On appelle cette distance
la pénétration normale ou plus simplement le gap normal, noté gN . La force s’écrit donc :

f ext
N =−αN gN (4.120)

où f ext
N est la force de contact, composante normale de la force nodale externe f ext, et αN est

le coefficient de pénalisation qui doit être choisi judicieusement par l’utilisateur de la mé-
thode. Une valeur trop faible entraînera des pénétrations importantes et une modélisation
peu physique de la réalité. Une valeur trop élevée provoquera un mauvais conditionnement
du système d’équations à résoudre et des difficultés de convergence.

Dans le cadre du formalisme ALE, à la fin de chaque pas de temps, les nœuds de contact
doivent être repositionnés, comme tout autre nœud. Il faut donc décider s’ils doivent être
traités différemment des autres nœuds de la frontière du solide qui ne sont pas en contact.
En d’autres termes, il faut se demander s’il est nécessaire d’introduire un traitement spéci-
fique des nœuds de contact dans les algorithmes de repositionnement de nœuds de surface.
Aymone et al. [13] et Ponthot [168] proposent de procéder en deux temps : tout d’abord, les
nœuds sont repositionnés sans tenir compte du contact. Les méthodes utilisées conservent
la géométrie de la frontière et donc conservent aussi la géométrie des zones de contact.
On corrige ensuite leur position pour vérifier l’égalité (4.120) et l’équilibre local du nœud
suivant la normale à la surface. Par exemple, sous l’hypothèse quasi statique, on écrit :

∆gN =
f ext
N − f int

N

αN

(4.121)

où ∆gN est la correction de position du nœud selon la normale à la surface de contact
et f ext

N et F int
N sont les forces normales externes et internes calculées après relocalisation

des nœuds et transfert des grandeurs aux points de Gauss. Dans le cas dynamique, des
expressions similaires faisant également intervenir la force d’inertie normale f inert

N peuvent
être écrites en fonction du schéma d’intégration temporel utilisé.

De manière plus simple, l’équation (4.121) peut s’écrire :

gE
N = −

f int
N

αN
(4.122)

où gE
N = g L

N +∆gN . Cette méthode pose plusieurs problèmes. Le premier vient de la modifi-
cation de géométrie induite par le déplacement du nœud. Même si celui-ci est, la plupart du
temps, de très faible amplitude vu la grandeur du paramètre αN , il va introduire une erreur
indésirable sur le volume total du maillage. Le second problème peut survenir lorsqu’on
observe de grands déplacements convectifs tangentiels à la surface de contact. Certains
nœuds, initialement en contact lors de la phase lagrangienne peuvent quitter la zone de
contact lors de l’opération de repositionnement. Dans ce cas, une correction par rapport
à la surface ne peut que détériorer la géométrie du maillage. On peut ainsi observer des
nœuds proches des extrémités des zones de contact qui sont attirés artificiellement par
les surfaces maîtres si on applique brutalement cette méthode. La situation inverse pour
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laquelle un nœud entre dans une zone de contact après repositionnement est également
envisageable, mais moins problématique. Enfin, dans le cas de contact entre deux surfaces
déformables ou en cas d’autocontact, cette méthode produira des résultats erronés si on uti-
lise une approche symétrique (appelée aussi double passe) où les surfaces sont considérées
à la fois comme maître et esclave.

Remarquons enfin que cette méthode ne garantit de toute façon pas l’équilibre nor-
mal au nœud en contact puisque la force interne apparaissant dans l’équation (4.122) est
également fonction du gap gE

N .

La solution la plus efficace à ces problèmes est simplement de ne pas tenir compte du
contact normal lors de l’opération de repositionnement de nœud. Le défaut d’équilibre qui
en résulte peut être vu comme un résidu d’équilibre additionnel qui sera éliminé à l’incré-
ment temporel suivant. Cette solution a l’avantage de ne jamais perturber le maillage en
fonction du contact. Elle est également applicable en cas de contact entre deux surfaces dé-
formables. Il faut cependant être conscient que les forces de contact qui seraient calculées
par l’équation (4.120) après repositionnement des nœuds n’ont aucun sens physique. Utili-
ser ces forces pour calculer une résultante sur un outil produira des résultats inévitablement
erronés.

En pratique, la seule manière fiable d’obtenir les forces normales de contact sur la confi-
guration eulérienne du maillage est d’exprimer l’équilibre de chaque nœud de contact. La
force de contact f ext

N est ainsi recalculée, non plus par l’équation (4.120), mais en annu-
lant fictivement le résidu d’équilibre normal à la surface. On obtient de cette manière, en
fonction du schéma d’intégration temporelle utilisé, une expression du type :

f ext
N = f int

N + f inert
N (4.123)

qui permet de recalculer f ext
N en fonction des forces internes et des forces d’inerties. Évi-

demment, ces dernières doivent être préalablement réévaluées sur le nouveau maillage.
L’expression (4.123) est utilisée quelle que soit la position du nœud potentiellement en
contact après relocalisation, qu’il soit géométriquement en contact (gN < 0) ou pas.

4.6.2 Frottement

S’il est possible, à peu de choses près, d’ignorer le contact dans la direction normale
lors de l’utilisation du formalisme ALE, la situation est très différente dans la direction
tangentielle. En effet, lorsqu’un frottement doit être calculé, sa valeur dépend de l’histoire
du chargement. Autrement dit, il est généralement impossible de déduire une force de
frottement en connaissant uniquement la position des nœuds de la frontière. Cette histoire
doit être transférée du maillage lagrangien vers le maillage eulérien pour pouvoir recalculer
le frottement sur le nouveau maillage et continuer le calcul.

La modélisation numérique du frottement est un sujet très vaste et très complexe. Par
manque de données expérimentales et par ignorance des phénomènes microscopiques qui
se produisent aux interfaces, le frottement est fréquemment modélisé par une simple loi de
Coulomb :

fT ≤ µ fN (4.124)
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où fT est la norme de la force nodale de frottement, fN est la force normale calculée par
la résolution du problème de contact et µ le coefficient de frottement généralement choisi
constant.

fN

fT

gT

n

x
xcol

xproj

FIGURE 4.59 – Traitement du frottement par pénalisation. La force tangentielle f T est déduite du gap tangen-
tiel gT qui est la distance de la projection du nœud en contact sur la surface maître au point de collement
x col.

Pour résoudre cette inégalité et ainsi déterminer la valeur locale du frottement, nous
utilisons une nouvelle fois la méthode de la pénalisation (figure 4.59). Elle consiste à calcu-
ler la force de frottement en fonction d’un gap tangentiel gT relatif à la position initiale x col

du nœud sur la surface maître. Cette position initiale correspond, dans le cas lagrangien, à
la position géométrique de la prise de contact. On écrit :

f ∗T = αT gT = αT ||x proj − x col|| (4.125)

où αT est un coefficient de pénalisation choisi par l’utilisateur et x proj est la projection du
nœud en contact sur la surface maître. Celui-ci doit être idéalement très élevé pour que
le gap soit faible. L’utilisateur est cependant limité dans son choix puisqu’une trop grande
valeur entraîne une mauvaise convergence du processus itératif de résolution.

La valeur de la force calculée par l’équation (4.125) doit être ensuite éventuellement
corrigée dans une deuxième étape similaire à l’algorithme du retour radial utilisé pour
intégrer les équations de la plasticité :

f ∗T > µ fN → fT = µ fN (contact glissant) (4.126)

f ∗T ≤ µ fN → fT = f ∗T (contact collant) (4.127)

La direction de la force de frottement est celle de x col − x proj. Dans le cas d’un contact glis-
sant, le gap est réactualisé à l’aide de l’équation (4.127). Ceci permet au nœud de retrouver
un état collant si la force diminue. Cela revient à déplacer fictivement la position initiale
x col du nœud sur la surface maître. Cette position est rebaptisée point de collement.

On remarque donc que la valeur du gap tangentiel gT ou, plus précisément, la posi-
tion du point de collement (la valeur du gap ne suffit pas, il faut également connaître sa
direction), est un paramètre interne qu’il faut conserver au même titre qu’une valeur de
contrainte dans le cas de l’intégration de lois constitutives sur les éléments volumiques du
maillage. Remarquons qu’il s’agit de deux scalaires à 3D (coordonnées du point de colle-
ment sur la surface maître) et ceux-ci doivent donc être transférés vers le nouveau maillage.

Une première idée serait d’utiliser les algorithmes de transport décrits aux sections pré-
cédentes. La méthode des volumes finis peut être adaptée et appliquée sur les maillages
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surfaciques des frontières potentiellement en contact. La difficulté principale vient du fait
que les maillages sont courbes et que les flux entre volumes sont donc mal définis. Dans le
cas de fortes courbures, le frottement pourrait être localement mal calculé.

La méthode proposée est une extension de la méthode de Aymone et al. [13] et Ponthot
[168] appliquée cette fois dans le plan tangent. Dans ce cas, la méthode ne modifie pas la
position du nœud de contact, mais joue sur celle du point de collement. Aucune erreur géo-
métrique n’est donc à craindre. En pratique, la force de frottement est déduite de l’équilibre
du nœud dans le plan tangent à la surface maître :

f ext
T = f int

T + f inert
T (4.128)

L’expression exacte de la force dépend du schéma d’intégration temporelle utilisé à par-
tir duquel on extrait les forces externes au temps courant. La force obtenue peut éventuel-
lement violer la loi de Coulomb. Il pourrait être envisageable de la limiter au seuil imposé
par cette loi, déduit de la force normale précédemment calculée. Nous avons choisi de ne
pas faire cette correction locale pour ne pas influencer les efforts résultants qui pourraient
en être déduits. En effet, on se retrouverait dans une situation où la force de contact dé-
pendrait de la surface (maître ou esclave) sur laquelle on la mesure.

De cette valeur de la force nodale de frottement, une nouvelle valeur du gap tangentiel
peut être déduite :

gT =
f ext
T

αT

(4.129)

qui permet de recalculer la position du nouveau point de collement en projetant le point
x proj + gT f T/|| f T || sur la surface maître.

Dans le cas de deux surfaces déformables maillées, la méthode fonctionne sans mo-
dification. Il faut cependant noter que seule une approche simple passe peut être utilisée
pour obtenir un frottement nodal en accord avec la loi de Coulomb (4.124). Ceci est va-
lable également en formalisme lagrangien et ne constitue donc aucunement une limitation
à la méthode : lors d’une approche double passe, les forces provenant de chaque passe se
somment vectoriellement et le résultat en un nœud particulier ne vérifie généralement plus
à la loi de frottement.

Il est également possible d’utiliser d’autres lois de frottement, comme la loi de Tresca :

τ≤ mτmax (4.130)

où τ est le cisaillement à l’interface induit par le frottement, m est un coefficient générale-
ment constant et τmax est la limite d’écoulement en cisaillement du matériau. Puisque cette
loi est exprimée en termes de cisaillements et non de forces, l’algorithme précédent doit
être légèrement adapté. Les cisaillements sont simplement calculés à partir des forces tan-
gentielles en divisant ces dernières par une aire de contact entourant chaque nœud. Celle-ci
est déduite de la construction d’un maillage dual surfacique.

Un autre type de loi peut être utile lorsque le problème mécanique est résolu en termes
de vitesses au lieu de la formulation en déplacements telle que nous l’avons choisie. Guer-
doux [95] utilise, dans le cadre de son implémentation du formalisme ALE, une expression
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alternative des lois de Coulomb et Tresca basée sur une loi visqueuse de Norton-Hoff (voir
aussi la synthèse de Chenot et al. [50] pour une vue générale du traitement du contact et
du frottement dans le cadre d’une formulation en vitesses) :

τ = K ||v g ||p−1 v g (4.131)

où v g est la vitesse de glissement et p est un coefficient de sensibilité à la vitesse de glis-
sement. La valeur de K est calculée de la manière suivante pour retrouver une loi de Cou-
lomb :

K = µσn si µσn ≤ τmax (4.132)

K = τmax si µσn > τmax (4.133)

où σn est la contrainte normale. Dans ce cas, le comportement en frottement est pure-
ment visqueux et les forces de frottement peuvent être déduites directement des vitesses de
glissement qui ont été préalablement transférées du maillage lagrangien vers le maillage
eulérien. Ce type de loi ne nécessite donc aucun traitement particulier en formalisme ALE
puisqu’aucune variable d’hérédité n’intervient dans l’expression du frottement.

Liu et al. [145] utilisent un modèle de frottement plus complexe incluant une modéli-
sation du lubrifiant et l’influence des rugosités des surfaces en contact. Il s’agit d’un modèle
eulérien que nous avons étendu au formalisme ALE (Boman et Ponthot [31, 32, 33]). Pour
ce type de loi également, le frottement dépend uniquement des vitesses de glissement et il
n’y a donc aucune variable d’hérédité à transférer d’un maillage vers l’autre.

Pour terminer, citons deux approches légèrement différentes du problème de contact
avec frottement en formalisme ALE.

Haber et Hariandja [96] présentent un élément de contact qui requiert que les nœuds
des surfaces en contact correspondent exactement (on parle de contact nœud à nœud).
Grâce à la liberté qu’offre le formalisme ALE sur la position des nœuds du maillage, ils
proposent de déplacer les nœuds des surfaces pour respecter cette contrainte et satisfaire
ainsi l’équilibre local au niveau des arêtes en contact. Cette méthode impose donc une
contrainte forte sur le mouvement du maillage dans les zones de contact, ce qui limite son
champ d’application.

Huétink et al. [121] développent également un élément de contact spécifique pour
lequel la zone de contact est modélisée par une très fine couche de matière constituée
d’un matériau élastoplastique. Les contraintes calculées dans ce matériau auxiliaire corres-
pondent aux contraintes de contact et de frottement. Elles sont convectées d’un maillage à
l’autre de manière similaire à ce qui est fait pour les contraintes des deux solides en contact.

Ces deux méthodes ont l’inconvénient d’être intéressantes uniquement en formalisme
ALE pour des conditions de contact particulières (peu de glissement, zone de contact évo-
luant peu au cours du calcul, etc.). De plus, vu leur complexité, elles sont difficilement
applicables à trois dimensions.
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4.7 Exemples numériques

Pour illustrer les différents aspects discutés précédemment, nous étudions trois tests
simples de convection à deux dimensions. Ceux-ci pourraient être effectués sans aucune
difficulté à 3D, mais cela n’apporterait rien de plus à l’analyse tout en rendant la présenta-
tion des résultats plus complexe.

Schéma #1 Schéma #2 Schéma #3
Méthode Godunov – équation (4.60) Projection – équation (4.104)
Auteurs Huerta, Casadei et

Donéa [115]
Benson [22]

Reconstruction constante constante linéaire

TABLEAU 4.2 – Dénomination des différents schémas de transfert pour les exemples numériques.

Le tableau 4.2 résume les différents schémas que nous avons a notre disposition et qui
seront comparés dans un test de translation et deux tests de rotation. Le premier schéma
(Godunov) est celui proposé par Huerta, Casadei et Donéa. Le second est le schéma de
Benson, basé sur un opérateur de projection et utilisant une reconstruction constante. Nous
verrons qu’il n’est pas toujours identique au premier schéma. Le troisième utilise une re-
construction linéaire.

Chaque schéma possède plusieurs variantes en fonction de la précision avec laquelle
sont calculés les flux internes et de la manière utilisée pour gérer les flux parasites sur
les frontières libres. Le but de cette section est de déterminer les qualités respectives des
trois schémas et de faire un choix parmi les variantes de calcul des flux et de gestion de
conditions aux limites.

4.7.1 Translation 2D

Le premier test est la translation uniforme d’une discontinuité à travers un maillage eu-
lérien. On considère un domaine carré de côté L = 1 mm. La vitesse convective c est inclinée
selon la diagonale du carré. C’est la situation la plus défavorable concernant l’apparition de
diffusion transverse.

x x

y y

L=1

L=1

c

solution exacte

p T, , = 1e
p

p T, , = 1e
pp

T
,

,
=

0
e

p

p T, , = 0e
p

FIGURE 4.60 – Géométrie du test de translation sur maillage fixe et solution stationnaire exacte.
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Le maillage est constitué de 20×20 mailles carrées. On utilise des éléments finis de type
SRI (voir section 4.3.3) permettant de s’intéresser, d’une part, à la pression (p) qui est sous-
intégrée et, d’autre part, à une grandeur déviatorique (la déformation plastique équivalente
ǭp, par exemple) définie sur quatre points de Gauss par élément fini. Le champ de tempé-
rature (T) est également présent en chaque nœud. La convection de toutes les grandeurs
requiert donc trois maillages auxiliaires : un maillage de 20×20 volumes finis pour la pres-
sion et un maillage de 40×40 volumes pour les grandeurs déviatoriques et le maillage dual
du premier pour le transfert de la température. Initialement, tous les champs sont nuls. Les
conditions aux limites sont appliquées en x = 0 et y = 0. On choisit une valeur nulle en
x = 0 et une valeur unitaire en y = 0. La solution finale obtenue après un déplacement
dTOT = (L, L) est comparée avec la solution exacte représentée sur la figure 4.60.

Puisque les flux de coin ne sont pas pris en compte, la condition CFL se traduit ici par
l’équation (4.62) :

C =−
1

V E

∑

∆Vi<0

∆Vi =
1

l2
(2 d l) ≤ 1 ⇒ d ≤

l

2
(4.134)

où l est la longueur d’une arête d’un volume fini et d = (d, d) est le déplacement convectif
sur un pas de temps (dTOT = nd ou n est le nombre de pas). Puisque les problèmes de
convection sont résolus simultanément et que le maillage auxiliaire utilisé pour le transfert
de ǭp est deux fois plus dense que celui pour la pression, la condition de stabilité la plus
restrictive est celle impliquant les arêtes les plus petites. En d’autres mots, si le transfert
de la déformation plastique est effectué avec un nombre C = 1, le transfert de la pression
sera résolu avec un nombre C = 1/2. Quant au maillage dual utilisé pour la température, il
possède des mailles de tailles différentes puisque les volumes autour des nœuds de frontière
sont plus petits que ceux autour des nœuds internes au domaine. On choisit d = l/2, c’est-
à-dire le pas maximum admissible garantissant la stabilité. La solution stationnaire finale
ne dépend pas de ce paramètre contrairement à la solution transitoire qui souffre d’autant
plus de diffusion que d est petit.

Pour un mouvement de translation uniforme, le schéma de Huerta et al. (Godunov) et
le schéma de Benson avec reconstruction constante sont identiques (schéma #1 et #2 du
tableau 4.2) . Nous utilisons donc ici uniquement le schéma de Benson et nous compa-
rons les deux types de reconstruction. La figure 4.61 montre le champ de pression obtenu
en régime stationnaire si on utilise une reconstruction constante ou une reconstruction li-
néaire. Comme on peut s’y attendre, la deuxième solution est largement meilleure puisque
le gradient modélisant la discontinuité sur la diagonale est beaucoup plus raide (il devrait
être idéalement vertical). La diffusion transverse, visible sur les deux solutions par la dimi-
nution progressive du gradient de la discontinuité lorsqu’on s’éloigne de l’origine, est due
à l’orientation oblique du déplacement convectif par rapport aux lignes du maillage. Les
résultats de la figure 4.64 permettent de la quantifier facilement en comparant les pentes
des isovaleurs. En l’absence de diffusion, ces lignes doivent être parallèles à la diagonale
du domaine.

Le tracé de ces isovaleurs a requis un lissage nodal des champs aux points de Gauss.
Ce lissage provoque une légère divergence de ces lignes près des frontières. La figure 4.62
illustre la raison sur un exemple numérique simple : bien que les valeurs du champ repré-
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FIGURE 4.61 – Résultats obtenus pour le test de convection pour le champ de pression stationnaire (un point
de Gauss par élément fini) avec une reconstruction constante (à gauche) et linéaire (à droite).
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FIGURE 4.63 – Cellules construites autour des
nœuds : les cellules internes sont centrées sur les
nœuds alors que celles de la frontière ne le sont
pas.

senté sur cette figure soient constantes en parcourant les cellules le long de lignes inclinées
à 45 degrés, on constate que les isovaleurs calculées à partir du champ nodal associé (ob-
tenu par une moyenne des valeurs des cellules adjacentes) divergent légèrement sur les
éléments frontières.

Dans le cas du transport nodal, la variation de pente des isovaleurs à proximité des fron-
tières est similaire mais d’une toute autre nature : elle est due cette fois à la différence entre
les cellules construites autour des nœuds internes et celles construites autour des nœuds
sur la frontière (figure 4.63). Pour ces dernières, le point de collocation, confondu avec le
nœud, n’est pas au barycentre de la cellule. On observe le phénomène déjà plusieurs fois
rencontré (section 4.4.4 et 4.5.5) : sur ces cellules frontière, la valeur calculée correspond
à une moyenne spatiale de la solution, idéalement localisée au barycentre de la cellule. Re-
présenter cette solution sur le bord de la cellule et non au barycentre provoque un décalage
qui se traduit également par une discontinuité dans les pentes des isovaleurs.
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Les résultats obtenus pour la pression sur la figure 4.61 sont fort similaires à ceux ob-
tenus pour la température puisque les deux maillages auxiliaires sont similaires (en dehors
des frontières). Dans le cas des grandeurs déviatoriques, la pente de la discontinuité est
plus raide et la diffusion transverse est moins importante parce que le maillage est plus fin.

La figure 4.65 montre l’influence du maillage sur le champ de pression final en y = L/2.
Les deux types de reconstruction sont comparés. La courbe obtenue est d’autant plus raide
que le maillage est fin. Utiliser une reconstruction linéaire avec 20 mailles sur L provoque
moins de diffusion qu’une reconstruction constante avec un maillage quatre fois plus fin.
Notons encore une fois que le nombre de Courant C utilisé (ici C = 1, c’est-à-dire d = l/2)
n’a aucune influence sur ces courbes.

4.7.2 Rotation 2D

Le second test consiste à étudier la rotation d’un champ de pression connu sur un mail-
lage régulier et eulérien. Il met en évidence la diffusion obtenue dans le cas d’un mouve-
ment de rotation de la matière par rapport au maillage. La géométrie du test est représentée
sur la figure 4.66. Il s’agit d’un carré de côté L = 1 mm et maillé à l’aide de 50×50 éléments.
La pression initiale est partout nulle, sauf dans un cercle centré sur le carré et de rayon 1/4
mm où la valeur de la pression est unitaire. On impose une rotation uniforme autour du
centre du carré de 360 degrés en 100 pas de temps. Le nombre de Courant maximum est
fixé à 0.9 (on obtient ainsi 7 sous-pas de convection à chaque incrément temporel). La solu-
tion exacte est identique à la solution initiale. Idéalement, les valeurs de pression devraient
rester constantes au cours du temps.

Dans un premier temps, les flux sont calculés de manière exacte (relation (4.68)). La
figure 4.67 montre les champs de pression obtenus après un tour complet en utilisant une
reconstruction constante et une reconstruction linéaire. La frontière circulaire de la solution
exacte est superposée aux deux maillages pour faciliter la comparaison. Ces mêmes champs
de pression sont tracés selon une coupe y = L/2 sur la figure 4.68. Comme on pouvait
s’y attendre, la diffusion obtenue en utilisant une reconstruction linéaire est largement
moindre que celle obtenue par reconstruction constante. Par contre, de manière moins
intuitive, on peut montrer que ces résultats sont très peu influencés par le nombre de pas
de temps utilisés (les mêmes résultats sont obtenus avec 700 pas de temps et 1 sous-pas de
convection par exemple).

Ce test est également intéressant pour montrer les différences qui existent entre le
schéma de Godunov développé par Huerta (schéma #1 du tableau 4.2) et le schéma obtenu
par Benson en traitant la convection comme un opérateur de projection avec une recons-
truction constante (schéma #2 du tableau 4.2). Dans le cas d’une translation uniforme,
ces deux schémas sont tout à fait identiques. Nous allons voir que la situation est parfois
différente dans le cas d’une rotation.

À la section 4.4.7, nous avons détaillé le calcul des volumes et des flux pour conclure
qu’il est préférable d’utiliser une intégration exacte de ces grandeurs. Idéalement, les flux
à travers les frontières sont donc évalués en calculant le volume balayé par la frontière.
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FIGURE 4.64 – Résultats obtenus pour le test de convection en fonction du type de grandeur et du schéma
utilisé.
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FIGURE 4.66 – Géométrie et maillage du test de rotation. En fonction de la position de son centre (à l’intérieur
ou à l’extérieur du cercle), chaque maille se voit attribuer une pression initiale constante. La frontière du
cercle est donc d’autant mieux représentée que le maillage est fin. Dans le cas présenté, l’effet de discrétisa-
tion est nettement visible.

Si à deux dimensions, ce calcul est simple, il requiert par contre une coûteuse intégration
numérique à trois dimensions qui pourrait justifier une simplification dans le but d’accélérer
l’algorithme. Un flux à travers une frontière peut être vu alors comme le produit de la
surface de la frontière et du déplacement convectif normal à celle-ci. En utilisant la frontière
dans sa configuration lagrangienne ou eulérienne, on obtient deux manières simplifiées de
calculer le flux (notées respectivement flux simplifié L et flux simplifié E sur les figures).

Les deux algorithmes ne réagissent pas du tout de la même manière face à cette simpli-
fication. Dans le cas de l’algorithme de Godunov tel que présenté par Huerta, la manière
dont le flux est calculé a un impact minime sur la solution obtenue (figure 4.69). L’équa-
tion (4.60) montre que σE évolue uniquement en fonction des variations spatiales de σL .
En particulier, si le champ σL est spatialement constant (σL

i = σ
L), la valeur du volume

balayé ∆Vi n’a aucune influence sur la valeur de σE . Il est donc tout à fait envisageable
d’utiliser un flux simplifié pour ce schéma, même dans le cas de grandes rotations.

Par contre, l’utilisation de flux simplifiés sur le schéma de Benson pose de sérieux pro-
blèmes. En effet, celui-ci fait implicitement l’hypothèse que V L = V E +

∑

∆Vi. Si les flux
sont mal calculés, cette relation n’est pas vérifiée. La figure 4.70 montre les profils de pres-
sion dans la coupe y = L/2 au temps final pour les différentes méthodes de calcul des
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FIGURE 4.67 – Résultats obtenus pour le test de rotation en fonction du schéma utilisé. Le cercle de pression
initial est superposé aux maillages.
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FIGURE 4.69 – Influence de la précision sur le calcul
des flux. Schéma de Huerta (schéma #1)
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flux et pour une reconstruction constante. On constate que seul un calcul exact des flux
permet d’obtenir une solution proche de celles fournies par l’autre schéma (les deux sché-
mas donnent exactement les mêmes solutions dans le cas du calcul exact des flux). La
figure 4.71 montre des résultats équivalents dans le cas d’une reconstruction linéaire. L’er-
reur sur le calcul du flux se traduit par un flux parasite centrifuge ou centripète suivant que
l’on utilise la position lagrangienne ou eulérienne des frontières.
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FIGURE 4.70 – Influence de la précision sur le calcul
des flux. Schéma de Benson avec reconstruction
constante (schéma #2)
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FIGURE 4.71 – Influence de la précision sur le calcul
des flux. Schéma de Benson avec reconstruction
linéaire (schéma #3)

En conclusion, les schémas de convection exprimés sous la forme d’un opérateur de
projection (schémas #2 et #3 du tableau 4.2) sont beaucoup plus sensibles à la précision
du calcul des flux que le schéma de Godunov (schéma #1). Il est donc important d’utiliser
un calcul exact des volumes balayés lorsque le mouvement relatif entre la matière et le
maillage est une rotation. En conséquence, nous utiliserons dorénavant toujours un calcul
exact des flux.
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4.7.3 Expansion et rotation 2D

Ce test est une simulation de la rotation uniforme d’un champ de contraintes plus com-
plexe sur un maillage fixe. Il permet de mettre en évidence le rôle des conditions aux limites
sur la qualité de la convection.

p

c

Rin=1
Rout=2

R fixé
radialement

mesures

FIGURE 4.72 – Géométrie du test de convection. Une
pression interne p est appliquée et la paroi ex-
terne du cylindre est mise en rotation. Le mail-
lage reste fixe.

-180. 180.sxx [MPa]

x

y

FIGURE 4.73 – Champ de contrainte déviatorique
sx x obtenu après application de la pression p
juste avant le début de la rotation.

Il s’agit d’un cylindre de rayon interne Rin = 1 mm et de rayon externe Rout = 2 mm
traité en état plan de déformation (figure 4.72). Il est constitué d’un matériau élastique
linéaire (E = 200 GPa et ν = 0.3). On utilise un maillage relativement grossier de 40
éléments sur la circonférence et 8 éléments dans l’épaisseur. Dans un premier temps, la
surface externe du cylindre est fixe et une pression interne p = 300 MPa est appliquée pour
obtenir le champ des contraintes déviatoriques sx x tracé sur la figure 4.73 (pour rappel, sx x

est une grandeur définie sur 2×2 points de Gauss par quadrangle). Ensuite, dans un second
temps, la paroi externe subit une rotation imposée à vitesse constante. Le maillage par
contre reste fixe selon la direction circonférentielle. On autorise cependant un déplacement
radial des nœuds. Mathématiquement, si (r,θ ) sont les coordonnées polaires des nœuds,
cela signifie rE = r L et θ E = θ (t = 0).

D’un point de vue physique, le champ sx x ne présente pas un grand intérêt puisqu’il est
exprimé dans un système de coordonnées cartésiennes et que le problème a une symétrie
cylindrique. Par contre, en ce qui concerne la convection, il n’est pas spatialement constant
et présente donc une difficulté. La solution exacte du problème de convection est équiva-
lente à la solution à la fin de la mise en charge (figure 4.73). Les valeurs de sx x doivent
rester constantes au cours du temps quel que soit le point considéré.

On utilise le schéma de Benson. La figure 4.74 compare les solutions obtenues après
3/2 tours (600 pas de temps) avec une reconstruction constante très diffusive et une re-
construction linéaire qui permet de conserver globalement l’allure du champ de contrainte
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FIGURE 4.74 – Champ de contraintes déviatoriques sx x obtenu après une rotation de 3/2 tours pour un
schéma utilisant une reconstruction constante ou linéaire.

au cours du temps. Obtenir ces derniers résultats n’est pas immédiat. En effet, ils sont forte-
ment conditionnés par la manière dont sont gérées les conditions aux limites sur les parois
interne et externe du cylindre. Comme nous l’avons expliqué à la section 4.5.7, il est cou-
rant d’observer des flux parasites au travers des frontières du maillage. Dans le cas de cet
exemple, malgré le fait que les volumes ∆Vi soient calculés de manière exacte, il existe des
flux parasites à travers les frontières en rotation et ceux-ci peuvent perturber la convec-
tion. Ces flux proviennent de la découpe des éléments finis en plusieurs sous-volumes. La
figure 4.75 montre le flux de frontière dans le cas d’une grandeur définie en un seul point
de Gauss par élément fini. Dans ce cas, un seul volume fini est défini par élément pour la
convection et, si l’arête frontière subit une rotation rigide, le flux résultant, qui est propor-
tionnel à l’aire du « quadrangle » (diabolo) formé par l’arête lagrangienne et eulérienne, est
nul. Il n’y a donc aucune condition aux limites à prendre en compte. Par contre, si chaque
élément possède quatre points de Gauss, la découpe en quatre sous-volumes entraîne l’ap-
parition de flux parasites (figure 4.76) parce que les arêtes de ces derniers ne suivent pas
exactement la courbure de la frontière.

Cette erreur géométrique provoque l’apparition d’un flux entrant dans le maillage dans
un sous élément et un flux sortant dans son voisin. On pourrait donc naïvement éliminer ces
flux en imposant∆Vi = 0 sur ces frontières problématiques. L’autre solution est de considé-
rer que le champ à transférer se prolonge au-delà des frontières et imposer un flux non nul.
La prolongation du champ consiste soit à assigner la valeur moyenne de la cellule frontière
au delà de son arête frontière, soit à évaluer la reconstruction au-delà de l’arête frontière.
Ces deux méthodes donnent des résultats très similaires et nous ne les distinguerons pas.

Il est intéressant de remarquer que ce problème ne se pose pas lorsqu’on utilise le
schéma de Godunov (schéma #1 du tableau 4.2). En effet, les deux manières de trai-
ter ces flux parasites sont numériquement équivalentes. En retournant à l’équation (4.60)
page 115, on remarque que le flux calculé à travers une frontière de cellule i est le produit
du volume balayé ∆Vi et de la différence des valeurs des cellules adjacentes (σL

i −σL). Il
ne s’agit pas du flux de σ mais plutôt du flux de la variation de σ à travers l’arête. Pour le
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FIGURE 4.75 – Flux de frontière dans le cas d’une
grandeur définie en un point de Gauss par élé-
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FIGURE 4.76 – Flux de frontière dans le cas d’une
grandeur définie en quatre points de Gauss par
élément fini.

schéma de Benson, le flux qui est calculé par l’équation (4.106) est bien le flux de σ. Les
grandeurs calculées sont donc différentes dans les deux cas.

Les deux manières de gérer les conditions aux limites sont comparées sur la figure 4.77
pour le schéma de Benson avec reconstruction linéaire. On observe l’évolution de la con-
trainte déviatorique sx x et la pression p. Ces champs ont été reportés sur la verticale pour
faciliter la visualisation. Ils sont définis en 2×2 points de Gauss (éléments SRI à dilatation
constante – voir section 4.3.3) et les valeurs ponctuelles ont été extrapolées aux nœuds pour
obtenir localement un champ continu sur chaque élément (mais discontinu entre ceux-ci).
L’imposition d’un flux nul (à gauche sur la figure) provoque l’apparition d’oscillations dans
la solution à proximité des frontières. La seconde manière de calculer le flux, moins intui-
tive, permet d’obtenir une solution lisse (à droite sur la figure).

Le problème d’oscillation sur le champ de pression n’apparaît évidemment pas lorsqu’on
utilise un élément fini à pression constante. Il est intéressant de remarquer que, même avec
les conditions aux limites appropriées, le champ p, bien que très proche d’une constante,
n’est pas tout à fait constant. Cette erreur est certainement due au couplage entre toutes les
grandeurs convectées à travers les équations d’équilibre. Ainsi, une erreur de convection sur
une composante des contraintes influence les forces internes et indirectement l’incrément
de contrainte du pas de temps suivant.

En regardant de manière plus précise l’évolution de sx x et p en un point particulier, il
est possible de se faire une idée de l’erreur commise par les différentes méthodes de cal-
cul au cours de la simulation. Le point choisi est sur la frontière externe du cylindre en
(x , y) = (0, Rout) (point dénommé mesure sur la figure 4.72). On y observe l’évolution de
sx x (figure 4.78) et p (figure 4.79) en fonction de l’angle de rotation. La solution de réfé-
rence est celle obtenue à la fin de la phase d’application de la pression. Une fois encore,
on constate l’intérêt d’utiliser une reconstruction linéaire : la solution obtenue par l’algo-
rithme de Godunov s’éloigne très vite de la valeur obtenue en fin de chargement (désignée
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FIGURE 4.77 – Solutions obtenues par le schéma utilisant une reconstruction linéaire. Les conditions aux
limites, sur la paroi externe et interne du cylindre, sont gérées en imposant un flux nul sur les frontières
(à gauche) ou en considérant que le champ se prolonge au-delà des frontières du maillage (à droite). Les
champs de contraintes déviatoriques sx x (en haut) et de pression p (en bas) sont cette fois représentés en
3D en reportant leurs valeurs selon la verticale. La solution en haut à droite est celle représentée sur la
figure 4.74
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en fonction du schéma et de la manière d’appli-
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FIGURE 4.79 – Evolution de p au point de mesure en
fonction du schéma et de la manière d’appliquer
les conditions aux limites.

par l’horizontale Référence sur les figures). Annuler le flux aux frontières bien qu’il ne soit
pas nul (courbes Flux nul) détériore la solution. On peut obtenir cependant une solution
presque constante et très proche de la solution de référence en calculant le flux parasite à
travers la frontière (courbes Flux non nul).
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FIGURE 4.80 – Variation de rayon au cours de la
rotation en fonction du schéma et de la manière
d’appliquer les conditions aux limites.
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FIGURE 4.81 – Influence du nombre de pas lagran-
giens pour effectuer la simulation complète (re-
construction linéaire, flux non nuls, Cmax=0.9).

Il est intéressant de regarder l’impact des erreurs commises lors de la convection sur la
géométrie du cylindre. En effet, celles-ci perturbent l’équilibre et provoquent indirectement
une variation du rayon de la paroi interne du cylindre sur laquelle s’applique la pression.
La figure 4.80 montre la variation du rayon interne au cours du temps. On constate que le
traitement des conditions aux limites a une influence non négligeable sur la valeur du rayon
interne. Annuler le flux aux frontières entraîne une forte augmentation du rayon interne
par rapport à la solution obtenue en calculant les flux parasites.

Pour terminer, la figure 4.81 montre l’influence du nombre de pas de temps pour effec-
tuer les 3/2 tours de la simulation. On voit que si on diminue le nombre de pas, la solution
s’écarte d’avantage de la solution de référence. Néanmoins, l’échelle de cette figure montre
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que l’erreur commise reste extrêmement faible. Celle-ci pourrait encore être diminuée en
utilisant un maillage plus fin.

En conclusion, cet exemple montre que, contrairement au schéma de Godunov, le sché-
ma de Benson, utilisant une reconstruction constante ou linéaire, nécessite un calcul exact
des flux parasites sur les frontières aussi faibles soient-ils. C’est à cette condition, et à la
condition de calculer exactement les volumes balayés ∆V (voir la conclusion de l’exemple
de rotation précédent), que le schéma de Benson utilisant une reconstruction constante
(schéma #2) est équivalent au schéma de Godunov (schéma #1). C’est également sous
ces conditions que le schéma de Benson (schéma #3) est utilisable dans des applications
industrielles. Nous utiliserons toujours le résultat de cette analyse dans la suite de ce travail.
On distinguera donc uniquement deux schémas :
• Le schéma à reconstruction constante : nommé aussi schéma de Godunov, correspon-

dant soit au schéma #1 soit au schéma #2 avec un calcul correct des volumes balayés
et des flux parasites à travers les surfaces frontières.
• Le schéma à reconstruction linéaire : le schéma #3 utilisant toujours un calcul correct

des volumes balayés et des flux parasites à travers les surfaces frontières.
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4.8 Conclusions

Ce chapitre s’est focalisé sur la deuxième étape de la phase eulérienne de l’algorithme
ALE qui consiste à transférer les grandeurs définies sur le maillage lagrangien vers le nou-
veau maillage.

Après avoir décrit les différentes méthodes couramment utilisées dans la littérature,
nous sommes arrivés à la conclusion qu’il n’existait pas de méthode de transfert qui soit
précise tout en étant adaptée aux éléments finis quadrangulaires ou hexaédriques non tota-
lement sous-intégrés. Mis à part dans le cas d’une intégration explicite des équations d’équi-
libre, les éléments finis classiquement utilisés en mécanique du solide possèdent plusieurs
points de Gauss.

En s’inspirant d’une technique de découpe d’éléments finis en plusieurs volumes finis
utilisée dans le cadre d’un schéma de Godunov précis au premier ordre (Huerta, Casadei
et Donéa [47, 114]), nous avons adapté un schéma précis au second ordre (Benson [22])
initialement prévu pour des éléments à un seul point de Gauss. Le schéma obtenu est com-
patible avec des éléments à plusieurs point de Gauss et peut donc être utilisé aussi bien avec
des schémas d’intégration temporelle implicites qu’explicites des équations d’équilibre. On
peut également envisager l’utilisation d’éléments finis complexes tels que les éléments EAS.
Cette extension est donc tout à fait originale.

Le schéma de transfert est également utilisable pour le transfert des valeurs nodales
telles que la température, le champ de vitesses et d’accélérations. De plus, grâce à une
construction automatique des maillages auxiliaires de cellules de transfert, le schéma est
étendu sans difficultés à trois dimensions. Cette façon de traiter de manière identique la
convection de toutes les grandeurs (nodales ou aux points de Gauss) quelle que soit la
dimension (2D ou 3D) est une difficulté technique qui a été surmontée grâce à une implé-
mentation orientée objets. Celle-ci permet de traduire la réalité mathématique (le schéma
s’écrit de manière identique dans tous ces cas) directement dans le code grâce à une structu-
ration des données adéquate. Contrairement à la majorité des auteurs, nous pouvons ainsi
utiliser les formalisme ALE pour tous les modèles numériques de Metafor sans exception,
quelle que soit leur nature.

Nous nous sommes attardés sur l’influence de la position du point de collocation dans
chaque volume fini puisque, dans le cas d’éléments finis à plusieurs points de Gauss, ce
dernier est légèrement décentré. Ce décentrage provoque de légères oscillations mais ne
perturbe pas globalement les résultats. Cette étude, qui n’avait pas été faite par les au-
teurs de la technique de découpe d’éléments finis en plusieurs volumes finis, permet de se
rassurer sur la validité de la méthode avant son extension au second ordre.

Le problème du contact avec frottement, composante majeure des problèmes de mise à
forme qui nous intéressent, a également été abordé bien qu’il soit souvent passé sous silence
dans la littérature sur le formalisme ALE. Une technique simple et efficace de recalcul de la
position de glissement des nœuds en contact a été mise au point. Elle est applicable dans
tous les cas (2D, 3D, outils rigides ou déformables) et permet de calculer précisément le
frottement sur des zones de contact où le maillage ne suit pas le mouvement de la matière.
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Enfin, le précision nécessaire pour calculer les volumes balayés et la manière de gérer
les flux parasites à travers des frontières du maillage ont été discutées longuement parce
qu’elles constituent la clef pour l’obtention d’un algorithme de transfert précis et robuste,
quelle que soit le mouvement du maillage par rapport à celui de la matière. En particulier,
nous avons vu que des précautions particulières doivent être prises dans le cas de grandes
rotations. Ces aspects numériques, qui peuvent être à première vue considérés comme des
détails d’implémentation bien qu’ils n’en soient pas, n’avaient curieusement jamais été étu-
diés auparavant et constituent donc un apport original de ce travail de thèse.
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Chapitre 5

Applications numériques

5.1 Introduction

Ce chapitre présente différentes applications numériques dans le but de valider les al-
gorithmes décrits dans les chapitres précédents. Pour chacun de ceux-ci, nous comparons
de manière détaillée les résultats obtenus en formalisme ALE et ceux fournis par un modèle
lagrangien équivalent, lorsqu’il est réalisable.

Bien qu’ils soient majoritairement bidimensionnels, les modèles numériques de ce cha-
pitre couvrent la majorité des problèmes que l’on peut rencontrer en formalisme ALE, c’est-
à-dire : le choix optimal d’une méthode de repositionnement de nœud et d’un algorithme
de convection, le choix des variables à transférer, le problème des conditions aux limites,
etc. L’ordre de présentation de ces applications numériques n’est pas anodin. Il correspond
a une augmentation progressive de la difficulté pour se rapprocher, au final, de l’applica-
tion principale de cette thèse présentée au chapitre suivant : la simulation ALE du profilage.
Pour chaque problème nous essayons de tirer parti des conclusions des applications précé-
dentes. Les premières impliquent des mouvements convectifs faibles qui nous permettent
de focaliser notre attention sur la gestion du maillage. Les suivantes se rapprochent du
profilage par la présence d’effets convectifs plus importants.

Les deux premiers exemples consistent à modéliser deux cas-tests de référence du for-
malisme ALE : l’impact de Taylor et la striction d’une barre d’Hopkinson. Le premier pro-
blème démontre l’intérêt de pouvoir contrôler la taille des mailles en cours de calcul lors
d’écrasements importants pour limiter la diminution du pas de temps critique d’un schéma
d’intégration temporelle explicite. Il démontre aussi la nécessité de transférer le champ des
vitesses nodales pour conserver l’énergie cinétique du projectile lors de la phase de reposi-
tionnement des nœuds. Le second test effectué en dynamique rapide, un essai de traction
d’une barre d’Hopkinson, montre que notre implémentation est capable de traiter des pro-
blèmes thermomécaniques en ajoutant simplement les températures nodales à la liste des
grandeurs à transférer. Le formalisme ALE permet de retrouver ainsi les résultats lagran-
giens avec un maillage initialement beaucoup plus grossier, tout en conservant une bonne
précision sur la géométrie de la zone de striction en fin de calcul.
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L’exemple suivant illustre l’utilisation du formalisme ALE comme choix alternatif au re-
maillage complet d’une pièce subissant de très grandes déformations. Il s’agit d’un modèle
de double extrusion. Ce procédé est utilisé comme test tribologique pour comparer des
lubrifiants entre eux dans des conditions proches de celles rencontrées en forgeage. Le frot-
tement joue donc un rôle prépondérant dans cette modélisation et sa prise en compte doit
être inévitablement précise pour obtenir des résultats de simulation corrects. En pratique,
le changement radical de géométrie de l’échantillon extrudé est anticipé par l’ajout de do-
maines ALE auxiliaires de très faible épaisseur et finement maillés qui peuvent recevoir un
flux de matière au cours de la simulation pour se gonfler dans la direction d’extrusion. Les
résultats ALE sont comparés avec ceux de la littérature provenant d’essais expérimentaux
et de simulations numériques avec remaillage.

Nous présentons ensuite un modèle de laminage. Il permet de valider à nouveau la
gestion du frottement en formalisme ALE. Contrairement aux simulations précédentes, il
s’agit d’un procédé stationnaire et le maillage est quasi eulérien : il reste fixe dans la
direction de laminage et le matériau s’écoule au travers de celui-ci. On observe ainsi de
très grands déplacements convectifs. L’état stationnaire calculé par le modèle ALE est com-
paré précisément avec la solution lagrangienne et celle provenant du code eulérien LAM3
dédié au laminage. Nous montrons aussi l’intérêt de limiter la taille de l’incrément tem-
porel en formalisme ALE pour éviter les oscillations temporelles dans la solution. Dans
un deuxième temps, les simulations sont effectuées avec des cylindres déformables. Tout
comme la bande, ceux-ci peuvent être traité en formalisme ALE pour réduire le nombre de
mailles nécessaires au calcul. Néanmoins, vu la petitesse du modèle 2D présenté ici, il est
difficile d’obtenir un temps CPU inférieur à celui d’un calcul lagrangien optimisé équivalent.

La dernière application numérique de ce chapitre concerne le planage sous traction de
tôles d’acier. Il s’agit d’un procédé stationnaire permettant de réduire les défauts de forme
d’une tôle en fin de ligne de production en lui faisant subir une série de flexions alternées
entre des rouleaux. Contrairement aux applications précédentes pour lesquelles le schéma
de Godunov est amplement suffisant pour obtenir des résultats précis, nous montrons qu’il
est nécessaire d’utiliser le schéma de convection avec reconstruction linéaire du champ
inconnu pour retrouver la valeur lagrangienne de l’allongement longitudinal après retour
élastique. Le problème de la position des frontières eulériennes et de la nature des fixations
aux extrémités amont et aval du maillage est étudié. À partir d’un maillage ALE 2D opti-
misé, un modèle tridimensionnel est créé. Contrairement à son homologue 2D, il permet
de calculer la courbure de la tôle dans le sens travers et la réduction de largeur.
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5.2 Impact et striction d’un barreau cylindrique

5.2.1 Introduction

Cette section présente deux premières applications pour lesquelles les effets d’inertie
sont prépondérants et ne peuvent donc certainement pas être négligés. Le premier est l’im-
pact d’un barreau cylindrique sur une paroi rigide (encore appelé barre de Taylor). Il met
en évidence l’importance du transfert du champ de vitesses entre les maillages lagrangien
et eulérien pendant l’étape de convection de l’algorithme ALE. Il montre aussi l’intérêt du
formalisme ALE dans le cadre d’un schéma d’intégration explicite où la taille maximale du
pas de temps, qui garantit la stabilité, est directement liée à la taille du plus petit élément
du maillage. En évitant l’écrasement excessif des mailles grâce au formalisme ALE, on peut
donc diminuer le nombre d’incréments temporels nécessaires à la simulation et ainsi réduire
le temps de calcul total.

Le second problème, le test d’Hopkinson, est un test de traction à haute vitesse entraî-
nant une forte striction de l’échantillon. Il est traité par un schéma d’intégration implicite
thermomécanique étagé et requiert donc le transfert du champ de température (et de sa
dérivée temporelle). Appliqué à ce problème, le formalisme ALE permet de conserver un
nombre suffisant de mailles dans la zone de striction pour capter de manière précise la
courbure géométrique et les variations de température locales, tout en utilisant un nombre
total de mailles réduit. Pour une qualité de solution égale, on peut donc diminuer le temps
de calcul du modèle numérique en utilisant le formalisme ALE.

5.2.2 Barre de Taylor

5.2.2.1 Introduction

La simulation de la barre de Taylor est certainement un des problèmes les plus étudiés
en formalisme ALE (voir Aymone [12], Benson [22], Huerta et Casadei [114], Liu et al.
[143], Ponthot [168], Potapov [172], etc.). Malgré le nombre d’auteurs et la simplicité
apparente de ce test d’impact, peu d’entre eux arrivent à obtenir des résultats identiques en
formalisme lagrangien et ALE.

R

h

v0

paroi
rigide

échantillon cylindrique en cuivre

FIGURE 5.1 – Géométrie axisymétrique de l’impact de la barre de Taylor. Un barreau cylindrique dont la vitesse
est connue vient percuter un mur rigide. On observe la variation de sa hauteur h et la variation du rayon
de sa base après impact.
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Comme nous allons le montrer, les deux conditions nécessaires pour obtenir un accord
presque parfait entre les deux méthodes de calcul est d’une part le transfert du champ de
vitesse et d’autre part un maillage adéquat.

5.2.2.2 Modèle numérique

Le problème de la barre de Taylor consiste à simuler l’impact d’un projectile cylindrique
sur une paroi rigide. La géométrie initiale du test est représentée sur la figure 5.1. Les di-
mensions du barreau sont h = 32.4 mm et R = 3.2 mm. La vitesse d’impact est v0 = 227
m/s. L’échantillon est en cuivre (E = 117 GPa, ν = 0.35, ρ = 8930 kg/m3) dont le com-
portement plastique est modélisé par une loi d’écrouissage linéaire σY = 400+100 ǭp MPa.
Le problème est axisymétrique si bien qu’une seule demi-section nécessite notre attention.
Le maillage de référence est représenté sur la figure 5.2 au dessus de l’axe de symétrie.
Il est régulier et composé de 50×5 mailles quadrangulaires. Nous utiliserons également
un maillage optimisé pour le modèle ALE comportant le même nombre de mailles. Elles
sont cependant distribuées suivant une progression géométrique telle que les mailles ve-
nant s’écraser sur la paroi sont quatre fois plus petites que celles à l’extrémité opposée du
barreau (figure 5.2, sous l’axe). Le frottement entre l’échantillon et la paroi est négligé
pour pouvoir traiter le contact par des fixations nodales appropriées. Celles-ci remplacent
avantageusement les éléments de contact traditionnels. On utilise des éléments finis SRI à
dilatation constante.

maillage lagrangien/ALE

maillage ALE optimisé 14

FIGURE 5.2 – Maillages utilisés en formalisme lagrangien et ALE. Le maillage du dessus est le maillage de
référence. Le second maillage (en dessous) possède le même nombre de mailles que le premier.

La simulation débute au moment précis où le contact entre la barre et la paroi est établi.
Elle se termine après 80 µs, lorsque la totalité de l’énergie cinétique initiale a été dissipée.
Pour l’intégration temporelle, un schéma explicite est choisi dans le but d’illustrer l’intérêt
du formalisme ALE dans ce contexte. Le pas de temps est calculé automatiquement comme
une fraction (0.95) du pas de temps critique déduit de la condition CFL du schéma.

Concernant le modèle ALE, le mouvement du maillage est défini de la manière suivante :
les nœuds des arêtes sont repositionnés par la méthode des splines et les nœuds internes
par la méthode d’interpolation transfinie. C’est la méthode traditionnellement utilisé dans
la littérature. Une seconde méthode sera également utilisée dans le cas du maillage ALE
optimisé. Les nouvelles positions des nœuds de l’axe de symétrie seront obtenues par pro-
jection sur l’axe de symétrie des nouvelles positions des nœuds de l’arête opposée, corres-
pondant à la surface extérieure du barreau. Ceci permet de conserver les lignes de maillage
horizontales tout au long de la simulation (voir le maillage ALE optimisé, à droite sur la
figure 5.3).
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Un test des deux schémas de convection montre que l’utilisation d’une reconstruction
linéaire apporte un très léger gain de précision dans les résultats par rapport à une re-
construction constante. Par contre, le temps de calcul augmente considérablement (voir
tableau 5.1). Nous choisissons donc le schéma de Godunov pour cette étude.

Vu la petitesse du pas de temps critique et le nombre important d’incréments qui en
résulte, les déplacements sont très faibles sur un seul pas de temps. Il est donc important de
ne pas activer l’algorithme ALE à la fin de chaque pas de temps. En conséquence, on décide
d’effectuer le repositionnement des nœuds et le transfert une fois tous les 30 incréments,
sauf mention contraire.

5.2.2.3 Résultats

Nous comparons quatre simulations différentes. La première est le modèle lagrangien
qui constitue notre solution de référence. La seconde est une simulation ALE pour laquelle
le champ de vitesse n’est pas convecté lors de la phase de transfert. Cette simplification
est courante dans la littérature (Aymone [12], Huerta et Casadei [114], Liu et al. [143],
Ponthot [168] parmi les auteurs précédemment cités). La troisième simulation montrera
les différences obtenues dans les résultats lorsqu’on effectue cette convection. Enfin, la
dernière simulation est une optimisation du modèle précédent.

La figure 5.3 montre le champ de déformation plastique équivalente et la géométrie du
barreau à la fin des simulations. Les trois modèles ALE sont chacun comparés à la solution
lagrangienne. Celle-ci possède des mailles fortement écrasées au voisinage de la paroi.
Les modèles ALE permettent de conserver des mailles de plus grande taille. La première
simulation ALE, pour laquelle on a négligé le transport des vitesses, est visiblement moins
écrasée. Une superposition du maillage ALE et de la solution lagrangienne est présentée à la
figure 5.4. On constate que la hauteur finale obtenue est supérieure (+2.1%) d’une valeur
δh proche à la taille d’une maille entière. Au niveau du contact, le barreau s’est moins
élargi radialement (-9.4%). La différence entre les deux formalismes (notée δR) est aussi
bien visible sur la figure 5.3 . À ce stade, on pourrait être tenté de conclure (Ponthot [168])
que cette différence résulte du meilleur conditionnement des mailles ALE par rapport aux
mailles lagrangiennes très aplaties. Le résultat ALE serait donc meilleur que le résultat
lagrangien. Nous allons montrer que ce raisonnement est faux.

En transférant les vitesses du maillage lagrangien vers le maillage eulérien à chaque
activation de l’algorithme ALE, la différence entre les résultats des deux formalismes dimi-
nue significativement (figure 5.3). Les isovaleurs de déformation plastique de ce nouveau
modèle ALE sont, cette fois, beaucoup plus proches de celles obtenues en formalisme la-
grangien. Ce résultat est donc meilleur que le précédent. L’utilisation de grandes mailles
à la base du projectile a certainement un effet bénéfique sur la taille du pas de temps
maximum admissible pour intégrer explicitement les équations d’équilibre. Néanmoins, ces
grandes mailles sont incapables de représenter les forts gradients de déformation et les
variations de courbure de la surface externe de l’échantillon observés dans la solution la-
grangienne. Pour obtenir une meilleure correspondance entre les résultats lagrangien et
ALE, il suffit d’optimiser le maillage en concentrant les mailles à la base du cylindre. Le
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Lag. Lag. Lag.ALE ALE ALE

conv
v

conv
v

opti.

0.0 1.50 3.0
Déformation plastique équivalente ( )e

p

FIGURE 5.3 – Comparaison des déformées et du champ de déformation plastique équivalente ǭp pour les
modèles ALE et le modèle lagrangien de référence.
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nouveau maillage (maillage « optimisé » de la figure 5.2) est le résultat d’un compromis
entre de nombreuses mailles pour décrire correctement la solution et des mailles de grande
taille pour conserver un pas de temps de taille raisonnable. Ce dernier modèle ALE fournit
une solution presque identique à celle obtenue en formalisme lagrangien.

dR

dh

FIGURE 5.4 – Erreur géométrique résultant de l’oubli du transport des vitesses. Le maillage ALE, en noir, est
superposé à la solution lagrangienne de référence, en couleur.

Les figures suivantes confirment ces premières observations. La variation de hauteur
du projectile au cours de l’impact est représentée sur la figure 5.5. Les courbes des quatre
simulations sont très proches, mais celle relative à la simulation sans convection de vitesse
(notée ALE (-v)) s’écarte légèrement des autres lors des 20 dernières microsecondes de
la simulation. La nécessité de transporter la vitesse est également mise en évidence sur
la figure 5.6 qui montre l’évolution du rayon de la barre cylindrique mesuré à sa base,
sur la paroi rigide. On constate néanmoins que cette convection n’est pas suffisante pour
retrouver exactement la valeur lagrangienne. Le maillage ALE optimisé fournit une courbe
qui se confond avec la simulation de référence.
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FIGURE 5.5 – Variation de hauteur de la barre lors
de l’impact.
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FIGURE 5.6 – Variation de rayon de la barre mesuré
à sa base, sur la paroi rigide.

En l’absence de transfert du champ de vitesse, la valeur des vitesses est simplement
conservée en chaque nœud pendant la phase de redéfinition d’un nouveau maillage. Dans
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ce cas, puisque le mouvement du maillage est opposé à celui de la matière, le champ de
vitesse est translaté dans la direction opposée à celle de la paroi. Par exemple, la vitesse
faible d’un nœud proche de la paroi sera ainsi attribuée à une zone matérielle dont la
vitesse est plus importante. Il en résulte une perte d’énergie cinétique à chaque activation
de l’algorithme ALE. Cette perte apparaît clairement sur la figure 5.7. Si on effectue un
zoom (figure 5.9). On constate bien les sauts d’énergie lors de la définition d’un nouveau
maillage tous les 30 pas de temps.
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FIGURE 5.7 – Variation de l’énergie cinétique au
cours des simulations.
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FIGURE 5.8 – Variation de l’énergie cinétique au
cours des simulations (zoom sur la figure 5.7).

La figure 5.9 montre l’évolution de la taille du pas de temps pour les quatre simulations.
L’écrasement des mailles du modèle lagrangien entraîne de très petits pas (le pas de temps
est déjà divisé par 6 après 20µs). Les solutions ALE obtenues sur le même maillage per-
mettent d’utiliser des pas jusqu’à 8 fois plus grands vers la fin du calcul, au prix d’une perte
de qualité de la solution. Le maillage optimisé se situe entre ces deux situations extrêmes.
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FIGURE 5.9 – Taille du pas de temps au cours des simulations.

Le tableau 5.1 rassemble quelques résultats sous forme numérique. Nous commentons
principalement les temps de calcul. Toutes les simulations ont été effectuées sur la machine
PC1 de l’annexe A. On remarque que tous les modèles ALE sont plus rapides que le modèle
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lagrangien (entre 3 et 6 fois plus rapides si on écarte le modèle sans la convection des
vitesses). Lorsqu’on utilise un schéma d’intégration explicite, le formalisme ALE peut donc
entraîner de très gros gains de temps de calcul, même sur des problèmes de petite taille,
pour autant que certaines mailles s’écrasent fortement. C’est certainement pour cette raison
par exemple que le formalisme ALE est plus riche dans la version explicite du code de calcul
Abaqus que dans sa version implicite. Dans le cas de Metafor, cette conclusion doit être
modérée par le fait que le schéma explicite n’est pas optimisé.

Conv. Nbre Hauteur Rayon Temps CPU
v de pas h f [mm] R f [mm] CPU ALE [%]

Lagrangien - 7129 21.42 7.12 1’24” (1.00) 0
ALE non 985 21.86 6.45 12” (0.14) 9
ALE oui 1114 21.50 7.01 15” (0.18) 17
ALE (maillage optimisé) oui 2264 21.47 7.12 31” (0.37) 16
ALE (rec. lin.) oui 1132 21.41 7.04 22” (0.26) 37
ALE (rec. lin., maillage opti.) oui 2287 21.43 7.14 44” (0.52) 38
ALE (tous les 10 incréments) oui 2725 21.48 7.10 45” (0.54) 29
ALE Ponthot [168] non 1463 21.87 6.51
ALE Aymone [12] non 22.06 6.38
ALE Potapov [172] oui 21.43 7.11

TABLEAU 5.1 – Résultats obtenus pour les différentes simulations de la barre de Taylor. Comparaison avec les
résultats de la littérature.

L’amélioration de la solution apportée par le schéma de convection utilisant une re-
construction linéaire est visible sur la hauteur finale de la barre h f qui est très proche de
la valeur lagrangienne alors qu’un maillage uniforme est utilisé. On voit cependant que le
maillage devrait être optimisé pour obtenir un rayon final R f correct.

La fréquence d’activation de l’algorithme ALE a une influence directe sur le temps de
calcul. Si on l’active trop souvent, le temps est majoritairement passé dans les routines
ALE qui sont relativement coûteuses par rapport à un pas de temps explicite lagrangien.
Inversement, si on l’active trop peu, le maillage s’écrase trop et la taille du pas de temps di-
minue. Il existe donc une fréquence optimale d’activation (proche de la valeur utilisée pour
ces tests). Pour des simulations plus lourdes, il serait tout à fait envisageable de calculer
cette fréquence en fonction de l’évolution de la taille du pas de temps critique de l’algo-
rithme d’intégration temporelle pour essayer de diminuer encore le nombre d’activations
de l’algorithme ALE et, finalement, le temps de calcul.

Si on compare nos résultats avec ceux de la littérature, on remarque aisément qu’ils sont
très proches lorsque l’algorithme utilisé prend en compte la convection des vitesses.
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5.2.3 Barre d’Hopkinson

5.2.3.1 Introduction

Le test de la barre d’Hopkinson (voir Zhao [211] ou Verleysen et Degrieck [201] parmi
d’autres), désignée par Split Hopkinson Pressure Bar (SHPB en anglais) lorsqu’elle est utili-
sée en compression et Split Hopkinson Tensile Bar (SHTB en anglais) lorsqu’elle est utilisée
en traction, permet de caractériser le comportement des matériaux à de grandes vitesses
de déformation (entre 100 et 5000 s−1). Son principe est schématisé sur la figure 5.10.
Un échantillon est collé entre deux longues barres métalliques. Un impacteur tubulaire est
envoyé à grande vitesse sur une butée à l’extrémité de la barre d’entrée grâce à un système
de propulsion pneumatique. L’onde de traction, qui est ainsi créée, se propage en direc-
tion de l’échantillon. Lorsqu’elle atteint ce dernier, elle est partiellement transmise vers la
deuxième barre et partiellement réfléchie. Sous l’action de ces ondes l’échantillon se dé-
forme, éventuellement jusqu’à rupture si le chargement est suffisant. Les signaux, mesurées
à l’aide de deux jauges de déformation placées sur les deux barres, permettent de déduire
le déplacement des extrémités de l’échantillon pendant le test.

onde transmise
onde incidente

onde réfléchie

barre d'entréebarre de sortie

butée
impacteur
tubulaire

FIGURE 5.10 – Principe du test de la barre d’Hopkinson utilisée en traction (Verleysen et Degrieck [201]). Une
onde de traction incidente, créée par un impacteur tubulaire propulsé à très grande vitesse sur l’extrémité
d’une barre, se propage le long de celle-ci. Lorsqu’elle atteint l’échantillon, cette onde se scinde en une onde
réfléchie et une onde transmise qui provoquent un chargement en traction avec des vitesses de déformation
de l’ordre de 100 et 5000 s−1.

Dans un modèle éléments finis en formalisme lagrangien, la zone de striction, très lo-
calisée, est généralement décrite par quelques rangées de mailles, voire une seule lorsque
le maillage est grossier. Il en résulte une erreur géométrique et une erreur sur les champs
discrétisés qui augmentent au fur et à mesure que la section se réduit. Le formalisme ALE
peut être utilisé pour simuler avec plus de précision cette zone de striction en conservant
un maillage régulier au cours de la simulation.

Des problèmes similaires de striction ont déjà été étudiés en formalisme ALE par Huerta
et Casadei [114], Ponthot [168, 169], Rodriguez-Ferran et al. [175, 176]. Par rapport aux
modèles de ces auteurs et par rapport au problème précédent de l’impact de la barre de
Taylor (section 5.2.2), ce problème a la particularité de présenter une loi d’écrouissage
beaucoup plus complexe avec une forte composante visqueuse. De plus, les effets ther-
miques sont également pris en compte pour démontrer la capacité de notre algorithme à
traiter le champ de température comme tout autre champ nodal.
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5.2.3.2 Modèle numérique

La géométrie du test étudié est celle du dispositif expérimental de Noble et al. [155].
Un modèle élément fini axisymétrique, représenté sur la figure 5.11, a été mis au point
par Noble et al. dans le but de comparer la pertinence de deux lois de comportement
visqueuses thermomécaniques : Johnson-Cook [126] et Zerilli-Armstrong [210]. Nous re-
prenons ici le modèle similaire développé récemment par Jeunechamps [125] dans Metafor
que nous adaptons au formalisme ALE. Les dimensions de l’échantillon sont reprises dans
le tableau 5.2.

R

1.7R

v v t= ( )

L2

L3

L1

R

x
y

n mailles

FIGURE 5.11 – Géométrie axisymétrique du test de traction de Noble et al. [155]. Les valeurs numériques des
dimensions sont reprises dans le tableau 5.2

L1 [mm] L2 [mm] L3 [mm] R [mm]
10.16 0.9525 2.0 1.5875

TABLEAU 5.2 – Dimensions du test de traction représenté sur la figure 5.11.

Le chargement du spécimen est modélisé par l’imposition d’un déplacement à l’extrémité
droite de l’échantillon. Ce déplacement est obtenu par intégration de la courbe de vitesse
v(t) déduite des jauges de déformation (figure 5.12) et produit une vitesse de déformation
de l’ordre de 2500 s−1.
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FIGURE 5.12 – Vitesse imposée v(t) à l’extrémité droite de la barre (Noble et al. [155]).

La rupture de l’échantillon se produit expérimentalement après 180 µs mais elle n’est
pas modélisée. La simulation est poursuivie jusqu’à 200 µs. Le maillage, tracé sur la fi-
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gure 5.11, est constitué d’éléments quadrangulaires de type SRI à dilatation constante. Une
zone de raffinement de longueur L3 est définie au centre de l’échantillon pour tenter de
capter au mieux la striction. La valeur de nx fixe le nombre d’éléments le long de cette zone
et sera le principal paramètre de cette étude.

Le matériau dont est constitué l’échantillon est un fer de type REMCO. Son compor-
tement est modélisé par une loi de Zerilli-Armstrong identifiée par Goldthorpe [90] (ta-
bleau 5.3). L’intégration temporelle est réalisée par un schéma thermomécanique étagé iso-
therme (Armero et Simo [5]) pour lequel l’équilibre mécanique est résolu avec le champ de
température du pas de temps précédent et suivi d’une résolution thermique pure. La partie
mécanique est intégrée par un schéma implicite de Chung-Hulbert [52] avec αM = −0.97
et αF = 0.01. La partie thermique utilise un schéma du trapèze généralisé (section 4.3.2).
La température initiale est uniforme et fixée à T (t = 0) =293 K.

Module d’Young (E) [GPa] 193
Coefficient de Poisson (ν) 0.29
Masse volumique (ρ) [kg m−3] 7870
Conductivité thermique (k) [W m−1K−1] 80.2
Chaleur spécifique (c) [J kg−1K−1] 449
Coefficient d’expansion thermique (α) [K−1] 1.18 10−5

Facteur de Taylor-Quinney (β) 0.9
Loi de Zerilli-Armstrong

σY = σ0+ C5(ǭ
p)n1 + C2 exp(−C3 T + C4 T ln ˙̄ǫp)

C5 = 357 (1.13− 0.000445 T ) MPa
σ0 [MPa] C2 [MPa] C3 [K

−1] C4 [K
−1] n1

50 1130 0.00515 0.000262 0.52

TABLEAU 5.3 – Paramètres du matériau.

Transformer ce modèle lagrangien en modèle ALE consiste à définir le mouvement du
nouveau maillage et un schéma de transport. Dans ce cas particulier, il est inutile de gé-
rer la totalité du maillage en formalisme ALE. Seule la partie centrale, où le maillage est
raffiné, nécessite notre attention. On définit un domaine ALE uniquement sur cette zone
(figure 5.13), le reste de l’échantillon restant lagrangien. Cette optimisation conduit à des
maillages auxiliaires réduits et donc une légère économie de mémoire et de temps de cal-
cul. La méthode des splines est utilisée pour redéfinir le maillage des deux lignes parallèles
horizontales du domaine ALE en cours de calcul. Les nœuds internes sont repositionnés par
la méthode d’interpolation transfinie.

L3

Lagrangien
ALE

Lagrangien

spline

spline

MIT

FIGURE 5.13 – Définition d’un domaine ALE restreint autour de la zone où la striction est attendue.
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Concernant la convection, les deux types de reconstruction (constante et linéaire) seront
comparés. Nous utilisons par défaut une reconstruction constante puisque le mouvement
relatif entre le maillage et la matière n’est pas important. Les mêmes paramètres de schéma
sont utilisés pour la convection des grandeurs nodales (6 valeurs : les vitesses vx , vy , les
accélérations ax , ay , la température T et sa dérivée temporelle Ṫ) et les grandeurs aux
points de Gauss (6 valeurs : les contraintes déviatoriques sx x , sx y , sy y , la pression p, la
déformation plastique ǭp et la masse volumique ρ).

5.2.3.3 Résultats

Nous comparons tout d’abord les déformées et les champs de température obtenus par
les deux formalismes avec le même maillage de départ (nx = 40) à l’instant de la rupture
expérimentale en t = 180µs (figure 5.14). Les lignes d’isovaleurs de la déformée supé-
rieure (lagrangienne) et de la déformée inférieure (ALE) sont similaires mis à part aux
alentours de la striction. À cet endroit, les mailles lagrangiennes se sont allongées et ne
permettent plus de représenter correctement la courbure de l’échantillon. En formalisme
ALE, des mailles de bonne qualité ont été conservées. On peut donc s’attendre à des résul-
tats ALE plus précis que les résultats lagrangiens pour un nombre de mailles identique. La
différence entre les deux maillages est encore plus visible au temps final de la simulation
(t = 200µs) comme le montre la figure 5.16.

Une des particularités de ce test de traction est la présence d’un décalage vers la droite
de la zone de striction par rapport au milieu de l’éprouvette. Ce décalage de l’endroit de
rupture est noté δ sur la figure 5.14 et est bien observé expérimentalement. Il s’agit d’un
effet dynamique : l’éprouvette numérique se brise en son milieu si les forces d’inertie sont
négligées. La position de rupture calculée est identique pour les deux formalismes. N’ayant
pas de valeur chiffrée de la position expérimentale de la rupture, nous avons superposé, sur
la figure 5.15, le maillage ALE déformé en t = 180µs avec le cliché expérimental de Noble
et al. [155] à cet instant précis. On remarque un bon accord entre les résultats numériques
et l’expérience.

Intéressons-nous maintenant à l’évolution temporelle de la force résultante horizontale
sur l’extrémité droite de l’échantillon. La figure 5.17 montre cette force pour différents
maillages lagrangiens, de plus en plus fins (nx = 40, 80, 160 et 320), et pour le maillage
ALE présenté précédemment (nx = 40). Au fur et à mesure que le maillage s’affine, la
courbe de force lagrangienne se rapproche de celle obtenue en formalisme ALE.

Pour ces mêmes simulations, les figures 5.18 et 5.19 représentent respectivement le pro-
fil de température à la surface de l’échantillon et la forme de cette surface en t = 180µs. Les
courbes lagrangiennes sont d’autant plus lisses que le maillage utilisé est fin. Elles semblent
tendre vers la solution obtenue avec le maillage relativement grossier du modèle ALE. On
peut donc sans conteste affirmer que les résultats ALE sont très précis. Le formalisme ALE
permet d’éviter l’utilisation d’un maillage très fin pour représenter correctement la striction
du spécimen juste avant la rupture.
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ALE
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Lagrangien

Lagrangien

0.0 105. 210. 315. 420.

Variation de température TD [K]

d

milieu de
l'éprouvette

t = 180 sm

FIGURE 5.14 – Comparaison des simulations lagrangienne et ALE pour nx = 40 (t = 180µs).

milieu de
l'éprouvette

t = 180 sm

FIGURE 5.15 – Comparaison de la géométrie du modèle ALE (et, en particulier, de la position de la zone de
striction) en t = 180µs avec le cliché expérimental de Noble et al. [155] à cet instant.
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Lagrangien
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t = 200 sm milieu de
l'éprouvette

FIGURE 5.16 – Comparaison des simulations lagrangienne et ALE pour nx = 40 (t = 200µs).
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FIGURE 5.17 – Force de traction en fonction du déplacement pour différents maillages lagrangiens et pour le
maillage grossier ALE.
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FIGURE 5.18 – Température surfacique de la barre
en t = 180µs pour différents maillages lagran-
giens et pour le maillage grossier ALE.
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FIGURE 5.19 – Géométrie de la barre en t = 180µs
pour différents maillages lagrangiens et pour le
maillage grossier ALE.
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Type de Convection Maillage Temps
reconstruction v , a nx CPU

Lagrangien – – 40 47” (1.00)
– – 80 1’06” (1.40)
– – 160 1’44” (2.21)
– – 320 3’13” (4.11)

ALE constante oui 40 1’13” (1.55)
linéaire oui 40 2’07” (2.70)

constante non 40 1’07” (1.43)

TABLEAU 5.4 – Comparaison des temps de calcul des modèles lagrangiens et ALE en fonction du maillage et
des paramètres de convection utilisés.

Au vu des résultats précédents, obtenus avec un schéma de convection de Godunov, on
imagine facilement que l’utilisation d’un schéma du second ordre n’améliorera pas significa-
tivement la solution puisque les courbes ALE se superposent déjà aux courbes lagrangiennes
obtenues avec un maillage très fin. Il est cependant possible d’optimiser encore le modèle
en négligeant la convection des vitesses et des accélérations nodales. Les résultats obtenus
sont, encore une fois, identiques au modèle ALE de référence. Le tableau 5.4 rassemble les
temps de calcul de toutes les simulations présentées (machine PC1 de l’annexe A). Une fois
optimisé, le modèle ALE permet d’obtenir des résultats similaires à un calcul lagrangien
raffiné de 193 s en un temps environ trois fois moindre. Il serait envisageable de réduire
encore le temps de calcul en activant l’algorithme ALE uniquement lorsque la qualité des
mailles se dégrade, c’est-à-dire à la fin de la simulation. Nous n’avons pas poussé l’optimi-
sation du modèle jusqu’à ce point.
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5.2.4 Conclusions

Les deux problèmes présentés dans cette section ont permis de mettre en évidence la
capacité de l’algorithme ALE à prendre en compte de manière précise les effets d’inertie
et thermiques. Pour rappel, ceux-ci nécessitent la convection des valeurs nodales (vitesses,
accélérations et températures) du maillage lagrangien vers le maillage eulérien lors de
la phase de transfert. Dans les deux cas, malgré le nombre peu élevé d’éléments finis, le
formalisme ALE permet d’obtenir des temps de calcul plus faibles que ceux obtenus par des
modèles lagrangiens équivalents.

Contrairement à ce qu’il est courant de lire dans la littérature (voir notamment Benson
[22]), le schéma de convection de Godunov est amplement suffisant pour obtenir une très
bonne concordance des résultats ALE avec les résultats lagrangiens car les déplacements
convectifs sont faibles. Puisqu’il est beaucoup moins coûteux que le schéma utilisant une
reconstruction linéaire, le schéma de Godunov semble donc être sans conteste le meilleur
choix en termes de rapport qualité/prix.

L’impact de la barre de Taylor montre l’utilité du formalisme ALE en dynamique expli-
cite. Le contrôle de la qualité des éléments finis en cours de calcul permet de conserver
une taille de pas de temps raisonnable même si la matière subit des écrasements sévères.
Le temps CPU est ainsi réduit par rapport à la simulation lagrangienne équivalente. Bien
qu’étant une application classique du formalisme ALE, nous avons essayé de la présenter
de manière originale en insistant, d’une part, sur la nécessité de transférer le champ des
vitesses pour conserver l’énergie cinétique au cours de la phase de transfert ALE et, d’autre
part, sur l’importance d’utiliser un maillage optimisé pour retrouver les résultats lagran-
giens. Il est en effet courant de lire dans la littérature que les différences entre les deux
formalismes s’expliquent par le fait que les mailles lagrangiennes seraient très mal condi-
tionnées en fin de calcul et donc fourniraient des résultats imprécis. Nous avons démontré
qu’il n’en est rien : en formalisme ALE, le repositionnement conduit à des éléments finis de
trop grosse taille qui sont incapables de représenter correctement les forts gradients dans
la solution, près de la zone de contact.

Dans le cas du test de la barre d’Hopkinson, le formalisme ALE permet d’éviter une
mauvaise représentation de la frontière géométrique lorsqu’elle subit de très grandes dé-
formations. Le maintien d’un maillage de bonne qualité dans la zone de striction, dont la
position exacte est inconnue a priori, garantit un calcul précis de l’évolution des champs
inconnus à cet endroit. Le modèle présenté se distingue de ceux de la littérature par sa
complexité du point de vue de la loi de comportement du matériau (thermoviscoplasticité),
de la prise en compte des effets thermiques et des effets d’inertie.
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5.3 Double extrusion (DCET)

5.3.1 Introduction

Nous proposons d’étudier dans cette section un procédé de double extrusion. Cette ap-
plication met en évidence l’intérêt du formalisme ALE dans des situations où la matière
subit de très grandes déformations. Une simulation lagrangienne, dans ce contexte, né-
cessite inévitablement la redéfinition d’un nouveau maillage lorsque la qualité des mailles
pose problème pour poursuivre le calcul. Ces remaillages sont coûteux, difficiles à mettre
en œuvre, et nécessitent encore souvent l’intervention de l’utilisateur. Le formalisme ALE
est donc vu ici comme une alternative au remaillage.

Le procédé d’extrusion étudié est un test tribologique classique pour les opérations de
forgeage. Un des moyens habituellement utilisés pour quantifier le frottement pour ce type
de procédé est le test de l’anneau (ring compression test – voir Male et Cockcroft [147]). Il
consiste à écraser un anneau plat (voir figure 5.20) jusqu’à une épaisseur prescrite. Si le
frottement est nul, l’anneau se déforme avec une vitesse dont l’amplitude est proportion-
nelle à la distance à son axe. Plus le frottement est important, plus ce mouvement sera
freiné. Il en résultera un rayon interne moindre (r2 < r1 sur la figure) et ce dernier peut
servir de mesure indirecte du frottement. Cependant, ce test tribologique représente assez
mal les conditions de contact et l’importance des déformations que l’on retrouve dans une
opération de forgeage à froid pour laquelle il est courant d’atteindre des pressions de l’ordre
de 2.5 GPa, des températures de surface de plus de 600oC et des déformations locales de
surfaces jusqu’à 3000% (voir Bay [16]).

frottement faible (bonne lubrification) frottement important (mauvaise lubrification)

r1 r2

FIGURE 5.20 – Principe du test tribologique de l’anneau (Sofuoglu et Rasty [184]).

Le test de double extrusion (Double Cup Extrusion Test ou DCET) a été mis au point par
Geiger [82] pour se rapprocher des conditions réelles de forgeage, tout en conservant une
mesure simple et géométrique de l’image du frottement. Le test consiste à placer un échan-
tillon métallique cylindrique dans une matrice creuse de même rayon (voir figure 5.21). Un
poinçon inférieur fixe et un poinçon supérieur mobile viennent emboutir de part et d’autre
l’échantillon. Le matériau ainsi écrasé n’a pas d’autre choix que de s’écouler le long des
deux poinçons. Si les contacts étaient parfaitement lubrifiés, c’est-à-dire si le frottement
était nul, la matière s’écoulerait de manière symétrique vers le haut et vers le bas. On ob-
tiendrait ainsi une pièce forgée dont la section, en forme de H, aurait des branches (h1 et
h2) de même hauteur.

En pratique, le frottement induit une dissymétrie dans le procédé et on obtient plutôt
des sections semblables à celles représentées sur la figure 5.22. La hauteur supérieure h1
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poinçon supérieur
mobile

poinçon inférieur fixe

échantillon
cylindrique

h1

h2

paroi fixe

FIGURE 5.21 – Test de double extrusion (DCET)
d’après Schrader et al. [178].

h1

h2

FIGURE 5.22 – Échantillon déformé après DCET
(Gariety et al. [80]).

est plus grande que la hauteur inférieure h2. Le frottement peut donc être quantifié par le
rapport des hauteurs h1/h2 (cup height ratio, en anglais). Plus ce nombre est important,
plus le frottement est important.

Une première application de ce test est de classer une série de lubrifiants en fonction de
leur efficacité. Gariety et al. [80] comparent quatre lubrifiants grâce au test de double ex-
trusion et détermine celui qui est le plus efficace dans un contexte de forgeage. Ils étudient
également la possibilité de grippage en visualisant les rainures sur les surfaces libres après
chaque test.

La seconde application est de déterminer un coefficient de frottement unique m (loi
de Tresca – équation (4.130)) par voie numérique, à l’aide de simulations par la méthode
des éléments finis. En traçant la valeur de h1/h2 en fonction du déplacement du poinçon
et en utilisant une série de valeurs de coefficients m, on obtient un faisceau de courbes
numériques de calibration qui peut être utilisé pour déterminer la valeur du frottement
par comparaison avec des mesures expérimentales (Tan et al. [189], Buschhausen et al.
[46], Forcellese et al. [73]). Les plus téméraires pourraient même imaginer utiliser cette
valeur de frottement pour effectuer, par la suite, des simulations numériques de forgeage
plus complexes pour lesquelles le même matériau et le même lubrifiant sont utilisés. Remar-
quons que les simulations des auteurs précédemment cités sont toutes effectuées à l’aide du
logiciel DEFORM-2D [181] qui inclut un remailleur automatique générant des quadrangles.

La pertinence du test de double extrusion est discutable. En effet, l’écoulement de ma-
tière est principalement influencé par le frottement entre l’échantillon et la paroi. Le frot-
tement sous le nez des poinçons, pour lequel le contact pourrait être représentatif d’une
opération de forgeage, joue un rôle beaucoup moins important sur la dissymétrie finale de
l’échantillon. Certains auteurs (notamment Schrader et al. [178]) pensent que les pressions
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qui s’exercent sur la paroi ne justifient pas l’utilisation d’une loi de Tresca et qu’une loi de
Coulomb serait plus adaptée. Néanmoins, quoi qu’il en soit, ce test est tout de même très
intéressant d’un point de vue numérique, d’une part, pour montrer l’intérêt du formalisme
ALE qui permet dans ce cas d’éviter le remaillage et pour, d’autre part, vérifier la précision
de l’algorithme de calcul des forces de frottement sur un maillage mobile (voir section 4.6).

5.3.2 Modèle numérique

5.3.2.1 Modèles ALE d’extrusion

La simulation d’une opération d’extrusion par le formalisme ALE a déjà été envisagée par
Huétink et al. [121]. Il s’agit plus précisément de tréfilage. Le problème est axisymétrique
et le maillage est eulérien. Ces auteurs s’intéressent à la solution stationnaire. Plus tard,
Van Haaren et al. [199] et Geijselaers et Huétink [84] construisent un modèle d’extrusion
dans le but de tester leurs schémas de convection respectifs. Le maillage est, à nouveau, fixe
et le calcul est poursuivi jusqu’à l’obtention d’une solution stationnaire. Le dépouillement
des résultats n’est pas très poussé : seul le champ de déformation plastique est visualisé pour
quantifier la diffusion numérique des schémas. En particulier, le problème du frottement
n’est pas discuté.

8 mm

3 mm

7 mm

FIGURE 5.23 – Géométrie axisymétrique du test d’extrusion de Ponthot [169]. Un échantillon cylindrique est
contraint à s’écouler dans un canal plus étroit pour le transformer en un cylindre creux. Sa géométrie au
début et à la fin du procédé est radicalement différente.

Des modèles transitoires d’extrusion ont également été mis au point par Atzema et Hué-
tink [10] et Ponthot [169]. Le formalisme ALE peut être également utile dans ce cas en
utilisant une astuce. Cette fois, le maillage n’est plus eulérien. Puisqu’en formalisme ALE, il
est nécessaire d’utiliser un maillage dont la topologie et le nombre de mailles ne changent
pas pendant la simulation, on peut imaginer utiliser la connaissance approximative de la
forme finale de l’objet extrudé. Pour illustrer la méthode de gestion de maillage, le modèle
d’extrusion de Ponthot est présenté sur la figure 5.23. Le problème est axisymétrique. Un
poinçon vient contraindre un échantillon cylindrique à s’écouler dans un conduit en forme
d’anneau placé à hauteur de la périphérie de l’échantillon. Le matériau est élastoplastique
(E = 200 GPa, ν = 0.3, σY = 210 + 10 ǭp MPa) et le frottement sur les frontières est
représenté par une loi de Coulomb avec un coefficient de frottement µ= 0.15.
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poinçon
fixe

poinçon
mobile

sommets lagrangiens

sommets eulériens

lignes eulériennes

paroi
fixe

FIGURE 5.24 – Repositionnement des nœuds. Vu la forme simple du poinçon fixe, la création du nouveau
maillage est facilitée. La ligne et les points en rouge sont eulériens. Les autres lignes qui contiennent au
moins un point rouge utilisent la méthode des splines.

On s’attend à obtenir une solution transitoire pouvant être représentée par deux do-
maines quadrangulaires (figure 5.27) : un domaine correspondant à la matière qui reste
à extruder entre les poinçons, et un autre qui contient la matière déjà extrudée entre le
poinçon fixe et la paroi fixe. Initialement, le deuxième domaine est vide. Pour conserver
un maillage unique au cours du calcul, Ponthot propose de donner une très légère épais-
seur (h= 0.01 mm) à ce deuxième domaine et de le mailler. Nous appellerons ce domaine
le domaine auxiliaire. Les mailles ainsi définies sont donc extrêmement plates, mais elles
vont pouvoir « gonfler » suite à l’afflux de matière provenant du premier domaine. Le re-
positionnement des nœuds est assez simple (voir figure 5.24). La majorité des sommets
sont lagrangiens. Seuls deux sommets sont eulériens. La ligne décrivant le nez du poin-
çon supérieur et celle dans son prolongement, séparant les deux domaines, sont également
eulériennes. Les nœuds des autres lignes peuvent être repositionnés par la méthode des
splines (section 3.3.2). Quant aux nœuds internes, ils sont repositionnés par interpolation
transfinie (section 3.4.1).
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FIGURE 5.25 – Force d’extrusion en fonction de
l’avancement du poinçon. Comparaison avec la
simulation de Ponthot [169].
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FIGURE 5.26 – Taille du pas de temps au cours de la
simulation.
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D Htot = 0.95

H = 8 mm

h = 0.01 mm

t = 0 s

t = 1 s

t = 2 s

t = 3 s

domaine 1

domaine 2

(10 éléments sur
cette épaisseur)

FIGURE 5.27 – Résultats du test d’extrusion de Ponthot [169] pour une avancée du poinçon jusqu’à 95% de
l’épaisseur initiale du cylindre (H).
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La figure 5.27 montre le déroulement de la simulation. Bien entendu, cette technique
présente des inconvénients. Tout d’abord, il est nécessaire de connaître de manière précise
la direction d’écoulement de la matière. De plus, on constate que, le nombre d’éléments
dans le domaine auxiliaire étant fixé a priori, ceux-ci deviennent de plus en plus longs au
cours de la simulation et la géométrie des nouvelles surfaces est donc de plus en plus gros-
sièrement décrite. Enfin, il n’est pas possible d’extruder la totalité de la matière. Le maillage
du premier domaine doit contenir toujours le même nombre d’éléments dont l’épaisseur di-
minue continuellement. La gestion de ces éléments plats, que cela soit au début du calcul
dans le deuxième domaine ou à la fin du calcul dans le premier domaine, entraîne des pro-
blèmes de convergence. D’une part, les éléments finis sont moins bien conditionnés pour
la phase lagrangienne du calcul ALE et d’autre part le critère de stabilité du schéma de
convection est très restrictif sur le déplacement maximal admissible du poinçon (on fixe
Cmax = 0.9 et C crit = 2 – voir section 4.4.8). On observe donc à une taille de pas de temps
très faible en début et en fin de calcul (figure 5.26). La figure 5.25 montre la force qui
s’exerce sur le poinçon au cours de l’opération d’extrusion. On compare la courbe obtenue
avec celle présentée par Ponthot [169]. L’allure des deux courbes est très similaire et la
force finale est identique. Le décalage entre les deux courbes peut s’expliquer notamment
par des différences au niveau de l’algorithme ALE de frottement.

Malgré ces limitations, cette méthode de gestion de maillage reste séduisante pour les
modèles qui permettent son utilisation. Par exemple, Gadala et al. [78] ont utilisé égale-
ment cette technique pour calculer la forme d’un copeau métallique dans le contexte de la
simulation de l’usinage par le formalisme ALE.

5.3.2.2 Géométrie et paramètres

Considérons maintenant le test de double extrusion. Nous utilisons la géométrie d’ou-
tils mise au point à l’Engineering Research Center (ERC) de l’Ohio State University pour
évaluer les propriétés de divers lubrifiants (Buschhausen et al. [46]). Le poinçon est re-
présenté sur la figure 5.28 et les valeurs numériques sont fournies au tableau 5.5. Elles
correspondent au travail de Schrader et al. [178]. Le poinçon est beaucoup plus complexe
que celui utilisé par Ponthot. Bien que Buschhausen et al. [46] affirment que la forme du
poinçon n’a pas une grande influence sur résultat de la simulation numérique (sa forme est
optimisée expérimentalement pour favoriser l’écoulement radial du lubrifiant, qui n’est pas
modélisé ici), nous conservons cette géométrie complexe pour démontrer les capacités de
notre algorithme de repositionnement de nœuds.

Poinçon Echantillon
Dp D f Ds R hp ϕ β d0 h0

[mm] [mm] [mm] [mm] [mm] [o] [o] [mm] [mm]
15.88 9.53 15.72 1.17 1.57 10.0 5.0 31.75 31.75

TABLEAU 5.5 – Géométrie du test d’extrusion de Schrader et al. [178]. Les paramètres sont ceux de la fi-
gure 5.28
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FIGURE 5.28 – Géométrie du poinçon utilisé par Tan et al. [189] et Schrader et al. [178].

Le diamètre initial de l’échantillon cylindrique est égal à sa hauteur et le diamètre du
conteneur est égal à celui de l’échantillon. On définit le rapport d’extrusion r = D2

p/d
2
0

comme le rapport de la surface de la base du poinçon et de la surface supérieure de l’échan-
tillon. La valeur déduite du tableau 5.5 vaut r = 0.25 et est idéale pour observer des va-
riations importantes dans les résultats suite aux variations des conditions de frottement
(Schrader et al. [178]).

Le matériau utilisé est un acier (AISI 1018) dont le comportement élastique est stan-
dard : module d’Young E = 200 GPa et coefficient de Poisson ν = 0.3. Son écrouissage est
isotrope et modélisé par une loi du type :

σY = K (ǭp)n (5.1)

où K = 735 MPa et n = 0.17. Cette loi a été certainement identifiée sur un test de traction
pour lequel on a négligé la partie élastique. Elle est utilisée ici telle quelle malgré le fait que
la limite élastique initiale soit nulle.

On choisit une loi de frottement de Tresca τ= mσY/
p

3 (section 4.6.2). Pour rappel, le
test d’extrusion est censé fournir la valeur de ce coefficient de frottement supposé constant
m par identification des courbes expérimentales aux courbes obtenues numériquement en
balayant une gamme de valeurs de m. Dans nos simulations, ce coefficient est pris par
défaut à m = 0.05. On voit directement qu’un problème se pose : la limite d’élasticité
utilisée dans la loi de Tresca est généralement la limite d’élasticité initiale du matériau
(voir par exemple les simulations DCET de Tan et al. [189]) qui est nulle dans ce cas-ci.
Schrader et al. n’expliquent pas comment ils fixent alors la valeur du frottement.

Une première possibilité est d’utiliser la valeur courante de la limite d’élasticité. Cepen-
dant, cette valeur est définie aux points de Gauss des éléments voisins des nœuds de contact
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et non directement en ceux-ci. Il faut donc idéalement extrapoler la limite d’élasticité des
points de Gauss vers les nœuds en question. En conséquence, la valeur du frottement en
un nœud dépend des positions de tous les nœuds des éléments voisins et une nouvelle
matrice de raideur, plus complexe, doit être écrite si on veut conserver une convergence
quadratique.

La deuxième possibilité est de prendre une valeur moyenne de la limite d’élasticité
de ce matériau. L’acier AISI 1018, sous forme de barreau cylindrique extrudé à froid, est
répertorié sur matweb [148] avec une limite d’élasticité initiale de 370 MPa. En utilisant
cette valeur, nous retrouvons des résultats proches de ceux de Schrader et al. [178] alors
que la première technique nous fournit des résultats sensiblement différents. On constate
donc qu’il existe un certain degré d’incertitude quant aux paramètres effectivement utilisés
dans la littérature.

Le problème est traité sous les hypothèses axisymétrique et quasi statique (la vitesse du
poinçon est de l’ordre de 10 mm/s, c’est-à-dire largement insuffisante pour que les effets
d’inertie soient importants), avec des éléments quadrangulaires de type SRI à dilatation
constante. Les deux poinçons et le conteneur sont rigides. Des coefficients de pénalisation
du contact et du frottement sont déterminés par essai et erreur : pN = 6104 MPa/mm et
pT = 6103 MPa/mm (paroi du conteneur) et pN = 2104 MPa/mm et pT = 2103 MPa/mm
(poinçons). L’échantillon est maillé régulièrement avec des mailles de 1 mm selon l’axe
d’extrusion sur 0.3 mm (52 mailles dans la direction radiale et 31 sur la hauteur). Tout
comme le modèle d’extrusion de Ponthot, nous anticipons la déformation en ajoutant des
domaines auxiliaires maillés de très faible épaisseur à côté des deux poinçons (15 mailles
sur une hauteur ε = 0.2 mm – voir figure 5.30).

En ce qui concerne le formalisme ALE, le transfert des données consiste à convecter les
contraintes (p, sr r , srz, szz) et la déformation plastique équivalente ǭp. On a donc au total
cinq grandeurs scalaires définies sur 2×2 points de Gauss par élément fini. L’algorithme
ALE génère donc un seul maillage auxiliaire de volumes finis. Par défaut, nous utilisons
l’algorithme de Godunov avec un nombre de Courant maximum Cmax = 0.5 et C crit = 2. On
obtient ainsi au maximum quatre sous-pas de convection par pas de temps.

5.3.2.3 Mouvement du maillage

Le mouvement du maillage est bien plus complexe que dans le cas d’extrusion simple.
La difficulté principale est de définir le mouvement de la ligne rouge représentée sur la
figure 5.29 qui représente la surface de l’échantillon sous le poinçon et son prolongement.
Contrairement à son homologue sur la figure 5.24, elle ne peut pas être eulérienne puisque
le poinçon est cette fois mobile. De plus, vu sa géométrie légèrement convexe, le poinçon
n’est pas entièrement en contact avec la surface de l’échantillon au début du calcul. Il existe
un faible espace, initialement vide, qui doit être comblé lors du démarrage de l’extrusion.

On pourrait imaginer fixer simplement le mouvement radial du nœud p1 de la figu-
re 5.29. La position du nœud p2 serait telle que les deux nœuds aient à tout instant la
même ordonnée. Les autres sommets de la géométrie seraient lagrangiens. Cette solution
ne fonctionne malheureusement pas parce qu’il existe un flux de matière inévitable entre les
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poinçon
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sommets lagrangiens

sommets spéciaux
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paroi
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FIGURE 5.29 – Repositionnement des nœuds. Contrairement au cas de la figure 5.24, la ligne rouge ne peut
plus être eulérienne.

deux domaines et celui-ci déforme de manière excessive le maillage fin lors du démarrage
du calcul. Les figures 5.30 et 5.31 illustrent le phénomène. Au début du calcul, la ligne
verticale au dessus du nœud p1 est très finement maillée. Lors des premiers instants de
la simulation, cette ligne se déforme, car la première maille du domaine auxiliaire reçoit
tous les flux parasites dus au repositionnement du nœud p1. Ces flux sont très faibles dans
l’absolu, mais, par rapport au volume des mailles initialement plates du domaine auxiliaire,
ils sont suffisants pour détériorer le maillage auxiliaire et rendre le remaillage de la ligne
verticale impossible. Cette ligne sera donc remaillée comme si elle était droite jusqu’à ce
que le nœud p1 entre en contact avec le poinçon.

e

ligne verticale

p1

poinçon

FIGURE 5.30 – Zoom sur le domaine auxiliaire su-
périeur, finement maillé, à l’instant initial.

ligne déformée
(difficile à remailler)

approximation
droite
utilisée pour
remailler p1

poinçon

FIGURE 5.31 – Déformation excessive des mailles
auxiliaires au début du calcul si les nœuds de
la ligne rouge suivent le mouvement réel de la
matière.

La simulation se déroule donc en deux phases. La première a pour but de combler
l’espace vide et de retrouver une configuration similaire au test d’extrusion simple pour
lequel le poinçon est entièrement en contact avec l’échantillon. Pendant cette phase, le
déplacement radial du nœud p1 (figure 5.29) est nul et le nœud p2 est lagrangien. La ligne
à la verticale au dessus de p1 est remaillée comme si elle restait droite pour garantir un
bon maillage sur la frontière. On tolère donc ainsi un léger flux de matière temporaire à cet
endroit.
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La deuxième phase débute lorsque le nœud p1 entre en contact avec le poinçon. À ce
moment, le déplacement vertical du nœud p2, ainsi que celui de tous les nœuds de la ligne
(p1, p2), sont égalés à celui de p1. Cette ligne suit donc le mouvement du poinçon. Quant
à la ligne verticale problématique, elle est maintenant remaillée à l’aide d’une spline pour
suivre précisément la frontière de la matière extrudée.

Cette stratégie en deux temps est appliquée également à la partie inférieure de l’échan-
tillon. Lorsque du frottement existe et que le problème est non symétrique, les deux transi-
tions d’une phase de remaillage à l’autre pour les faces supérieure et inférieure de l’échan-
tillon ne se produisent pas simultanément. Cela ne pose pas de problème en pratique.

Enfin, de manière plus classique, les courbes délimitant la frontière de l’échantillon sont
remaillées à l’aide de splines. Les nœuds internes du domaine principal sont repositionnés
par la méthode de Giuliani (section 3.4.5). Cette méthode a été choisie, car elle fournit le
maillage final le plus régulier dans ce cas précis. On effectue cinq itérations sur tous les
nœuds par pas de temps avec un coefficient de surrelaxation ω = 1.5 (section 3.4.11). Les
deux domaines auxiliaires sont remaillés continuellement à l’aide de la méthode d’interpo-
lation transfinie (section 3.4.1).

5.3.3 Résultats

5.3.3.1 Comparaison de trois modèles

Commençons par comparer le modèle ALE du test de double extrusion qui vient d’être
présenté, d’une part, à un modèle lagrangien et, d’autre part, un modèle ALE consistant
simplement à lisser les nœuds du maillage, sans utiliser les deux domaines auxiliaires (que
nous nommons modèle ALE simple). Ceci nous permettra de valider la gestion spécifique du
maillage qui vient d’être décrite sur les premiers instants du calcul.

Le déplacement du poinçon s (stroke) est limité à 8 mm pour que les trois simulations
puissent fournir des résultats. La figure 5.32 montre la solution lagrangienne. Le maillage
est fortement déformé au niveau du nez du poinçon. En analysant plus finement cet endroit
(figure 5.33), on constate que le maillage pénètre fortement dans le poinçon. La gestion
nodale du contact est en cause : la surface de l’échantillon subit localement de très grandes
élongations et le maillage de la surface s’étire jusqu’à ne plus pouvoir suivre la courbure du
rayon. Puisqu’aucune vérification de contact ne s’effectue sur les arêtes reliant ces nœuds,
celles-ci peuvent librement traverser le poinçon et provoquent ainsi une forte erreur sur la
géométrie de l’échantillon.

La figure 5.34 représente les résultats obtenus avec un modèle ALE simple, sans do-
maines auxiliaires : le maillage est identique à celui utilisé pour la simulation lagrangienne.
Les nœuds frontière sont repositionnés à l’aide de la méthode des splines pour éviter le
problème d’élongation des arêtes en contact précédemment rencontré. Les nœuds internes
sont repositionnés, après de nombreux essais, en utilisant un mélange de deux opérateurs
de lissage (section 3.4.9) : un lissage équipotentiel pour 70% et un lissage par volumes
pondérés pour 30%. Le lissage équipotentiel (section 3.4.6) permet de jouer sur la perpen-
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FIGURE 5.32 – Solution lagrangienne pour une des-
cente de poinçon de 8 mm. Cette simulation per-
met de valider les résultats ALE au début du cal-
cul. Les lignes en pointillés correspondent à la
configuration initiale.

noeuds
en contact

0.0 3.0

Déformation plastique
équivalente ( )e

p

FIGURE 5.33 – Simulation lagrangienne. Zoom au
niveau du rayon du poinçon où le contact est très
mal pris en compte.

dicularité des lignes de maillage. La méthode des volumes pondérés (section 3.4.4) permet
d’égaliser le volume des éléments adjacents. Chacune des deux méthodes, utilisée seule,
ne permet pas de déplacer le poinçon aussi loin : la figure 5.36 montre qu’il est possible
de déplacer le poinçon de smax = 5.5 mm avec un lissage équipotentiel, de 5.7 mm avec
un lissage par volumes pondérés et de 9.8 mm avec une combinaison appropriée des deux
méthodes. On est donc, dans tous les cas, très loin du déplacement expérimental de 27 mm
et, même si on y arrivait, les coefficients du lissage ne conviendraient que pour un seul jeu
de paramètres (c’est-à-dire une seule valeur du frottement m). Il n’est donc pas question de
continuer dans cette voie qui paraît sans issue.

La figure 5.35 montre les résultats obtenus avec l’utilisation des deux domaines auxi-
liaires finement maillés pour un déplacement de poinçon de 8 mm. Cette fois, le maillage
reste de bonne qualité. On constate également que le champ de déformation plastique
équivalente est très similaire à celui obtenu par le modèle ALE simple. La frontière de
l’échantillon déformé est similaire. Bien entendu, les hauteurs extrudées sont légèrement
différentes puisque le premier modèle ALE démarre à l’instant t0 avec des hauteurs non
nulles (h1(t0) = h2(t0) = ε). Pour supprimer cette erreur, on décide d’utiliser une mesure
différente des deux hauteurs extrudées, qui ne tient pas compte de la hauteur initiale des
domaines auxiliaires (voir figure 5.37).

Il est possible de comparer plus précisément ces trois modèles. La figure 5.38 montre
l’évolution de h1 et h2 en fonction de la distance parcourue par le poinçon. Les deux modèles
ALE fournissent des résultats très proches et qui suivent la tendance du modèle lagrangien
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FIGURE 5.34 – Simulation ALE après une descente
de poinçon de 8 mm. Utilisation d’un seul do-
maine maillé et d’un opérateur de lissage com-
plexe (un lissage équipotentiel pour 70% et un
lissage par volumes pondérés pour 30%).

FIGURE 5.35 – Simulation ALE après une descente
de poinçon de 8 mm. Utilisation de deux do-
maines auxiliaires.

0.0 3.0

Déformation plastique
équivalente ( )e

p

smax=

équipotentiel volumes pondérés
0.7 +
0.3

équipotentiel
volumes pondérés

FIGURE 5.36 – Comparaison de l’efficacité des méthodes de repositionnement de nœuds. Le cercle rouge in-
dique, dans chaque cas, la zone critique où le maillage se détériore le plus rapidement. Cet exemple dé-
montre l’intérêt d’utiliser une combinaison de méthodes de lissage.
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FIGURE 5.37 – Détermination des hauteurs extrudées h1 et h2 dans le cas du modèle ALE avec domaines
auxiliaires. Les hauteurs initiales ǫ ne doivent pas intervenir dans le calcul.

au début du calcul. Au delà d’une descente de poinçon s = 5 mm, le modèle lagrangien pré-
sente une erreur trop importante sur la géométrie de l’échantillon et les courbes divergent
vu la pénétration du matériau dans le poinçon. Malgré la correction effectuée sur la me-
sure des hauteurs, le modèle ALE avec domaines auxiliaires fournit des valeurs légèrement
différentes du modèle ALE simple. Cette erreur (0.14 mm sur h1 et -0.08 mm sur h2 en
s = 9.8 mm) provient vraisemblablement de la longueur de contact de l’échantillon sur le
conteneur : le modèle ALE à trois domaines subit inévitablement plus de frottement que son
homologue simplifié. La différence se répercute sur la figure 5.39 qui représente le rapport
des hauteurs. La tendance générale de la courbe au début de la simulation est cependant
respectée.
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teurs h1 et h2 pour les trois modèles.
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FIGURE 5.39 – Comparaison de l’évolution du rap-
port des hauteurs h1 et h2.

Au niveau des résultantes des forces verticales mesurées sur les outils (figure 5.40),
les courbes des trois modèles concordent au début du calcul. À partir de s = 5 mm, la
solution lagrangienne ne représente plus la réalité à cause des pénétrations excessives de
la matière dans le poinçon. Par contre, la solution du modèle ALE simple donne des forces
proches de l’autre modèle ALE jusqu’à l’arrêt du calcul. Enfin, comme nous le pressentions,
les forces calculées par le modèle ALE à trois domaines sont très légèrement supérieures à
celles obtenues par les deux autres modèles (+1.3% pour la force sur le conteneur). Cette
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différence, pratiquement invisible sur la figure, pourrait être encore réduite en diminuant
la valeur de ǫ, au prix d’un ralentissement de la convergence au début du calcul et donc
d’une augmentation du temps de calcul total.
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y pour les trois modèles.

Cette première étude nous permet donc d’affirmer que le frottement est évalué de ma-
nière correcte en formalisme ALE, puisque les résultats lagrangiens sont retrouvés dans les
premiers instants du calcul.

5.3.3.2 Simulation complète

Poursuivons la simulation de l’extrusion jusqu’à une descente de poinçon s = 29 mm,
c’est-à-dire 91% de la hauteur initiale de l’échantillon. La figure 5.41 montre les déformées
obtenues pour trois coefficients de frottement m (m = 0, m = 0.05 et m = 0.1). Comme
on peut s’y attendre, la hauteur h1 est d’autant plus grande que le coefficient de frottement
est élevé. Par conservation du volume, en négligeant la déformation élastique, l’inverse est
vrai pour h2. Il faut garder à l’esprit que cette conservation n’est pas automatiquement vé-
rifiée en formalisme ALE. En analysant de plus près la variation de volume du maillage, on
constate qu’il augmente légèrement au cours de la simulation. Le tableau 5.6 montre diffé-
rentes valeurs de volumes : le volume ajouté par les deux domaines auxiliaires représente
environ 1% du volume initial exact de l’échantillon. À la fin de la simulation, on obtient
un volume déformé qui a augmenté d’environ 0.5% au lieu d’une légère perte de volume
due à l’élasticité à laquelle on pourrait s’attendre intuitivement. Cette variation provient
principalement des flux parasites de matière lors du remaillage des lignes frontière. Une
partie de cette erreur peut également être expliquée par des erreurs numériques du schéma
de transfert. La variation de volume est toujours de même signe et augmente légèrement
avec la valeur du frottement m.

D’après son concepteur, Geiger [82], l’intérêt du test de double extrusion est d’identifier
un coefficient de frottement pour le lubrifiant utilisé. Pour ce faire, on effectue un test et une
série de simulations en faisant varier le coefficient de frottement m. La figure 5.42 montre
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V V/V0

[mm3] ×100 [%]
Volume initial exact V0 25137 100.00
Volume ajouté 238 0.95
Volume initial du modèle 25375 100.95
Volume final du modèle (m = 0.00) 25492 101.41
Volume final du modèle (m = 0.05) 25500 101.44
Volume final du modèle (m = 0.10) 25525 101.54

TABLEAU 5.6 – Variation de volume au cours de la simulation ALE du test de double extrusion après une
descente de poinçon de 29 mm (m = 0.05).

m = 0.0 m = 0.05 m = 0.1

0.0 3.0

Déformation plastique
équivalente ( )p

FIGURE 5.41 – Déformées finales obtenues pour différentes valeurs du coefficient de frottement m.

le faisceau de courbes obtenu. Les valeurs expérimentales (trois mesures ponctuelles) ob-
tenues par Schrader et al. [178] pour cette géométrie ont été superposées aux courbes. On
constate, dans ce cas particulier, que la valeur du frottement qui permet de s’approcher des
mesures expérimentales est légèrement supérieure à m= 0.05.
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FIGURE 5.42 – Faisceau de courbes de rapport de hauteurs d’extrusion obtenues par simulation numérique
pour différentes valeurs du coefficient de frottement m. Une valeur de m est déduite des mesures expéri-
mentales.

5.3.3.3 Temps de calcul et précision du transfert

En utilisant le frottement par défaut (m = 0.05), le problème nécessite 346 pas de temps
et 422 itérations de Newton-Raphson. Le temps de calcul total est de 5’45” sur PC1 (voir
annexe A). Ce temps varie très peu en fonction du coefficient de frottement. Par contre, il
dépend fortement du choix du schéma de convection utilisé pour la phase de transfert ALE.
En effet, si on décide d’utiliser une reconstruction linéaire au lieu d’une reconstruction
constante, le temps de calcul passe à 12’22”, alors que le nombre de pas de temps reste
identique. Cette augmentation est donc due uniquement au calcul du gradient des champs
à convecter et à leur utilisation pour le calcul des flux.
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3%
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Convection

Contact/Frottement

ALE

reconstruction
constante
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FIGURE 5.43 – Repartition du temps CPU en fonction du schéma de convection utilisé pour la phase de transfert
ALE (simulation DCET complète, s = 29 mm, m= 0.05).

La figure 5.43 montre la proportion des différentes étapes du calcul ALE. La phase la-
grangienne dure 3 minutes. Le repositionnement des nœuds est ici très rapide (24”), malgré
le fait que nous utilisons une des méthodes les plus coûteuses (Giuliani) et que nous n’avons
pas cherché à optimiser le nombre d’itérations de lissage. Pour ce type de problème, le trans-
fert des données est, de loin, l’étape la plus coûteuse de la phase ALE. En choisissant un
schéma du second ordre, 73% du temps CPU total est utilisé pour transférer les grandeurs
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aux points de Gauss du maillage lagrangien vers le nouveau maillage. Enfin, pour être com-
plet, signalons que le traitement des nœuds de contact et l’évaluation du frottement sur la
nouvelle configuration, qui intervient juste après le transfert, sont excessivement rapides
(1” au total) vu le petit nombre de nœuds à considérer.

Puisque le schéma du second ordre coûte si cher, il est important de voir ce qu’il apporte
en termes de précision sur la solution. Au niveau des grandeurs qui nous intéressent dans
le cadre de ce problème, la différence est infime : on mesure un rapport final de hauteurs
h1/h2 = 1.6186 pour le schéma de Godunov et h1/h2 = 1.6170 pour la reconstruction
linéaire. Cette variation des résultats est beaucoup plus faible que celle qu’on obtient en
divisant par exemple les coefficients de pénalisation du contact par deux (h1/h2 = 1.663).

srr [MPa]

-2500 -1750 -1000 -250 500

reconstruction
constante

reconstruction
linéaire

reconstruction
linéaire avec
Ñr rrs = 0

FIGURE 5.44 – Comparaison des résultats (contraintes radiales) en fonction du type de reconstruction utilisée
pour le transfert des grandeurs aux points de Gauss.

Il est intéressant d’illustrer ici les éventuelles instabilités du schéma utilisant une re-
construction linéaire lorsque le problème est axisymétrique et que les flux radiaux sont
importants (section 4.5.3). C’est précisément le cas pour ce modèle puisque la matière ini-
tialement près de l’axe de symétrie s’écoule radialement vers l’extérieur pour contourner le
nez du poinçon. La figure 5.44 montre le champ de contraintes radiales σr r pour différents
types de reconstruction. La reconstruction constante (schéma de Godunov) est notre solu-
tion de référence. Utiliser une reconstruction linéaire classique pour laquelle le gradient est
calculé comme si on était à 2D, en état plan de déformation) provoque des oscillations dans
la solution. Cette zone d’instabilité correspond justement à l’endroit où la vitesse radiale re-
lative entre le maillage et la matière est la plus importante. De plus, lors de l’analyse du
temps CPU, nous venons de voir que ces perturbations n’influencent pas la grandeur ma-
croscopique qui nous intéresse ici (h1/h2). Néanmoins, si on désire tout de même éviter ces
oscillations, il est possible d’annuler la composante radiale du gradient. On obtient alors
un champ de contrainte σr r similaire à celui obtenu par reconstruction constante sous le
nez du poinçon et plus proche de celui obtenu par reconstruction linéaire classique au ni-

206



CHAPITRE 5. APPLICATIONS NUMÉRIQUES

veau de la matière extrudée. Le rapport des hauteurs obtenu est extrêmement proche des
précédents (h1/h2 = 1.6178). Toutefois, vu le temps de calcul, il est préférable d’utiliser
un schéma de Godunov pour ce type de modèle. Cette conclusion est en contradiction avec
certaines publications (Benson [22, 26] par exemple) qui rejettent dès le départ l’utilisation
d’un schéma du premier ordre pour traiter la convection. Cette application montre que le
schéma de Godunov peut être une solution économique et précise, y compris dans des cas
où le mouvement du maillage et de la matière sont très différents.

5.3.3.4 Comparaison des résultats ALE avec ceux de Schrader et al.

Nous terminons l’étude du test de double extrusion par une comparaison des résultats
obtenus par le formalisme ALE et les résultats publiés par Schrader et al. [178]. Ils utilisent
le logiciel DEFORM-2D, dédié à la simulation de procédés de forge, et qui propose un
algorithme de remaillage quadrangulaire automatique permettant d’éviter les distorsions
excessives des mailles au cours du calcul. Les techniques numériques que nous comparons
sont donc tout à fait différentes.

h r1 max( )

h1

max

s =
25mm

e
p0.0 3.0

FIGURE 5.45 – Les deux manières de mesurer la hauteur h1 pour le modèle ALE : soit la hauteur maximale
hmax

1 (position de mesure r variable en fonction du temps), soit la valeur de h1 sur la paroi du conteneur
(toujours en rmax). Simulation correspondant à m= 0.05 et n= 0.

Schrader et al. étudient l’influence du coefficient d’écrouissage n du matériau (équa-
tion (5.1)) sur le rapport des hauteurs et les pressions de contact pour la valeur de frotte-
ment m = 0.05. La figure 5.46 montre les courbes de rapport de hauteurs obtenues pour
n = 0.17 (la référence) et n = 0.0 (matériau parfaitement plastique). Pour nos résultats
ALE, nous avons tracé deux courbes pour chaque valeur du coefficient n. La première cor-
respond à la valeur de h mesurée sur la paroi du conteneur en r = rmax = d0/2. La seconde
est la valeur maximale de h mesurée en un r variable au cours de la simulation. La fi-
gure 5.45 représente la déformée finale de la simulation avec un coefficient d’écrouissage
n= 0 et pour laquelle la position du maximum n’est pas sur la paroi du conteneur. En fonc-
tion de la forme de cette surface libre et de l’endroit où on calcule h, la valeur du rapport
h1/h2 peut varier fortement, surtout au début du calcul quand h est petit. Pour chaque va-
leur de n, sur la figure 5.46, les deux courbes ALE encadrent la courbe obtenue par Schrader
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avec DEFORM-2D. De plus, ces trois courbes convergent vers une valeur finale commune
du ratio des hauteurs.
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Il est intéressant de tracer les pressions de contact calculées sur la paroi du conteneur
cylindrique pour n= 0 et n = 0.17. La figure 5.47 présente ces pressions après un déplace-
ment du poinçon supérieur de 8 mm. On observe un très bon accord avec les résultats de
Schrader et al. dans la zone située entre les deux poinçons. Les courbes sont, par contre,
différentes à hauteur des poinçons. L’allure générale des courbes est toutefois identique.
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FIGURE 5.48 – Influence de la hauteur initiale h0 de l’échantillon cylindrique sur le ratio des hauteurs. Le
frottement est constant m= 0.05.

Schrader et al. étudient également l’influence de la hauteur initiale h0 de l’échantillon
sur les résultats. La figure 5.48 montre les courbes obtenues pour des rapports h0/d0 de
0.75, 1.0 (la référence) et 1.25. Cette fois-ci encore, nous retrouvons des valeurs très
proches de celles publiées dans la littérature. La différence la plus importante est obser-
vée pour le rapport h0/d0 = 0.75 pour lequel la valeur du ratio h1/h2 calculé grâce au
modèle ALE sous-estime d’environ 5% celle calculée par DEFORM-2D. Vu l’incertitude sur
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la manière dont Schrader et al. calculent le frottement (et sur la limite d’élasticité initiale
du matériau) et sur les paramètres numériques utilisés dans leur publication (la gestion du
frottement n’est pas non plus évidente dans le contexte d’un remaillage), cette différence
n’est pas importante et on peut conclure à un très bon accord entre les résultats obtenus
par le formalisme ALE et ceux obtenus par remaillage.

5.3.4 Conclusions

Nous avons construit un modèle du test de double extrusion (DCET) pour lequel le
formalisme ALE permet de s’affranchir d’une série de remaillages au cours de la simulation.
Cette application numérique est également intéressante pour valider la gestion du contact
avec frottement sur un maillage dont le mouvement ne suit pas celui de la matière puisque
le procédé DCET est un test tribologique. Une erreur sur la prise en compte locale du
frottement se répercute donc immédiatement sur les grandeurs mesurées.

Pour pouvoir conserver une topologie de maillage constante, condition nécessaire pour
utiliser le formalisme ALE, il est nécessaire d’ajouter au maillage initial de l’échantillon
cylindrique à extruder deux domaines auxiliaires finement maillés dont l’épaisseur est aussi
petite que possible. Ces mailles reçoivent un flux de matière et se déploient au fur et à
mesure que le poinçon supérieur descend. Bien que cette technique de gestion de maillage
ne soit pas originale (Gadala et al. [78], Ponthot [169]), c’est la première fois qu’elle est
appliquée à un procédé de géométrie complexe. En effet, le nez des poinçons n’ont pas été
simplifiés dans notre modèle : ils ne sont pas plans et leur courbure entraîne une difficulté
supplémentaire dans la définition du mouvement du maillage.

Cette application nous a également permis une nouvelle fois de montrer qu’un schéma
du second ordre n’est pas toujours nécessaire et que le choix de la précision de la méthode
de transfert choisie peut avoir une influence importante sur le temps de calcul. Pour cette
application particulière, l’utilisation d’une reconstruction linéaire des champs inconnus est
près de quatre fois plus coûteuse que le schéma de Godunov et donne des valeurs similaires
du rapport d’extrusion.

Enfin, nous avons validé le modèle ALE en comparant nos résultats, d’une part, à ceux
d’un modèle lagrangien limité aux premiers millimètres de descente du poinçon et, d’autre
part, à ceux obtenus par le code commercial DEFORM-2D intégrant une procédure de re-
maillage automatique. On observe un très bon accord des résultats provenant de ces tech-
niques numériques pourtant radicalement différentes.
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5.4 Laminage

5.4.1 Introduction

Cette section présente un modèle bidimensionnel de laminage utilisant le formalisme
ALE. Le laminage est un procédé de mise à forme qui intervient en amont de la produc-
tion de nombreuses pièces dans le domaine du transport, du bâtiment et de l’emballage.
L’opération consiste à réduire l’épaisseur d’une tôle grâce à des cylindres en rotation qui
la déforment plastiquement. Dans le cas de la production de tôles minces d’acier, la réduc-
tion débute dans un laminoir à chaud où l’épaisseur des brames d’acier est progressivement
réduite de plusieurs dizaines de centimètres à quelques millimètres. Des épaisseurs plus
faibles (de l’ordre du millimètre, voire moins) peuvent être obtenues grâce à un passage
dans une succession de cages de laminage à froid. Vu l’importance de ce procédé en termes
de quantité de production, il est très important de comprendre tous les phénomènes phy-
siques qui entrent en jeu pour contrôler la qualité du produit et, en particulier, ses caracté-
ristiques géométriques et mécaniques.

Pour ce travail de thèse, la simulation du laminage est intéressante à plusieurs points
de vue. Tout d’abord, il s’agit d’un procédé stationnaire qui nous permet de tester le forma-
lisme ALE sur un maillage quasi eulérien pour lequel on s’attend à de grands déplacements
convectifs. De plus, le frottement joue un grand rôle et c’est donc une nouvelle occasion
de valider l’algorithme de contact, cette fois dans le cadre d’un contact entre des corps
déformables (la tôle d’une part et les cylindres de l’autre). Enfin, ce problème permet de
montrer la généralité de notre implémentation en utilisant un maillage non structuré de
quadrangles pour la modélisation des cylindres.

Dans la littérature, on trouve de nombreux types de modèles du laminage (voir par
exemple la synthèse de Montmitonnet [150]) et, parmi ceux-ci, des modèles eulériens,
lagrangiens ou ALE. La formulation la plus intuitive est certainement la formulation eulé-
rienne qui permet d’éviter le calcul d’un état transitoire précédant la solution stationnaire
recherchée. Si on utilise la méthode des éléments finis, les équations stationnaires sont ré-
solues sur un maillage fixe et régulier qui peut être optimisé spatialement pour maximiser
la précision des calculs. La géométrie des surfaces libres peut être éventuellement corrigée
itérativement pour prendre en compte le retour élastique en sortie d’emprise à l’aide de
techniques telles que la méthode des lignes de courant (voir par exemple Kim et al. [127]).
Si les cylindres sont déformables, une boucle supplémentaire permet d’itérer sur leur géo-
métrie (Hacquin et al. [100]). Cette procédure, appelée méthode itérative stationnaire, est
utilisée notamment dans le logiciel LAM3 (Hacquin [98], Hacquin et al. [99]) par rapport
auquel nous voulons comparer nos résultats. Elle présente l’avantage d’être très rapide.

Des modèles lagrangiens existent également (voir Liu et al. [137], Galantucci et Tri-
carico [79], Lee [134] parmi de nombreux autres) et sont généralement incontournables
lorsqu’il s’agit d’étudier des phénomènes transitoires tels que la formation de défauts géo-
métriques. Cette formulation est également plus simple à mettre en œuvre dans les codes
commerciaux (Abaqus [55], ANSYS [4], DEFORM-3D [181], Forge3 [193], etc.) que les
méthodes eulériennes dont les équations ont généralement été fortement particularisées
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au procédé de laminage. Les nouvelles techniques numériques comme de nouveaux élé-
ments finis, de nouveaux solveurs, de nouveaux schémas d’intégrations sont généralement
testées et implémentées dans des codes lagrangiens, plus généraux. Ces méthodes doivent
être dupliquées dans les codes eulériens spécialisés en laminage pour être utilisables. Pour
un simple souci de maintenance des codes de calcul de laminage en parallèle aux codes
plus généralistes lagrangiens, on serait donc tenté d’utiliser ces derniers pour modéliser le
laminage si ceux-ci n’étaient pas si lents par rapport à leurs homologues eulériens.

Le formalisme ALE apparaît comme une alternative possible : il permet de profiter auto-
matiquement des avancées techniques introduites dans la partie lagrangienne du code tout
en possédant certains avantages des codes eulériens. En particulier, il est possible d’utiliser
un maillage spatialement optimisé dont le nombre de mailles est réduit. Néanmoins, dans
ce cas, l’approche est inévitablement transitoire et il y a donc peu de chance d’égaler les
performances d’un calcul itératif stationnaire. C’est dans cette optique de diminution de la
maintenance de codes que Philippe [164] a récemment testé le code ALE Forge3 comme
remplaçant potentiel du code eulérien LAM3.

Plusieurs modèles ALE de laminage sont déjà apparus dans la littérature. Liu, Hu et
Belytchko [113, 140, 144] proposent un modèle 2D en état plan de déformation. Leur
but est d’introduire une prise en compte sophistiquée du contact lubrifié par résolution
de l’équation de Reynolds. Huétink et al. [122] effectuent des simulations 2D pour les-
quelles le cylindre est cette fois déformable. Le contact avec frottement est modélisé par
une couche d’éléments de contact spéciaux dont l’épaisseur est très faible. Les pressions et
cisaillements sont transférés comme s’il s’agissait d’éléments volumiques traditionnels. Plus
tard, Gadala et Wang [77] illustrent leur algorithme ALE avec un modèle simple de lami-
nage. Leur modèle ne semble cependant pas très général puisqu’il est nécessaire d’effectuer
des itérations supplémentaires pour localiser le point neutre et adapter les conditions aux
limites en conséquence. Wisselink et Huétink [208] présentent un procédé légèrement dif-
férent, le laminage à profilés (shape rolling). Leurs simulations sont tridimensionnelles et
leur travail est concentré sur la détermination des surfaces libres de la tôle. Enfin, le modèle
de Philippe [164], précédemment cité, est un modèle 3D relativement complet qui prend
en compte le cédage, c’est-à-dire la déformation élastique des cylindres et de la cage du
laminoir. Par contre, un maillage isotrope d’éléments tétraédriques, peu adapté à un écou-
lement rectiligne, est utilisé. De plus, les tractions imposées en entrée et en sortie, qui sont
pourtant des paramètres importants du procédé, sont négligées.

Curieusement, la plupart des auteurs de modèles ALE précités analysent les résultats
obtenus de manière très sommaire, laissant penser que le seul fait d’obtenir une solution
est suffisant. Par exemple, seule Philippe [164] compare ses résultats avec la solution équi-
valente lagrangienne. Et, malheureusement, cette comparaison se limite principalement à
la force de laminage, c’est-à-dire la force verticale exercée par les cylindres sur la tôle.
Les autres valeurs, telles que le champ de pression, de cisaillement ou de glissement, sont
ignorées.

Bien que plus simple d’un point de vue géométrique (2D état plan de déformation), le
modèle présenté ici va nous permettre de combler cette lacune en comparant de manière
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précise les solutions lagrangienne et ALE obtenues par Metafor d’une part et les solutions
obtenues par LAM3 d’autre part.

Une originalité de notre modèle est de pouvoir prendre en compte de manière simple
les tractions d’entrée et de sortie imposées par le procédé.

5.4.2 Modèle numérique

Nous considérons deux jeux réalistes de paramètres : un cas de laminage à chaud (LàC)
d’une tôle épaisse et un cas de laminage à froid (LàF) d’une tôle plus mince. Une fois
paramétrée, la géométrie des deux problèmes est similaire. Elle est représentée sur la fi-
gure 5.49. Le modèle est 2D, en état plan de déformation, et symétrique. Seule la moitié
supérieure de la géométrie sera donc modélisée. Les paramètres des deux procédés sont
rassemblés dans le tableau 5.7. L’origine des axes est choisie sur le plan de symétrie, à la
verticale des axes des cylindres.

longueur d'emprise

bande

traction
d'entrée

traction
de sortie

Te

vr

Tshs
he

R
y

x

cylindre
supérieur

cylindre
inférieur

v
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l r/2

A
M
O
N
T

A
V
A
L

FIGURE 5.49 – Géométrie de l’opération de laminage.

LàC LàF
Épaisseur d’entrée (he) [mm] 36.83 3.184
Épaisseur de sortie (hs) [mm] 24.37 2.053
Rayon des cylindres (R) [mm] 341.8 263.2
Vitesse de rotation (vr) [mm/s] 1420 3333.3
Traction d’entrée (Te) [MPa] 0 40
Traction d’entrée (Ts) [MPa] 0 120
Limite d’élasticité (σ0

Y ) [MPa] 144 248.5
Loi d’écrouissage (σY ) [MPa] – σY = [(355+ 131 ǭp)

(1− 0.3 exp(−11 ǭp))
�

Frottement (µ, m) [MPa] m = 0.4 (Tresca) µ= 0.075 (Coulomb)

TABLEAU 5.7 – Paramètres utilisés pour le cas du laminage à chaud (LàC) et le cas du laminage à froid (LàF).

Le matériau est un acier élastoplastique dont les paramètres élastiques sont pris égaux
aux valeurs classiques à température ambiante (E = 210 GPa, ν = 0.3) bien que cela soit
discutable dans le cas à chaud. Les cylindres peuvent être considérés rigides ou déformables
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selon les cas envisagés. Le frottement entre la bande et le cylindre est modélisé par une loi
de Tresca dans le cas à froid (paramètre m) et une loi de Coulomb dans le cas à chaud
(paramètre µ).

modèle lagrangien modèle ALE

x

q

2lLe Ls

frontière
amont

frontière
aval

y

r/2

q

n l´ 2lLe
Ls

n
mailles/l

x

n maillesy

y

r/2R

FIGURE 5.50 – Longueur de la bande et zones de maillage pour les simulations en formalisme lagrangien (à
gauche) et ALE (à droite). Le maillage ALE est délimité par deux frontières eulériennes (en bleu).

Nous construisons donc un modèle lagrangien et un modèle ALE dans le but de com-
parer les résultats des deux formalismes. La longueur de bande modélisée en formalisme
lagrangien dépend de l’angle de contact théorique

θ = acos((R− r/2)/R) (5.2)

et de la longueur de contact l = R sinθ où R est le diamètre non déformé du cylindre et
r = he − hs est la réduction exprimée en mm (voir figure 5.50). La longueur du modèle
ALE est de Le+ 2 l + Ls où Le et Ls sont des longueurs utilisées pour éloigner les extrémités
du maillage de l’emprise ; ceci afin d’éviter l’influence de certaines conditions aux limites
sur les résultats. La zone sous le cylindre est maillée avec nx mailles par longueur l et ny

mailles dans l’épaisseur. Les deux zones extrêmes peuvent être maillées plus grossièrement.
Le modèle lagrangien, quant à lui, nécessite une longueur de bande plus importante qui
doit être maillée tout aussi finement que la zone initialement sous le cylindre. La longueur
supplémentaire vaut n× l où n est le nombre de longueurs d’emprise que l’on désire (ap-
proximativement) laminer au cours de la simulation lorsque la vitesse est établie. Le modèle
lagrangien comporte donc n× nx × ny mailles supplémentaires.

Une simulation se déroule en trois phases distinctes représentées schématiquement sur
la figure 5.51 : au temps initial t0, le maillage de la demi-tôle possède une épaisseur
uniforme he/2 et le cylindre est positionné contre la surface de celle-ci (son centre en
y = R + he/2). La première phase (t ∈ [t0, t1]) dure une période que nous appellerons
δt = l/vr et consiste à écraser la tôle par le cylindre en imposant à ce dernier un dépla-
cement vertical vers le bas de r/2. Pendant la seconde phase supposée de même durée, le
cylindre commence à tourner pour atteindre la vitesse vr . Son accélération angulaire est
constante. Au même moment, les tractions d’entrée et de sortie sont progressivement ap-
pliquées de manière linéaire jusqu’à la valeur voulue (Te et Ts). La dernière phase consiste
à maintenir constantes la vitesse du cylindre et les tractions pendant un temps égal à nδt .

Le schéma d’intégration utilisé est dynamique implicite (Chung-Hulbert, paramètres par
défaut – voir section 4.3.2). Les effets thermiques ne sont pas pris en compte. Les éléments
finis sont partiellement sous-intégrés (SRI).
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t t= 0 t t t1 0= +d t t t2 1= +d t t n t3 2= + d

Dy=r/2

0®vr

Te 0¬ 0®Ts

Te Ts

vr

Te 0¬ 0®Ts

Te Ts

modèle
lagrangien

modèle
ALE

( )c( )b( )a ( )d
dt dt n td

t0 t1 t1 t2 t2 t3écrasement mise en
rotation

laminage

FIGURE 5.51 – Déroulement de la simulation. Au dessus, le modèle lagrangien et en dessous, le modèle ALE.
De gauche à droite : (a) t0 : état initial non déformé et libre de toute précontrainte, (b) t0 → t1 : phase
d’écrasement, (c) t1 → t2 : phase d’accélération et d’application des tractions Te et Ts et (d) t2 → t3 :
phase finale de recherche de l’état stationnaire.

En formalisme ALE, le mouvement du maillage est défini entre les deux frontières eu-
lériennes verticales représentées sur la figure 5.50. La ligne verticale de la section amont
est eulérienne, car on suppose que sa épaisseur ne varie pas malgré la traction aval. La
ligne de la section aval nécessite le calcul de l’intersection du maillage avec la frontière
aval (voir section 3.5.3). La surface libre est remaillée à l’aide d’une spline. Les nœuds de
l’axe de symétrie sont eulériens et les nœuds internes sont repositionnés par interpolation
transfinie.
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5.4.3 Laminage à chaud – cylindre rigide

Nous considérons tout d’abord le problème du laminage à chaud. Les cylindres sont sup-
posés indéformables et ils ne sont donc pas maillés. Ce test nécessite des pénalités normales
pN et tangentes pT de 3104 et 104 MPa/mm.

La présentation de cette étude suit la manière avec laquelle un modèle ALE est géné-
ralement mis au point : dans un premier temps, nous utiliserons un maillage ALE avec
des éléments de taille constante et identique à celui d’un modèle lagrangien de référence.
Les premières simulations permettent de vérifier que les deux formalismes fournissent les
mêmes résultats. Ensuite, après cette vérification, le modèle ALE peut être optimisé en
jouant sur le schéma de convection et les grandeurs à transférer, la taille du pas de temps,
la durée de simulation nécessaire pour atteindre l’état stationnaire et la finesse du maillage.

5.4.3.1 Choix du schéma de transfert

Vu l’épaisseur de la bande, les champs inconnus (contraintes, déformation plastique,
vitesses, etc.) ne seront pas constants sur une section. La tôle nécessite donc un maillage
de plusieurs mailles sur l’épaisseur (ny = 9) qui est intéressant pour étudier l’influence du
schéma de transfert utilisé en formalisme ALE. Parallèlement à cette étude, nous comparons
les résultats ALE et lagrangien en utilisant un maillage uniforme nx = 30. Ces simulations
sont effectuées sur un temps suffisamment long pour atteindre sans aucun doute l’état
stationnaire (n= 3). Le maillage et le temps de simulation seront optimisés par la suite.

Les figures 5.52 comparent l’évolution des résultats lagrangiens (demi-tôle inférieure)
et ALE avec une reconstruction constante (demi-tôle supérieure) en représentant quelques
instants clefs des simulations. À la fin de la phase d’écrasement, en t = t1, les deux solutions
sont très similaires. On voit à cet instant que le maillage lagrangien s’est allongé de part et
d’autre du cylindre. Par contre, le maillage ALE est resté confiné entre les deux frontières
eulériennes et, grâce à cela, les mailles possèdent toujours une taille constante le long de
l’axe de symétrie. Une quantité d’acier a donc quitté le maillage ALE et son volume total
a diminué en conséquence. Lors de la mise en rotation du cylindre (t ∈ [t1, t3]), la tôle
est entraînée par frottement. En formalisme lagrangien, les mailles se déplacent vers la
droite et celles qui étaient initialement en aval du cylindre subissent un mouvement proche
d’une translation rigide. La zone plastifiée « en forme de croix » qui était à la verticale du
cylindre à la fin de l’écrasement est toujours bien visible et les mailles qui la supportent ne
subissent quasi aucune déformation. En particulier, on identifie toujours la forme circulaire
du cylindre sur la surface libre de la bande.

Bien entendu, sur le maillage ALE qui reste fixe selon la direction de laminage, il n’est
pas du tout évident de faire ces mêmes observations. Les résultats dépendent d’une part
de la qualité du transport des grandeurs aux points de Gauss et, d’autre part, de la qualité
du remaillage de la surface libre. On remarque donc quelques différences dans la solution
ALE : au fur et à mesure que le cylindre tourne, les valeurs de la déformation plastique équi-
valente ǭp de zone plastique en forme de croix tendent à s’uniformiser à cause du schéma
de Godunov qui est très diffusif. Avant de sortir du maillage, le maximum de la déforma-
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Déformation plastique équivalente
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FIGURE 5.52 – Déroulement de la simulation du laminage à chaud. ALE reconstruction constante (Godunov)
au dessus et lagrangien en dessous. Le cercle rouge attire l’attention sur la diffusion géométrique de la cour-
bure résultant de l’utilisation de la méthode de remaillage par splines de la surface libre. Il est cependant
à noter que ceci n’a aucune influence sur la solution stationnaire obtenue en fin de calcul.
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FIGURE 5.53 – Déroulement de la simulation du laminage à chaud. ALE reconstruction linéaire au dessus et
lagrangien en dessous.
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tion plastique a diminué de plus de 25%. Inversement, les zones peu plastifiées voient leur
valeur ǭp augmenter puisque le schéma est conservatif. Au niveau de la surface libre, en
formalisme ALE, on constate que la forme circulaire se déplace à la bonne vitesse par com-
paraison à la solution lagrangienne. La forme de la surface est préservée à l’exception de
son extrémité aval où la pente de la surface varie brusquement et forme un angle plus vif
en formalisme lagrangien. Le remaillage par spline a donc lissé cet angle. Heureusement,
cet effet indésirable n’a aucune influence sur la solution stationnaire finalement obtenue en
t = t3.

Intéressons-nous maintenant au déroulement de la simulation lorsqu’on utilise une mé-
thode plus précise pour le transfert des grandeurs aux points de Gauss, c’est-à-dire une
reconstruction linéaire et non plus constante des champs inconnus. La figure 5.53 montre
les résultats aux mêmes instants que ceux qui ont été choisis précédemment. On constate
immédiatement que la qualité de la convection est largement supérieure : la zone plastique
en forme de croix est maintenant beaucoup mieux transportée sur le maillage fixe. Les dif-
férences entre les solutions lagrangiennes et ALE sont à peine perceptibles alors que les
maillages sont différents. Néanmoins, la solution finale obtenue en t = t2 + 3δt est iden-
tique à celle obtenue par le schéma utilisant une reconstruction constante. On peut même
affirmer que la solution sur la portion de bande située sous la zone de contact avec le cy-
lindre, c’est-à-dire dans l’emprise de laminage, est toujours correctement représentée, quels
que soient le schéma et l’instant considéré. Ce résultat est important, car il laisse supposer
qu’il n’est pas utile d’utiliser le coûteux schéma du second ordre pour calculer précisément
la solution dans l’emprise du laminoir vu sa petite taille. Par contre, si on s’intéresse à des
effets transitoires sur des longueurs plus importantes, comme ici le déplacement d’une zone
plastifiée, le schéma de Godunov n’est plus suffisant.

Les résultats suivants vont permettre de confirmer cette conclusion. Nous analysons de
manière précise les différentes grandeurs intéressantes dans l’emprise d’un laminoir. Pour
chacune d’entre elles, les solutions ALE obtenues par reconstruction constante et linéaire
sont comparées à la solution lagrangienne et à la solution fournie par le code spécialisé en
simulation du laminage LAM3.

La figure 5.54 montre le champ de pression le long de l’emprise à l’instant final. Les
quatre solutions sont très semblables si on ignore les oscillations des courbes ALE au début
de la zone de contact. Ces oscillations se retrouvent également sur la figure 5.55 qui repré-
sente le cisaillement. Comme nous allons l’expliquer, elles sont provoquées par la méthode
des splines qui est utilisée pour repositionner les nœuds de la surface libre.

La figure 5.57 montre le maillage linéique de la surface de la bande à l’instant final de
la simulation (t = t3). Pour rappel, l’origine de axe x correspond à la verticale des axes des
cylindres.

La géométrie lagrangienne (courbe bleue sur la figure 5.57) forme un angle vif au pre-
mier nœud de la zone de contact. La spline utilisée sur cette ligne brisée pour repositionner
les nœuds possède, par construction, une normale continue. Elle est donc incapable de re-
produire fidèlement cette discontinuité de pente. Elle oscille entre les nœuds lagrangiens et
ces oscillations se propagent de part et d’autre de l’angle vif. En conséquence, le nouveau
maillage généré sur cette courbe oscille inévitablement. Le défaut de forme se répercute
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FIGURE 5.54 – Champ de Pression final en t = t3 le
long de l’emprise (LàC).
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FIGURE 5.55 – Champ de cisaillement final en t =
t3 le long de l’emprise (LàC). Les deux seuils
τmax sont les limites de cisaillement de la loi de
Tresca.

ensuite sur les champs de pression et de cisaillement parce que la tôle qui entre dans l’em-
prise est légèrement ondulée. Vu que l’origine des oscillations est purement géométrique,
on peut imaginer limiter l’étendue de la zone problématique en raffinant le maillage (voir
section 5.4.3.5). Le problème apparaît également avec la méthode des arcs (section 3.3.1)
pour laquelle l’amplitude des oscillations est identique.
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Lag
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Lag
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FIGURE 5.56 – La surface du maillage lagrangien
forme un angle vif αLag avec le cylindre, en
amont d’emprise. Cet angle pose problème à la
méthode de repositionnement de nœud utilisée
en ALE. Les oscillations qui en résultent, bien que
très faibles, se répercutent significativement sur
les champs de pression et cisaillement.
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FIGURE 5.57 – Détail de la géométrie dans la
zone d’entrée en t = t3. L’échelle selon y a
été volontairement amplifiée pour permettre une
meilleure visualisation des oscillations en forma-
lisme ALE.

Sur la figure 5.55, on observe un léger décalage en sortie d’emprise entre la courbe obte-
nue par LAM3 et les autres courbes obtenues par Metafor. Ce décalage peut avoir plusieurs
causes. Tout d’abord, les résultats de LAM3 dont on dispose ont été obtenus avec seulement
20 mailles dans l’emprise, ce qui semble très peu pour modéliser précisément la longueur
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de contact. Ensuite, la gestion du contact est différente dans les deux codes. La méthode
de pénalisation utilisée dans Metafor provoque de légères pénétrations du cylindre dans
la bande et, de ce fait, surestime toujours légèrement la longueur de contact réelle. Enfin,
nous n’avons pas d’information sur les paramètres élastiques utilisés dans LAM3, ni sur la
manière dont le retour élastique en sortie d’emprise est géré dans ce code.

Sur cette même figure, un deuxième écart est également bien visible au niveau du point
neutre où cisaillement est nul. Sans connaître les détails d’implémentation du frottement
dans LAM3, nous pensons que cet écart est dû à la différence d’algorithmes utilisés dans les
deux codes. Il est intéressant par exemple de noter que LAM3 permet un léger dépassement
de la limite de Tresca τmax (de l’ordre de 1 MPa).

Le cisaillement ALE peut aussi être supérieur à la limite imposée par la loi de frottement
(|τ| > τmax) car, en formalisme ALE, la force de frottement correspond à la force interne
calculée en intégrant les contraintes obtenues après convection sur les éléments adjacents
au nœud de contact. Malgré les oscillations, on peut donc conclure de cette remarque que
le schéma de Godunov est suffisant pour représenter correctement le frottement puisque les
courbes de cisaillement obtenues par reconstruction linéaire et constante sont superposées.

La force de laminage peut être tracée tout au long des simulations. La figure 5.58 com-
pare les courbes ainsi obtenues. Cette fois encore, les valeurs sont très proches du résultat
calculé par LAM3. Le fait que la force lagrangienne soit la plus éloignée du résultat LAM3
que les résultats ALE est un hasard et nous ne pouvons pas conclure à une meilleure préci-
sion du formalisme ALE.

On pourrait aussi penser que la solution ALE présentée ici est meilleure, car elle ne varie
pas au cours du temps. Ce n’est pas le cas : les oscillations lagrangiennes proviennent de
l’arrivée de nouveaux nœuds dans l’emprise (prises de contact) et du départ d’autres en aval
de la zone de contact (pertes de contact). En formalisme lagrangien, la position du premier
et du dernier nœud en contact varie donc continuellement, produisant un changement
continu de configuration de contact et, de ce fait, des oscillations temporelles dans les
résultats.

En formalisme eulérien (LAM3), le maillage étant fixe, la solution correspond à une
configuration de contact particulière fixée par la position initiale des nœuds de l’emprise.
La valeur de la force résultante verticale est unique, mais elle pourrait être facilement mo-
difiée en déplaçant très légèrement les nœuds de contact et en redémarrant la même simu-
lation. Les forces nodales seraient ainsi légèrement différentes et leur somme également.
La création du maillage initial nécessite donc une certaine réflexion lors de la création du
modèle.

Quant à la solution ALE, la configuration de contact est fonction de la finesse du mail-
lage, mais aussi du pas de temps ∆t utilisé lors de l’intégration temporelle. Généralement,
dans le code Metafor, on utilise une taille de pas de temps qui est adaptée continuellement
et de manière automatique au cours du calcul en fonction de la vitesse de convergence de la
simulation : si le processus de Newton-Raphson converge rapidement à un instant donné,
la taille du pas de temps est augmentée pour la suite de la simulation, sinon elle est main-
tenu constante ou elle est diminuée selon les cas. Puisque nous utilisons un algorithme de
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FIGURE 5.58 – Évolution temporelle de la force de
laminage (LàC). La valeur stationnaire de LAM3
est tracée comme une constante au cours du
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FIGURE 5.59 – Variation de la force ALE avec l’in-
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(les simulations ALE utilisent une reconstruction
linéaire).

résolution ALE basé sur la séparation des opérateurs, cette taille de pas de temps variable
va induire un changement de configuration de contact d’un incrément temporel à l’autre
à la fin de la phase lagrangienne. Ces variations vont se répercuter sur la configuration
eulérienne obtenue après repositionnement des nœuds et, au final, sur la force résultante
de laminage. La seule manière d’obtenir une courbe parfaitement lisse en formalisme ALE
est donc d’utiliser un pas de temps constant. En pratique, pour obtenir ce résultat, il faut
limiter la taille du pas de temps ∆t à une valeur préétablie (notée ∆tmax), généralement
exprimée en fonction de la taille des mailles dans la direction d’écoulement de la matière.

Par exemple, la figure 5.59 montre l’évolution de la force de laminage calculée pour
deux tailles de pas de temps maximum ∆tmax = dmax(l/nx )/vr où dmax peut être vu comme
l’incrément de déplacement horizontal d’une maille sur le pas de temps par rapport à sa
longueur initiale selon x . Autrement dit, en fixant dmax = 0.1, on limite approximativement
le déplacement d’une maille à 10% de sa longueur. On constate que les deux courbes ALE
sont très différentes. La courbe dmax = 0.1 est la courbe obtenue avec une reconstruction
linéaire et présentée précédemment. Elle est tout à fait constante après la phase transitoire
de 0.1 s. Par contre, la courbe dmax = 0.2 oscille avec une période qui est principalement
fonction de la stratégie de gestion du pas de temps variable. Il est donc important de fixer
la taille maximum du pas de temps si on veut obtenir des résultats stationnaires. Outre
l’aspect plus régulier des courbes obtenues, la variation cyclique de pas de temps entraîne
une convergence globale moins bonne du calcul et au final un temps CPU supérieur.

La figure 5.60 montre la valeur du glissement le long de l’emprise à l’instant final t = t3.
Le glissement g(x) est la différence de vitesse entre la bande et le cylindre rapportée à
la vitesse du cylindre. Il est calculé par g(x) = (v(x) − vr)/vr où v(x) est évalué sur la
surface de la bande. C’est donc une image du champ de vitesses. Cette grandeur est bien
connue des lamineurs puisqu’elle est facilement mesurable expérimentalement en entrée
et en sortie d’emprise. Dans des conditions normales de laminage stable (sans patinage),
le glissement est toujours négatif en entrée d’emprise et, dans des conditions normales et
stables de laminage (sans patinage), il est positif en sortie. Les quatre courbes ont la même
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FIGURE 5.60 – Profil de glissement le long de l’emprise au temps final (LàC).

allure. Elles permettent de localiser la zone de l’emprise pour laquelle la vitesse de la bande
est égale à la vitesse du cylindre (zone neutre). Cette zone correspond bien à celle où le
cisaillement |τ|< τmax sur la figure 5.55.

5.4.3.2 Effets d’inertie

Avant de comparer les temps de calcul, il est intéressant d’effectuer une première opti-
misation du modèle ALE sans toucher au maillage (nx = 30) et à la durée de la simulation
(n = 3). Il est tout d’abord important de savoir si le problème requiert le transfert des
vitesses et des accélérations pour pouvoir éventuellement économiser la convection de 4
scalaires et la création d’un maillage auxiliaire de convection. Le tableau 5.8 montre la
variation des résultats obtenus (force de laminage, glissement et épaisseur en sortie d’em-
prise) et les temps de calcul pour les deux schémas de convection (reconstruction constante
et linéaire) lorsqu’on transfère ou non les grandeurs nodales. Les temps de calculs de toutes
les simulations Metafor de laminage sont relatifs à la machine PC1 de l’annexe A.

Degré de la Conv. Nb. pas / Temps Force Glissement épaisseur
Reconstruction a et v itérations CPU [s] [N/mm] aval [%] sortie [mm]
constante oui 998/2116 282 11679 4.86 24.4107
constante non 982/923 178 11679 4.86 24.4107
linéaire oui 1016/2113 653 11660 4.84 24.4100
linéaire non 956/1325 502 11661 4.85 24.4100

TABLEAU 5.8 – Effet de la convection des champs nodaux (a et v) sur les résultats pour les deux types de
schéma de convection (dmax = 0.15).

On constate que le temps de calcul diminue significativement lorsqu’on ne se préoc-
cupe pas des vitesses et accélérations. D’une part, le nombre de variables à transférer est
moindre et, d’autre part, cette simplification a un effet bénéfique sur la convergence du cal-
cul lagrangien. Le nombre total d’itérations est divisé par un facteur proche de 2. Ceci peut
s’expliquer par le fait que le prédicteur utilisé pour calculer une première approximation
des positions x n+1 au temps tn+1 (équation (4.29)) est plus proche de la solution équilibrée
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quand on ne transfère pas les grandeurs nodales. En effet, dans ce cas, lorsqu’on est en ré-
gime stationnaire et que le pas de temps est constant comme c’est le cas ici pour une bonne
partie du calcul, les vitesses v n et les accélérations an utilisées dans cette équation sont déjà
les vitesses et accélérations de l’équilibre recherché (v n+1 et an+1). Pendant cette phase sta-
tionnaire, le calcul ALE converge très rapidement et nécessite, lors de chaque pas de temps,
entre 0 et 1 itération pour parvenir à l’équilibre alors que le calcul avec les vitesses et accé-
lérations correctes, tout comme le calcul lagrangien, requiert de 1 à 3 itérations à chaque
pas de temps.

Bien entendu, ne pas transférer les grandeurs nodales n’est permis que si les effets
dynamiques sont négligeables. C’est le cas pour ce problème de laminage puisqu’on constate
que les valeurs obtenues ne dépendent pas du transfert des vitesses et des accélérations. On
pourrait alors se demander si un schéma quasi statique ne serait pas plus approprié qu’un
schéma dynamique implicite puisqu’on éviterait ainsi de recalculer la matrice des masses
et les forces d’inertie à chaque pas de temps. Ce n’est pas le cas : bien que n’ayant aucune
influence visible sur les valeurs numériques des résultats finaux, les effets d’inertie ont
un effet stabilisateur sur le déroulement du calcul et permettent par exemple l’utilisation
de coefficients de pénalisation plus élevés pour le contact et le frottement. Les transitions
entre les différentes phases de calcul s’effectuent beaucoup plus facilement en dynamique
que sous l’hypothèse quasi statique.

5.4.3.3 Contrôle de la taille du pas de temps

Suite à la remarque concernant le contrôle du pas de temps en formalisme ALE et son
influence sur la présence d’oscillations temporelles dans les résultats stationnaires (voir
figure 5.59), il semble intéressant d’étudier ce paramètre puisqu’il a un impact direct sur
le temps de calcul. Le pas de temps ∆t est fixé dans le modèle par l’intermédiaire de
dmax, image du déplacement maximal d’un nœud au cours d’un pas de temps par rapport
à la taille d’une maille dans la direction de laminage. On espère ainsi obtenir une valeur
indépendante du maillage.

dmax oscill. ? Nb. pas / Temps Force Glissement épaisseur
itérations CPU [s] [N/mm] aval [%] sortie [mm]

0.10 non 1377/1500 662 11973 5.09 24.4102
0.15 non 956/1325 502 11661 4.85 24.4100
0.20 oui 1041/2903 535 11389 4.16 24.4026
10.0 oui 1314/4048 687 11367 4.99 24.4028

TABLEAU 5.9 – Recherche de la valeur optimale du paramètre dmax fixant la taille du pas de temps maximum
de la simulation (formalisme ALE, reconstruction linéaire).

Le tableau 5.9 présente les résultats de quatre simulations pour des valeurs de dmax

valant 0.1, 0.15, 0.2 et 10. La dernière valeur est suffisamment grande pour que le pas de
temps effectivement utilisé qui dépend de la vitesse de convergence ne soit jamais limité.
Lorsque dmax est faible, le pas de temps reste petit et la simulation nécessite de nombreux
pas de temps. Cependant, la solution varie peu d’un pas de temps à l’autre et le nombre
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d’itérations est relativement petit. Si dmax augmente, le nombre de pas de temps diminue
jusqu’à une valeur optimale où des oscillations temporelles apparaissent. Cette variation de
la taille du pas de temps se traduit par une convergence plus irrégulière (c’est-à-dire un
nombre d’itérations plus grand) et, en conséquence, un temps de calcul total plus élevé.

D’après nos essais, dmax = 0.15 est la valeur qui fournit le temps de calcul minimum et
c’est donc celle-ci que nous utiliserons dans la suite de cette étude.

5.4.3.4 Temps de calcul

Le tableau 5.10 résume les résultats précédents et compare les temps de calcul obtenus
en formalisme lagrangien, ALE et par le code LAM3. Bien que les valeurs numériques fi-
nales de la force de laminage, du glissement et de l’épaisseur soient très proches les unes
des autres, les temps CPU varient fortement en fonction de la méthode choisie. Pour les
paramètres utilisés (maillage et durée de simulation) et malgré les optimisations précé-
dentes, le modèle lagrangien est toujours plus rapide que les simulations en formalisme
ALE. Les temps CPU de LAM3 ne sont pas directement comparables à ceux de Metafor, car,
n’ayant pas un accès direct au logiciel, les simulations LAM3 ont été effectuées sur une
autre machine (PC2 de l’annexe A).

Nb. pas / Temps Force Glissement épaisseur
itérations CPU [s] [N/mm] aval [%] sortie [mm]

Lagrangien 769/1741 138 11818 4.11 24.4108
ALE (rec. cst.) 982/923 178 11679 4.86 24.4107
ALE (rec. lin.) 956/1325 502 11661 4.85 24.4100
LAM3 – 79 11692 5.45 24.3700

TABLEAU 5.10 – Résultats numériques et temps CPU des simulations.

Le choix d’une reconstruction linéaire peut être définitivement écarté vu la différence
de coût pour un gain nul en précision sur la solution stationnaire.

5.4.3.5 Optimisation du maillage

Après avoir vérifié la concordance des résultats obtenus en formalisme lagrangien et
ALE en utilisant un maillage régulier et une durée de simulation suffisamment longue, il
est maintenant intéressant de jouer sur ces deux paramètres pour obtenir plus rapidement
les résultats.

En fonction des courbes précédentes d’évolution de la force de laminage, le temps de
simulation peut être réduit par l’intermédiaire du paramètre n. On diminue donc ce dernier
de n = 3 à n= 0.2.

Le maillage du modèle ALE est optimisé, comme le montre la figure 5.61, en utilisant un
nombre de mailles réduit dans l’emprise (ny = 20). La zone d’entrée et de sortie d’emprise
est maillée avec des éléments trois fois plus courts (ny = 60) pour que la longueur de
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FIGURE 5.61 – Au dessus, maillage ALE optimisé pour réduire le temps de calcul et, en dessous, maillage
lagrangien équivalent (n= 0.2).

contact soit plus précisément calculée. Ce maillage plus fin permettra également de mieux
représenter la géométrie de la tôle en amont du cylindre et de diminuer les oscillations
générées par le remaillage de la surface libre de la tôle. La partie aval est maillée de manière
plus grossière (nx = 10). Un maillage lagrangien est également construit en utilisant des
mailles équivalant aux plus petites mailles ALE tout le long de la longueur à laminer. Vu la
petitesse de n, le maillage lagrangien n’est cette fois pas beaucoup plus long que le maillage
ALE.

Les figures 5.62 et 5.63 montrent les profils de pression et de cisaillement obtenus
sur les deux nouveaux maillages. Ceux-ci sont très similaires. La solution ALE obtenue
précédemment pour un maillage nx = 30 est également tracée sur ces figures. Elle permet
de constater que, bien qu’elles soient toujours présentes, les oscillations possèdent cette
fois une amplitude beaucoup plus faible et se propagent moins loin dans l’emprise que
précédemment.
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FIGURE 5.62 – Réduction des oscillations de pres-
sion en entrée d’emprise (Courbe verte à compa-
rer avec les résultats précédents en rouge).
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FIGURE 5.63 – Réduction des oscillations de cisaille-
ment en entrée d’emprise (Courbe verte à com-
parer avec les résultats précédents en rouge).
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Le tableau 5.11 compare les résultats stationnaires obtenus et les temps de calcul. Les
deux modèles fournissent des valeurs très proches pour un temps de calcul identique.

Nb. pas / Temps Force Glissement épaisseur
itérations CPU [s] [N/mm] aval [%] sortie [mm]

Lagrangien fin 586/971 52 12036 4.98 24.4111
ALE optimisé 343/731 52 11991 4.26 24.4092

TABLEAU 5.11 – Résultats numériques et temps CPU des simulations.

Remarquons que, contrairement à beaucoup d’auteurs, nous avons la franchise de com-
parer ici un modèle ALE optimisé à un modèle lagrangien équivalent, également optimisé.
Il serait en effet très simple de choisir un temps de simulation beaucoup plus long (n > 0.2)
qui pénaliserait inutilement le calcul lagrangien et gonflerait artificiellement son temps de
calcul pour conclure à la supériorité du formalisme ALE sur le formalisme lagrangien.
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5.4.4 Laminage à froid – cylindre déformable

Le test suivant consiste à modéliser un cas de laminage à froid avec un cylindre défor-
mable. Il permet de valider la gestion du contact entre deux corps déformables en forma-
lisme ALE. Il démontre aussi la possibilité de prendre en compte des tractions d’entrée et
de sortie sur la bande dans un modèle ALE de laminage.

Les conclusions tirées de l’étude du laminage à chaud sont directement appliquées : seul
le schéma de Godunov est utilisé vu son coût réduit. Le schéma d’intégration est dynamique
(Chung-Hulbert), mais les accélérations et les vitesses nodales ne sont pas transférées.

La faible épaisseur de la bande permet de se passer de l’utilisation des zones raffinées
horizontalement en ALE. Aucune oscillation n’apparaît, car l’angle formé par la tôle et le
cylindre au début de la zone de contact est beaucoup plus faible que dans le cas précédent.
Nous utilisons donc un maillage de 30 mailles sur la longueur d’emprise (nx = 30) et
seulement quatre mailles sur l’épaisseur (ny = 4).

Te Ts
T h hs s e´( / )

vr

hs/2 he/2he/2

correction

FIGURE 5.64 – Correction de la traction de surface à appliquer à l’extrémité aval non déformée du maillage
lagrangien pour obtenir la traction surfacique Ts voulue en sortie d’emprise.

Les tractions imposées entraînent quelques subtilités dans la conception du modèle.
Pour le modèle lagrangien, la surface sur laquelle s’applique la traction aval n’est jamais
déformée au cours de la simulation (voir figure 5.64), contrairement à la réalité ou à un
modèle eulérien. La valeur appliquée à cet extrémité du maillage doit donc être corrigée
par un facteur hs/he pour obtenir une traction de surface Ts en sortie d’emprise dans la zone
où l’épaisseur a été réduite.

En formalisme ALE, on peut soit choisir d’appliquer la traction lagrangienne corrigée
et arrêter la simulation suffisamment tôt pour que la section aval ne se déforme pas, soit
appliquer la traction eulérienne et attendre suffisamment longtemps pour que l’épaisseur
de la section soit (approximativement) égale à hs. C’est cette dernière manière de faire
que nous avons choisie. Le nombre minimal de longueurs d’emprise à laminer est donc
forcément plus important (n = 2) que dans le cas précédent.

Les coefficients de pénalisation du contact sont adaptés aux nouveaux paramètres (pN =

105 et pT = 104 MPa/mm).
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5.4.4.1 Maillage du cylindre

Le cylindre est cette fois déformable et il est donc nécessaire de le mailler. Pour ce faire,
nous utilisons un maillage à densité variable dont les tailles de mailles sont indiquées sur
la figure 5.65. Un axe cylindrique rigide de rayon Ri = R/5 permet d’imposer la rotation du
cylindre à l’aide de déplacement imposés appropriés. L’angle θ correspond, comme précé-
demment, à l’angle de la zone de contact calculé analytiquement sans tenir compte de la
déformation du cylindre (équation (5.2)). La valeur de δ correspond à la taille de maille lo-
cale par rapport à la taille de celles de la bande dans la direction de laminage. Par exemple,
au niveau de la portion du cylindre qui sera en contact avec la bande durant la simulation,
on fixe δ = 2, c’est-à-dire que les mailles du cylindre sont deux fois plus longues que celles
de la bande à cet endroit. Pour rappel, le contact est traité par une approche maître-esclave
où la frontière externe du cylindre est la surface maître et les nœuds de la bande sont des
nœuds esclaves. Dans ce contexte, le maillage de la bande doit être préférablement plus fin
que celui du cylindre pour éviter des pénétrations indésirables des nœuds du cylindre dans
celle-ci (δ ≥ 1).

1.5 q1.5 q

n q

d = 100

d = 30

d = 2

Ri

d = 2 100®

d = 2 100®

p1

FIGURE 5.65 – Définition de la densité de maillage du cylindre complet. Les valeurs de δ indiquées à divers
endroits correspondent à la taille locale de maille rapportée à la taille de maille de la bande au niveau de
l’emprise. L’angle θ correspond à la longueur approximative de contact calculée analytiquement.

Les maillages obtenus pour le modèle lagrangien et le modèle ALE sont représentés
respectivement sur les figures 5.66 et 5.67. Afin d’améliorer la clarté de l’illustration, le
maillage lagrangien a été dessiné pour n = 5 pour qu’il diffère significativement du maillage
ALE, et non n = 2, la valeur utilisée dans les simulations ALE et lagrangiennes. Remarquons
qu’une fois encore, pour obtenir une comparaison qui a du sens, nous ne nous contentons
pas d’optimiser le maillage ALE mais nous optimisons aussi le maillage lagrangien du cy-
lindre.

Bien qu’il soit entièrement maillé, le cylindre du modèle ALE n’est pas lagrangien : un
repositionnement des nœuds est mis en place pour que leur mouvement soit essentielle-
ment radial. Pour y arriver, le contour du cylindre est remaillé à l’aide de la méthode des
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FIGURE 5.66 – Maillage lagrangien du cylindre com-
plet (n = 5).

FIGURE 5.67 – Maillage ALE du cylindre complet
(quel que soit n).

splines ou des arcs en commençant le remaillage par le nœud opposé à l’emprise (p1 sur la
figure 5.65). Celui-ci est repositionné de sorte que son angle polaire initial soit conservé. Les
nœuds internes sont déplacés à l’aide d’une seule itération d’un lissage laplacien initialisé
avec leurs positions au pas de temps précédent.

5.4.4.2 Remaillage de la surface du cylindre

Le repositionnement des nœuds de la surface du cylindre peut entraîner des problèmes
géométriques si on n’utilise pas la méthode adéquate. Comme pour la plupart des modèles
ALE, nous avons tout d’abord choisi la méthode des splines qui est généralement le meilleur
choix. Dans ce cas particulier, cette méthode entraîne une déformation progressive et non
physique de la surface du cylindre et, finalement, une erreur sur la position de la zone de
contact. La figure 5.68 montre deux instants de la simulation. Le premier instant (partie
supérieure de la figure) correspond au moment où la vitesse nominale de laminage est
atteinte (t = t2). La longueur de contact est similaire à ce qui serait obtenu par un modèle
lagrangien. Le deuxième instant (partie inférieure de la figure) est un aperçu de la solution
après le passage de deux longueurs d’emprise (t = t2+2δt). Bien que la forme du cylindre
semble toujours correcte à première vue, la zone de contact est cette fois plus petite. Le
remaillage a très légèrement déformé le cylindre et cette erreur a de grosses conséquences
sur la solution.

La cause de ce phénomène est lié à l’approximation de McConalogue (équation (3.7))
pour calculer les longueurs sur cette spline. La paramétrisation des splines de McConalogue
est « quasi intrinsèque », c’est-à-dire qu’elle correspond presque à la longueur mesurée sur
la courbe. Nous voyons ici les conséquences de cette approximation. Dans le cas de ce
maillage particulier du cylindre où la taille des mailles varie du simple au centuple, il serait
intéressant de calculer exactement les longueurs curvilignes par une intégration numérique
précise.
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FIGURE 5.68 – Problème de remaillage du cylindre avec la méthode des splines. Comparaison des longueurs
de contact obtenues à deux instants différents. Ces longueurs sont matérialisées par les flèches noires.

Ayant à notre disposition une méthode de repositionnement alternative, nous n’avons
pas pris la peine d’améliorer le remaillage par spline. La méthode des arcs permet d’obtenir
un maillage stationnaire sans déformation parasite du cylindre de laminage.
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FIGURE 5.69 – Evolution de la force de laminage.
Problème du remaillage par spline (LàF – n =
2).

−20 −15 −10 −5 0 5
0

100

200

300

400

500

600

X [mm]

P
re

s
s
io

n
 [

M
P

a
]

 

 

ALE arcs

ALE splines

FIGURE 5.70 – Pression au temps final le long
de l’emprise. Problème du remaillage par spline
(LàF – n= 2).

La figure 5.69 montre l’évolution de la force de laminage au cours de deux calculs effec-
tués respectivement à l’aide de la méthode des splines et celle des arcs. La solution fournie
par les arcs tend bien vers une constante alors que l’autre solution diminue sans cesse. Le
champ de pression obtenu après laminage de deux longueurs d’emprise est représenté sur
la figure 5.70. On voit très clairement la réduction de la taille de la zone de contact. Dans
la suite, pour ce modèle, nous n’utilisons donc plus que la méthode des arcs.
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5.4.4.3 Résultats

Les résultats numériques des simulations sont présentés dans cette section. Nous com-
parons les modèles lagrangien et ALE entre eux et les valeurs fournies par le code eulérien
LAM3. Ce dernier à l’avantage de permettre le contrôle précis de l’épaisseur de la bande en
sortie par une boucle d’itérations supplémentaire sur la position du cylindre visant à obtenir
la hauteur hs désirée. Pour les modèles lagrangien et ALE, cette boucle automatique n’existe
pas. Le cylindre est initialement positionné comme s’il était rigide. Sa déformation fournit
donc une tôle plus épaisse en sortie que celle voulue. Une deuxième simulation est alors
effectuée en corrigeant la position verticale du cylindre d’une distance égale à l’erreur pré-
cédemment commise. Idéalement il faudrait itérer de cette façon jusqu’à ce que l’épaisseur
soit correcte en sortie. En pratique, pour ce cas précis, une seule itération est nécessaire.
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FIGURE 5.71 – Pressions le long de l’emprise, obte-
nues avant et après correction de la position du
cylindre déformable (LàF).
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FIGURE 5.72 – Cisaillements le long de l’emprise,
obtenus avant et après correction de la position
du cylindre déformable (LàF).

Le champ de pression et de cisaillement sont représentés respectivement sur la fi-
gure 5.71 et 5.74 pour les différentes simulations. On constate un parfait accord entre
les solutions obtenues par le formalisme lagrangien et ALE. Le premier ensemble de simu-
lations, effectué avec une position de cylindre choisie comme s’il était rigide, donne une
sous-estimation de la longueur d’emprise réelle. Une fois que la position est corrigée, la
zone de contact s’agrandit et on retrouve les courbes correspondantes fournies par LAM3.
Remarquons que le problème d’oscillations parasites dans la solution ALE en début d’em-
prise n’apparaît pas, contrairement au cas de laminage à chaud, puisque l’épaisseur est
beaucoup plus faible.

L’évolution temporelle de la force de laminage est représentée sur la figure 5.73. La
forme de ces courbes au début de la simulation dépend fortement de procédure de mise
en charge du problème et seule sa valeur stabilisée est importante. On remarque immé-
diatement que les courbes sont bien plus lisses que celles obtenues précédemment dans le
cas du laminage à chaud. En particulier, les courbes lagrangiennes présentent moins d’os-
cillations alors que le pas de temps maximum utilisé est relativement grand (pour rappel
dmax=0.5 contre 0.15 pour le laminage à chaud). Pour une position de cylindre donnée,
le léger décalage entre les courbes ALE et lagrangienne provient de la différence entre les
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FIGURE 5.73 – Forces de laminage le long de l’em-
prise, obtenues avant et après correction de la
position du cylindre déformable (LàF).
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FIGURE 5.74 – Glissements le long de l’emprise, ob-
tenus avant et après correction de la position du
cylindre déformable (LàF).

valeurs des tractions aval appliquées en formalisme ALE et lagrangien. La traction ALE est
momentanément plus importante au début du calcul lorsque l’épaisseur en sortie ne s’est
pas encore stabilisée à se valeur finale. La force de laminage est donc temporairement plus
faible qu’en formalisme lagrangien. De manière logique et conformément aux profils de
pression, la force résultante augmente avec la correction de position du cylindre.

La figure 5.74 montre le glissement le long de l’emprise. L’allure globale des courbes
est identique et correspond à celle de LAM3. La courbe correspondant au test lagrangien
corrigé est légèrement décalée par rapport aux autres. Ce décalage ne signifie pas que cette
simulation est moins bonne que les autres : le champ de vitesses est certainement la gran-
deur la moins stable parmi celles présentées. Au lieu de considérer la valeur du glissement
au temps final, il serait peut-être plus judicieux de calculer une moyenne temporelle de
cette grandeur pour lisser les variations de vitesse des nœuds de contact et obtenir des ré-
sultats moyens, où de tels décalages n’apparaîtraient plus. Cette remarque est également
valable pour les autres grandeurs qui oscillent au cours du temps (la force en lagrangien
lorsque c’est le cas). Pour une grandeur définie le long de l’emprise, cette moyenne est cer-
tainement beaucoup plus simple à effectuer dans le cas du formalisme ALE puisque ce sont
toujours les mêmes nœuds qui sont en contact. Néanmoins, les résultats présentés ici ne
sont pas moyennés.

La géométrie de la bande le long de l’emprise est tracée sur la figure 5.75. Encore
une fois, les courbes lagrangiennes et ALE correspondant à une même position de cylindre
sont très proches. On retrouve le profil d’épaisseur de LAM3 pour la deuxième série de
simulations où la position du cylindre est corrigée.

Le tableau 5.12 rassemble les valeurs numériques de la force de laminage, du glisse-
ment aval et de l’épaisseur en sortie, ainsi que le temps de calcul de chaque simulation et
la qualité de sa convergence. Il est intéressant de noter que, comme précédemment, les
simulations ALE nécessitent généralement moins d’itérations que les modèles lagrangiens
équivalents. Le temps de calcul ALE est cependant supérieur ou, au mieux, égal au temps
de calcul lagrangien, principalement à cause de la coûteuse opération de convection des
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FIGURE 5.75 – Profils d’épaisseur pour les différentes simulations et comparaison avec LAM3 (LàF).

Nb. pas / Temps Force Glissement épaisseur
itérations CPU [s] [N/mm] aval [%] sortie [mm]

ALE 235/426 58 7755 5.45 2.2331 (+0.18010)
Lagrangien 225/687 53 7971 5.61 2.2283 (+0.17531)
ALE corrigé 240/459 54 8943 5.56 2.0684 (+0.01539)
Lag. corrigé 239/759 54 8900 4.84 2.0595 (+0.00653)
LAM3 - 89 8951 6.86 2.053 (+0.0)

TABLEAU 5.12 – Résultats numériques et temps CPU des simulations. Les épaisseurs entre parenthèses indiquent
l’écart avec la valeur voulue en sortie.

grandeurs aux points de Gauss de la phase de transport de l’algorithme ALE (50% du temps
de calcul total pour ce test). Ce n’est que pour des problèmes de taille plus importante
que l’on pourra espérer obtenir des résultats plus rapidement en formalisme ALE qu’en
formalisme lagrangien. En effet, le temps CPU de l’algorithme de convection augmente li-
néairement avec le nombre total d’éléments finis du modèle alors que le temps CPU de la
phase lagrangienne augmente plus rapidement (au moins quadratiquement avec un solveur
linéaire direct classique). Le temps CPU de LAM3 doit être regardé avec précaution puis-
qu’il correspond à une machine de calcul différente des simulations Metafor (PC2 au lieu
de PC1 de l’annexe A)
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5.4.4.4 Maillage alternatif du cylindre

Une autre manière de mailler le cylindre est présentée sur les figures 5.76 et 5.77. Seul
un secteur est inclus dans le modèle dans le but de diminuer le nombre de mailles et ré-
duire ainsi le temps de calcul. Le mouvement des nœuds est confiné entre deux frontières
eulériennes. Celles-ci sont mobiles durant la première phase du calcul pour suivre le mou-
vement vertical du cylindre.

1.5 q1.5 q

aq aq

d = 20d = 20

d = 2

d = 30
C.L.?

p2 p3

FIGURE 5.76 – Maillage d’un secteur de cylindre.
Le paramètre δ correspond à la taille de maille
par rapport à celle de la bande. L’angle total du
secteur vaut (2α + 3)θ où θ correspond à une
longueur d’emprise.

FIGURE 5.77 – Maillage ALE d’un secteur de cylindre
(α = 4).

La difficulté principale est d’imposer des conditions aux limites adéquates. Pendant la
phase lagrangienne, la vitesse de rotation des nœuds de ces frontières doit être égalée à
celle du cylindre pour modéliser la présence de la portion du cylindre ignorée. Pendant
la phase eulérienne, une valeur appropriée du tenseur des contraintes doit être appliquée
sur la frontière amont. Puisque le cylindre se déforme, les contraintes sont partout diffé-
rentes de zéro et difficilement calculables a priori. Nous utilisons donc la technique utilisée
également pour fixer les contraintes sur la frontière amont de la bande : la valeur utilisée
localement est celle de l’élément adjacent, en aval de la frontière. Comme nous l’avons sou-
ligné à la section 4.4.6, cette manière de faire est bien pratique, mais elle nécessite que la
dérivée de la grandeur évaluée sur la frontière dans la direction de l’écoulement de matière
soit nulle ou proche de zéro. Plus le secteur est petit, c’est-à-dire plus on veut diminuer le
nombre total de mailles, et moins cette condition est vérifiée puisqu’on se rapproche de la
zone de contact où les gradients de contraintes sont importants.

La simulation ALE est effectuée avec ce nouveau type de maillage pour le cylindre. On
choisit α = 4 (voir figure 5.76), c’est-à-dire un secteur correspondant à (2α + 3) = 11
longueurs d’emprise. On obtient ainsi un maillage de 294 quadrangles au lieu des 433 du
maillage précédent, c’est-à-dire un nombre proche de celui de la bande (292 éléments). Les
résultats sont montrés sur les figures 5.78 et 5.79. La première figure permet de comparer
les champs de contraintes équivalentes de Von Mises σVM obtenus avec les modèles la-
grangien et ALE. Les isovaleurs sont très semblables. Pour ces deux simulations, un secteur
équivalant au maillage alternatif du cylindre a été mis en évidence pour permettre une com-
paraison avec la figure 5.79. Cette figure représente le même champ de contraintes sur le
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maillage réduit après laminage de 2 et 10 longueurs d’emprise. On constate qu’après deux
longueurs d’emprise, le champ de contrainte est proche de ceux obtenus avec un maillage
du cylindre entier. Néanmoins, on remarque une influence très nette de la frontière amont.
Les isovaleurs deviennent perpendiculaires à la frontière à cause de l’application des condi-
tions aux limites. La situation empire après laminage de 10 longueurs d’emprise. Une zone
de fortes contraintes se développe au coin inférieur amont du secteur de cylindre. Il pro-
vient d’un flux de matière parasite provoqué par une erreur de repositionnement du coin
en question.

t t t= +22 Dt t t= +22 D

lagrangien ALE

0.0 300.sVM [MPa]

FIGURE 5.78 – Champs de contrainte équivalente de Von Mises obtenus en formalisme lagrangien et ALE avec
un cylindre maillé complètement après passage de 2 longueurs d’emprise. Un secteur est mis en évidence
pour faciliter la comparaison avec la figure 5.79.

t t t= +22 D t t t= +102 D

ALE

0.0

300.

sVM

[MPa]

FIGURE 5.79 – Champs de contrainte équivalente de Von Mises obtenus en formalisme ALE sur un secteur
maillé après passage de 2 et 10 longueurs d’emprise.

D’une manière étonnante, ces deux problèmes n’influencent aucunement les autres
grandeurs mesurées. Par exemple, les figures 5.80 et 5.81 représentent respectivement la

235



CHAPITRE 5. APPLICATIONS NUMÉRIQUES

pression et le glissement le long de l’emprise. Même après laminage d’une longueur d’em-
prise excessive (10 longueurs d’emprise au lieu de 2), et alors que les contraintes dans le
cylindre sont fausses, la pression calculée est identique à celle obtenue avec un maillage de
cylindre complet. Le glissement calculé est également très proche.
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FIGURE 5.80 – Courbes de pression le long de l’em-
prise, obtenues avec les deux types de maillages
du cylindre.
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FIGURE 5.81 – Courbes de glissement le long de l’em-
prise, obtenues avec les deux types de maillages
de cylindre.

Néanmoins, le tableau 5.13 montre que le gain de temps CPU est nul. Les gains effectués
sur le nombre d’éléments sont compensés par une convergence légèrement moins bonne du
modèle réduit. Il est donc préférable d’utiliser un maillage complet du cylindre et de jouer
sur la taille des mailles pour diminuer le temps de calcul. En effet, pour d’autres paramètres
de procédé, la mauvaise gestion des conditions aux limites pourrait avoir des conséquences
plus importantes sur les résultats.

Nb. pas / Temps Force Glissement épaisseur
itérations CPU [s] [N/mm] aval [%] sortie [mm]

cylindre complet 240/459 54 8943 5.56 2.0684 (+0.01539)
secteur 248/460 54 8789 5.45 2.0630 (+0.00998)

TABLEAU 5.13 – Comparaison des deux types de maillages de cylindre en formalisme ALE.
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5.4.5 Conclusions

Cette étude de deux cas de laminage a permis de montrer les difficultés rencontrées lors
de l’élaboration d’un modèle ALE d’un procédé stationnaire. Par rapport à une simulation
pour laquelle le formalisme ALE est utilisé uniquement pour améliorer la qualité des mailles
(sections 5.2.2 et 5.3) ou une simulation lagrangienne classique, plusieurs nouveaux points
doivent être gardés à l’esprit.

La taille du pas de temps peut jouer un rôle important sur la qualité de la convergence
et la stabilité des résultats. Nous avons vu qu’une simulation ALE converge généralement
mieux que la simulation lagrangienne équivalente, c’est-à-dire qu’elle nécessite moins d’ité-
rations à chaque pas de temps. Si un algorithme d’adaptation automatique du pas de temps
est utilisé, celui-ci risque d’augmenter rapidement et d’avoir finalement un effet néfaste sur
la convergence. C’est par exemple le cas quand le pas de temps est suffisamment grand
pour changer radicalement la configuration de contact entre les maillages lagrangiens et
eulériens. On assiste alors à des oscillations du pas de temps qui se répercutent sur les ré-
sultats numériques. Paradoxalement, en formalisme ALE, il est donc souvent important de
limiter la taille maximale du pas de temps pour diminuer le temps de calcul.

La gestion des conditions aux limites est importante : l’exemple du maillage partiel du
cylindre nous a montré que les frontières du domaine modélisé doivent impérativement être
suffisamment loin des zones de fortes déformations plastiques. Pour éloigner ces frontières,
l’utilisation de maillages à densité variable permet d’éviter d’alourdir le problème et de
concentrer les éléments finis uniquement aux endroits nécessaires.

Nous avons également insisté sur l’importance du choix du schéma de transfert. Pour
la simulation du laminage stationnaire, il est inutile d’utiliser un schéma du second ordre.
Ce dernier est beaucoup trop coûteux pour être rentable dans le cas de petits modèles 2D.
De plus, il est préférable de ne pas transférer les vitesses et les accélérations si les effets
d’inertie ne sont pas importants. Cela diminue le coût de l’algorithme de transfert tout en
améliorant la convergence de la phase lagrangienne.

Concernant la qualité des résultats ALE, ils sont tout à fait comparables et aussi fiables
que ceux obtenus par un modèle lagrangien ou eulérien (LAM3) similaire. Remarquons
aussi que l’approche de Metafor semble plus robuste que celle de LAM3 puisqu’il n’a pas été
possible par exemple d’obtenir des résultats dans le cas laminage à chaud avec cylindre dé-
formable avec LAM3. Pour Metafor, ces paramètres ne posent aucune difficulté particulière.

Enfin, une fois le maillage optimisé, le temps de calcul obtenu par le formalisme ALE est
proche de celui du modèle lagrangien équivalent (et optimisé) et de celui obtenu par LAM3
sur une machine similaire (mais différente). Pour des problèmes de plus grande taille, on
peut donc espérer obtenir un temps de calcul ALE inférieur au calcul lagrangien. C’est ce
que nous essayons de démontrer dans les applications suivantes de procédés stationnaires
(planage et profilage).
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5.5 Planage sous traction

5.5.1 Introduction

Cette section présente un modèle de planage sous traction de tôles d’acier. Ce procédé
permet de réduire significativement les contraintes résiduelles présentes dans la tôle après,
notamment, une opération de laminage. Ces contraintes peuvent provoquer des déforma-
tions indésirables lors de la découpe. Son deuxième but est de corriger les défauts de forme
de la bande, représentés sur la figure 5.82, tels que la tuile (courbure dans le sens travers),
le cintre (courbure dans le sens travers), le twist (torsion), le centre long (ondulations au
centre), les bords longs (ondulations en rives), etc. Il est en effet capital pour le produc-
teur d’acier de pouvoir contrôler la planéité de son produit pour vérifier que les tolérances
demandées par ses clients sont bien atteintes. Ces défauts proviennent non seulement du
caractère non homogène du matériau, mais aussi des différents réglages des étapes de fa-
brication de l’acier.

tuile cintre twist centre long bords longs

FIGURE 5.82 – Défauts de forme couramment rencontrés sur des produits longs (d’après Theis [191]).

Pour comprendre le principe du planage, imaginons une tôle présentant un défaut de
type « centre long » telle que celui schématisé sur la figure 5.83. Isolons deux types de fibres
(on appelle fibre une ligne imaginaire de matière alignée sur la direction longitudinale de
la tôle). La première, au milieu, en bleu sur la figure, est une fibre trop longue qui est en
compression. La seconde, proche du bord de la tôle, en rouge sur la figure, est une fibre plus
courte qui est en traction. La différence de longueur provoque une ondulation indésirable
au centre de la tôle et qui doit être éliminée. Le procédé de planage consiste à plastifier ces
fibres et les allonger suffisamment pour qu’après l’opération, elles aient la même longueur.
Cela se traduit par les variations de contraintes et déformations tracées sur le graphe (σ,ǫ)
de la figure 5.83 (cas d’un matériau élastique parfaitement plastique).

Pour atteindre cet allongement (généralement de l’ordre de 1 à 2 %), la tôle subit une
succession de flexions alternées d’amplitudes généralement décroissantes sur une série de
rouleaux. La figure 5.84 montre une tôle en flexion et le profil de contraintes longitudinales
correspondant à un matériau élastique parfaitement plastique. La partie supérieure de la
fibre neutre est en traction et la partie inférieure en compression. Si la flexion est suffi-
sante, la tôle peut plastifier à partir de ses deux surfaces. Les deux bandes plastiques sont
d’autant plus épaisses que la flexion est importante. Le rapport entre l’épaisseur plastifiée
et l’épaisseur totale est appelé taux de plastification.

En ajoutant une traction (on parle alors de planage sous traction), la fibre neutre se
déplace vers l’intérieur de la courbure à chaque flexion comme le montre la figure 5.85. Le
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FIGURE 5.83 – Principe du planage. La fibre en bleu est plus longue que les fibres rouges (on parle de « centre
long »). Pour corriger ce défaut, on allonge toutes les fibres jusqu’à plastification pour égaliser leurs lon-
gueurs.
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FIGURE 5.84 – Tôle en flexion. Profil des contraintes
longitudinales.
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FIGURE 5.85 – Décalage de la fibre neutre vers l’inté-
rieur de la courbure lorsqu’on applique une trac-
tion.

profil de contraintes longitudinales n’est plus symétrique et il est donc possible de plastifier
la totalité de la section si nécessaire.

Malgré l’importance de ce procédé dans l’industrie, la simulation numérique du planage
n’est pas courante. Des modèles bidimensionnels analytiques ou semi-analytiques existent
(voir par exemple Doege et al. [60]), mais ils montrent leurs limites lorsque des matériaux
complexes ou des défauts tridimensionnels sont envisagés. Le retour élastique est égale-
ment difficile à prédire avec ce type d’approche.

Quelques modèles utilisant la méthode des éléments finis apparaissent dans la littéra-
ture. Huh et al. [118] modélisent une planeuse limitée à trois rouleaux avec les éléments
finis volumiques sous-intégrés d’Abaqus [55]. Ils étudient l’influence du maillage utilisé et
l’effet de la position des rouleaux sur l’allongement obtenu. Park et Hwang [163] effectuent
des simulations à l’aide d’éléments de coque 3D. Ils tentent de prédire le cintre de la tôle
après planage en fonction de son cintre initial. Les résultats numériques sont validés avec
des mesures expérimentales. Li et al. [135] modélisent l’apparition de tuile en aval de leur
dispositif de planage et l’influence d’un ensemble de rouleaux supplémentaires (un bloc
anti-tuile) pour la limiter. Ils font remarquer la nécessité d’utiliser une approche 3D (élé-
ments de coque dans le logiciel MSC.MARC [151]) pour résoudre ce problème. Trull [196]
étudie avec Abaqus l’élimination de bords longs dans une planeuse. Le retour élastique et
la distribution des contraintes résiduelles sont étudiés en détail.

Tous ces modèles utilisent le formalisme lagrangien. Nous proposons donc de construire
un modèle ALE de planeuse pour valider les méthodes de calcul mises au point dans ce

239



CHAPITRE 5. APPLICATIONS NUMÉRIQUES

travail. Comme nous allons le voir, le planage sous traction est un procédé stationnaire plus
complexe que le laminage du point de vue de la gestion du maillage et du transfert des
grandeurs aux points de Gauss.

5.5.2 Création du modèle

5.5.2.1 Géométrie du procédé

La géométrie utilisée pour ce modèle est celle d’une planeuse pilote installée au centre
de recherches d’ArcelorMittal (Maizières-lès-Metz, France) pour laquelle nous disposons de
résultats expérimentaux. Sa géométrie est décrite sur la figure 5.86. Une particularité de ce
schéma est le sens d’avancement de la bande qui est de la droite vers la gauche. Pour rester
compatibles avec les données d’ArcelorMittal, nous conservons ce sens dans notre modèle.

La planeuse mesure environ quatorze mètres de long. Seule la partie centrale où se
trouvent les deux blocs planeurs est modélisée. Les autres rouleaux font partie du système
de bobinage et permettent également d’imposer les tractions. Nous faisons donc implici-
tement l’hypothèse que la déformation de la bande sur ces cylindres de plus grand rayon
reste élastique. Cette hypothèse pourrait être remise en cause pour des tôles relativement
épaisses.

blocs planeurs

cylindres d'appui
amont/aval

zone
modélisée

~14 m

sens d'avancement

321 mm

système de bobinage
et de traction aval

système de bobinage
et de traction amont

FIGURE 5.86 – Géométrie de la planeuse pilote d’ArcelorMittal (Maizières-les-Metz, France). Seule la partie
centrale, c’est-à-dire les deux blocs planeurs, sont modélisés. On considère que la tôle ne subit pas de
plastification sur les autres rouleaux.

Contrairement à une planeuse industrielle qui permet de corriger la forme d’une tôle
possédant des défauts et des contraintes résiduelles hétérogènes, cette planeuse pilote est
utilisée dans ce cas-ci pour étudier l’influence des réglages (la position des rouleaux et
les tractions appliquées) sur la planéité en sortie d’une tôle initialement sans défaut. Les
grandeurs mesurées sont l’allongement en sortie après retour élastique et les « pertes par
flexion », c’est-à-dire la différence entre les forces mesurées en entrée et en sortie en cours
de planage.

La figure 5.87 détaille la géométrie des deux blocs planeurs. Ils sont chacun constitués
d’un rouleau supérieur de 40 mm de diamètre dont l’axe est fixe et d’un rouleau inférieur
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FIGURE 5.87 – Position des rouleaux dans la zone modélisée et définition des imbrications i1 et i3. La gauche
et la droite sont désignés respectivement par l’aval et l’amont de la planeuse. Les distances réelles ne sont
pas respectées pour améliorer la lisibilité du schéma.

de même taille pouvant être translaté verticalement vers le haut. Ce déplacement vertical,
mesuré à partir des positions de référence indiquées au tableau 5.14, est appelé imbrication.
Évidemment, plus l’imbrication imposée au niveau d’un bloc planeur est importante, plus la
flexion subie par la tôle sera grande. Entraînés par le mouvement de la bande, les rouleaux
sont libres de tourner sur leur axe. Pour simplifier le modèle, on négligera la déformation
des rouleaux ainsi qu’un éventuel cédage du dispositif supportant leurs axes. Le frottement
sera également négligé, ce qui permet de fixer la rotation des rouleaux.

c4 c3 c2 c1

x [mm] 0 81 200 281
y [mm] 26.74 -20 26.79 -20

TABLEAU 5.14 – Position de référence des axes des rouleaux. L’origine est prise à la verticale du quatrième
rouleau et au niveau de la ligne de passe (horizontale reliant la surface supérieure des deux rouleaux
d’appui situés de part et d’autre des blocs planeurs – voir figure 5.86).

5.5.2.2 Longueur du modèle

Le problème est tout d’abord traité à deux dimensions, sous l’hypothèse d’état plan de
déformation. Un modèle tridimensionnel sera construit par la suite sur base des résultats 2D
obtenus et d’un maillage optimisé (voir section 5.5.3.6). Afin de comparer les formalismes
ALE et lagrangien, deux modèles 2D distincts sont mis au point. La géométrie du modèle
lagrangien est représentée sur la figure 5.88. Le maillage de la longueur de tôle nécessaire
à la simulation lagrangienne se décompose en quatre zones :
• Une première zone de taille Lm (ou longueur machine) qui correspond à la taille de

la zone de planage, c’est-à-dire la distance entre le premier et le quatrième rouleau,
soit 281 mm pour cette planeuse pilote. Cette portion de tôle est initialement entre
les rouleaux.
• Une zone de Lp = α Lm (ou longueur de planage) où α est le nombre de longueurs

machine que l’on veut faire passer dans la planeuse.
• Une zone de longueur Lamont, en entrée de planeuse, qui permet d’éloigner l’extrémité

amont du maillage du premier rouleau. Cette longueur permet d’éviter une influence
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trop importante de la fixation verticale de l’extrémité de la tôle sur la solution obtenue
en fin de calcul.
• Une zone de longueur Laval, en sortie de planeuse, qui joue le même rôle que la zone

précédente vis-à-vis du quatrième rouleau en début de calcul.

Laval LamontLp = aLm
Lm

longueur à passer
dans la planeuse

1
2

3
4

FIGURE 5.88 – Longueur du modèle lagrangien et
zones de maillage associées.

LsprbLaval LamontLm

frontière
amont

frontière
aval

1
2

3
4

FIGURE 5.89 – Longueur du modèle ALE et zones de
maillage associées.

Pour un procédé stationnaire tel que celui-ci, le but du formalisme ALE est de diminuer
la longueur totale du modèle et concentrer les mailles, en jouant sur leur taille, dans les
endroits les plus sollicités pour obtenir, au final, un temps de calcul plus faible que dans
le cas lagrangien. Comme le montre la figure 5.89, le modèle ALE peut s’affranchir de la
deuxième zone de longueur Lp puisque le mouvement du maillage est quasi eulérien, c’est-
à-dire qu’il restera plus ou moins fixe selon la direction d’avancement de la tôle (x). Par
contre, si on désire simuler le retour élastique pour pouvoir calculer la valeur du cintre
après planage, il est nécessaire d’ajouter une zone supplémentaire en sortie de planeuse
(notée Lsprb, longueur de springback, ou retour élastique). Cette zone devra être maillée plus
finement que les deux zones d’extrémités Lamont et Laval pour garder une certaine précision
dans la description géométrique de la courbure de la tôle.

Pour délimiter le domaine ALE dans lequel est confiné le maillage, on définit, aux deux
extrémités de la longueur de tôle modélisée, deux frontières eulériennes à travers lesquelles
la matière pourra s’écouler.

5.5.2.3 Maillage

Le maillage de la tôle est composé de quadrangles, générés par interpolation transfinie,
qui serviront de support à des éléments finis de type EAS (voir section 4.3.3). Ces derniers,
bien plus complexes que les éléments traditionnels partiellement sous-intégrés (SRI), sont
indispensables pour représenter avec précision l’état de flexion de la tôle en cours de pla-
nage. Une autre solution serait d’utiliser des éléments de coque mais Metafor n’en possède
pas. De plus, dans ce cas précis, nous verrons que la tôle est relativement épaisse. En parti-
culier, son épaisseur n’est pas négligeable vis-à-vis de la distance qui sépare les rouleaux de
chaque bloc planeur et négliger celle-ci introduirait des erreurs géométriques. Les éléments
volumiques que nous utilisons sont donc bien adaptés.

Le maillage de la tôle est défini par le nombre de mailles dans l’épaisseur (ny) et la taille
longitudinale de celles-ci (Le

zone) dans chacune des zones décrites précédemment. Pour pou-
voir comparer efficacement les résultats des formalismes ALE et lagrangien sans influence
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du maillage, nous définissons, dans un premier temps, un maillage relativement fin et iden-
tique dans les deux cas. On utilise ny = 8 mailles sur l’épaisseur. Les longueurs de la géo-
métrie et des mailles sont rassemblées dans le tableau 5.15. La longueur de tôle passant
dans la planeuse est fixée à α = 2 longueurs machine.

Le maillage sera ensuite optimisé dans un second temps pour diminuer le coût des deux
modèles. En procédant de la sorte, il sera plus facile d’analyser les différences dans les
résultats numériques sans soupçonner à tout instant un effet de maillage.

Laval Lsprb Lm Lp Lamont

Lagrangien 50 - 281 2× 281 = 562 150
ALE 16 284 281 - 150

Le
aval Le

sprb Le
m Le

p Le
amont

Lagrangien 4 - 1 1 4
ALE 4 1 1 - 4

TABLEAU 5.15 – Longueurs des zones de maillage (L"zone") et tailles longitudinales des mailles dans ces zones
(Le

"zone") pour les deux modèles. Toutes les longueurs sont exprimées en [mm].

5.5.2.4 Chargement et phases de calcul

Le déroulement d’un calcul peut se décomposer en cinq phases (la phase i se déroule
de t = t i−1 à t = t i, le temps t0 étant le temps initial). Les figures 5.90 et 5.91 les décrivent
respectivement dans le cas lagrangien et ALE. Nous commençons par décrire les phases du
calcul lagrangien (figure 5.90) et nous insisterons sur les différences du modèle ALE par la
suite.

Dans la configuration initiale, en t = t0, la tôle lagrangienne est rectiligne et placée
sur la ligne de passe, entre les rouleaux qui sont localisés à leur position de référence
(tableau 5.14). La tôle est juste en contact avec les rouleaux inférieurs en y = 0. Il existe
un léger espace entre la surface supérieure de la tôle et les rouleaux supérieurs qui dépend
de l’épaisseur de la tôle.

Il est nécessaire, déjà à ce stade, de faire un choix au niveau des fixations de la tôle
à ses extrémités. Expérimentalement, une valeur de traction est prescrite par l’opérateur.
Celle-ci va être appliquée comme contre-traction, en amont de la planeuse, par le système
de pilotage du procédé. La tôle va ensuite être tractée, en aval, à une vitesse imposée. Les
valeurs des forces de traction sont mesurées de manière continue en amont et en aval du
procédé. La valeur de la traction aval ne correspond pas exactement à la valeur de la « trac-
tion consigne ». Dans le modèle numérique, il est donc possible de choisir de tirer la tôle en
aval par un déplacement imposé à son extrémité et d’appliquer la contre-traction mesurée
en amont ou l’inverse, c’est-à-dire pousser la tôle par un déplacement imposé à son extré-
mité amont et appliquer la traction aval mesurée. Si le modèle était parfait et les mesures
exactes, les deux solutions seraient tout à fait identiques, mais ce n’est évidemment pas le
cas. Nous avons choisi la première solution, car elle correspond mieux à la procédure expé-
rimentale et qu’elle est beaucoup plus stable numériquement que la seconde. Les fixations
sur la figure 5.90 traduisent cette manière de procéder.
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t0= 0

t t1 0= +1

t t2 1= +1

t t4 3= +1

t t5 4= +5

t t L v3 2= + /a m

i3/2

i3

i1/2
i1/2

i1

i1

Tamont

Tamont

Tamont

configuration initiale

planage

suppression de la
traction amont

imbrications
complètes

imposition
de Tamont

imposition de la moitié
des imbrications

retour élastique

vitesse v

AVAL AMONTx

y

FIGURE 5.90 – Étapes du calcul lagrangien. La simulation est divisée en cinq phases à partir de la configuration
initiale en t0 où la tôle est plane et où les rouleaux occupent leur position de référence : l’imposition des
tractions, l’imposition des imbrications, le planage, la relaxation de la traction amont et enfin le retour
élastique. Les fixations en rouge correspondent à des déplacements imposés non nuls.
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Pour atteindre la configuration de planage où la tôle est sous traction et enroulée autour
des rouleaux, il est commode de procéder en deux temps (phase 1 et phase 2). La première
phase (t ∈ [t0, t1]) consiste à augmenter progressivement la traction amont sur l’extrémité
correspondante du maillage jusqu’à la valeur mesurée expérimentalement. Après plusieurs
essais de différentes stratégies de chargement du modèle, il nous est apparu qu’il est béné-
fique d’appliquer également une fraction de l’imbrication des rouleaux inférieurs pendant
cette phase. Nous déplaçons donc verticalement les rouleaux d’un déplacement i1/2 pour
le premier rouleau et i3/2 pour le troisième. Expérimentalement, en cours de planage, l’ex-
trémité amont de la tôle atteint y = 0 en x = 2141 mm, soit un peu moins de 2 mètres en
amont du premier rouleau. La tôle arrive donc sur le premier rouleau avec un angle proche
de zéro degrés par rapport à l’horizontale. Il est donc nécessaire, pour conserver cette hori-
zontalité en entrée, de déplacer également l’extrémité amont du maillage selon la verticale.
L’amplitude de ce déplacement est identique à celui du premier rouleau. La durée de cette
première phase est fixée arbitrairement à une seconde.

La deuxième phase (t ∈ [t1, t2]) consiste à appliquer le reste des imbrications pres-
crites aux deux rouleaux inférieurs et à l’extrémité amont du maillage tout en conservant
la traction amont fixée à sa valeur mesurée. À la fin de cette phase, qui dure également une
seconde, la tôle est en position pour démarrer l’opération de planage proprement dite.

Pendant la troisième phase (t ∈ [t2, t3]), un déplacement est imposé au niveau de l’ex-
trémité aval du maillage à la vitesse v de l’essai expérimental correspondant. Une longueur
Lp de tôle passe dans la planeuse et la traction amont est maintenue constante.

Après cette phase et en préparation à la simulation du retour élastique qui va suivre,
la traction amont est progressivement diminuée jusqu’à suppression complète pendant une
quatrième phase (t ∈ [t3, t4]) qui dure une seconde. La tôle se détend et son extrémité
amont avance légèrement vers les rouleaux. Après cette étape, il est déjà possible de mesu-
rer avec précision l’allongement longitudinal subi par la tôle.

Enfin, le calcul se termine par une dernière phase de retour élastique pour laquelle les
fixations de l’extrémité aval du maillage sont supprimées. Puisque seule la courbure de la
tôle en sortie nous intéresse, la partie de la tôle qui est toujours entre les rouleaux est
complètement fixée pour empêcher les vibrations indésirables. Si on procède de la sorte,
l’extrémité aval de la tôle va commencer à osciller longtemps autour d’une nouvelle position
d’équilibre. Puisque seule cette configuration d’équilibre, pour laquelle l’énergie cinétique
est nulle, nous intéresse, il est nécessaire d’introduire de la dissipation numérique dans le
modèle. La manière la plus simple est d’ajouter des éléments d’amortissement sur les nœuds
de la partie Laval. Ces éléments, représentés sous forme d’amortisseurs sur la figure 5.90,
produisent une force qui est à tout moment opposée à la vitesse du nœud ( f = −λv). Un
coefficient d’amortissement λ, choisi empiriquement égal à 10−6 N m−2 s, permet de limiter
le temps de cette cinquième phase à cinq secondes.

Le calcul en formalisme ALE se déroule de manière similaire (figure 5.91). Le maillage
est délimité à tout moment par les deux frontières eulériennes verticales à ses extrémités.
Lors des deux premières phases (t ∈ [t0, t2]), une quantité de matière, fonction de la valeur
des imbrications et de la traction, entre dans le maillage par l’extrémité amont. La longueur
de tôle modélisée est donc légèrement plus grande en t = t2 qu’à l’instant initial.
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t0= 0

t t1 0= +1

t t2 1= +1

t t4 3= +1

t t5 4= +5

t t L v3 2= + /a m
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i1/2
i1/2

i1

i1
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Tamont

Tamont

configuration initiale
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traction amont
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complètes
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des imbrications
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(phase lagrangienne)
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FIGURE 5.91 – Étapes du calcul ALE. Elles peuvent être mises en correspondance avec les étapes du calcul
lagrangien représentées sur la figure 5.90. Seule la dernière phase du calcul, correspondant au retour
élastique, est effectuée en formalisme lagrangien à partir de la configuration du maillage ALE obtenue au
temps t = t4.
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Pendant la troisième phase, c’est-à-dire la phase de planage, les positions des fixations
aux extrémités du maillage ne changent pas, contrairement au cas lagrangien pour lequel
l’extrémité amont se rapproche et l’extrémité aval s’éloigne des rouleaux. À un instant par-
ticulier donné, ceci peut provoquer une légère différence de courbure entre la tôle lagran-
gienne et la tôle ALE correspondante. Nous verrons que cette différence de position des
conditions aux limites des deux modèles peut être à l’origine de différences numériques
dans certains résultats de calcul, comme la valeur du cintre par exemple.

La dernière phase du modèle ALE nécessite l’utilisation du formalisme lagrangien. En
effet, le retour élastique peut, dans certains cas, provoquer des courbures telles que la tôle
ne franchit plus la frontière eulérienne aval. Cet exemple permet de montrer la souplesse
avec laquelle notre implémentation gère le passage d’un formalisme à un autre en cours de
calcul.

5.5.2.5 Maillage et conditions aux limites ALE

En formalisme ALE, la redéfinition du nouveau maillage et la gestion des conditions
aux limites posent quelques difficultés au niveau des frontières en amont et en aval de la
planeuse.

n mailles

m mailles

la fixation
se déplace!

d'autant plus
faible que
n grand et m petit

t t= i+1

t t= i+1

Lag. t

phase lagrangienne

config t t= i

phase ALE

frontière
eulérienne aval

frontière
eulérienne aval

(a) une seule fixation en sortie (b) plusieurs fixations en sortie

avancement

FIGURE 5.92 – Gestion des fixations matière en sortie de planeuse au cours de la phase lagrangienne de
l’algorithme ALE. À gauche (a), une unique fixation verticale est utilisée. Celle-ci va inévitablement se
déplacer verticalement si la tôle possède une courbure au voisinage de la frontière eulérienne. Pour éviter
ce déplacement, il est nécessaire de fixer verticalement plusieurs nœuds (b) pour garantir la conservation
de l’horizontalité de la surface inférieure de la tôle lors de la définition du maillage eulérien.

En aval, le maillage est géré par la méthode de repositionnement des nœuds sur les
frontières eulériennes (section 3.5.3). Pour rappel, cette méthode consiste à calculer l’in-
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tersection du maillage lagrangien avec la frontière eulérienne. La figure 5.92 en montre le
principe : la tôle, initialement en amont de frontière eulérienne, franchit celle-ci pendant
la phase lagrangienne du pas de temps. La partie du maillage qui a dépassé la frontière
est supprimée pour que domaine de calcul reste intégralement en amont de celle-ci. La
procédure est répétée à chaque pas de temps. Si la tôle possède une courbure au voisi-
nage de la frontière et qu’elle n’est pas tout à fait perpendiculaire à celle-ci (figure 5.92
(a)), la méthode de repositionnement de nœuds va entraîner un déplacement vertical de
l’extrémité de la tôle. La fixation utilisée pendant la phase lagrangienne pour bloquer le
mouvement vertical de l’extrémité de la tôle (on parle de fixation matière) n’empêche donc
pas un déplacement vertical du maillage. Ce déplacement ne pourrait être empêché que par
une fixation maillage qui consisterait à fixer la coordonnée correspondante du nœud lors de
l’opération de remaillage. Une telle fixation n’est cependant pas possible à mettre en place
ici, car elle ne respecterait pas la géométrie de la tôle. Ce problème à déjà été illustré à la
figure 3.9, page 38.

Si on veut tout de même maintenir la position verticale de l’extrémité aval de la tôle au
cours de calcul, pour que, d’une certaine manière, l’appui sur le premier rouleau du système
de bobinage en aval de la planeuse soit modélisé, il faut que la tôle reste parfaitement
horizontale lorsqu’elle traverse la frontière pendant la phase lagrangienne. La solution est
de définir, non pas une, plusieurs fixations matière sur les nœuds de la surface de la tôle
pour forcer son horizontalité. La figure 5.92 (b) décrit la situation. Les nœuds surfaciques
de n mailles sont fixés verticalement. Même si la longueur fixée est beaucoup plus grande
que la distance convective, cette manière de faire ne garantit pas exactement le respect
de cette condition en sortie. En effet, si la tôle dessinée sur la figure 5.92 était tout à fait
rigide, sa translation uniforme vers la gauche entraînerait inévitablement le mouvement
de l’extrémité aval du maillage que l’on veut éviter, quel que soit le nombre de fixations
verticales. Néanmoins, vu sa flexibilité, la tôle se déforme au voisinage de la frontière et elle
reste ainsi très proche de l’horizontale voulue. Le déplacement observé est donc très faible
et tout à fait acceptable pour modéliser le rouleau d’appui aval. Annuler complètement
le déplacement vertical de la section aval nécessiterait la définition d’une série d’outils
de guidage de la tôle au niveau de la frontière eulérienne et de conditions de contact
appropriées. Cette dernière méthode serait relativement coûteuse et c’est pourquoi nous
nous contenterons de simples fixations.

En amont, un problème similaire se pose : il est nécessaire de modéliser l’influence de
l’appui sur le dernier rouleau du système de bobinage en amont des blocs planeurs. Cette
fois, l’utilisation d’une fixation maillage sur l’extrémité amont du maillage de la tôle est
envisageable. Elle est même nécessaire puisqu’en amont de l’écoulement, il est obligatoire
de prescrire la géométrie de la tôle qui entre dans le domaine de calcul. C’est une condition
aux limites indispensable. Cependant, puisque nous avons choisi d’appliquer la traction
à cet endroit, l’extrémité du maillage sur la frontière eulérienne amont doit représenter
exactement une section droite de la tôle comme le montre la figure 5.93. En effet, si ce
n’est pas le cas, la traction appliquée sur le maillage pendant la phase lagrangienne, ne sera
pas alignée sur la direction longitudinale de la tôle. La traction appliquée longitudinalement
sera donc moindre et accompagnée d’un cisaillement indésirable. Pour éviter de devoir faire
varier l’orientation de la traction en fonction de l’angle d’entrée (a priori inconnu) de la tôle
dans le domaine de calcul, il est donc commode de fixer cette fois encore une série de nœuds
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n mailles

frontière
eulérienne amont

frontière
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(a) une seule fixation en entrée (b) plusieurs fixations en entrée

avancement

avancement

Famont Famont
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au maillage

direction
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FIGURE 5.93 – Gestion des fixations au niveau de la frontière eulérienne amont. Si une seule fixation du
maillage est utilisée (a), la ligne verticale définissant l’extrémité aval du maillage peut ne pas correspondre
pas à une section droite, orthogonale à la direction longitudinale de la tôle. Dans ce cas, la force de traction
sur l’extrémité aval est incorrectement transmise à la tôle. Il est donc nécessaire de fixer plusieurs nœuds
consécutifs (b) pour garantir la perpendicularité de la tôle avec la frontière.

le long de la surface inférieure de la tôle, au lieu d’un seul. La tôle, en entrée, reste ainsi
horizontale et la traction est correctement appliquée.

Cette remarque sur les forces montre également un intérêt supplémentaire de la fixa-
tion verticale de plusieurs nœuds de l’extrémité aval de la tôle : la frontière du maillage
représentera aussi, à cet endroit et à tout moment, une section droite de la tôle. Ainsi, la
valeur de la force longitudinale aval (la traction aval) pourra être directement identifiée à
la force horizontale qui s’exerce sur l’extrémité aval du maillage.

Ces deux problèmes de fixations, en amont et en aval de la planeuse, se retrouvent dans
la modélisation quasi eulérienne de n’importe quel procédé stationnaire par le formalisme
ALE. Les fixations supplémentaires sont censées représenter des points de passage de la
tôle qui sont, dans la réalité, beaucoup plus éloignés du procédé que l’endroit où on les
modélise. Il est donc toujours important d’étudier l’influence de la position de ces fixations
sur la solution obtenue, c’est-à-dire, en d’autre mots, la position des frontières eulériennes
ou, plus précisément dans le cas du planage, les valeurs de Lamont et Laval. Si une variation
trop importante des résultats est observée, il faut alors agrandir la zone quasi eulérienne
maillée pour éloigner ces conditions aux limites et s’approcher ainsi de la position réelle
des fixations.

Pour conclure sur la gestion des fixations verticales en amont et en aval du modèle,
notons que, si le problème est symétrique selon un plan horizontal, comme c’est le cas
pour le modèle de laminage présenté à la section 5.4, les fixations verticales relatives à la
symétrie permettent de contourner toutes ces difficultés.

Une fois les nœuds sur les frontières eulériennes repositionnés, la méthode des splines
ou sa variante pour le remaillage simultané d’arêtes parallèles (section 3.3.4), est mise en
œuvre. La première est rapide, mais provoque l’apparition de mailles fortement cisaillées.
La seconde, plus complexe et plus lente, permet d’obtenir au final un maillage qui a le
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même aspect que le maillage lagrangien correspondant, pour lequel la perpendicularité des
lignes reste approximativement préservée malgré la flexion de la tôle.

Quant aux nœuds volumiques, ils sont repositionnés par la méthode d’interpolation
transfinie qui est le meilleur choix pour un maillage structuré qui se déforme peu, tel que
celui-ci.

Grâce à cet ensemble de méthodes de repositionnement de nœuds, le maillage peut ainsi
de déplacer verticalement entre les deux frontières eulériennes pour suivre les flexions de
la tôle, mais il reste globalement fixe selon la direction horizontale.

5.5.2.6 Contact et intégration temporelle

Un intérêt du maillage quasi eulérien utilisé pour le modèle ALE est la réduction du
nombre d’éléments de contact qu’il entraîne par rapport à son homologue lagrangien. En
effet, comme le montre la figure 5.94 qui représente le premier bloc planeur et le maillage
de la tôle à l’instant t = t2, seuls les nœuds initialement à proximité d’un rouleau sont
susceptibles d’être en contact avec ce dernier (et uniquement lui) au cours du calcul. En
pratique, puisque la position exacte des contacts entre la tôle et les rouleaux est inconnue,
l’ensemble des nœuds définis comme potentiellement en contact sont ceux dont l’abscisse
de la position initiale est comprise entre ci − Ri et ci + Ri où ci et Ri sont respectivement
l’abscisse de l’axe et le rayon du rouleau i. En formalisme lagrangien, par contre, chaque
rouleau génère une zone de contact dont la longueur est au minimum Lp, la longueur de
bande tirée à travers la planeuse. Pour faciliter la mise en données, cette longueur sera
étendue à la longueur du maillage dans le cas lagrangien. Pour le maillage de référence
choisi, on obtient ainsi 3668 éléments de contact dans le cas lagrangien contre seulement
160 dans le cas ALE. Le coefficient de pénalisation pour le contact est fixé à 500 MPa/mm.

zone de contact
ALE avec

le rouleau sup. zone de contact
ALE avec

le rouleau inf.

FIGURE 5.94 – Définition des éléments de contact en formalisme ALE. Grâce au faible mouvement des nœuds
dans la direction horizontale, seuls les nœuds directement à proximité d’un rouleau nécessitent l’activation
de l’algorithme de détection du contact, contrairement au cas lagrangien où la quasi-totalité des nœuds la
surface de la tôle doit être sans cesse testée.

Le schéma d’intégration temporelle est le schéma dynamique implicite de Chung-Hulbert
avec les paramètres par défaut définis à la section 4.3.2. Le pas de temps ∆t est va-
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riable pendant toutes les phases de calcul sauf pour la phase de planage proprement dite
(t ∈ [t2, t3] où une valeur maximale est calculée par ∆tmax = Le

x dmax/v où dmax peut être
vu comme l’incrément maximal de déplacement autorisé sur un pas de temps par rapport à
la longueur initiale d’une maille. Cette limite est nécessaire pour d’une part éviter les oscil-
lations temporelles dans les résultats ALE (voir section 5.4.3.3) et les oscillations spatiales
dans les résultats lagrangiens et, d’autre part, pour garantir une erreur d’intégration tem-
porelle réduite pour les deux formalismes. Nous choisissons par défaut dmax = 0.3. Cette
valeur sera optimisée dans le cas du modèle 3D à la section 5.5.3.6.

5.5.2.7 Matériau et réglages de la planeuse

La bande fait 2.2 mm d’épaisseur (e) et 150 mm de large (l). Le matériau utilisé est un
acier à haute limite élastique de type DP600. Ses paramètres élastiques sont E = 220 GPa
et ν=0.3. Son écrouissage, supposé isotrope, est identifié à partir de l’essai expérimental
de traction représenté sur la figure 5.95. Cet essai de traction est modélisé puis simulé par
Metafor en choisissant une loi d’écrouissage linéaire par morceaux dont les points (ǭp,σY )

sont des paramètres inconnus. Grâce à un algorithme d’identification paramétrique et des
abscisses ǭp préalablement bien choisies, on obtient la courbe d’écrouissage représentée
sur la figure 5.96 dont les valeurs numériques sont rassemblées dans le tableau 5.16. Cet
algorithme minimise d’écart entre la courbe de traction expérimentale et celle obtenue par
voie numérique.
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FIGURE 5.95 – Courbe expérimentale de traction du
DP600 (e = 2.2 mm et l = 150 mm).
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FIGURE 5.96 – Loi d’écrouissage isotrope déduite de
la courbe de traction de la figure 5.95.

ǭp [10−3] 0 4 8 16 32 64 100
σY [MPa] 500 507.5 513.1 547.3 598.5 653.8 684.2

TABLEAU 5.16 – Valeurs numériques utilisées pour définir la loi d’écrouissage isotrope du DP600.

Les quatre configurations expérimentales de planage (valeurs de la traction consigne
et des imbrications), que nous tentons de simuler en formalisme ALE et lagrangien, sont
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notées Réglages A, B, C et D. Ces réglages sont décrits dans le tableau 5.17 qui reprend éga-
lement les principaux résultats expérimentaux (voir Ben Najah [21]). La vitesse de planage
est identique pour chaque configuration et fixée à v = 50 m/min.

Imbrications Traction Mesures expérimentales
i1 i3 Tconsigne Tamont Taval Pertes par Allongement
[mm] [mm] [kg] [kg] [kg] flexion [kg] [%]

réglages A 40 20 3000 3250 4750 1500 2.19–2.31
Réglages B 40 30 1500 1700 3000 1300 1.16–1.32
Réglages C 40 5 1500 1650 2250 600 0.22–0.34
Réglages D 40 5 3000 3300 4200 900 1.20–1.32

TABLEAU 5.17 – Valeurs des réglages expérimentaux, des forces mesurées en cours de planage et des allon-
gements obtenus en sortie de planeuse après retour élastique. Les unités des forces [kg] sont reproduites
ici telles qu’elles ont été fournies par ArcelorMittal. Chaque configuration a fait l’objet de quatre mesures
d’allongement (on a indiqué la valeur minimum et maximum de l’allongement mesuré).

5.5.2.8 Convection ALE

L’algorithme de convection choisi par défaut est le schéma du second ordre utilisant une
reconstruction linéaire. En plus des variables liées au matériau et au calcul des forces in-
ternes (tenseur des contraintes et déformation plastique équivalente, soit cinq grandeurs),
il est nécessaire, pour ce modèle particulier, de transférer le tenseur des gradients de dé-
formation totale F (section 4.3.4) pour permettre le calcul de l’allongement subi par la
tôle au cours du planage. En effet, contrairement au cas lagrangien où cette valeur peut
être déduite simplement de la position initiale et finale des nœuds, l’allongement longi-
tudinal en formalisme ALE est identifié à la composante x x du tenseur des déformations
de Green-Lagrange EGL. Il nécessite donc d’ajouter quatre scalaires (Fx x , Fx y , Fy x , Fy y) à la
liste des grandeurs à transférer, c’est-à-dire neuf grandeurs au total. Le tenseur σ̃ relatif aux
contraintes EAS (section 4.3.3) n’est pas transféré par souci d’économie. Il en va de même
pour les vitesses et les accélérations nodales, car les phénomènes d’inertie ne risquent pas
d’influencer les résultats obtenus.

Le nombre de Courant maximum autorisé est fixé à Cmax = 0.8. Cette valeur ne devrait
pas être atteinte en cours de calcul puisque l’incrément temporel a été fixé en fonction du
déplacement convectif maximal dmax = 0.3. Comme chaque élément fini est divisé en 2× 2
cellules de convection, le nombre de Courant devrait être proche C = 2 dmax = 0.6 < Cmax

pour toutes les cellules de convection pendant la phase de planage.

Enfin, l’entrée de matière dans le maillage à travers la frontière eulérienne amont re-
quiert la définition de conditions aux limites sur les grandeurs à convecter. Ces valeurs ne
peuvent bien sûr pas être prises nulles (ou unitaires pour Fx x et Fy y) puisque la tôle subit
une traction en entrée de planeuse. La technique utilisée pour prendre en compte automa-
tiquement cette traction d’entrée dans les valeurs des conditions aux limites est décrite à la
section 4.4.6. Lors de la mise au point du modèle et pour des cas de charge non présentés
ici, il est apparu intéressant d’imposer explicitement une valeur nulle pour les grandeurs
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Fx y et Fy x . Ceci permet d’éviter la propagation de légers cisaillements parasites (EGL
x y) dans

la solution.

5.5.3 Résultats

5.5.3.1 Forces et allongement

Les premières simulations présentées concernent les quatre configurations de planage
expérimentales avec les paramètres par défaut précédemment détaillés dans le tableau 5.17.
Le but de ces simulations est double : d’une part, comparer les formalismes lagrangien et
ALE entre eux et, d’autre part, valider les résultats des deux modèles avec les mesures
expérimentales disponibles.

Les courbes d’allongement longitudinal (figures 5.97 à 5.100) correspondent aux va-
leurs de la déformation de Green-Lagrange EGL

x x mesurée le long de la fibre moyenne de la
tôle, au temps t = t4 qui précède la phase de retour élastique. À cet instant, la traction a été
complètement relâchée et la valeur de cet allongement moyen est déjà très proche de celui
que l’on pourra mesurer sur la configuration finale en t = t5. La dernière phase de retour
élastique (t ∈ [t4, t5]) n’est donc pas effectuée dans un premier temps. Elle sera étudiée en
détail par la suite et fera l’objet d’une section séparée (section 5.5.3.4).

Chaque courbe d’allongement longitudinal à une forme similaire. Il est important de se
rappeler à ce stade que le sens d’avancement de la tôle est opposé au sens conventionnel de
lecture. Si on observe par exemple la figure 5.97, on identifie assez facilement, de droite à
gauche, la position des axes des rouleaux de la planeuse au niveau desquels l’allongement
augmente par à-coups. En sortie de planeuse, en x = 0, l’allongement est stabilisé sur
une distance d’environ 300 mm. C’est la valeur de ce palier qui peut être comparée à la
valeur d’allongement stationnaire mesuré expérimentalement. La suite de la courbe (x <
−300 mm) présente quatre pics d’allongement qui correspondent à l’empreinte des quatre
rouleaux de planage produite lors de la phase d’imbrication initiale (t ∈ [t0, t2]). Comme le
montre la figure 5.97, le premier pic est bien distant de Lp par rapport au premier rouleau
de la planeuse.

Les résultats du modèle ALE et du modèle lagrangien sont très proches. Les courbes
sont presque à chaque fois juxtaposées. Le modèle ALE étant plus petit que son homologue
lagrangien, on remarque également que la courbe ALE est plus courte et, en particulier,
les trois premiers pics d’allongement sont déjà passés en t = t4 au-delà de la frontière
eulérienne aval. Ils n’apparaissent donc plus dans la solution. La concordance des résultats
est cependant moins bonne pour les résultats obtenus avec les réglages C (figure 5.99) où
un écart est bien visible au niveau du palier d’allongement. Une simulation avec un maillage
plus fin permettrait certainement de rapprocher les deux courbes.

Les valeurs expérimentales d’allongement sont indiquées sur les figures 5.97 à 5.100.
Bien que les valeurs numériques ne correspondent pas exactement aux mesures expérimen-
tales, les écarts entre celles-ci sont faibles.
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FIGURE 5.97 – Réglages A – Allongements longitu-
dinaux (EGL

x x) sur la fibre moyenne le long de la
tôle en t = t4.
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FIGURE 5.98 – Réglages B – Allongements longitu-
dinaux (EGL

x x) sur la fibre moyenne le long de la
tôle en t = t4.
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FIGURE 5.99 – Réglages C – Allongements longitu-
dinaux (EGL

x x) sur la fibre moyenne le long de la
tôle en t = t4.
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FIGURE 5.100 – Réglages D – Allongements longitu-
dinaux (EGL

x x) sur la fibre moyenne le long de la
tôle en t = t4.

La figure 5.101 rassemble, sur un même graphe, les allongements longitudinaux me-
surés en x = −100 mm pour les simulations ALE et lagrangienne ainsi que les valeurs
expérimentales. Les tendances sont bien respectées : le réglage D est identique au réglage
A, mise à part l’imbrication du deuxième bloc planeur qui est moindre. L’allongement cal-
culé par les simulations est moindre tout comme l’allongement mesuré.

Il est intéressant de comparer également la valeurs des forces. En amont, la force est
imposée et la valeur obtenue est donc égale, aux erreurs numériques près, à Tamont. En aval,
la force Taval résulte du déplacement imposé des nœuds de l’extrémité amont du maillage.
Sur la figure 5.102, on compare l’évolution des pertes par flexion, c’est-à-dire la différence
de ces deux forces horizontales, au cours de la phase de planage. On constate que, pour
toutes les configurations de planage (A, B, C ou D), la force ALE est toujours légèrement
supérieure à la force lagrangienne. Cependant, cette dernière augmente très légèrement au
cours du calcul et vient rejoindre la force ALE en t = t4. Ce temps correspond au moment où
l’extrémité amont des deux modèles est positionnée de manière identique par rapport aux
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FIGURE 5.101 – Comparaison des allongements longitudinaux en sortie de planeuse, mesurés sur la fibre
moyenne en x =−100 mm, après relaxation des forces en t = t4.
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FIGURE 5.102 – Evolution des pertes par flexion au
cours de la phase de planage (t ∈ [t2, t3]).
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FIGURE 5.103 – Comparaison des pertes par flexion
en cours de planage (t ∈ [t3, t4]).

blocs planeurs (à une distance Lamont du premier rouleau). Les écarts entre les courbes des
deux formalismes peuvent donc s’expliquer en partie par le fait que la longueur du maillage
ainsi que la gestion des conditions aux limites en aval et en amont de la planeuse sont dif-
férentes pour les deux modèles. On remarque également que les courbes ALE relatives aux
réglages A et B présentent plusieurs oscillations après le passage d’une longueur machine
Lm alors que les courbes lagrangiennes n’en présentent pas. Il s’agit en fait de perturbations
qui correspondent exactement au passage des zones fortement plastifiées suite à la phase
d’imbrication initiale au niveau de la frontière eulérienne aval. Pour s’en convaincre, nous
avons tracé sur la figure 5.102 des lignes verticales (vertes) qui indiquent le passage des
zones initialement sous les rouleaux à travers cette frontière. Les variations de force cor-
respondent bien à ces instants. De plus, les réglages C et D, pour lesquels l’imbrication du
deuxième bloc planeur est très faible, sont beaucoup plus lisses que celles des réglages A et
B.

La figure 5.103 rassemble les valeurs lagrangiennes et ALE des pertes par flexion en
t = t4 et les compare avec les valeurs mesurées lors des essais expérimentaux. On constate
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qu’il existe un écart assez important entre les résultats numériques et l’expérience. Néan-
moins, une fois encore, les tendances (augmentations et diminutions de forces en fonction
des réglages) sont respectées et la concordance entre les résultats des deux modèles numé-
riques est toujours très bonne. Ceci laisse supposer, si on ne tient pas compte des erreurs de
mesure, que certains aspects du procédés, et plus particulièrement la loi de comportement
du matériau (écrouissage cinématique, anisotropie, viscosité, etc.), pourraient être mieux
modélisés.

5.5.3.2 Influence des méthodes de gestion de maillage ALE

Après avoir validé le modèle ALE par rapport à un modèle lagrangien similaire et aux
mesures expérimentales, il semble utile d’envisager comment varient ces résultats avec les
différents choix qui ont été faits au niveau du repositionnement des nœuds et des conditions
aux limites (section 5.5.2.5).

Par exemple, on peut comparer la technique de remaillage par spline pour repositionner
les nœuds sur les frontières supérieure et inférieure de la tôle et la technique de remaillage
de courbes parallèles. La figure 5.104 montre les deux maillages obtenus en t = t3, c’est-
à-dire à la fin de la phase de planage, lorsque la traction amont est toujours effective (ré-
glages A). Le maillage de quadrangles que fournit la deuxième méthode semble intuitive-
ment meilleur que le premier. Il n’en demeure pas moins que cette apparente qualité n’est
qu’esthétique et donc subjective, car les solutions obtenues sur les deux maillages, qu’il
s’agisse du champ de déformation plastique équivalente tel que montré sur cette figure ou
des courbes d’allongement longitudinal, sont tout à fait identiques dans les deux cas.

Pour ces deux simulations particulières, l’utilisation de la méthode complexe de reposi-
tionnement simultanée de nœuds sur courbes parallèles représente 7% du temps de calcul
total, contre 0.2% dans le cas de deux simples splines découplées. Ce choix a donc une
influence significative sur la vitesse de cette simulation numérique. Elle aura évidemment
un impact moindre pour les simulations 3D que nous présentons à la section 5.5.3.6.

Un autre point à éclaircir est l’influence de la taille du domaine ALE maillé sur la solution
finale obtenue. Puisque la longueur du maillage utilisé en formalisme ALE est inférieure
à celle du modèle lagrangien et, plus encore, à celle du procédé réel, l’application des
conditions aux limites, qui modélisent les appuis de la tôle sur les rouleaux des systèmes de
bobinage, se fait à une position qui est relativement proche des blocs planeurs. La nécessité
d’imposer la perpendicularité de la tôle avec les deux frontières eulériennes par deux séries
de fixations influence inévitablement les résultats dans le domaine de calcul quasi eulérien.

La figure 5.105 montre les courbes d’allongement obtenues en t = t4 pour différentes
valeurs de la longueur Lamont. Pour rappel, cette longueur est la distance qui sépare le pre-
mier rouleau de la planeuse de l’extrémité amont du maillage, sur laquelle sont appliquées
les conditions aux limites d’entrée. Comme on pouvait s’y attendre, la valeur de l’allon-
gement en sortie de planeuse, c’est-à-dire la valeur du palier horizontal sur la figure, est
d’autant plus proche de la valeur lagrangienne que les conditions aux limites s’éloignent
de la planeuse. Pour Lamont = 150 mm, il est utile de se rappeler que la position des condi-
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FIGURE 5.104 – Comparaison des deux techniques de remaillage des lignes représentant la surface supérieure
et inférieure de la tôle. Zoom sur le premier bloc planeur en t = t3 pour les réglages A.
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FIGURE 5.105 – Influence de la longueur Lamont sur
l’allongement obtenu en t = t4 (réglages A).
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FIGURE 5.106 – Influence des fixations verticales
au niveau de la frontière amont en t = t4 (ré-
glages A).

tions aux limites ALE correspond exactement à la position de l’extrémité mobile du maillage
lagrangien en fin de calcul.

À la section 5.5.2.5, la manière de fixer la tôle en amont et en aval du maillage a été
décrite. En particulier, nous avons insisté sur l’importance de maintenir la tôle perpendicu-
laire à la frontière eulérienne amont pour permettre que l’extrémité du maillage sur lequel
on applique la traction représente bien une section droite de la tôle. La figure 5.106 montre
l’influence des fixations à cet endroit. Sur cette figure, nous appelons fixations #1 le fait de
ne fixer qu’un seul nœud verticalement au niveau de la frontière. Les fixations #2 consistent
à fixer une série de nœuds en aval de la frontière pour que la tôle conserve son horizonta-
lité. On constate que, si on ne fixe qu’un seul nœud, l’allongement en entrée de planeuse
(x > 281 mm) au temps t = t4 n’est pas nul, alors qu’à cet instant la traction a été sup-
primée. De plus, cette même courbe d’allongement n’est pas aussi lisse que dans le cas de
référence au niveau de la sortie de la planeuse. Elle présente une légère imperfection dont
la distance à la frontière amont vaut précisément la longueur de planage Lp. Il s’agit donc
d’un allongement parasite créé sur la frontière amont pendant la phase d’imbrication ini-
tiale (t ∈ [t0, t2]) et qui s’est propagé à travers le maillage ALE lors de la phase de planage
(t ∈ [t2, t3]).

Bien entendu, pour ce cas précis, ces imperfections dans les résultats ALE sont relative-
ment petites et ne modifient pas significativement la valeur de l’allongement fourni par la
simulation. Cependant, il nous a semblé tout de même utile d’éliminer ces défauts, car leur
amplitude dépend directement, et de manière peu prévisible, des paramètres du procédé.
Ils pourraient donc être bien plus importants pour d’autres opérations de planage.

Le problème d’allongement non nul en entrée de planeuse est certainement le plus pré-
occupant puisque, cette grandeur (EGL

x x) étant calculé de manière incrémentale à partir du
tenseur des gradients de déformation F, l’erreur associée n’est pas localisée aux environs
de la frontière amont : elle est susceptible de se propager en aval, comme tout autre gran-
deur convectée, et de modifier ainsi la valeur finale de l’allongement mesuré en sortie de
planeuse.
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5.5.3.3 Schéma de convection

Après avoir présenté les premiers résultats obtenus grâce à l’utilisation du schéma de
convection le plus précis que nous avons à notre disposition, c’est-à-dire celui utilisant une
reconstruction linéaire des champs à transférer, il semble utile d’étudier l’influence de la
méthode de convection sur la solution obtenue et, plus précisément, l’allongement de la
fibre moyenne en sortie de planeuse. En effet, l’algorithme de Godunov, qui utilise une
reconstruction constante, compense sa précision limitée par une vitesse d’exécution élevée.
Comme pour la section précédente et sans perte de généralité, seul le cas des réglages A est
étudié.

Pour enrichir cette étude, les simulations ALE sont exécutées à nouveau en utilisant la
méthode de Godunov et les trois manières de calculer le flux convectif présentées à la sec-
tion 4.4.7. Pour rappel, le flux à travers une arête d’une cellule de convection autour d’un
point de Gauss est proportionnel à d.n où d est le déplacement convectif et n est la normale
non normée à l’arête (sa norme vaut la longueur de l’arête). Les trois manières de calcu-
ler le flux découlent du choix de cette normale : On peut privilégier soit la configuration
lagrangienne de la normale n L, soit sa configuration eulérienne nE , soit une combinaison
des deux (n L + nE)/2. On appellera abusivement flux exact le flux qui découle de ce der-
nier choix, car d.n correspond alors à l’aire exacte du quadrangle construit en reliant les
configurations lagrangienne et eulérienne de l’arête entre elles. C’est la manière de faire
par défaut lorsqu’on utilise le schéma de Godunov.
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FIGURE 5.107 – Comparaison des allongements lon-
gitudinaux obtenus (EGL

x x) en t = t4 pour diffé-
rentes méthodes de convection.
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FIGURE 5.108 – Profil d’allongement longitudinal
(EGL

x x) à travers l’épaisseur, le long d’une section
droite en x = −100 mm en t = t4 pour diffé-
rentes méthodes de convection.

La figure 5.107 compare les allongements de la fibre moyenne le long de la tôle en
t = t4 pour le modèle ALE en utilisant les différents schémas de convection et pour le
modèle lagrangien. La courbe la plus proche de la référence lagrangienne est, sans sur-
prise, celle obtenue par reconstruction linéaire. Néanmoins, il est intéressant de remarquer
que l’algorithme de Godunov couplé à un calcul des flux basé sur la normale eulérienne
(flux E sur la figure) est également très proche de l’allongement lagrangien. L’utilisation
du calcul par défaut du flux (flux exact) sous-estime l’allongement en sortie de planeuse.
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Quant à la méthode utilisant la normale dans sa configuration lagrangienne (flux L), elle
s’éloigne encore plus de la solution attendue. La solution obtenue par calcul exact des flux
est équidistante des deux autres.
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FIGURE 5.109 – Influence du schéma de convection ALE sur le temps de calcul de la simulation. Comparaison
avec le temps de calcul lagrangien. Les trois étapes du calcul ALE (phase lagrangienne, repositionnement
des nœuds et convection) ont été mesurées séparément.

La figure 5.109 compare les temps de calcul des modèles lagrangien, ALE avec recons-
truction linéaire et ALE avec reconstruction constante (Godunov). Les différentes phases
du calcul ALE sont chronométrées de manière séparée pour mettre en évidence leur impor-
tance relative. La méthode choisie pour le calcul des flux n’influence pas significativement le
temps de calcul de l’algorithme de transfert de Godunov. Nous avons donc représenté qu’un
seul calcul avec cet algorithme sur la figure. On constate que le schéma de Godunov per-
met d’obtenir une simulation très rapide par rapport au schéma du second ordre (le temps
CPU total vaut 1h04’ contre 1h59’, soit un gain proche d’un facteur 2 !). Le temps de calcul
est même inférieur à celui de la simulation lagrangienne. On remarque non seulement un
gain très important au niveau de la phase de convection, comme on pouvait s’y attendre,
mais aussi un gain plus faible dans la phase de repositionnement de nœud. Ce dernier gain
ne peut être dû qu’à la méthode de repositionnement des nœuds sur les arêtes parallèles
qui utilise un algorithme de projection itératif. Il semblerait donc que les projections sur
les splines seraient plus rapides dans le cas de l’algorithme de Godunov que dans le cas
de la reconstruction linéaire. Nous n’avons pas pris la peine d’analyser plus en détail cette
observation.

Vu la vitesse du schéma de Godunov par rapport au schéma du second ordre et la
précision inattendue des résultats obtenus en privilégiant la normale eulérienne, il semble
important d’étudier plus précisément l’influence de la méthode de calcul du flux sur les
résultats de la simulation de planage.

Il existe en fait deux phénomènes intéressants liés à la méthode de calcul des flux
convectifs pour le schéma de Godunov. Le premier est le décalage vertical bien visible entre
les différentes courbes des figures 5.107 et 5.108. Il s’explique par le fait que la tôle subit
un allongement et donc, par effet de Poisson, une réduction d’épaisseur. Dans les zones
subissant un allongement, les arêtes qui sont perpendiculaires au mouvement sont plus
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FIGURE 5.110 – Comparaison des flux calculés à l’aide de la configuration lagrangienne ou eulérienne d’une
arête perpendiculaire au mouvement convectif et dont la longueur diminue dans le sens de l’écoulement.

courtes dans leur configuration lagrangienne que dans leur configuration eulérienne (voir
figure 5.110). Le flux calculé à partir de l’arête eulérienne est donc toujours plus important
que le flux basé sur l’arête lagrangienne. Le flux exact étant la moyenne des deux, il semble
donc normal que la courbe d’allongement associée soit équidistante des deux autres.

Un deuxième phénomène, beaucoup moins important, mérite d’être signalé puisqu’il est
bien visible sur les profils d’allongement à travers l’épaisseur. La figure 5.108 montre ces
profils dans une section située en x = −100 mm, c’est à dire dans la zone de sortie, légè-
rement en aval du dernier rouleau de la planeuse. Le long de cette section, la distribution
lagrangienne d’allongement est rectiligne. Cela signifie que cette section droite est restée
droite au cours du calcul. La courbe obtenue par reconstruction linéaire est proche de cette
droite. On observe de très légères variations de pente aux extrémités du profil (vers y0 = 0
mm et y0 = 2.2 mm) qui sont dues à la présence de très légers flux parasites transverses à
travers les frontières du maillage. La courbe obtenue par le schéma de Godunov couplé à
un calcul exact des flux présente cette même forme caractéristique, même si elle est décalée
vers le bas et que l’influence des frontières est plus marqué (le schéma de Godunov est plus
diffusif). Si on observe maintenant, sur cette même figure, les deux courbes obtenues en
privilégiant une configuration particulière de normale lors du calcul des flux, on constate
que leurs courbures sont différentes. L’une est convexe, l’autre est concave. Ceci laisse sup-
poser que les flux transverses, dans le sens de l’épaisseur, sont différents dans chacun des
cas.
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FIGURE 5.111 – Comparaison des flux calculés à l’aide de la configuration lagrangienne ou eulérienne d’une
arête alignée sur la direction du mouvement convectif.
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Pour mieux comprendre la raison de ces différences, la figure 5.111 montre de manière
schématique les grandeurs géométriques qui interviennent dans le calcul du flux lorsqu’une
arête, alignée sur une fibre longitudinale de la tôle, subit une rotation. En fonction de
configuration de la normale choisie, le flux calculé à travers l’arête, qui devrait être idéa-
lement nul, sera soit un flux centrifuge (normale lagrangienne), soit centripète (normale
eulérienne). La direction des flux transverses est donc bien opposée lorsqu’on choisit une
normale ou l’autre.

Bien entendu, les deux phénomènes se combinent puisque les arêtes qui effectuent une
rotation lors de la flexion subissent également un allongement.
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FIGURE 5.112 – Profil de déformation plastique
équivalente (ǭp) le long d’une section droite en
x = −100 mm en t = t4 pour différentes mé-
thodes de convection.

0 0.5 1 1.5 2
−300

−200

−100

0

100

200

300

Epaisseur (Y
0
) [mm]

P
re

s
s
io

n
 [

M
P

a
]

 

 

Lagrangien

ALE Rec. linéaire

ALE Godunov flux E

ALE Godunov flux exact

ALE Godunov flux L

FIGURE 5.113 – Profil de pression hydrostatique
(p = tr(σ)) le long d’une section droite en
x = −100 mm en t = t4 pour différentes mé-
thodes de convection.

D’autres types de résultats peuvent être également analysés. Sur les figures 5.112 et
5.113 sont représentés les profils de déformation plastique équivalente à travers l’épaisseur
le long d’une section située en x = −100 mm au temps t = t4. Les deux grandeurs sont
globalement bien représentées par tous les schémas de convection. Les différences ne sont
pas aussi visibles que dans le cas de l’allongement longitudinal. Sur le profil de déformation
plastique, on peut noter une nouvelle fois les deux phénomènes précédemment décrits
pour le schéma de Godunov. D’une part, la déformation plastique sur la fibre moyenne
est surévaluée par l’utilisation d’un flux eulérien, car celui-ci surestime la valeur du flux
réel. D’autre part, les profils ALE résultant d’un calcul eulérien ou lagrangien du flux sont
beaucoup moins symétriques par rapport à la fibre moyenne que la solution lagrangienne
ou que les solutions ALE obtenues par un calcul exact des flux. Ceci trahit la présence de flux
transverses de signes opposés dans ces deux méthodes qui privilégient une configuration
d’arête particulière.

Bien que l’allongement longitudinal calculé par l’algorithme de Godunov soit plus proche
de la solution lagrangienne lorsque le flux est calculé à l’aide de la configuration eulérienne
des arêtes des cellules de convection, il serait dangereux d’en déduire qu’il est préférable
d’utiliser cette méthode de calcul. Il s’agit en fait d’un heureux hasard : le schéma de Godu-
nov classique, utilisant un calcul exact des flux, provoque une diffusion excessive et, de ce
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fait, génère des allongements longitudinaux moindres que les résultats de référence. Dans
le contexte particulier de ce problème et pour cette valeur particulière d’allongement qui
nous intéresse, le choix de la normale eulérienne provoque une surestimation des flux qui
vient compenser l’erreur de diffusion.
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FIGURE 5.114 – Réduction d’épaisseur (EGL
y y) le long

de la fibre moyenne de la tôle en t = t4.
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FIGURE 5.115 – Convection des pics d’allongements
provoqués par l’imbrication initiale. On a utilisé
pour ce faire un modèle ALE plus long (Lsprb =

450 mm, t = t4).

Si la valeur observée était, par exemple, la réduction d’épaisseur, c’est-à-dire la défor-
mation de Green-Lagrange EGL

y y selon l’épaisseur, évaluée le long de la fibre moyenne de la
tôle (voir figure 5.114), on conclurait qu’un calcul lagrangien du flux donne cette fois de
meilleurs résultats.

Pour terminer, ce comparatif des schémas de convection, un modèle ALE plus long a
été construit pour comparer la qualité de convection des pics d’allongement longitudinaux
créés au niveau des rouleaux lors de la phase d’imbrication initiale. Ces pics sont toujours
clairement visibles sur la courbe d’allongement longitudinal lagrangienne. Le modèle ALE
plus long permet de conserver ces pics dans la zone de calcul sans qu’ils passent outre la
frontière aval. La figure 5.115 compare ces profils à l’instant t = t4. Il est intéressant de
noter que les valeurs stabilisées de l’allongement en sortie de planeuse sont identiques à
celles précédemment calculées avec un modèle ALE plus court. Quant aux pics, ils sont
évidemment mieux représentés par le schéma utilisant une reconstruction linéaire qu’avec
le schéma de Godunov.

En conclusion, pour ce modèle de planage sous traction, il semble donc préférable d’uti-
liser le schéma de convection utilisant une reconstruction linéaire si la valeur de l’allonge-
ment longitudinal est un résultat important de l’étude que l’on mène sur la planeuse (c’est
généralement le cas). Contrairement aux applications numériques précédentes, ce schéma
apporte une nette amélioration des résultats obtenus par rapport au schéma de Godunov,
car lui seul permet de retrouver précisément les résultats lagrangiens correspondants.
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5.5.3.4 Retour élastique

Après avoir étudié les résultats de la simulation jusqu’au temps t = t4, nous analysons la
dernière phase du calcul qui consiste à relâcher les fixations à l’extrémité aval du maillage.
Pendant cette phase, la tôle est sous l’action de ses contraintes résiduelles après planage et
elle se courbe pour retrouver une nouvelle position d’équilibre. Quel que soit le formalisme
utilisé dans la première partie de la simulation, cette étape est réalisée dans les deux cas
en formalisme lagrangien. Elle permet de mesurer indirectement la qualité de la solution
précédemment fournie par le modèle ALE vis-à-vis du modèle lagrangien de référence par
la mesure d’une grandeur géométrique simple : la courbure de la tôle dans le plan ver-
tical de l’étude après retour élastique, c’est-à-dire son cintre résiduel. Par la suite et par
souci de simplicité, nous appellerons résultats ALE les résultats obtenus à partir de la confi-
guration en t = t4 du modèle ALE bien que cette dernière phase de retour élastique soit
lagrangienne. Les réglages A de la planeuse sont utilisés par défaut.

Pour rappel, des éléments spéciaux d’amortissement sont introduits dans le modèle au
niveau des nœuds proches de l’extrémité de la tôle, sur une longueur Laval. Cet artifice
de calcul permet une dissipation rapide (moins de 5 secondes) de l’énergie libérée par la
suppression des fixations. De plus, la totalité des nœuds des deux maillage en amont de
x = 0 est fixée pour éviter le calcul inutile des vibrations de la tôle entre les rouleaux.
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FIGURE 5.116 – Comparaison de la forme finale
après retour élastique des deux tôles en fonction
du formalisme précédemment utilisé pour modé-
liser le planage.
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FIGURE 5.117 – Cintre (rayon de courbure) mesuré
le long de la tôle dans sa configuration finale en
t = t5.

La figure 5.116 représente les deux géométries de la tôle à l’instant t = t5 obtenues à
partir des modèles ALE et lagrangien. À première vue, sur cette figure, les deux courbures
de la tôle en sortie de planeuse semblent assez différentes. L’écart entre les deux courbes
est en effet assez important et semble suggérer que les contraintes résiduelles du modèle
ALE ont été précédemment mal calculées. En fait, il n’en est rien : si on trace, pour les
deux simulations, la valeur du rayon de courbure de la tôle, calculée localement en chaque
point le long de celle-ci (figure 5.117), on constate un très bon accord des valeurs du cintre
calculé dans une zone autour de x = −100 mm. Au delà en aval (x < −150 mm), les
courbes se séparent et le cintre ALE est supérieur au cintre lagrangien. Si on revient à la
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figure 5.116, l’écart entre les deux tôles est amplifié par le fait que les fixations au niveau de
la sortie de la planeuse ne sont pas identiques. Vu la longueur différente des deux modèles,
les inclinaisons des deux tôles en x = 0 mm sont légèrement différentes. En fixant les nœuds
à partir de l’origine des axes, on fixe donc également la pente de la tôle à cet endroit. Une
simple rotation rigide d’une tôle par rapport à l’autre autour de x = 0 mm pourrait donc
mieux traduire la concordance des courbures en sortie de planeuse.
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FIGURE 5.118 – Forme finale de la tôle après retour
élastique en t = t5 (modèle ALE plus long).
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FIGURE 5.119 – Cintre résiduel après retour élas-
tique en t = t5 (modèle ALE plus long).

La divergence des deux courbes de cintre résiduel après retour élastique est due à la dif-
férence de longueur des deux modèles. Pour le modèle ALE, nous avons vu que la présence
de fixations au niveau de la frontière eulérienne aval n’influence pas la valeur de l’allonge-
ment calculé en sortie de planeuse. Par contre, ces fixations influencent assez significative-
ment la valeur du cintre résiduel ou, du moins, la longueur sur laquelle il correspond au
cintre du modèle lagrangien. Pour obtenir une meilleure correspondance et étendre cette
zone où les valeurs de cintre sont identiques, il est nécessaire d’allonger le modèle ALE.
Les figures 5.120 et 5.121 montrent les nouvelles courbes ALE obtenues pour une longueur
de maillage en sortie de planeuse plus importante (Lsprb = 584 mm au lieu de 284 mm).
Les maillages ALE et lagrangien ont ainsi approximativement la même longueur et leurs
extrémités sont positionnées de manière identique en t = t4. Cette fois, les deux géomé-
tries sont très proches et les valeurs de cintre correspondent sur une large zone. On peut
même observer la présence de variations similaires de courbure au delà de c1,x − Lp, c’est
à dire la position approximative de l’empreinte du premier rouleau sur la tôle lors de la
phase d’imbrication initiale. Pour le modèle ALE, cette relative précision sur les courbures
au niveau des empreintes est le résultat, d’une part, de la précision de la convection de
l’état de contrainte local de la tôle par l’algorithme de transfert des grandeurs aux points
de Gauss et, d’autre part, de la précision de la convection de la courbure de la surface par
l’algorithme de relocalisation de nœuds des surfaces supérieure et inférieure de la tôle.

Il est important de noter que le rayon de courbure de la tôle mesuré le long de celle-ci
en sortie de planeuse n’est pas constant, ni en formalisme lagrangien, ni en formalisme
ALE. Sa variation spatiale dépend de la taille du modèle en aval de la planeuse et de la
longueur de planage Lp, y compris dans le cas lagrangien. Pour mieux modéliser la procédé
réel, il faudrait donc idéalement ajouter au minimum le premier cylindre d’appui en aval de
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la planeuse et tirer suffisamment de tôle pour que la partie initialement sous les rouleaux
arrive à ce cylindre. Le cintre résiduel serait alors mesuré au delà du cylindre d’appui qui, vu
sa courbure opposée à celle de la tôle et l’épaisseur de cette dernière, peut éventuellement
jouer un rôle sur la valeur finale du cintre mesuré.

Cette amélioration du modèle ne sera pas envisagée dans ce travail. Nous nous bornons
donc ici à tirer uniquement α = 2 longueurs pour conserver des simulations relativement
courtes. Le plus important ici est de vérifier la concordance entre les résultats ALE et lagran-
gien. Par la suite, nous choisirons donc simplement une abscisse particulière (x = −100
mm) pour évaluer le cintre tout en gardant à l’esprit que le modèle doit être amélioré pour
être représentatif d’une valeur stationnaire de cette grandeur.
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FIGURE 5.120 – Forme finale de la tôle après retour
élastique en t = t5. Comparaison des différents
schémas de convection.

−300 −250 −200 −150 −100 −50 0
200

250

300

350

400

450

500

550

600

X [mm]

C
in

tr
e

 (
ra

y
o

n
 d

e
 c

o
u

rb
u

re
) 

[m
m

]

 

 

Lagrangien

ALE Rec. linéaire

ALE Godunov flux E

ALE Godunov flux exact

ALE Godunov flux L

FIGURE 5.121 – Cintre résiduel après retour élas-
tique en t = t5. Comparaison des différents sché-
mas de convection.

Pour compléter l’étude des schémas de convection (section 5.5.3.3), les figures 5.120
et 5.121 présentent les courbes de cintre résiduel obtenues par les différents schémas de
convection. Il est très intéressant de voir que le schéma de Godunov est tout à fait capable
de retrouver les résultats lagrangiens sur la zone en sortie de planeuse tant qu’on utilise
une évaluation exacte des flux convectifs. Bien évidemment, ce schéma du premier ordre
modélise beaucoup moins bien les phénomènes transitoires mais il ne nous intéressent pas
dans le cadre de cette étude. En particulier, l’empreinte du premier rouleau sur la tôle,
visible par le pic autour de x = −300 mm sur la figure 5.121, est moins bien représentée
qu’avec l’algorithme de convection précis au second ordre.

Les valeurs des allongements longitudinaux mesurés le long de la fibre moyenne sont
identiques (à 0.02% près) à ceux mesurés précédemment en t = t4. Ils ne sont donc pas
présentés ici.

Pour terminer cette section concernant la phase de retour élastique, la figure 5.122 ras-
semble les valeurs des cintres mesurés en x = −100 mm pour les quatre types de réglages
(voir tableau 5.17) et pour les formalismes ALE et lagrangien. On observe une correspon-
dance relativement bonne entre les deux résultats des deux modèles. L’écart plus important
obtenu avec les réglages C est prévisible puisqu’un écart similaire avait déjà été observé au
niveau de l’allongement longitudinal (voir figure 5.101).
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FIGURE 5.122 – Valeurs des cintres résiduels en t = t5 pour les différents réglages expérimentaux de la
planeuse (tableau 5.17).

5.5.3.5 Optimisation du modèle 2D

Avant de passer à la création d’un modèle 3D, inévitablement beaucoup plus coûteux,
les modèles 2D ALE et lagrangien peuvent être optimisés en termes de temps de calcul.
Nous choisissons de modifier uniquement le nombre d’éléments. Il serait en effet possible
également de modifier la taille des modèles, la durée de la simulation et tous les paramètres
numériques intervenant dans le calcul (la précision de l’algorithme de Newton-Raphson, la
précision de l’intégration temporelle via la taille du pas de temps, le coefficient de pénalisa-
tion du contact, la précision de résolution des modes internes EAS, etc.). La limite de cette
opération d’optimisation est uniquement fonction de la précision avec laquelle on veut ob-
tenir les résultats, c’est-à-dire dans ce cas-ci, l’allongement, le cintre et les pertes par flexion.
Il est en effet inutile d’obtenir des valeurs numériques de forces précises au Newton près
alors que le système de mesure de la machine fournit visiblement une force multiple de 50
kg (500 Newtons ?) et applique la traction consigne avec une erreur moyenne de 200 kg
(voir tableau 5.17).

Pour alléger les futures simulations 3D nous choisissons de diminuer le nombre d’élé-
ments dans l’épaisseur de 8 à 6 (ny = 6) pour les deux modèles. Cette modification nous
permettra également de mesurer la sensibilité des résultats vis-à-vis de ce paramètre.

Le maillage lagrangien peut être facilement optimisé en utilisant des mailles plus longues
dans la zone d’imbrication initiale (Lm). En utilisant des mailles deux fois plus grandes, on
diminue significativement le nombre de mailles total du modèle sans pour autant détériorer
la convergence numérique de la phase d’imbrication initiale.

Le maillage ALE peut être optimisé en utilisant un maillage à densité variable et en
concentrant les mailles aux endroits où elles sont nécessaires, c’est-à-dire dans les zones où
la tôle est en contact avec les rouleaux et où elle subit des flexions. Ailleurs, la tôle peut être
discrétisée plus grossièrement puisqu’en ces endroits, les contraintes et les déformations
varient faiblement. La portion de tôle sur laquelle on mesure le cintre (Lsprb) nécessite un
maillage plus fin que les zones extrêmes (Lamont et Laval) ; le but de ces dernière n’étant
que d’éloigner les conditions aux limites de la planeuse. Il est toutefois possible d’utiliser
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des mailles plus longues que celles utilisées au niveau des zones de contact. Les nouvelles
longueurs des zones de maillage optimisées ainsi que la taille des mailles dans ces zones
sont indiquées dans le tableau 5.18.

Laval Lsprb Lm Lp Lamont

Lagrangien 50 - 281 2× 281 = 562 150
ALE 16→ 150 284→ 150 281 - 150

Le
aval Le

sprb Le
m Le

p Le
amont

Lagrangien 4 - 1→ 2 1 4
ALE 4 1→ 3 1→ variable - 4

TABLEAU 5.18 – Optimisation des zones de maillage et des tailles de maille en vue d’une diminution du temps
de calcul (modification du tableau 5.15). Toutes les longueurs sont exprimées en [mm].
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FIGURE 5.123 – Calcul analytique de la longueur et de la position des zones de contact le long de la tôle afin
de pouvoir y définir un maillage plus fin (la géométrie réelle n’est pas respectée pour améliorer la lisibilité
de la figure).

La densité variable du maillage ALE sur la longueur Lm est définie en calculant analyti-
quement la position des zones de contact entre la tôle et les rouleaux. Ceci est possible en
faisant une approximation sur la géométrie de la tôle en cours de planage qui est considérée
comme parfaitement tendue entre les rouleaux et d’épaisseur nulle. Sous ces hypothèses,
les angles de contact et les longueurs correspondantes peuvent être calculés à l’aide d’opé-
rations trigonométriques élémentaires à partir des positions initiales des rouleaux corrigées
en fonction des imbrications. La figure 5.123 représente schématiquement le deuxième bloc
planeur et les longueurs de contact correspondantes. Ces longueurs deviennent le support
d’un maillage fin. Elles sont agrandies pour compenser les hypothèses précédemment faites
et pour garantir une prise de contact correcte au début du calcul quand la tôle n’est pas
encore fléchie. À titre d’illustration, la figure 5.124 montre le maillage obtenu au niveau du
deuxième bloc planeur en appliquant cette méthode.

La figure 5.125 montre les allongements longitudinaux calculés en formalisme lagran-
gien et ALE avec les nouveaux maillages optimisés vis-à-vis du temps de calcul. On observe
un léger décalage entre les anciens et les nouveaux résultats qui est dû principalement à la
réduction du nombre d’éléments dans l’épaisseur. Par contre, on peut voir que la nouvelle
répartition des mailles du modèle ALE n’a pas d’influence sur la valeur de l’allongement me-
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Lx = 1mme

Lx = 1mme

Lx = 4mme

FIGURE 5.124 – Maillage ALE optimisé de la tôle au niveau du deuxième bloc planeur (t = t2 - réglages A).
Les mailles de 1 mm permettent une prise en compte précise du contact et de la flexion imposée par chaque
rouleau. Partout ailleurs, des mailles plus grandes sont suffisantes.

suré puisque la courbe ALE est superposée à la courbe lagrangienne du maillage lagrangien
optimisé.
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FIGURE 5.125 – Comparaison des allongements lon-
gitudinaux pour les modèles de référence et les
modèles optimisés (t = t5, réglages A).
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FIGURE 5.126 – Comparaison des cintres résiduels
pour les modèles de référence et les modèles op-
timisés (t = t5, réglages A).

Le cintre résiduel le long de la tôle mesuré après retour élastique est tracé sur la fi-
gure 5.126 pour les différentes simulations. Les modèles optimisés fournissent les mêmes
courbures en sortie de planeuse que les modèles de référence précédemment étudiés.

De manière plus précise, le tableau 5.19 rassemble les temps de calcul et les valeurs
numériques des résultats principaux fournis par les différents modèles. Le temps CPU né-
cessaire à la phase finale de retour élastique (t ∈ [t4, t5]) n’est pas comptabilisé dans ce
tableau parce qu’il dépend fortement de la valeur du facteur d’amortissement λ choisie et
que nous n’avons pas essayé de trouver la valeur optimale pour les différents maillages. Ce
temps CPU varie d’une à dix minutes suivant les cas.

Si on compare les différentes simulations entre elles, on constate qu’elles fournissent
toutes des valeurs très proches pour le cintre résiduel mesuré en x = −100 mm sur la
configuration finale et pour les forces représentée ici par la valeur des pertes par flexion.
Par contre, les valeurs obtenues pour l’allongement longitudinal dépendent du maillage et
du schéma de convection choisi.
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Nb. pas /
itérations

Temps CPU Nombre
d’élém.

Allongt

[%]
Cintre
[mm]

Pertes
[kg]

Modèle initial
Lagrangien 1982/6233 1h27’18” (1.00) 7328 2.02 293 1171
ALE 1977/2315 1h58’58” (1.36) 5200 2.05 281 1187
ALE (Godunov) 1977/2048 1h03’46” (0.73) 5200 1.75 284 1191

Modèle optimisé
Lagrangien 1997/6202 1h20’40” (1.00) 4566 2.20 287 1180
ALE 1997/3271 48’44” (0.60) 1818 2.17 284 1190
ALE (Godunov) 1985/2788 29’08” (0.36) 1818 1.85 285 1191
ALE (+ long) 1992/3272 56’59” (0.71) 2418 2.17 281 1190

TABLEAU 5.19 – Comparaison des résultats numériques et des temps de calcul pour différents modèles (ré-
glages A) avant et après optimisation du maillage. Les temps CPU sont mesurés sur PC3 (tableau A.1).

Les simulations lagrangiennes nécessitent beaucoup plus d’itérations à chaque pas de
temps que celles en formalisme ALE. Ce phénomène avait déjà été remarqué pour les simu-
lations précédentes de laminage. Il est dû au fait que les vitesses et les accélérations nodales
ne sont volontairement pas convectées en ALE (voir section 5.4.3.2).

Une fois optimisé, le modèle ALE est environ 40% plus rapide que le modèle lagrangien,
optimisé lui aussi. Utiliser un maillage ALE plus long pour mieux décrire l’évolution de la
courbure de la tôle après retour élastique coûte évidemment plus cher que le modèle ALE
de référence. Néanmoins, il reste plus rapide que le modèle lagrangien.

Enfin, si on tolère une perte de précision au niveau du calcul de l’allongement, l’utilisa-
tion d’un schéma de convection de Godunov au lieu du schéma du second ordre que nous
avons choisi par défaut, permet d’obtenir un temps de calcul près de trois fois inférieur au
calcul lagrangien. Notons que, dans ce cas particulier, la perte de précision sur l’allonge-
ment a été, par chance, partiellement compensée par l’erreur provenant de la diminution
du nombre de mailles sur l’épaisseur. Il ne faudrait bien sûr pas en déduire que le schéma de
Godunov est le meilleur choix puisque dans d’autres cas, ces erreurs numériques pourraient
s’additionner.
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5.5.3.6 Modèle 3D

Un modèle tridimensionnel du procédé de planage sous traction est créé à partir du
modèle 2D précédent en effectuant une simple extrusion du maillage optimisé et de la
géométrie des rouleaux hors du plan (x , y). La direction y reste la verticale. La direction z
devient la direction transverse. Vu la symétrie du problème, seule la moitié de la largeur est
modélisée (pour rappel, l/2 = 75 mm) et on utilise cinq éléments EAS le long de celle-ci
(nz = 5).

Les fixations verticales (y) et horizontales (x) aux extrémités du modèle 2D sont tra-
duites à trois dimensions par des fixations similaires sur toute la demi largeur de la tôle. Le
plan de symétrie z = 0 est modélisé par des fixations appropriées sur le bord du maillage
correspondant. Le bord opposé en z = l/2 est, bien entendu, laissé libre pour permettre
les déformations dans cette direction. On s’intéressera particulièrement à la valeur de la ré-
duction de largeur après planage. Le contrôle de cette largeur de bande sur l’ensemble des
machines qui composent une ligne de production d’acier, et en particulier sur une planeuse,
est un problème complexe qui suscite un grand intérêt industriel et qui ne peut évidemment
pas être modélisé à deux dimensions.

Pour le modèle ALE, le passage à trois dimensions nécessite le choix de méthodes de re-
positionnement de nœuds supplémentaires concernant les surfaces supérieure et inférieure
ainsi que le bord externe de la tôle. Cette dernière surface peut être très bien représentée à
tout moment par une simple interpolation transfinie des lignes de sa frontière, car son aire
est très petite et l’influence de son éventuelle courbure interne sur le procédé devrait être
faible. Par contre, les surfaces supérieure et inférieure de la tôle sont de grande taille et
vont subir des flexions hors de leur plan initial autour de l’axe z (le cintre) et de l’axe x (la
tuile). Il est donc important de mettre en œuvre un algorithme de repositionnement nodal
précis pour conserver partout et à tout instant une tôle d’épaisseur correcte.

La méthode développée à cette fin dans ce travail de thèse est décrite à la section 3.5.2.
Elle est relativement coûteuse, car elle nécessite la construction et la mise à jour continue
d’une approximation spline de la surface dont on veut repositionner les nœuds. Néanmoins,
dans le cas de ce modèle de planage, on peut s’attendre à ce que la forme des surfaces ne
diffère pas fondamentalement de la forme de leurs lignes frontière. On est donc autorisé ici
à utiliser une méthode de repositionnement non itérative (section 3.5.2.7). Elle consiste,
dans un premier temps, à redéfinir un maillage pour chaque surface par interpolation trans-
finie, comme dans le cas du bord de la tôle. Dans un deuxième temps, pour conserver la
courbure de la surface lagrangienne, ce maillage est projeté sur une approximation spline
de celle-ci.

Les nœuds internes du maillage de la tôle sont repositionnés par la méthode d’interpola-
tion transfinie. Puisque le maillage est structuré et que les déformations restent modérées,
c’est, de loin, la solution la plus efficace.

Tous les autres paramètres numériques sont choisis identiques au cas bidimensionnel.
En particulier, la simulation se déroule suivant les mêmes phases de calcul. Nous nous
concentrons une fois encore sur les réglages A du tableau 5.17.
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FIGURE 5.127 – Simulation 3D du planage sous traction (réglages A). Géométrie du modèle ALE à différents
instants.
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ALE t t= 4

ALE t t= 5
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FIGURE 5.128 – Comparaison des modèles ALE et lagrangien en t = t4 (en fin de planage, après suppression
de la traction) et t = t5 (après retour élastique complet).
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La figure 5.127 montre le maillage ALE à différents instants. La répartition optimisée
des mailles provenant de l’étude du modèle 2D est bien visible. La figure 5.128 permet de
comparer les résultats du modèle ALE et lagrangien entre eux à deux instants clefs de la
simulation : en fin de planage avant et après le relâchement des fixations à l’extrémité aval
du maillage. Mis à part que le modèle ALE est plus court, les déformées sont similaires et les
champs de déformation plastique équivalente sont aussi très proches sauf peut-être à proxi-
mité de la frontière ALE. À cette extrémité, le maillage ALE possède de plus grandes mailles
que son homologue lagrangien et l’empreinte de l’imbrication initiale du premier rouleau,
qui se trouve à cet endroit à ce moment, est moins nette qu’en formalisme lagrangien.
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FIGURE 5.129 – Allongement longitudinal moyen
(EGL

x x) le long de la tôle en t = t5. Influence de la
dimension du modèle et de l’algorithme utilisé.

FIGURE 5.130 – Allongement longitudinal (EGL
x x)

mesuré dans une section droite située en x =
−100 mm en t = t4.

Comparons de manière plus précise les deux formalismes en 3D ainsi que l’influence
de la dimension du modèle sur les résultats obtenus. Sur la figure 5.129 sont tracées les
courbes d’allongements longitudinaux pour différents types de modèles. L’allongement la-
grangien 3D (figure 5.129) correspond à l’allongement mesuré dans les modèles 2D. La
valeur obtenue en formalisme ALE (2.09%) est proche, mais légèrement inférieure à la va-
leur lagrangienne (2.18%). Enfin, le schéma de convection de Godunov fournit un résultat
encore bien plus faible.

Après plusieurs essais pour tenter d’expliquer la différence entre la courbe ALE (avec le
schéma du second ordre) et la courbe lagrangienne en 3D, nous pouvons dire que celle-ci
ne dépend ni de la taille longitudinale des mailles, ni de la taille du pas de temps, ni du
la longueur totale du modèle ALE. La figure 5.129 montre la répartition de l’allongement
(EGL

x x) dans une section droite située en x = −100 mm pour ces deux modèles. La surface
d’allongement lagrangienne est proche d’un plan. Cela signifie que la section droite ini-
tialement plane reste plane et perpendiculaire à la fibre moyenne après déformation. Par
contre, la surface d’allongement ALE est décalée vers le bas et n’est pas tout à fait plane. Sa
géométrie, en forme de S, rappelle les courbes de la figure 5.108 obtenues en jouant sur la
manière d’évaluer les flux convectifs.

La figure 5.131 montre l’écart entre les deux surfaces (allongement lagrangien - allon-
gement ALE). La variation de courbure de la surface de cette figure en y = 0 mm et y = e
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FIGURE 5.131 – Différence des deux répartitions
d’allongement d’une section représentées sur la
figure 5.129.
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FIGURE 5.132 – Cintre le long de la tôle en t =
t5. Influence de la dimension du modèle et de
l’algorithme utilisé.

mm suggère la présence de flux parasites provenant du remaillage des surfaces supérieures
et inférieures. Ce sont ces flux, d’après nous, qui entraînent une erreur sur l’allongement.
Le problème n’apparaissant pas dans le cas 2D, on peut supposer que la largeur importante
des mailles est en cause. Il serait donc intéressant, mais cela n’a pas été fait, d’étudier l’in-
fluence du nombre de mailles utilisées pour discrétiser la demi-largeur (nz) sur cet écart
d’allongement.

La figure 5.132 rassemble les courbes de cintre le long de la tôle pour les mêmes simula-
tions que la figure 5.129. On observe un léger décalage entre les résultats 2D et les résultats
3D (une trentaine de millimètres sur la valeur du rayon). Cependant, contrairement au cas
de l’allongement longitudinal, tous les résultats 3D sont cette fois très proches les uns des
autres, du moins à proximité du dernier rouleau de la planeuse. En particulier, la précision
du schéma de convection ne joue aucun rôle sur la courbure finale de la tôle après retour
élastique.

FIGURE 5.133 – Déformation plastique équivalente
(ǭp) mesurée dans une section droite située en
x =−100 mm en t = t4.

FIGURE 5.134 – Pression hydrostatique (p = tr(σ))
mesurée dans une section droite située en x =
−100 mm en t = t4.
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Les figures 5.133 et 5.134 représentent respectivement les profils de déformation plas-
tique équivalente et de pression hydrostatique dans la section x = −100 mm en sortie de
planeuse, juste avant la dernière phase de retour élastique (t = t4). Ces figures peuvent être
comparées aux figures correspondantes du modèle bidimensionnel (figures 5.112 et 5.113,
page 262). Elles ont une forme similaire aux profils 2D bien qu’on note ici une légère va-
riation sur la largeur. Les résultats ALE et lagrangiens sont donc très proches.

Intéressons-nous maintenant aux résultats indisponibles dans la précédente analyse 2D :
la réduction de largeur et la courbure résiduelle de la tôle dans le sens travers. Pour mesurer
la première de ces deux grandeurs, il est commode de réaliser une mesure de longueur
directement sur les maillages des deux modèles ALE et lagrangien. En effet, contrairement à
l’allongement longitudinal qui ne peut pas être mesuré sur le maillage ALE par l’élongation
de ses mailles, la réduction de largeur peut, en première approximation, se mesurer par la
variation de longueur d’une ligne de maillage initialement perpendiculaire à la direction x .
On fait ainsi l’hypothèse que les lignes de maillage ne subissent pas de rotation autour de
l’axe z. Ce n’est cependant pas rigoureusement vrai puisque les bords de la tôle en z = 0 et
z = l/2 n’ont pas tout à fait la même longueur, vu la légère courbure de la tôle dans le sens
travers que nous mesurerons par la suite.

Une autre manière de mesurer la réduction de largeur serait de moyenner une mesure
de déformation transversale. La figure 5.135 montre par exemple le champ de déformation
de Green-Lagrange EGL

zz au temps final pour les modèles ALE et lagrangien. Les valeurs
obtenues sont très proches. Il est intéressant de remarquer que la variation de largeur n’est
pas homogène selon celle-ci. Une étude de maillage plus poussée concernant le nombre
optimum d’éléments (nz) pour discrétiser la largeur devrait donc être faite pour valider
définitivement les résultats présentés ci-dessous.

-1.5 0E
GL

zz [%]

ALE

Lagrangien

x
z

FIGURE 5.135 – Comparaison des champs de déformation dans le sens travers (EGL
zz ) obtenus par les modèles

ALE et lagrangien au temps t = t5 sur la face supérieure de la tôle.

La réduction de largeur de la tôle, mesurée le long de celle-ci en t = t5 après retour
élastique, est représentée sur la figure 5.137 pour les modèles ALE et lagrangien. Les résul-
tats d’un modèle ALE plus long (Lsprb = 450 mm), dont la taille correspond à la longueur
totale du modèle lagrangien, ainsi qu’un modèle ALE, utilisant le schéma de Godunov pour
la convection, sont également représentés sur la figure. On constate un très bon accord
entre les courbes même si les valeurs ALE sous-estiment toujours la courbe lagrangienne.

La courbure de la tôle dans le sens travers, appelée tuile (voir figure 5.136), est généra-
lement exprimée en mm/m et calculée par la distance verticale qui sépare le bord de la tôle
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FIGURE 5.136 – Visualisation du cintre résiduel et de la tuile dans la configuration finale après retour élastique
(modèle ALE – réglages A).

à son centre, rapportée à un mètre de largeur. Elle est positive si la courbure est orientée
vers le haut. La tuile finale est tracée tout le long de la tôle sur la figure 5.138. Il est impor-
tant de remarquer que les valeurs de tuile calculées par les différents modèles au niveau
des rouleaux de la planeuse et entre ceux-ci sont très proches. En aval de la planeuse, la
tuile est légèrement sous-estimée par les modèles ALE si on choisit le modèle lagrangien
comme référence. Tout comme pour le cintre, la description complète de l’évolution de la
tuile nécessite un modèle ALE suffisamment long. Pour le modèle ALE utilisé par défaut,
qui est relativement court par rapport au modèle lagrangien, la zone en aval de x = −200
mm subit un influence assez forte des conditions aux limites et la valeur de la tuile s’éloigne
des modèles plus longs.
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FIGURE 5.137 – Variation de la réduction de largeur
observée le long de la tôle dans sa configuration
finale après retour élastique.
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FIGURE 5.138 – Mesure de la tuile finale le long de
la tôle pour les différents modèles numériques.

Terminons cette étude 3D en mentionnant les temps de calcul nécessaires aux diffé-
rentes simulations. Ces temps ainsi que les grandeurs numériques des résultats principaux
sont rassemblés dans le tableau 5.20 qui peut être mis en parallèle avec celui des simula-
tions 2D (tableau 5.19, page 270).

Pour diminuer ces temps CPU, nous avons également effectué deux simulations pour
lesquelles le pas de temps a été optimisé. Dans le cas du modèle lagrangien, la taille du pas
de temps maximum autorisé a été multipliée par deux, par l’intermédiaire de la variable
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Nb. pas /
itérations

Temps CPU Nombre
d’élém.

Allongt

[%]
Cintre
[mm]

Pertes
[kg]

Pas de temps maximum de référence ∆t (dmax = 0.3)

Lagrangien 1984/5475 15h51’50” (1.00) 22830 2.18 332 1155
ALE 1988/2016 13h21’50” (0.94) 9510 2.09 325 1160
ALE (Godunov) 1998/1881 6h50’43” (0.48) 9510 1.61 327 1168

Pas de temps optimisé ∆topti (dLAG
max = 0.6, dALE

max = 0.45 )

Lagrangien 1298/4331 11h55’33” (1.00) 22830 2.19 330 1152
ALE 1365/1511 8h18’10” (0.78) 9510 2.09 325 1162
ALE (Godunov) 1371/1408 4h11’46” (0.35) 9510 1.79 327 1168
ALE (Godunov -F) 1371/1408 3h33’12” (0.30) 9510 - 327 1168

TABLEAU 5.20 – Comparaison des résultats numériques et des temps de calcul pour les différents modèles 3D
(réglages A). Temps CPU mesurés sur PC3 (tableau A.1). Le cintre est mesuré en x =−100 mm.

dmax = 0.6 au lieu de dmax = 0.3. Pour rappel, cette variable permet de fixer indirectement
la taille maximal du déplacement convectif. Le nombre de pas de temps est ainsi réduit et la
simulation est plus rapidement effectuée. Les valeurs numériques des résultats permettent
de vérifier que l’erreur d’intégration temporelle n’augmente pas.

Dans le cas du modèle ALE, il est également possible d’augmenter la taille du pas de
temps pour réduire le temps CPU. Cependant, l’utilisation de dmax = 0.6, comme en for-
malisme lagrangien, va entraîner un nombre de Courant de l’ordre de C = 2dmax = 1.2,
c’est-à-dire un mouvement convectif plus grand que la taille d’une cellule de convection.
On observera donc en moyenne deux sous pas de convection par pas de temps. Comme la
phase de convection est relativement coûteuse par rapport à la phase lagrangienne, il est
plus intéressant, pour diminuer le temps de calcul total, de se limiter à un seul sous pas de
convection par pas de temps en utilisant un nombre de Courant le plus proche de la limite
de stabilité du schéma (C = 1). On choisira donc dmax = 0.45, soit un pas convectif avec
C = 0.9 au lieu de deux pas avec C = 0.6. Le modèle ALE optimisé au niveau de la taille du
pas de temps utilise donc une valeur plus petite que celle du modèle lagrangien.

Le modèle ALE utilisant le schéma de Godunov reste indéniablement le plus rapide. Il
souffre cependant d’une erreur importante au niveau du calcul de l’allongement longitu-
dinal en sortie de planeuse après retour élastique. Les valeurs des forces et du cintre sont
par contre toujours similaires, quel que soit le type de modèle utilisé. Si on ne s’intéresse
pas à l’allongement, une simulation ALE, plus de trois fois plus rapide que la simulation
lagrangienne, peut être obtenue en utilisant le schéma de Godunov et en laissant tomber la
convection du tenseur F (cette simulation est notée « Godunov -F » dans le tableau 5.20).

Pour compléter le tableau 5.20, le tableau 5.21 montre les valeurs numériques de la
réduction de largeur et la tuile pour les mêmes simulations. La réduction de largeur ne varie
pas beaucoup en fonction du modèle utilisé. La tuile ALE, que l’on a choisi arbitrairement
de mesurer en x = −100 mm et qui est très faible dans ce cas de planage, est toujours
inférieure à la tuile lagrangienne. Elle ne dépend pas du schéma de convection utilisé.
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Reduction de Tuile
largeur[mm] [mm/m]

dmax = 0.3

Lagrangien 0.75 6.70
ALE 0.74 5.35
ALE (Godunov) 0.71 5.25

dLAG
max = 0.6, dALE

max = 0.45

Lagrangien 0.75 7.39
ALE 0.73 5.39
ALE (Godunov) 0.71 5.27
ALE (Godunov -F) 0.71 5.27

TABLEAU 5.21 – Comparaison des résultats numériques spécifiquement 3D pour différents modèles (ré-
glages A). La tuile est mesuré en x =−100 mm.

5.5.3.7 Écrouissage mixte

Une piste pour améliorer le modèle de la planeuse pilote, indépendamment du forma-
lisme utilisé et de la dimension choisie (2D ou 3D), est la prise en compte d’un éventuel
écrouissage cinématique du matériau. En effet, la sollicitation au niveau d’une fibre longi-
tudinale de la tôle est une série de chargements et de déchargements successifs par flexion.
Bien entendu, il n’est pas possible de caractériser l’effet Bauschinger du DP600 avec la seule
courbe de traction que nous possédons (figure 5.95, page 251). Cette section n’a donc pas
pour but d’améliorer les précédents résultats, mais plutôt de montrer qu’un écrouissage
mixte peut avoir une influence non négligeable sur les résultats obtenus. Nous prouvons
aussi que notre implémentation du formalisme ALE peut gérer des matériaux plus com-
plexes sans aucun problème.

Pour obtenir une loi d’écrouissage mixte à partir de la courbe de traction du DP600,
nous supposons que la partie cinématique de l’écrouissage est connue. Son expression est
tirée d’une procédure d’identification complète effectuée par Haddadi et al. [101] pour
des tôles DP600 de 1 mm d’épaisseur. L’écrouissage cinématique correspond à une loi de
Armstrong et Frederick [6] qui peut s’écrire sous la forme :

Ï

α=
2

3
hDp − b ˙̄ǫpα (5.3)

où
Ï

α est une dérivée objective du tenseur de back-stress et Dp est le taux de déformation
plastique. Les valeurs numériques des paramètres sont h= 2673.36 MPa et b = 15.8 MPa.
Nous faisons l’hypothèse que cette loi est également valable pour le DP600 utilisé dans les
tests de planage dont l’épaisseur est 2.2 mm.

ǭp [10−3] 0 8 16 32 64 100
σY [MPa] 500 500 509.8 530.6 545.7 549

TABLEAU 5.22 – Valeurs numériques utilisées pour définir la loi d’écrouissage cinématique du DP600.
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FIGURE 5.139 – Partie isotrope de l’écrouissage
mixte du DP600 identifié à partir de la courbe de
traction de la figure 5.95 en supposant connue
la partie cinématique.
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FIGURE 5.140 – Essai de traction et compression al-
ternées pour les deux comportements du DP600.

Pour obtenir, au final, la même courbe de traction que précédemment, la partie iso-
trope de la loi d’écrouissage mixte est déterminée par l’algorithme d’identification décrit
à la section 5.5.2.7. On obtient la courbe d’écrouissage tracée sur la figure 5.139 (valeurs
numériques dans le tableau 5.22). Cet écrouissage isotrope, couplé à l’écrouissage cinéma-
tique décrit par la loi (5.3) fournit bien la courbe de traction de la figure 5.95 pour un
test de traction simple. Par contre, si on effectue une série de tractions et compressions
successives, on obtient les deux courbes de la figure 5.140 qui sont cette fois radicalement
différentes dès la première compression.
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FIGURE 5.141 – Variation de l’allongement obser-
vée lors de l’utilisation d’un écrouissage mixte au
lieu d’un écrouissage isotrope pour le DP600.
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FIGURE 5.142 – Variation de cintre observée lors de
l’utilisation d’un écrouissage mixte au lieu d’un
écrouissage isotrope pour le DP600.

Le modèle ALE nécessite d’ajouter le tenseur symétrique α à la liste des grandeurs à
transférer à chaque point de Gauss (3 valeurs supplémentaires à 2D, car tr(α) = 0). On
effectue les simulations en formalisme ALE et lagrangien avec les modèles 2D pour les
réglages A de la planeuse. Les courbes d’allongement longitudinal et de cintre résiduel
après retour élastique sont représentées respectivement sur figures 5.141 et 5.142. On a
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représenté également sur ces figures les anciennes courbes obtenues avec un écrouissage
isotrope. L’allongement mesuré diminue et le rayon de courbure résiduel augmente, suite
au changement de comportement du matériau. Vu l’amplitude des variations observées
dans les deux cas, il sera utile, pour continuer cette étude, d’identifier l’effet Bauschinger
du DP600 dans le but d’améliorer la concordance des résultats numériques et des résultats
expérimentaux.

5.5.4 Conclusions

La modélisation du planage sous traction par le formalisme ALE nous a permis de mon-
trer l’importance de l’utilisation d’un schéma de convection très précis pour retrouver les
résultats lagrangiens correspondants. La valeur de l’allongement longitudinal de la tôle
après retour élastique est certainement la grandeur la plus sensible au choix du schéma de
convection. La méthode de Godunov, souffrant d’une forte diffusion, la sous-estime systé-
matiquement.

La manière dont sont calculés les flux convectifs est également très importante et pour-
tant celle-ci n’est jamais détaillée dans la littérature sur le formalisme ALE. Nous avons
montré qu’il est possible de compenser l’erreur de diffusion introduite par le schéma de
Godunov en choisissant de privilégier la configuration eulérienne lors du calcul des flux.
Dans un contexte général, ce choix est évidemment à proscrire, car il est lié à la géométrie
particulière du procédé modélisé et à la grandeur observée. La réduction d’épaisseur, par
exemple, nécessiterait quant à elle, pour être en accord avec le résultat lagrangien, une éva-
luation des flux sur la configuration lagrangienne. Il est donc nécessaire, plus que jamais,
d’utiliser toujours un calcul exact des flux convectifs.

L’influence de la position des frontières du modèle quasi eulérien sur les résultats et
l’influence des conditions aux limites imposées aux extrémités du maillage ont été décrites
en détail. Des frontières eulériennes trop proches entraînent des erreurs dans les résultats.
Celles-ci peuvent se propager sur de longues distances de la frontière amont tout au long
du maillage perturbant ainsi la solution finale de la simulation. Les valeurs des courbures
résiduelles (cintre et tuile) nécessitent des modèles relativement longs pour être calculées
correctement alors que des valeurs stables d’allongement ou de réduction de largeur sont
obtenues avec des maillages beaucoup plus courts.

Outre la satisfaction de la prouesse technique, l’intérêt de l’ALE dans le cas de la modéli-
sation d’un procédé tel que le planage sous traction est la réduction du temps de calcul total
des simulations. Celle-ci passe inévitablement par une optimisation du maillage. En effet, à
nombre de mailles identique, le formalisme ALE nécessite généralement plus d’opérations
que le modèle lagrangien équivalent puisqu’il ajoute à la phase lagrangienne traditionnelle
une phase convective relativement coûteuse. Dans le cas de procédés stationnaires, on peut
néanmoins compter sur une amélioration de la vitesse de convergence de la phase lagran-
gienne lorsqu’on ne transfère pas les vitesses et les accélérations nodales.

L’optimisation du maillage ALE se réalise en jouant sur sa longueur totale et sur la
répartition des éléments le long de celui-ci. Les mailles doivent être concentrées dans les
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zones les plus sollicitées telles qu’ici les zones de contact et de flexion. Le modèle ALE ainsi
optimisé est plus rapide que son homologue lagrangien. Cependant, les gains obtenus ne
sont pas extraordinaires pour plusieurs raisons.

Tout d’abord, ce problème particulier nécessite l’utilisation du schéma convectif le plus
coûteux pour calculer précisément une des grandeurs les plus intéressantes (l’allongement).
Si cette valeur n’était pas requise, on pourrait sans aucun problème utiliser le schéma de
Godunov et supprimer la convection du tenseur F, soit diminuer encore de moitié le coût
de la convection.

Ensuite, la planeuse modélisée ici n’est ni longue, ni large. Nous avons préféré simuler
une planeuse dont nous avions une configuration expérimentale. Il est évident que pour
de plus gros modèles (nombre de blocs planeurs plus importants ou plus éloignés, tôle très
large, etc.), la phase lagrangienne sera plus coûteuse. Son coût n’évolue pas linéairement
avec le nombre de degrés de liberté contrairement au coût de la convection de la phase
ALE.

Enfin, le dernier problème est lié à la structuration des données dans le code de calcul.
Sans entrer inutilement dans les détails, on peut dire que l’accès aux grandeurs stockées
aux points de Gauss et, dans une moindre mesure, aux nœuds n’est pas optimisée dans
Metafor pour une utilisation hors du cadre de la méthode des éléments finis. Ceci est dû à la
généralité de notre implémentation du formalisme ALE. En effet, elle est capable de gérer
sans modification non seulement tous les matériaux, éléments et schémas d’intégrations
actuellement présents au sein du code, mais aussi tous ceux qui seront programmés dans le
futur, concernant des grandeurs qui ne sont même pas encore connues actuellement. Cette
généralité à un prix qui est bien visible sur les temps de calcul présentés dans ce travail.
Notons toutefois que le problème est bien cerné et qu’une structure de données optimisée
mais tout aussi générale est en cours d’élaboration.

Parallèlement à l’optimisation du code, on pourrait imaginer, pour contourner le pro-
blème de performance, de choisir les grandeurs qui nécessitent un transfert précis. Peut
être qu’en n’utilisant le schéma du second ordre uniquement pour le transfert du tenseur F
dont découlent les allongements, on observerait une amélioration de la valeur finale calcu-
lée tout en diminuant significativement le temps de calcul.

Pour terminer cette étude du planage, nous avons indiqué une piste parmi d’autres
pour améliorer la concordance des résultats numériques avec les résultats expérimentaux.
Il semblerait utile de modéliser l’écrouissage mixte du matériau si celui-ci présente un effet
Bauschinger prononcé.
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5.6 Conclusions

Les applications de ce chapitre, choisies aussi variées que possible, nous ont permis de
comprendre les différents problèmes supplémentaires liés à l’utilisation du formalisme ALE
par rapport au formalisme lagrangien traditionnellement utilisé en mécanique du solide.
Les observations et les règles de bonne pratique qui en découlent seront appliquées dans
le chapitre suivant sur des simulations 3D de profilage. La taille beaucoup plus importante
de ce type de modèle, et les temps de calcul qui en résultent, ne permettent pas d’effectuer
de nombreuses simulations pour tester l’influence de tous les paramètres numériques en
jeu. Nous ferons donc en grande partie confiance aux conclusions de ce chapitre lors de
l’élaboration du modèle ALE de profilage.

Les problèmes d’impact et de striction d’une barre axisymétrique présentés en début de
chapitre sont des benchmarks du formalisme ALE. Toute implémentation de l’algorithme
ALE doit être capable de résoudre ce type de problème. Vu la richesse de la littérature sur
ces simulations, nous avons essayé de les aborder de manière originale. Par exemple, nous
avons montré que, contrairement à ce qui est largement publié, les différences observées
entre les modèles ALE et lagrangien ne proviennent pas d’erreurs numériques liées au mau-
vais conditionnement des mailles lagrangiennes écrasées (ce qui laisserait supposer que le
modèle ALE serait plus précis que le lagrangien). Retrouver les résultats lagrangiens grâce
au modèle ALE est possible mais cela nécessite non seulement le transfert des vitesses et
accélérations nodales, mais aussi un choix initial de maillage ALE particulier.

Le problème de striction est également un test classique mais il se résume généralement
à inverser la vitesse du problème d’impact précédent. Notre originalité se situe dans la
prise en compte des phénomènes thermomécaniques et du caractère visqueux du matériau.
Contrairement aux modèles simples de striction, la position exacte le long de l’échantillon
de la zone de striction est inconnue a priori et dépend fortement des effets d’inertie en jeu.

La simulation du test de double extrusion est basée sur l’idée d’adjoindre au maillage
initial de l’échantillon de fines couches d’éléments localisées aux endroits où la matière va se
déployer lors de l’extrusion. Bien que cette technique ne soit pas nouvelle, elle n’avait jamais
été appliquée, à notre connaissance, à un modèle géométriquement aussi complexe que
celui présenté ici. De plus, puisque le résultat principal du test est un rapport de hauteurs
d’extrusion liées directement à la valeur du frottement, ce modèle est idéal pour valider
la prise en compte du contact avec frottement sur un maillage non lié au mouvement de
la matière. Les résultats obtenus par le formalisme ALE sont en très bon accord avec les
résultats expérimentaux et ceux obtenus avec un code commercial et un algorithme de
remaillage complet en cours de calcul.

Le modèle de laminage est le premier des deux modèles quasi eulériens présentés. Il a
l’avantage d’être relativement simple par rapport au problème de profilage visé par la suite.
Il met bien en évidence l’intérêt de ne pas transférer les vitesses et les accélérations nodales
lorsque les effets d’inertie ne sont pas importants. Cela permet d’accélérer grandement le
calcul ALE en réduisant le nombre d’itérations de Newton-Raphson nécessaire à chaque pas
de temps. Bien que notre modèle 2D de laminage ne soit pas aussi spectaculaire qu’un mo-
dèle 3D, il nous a permis de valider une nouvelle fois, et de manière beaucoup plus précise,
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la prise en compte des phénomènes frictionnels à l’interface tôle-cylindre. Une comparaison
aussi précise que nous l’avons faite de modèles lagrangiens et ALE au niveau des champs de
pression, de cisaillement et de glissement n’est pas courante dans la littérature. C’est d’au-
tant plus vrai que le modèle ALE construit dans ce travail permet de calculer également les
déformations des cylindres. Le problème de l’application de tractions d’entrée et de sortie
est également pris en compte sans aucun problème.

Le modèle de planage sous traction est celui qui se rapproche le plus du modèle de
profilage du prochain chapitre. Contrairement au cas du laminage, le modèle n’est pas sy-
métrique par rapport à la fibre moyenne de la tôle et les éléments finis subissent de grandes
rotations. Ce procédé n’avait jamais fait, à notre connaissance, l’objet d’une étude en forma-
lisme ALE auparavant. Nous ne nous sommes pas bornés à simuler le planage : une phase
de retour élastique a été ajoutée à la fin des simulations. Elle permet de vérifier la qualité de
la convection de l’état de contraintes de la tôle le long du maillage quasi eulérien par une
mesure géométrique simple de la courbure finale. L’intérêt du schéma de convection précis
utilisant une reconstruction linéaire est bien mis en avant par ces simulations, car il n’est pas
possible de retrouver la valeur de l’allongement longitudinal du modèle lagrangien avec le
schéma de Godunov. Nous avons également vu de manière pratique les conséquences d’un
mauvais calcul des flux convectifs lorsque les mailles subissent des rotations pendant la défi-
nition du nouveau maillage. Ce problème est complètement sous-estimé dans la littérature.
En fait, il passe même complètement inaperçu. En effet, les simulations ALE présentées
dans la littérature sont généralement soit trop simples (pas de rotations, ni de mouvement
convectif important), soit trop complexes (l’influence des flux est alors camouflée par les
nombreuses autres erreurs de modélisation), soit enfin, les résultats ne sont pas dépouillés
de manière précise (pas de comparaison avec un modèle lagrangien équivalent).

Enfin, mis à part pour des problèmes de petite taille, le temps de calcul ALE, mesuré
une fois le maillage optimisé, est plus faible que celui du modèle lagrangien équivalent, lui
aussi optimisé. Des pistes ont été proposées pour améliorer encore ce gain de temps CPU.
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Chapitre 6

Application au profilage

6.1 Introduction

Ce chapitre est dédié à la mise au point d’un modèle ALE général de lignes de profilage
à froid. Ce procédé permet d’obtenir, à partir de tôles planes en feuilles ou en bobine,
des produits longs de section généralement constante appelés profilés. La mise à forme est
effectuée par le passage de la tôle au travers d’une série de têtes de profilage (voir figure 6.1),
appelée également passes. Elle subit ainsi une succession de pliages dans le sens transverse
qui modifient progressivement sa section et la rapprochent progressivement de la forme
finale souhaitée tout en gardant son épaisseur constante. Chacune des têtes de profilage
est composée d’un ensemble de galets à symétrie de révolution (cylindres, cônes, etc.) en
rotation autour de leur axe. La position des galets est étudiée pour imposer une forme
précise à la tôle lors de son passage. Dans les cas les plus simples, on distingue les galets
supérieurs, en rotation autour d’un axe supérieur, et les galets inférieurs, en rotation autour
d’un axe inférieur. Pour des profils plus complexes, tels que les profils fermés (tubes), des
galets latéraux peuvent être ajoutés.

têtes de profilage

évolution du profilé

FIGURE 6.1 – Représentation schématique d’une opération de profilage (Euro-profilage [69]). La tôle est
entraînée dans la profileuse et subit les flexions imposées par chaque tête de profilage. La section (son
profil) évolue pour atteindre, après la dernière tête, la forme désirée.
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simple ouvert

complexe très complexe

fermé

panneau

profils étroits tubes

profils larges

FIGURE 6.2 – Différents types de sections obtenues par profilage. On distingue les profils étroits (glissières,
poutrelles, etc.), les profils larges (panneaux pour la construction) et les profils fermés (tubes).

On retrouve des produits profilés dans de nombreux domaines qui vont de la construc-
tion de bâtiments (bardages, toitures, supports de planchers, glissières, gouttières, échafau-
dages, etc.) à l’industrie du transport (longerons, cadres de portière, etc. – voir figure 6.3)
en passant par l’ameublement (étagères, armoires) et l’électroménager (frigidaires, lave
vaisselles). Les profilés sont généralement classés en trois familles (voir figure 6.2) : les
profils étroits, les profils larges et les tubes.

Parties produites
autrement

Parties produites
par profilage

FIGURE 6.3 – Application du profilage à l’industrie automobile. De nom-
breuses pièces de la structure d’une voiture peuvent être mises à forme
par profilage à froid (Depauw et al. [58]).

FIGURE 6.4 – Définition du
procédé par la fleur de
profilage (vue éclatée au-
dessus) – (Halmos [104]).

Le profilage peut être effectué en continu, à partir d’une bobine de métal, ou de manière
discontinue ; on parle alors du procédé feuille-à-feuille. En formalisme ALE, nous nous inté-
ressons au calcul de régimes stationnaires et donc plutôt aux lignes continues de profilage.
La figure 6.5 montre une telle ligne ainsi que les différents outils en amont (débobinage,
planage, poinçonnage) et en aval (découpe, évacuation du profilé).
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FIGURE 6.5 – Schéma d’une ligne continue de profilage (Halmos [104]).

La conception d’une ligne de profilage débute habituellement par la définition de la
fleur de profilage associée au procédé (voir figure 6.4). Il s’agit de la superposition de la
forme d’une section transverse de la tôle lors de son passage au niveau de chaque tête de
profilage. La fleur comporte donc n+ 1 sections, numérotées de 0 à n où n est le nombre
de passes. La section 0 est généralement rectiligne puisqu’elle correspond à la tôle non
déformée en entrée de profileuse. Déterminer la fleur de profilage optimale, c’est-à-dire la
séquence de pliage et le nombre de passes nécessaires à l’obtention d’une géométrie finale
de profilé, est une tâche relativement difficile qui peut être facilitée par l’utilisation de lo-
giciels spécialisés tels que COPRA (DataM [56]). Ce programme est capable de construire
une fleur de profilage en partant de la section finale dessinée par l’utilisateur et en la dé-
pliant progressivement en suivant certaines directives. Des formules analytiques intégrées
au code permettent notamment de calculer automatiquement la variation de largeur de la
tôle en fonction des nombreuses méthodes de pliage disponibles (rayon constant, rayon
variable, etc.). COPRA permet également la conception des outils jusqu’au tracé des plans
de chaque tête de profilage. Un module de calcul donne une première estimation de l’al-
longement longitudinal maximal qui sera atteint. Cette valeur est très importante pour le
profileur, car elle permet de vérifier par exemple si les rives risquent de plastifier pendant
l’opération, entraînant ainsi des défauts dans le produit fini. Il est alors possible de corri-
ger le procédé en modifiant, par exemple, la séquence de pliage, en ajoutant des passes
supplémentaires ou en augmentant la distance intertête, c’est-à-dire la distance qui sépare
deux têtes de profilage voisines. Bien qu’il soit très pratique, ce logiciel doit être couplé à un
modèle numérique plus sophistiqué pour prédire de manière précise l’état de la tôle après
profilage (contraintes résiduelles), ainsi que la présence éventuelle de défauts de forme
(cintre, cambrage, twist, etc.) en vue de les corriger.

Dans le cadre de ce travail de thèse, nous avons bénéficié d’une collaboration étroite
avec ArcelorMittal et plus particulièrement avec le centre de recherches de Liège et le centre
Auto-applications de Montataire (France). Sur une voiture, le nombre de pièces profilées
est très important (voir figure 6.3) et en augmentation constante avec les progrès tech-
niques effectués sur les lignes de profilage. Les nouvelles normes écologiques poussent les
constructeurs automobiles à utiliser des aciers de plus en plus résistants (aciers UHSS ou
Ultra High Strength Steels, par exemple) afin de réduire le poids total du véhicule tout en
conservant sa solidité (Depauw et al. [58]). À cause de leur haute limite d’élasticité (proche
du GPa), ces aciers souffrent d’un retour élastique très important lors de leur mise à forme
et ce problème doit donc être contrôlé lors de l’opération de profilage. La mise au point de
modèles numériques contribue à mieux comprendre ce phénomène indésirable et permet
d’étudier des pistes pour le minimiser.
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Les premiers modèles numériques de profilage sont relativement simples et peu coûteux.
Ils consistent à décrire analytiquement la géométrie de la tôle entre les têtes de profilage par
des surfaces dont l’expression analytique est paramétrée. Kiuchi [130] utilise des fonctions
de forme sinusoïdales pour interpoler la tôle entre deux sections successives de la fleur
de profilage (voir également Halmos [104] et Duggal et al. [65]). Les paramètres de la
surface sont calculés en exprimant la minimisation de l’énergie de déformation. Nefussi et
Gilormini [153] développent une technique similaire avec des patches de Coons.

Les premiers modèles utilisant la méthode éléments finis tentent de simplifier le pro-
blème pour pouvoir le traiter partiellement à deux dimensions. Brunet et al. [39, 40] mo-
délisent les déformations d’une section particulière dans son plan lors de son passage dans
la profileuse. Ils considèrent que la section est en contact avec un des galets virtuels qui se
déplaceraient avec cette section le long de ligne de profilage et qui se déformeraient de ma-
nière continue pour respecter la forme de chaque tête de profilage. Ce calcul par éléments
finis 2D, effectué en état plan de déformation, est couplé à un modèle 3D de la profileuse
pour lequel la tôle est maillée à l’aide d’éléments de coques. Un modèle 2D similaire en état
plan généralisé est également proposé par Grisard [94].

Liu et al. [138] proposent la méthode des bandes finies (Finite Strip Method), reprise
plus tard par Han et al. [105] : cette méthode revient à utiliser des éléments finis par-
ticuliers dont le champ de déplacement longitudinal est défini par une B-spline dont les
extrémités, au niveau d’une tête et de la tête suivante, satisfont des conditions aux limites
particulières. Cette technique permet de garder une taille du modèle réduite par rapport
à un modèle 3D complet, car chaque espace intertête est calculé séparément, de manière
séquentielle.

Néanmoins, des simulations plus réalistes du profilage requièrent inévitablement des
modèles 3D. C’est d’autant plus vrai lorsqu’on s’intéresse à des profils complexes, tels que
les tubes, ou à la modélisation de défauts de forme. Vu leur coût, les premières simulations
tridimensionnelles se sont limitées à un petit nombre de têtes de profilage et des tôles rela-
tivement courtes. Heislitz et al. [107] modélisent la mise à forme d’un profil en U en trois
passes à l’aide du code PAM-STAMP [68]. Ils s’intéressent à la variation de l’allongement
longitudinal et à la forme de la section après retour élastique.

Tehrani et al. [190] étudient les facteurs entraînant l’apparition d’ondulations en rives
(bords longs) sur un profil symétrique en U grâce à la version explicite d’Abaqus. Ils utilisent
des coques intégrées à l’aide de cinq points de Gauss sur l’épaisseur. Ces simulations sont
reprises par Daniel et Meehan [54] en implicite.

Bui et al. [43–45] utilisent Metafor pour simuler le profilage de sections en U. Le modèle
lagrangien utilisé est une version simplifiée de celui présenté dans ce travail (l’avancement
de la tôle résulte de l’imposition d’un déplacement sur les nœuds du plan de symétrie
longitudinal). Les résultats numériques sont comparés à des mesures expérimentales de la
forme du profilé après retour élastique.

Les codes commerciaux dédiés au profilage essayent d’intégrer la totalité du processus
de gestion d’une ligne industrielle, de la création des outils, jusqu’à la résolution d’éventuels
problèmes du quotidien. Dans ce but, PROFIL [197] permet d’exporter une profileuse sous
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Abaqus/Explicit pour effectuer des simulations par la méthode des éléments finis. Le leader
du marché dans ce domaine est actuellement COPRA [56] avec son module de simulation
COPRA-FEA piloté par le solveur MSC-MARC [151].

En parallèle à tous ces modèles de profilage qui utilisent exclusivement le formalisme
lagrangien, on peut trouver dans la littérature des modèles stationnaires eulériens (ou quasi
eulériens). Kim et Oh [128] considèrent un matériau rigide plastique et résolvent les équa-
tions stationnaires d’équilibre. La convergence de leur algorithme est facilitée en démar-
rant le calcul 3D avec la solution d’un calcul 2D préliminaire. Celui-ci est effectué sous
l’hypothèse d’état plan de déformation généralisé pour lequel tous les points de la section
modélisée possèdent une déformation longitudinale identique. Cette approche alternative,
commercialisée dans le code SHAPE-RF [185], a fait l’objet de quelques publications (Suk-
moo et al. [188], Kim et al. [129], Sheikh et Palavilayil [182]) qui démontrent son intérêt
pour obtenir un gain significatif de temps de calcul par rapport aux modèles lagrangiens
plus classiques (quelques heures au lieu de quelques jours).

Ces modèles stationnaires sont, certes, très rapides, mais ils souffrent en pratique d’un
manque de généralité. Par exemple, le fait de négliger complètement l’élasticité et l’écrouis-
sage du matériau peut être vu comme un handicap majeur de SHAPE-RF face à COPRA-FEA
qui bénéficie automatiquement de toute la panoplie de lois de comportement disponibles
dans le code MSC-MARC. Cette situation est similaire à celle décrite dans le cas des mo-
dèles de laminage (section 5.4) où nous comparions le logiciel dédié au laminage station-
naire LAM3 et le code lagrangien plus généraliste Forge. Les codes stationnaires eulériens
sont généralement très spécialisés et offrent donc un champ d’application limité qu’ils com-
pensent par une vitesse d’exécution inégalable par un code lagrangien. Ces limitations sont
telles qu’actuellement, les codes lagrangiens ont la préférence des industriels.

Dans ce contexte, et comme dans le cas du laminage, le formalisme ALE peut être vu
comme une solution intermédiaire bénéficiant des avantages des deux approches précé-
dentes. Tout comme un maillage eulérien stationnaire, le maillage ALE reste globalement
fixe dans la direction de profilage. Il peut donc être facilement optimisé en concentrant les
mailles au niveau des plis et des contacts avec les galets. Le nombre d’éléments de contact
du modèle ALE est aussi beaucoup plus faible qu’en formalisme lagrangien puisque seuls
les nœuds qui sont initialement à proximité d’un galet peuvent entrer en contact avec lui.
On peut ainsi s’attendre à des temps de calcul plus faibles qu’en formalisme lagrangien.

Cependant, puisque son implémentation repose sur un code lagrangien, l’algorithme
ALE bénéficie automatiquement de toutes ses avancées techniques au cours du temps,
contrairement à un code stationnaire dédié exclusivement au profilage. Les nouveaux maté-
riaux, les nouveaux éléments ou les nouveaux algorithmes développés dans la partie lagran-
gienne du code ne nécessitent pratiquement aucun développement supplémentaire pour
pouvoir être utilisés dans les applications ALE.

Dans ce chapitre, nous décrivons un modèle ALE de profilage que nous validons à l’aide
d’un modèle lagrangien équivalent et de résultats expérimentaux provenant d’une ligne pi-
lote. Nous montrons ensuite les avantages du modèle ALE par rapport au modèle lagrangien
sur des profils plus complexes. Nous terminons par une simulation d’une ligne industrielle
qui ne peut pas être simulée par le modèle lagrangien.
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6.2 Modèle lagrangien

Le modèle ALE de profilage est construit sur base d’un modèle lagrangien qui a été dé-
veloppé dans le cadre d’un projet dédié à la simulation du profilage (PROMETA [34]). Nous
détaillons dans cette section la manière dont il a été mis au point ainsi que les différents
paramètres qui le définissent.

Le modèle de profilage lagrangien est conçu pour pouvoir simuler n’importe quelle pro-
fileuse, quel que soit le nombre de passes. La fleur de profilage et la géométrie des galets
sont importées à partir du logiciel COPRA (DataM [56]).

6.2.1 Géométrie et maillage

Vu la longueur des lignes de profilage industrielles (qui peuvent atteindre une dizaine
de mètres), nous nous limitons, en formalisme lagrangien, au cas du profilage d’une tôle
de longueur relativement courte par rapport aux dimensions de la profileuse. On parle de
profilage feuille à feuille. La simulation du procédé continu nécessiterait de mailler unifor-
mément une tôle dont la longueur est comparable à celle de la machine ; ce qui conduirait
à des temps de calcul trop élevés.

direction
de profilage

L

l/2

e
x

y

z

section de mesures
(mi-longueur)

tête #1
tête #7

FIGURE 6.6 – Géométrie de la tôle lagrangienne devant la profileuse au début du calcul (cas symétrique). Une
section de mesures définie à mi-longueur, et donc au plus loin des extrémités de la tôle, permettra d’obtenir
des valeurs des champs inconnus qui se rapprochent au mieux de celles observées en profilage continu.

La figure 6.6 montre le maillage d’une tôle de longueur L, largeur l et épaisseur e devant
la première passe d’une profileuse. Cette ligne est étudiée à la section 6.5.1. Pour clarifier
l’illustration, nous avons choisi de représenter un profil symétrique pour lequel seule la
moitié de la largeur de la tôle est modélisée. Le maillage relatif à un procédé similaire non
symétrique est simplement deux fois plus large. L’orientation particulière des axes mérite
notre attention. Ils sont choisis pour que le plan (x , y) corresponde au plan transverse qui
sert de support à l’étude de la fleur de profilage dans le logiciel COPRA. L’axe z est donc
la direction de profilage. Son orientation, contraire au sens d’avancement de la tôle, est
déduite de l’orientation des axes x (direction transverse vers la droite) et y (verticale, vers
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le haut). Une section particulière, située à mi-longueur et appelée sur le schéma « section
de mesures », sera continuellement observée pendant le calcul et permettra de tracer l’évo-
lution de différentes grandeurs au cours du temps (principalement les déformations, les
contraintes et la géométrie de la section). Sa position centrale est choisie pour se rappro-
cher des conditions qui seraient celles d’une ligne continue de profilage.

zones de raffinement (plis)

symétrie

direction
de profilage

n élémentsy

Le

z

L
e

x

x

y

z

profileuse

( )n éléments/zonex

raffinement rive
(1 )élément

tête #1 fleur de profilage

FIGURE 6.7 – Création du maillage de la tôle en formalisme lagrangien. Le maillage est choisi plus dense au
niveau des plis. La position de ces zones de raffinement est déduite de la géométrie du dernier profil de la
fleur de profilage. Dans le sens longitudinal et dans l’épaisseur, le maillage est uniforme.

La figure 6.7 montre une autre vue du maillage de la figure 6.6 qui permet de s’intéres-
ser au maillage de la tôle. Dans la direction longitudinale, le maillage est choisi uniforme
(taille de maille constante Le

x). Il est en effet difficilement imaginable de raffiner certaines
zones de la tôle selon cette direction puisque la totalité des nœuds des surfaces supérieure
et inférieure entrera en contact avec les galets à un moment ou à une autre au cours de la si-
mulation. Un maillage longitudinal trop grossier entraînerait inévitablement des problèmes
de contact. On pourrait cependant choisir de raffiner le maillage autour de la section de
mesures. En pratique, d’après nos essais, ce n’est pas une bonne idée : les variations trop
abruptes de la taille des mailles peuvent entraîner de fortes variations longitudinales dans
les champs observés. Par contre, on peut utiliser une ou deux couches d’éléments très courts
aux extrémités amont et aval de la tôle. Cette discrétisation plus fine peut faciliter les prises
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et les pertes de contact avec les outils. Dans ce cas, leur utilité est donc purement numé-
rique.

Selon l’épaisseur, on utilise ny éléments de tailles identiques. Actuellement, le maillage
d’une section particulière est de type transfini et donc uniforme et régulier. Une amélio-
ration simple du modèle serait d’utiliser un maillage non structuré dans chaque section.
Le nombre de mailles dans l’épaisseur serait alors variable (un nombre important dans les
zones de plis et plus faible ailleurs).

Selon la largeur (ou la demi-largeur sur la figure 6.7), le maillage est raffiné en fonction
de la position des zones de plis. Les positions respectives de celles-ci sont déterminées
à l’aide de la forme de la section à la dernière passe. Cette forme, dont la description
géométrique précise est contenue dans la fleur de profilage du procédé, correspond à la
section finale du profilé au retour élastique près. Les coordonnées curvilignes du début et
de la fin de chaque arc sur ce dernier profil sont reportées sur la largeur de la tôle. À ce
niveau, une hypothèse doit être faite sur la distribution des allongements transverses. En
effet, la largeur de la tôle peut augmenter au cours des passes lors des différents pliages,
si bien que la section finale est généralement plus large que la section rectiligne initiale.
Actuellement et à défaut de mieux (la méthode semi-analytique utilisée par COPRA n’est
pas documentée), nous considérons, lors de l’établissement du modèle, que l’allongement
se répartit uniformément sur la largeur du profil. Nous verrons les conséquences de cette
hypothèse sur un cas concret à la section 6.5.2. Pour compenser les éventuelles erreurs qui
en découlent, la taille de chaque zone raffinée, qui est initialement proportionnelle à la
taille de l’arc correspondant, est agrandie par un facteur α > 1 donné. Le maillage dans la
largeur est donc défini par une longueur de maille Le

x hors des zones de raffinement et un
nombre de mailles unique nx dans chaque zone, indépendamment de leur largeur.

1

2

3

lCOPRA l lMetafor COPRA>

FIGURE 6.8 – Profilage d’un élément de rack (deuxième tête). À gauche, les outils tels que conçus par l’industriel
avec COPRA. À droite, les outils modifiés pour faciliter la simulation numérique : (1) galet élargi, (2) et
(3) fusion de galets et suppression des faibles congés de raccordement.

La géométrie des têtes de profilage, qui deviennent dans le modèle des matrices de
contact rigides, est importée automatiquement à partir de COPRA. La tête de profilage i−1
et i sont distantes d’une longueur Di appelée distance intertête. Généralement tous les Di

sont identiques, mais ce n’est pas toujours le cas.
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1 2

3 4

FIGURE 6.9 – Profilage d’un composant d’un élément de rack (septième et dernière tête). À gauche, les outils tels
que conçus par l’industriel avec COPRA. À droite, les outils modifiés pour faciliter la simulation numérique :
(1) galet élargi, (2) et (3) agrandissement de congés de raccordement de trop faibles rayons, (4) création
d’un congé manquant.

L’outillage de chaque passe est composé d’une série d’axes de rotation et des galets
associés qui ont été dessinés autour de la fleur de profilage créée dans une étape antérieure.
Cette géométrie d’outils, conçue par un industriel dans le but de produire des plans précis de
galets, n’est généralement pas adaptée telle quelle à la simulation numérique. La figure 6.8
montre la deuxième tête de profilage de l’exemple précédemment utilisé pour décrire le
maillage (figures 6.6 et 6.7). À gauche, les outils sont importés tels qu’ils ont été définis
dans le programme COPRA. La passe est composée de deux axes et chacun possède trois
galets distincts. Pour éviter les difficultés numériques, il est important d’élargir les galets
externes (zone (1) sur la figure). En effet, des problèmes de convergence peuvent apparaître
si l’extrémité du maillage de la tôle entre en contact avec le bord vif du galet au cours du
calcul. Pour évaluer cette largeur supplémentaire, il faut prendre en compte la largeur du
profil à la sortie de la tête précédente.

Dans le cas de cette tête, il est également intéressant de fusionner tous les galets supé-
rieurs et tous les galets inférieurs pour obtenir finalement deux matrices de contact au lieu
de six. Industriellement, cette découpe en plusieurs galets est justifiée par une réduction
des coûts de production des outils. Numériquement, elle provoque, d’une part, une mul-
tiplication du nombre de matrices de contact à gérer et, d’autre part, l’apparition de très
petits congés de raccordement (rayons de 1 à 2 mm) qui pénalisent fortement la détec-
tion et la résolution des contacts. En effet, le calcul de la normale à la surface de contact
devient délicat lorsqu’un nœud de contact pénètre fortement dans les outils au niveau de
ces faibles rayons. Bien entendu, on se limite ici à des modifications géométriques qui ne
servent qu’à faciliter le traitement numérique des outils et qui n’influenceront donc pas les
résultats fournis par le modèle.

La figure 6.9 montre la dernière passe du même procédé. Les outils sont cette fois plus
complexes. On remarque l’apparition de deux outils latéraux montés sur des axes verti-
caux. Les modifications consistent également à élargir des galets ou modifier des congés de
raccordement pour faciliter la gestion du contact.
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6.2.2 Déroulement de la simulation lagrangienne

Une fois la géométrie du modèle entièrement décrite, il est nécessaire de définir une
succession de phases de calcul qui correspondent aux différents changements de conditions
aux limites nécessaires pour engager la tôle dans la profileuse, la profiler et la récupérer à
la sortie. Ce déroulement relativement complexe de la simulation est dû en grande partie
à la volonté de faire avancer la tôle dans la profileuse par la seule action du frottement,
comme c’est le cas dans la réalité. En effet, bien souvent (voir Bui et Ponthot [45], Heislitz
et al. [107] par exemple), la modélisation de l’avancement de la tôle est effectuée par des
déplacements imposés sur les nœuds du milieu du profil, ou sur le plan de symétrie quand
le profil est symétrique. Cette manière de faire modifie inévitablement le déplacement de
la tôle dans la machine. Certains résultats du modèle, comme la mesure de l’allongement
longitudinal, ne sont alors plus représentatifs de la réalité.

La simulation lagrangienne est découpée en cinq phases distinctes schématisées sur la
figure 6.10. Nous pensons qu’il est intéressant de détailler celles-ci, car nous verrons que le
modèle ALE permettra de simplifier considérablement le déroulement de la simulation et
le choix des conditions aux limites.

Dans la configuration initiale (t = t0), la tôle maillée est placée devant la profileuse de
telle manière que son extrémité aval soit distante d’une longueur D1 de la première tête
(cette distance est généralement comparable aux distances intertêtes Di). Si on modélise
une ligne continue, la longueur de la tôle est choisie suffisamment grande pour être engagée
au minimum dans trois têtes (L > 3D si D est constant) lorsqu’elle sera dans la machine.
Son extrémité amont est complètement encastrée. D’éventuelles déformations en flexion
sont évitées par la fixation d’un nœud milieu sur l’extrémité aval. Pendant la première
phase du calcul (t ∈ [t0, t1]), le mouvement de la tôle est piloté par des déplacements
imposés jusqu’à ce que son extrémité aval soit à la verticale des axes de la première tête en
t = t1. Pendant cette première phase, elle entre donc en contact avec les plus grands galets
de la première tête.

Dans le cas symétrique, seule une demi-largeur est maillée et des conditions aux limites
de symétrie (fixations selon x) sont appliquées sur le bord du maillage représentant le
milieu de la tôle. Ces fixations sont maintenues tout au long de la simulation.

Pour la deuxième phase (t ∈ [t1, t2]), la fixation aval est lâchée. La tôle continue à être
poussée par la fixation amont. L’engagement de la tôle dans la première tête est facilité par
la rotation des galets et le frottement entre ceux-ci et la tôle.

La troisième phase (t ∈ [t2, t3]) débute lorsque l’extrémité amont de la tôle a parcouru
une distance égale à la longueur L de la tôle. À ce moment, toutes les fixations sont relâ-
chées et l’avancement de la tôle n’est dû qu’à l’effet du frottement entre elle et les différents
galets. Cette phase se termine lorsqu’il est nécessaire de récupérer le profilé en sortie, c’est-
à-dire, plus précisément, lorsque l’extrémité amont atteint l’avant-dernière tête. Au-delà de
celle-ci, la tôle n’est plus engagée que dans la dernière tête et risque de subir un mouvement
de rotation indésirable autour de celle-ci.
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FIGURE 6.10 – Déroulement du calcul lagrangien. La simulation est découpée en cinq phases. Chaque phase
correspond à un ensemble de fixations (appuis à rouleaux noirs) et des déplacements imposés (appuis à
rouleaux rouges) qui contraignent le mouvement de la tôle. La transition d’une phase à la phase suivante
est effectuée lorsqu’une extrémité de la tôle franchit une distance prédéfinie.
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C’est pour cette raison que la phase suivante (t ∈ [t3, t4]) débute en imposant des
fixations sur l’extrémité aval de la tôle. Le mouvement vertical est supprimé en fixant les
deux coins selon y. Une fixation selon x d’un nœud au milieu de la section empêche les
mouvements latéraux.

La dernière phase (t ∈ [t4, t5]) commence lorsque l’extrémité amont de la tôle franchit
la dernière tête de profilage. La tôle est entièrement profilée, mais elle peut être toujours
partiellement en contact avec la dernière tête et doit être dégagée de celle-ci. De nouvelles
fixations similaires aux fixations aval sont appliquées à l’extrémité amont et la tôle est
déplacée d’une distance suffisante pour garantir qu’elle n’est plus en contact avec les galets.
Le calcul se termine à cet instant.

? ?

??

? ?

axe inférieur

axe supérieur

axe latéral
droit

axe latéral
gauche

tête #7

FIGURE 6.11 – Calcul de la vitesse de rotation angulaire des galets pour obtenir une vitesse d’avancement v
constante de la tôle dans la profileuse et pour pouvoir ainsi déterminer a priori la durée des phases de la
simulation. La vitesse angulaire de chaque série de galets autour d’un axe dépend du choix d’un rayon qui
est difficile à définir de manière univoque. En rouge, les choix possibles ; en vert, les rayons choisis.

Du début à la fin de la simulation, les galets sont en rotation. La vitesse angulaire de
chaque outil n’est généralement pas donnée et elle doit être déduite de la vitesse globale
d’avancement de la tôle v, que l’on suppose constante au cours du processus. On calcule
donc, pour chaque axe, une vitesse de rotation θ̇i = v/Ri où le rayon Ri est la « distance »
de la tôle à l’axe. Si la valeur de ce rayon est évidente dans le cas de profils simples (profils
en U par exemple), elle peut devenir relativement difficile à définir si le profil est plus com-
plexe. La figure 6.11 montre à nouveau la dernière tête de la ligne de profilage qui nous
sert d’exemple. Les contacts entre la tôle et les galets se situent à des distances très variées
des axes de rotation. Définir un rayon unique pour chaque ensemble de galets tournant
autour d’un même axe a peu de sens. Néanmoins, il est nécessaire de prescrire une vitesse
de rotation de chaque outil qui permette de transporter la tôle à travers la profileuse à une
vitesse constante v. Finalement, on choisit les rayons indiqués en vert sur la figure 6.11,
c’est-à-dire la distance qui sépare le milieu du profil et l’axe des galets supérieurs ou infé-
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rieurs. Pour les galets latéraux, le choix d’un rayon est trop subjectif et nous considérons
donc que ceux-ci ne tournent pas et que leur contact est sans frottement (ce qui correspond
à modéliser grossièrement une rotation libre sur leur axe).

Cette ambiguïté sur la définition des vitesses de rotation des outils n’est pas un problème
anodin : les phases de la simulation lagrangienne ont été présentées en termes de dépla-
cements de la tôle. Pour des raisons pratiques, ces conditions sur les déplacements doivent
être traduites en instants précis (t1, t2, etc.). Metafor, comme la plupart des codes éléments
finis similaires, n’est en effet pas capable, à l’heure actuelle, de poursuivre une phase de
calcul jusqu’à ce qu’une condition donnée soit vérifiée (exemple : « la tôle est arrivée à la
verticale de tel axe »). La durée de chaque phase doit donc être précalculée. Pour ce faire,
il est nécessaire que la vitesse d’avancement de la tôle, qui dépend en grande partie de la
rotation des galets et du frottement à leur contact, soit maintenue constante. Par exemple,
la dernière phase de calcul débute lorsque l’extrémité amont arrive à la dernière tête. Si le
frottement n’est pas suffisant ou si la vitesse de rotation est mal imposée, la tôle ne sera pas
arrivée à l’endroit prévu à l’instant précalculé et l’imposition du nouveau jeu de fixations
de la phase suivante provoquera éventuellement l’arrêt prématuré du calcul. Ce type de
problème est décrit sur un exemple concret à la section 6.5.1.

6.2.3 Autres paramètres

Le schéma d’intégration temporelle utilisé est le schéma dynamique implicite de Chung-
Hulbert avec les paramètres par défaut indiqués à la section 4.3.2. Sauf mention contraire,
on utilise des éléments EAS (Enhanced Assumed Strain – voir section 4.3.3) qui permettent
de représenter correctement la flexion de la tôle avec un nombre réduit d’éléments sur
l’épaisseur. Les outils sont supposés parfaitement rigides. Le contact et le frottement sont
traités par pénalisation. La loi de Coulomb permet de résumer l’ensemble des effets fric-
tionnels par un coefficient de frottement unique µ.
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6.3 Modèle ALE

Cette section décrit la version ALE du modèle de profilage. Comme son homologue
lagrangien, le modèle ALE permet de simuler de nombreux types de lignes de profilage
grâce à une définition préalable de la fleur de profilage et des outils avec le logiciel COPRA.
Néanmoins, le procédé est abordé ici dans sa version continue : le maillage, qui reste fixe
dans la direction de profilage, traverse la totalité de la profileuse et s’étend donc sur une
distance beaucoup plus grande que dans le cas lagrangien. Paradoxalement, le nombre total
d’éléments finis utilisés sera en général plus faible qu’en formalisme lagrangien, car il est
cette fois permis de faire varier la densité des mailles le long de la machine.

6.3.1 Déroulement de la simulation

Le premier avantage du modèle ALE est la simplicité du déroulement de la simulation.
Contrairement au cas lagrangien qui nécessite de décomposer la simulation en plusieurs
phases de calcul pour adapter les conditions aux limites appliquées sur la tôle, le modèle
ALE ne requiert qu’une seule phase durant laquelle les fixations restent constamment ac-
tives.

x
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z

LavalLamont

frontière
eulérienne aval

frontière
eulérienne amont

direction de
profilageA

M
O
N
T
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V
A
Lv v
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retour élastique

FIGURE 6.12 – Simulation du profilage en formalisme ALE. Le maillage est délimité par deux frontières eulé-
riennes en amont et en aval de la profileuse. Les conditions aux limites restent identiques tout au long du
calcul.

Le domaine de calcul est délimité par deux frontières eulériennes en amont et en aval
de la profileuse, comme le montre schématiquement la figure 6.12. Ces plans frontière
en amont et en aval sont distants respectivement de Lamont de la première tête et Laval de
la dernière tête. Ces deux distances sont choisies suffisamment grandes, d’une part, pour
éloigner les conditions aux limites des outils (schématisées par des appuis a rouleaux sur
la figure) et, d’autre part, pour observer un retour élastique en aval de la machine qui
correspond à celui qui serait observé si la tôle était désengagée de la profileuse.

La simulation démarre en t = t0 avec la configuration initiale représentée sur la fi-
gure 6.12. L’avancement de la tôle peut être imposé soit par la rotation des galets et le
frottement qui en résulte, soit par des déplacements appropriés aux extrémités amont et
aval de la tôle (en rouge sur la figure), soit par l’action simultanée du frottement et des
déplacements aux extrémités. Grâce à ces conditions aux limites, la vitesse de la tôle peut
être contrôlée de manière beaucoup plus fiable que dans le cas lagrangien. Une vitesse de
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rotation des galets mal évaluée (voir figure 6.11) influencera, bien sûr, les résultats finaux
obtenus, mais ne provoquera jamais l’arrêt prématuré du calcul.

La simulation est arrêtée lorsque l’état stationnaire est atteint. En pratique, nous n’avons
pas mis au point un critère automatique d’arrêt qui s’avérerait certainement difficile à for-
muler mathématiquement (la solution peut légèrement osciller dans le temps comme étu-
dié dans le cas du laminage – voir section 5.4.3.3) et coûteux à évaluer à chaque incrément
temporel. Intuitivement, le temps minimum de simulation correspond à un déplacement
convectif de

∑

i Di + Laval, c’est-à-dire la distance qui sépare la première tête de l’extrémité
aval du maillage. Il faut en effet que le résultat de cette première flexion puisse être mesuré
en sortie de profileuse. En pratique, il semble que l’état stationnaire soit toujours atteint
après un déplacement de l’ordre de 1.1 à 1.5 fois cette longueur. Nous notons ce facteur λ.
On calcule donc le temps final de la simulation par tfin = λ (

∑

i Di + Laval)/v.

6.3.2 Maillage initial

La principale difficulté dans l’élaboration du modèle ALE de profilage est de trouver une
configuration initiale du maillage, compatible avec la position des outils, pour laquelle la
tôle est déjà engagée dans la profileuse. Cette configuration peut être obtenue en « interpo-
lant » judicieusement les profils de la fleur de profilage.
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FIGURE 6.13 – Création du maillage 2D d’une section particulière autour d’un profil linéique choisi dans la
fleur de profilage de la ligne modélisée.

La procédure est assez simple et complètement automatisée. Les profils de la fleur de
profilage sont tout d’abord placés le long de la profileuse, à hauteur des passes correspon-
dantes. Ils sont donc espacés les uns des autres d’une distance Di, la distance intertête,
éventuellement variable d’une tête à l’autre. On considère alors le dernier profil à partir
duquel on veut obtenir une section maillée. Ce profil correspond à la forme finale du profilé
au retour élastique près. La création du maillage bidimensionnel de la section est décrite
sur la figure 6.13. Le profil est représenté par une courbe qui ne possède pas d’épaisseur (fi-
gure 6.13 (a)). Sur cette courbe, on identifie les zones de pliage qui nécessitent un maillage
plus fin que le reste de la section. Le maillage de la courbe est effectué selon la méthode
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utilisée en formalisme lagrangien. Les plis sont légèrement agrandis à l’aide d’un facteur
α > 1. Ils sont ensuite maillés avec nx mailles quelle que soit leur longueur. Le reste du
profil est maillé avec des éléments de longueur Le

x . La section est ensuite « épaissie » en
déplaçant les nœuds du maillage unidimensionnel précédent d’une distance ±e/2 selon
une direction orthogonale de part et d’autre de la ligne du profil (figure 6.13 (b)). On ob-
tient ainsi deux lignes de nœuds décrivant la surface supérieure et inférieure de la tôle au
niveau de la dernière tête de profilage. Le maillage 2D de la section est enfin généré par
interpolation transfinie (figure 6.13 (c)) en utilisant ny mailles sur l’épaisseur (ny n’est pas
forcément un nombre pair).

Le maillage des autres sections de la fleur de profilage suit la même méthode à l’excep-
tion de la première étape : le maillage linéique du profil est déduit du maillage du profil de
la dernière passe, indépendamment cette fois de la position des plis sur ces profils intermé-
diaires. Ceci est nécessaire pour garantir un même nombre total de mailles sur la largeur
de la tôle tout au long de celle-ci.

ui -1

ui

passe i -1

passe i

Di

direction
de profilage

spline

xz

y

FIGURE 6.14 – Création d’un volume à topologie hexaédrique dans chaque espace intertête (cas d’un profil
symétrique). Les deux sections successives sont reliées par des segments de splines cubiques de McConalogue.
Les tangentes sont unitaires et alignées sur la direction de profilage.

Une fois toutes les sections maillées, les quatre coins des sections successives précé-
demment construites sont reliés entre eux par quatre splines cubiques de McConalogue
(équation (3.1)). Les tangentes au niveau des passes sont choisies unitaires pour obtenir
une paramétrisation quasi intrinsèque des courbes (voir section 3.3.2) et alignées sur la
direction de profilage (u i = (0, 0,−1)). La figure 6.14 montre le volume à topologie hexa-
édrique ainsi créé dans l’espace inter-tête Di d’une opération de profilage quelconque.

Chaque segment de spline est maillé avec une densité de mailles variable. C’est ce mail-
lage variable selon z qui permettra de réduire considérablement le nombre total de mailles
du modèle ALE par rapport à son homologue lagrangien. La figure 6.15 décrit la manière
dont un espace intertête arbitrairement choisi est découpé en zones de maillage selon la
direction de profilage. Les longueurs des zones de raffinement correspondent à deux va-
leurs de rayons Ri

1 et Ri
2 qui sont déduites de la géométrie des outils (rayon maximum et

minimum des galets composant la tête i) ou spécifiées explicitement par l’utilisateur. Au
niveau du petit rayon Ri

2, on utilise un maillage généralement très fin (longueur des mailles
l e
z2) pour décrire correctement les fortes variations de courbure dans cette région. Au delà

du rayon Ri
2 et jusqu’au rayon Ri

1 > Ri
2 sont associées des mailles un peu plus longues

(longueur des mailles l e
z1), justifiées par une variation de courbure moindre, mais dont la

longueur permet tout de même une bonne prise en compte des contacts avec les galets en
entrée et en sortie de passe. Le reste de la longueur du segment de spline est situé suffisam-
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FIGURE 6.15 – Définition de la densité variable du maillage selon la direction de profilage. Les zones de
maillage sont définies en fonction de deux rayons d’outils qui sont soit calculés automatiquement, soit
spécifiés explicitement.
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FIGURE 6.16 – Maillage ALE de la tôle à partir de la fleur de profilage. Les sections successives sont maillées
puis interpolées par des splines cubiques dans chaque espace intertête.
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ment loin des galets et peut être maillé avec des éléments encore plus long (longueur des
mailles Le

z)

La longueurs de tôle supplémentaire en aval de la profileuse est construite simplement
en dupliquant le dernier profil de la fleur à une distance Laval au delà de la dernière passe.

Lorsque toutes les arêtes du volume représentant les bords de la tôle dans un espace
intertête sont maillées, les maillages surfaciques et volumiques restants sont générés par la
méthode d’interpolation transfinie. La figure 6.16 montre le résultat obtenu sur l’exemple
de l’élément de rack utilisé pour la description du modèle lagrangien. Il est très important
d’être conscient que ce maillage n’est que le maillage initial du modèle ALE. Sa forme
particulière n’est qu’un moyen parmi d’autres pour démarrer le calcul. La géométrie finale
et les résultats stationnaires doivent être bien sûr indépendants de ce maillage initial. Nous
vérifierons cette affirmation à la section 6.4.5 dans le cas d’un profil en U.

Sur cette figure, on remarque également très bien la variation de la taille des mailles
selon la direction longitudinale z. En formalisme ALE, contrairement au cas lagrangien,
seules les zones de contact où la tôle subit des flexions complexes nécessitent des petites
mailles.

6.3.3 Gestion du maillage

La gestion du mouvement du maillage est similaire à celle utilisée pour le problème
de planage (section 5.5). La section de l’extrémité amont du maillage est repositionnée
par des fixations permettant de conserver l’horizontalité de la tôle à cet endroit (voir sec-
tion 5.5.2.5). Puisqu’il n’y a pas de traction sur cette section, cette horizontalité est moins
problématique que dans le cas du planage et les fixations verticales pourraient être sup-
primées sans détériorer les résultats. Les nœuds de la section aval sont repositionnés en
calculant l’intersection du maillage et de la frontière eulérienne aval (section 3.5.3). Les
nœuds de la section amont sont eulériens. Ensuite, les arêtes des bords latéraux sont re-
maillées à l’aide de la méthode des splines (section 3.3.2). Puisque l’épaisseur de la tôle est
faible, les surfaces des bords latéraux de la tôle, tout comme celle du bord situé sur le plan
de symétrie lorsque le problème est symétrique, sont remaillées par interpolation transfinie
sans tenir compte de leur éventuelle courbure.

Le point critique de ce modèle ALE est sans conteste le repositionnement des nœuds
sur les surfaces supérieure et inférieure de la tôle. En effet, dans ce cas précis, il n’est
malheureusement pas possible d’utiliser la méthode d’interpolation transfinie qui aurait
été une solution directe très rapide. La courbure de ces deux surfaces est suffisamment
complexe pour que les maillages générées par interpolation transfinie à partir des lignes de
leurs contours soient très différents des surfaces dans leur configuration lagrangienne (on
est dans un cas similaire à celui décrit sur la figure 3.63, page 82). Il est donc nécessaire
d’utiliser une méthode de repositionnement itérative. Comme nous l’avons montré à la
section 3.4.11, la meilleure méthode à notre disposition, dans le cas d’un maillage structuré
localement raffiné, est le lissage laplacien pondéré (section 3.4.3), couplé à une projection
sur une approximation spline de la surface lagrangienne (section 3.5.2). Ce lissage itératif,
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qui a été spécialement développé pour cette application de profilage, est initialisé avec les
positions des nœuds dans leur configuration du début du pas de temps et ne nécessite
donc qu’un très petit nombre d’itérations (une seule itération, par défaut), car, pour un
observateur immobile par rapport à la ligne de profilage, la forme de la tôle ne varie pas
beaucoup d’un pas de temps au suivant, même durant la phase transitoire.

6.3.4 Autres paramètres du modèle ALE

Les paramètres concernant le contact avec les outils sont identiques pour les modèles
ALE et lagrangien. Seul le nombre d’éléments de contact change. En effet, si, en formalisme
lagrangien, tous les nœuds d’une face de la tôle sont susceptibles d’entrer en contact avec
un galet donné, en formalisme ALE, par contre, le nombre de nœuds à tester peut être
significativement réduit. Seuls les nœuds dont la distance est inférieure à Ri

1 (défini sur
la figure 6.15) de la position de la tête i donnent lieu à des éléments de contact liés à
cette tête. Déjà dans le cas de quelques têtes de profilage, on peut diviser facilement le
nombre d’éléments de contact nécessaires par un facteur 10, tout en conservant un maillage
identique au modèle lagrangien.

Pour la convection des grandeurs aux points de Gauss, nous choisissons par défaut le
schéma le plus précis, c’est-à-dire celui basé sur une reconstruction linéaire du champ in-
connu. L’étude du planage (section 5.5.3.3) nous a appris que le transport sur de longues
distances de grandeurs telles que l’allongement longitudinal, qui est également important
pour le procédé de profilage, nécessite impérativement ce type de schéma bien qu’il soit
beaucoup plus coûteux que le schéma de Godunov. Ce point sera une seconde fois vérifié à
la section 6.4.4.

Puisque les effets d’inertie ne sont pas dominants dans ce procédé, les vitesses et les
accélérations nodales ne sont pas transférées du maillage lagrangien vers le maillage eu-
lérien. Ceci permet d’économiser la convection de six scalaires, d’éviter la création et le
stockage d’un maillage auxiliaire et d’améliorer significativement la vitesse de convergence
du processus de Newton-Raphson à chaque pas de temps, comme nous l’avons montré dans
le cas du laminage stationnaire (section 5.4.3.2).

Les éléments finis utilisés sont de type EAS, comme en formalisme lagrangien. Nous
décidons de ne pas transférer le tenseur σ̃ pour alléger les calculs (section 4.3.3). Nous
vérifierons a posteriori que son transfert n’est pas nécessaire pour retrouver les résultats
lagrangiens. Par contre, la convection du tenseur non symétrique F est requise pour pouvoir
calculer les déformations sur la configuration finale.

Pour éviter les oscillations temporelles dans les résultats ALE qui, idéalement, doivent
rester identiques d’un incrément temporel au suivant lorsque le régime stationnaire est
atteint, la taille du pas de temps∆t est limitée de telle sorte que la tôle avance au maximum
d’une distance équivalant à la plus petite longueur de maille (l e

z2). Le nombre CFL maximum
Cmax est fixé à 0.8 (c’est la valeur par défaut de notre implémentation). On a ainsi, en
moyenne, un nombre CFL C = 2 (le maillage avance d’une maille et donc de 2 cellules
de convection) et donc trois (2/0.8 arrondit à l’entier supérieur) sous-pas de convection
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par pas de temps. Aucune optimisation, qui serait pourtant utile, n’a été faite à ce niveau.
Nous verrons néanmoins que, pour des raisons d’archivage sur disque, le pas de temps n’est
pas tout à fait maintenu constant et des oscillations peuvent apparaître dans les résultats
(figure 6.45, page 324).

Enfin, contrairement au modèle lagrangien pour lequel l’évolution d’une section à mi-
longueur doit être continuellement observée au cours du calcul pour retracer le comporte-
ment de la tôle le long de la ligne de profilage, le modèle ALE fournit immédiatement cette
information à partir de la configuration finale stationnaire du maillage. Les résultats ALE
sont donc une image de l’évolution spatiale de la solution sur cette dernière configuration
alors que les résultats lagrangiens correspondent plutôt à une évolution temporelle de la
solution.

6.4 Profilage d’un U

La première application des modèles de profilage ALE et lagrangien concerne la mise
à forme d’un profil en U symétrique. Ce profil, relativement simple du point de vue géo-
métrique par rapport aux formes complexes que l’on peut rencontrer sur des lignes de
production industrielles, permet de valider le modèle ALE en comparant ses résultats avec,
d’une part, ceux obtenus avec le modèle lagrangien et, d’autre part, avec des résultats ex-
périmentaux provenant d’un projet de recherches en partenariat avec ArcelorMittal (Bui et
Ponthot [41]).

FIGURE 6.17 – Vue générale de la
profileuse pilote d’ArcelorMittal
(Montataire, France).

FIGURE 6.18 – Profil à la sortie de la dernière tête. La tôle a été
tramée pour faciliter les mesures de forme.

La figure 6.17 montre une vue globale de la ligne expérimentale d’ArcelorMittal lors
d’un essai à Montataire (France). Cette profileuse possède six têtes. Elle est dédiée à l’étude
de profilés en forme de U. La figure 6.18 est un aperçu d’une tôle à la sortie de la dernière
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tête. Le retour élastique est clairement visible. Ce phénomène, mesuré par l’écart entre
l’angle formé par les ailes du U avec la base du profil et un angle droit, est un résultat
important que les modèles numériques doivent pouvoir prédire avec précision.

6.4.1 Paramètres du procédé

La ligne de profilage étudiée comporte six têtes (15o, 32o, 50o, 68o, 80o et 90o – voir
figure 6.20) permettant de profiler une tôle initialement plane (longueur L = 2000 mm,
largeur l = 200 mm, épaisseur e = 1.6 mm) pour obtenir, en sortie, un profil symétrique
en U de 102 mm de large et dont les deux rayons de pliage valent 6 mm. La fleur de
profilage, conçue grâce au logiciel COPRA, est représentée sur la figure 6.19. Le procédé
est symétrique et permet donc de ne modéliser qu’une demi-largeur de tôle.

R6 R6

102

50

l = 200

e = 1.6

base

aile
droite

aile
gauche

0°

15°

32°

50°
68°

80°90°x
y

FIGURE 6.19 – Fleur de profilage du U symétrique (rayon de pliage 6 mm). Toutes les dimensions sont en
millimètres. Le forme idéale du profil, correspondant à la dernière passe, est tracée en rouge.

Les dimensions des galets qui composent les différentes passes sont donnés sur la fi-
gure 6.20. La distance intertête est constante et vaut Di = D = 500 mm. La vitesse du
procédé est fixée à v = 0.2 m/s.

Le matériau est un acier à haute résistance de type DP1000. L’identification de son com-
portement a fait l’objet d’une étude poussée par Flores et Habraken [71, 72] décrivant
notamment un écrouissage cinématique complexe. Pour ce modèle numérique de profi-
lage, nous nous limitons à un comportement isotrope (critère de plasticité de Von-Mises)
et une loi d’écrouissage isotrope simplifiée. D’après Bui et al. [41, 44], ce comportement
est amplement suffisant pour décrire correctement le procédé. L’écrouissage du DP1000
est représenté sur la figure 6.21. Il est exprimé sous la forme d’une loi de type Swift :
σY = 1626 (0.00487+ ǭp)

0.17. Le comportement élastique est décrit par les valeurs tradi-
tionnelles pour les aciers (module d’Young E = 210 GPa, coefficient de Poisson ν = 0.29).
La masse volumique du matériau vaut ρ = 7895 kg/m3.

Les valeurs des différents paramètres concernant les maillages ALE et lagrangien sont
rassemblées dans le tableau 6.1. À défaut de mieux, une modélisation sommaire du frot-
tement se fait à l’aide d’un coefficient de frottement de Coulomb unique pour tous les
contacts (µ = 0.2). Les pénalités normales et tangentielles intervenant dans l’algorithme
contact sont choisies respectivement égales à pN = 1 GPa/mm et pT = 200 MPa/mm.

Pour faire avancer la tôle en formalisme ALE, on choisit de combiner des déplacements
imposés en amont et en aval de la profileuse à l’action du frottement. Ces conditions aux
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FIGURE 6.20 – Description schématique des galets de profilage. Profilage d’un U symétrique en 6 passes.
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FIGURE 6.21 – Loi de comportement du DP1000. Test en traction simple et loi d’écrouissage du modèle.
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ALE Lag
Nombre de mailles dans l’épaisseur (ny) 2 2
Nombre de mailles dans chaque pli (nx) 5 8
Taille des mailles selon la direction de profilage (Le

z) [mm] 20 5
Taille des mailles selon la direction transverse (Le

x) [mm] 8 6
Facteur d’agrandissement des zones de pli (α) 1.5 1.5
Longueur supplémentaire amont (Lamont) [mm] 500 –
Longueur supplémentaire aval (Laval) [mm] 700 –
Taille de maille a proximité des galets (l e

z1 = l e
z2) [mm] 4 (5)

TABLEAU 6.1 – Paramètres des maillages ALE et lagrangien (U symétrique rayon 6 mm).

limites facilitent la convergence du calcul ALE et n’influencent pas les résultats finaux ob-
tenus en régime stationnaire. Pour obtenir l’état stationnaire, le calcul est effectué avec
λ = 1.5, c’est-à-dire que le déplacement convectif total vaut 1.5 fois la distance qui sépare
la première passe de l’extrémité aval du maillage. Ce paramètre n’a pas été optimisé.

6.4.2 Comparaison du déroulement des deux simulations

Nous comparons tout d’abord de manière globale le déroulement des deux simulations.
Les résultats seront analysés plus finement par la suite. La figure 6.22 montre une vue
globale du calcul lagrangien. La tôle, longue de deux mètres, passe entièrement dans la
profileuse. Une section particulière, située à mi-longueur pour éviter les effets de bords, fait
l’objet de mesures en continu pendant la simulation.

La figure 6.23 montre quatre instants du calcul en formalisme ALE. Contrairement au
modèle lagrangien où la tôle doit s’engager successivement dans toutes les têtes de profilage
et où elle subit donc inévitablement une succession de chocs contre les galets, la simulation
ALE est beaucoup moins « spectaculaire » et s’effectue de manière plus douce sans aucune
modification apparente des zones de contact. Il serait d’ailleurs difficile de distinguer ces
quatre configurations entre elles à partir d’un point de vue aussi distant que celui choisi sur
cette figure si le champ des déformations plastiques équivalentes n’était pas affiché.

La tôle est initialement engagée dans la profileuse, mais sa limite d’élasticité est spa-
tialement uniforme et identique à celle du matériau vierge qui constitue la tôle plane du
modèle lagrangien à l’instant initial. Lorsque la simulation démarre et bien que le maillage
soit fixe selon la direction longitudinale, la matière avance dans la profileuse et commence
à subir de légères flexions plastiques au niveau de chaque tête pour se conformer à la géo-
métrie des galets. Ces déformations plastiques, localisées uniquement dans les « zones de
plis » si le procédé a été correctement mis au point, se propagent longitudinalement à la
vitesse v d’avancement de la tôle, à travers le maillage grâce à l’algorithme de convection.
Lorsque le premier incrément de flexion atteint la passe suivante après un déplacement
convectif de la taille de la distance intertête D, la déformation plastique augmente à nou-
veau. Le régime stationnaire ne peut être atteint que lorsque la déformation plastique créée
dans les premiers instants du calcul en première tête s’est propagée jusqu’à l’extrémité aval
du maillage. Puisque nous utilisons un facteur λ = 1.5, cet instant précis correspond à la
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FIGURE 6.22 – Déroulement de la simulation lagrangienne. La section de mesures, mise en évidence en rouge
sur les quatre configurations choisies, est suffisamment éloignée des extrémités amont et aval de la tôle
pour représenter correctement le déroulement du procédé continu malgré la longueur limitée de la tôle.

troisième configuration représentée sur la figure 6.23 (t = 2/3 tfin). On remarque, en com-
parant les valeurs des déformations plastiques avec la dernière configuration (t = tfin), que
l’état stationnaire n’est pas encore atteint à ce moment. On poursuit donc le calcul jusqu’à
son terme. Les résultats le long de la profileuse sont extraits de cette dernière configura-
tion. En particulier, la forme de la section après retour élastique est mesurée sur une section
distante de D = 500 mm en aval de la dernière tête.

La figure 6.24 montre l’extrémité aval du maillage aux mêmes instants que la figure 6.23.
À l’instant initial, la section correspond au profil parfait dont les ailes forment un angle de
90o par rapport à la base du U. Au tiers de la simulation (t = tfin/3), l’écrouissage de la
tôle s’est partiellement propagé dans la zone observée sur la figure. Les bords de la tôle
sont légèrement ondulés. Ces oscillations géométriques se propagent également à la vitesse
v du procédé. On peut également constater que l’algorithme itératif de repositionnement
des nœuds joue correctement son rôle malgré l’unique itération utilisée à chaque pas de
temps : les lignes du maillage structuré restent bien perpendiculaires entre elles. La confi-
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FIGURE 6.23 – Déroulement de la simulation ALE. La solution stationnaire correspond à la dernière confi-
guration. Le retour élastique est mesuré (sur la section en rouge) à une distance suffisamment grande de
la dernière passe pour être représentatif de celui mesuré si la tôle était complètement désengagée de la
profileuse.

guration suivante (t = 2 tfin/3) correspond à un déplacement convectif de 5D+ Laval. Enfin,
la configuration finale correspond au régime stationnaire. Le profil s’est écarté légèrement
du profil en U parfait sous l’effet du retour élastique. Ce phénomène est mis en évidence
sur l’extrémité aval du maillage bien qu’il ne soit pas mesuré en pratique à cet endroit, mais
plutôt légèrement en amont (à 500 mm en aval de la dernière passe, c’est-à-dire 200 mm
en amont de l’extrémité) pour éviter l’influence des conditions aux limites.

Le tableau 6.2 compare les deux simulations. Bien que le modèle lagrangien soit plus
court (2 m contre 3.7 m), il possède beaucoup plus d’éléments finis puisque le maillage
peut être difficilement optimisé dans le sens de la longueur. La différence entre le nombre
d’éléments de contact nécessaires aux deux modèles est énorme (le modèle ALE en com-
porte près de 15 fois moins). La détection des contacts est donc grandement facilitée en
formalisme ALE. On constate également que le modèle lagrangien nécessite environ deux
fois plus de pas de temps que la simulation ALE alors que le déplacement (convectif dans le
cas de l’ALE) est plus ou moins identique (s5.5 m) dans les deux cas. Le modèle lagrangien
est pénalisé par le calcul des chocs successifs de la tôle sur les têtes de profilage. Ces chocs,
dont l’étude peut être intéressante dans un autre contexte, sont tout à fait indésirables
dans le cadre de l’étude du régime stationnaire, mais ils doivent malgré tout être correc-
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FIGURE 6.24 – Évolution du profil à l’extrémité aval du maillage ALE. Les instants choisis correspondent à
ceux représentés sur la figure 6.23. L’angle de l’aile du U par rapport à la verticale dû au retour élastique
est mis en évidence sur la dernière configuration.
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tement modélisés pour permettre un engagement correct de la tôle lagrangienne dans les
outils. Nous avons également vu à plusieurs reprises (cas du planage et du laminage) que
la convergence des modèles ALE quasi eulériens est facilitée lorsqu’on choisit de ne pas
convecter les vitesses et les accélérations nodales. Le modèle ALE de profilage bénéficie
également de cet effet.

Nb. éléments Nb. éléments Pas/itérations Temps CPU
volumiques de contact

Lagrangien 21320 133164 (1.00) 7640/23022 4j12h29’ (1.00)
ALE 12768 8400 (0.06) 3195/9242 1j17h43’ (0.38)

TABLEAU 6.2 – Comparaison des modèles ALE et lagrangien (U symétrique). Les temps CPU ont été mesurés
sur PC3 (tableau A.1).

En raison de tous ces facteurs, on obtient un temps de calcul du modèle ALE presque
trois fois inférieur à celui du modèle lagrangien traditionnel. Lorsqu’on prend en compte la
taille des deux modèles et les difficultés de convergence du modèle lagrangien, on pourrait
s’attendre intuitivement à un gain de temps de calcul encore supérieur. En fait, la partie
lagrangienne du calcul ALE ne représente que 33% du temps de calcul total de la simulation
ALE. Autrement dit, un calcul lagrangien similaire possédant le même nombre d’éléments
que le modèle ALE et nécessitant le même nombre d’itérations serait trois fois plus rapide
que le calcul ALE. Deux tiers du temps de calcul sont donc passés dans la deuxième phase du
calcul ALE. Le repositionnement des nœuds utilise la méthode basée sur une reconstruction
spline des surfaces de la tôle qui, malgré son unique itération, coûte tout de même 6%
du temps CPU total. Enfin, la majorité du temps de calcul est passée dans les routines
de convection (61%). Ceci résulte, d’une part, de l’utilisation du schéma du second ordre
utilisant une reconstruction linéaire et, d’autre part, de la nécessité de convecter les neuf
composantes du tenseur F pour pouvoir calculer les allongements.

Bien entendu, chaque modèle peut être encore optimisé : le modèle lagrangien peut
vraisemblablement être raccourci tout en restant représentatif de l’état stationnaire au ni-
veau de sa section à mi-longueur. Son maillage peut éventuellement être rendu plus gros-
sier. On pourrait aussi choisir de ne pas simuler le désengagement de la tôle lagrangienne
dans la profileuse, comme on le fait en formalisme ALE. Parallèlement, on peut certaine-
ment diminuer encore le nombre de mailles du modèle ALE en jouant sur leurs tailles et leur
distribution dans la direction longitudinale. De plus, la durée de la simulation ALE (para-
mètre λ) peut être réduite. Enfin, les paramètres de convection (nombre de sous-pas, taille
du pas de temps) peuvent être améliorés. Néanmoins, ces deux simulations démontrent
que le formalisme ALE peut conduire à un gain appréciable de temps de calcul, bien que,
comme nous le verrons dans le cas de profils plus complexes (section 6.5), ce ne soit pas le
principal avantage de ce type de modèle.
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6.4.3 Validation du modèle ALE

Après la description générale des deux simulations, cette section se concentre sur les
valeurs des résultats numériques des deux modèles. Nous comparons le modèle ALE au
modèle lagrangien et à des mesures expérimentales provenant d’essais effectués sur la
ligne pilote d’ArcelorMittal. On s’intéresse principalement à la trajectoire de la tôle dans
la profileuse et à sa forme finale après retour élastique.

FIGURE 6.25 – Bras de mesure 3D articulé fixé à
la ligne pilote. Ce dispositif permet de mesurer
à tout instant la position 3D (x, y, z) de son
extrémité.

FIGURE 6.26 – Mesure de la géométrie d’une section.
L’acquisition se fait manuellement sur une grille
préalablement tracée sur la surface supérieure de
la tôle.

La figure 6.25 montre le dispositif utilisé pour l’acquisition des mesures de trajectoire.
Il s’agit d’un bras articulé permettant des mesures manuelles de coordonnées 3D de points.
Pour déterminer la trajectoire de différents points, la surface supérieure de la tôle est re-
couverte d’une grille tracée au laser. L’essai de profilage est interrompu lorsque la tôle est
engagée dans les têtes 1, 2, 3 et 4. Plusieurs sections transverses et plusieurs lignes longitu-
dinales sont repérées sur la tôle et numérisées à l’aide du bras (figure 6.26). Le profilage est
alors redémarré jusqu’à ce que la tôle soit engagée dans les têtes 3, 4, 5 et 6 et les espaces
intertêtes restants font l’objet d’une nouvelle série de mesures. Un dernier redémarrage de
la ligne permet de terminer la mise à forme.

Une fois la tôle profilée, sa forme est mesurée après retour élastique à l’aide d’un dis-
positif de mesure 3D qui est largement plus précis que le précédent, mais qui aurait pu
difficilement être déployé autour de la ligne pilote où l’espace autour de la tôle est rendu
difficile d’accès par la présence des outils.

La première comparaison que nous effectuons concerne la forme de la tôle le long de la
ligne lors de l’opération de profilage. La figure 6.28 montre le profil de la tôle dans le sens
longitudinal en x = 0 mm, c’est-à-dire au milieu de la largeur, dans le plan de symétrie.
Pour chaque simulation, on a tracé deux lignes superposées qui correspondent aux surfaces
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FIGURE 6.27 – Échantillonnage de la surface interne du profilé par un système d’acquisition 3D de haute
précision.
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FIGURE 6.28 – Géométrie de la tôle le long de la ligne de profilage dans le plan de symétrie (x = 0 mm).
Pour chaque simulation on trace deux lignes qui représentent la surface supérieure et la face inférieure de
la tôle. On compare ensuite ces résultats avec les mesures expérimentales effectuées uniquement sur la face
supérieure de la tôle.

supérieure et inférieure de la tôle. Ces deux lignes sont distantes de 1.6 mm tout au long du
procédé. Cette distance correspond est l’épaisseur de la tôle. Les deux simulations donnent
des résultats très similaires si on écarte la zone d’entrée (située en −z < 0 mm). Dans
cette zone, la section lagrangienne est mesurée lorsque la tôle est toujours poussée dans la
profileuse par son extrémité amont. Pendant cette phase d’engagement, la tôle possède une
légère courbure dont l’importance dépend de la position de l’extrémité amont. La courbure
lagrangienne est plus grande que la courbure ALE parce que l’imposition des déplacements
sur l’extrémité amont est plus éloignée de la première tête en formalisme lagrangien que
dans le cas du modèle ALE.

On observe un très bon accord entre ces courbes numériques et les positions mesurées
des points sur la ligne médiane de la tôle dans le sens longitudinal à l’aide du bras articulé.
Pour obtenir cette concordance en formalisme lagrangien, il est très important de faire
avancer la tôle par l’unique action du frottement avec les outils. En effet, comme nous
l’avons déjà mentionné à la section 6.2.2, une autre solution consisterait à imposer la vitesse
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longitudinale des nœuds du plan de symétrie. Bien qu’elles faciliteraient le déroulement
de la simulation lagrangienne, ces conditions alternatives empêcheraient partiellement le
mouvement vertical de la tôle et fausseraient donc les résultats. En formalisme ALE, ce
problème n’existe pas puisque les conditions peuvent être appliquées sans problème aux
extrémités amont et aval du maillage, c’est-à-dire loin de la zone d’intérêt.
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FIGURE 6.29 – Variation de l’angle de formage d’un
profilé en U le long de la ligne de profilage.
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FIGURE 6.30 – Section finale du profilé en U après
retour élastique (z =−3000 mm).

La figure 6.29 montre l’évolution de l’angle de formage du U le long de la ligne de
profilage. Cet angle est mesuré dans un plan perpendiculaire à la direction longitudinale.
Il correspond à l’angle formé par l’aile du U par rapport à sa base. Il vaut 0o lorsque la
tôle est plane, loin en amont de la profileuse et devrait valoir idéalement 90o en sortie s’il
n’y avait pas de retour élastique. Au niveau de chaque passe, la géométrie de la section
de la tôle est imposée par les galets et l’angle vaut donc celui de la passe en question
(15o, 32o, 50o, etc.). Cette figure permet d’obtenir la valeur du retour élastique en sortie
par la valeur de l’angle en aval de −z = 3000 mm. Contrairement à la valeur de l’angle
lagrangien qui reste constant au-delà de cette position, l’angle obtenu par le modèle ALE
augmente très légèrement à proximité de l’extrémité du maillage. Il s’agit d’un effet de
bord qui est explicable par la présence des conditions aux limites sur la section aval et qui
justifie la mesure du retour élastique dans une section située en z = −3000 mm et non pas
sur l’extrémité du modèle ALE (en z =−3200 mm).

La section après retour élastique est tracée sur la figure 6.30. Les deux modèles numé-
riques donnent des résultats très similaires et ceux-ci correspondent assez bien aux mesures
expérimentales. En regardant les mesures expérimentales de plus près, on constate qu’elles
ne sont pas parfaitement symétriques. Cette dissymétrie est principalement due à la pré-
sence des blocs moteurs qui se situent d’un seul côté de chaque tête de profilage et qui
provoquent inévitablement, par leur poids, un léger cédage non symétrique des outils qui
n’est pas modélisé.

Une grandeur très importante dans le cadre de la conception d’une ligne de profilage
et la prévention des défauts de forme des profilés est l’allongement longitudinal subi par
la tôle pendant l’opération de mise à forme. En formalisme ALE, cette grandeur ne peut
évidemment pas être déduite de l’allongement local des mailles. On mesure donc la défor-
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FIGURE 6.31 – Allongement longitudinal (EGL
zz ) éva-

lué sur la surface supérieure de la tôle le long du
plan de symétrie.
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FIGURE 6.32 – Allongement longitudinal (EGL
zz ) éva-

lué sur la surface supérieure de la tôle le long de
son bord.

mation de Green-Lagrange EGL
zz obtenue à partir de la convection du tenseur des gradients

de déformation F.

Pour éviter des déformations permanentes qui entraîneraient inévitablement l’appari-
tion de défauts sur le produit final (cintre, ondulations en rives, etc.), il est nécessaire
que l’allongement longitudinal des bords de la tôle reste à tout moment dans le domaine
élastique. La figure 6.31 montre l’évolution de cette valeur le long d’une ligne médiane lon-
gitudinale située sur la surface supérieure de la tôle. Tout comme pour la trajectoire de la
tôle sur le plan de symétrie (figure 6.28), l’obtention de résultats corrects est conditionnée
par une modélisation réaliste de l’avancement de la tôle. Bien que nous ne disposions pas de
mesures expérimentales pour cette grandeur, on constate que les résultats numériques des
deux modèles sont très similaires malgré le fait que les méthodes de calcul soient tout à fait
différentes. Les maxima calculés à proximité de chaque tête sont proches, mais ils ne sont
pas tout à fait identiques. Il s’agit d’un problème de discrétisation spatiale dans le cas ALE
et de discrétisation temporelle dans le cas lagrangien. En effet, pour représenter correcte-
ment un maximum d’allongement, le modèle ALE doit posséder un nœud situé exactement
au niveau de celui-ci. Le modèle lagrangien, quant à lui, doit calculer une configuration
pour laquelle la section de mesure se trouve exactement sur la position du maximum. En
pratique, les mailles ALE ou le pas de temps lagrangien ont une taille finie et les fortes
variations d’allongement observées sont plus ou moins bien représentées par les deux mo-
dèles.

La figure 6.32 montre les courbes d’allongement longitudinal tracées cette fois le long
du bord de la surface supérieure de la tôle. Les variations d’allongement sont, encore une
fois, très semblables dans le cas des deux modèles.
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6.4.4 Influence du schéma de convection

Dans les applications précédentes (chapitre 5), nous avons régulièrement conclu que
le choix du schéma de convection était une étape importante dans la création d’un modèle
ALE. En effet, si le schéma utilisant une reconstruction linéaire est largement plus précis que
le schéma de Godunov utilisant une reconstruction constante, il est également beaucoup
plus coûteux, car il nécessite une approximation du gradient de toutes les grandeurs à
transférer et l’application de limiteurs de flux pour éviter des oscillations indésirables dans
la solution.

Une nouvelle simulation en formalisme ALE est effectuée avec la méthode de Godunov
pour quantifier la perte de précision liée à l’utilisation du schéma plus diffusif, mais plus
rapide. Le temps passé dans l’algorithme de convection correspond cette fois à 32% du
temps de calcul total au lieu de 61%.

La figure 6.33 montre le profil de la tôle dans le sens longitudinal, à mi-largeur. La
courbe verte correspondant à la nouvelle simulation est différente des deux autres et l’écart
vis-à-vis de la solution lagrangienne de référence est d’autant plus grand que l’on s’éloigne
de la première tête, vers l’aval. Il atteint près d’un millimètre en sortie. La courbure de la
tôle en entrée est également différente de celle obtenue avec le schéma de convection plus
précis alors que tous les paramètres des deux autres schémas, et en particulier le maillage
et la position des conditions aux limites, sont identiques. L’influence de la méthode de
transfert des grandeurs aux points de Gauss est donc bien visible sur la trajectoire de la tôle
dans la profileuse.
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FIGURE 6.33 – Géométrie de la tôle le long de la ligne de profilage dans le plan de symétrie (x = 0 mm).
Influence de la précision du schéma de convection.

L’angle de formage est représenté sur la figure 6.34. Les conclusions sont identiques,
même si les différences sont moins visibles sur cette figure à cause de l’amplitude de va-
riation de la grandeur observée. Dans le premier espace intertête, les courbes obtenues
par les deux schémas de convection sont identiques. Cependant, au fur et à mesure qu’on
avance le long de la profileuse, l’écart entre les deux courbes s’amplifie et devient maximal
en sortie où l’angle de formage final obtenu par l’algorithme de Godunov est supérieur aux
deux autres simulations. Il semble donc que l’erreur provoquée par l’utilisation d’un schéma
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de convection moins précis s’accumule le long de la profileuse et sera donc d’autant plus
grande que le nombre de passes est important.
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FIGURE 6.34 – Variation de l’angle de formage du U
le long de la ligne de profilage.
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FIGURE 6.35 – Section finale du profilé en U après
retour élastique (z =−3000 mm).

La figure 6.34 que nous venons d’analyser donne une idée de la géométrie de la tôle
le long de la ligne de profilage par l’intermédiaire de l’angle entre les ailes et la base du
profilé en U. En réalité, le profil n’est pas parfaitement rectiligne au niveau de sa base et
de ses ailes. Cet angle est donc une moyenne et il est important de tracer plus précisément
la forme finale de la section en z = −3000 mm (figure 6.35) pour observer l’amplitude
du retour élastique. En observant la figure 6.34 à cette position longitudinale, on pourrait
penser qu’il existe un écart similaire entre les trois courbes. La figure 6.35 montre que
ce n’est pas le cas : les profils obtenus à la section précédente sont quasiment superposés
alors que le profil calculé par la méthode de Godunov s’en détache distinctement. On voit
également un autre défaut dans la solution obtenue par le schéma de Godunov : la base du
U est légèrement bombée alors que les deux autres solutions sont planes.
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FIGURE 6.36 – Section finale du profilé en U après retour élastique (z =−3000 mm). La direction transverse
a été dilatée pour amplifier les différences.

L’intérêt d’utiliser un schéma de convection précis est encore plus évident sur la fi-
gure 6.36 où la direction transverse a été dilatée pour permettre une meilleure comparaison
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des méthodes de calcul. Nous avons superposé les mesures expérimentales pour confirmer
nos conclusions. Cette dernière figure permet de comprendre pourquoi l’angle de formage
tracé sur la figure 6.34 pour le schéma de convection précis est supérieur à l’angle lagran-
gien : l’aile du profilé ALE très est légèrement courbe.
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FIGURE 6.39 – Comparaison des champs d’allongement longitudinal obtenus en fonction des différentes mé-
thodes de calcul.

Intéressons-nous maintenant aux courbes d’allongement longitudinal. Elles sont repré-
sentées sur les figures 6.37 et 6.38. Contrairement aux comparaisons géométriques que
nous venons de faire, il n’est pas nécessaire de comparer les résultats dans les détails :
l’erreur sur l’allongement calculé par le schéma de Godunov est très important et s’ampli-
fie constamment le long de la ligne de profilage. Si on peut tout de même penser que les
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maxima d’allongement de la figure 6.37 ne sont pas trop mal représentés, il est par contre
très ennuyeux que l’allongement final obtenu en sortie ne soit pas nul. En rives, sur la fi-
gure 6.38, la situation est identique : l’allongement final est négatif. La courbe obtenue par
le schéma de Godunov subit des variations similaires aux deux autres courbes, mais elle se
décale progressivement vers les valeurs négatives d’allongement.

On peut observer ce phénomène à trois dimensions sur la figure 6.39. Comme on peut
s’y attendre, la diminution d’allongement calculé par l’algorithme de Godunov est visible
sur toute la largeur de la tôle.

En conclusion, si les erreurs de géométrie observées sur la solution finale obtenue par le
schéma de Godunov sont relativement faibles et peuvent éventuellement être tolérées, ce
schéma est tout à fait incapable de représenter correctement l’évolution de l’allongement le
long de la ligne de profilage. Ce problème de précision justifie à lui seul le travail effectué
au chapitre 4 de cette thèse.

6.4.5 Démarrage du calcul par « emboutissage »

Dans cette section, nous présentons une méthode alternative pour le démarrage du
calcul ALE dans ce cas précis de profilé en forme de U. Au début de ce travail, Metafor ne
possédait pas les outils nécessaires pour importer la fleur de profilage et pour mailler celle-
ci. Il était donc difficilement concevable de démarrer une simulation ALE avec une tôle qui
n’était pas plane. Nous avons donc imaginé un autre déroulement de la simulation basé sur
un emboutissage de la tôle par les galets (Boman et al. [35–37]). Cet artifice numérique
est uniquement possible dans le cas de profils très simples et il a donc perdu son intérêt
depuis la mise au point du mailleur de la tôle à partir de la fleur de profilage. Néanmoins,
nous pensons que ce modèle peut servir une dernière fois pour montrer que la solution
finale stationnaire obtenue par l’algorithme ALE est bien indépendante de la manière donc
le calcul est amorcé.

Le modèle ALE est très similaire au précédent. La géométrie des outils est identique,
mais elle est cette fois créée manuellement au lieu d’être importée à partir du logiciel
COPRA.

Le déroulement du calcul, représenté sur la figure 6.40, est totalement différent. À l’ins-
tant initial, la tôle est parfaitement plane. Puisque son maillage est quasi-eulérien, elle doit
être placée initialement au niveau de la profileuse, entre deux frontières eulériennes. Pour
éviter l’interpénétration du maillage dans les outils, tous les galets inférieurs sont initiale-
ment déplacés vers le bas d’une distance de 100 mm. Par contre, les galets supérieurs sont
placés à leur position réelle.

La simulation se déroule en plusieurs phases dont la durée est un multiple de D/v,
c’est-à-dire le temps nécessaire pour que la tôle avance d’une distance intertête. En t=0,
les galets inférieurs de la première tête, et uniquement ceux-ci, se déplacent verticalement
vers le haut pour atteindre, en t = 0.1 D/v, leur position de référence. Ils plient (ou « em-
boutissent ») localement la tôle, tout en tournant sur eux-mêmes.
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FIGURE 6.40 – Déroulement d’une simulation ALE de profilage. Au lieu de démarrer la simulation avec le
maillage complexe généré à l’aide de la fleur de profilage, on utilise cette fois une tôle plane qui est emboutie
successivement par les galets inférieurs au cours des premiers instants du calcul.
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Pendant toute la simulation, la matière composant la tôle subit une translation hori-
zontale à la vitesse v, imposée sur les nœuds situés aux deux extrémités amont et aval du
maillage. Cette translation est nécessaire pour transporter le pli créé lors de ce premier em-
boutissage jusqu’à la position de la deuxième tête. Puisque le pli se déplace avec la matière,
la forme de la tôle facilitera le second emboutissage par la deuxième tête qui démarre à
la phase suivante, en t = D/v. Cet emboutissage dure également une faction de la durée
de la phase (0.1 D/v) pour permettre la translation du pli formé jusqu’à la troisième tête.
Les phases s’enchaînent de cette manière jusqu’à ce que la dernière tête soit en position.
À ce moment, les outils sont maintenus en place et le profilage se poursuit jusqu’à l’ob-
tention d’un régime stationnaire. C’est sur cette dernière configuration que les grandeurs
intéressantes (déformations, géométrie) sont mesurées le long de la ligne. La géométrie de
la section après retour élastique est mesurée à une distance intertête en aval de la dernière
passe, comme pour le modèle précédent.

En comparaison à la simulation ALE précédente, l’évolution de la forme de la tôle en
aval de la dernière tête est beaucoup plus spectaculaire, comme le montre la figure 6.41.
Après emboutissage par la sixième série de galets, la tôle forme un angle proche de 90o

au voisinage de la tête alors qu’elle est toujours plane au niveau de l’extrémité aval du
maillage. Cette simulation peut donc être vue aussi comme un test de robustesse de l’al-
gorithme de repositionnement de nœuds sur les surfaces courbes. En t = 7 D/v, la forme
en U sortant de la dernière tête s’est déplacée d’une distance approximativement égale à la
distance intertête. La courbure se propage et l’extrémité du maillage commence à fléchir.
La simulation est poursuivie jusqu’au régime stationnaire en t = 12 D/v.

Comparons maintenant les différentes grandeurs auxquelles nous nous étions précé-
demment intéressés. La figure 6.42 montre la trajectoire de la tôle selon un profil longitu-
dinal situé à mi-largeur. Le profil obtenu est proche de celui obtenu précédemment. Il est
intéressant de remarquer que les deux solutions ALE se situent de part et d’autre de la so-
lution lagrangienne. Les différences visibles en amont et en aval de la profileuse sont dues
aux longueurs Lamont et Laval qui ont été choisies (inutilement) plus grandes dans le cas du
modèle ALE démarré par emboutissage (Lamont = Laval = 1000 mm).

Les figures 6.43 et 6.44 montrent respectivement l’évolution de l’angle de formage et
la géométrie de la section du profilé après retour élastique. Les très faibles différences
observées sont certainement dues aux différences entre les maillages des deux modèles
ALE qui sont semblables, mais pas identiques.

Les allongements longitudinaux peuvent être également comparés (figures 6.45 et 6.46).
Les courbes montrent la même évolution de cette grandeur le long de la ligne de profilage.
Si on examine en détail les légères différences entre les résultats sur la figure 6.45, on
remarque que la solution calculée par emboutissage est plus lisse que celle obtenue par
maillage de la fleur. Cette dernière présente de petites oscillations visibles dans les espaces
intertêtes où l’allongement est constant et faible. Après analyse, il semblerait que ces per-
turbations dans la solution ALE soient dues à une variation de pas de temps en cours de
calcul. Bien que l’on essaye de les éviter en fixant une taille de pas maximale en fonction
de la longueur des mailles, il arrive que le code de calcul doive ponctuellement diviser
l’incrément temporel pour archiver la configuration sur disque. Cette brusque diminution
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FIGURE 6.41 – Évolution de la forme de la tôle en aval de la dernière tête lorsqu’on démarre le modèle ALE
avec une tôle initialement plane. Le retour élastique est clairement visible sur le profil final.
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FIGURE 6.44 – Section finale du profilé en U après
retour élastique (z =−3000 mm).

modifie les conditions de contact des nœuds de la tôle sur les galets et l’allongement peut
subir des variations qui sont ensuite transportées tout au long du maillage. Il serait donc
intéressant de découpler l’algorithme d’intégration temporel de la stratégie d’archivage sur
disque. D’ici là, nous préférons tolérer ces oscillations et nous assurer que nos longs calculs
peuvent être redémarrés en cas coupure de courant.

Sur cette même figure, on remarque que les valeurs maximales des pics d’allongement
ne sont pas exactement identiques. Ceci peut être expliqué par les différences de maillage
des deux simulations. Enfin, on observe des oscillations en sortie (−z > 3000 mm) qui
laissent supposer que le régime stationnaire n’est pas tout à fait atteint dans le cas de la
simulation démarrée par emboutissage. Il aurait donc été utile de continuer la simulation
au-delà de t = 12 D/v.

Il est intéressant de noter que, bien qu’elle semble plus complexe au niveau de la gestion
des contacts et du repositionnement des nœuds, cette simulation ALE démarrée par embou-
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FIGURE 6.45 – Allongement longitudinal (EGL
zz ) éva-

lué sur la surface supérieure de la tôle le long du
plan de symétrie.
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FIGURE 6.46 – Allongement longitudinal (EGL
zz ) éva-

lué sur la surface supérieure de la tôle le long de
son bord.

tissage est effectuée en un temps CPU comparable à celui de la simulation précédente où
l’on avait maillé la fleur de profilage (2587 pas, 5446 itérations et 1j20h00’ de calcul). Nous
ne poussons pas la comparaison des performances des deux méthodes de démarrage plus
loin puisque, d’une part, leurs paramètres ne sont pas tout à fait identiques et que, d’autre
part, le modèle démarré par emboutissage ne sera pas réutilisé par la suite. Il a néanmoins
permis de démontrer que la manière de démarrer une simulation ALE a peu d’importance
si seul le régime stationnaire doit être analysé.

6.4.6 Simulation d’un défaut

Nous terminons cette étude du profilage d’un U en montrant la capacité de nos modèles
à prédire l’apparition de défauts. Nous disposons, pour ce faire, d’une série de mesures
expérimentales effectuées sur la ligne pilote d’ArcelorMittal. Pour provoquer l’apparition
d’un défaut, sans modifier la distance intertête et à partir du même jeu d’outils, on supprime
un des deux galets supérieurs au niveau de la quatrième tête de profilage (figure 6.47).
Cette dissymétrie dans les outils va être répercutée dans la géométrie finale du profilé. Le
problème n’est plus symétrique et c’est donc l’occasion également de tester une première
fois le modèle de profilage complet, sans plan de symétrie.

Lors de la description de l’importation des outils à partir du logiciel de conception CO-
PRA (section 6.2.1), nous avons expliqué les diverses modifications apportées à la géomé-
trie des galets pour faciliter leur traitement de contact. Dans le cas du profil en U, les deux
galets supérieurs, visibles sur la figure 6.17 et sur l’arrière-plan de la figure 6.47, ont été
fusionnés en une seule entité plus économique à gérer numériquement. Le retrait d’un galet
correspond donc, dans le modèle, à une réduction de largeur du galet unique, résultat de
cette fusion (figure 6.48).

Une simulation ALE et une simulation lagrangienne sont effectuées pour simuler cette
nouvelle configuration de la ligne de profilage. Les paramètres des maillages correspondent
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FIGURE 6.47 – Suppression d’un galet pour provo-
quer un défaut de symétrie dans le profil.
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z

FIGURE 6.48 – Modélisation du retrait d’un galet
supérieur en quatrième tête.

aux valeurs du tableau 6.1 mis à part les valeurs de Le
x et nx qui a ont été uniformisée

(Le
x = 8 mm et nx = 5 pour les deux modèles).

Comparons tout d’abord la forme de la section à proximité de la quatrième tête (fi-
gure 6.49). La mesure expérimentale au niveau de l’axe des galets étant impossible, la
forme de la section a été échantillonnée à une distance de 90 mm en aval de la tête
(z = −1590 mm) grâce au bras de mesure articulé. Les profils des modèles ALE et la-
grangien sont très proches l’un de l’autre et sont en très bon accord avec les points mesurés
lors de l’essai sur la ligne pilote. On voit très bien que l’absence du galet (à gauche sur la
figure pour laquelle on regarde dans le sens d’avancement de la tôle) induit un pliage par-
tiel de la tôle et une forte dissymétrie qui est amplifié sur le graphe par le choix d’échelles
différentes selon x et y.
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FIGURE 6.49 – Section transverse de la tôle à proxi-
mité de la quatrième tête (z = −1590 mm).
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FIGURE 6.50 – Section finale du profilé en U après
retour élastique (z =−3000 mm).

Le profil final, obtenu après retour élastique, est représenté sur la figure 6.50 pour les
deux simulations. Ils correspondent tous les deux aux mesures expérimentales. En particu-
lier, on constate que l’angle de retour élastique est plus important à droite qu’à gauche, où
le galet a été retiré.
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lué sur la surface supérieure de la tôle le long du
bord du côté où le galet a été supprimé.
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FIGURE 6.52 – Allongement longitudinal (EGL
zz ) éva-

lué sur la surface supérieure de la tôle le long du
bord du côté où le galet n’ a pas été supprimé.
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FIGURE 6.53 – EGL
zz où le galet a été supprimé. Au-

cun archivage sur disque pendant le calcul (cfr.
figure 6.51).
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FIGURE 6.54 – EGL
zz où le galet n’a pas été supprimé.

Aucun archivage sur disque pendant le calcul
(cfr. figure 6.52).

Les figures 6.51 et 6.52 montrent les courbes d’allongement longitudinal respectivement
sur le bord gauche (où le galet a été retiré) et sur le bord droit quand on regarde dans le sens
d’avancement de la tôle. Les résultats ALE correspondent relativement bien aux résultats
calculés par le modèle lagrangien. Les oscillations des deux courbes d’allongement ALE sur
ces deux figures résultent de perturbations liées à la variation de la taille du pas de temps,
comme nous l’avons expliqué lors de l’analyse de la figure 6.45. Pour s’en convaincre, nous
avons cette fois effectué une nouvelle simulation ALE sans aucun archivage sur disque
pendant le calcul. Ces archivages imposent des temps de passage précis et sont ainsi la
source de perturbation de la taille du pas de temps. On obtient les courbes des figures 6.53
et 6.54 qui ne possèdent pas oscillations.

Du point de vue de la physique du procédé, il est intéressant de voir l’effet de la suppres-
sion du galet sur ces courbes. En amont du troisième galet (−z < 1000 mm) les courbes
des bords gauche et droit sont similaires. Elles se différencient à partir de la quatrième tête.
Le côté de la tôle où on n’a pas retiré de galet subit un allongement très proche de celui
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observé dans le cas symétrique (voir figure 6.32). Par contre, l’autre bord évolue de ma-
nière tout à fait différente. En particulier, on observe un pic important d’allongement avant
la cinquième tête (z ∼= −2000 mm) qui n’est pas présent de l’autre côté.

Nb. éléments Nb. éléments Pas/itérations Temps CPU
volumiques de contact

Lagrangien 34440 212076 (1.00) 9491/28578 7j02h26’ (1.00)
ALE (100 archivages) 24864 15960 (0.08) 5514/15997 6j10h05” (0.90)
ALE (1 archivage) 24864 15960 (0.08) 4821/14433 4j23h22” (0.70)

TABLEAU 6.3 – Comparaison des modèles ALE et lagrangien (U non symétrique). Les temps CPU ont été mesurés
sur PC3 (tableau A.1).

Les temps de calcul des deux modèles sont comparés dans le tableau 6.3. Le calcul ALE
est légèrement plus rapide que le calcul lagrangien. Cette fois la différence de temps CPU
n’est pas aussi importante que dans le cas symétrique alors que les maillages comportent
plus d’éléments. Cela s’explique en partie par le fait que le maillage lagrangien est moins
fin que précédemment (voir tableau 6.2, page 311). Le calcul lagrangien non symétrique
ne comporte donc pas deux fois plus de mailles que dans le cas symétrique, alors que c’est
plus ou moins le cas pour le modèle ALE. On voit également l’influence des archivages sur
disque dont nous avons parlé sur le nombre de pas de temps et le temps CPU total.

Néanmoins, il faut garder à l’esprit qu’aucun des deux modèles n’a été optimisé pour la
vitesse. Nous avons privilégié ici la qualité des résultats au détriment de la vitesse d’exécu-
tion.
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6.5 Profils plus complexes

Après avoir étudié en détail le cas d’un U formé sur une ligne pilote, nous montrons
dans cette section la mise à forme d’autres types de profilés plus complexes. Puisque nous
ne possédons pas de résultats expérimentaux les concernant, nous insistons cette fois non
pas sur la qualité des résultats, mais plutôt sur les raisons qui nous pousseraient à utiliser
le formalisme ALE au lieu du formalisme lagrangien pour effectuer ces simulations.

Nous verrons en effet que le modèle lagrangien, tel que nous l’avons mis au point, est
bien souvent incapable de traiter des profils plus complexes qu’un simple U.

6.5.1 Élément de rack

Le premier cas présenté concerne un élément d’étagère industrielle (un rack) dont la
fleur de profilage est représentée sur la figure 6.55. Ce profil, ainsi que les galets associés,
sont le résultat d’un exercice d’apprentissage du logiciel COPRA. Ils nous ont été trans-
mis par ArcelorMittal pour tester notre modèle. Cette géométrie a déjà été prise plusieurs
fois comme exemple pour illustrer la mise au point des deux modèles de profilage (les
figures 6.8 et 6.9 montrent la tête 2 et 7 de cette ligne de profilage).

166.7 mm

e = 1.5 mm

profil final désiré

FIGURE 6.55 – Fleur de profilage de l’élément de rack. Les passes sont numérotées suivant la convention de
COPRA qui débute par la dernière passe et termine par la tôle plane, numérotée elle aussi.

Bien que ce profil soit trop complexe pour détailler ici toutes les dimensions intervenant
dans le procédé, la figure 6.56 permet de se faire une idée de la géométrie finale désirée.
Le profil possède une épaisseur de 1.5 mm et il est formé en sept passes à partir d’une tôle
de 166.7 mm de large. La distance intertête est constante et fixée à 350 mm.

La simulation est effectuée en formalisme lagrangien et en formalisme ALE. Par facilité,
les paramètres manquants (comportement de l’acier, contact, maillage, vitesse du procédé,
etc.) sont choisis identiques à ceux utilisés pour la simulation du profil en U. Le frottement
est supprimé dans le cas ALE (µ = 0) puisque ce modèle le permet. En effet, comme cela
a déjà été discuté précédemment (figure 6.11), nous pressentons des problèmes liés à la
multiplicité des zones de frottement sur les différentes parties des outils.
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FIGURE 6.56 – Élément de rack. Dimensions du profil désiré. Toutes les longueurs sont exprimées en milli-
mètres.

angle
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FIGURE 6.57 – Vue de la sortie de la ligne de profilage à l’instant initial et l’instant final lorsque le régime
stationnaire est atteint. La géométrie recherchée est matérialisée par une ligne rouge.

329



CHAPITRE 6. APPLICATION AU PROFILAGE

La simulation ALE ne pose aucun problème particulier. Elle est effectuée en 1341 pas
de temps et 2742 itérations et le temps CPU total est de 2j03h21’. La figure 6.57 montre
la configuration initiale du maillage et la configuration finale à laquelle on a superposé
la forme idéale du profilé. On constate que le profil possède des plis qui sont mal formés
durant l’opération. Il s’agit en fait d’un mauvais design de la fleur de profilage et des outils.
Pour que ces plis possèdent l’angle attendu, il est nécessaire que la tôle soit soutenue cor-
rectement par les outils lors de chaque incrément de flexion à chaque passe. Dans le cas de
ce design, on peut facilement voir que ce n’est pas le cas. La figure 6.58 représente les outils
de la cinquième passe auxquels on a superposé le profil correspondant à la quatrième passe,
en rouge. L’angle indiqué sur la figure ne peut pas être formé correctement si le profil n’est
pas soutenu par des galets supplémentaires. Puisqu’il semble difficile d’ajouter un galet à
cet endroit qui serait en contact avec l’intérieur du pli, la seule solution est de corriger la
fleur de profilage et de former ce pli plus tôt, lors des premières passes. Le nombre total
de têtes devra certainement être augmenté pour former le reste du profil. Ce travail de
correction n’a pas été effectué.

angle non soutenu
par un outil
à gauche de la tôle
pendant le pliage !

axe supérieur

axe inférieur

profil tête 4

tête 5

FIGURE 6.58 – Cinquième tête de profilage de la ligne étudiée. Le profil en rouge correspond à celui de la passe
précédente. On remarque que seule la face inférieure du profil est en contact avec les outils au niveau de
l’angle problématique. La tôle n’est donc pas suffisamment soutenue pour être correctement pliée.

La simulation lagrangienne est, quant à elle, très difficile à effectuer et nécessite un
ajustement délicat de nombreux paramètres (coefficients de pénalisation pour le contact et
le frottement, tolérance d’équilibre à chaque pas de temps, etc.). L’engagement de la tôle
dans les différentes têtes successives est beaucoup plus difficile que dans le cas du profil
en U. En regardant la fleur, on remarque par exemple que le milieu du profil descend de
manière continue au cours du profilage. Le profil a en effet été créé de telle manière à ce
que le centre de gravité de la section reste à tout moment fixe pour tenter de minimiser les
allongements longitudinaux et donc l’apparition de défauts.

Concernant le frottement, on constate que la valeur choisie (µ = 0.2) n’est pas suffi-
sante pour faire avancer la tôle à la vitesse v = 0.2 m/s choisie. La figure 6.59 montre la
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configuration en t = t4, c’est-à-dire au moment où le profilé est censé quitter la dernière
tête de profilage. À cet instant, le modèle prévoit l’imposition d’un déplacement sur un
nœud de l’extrémité aval du maillage. Cette nouvelle condition aux limites provoque un
allongement excessif autour du nœud en question et la simulation s’arrête prématurément.
Si on ne comptabilise pas les nombreux essais préliminaires qui ont échoué, ce premier
calcul lagrangien permettant de conclure au mauvais design des outils aura finalement
duré 6j11h29’, soit trois fois plus longtemps que la simulation ALE qui n’a nécessité aucun
ajustement de paramètres numériques.

la tôle est toujours engagée
dans la profileuse en t !4

calcul de
l'évasement

0.0 0.15 0.3

Déformation
plastique

équivalente ( )e
p

plastification
indésirable
au niveau de
la fixation!

+

-

-

FIGURE 6.59 – Simulation lagrangienne du profilage d’un élément de rack. Le modèle lagrangien, tel qu’il a
été conçu, nécessite que la tôle avance par frottement à une vitesse constante v préalablement choisie. Dans
le cas de profilés complexes, les conditions de contact sont telles que des glissements peuvent apparaître et
la tôle peut ainsi rester engagée dans la profileuse lorsque la phase de profilage est censée être terminée.

Bien entendu, il ne faudrait pas conclure que le modèle ALE permet de résoudre tous les
problèmes liés au profilage. Ce type de modèle est en effet inévitablement restreint à la si-
mulation de lignes continues. Si on est intéressé par des effets de bords tels que l’évasement
du profil à ses extrémités (end flare, en anglais – voir Halmos [104]), un modèle lagrangien
est indispensable. Un exemple d’un tel défaut de forme est montré sur la figure 6.59 dans
le cas de l’élément de rack. D’autres problèmes tels que la simulation du profilage de tôles
prétrouées ou de la mise à forme de profils à section variable (flexible roll forming en anglais
– voir Lindgren [136]) sont difficilement imaginables en formalisme ALE.

Néanmoins, dans ce cas précis, le formalisme ALE nous a permis d’obtenir des résul-
tats et conclure au mauvais design des outils très facilement en évitant les difficultés de
convergence parfois fatales qui ont observées en formalisme lagrangien.
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6.5.2 Traverse

La simulation du procédé suivant permet de mettre en évidence un avantage du modèle
ALE lorsque la tôle subit des déformations non homogènes dans la direction transverse lors
du profilage. Le profil étudié est une traverse en acier dont la fleur de profilage (7 passes)
est représentée sur la figure 6.60. Les dimensions de la section finale désirée sont reprises
sur la figure 6.61. L’épaisseur du profil est 1.6 mm. La largeur initiale de la tôle est 123.54
mm et les têtes de profilage sont espacées de 350 mm.

123.54 mm
e = 1.6 mm

profil final désiré

FIGURE 6.60 – Fleur de profilage de la traverse. Les passes sont numérotées suivant la convention de COPRA
qui débute par la dernière passe et termine par la tôle plane, numérotée elle aussi.

FIGURE 6.61 – Dimension du profil symétrique désiré. Toutes les longueurs sont exprimées en millimètres.

Comme pour le cas de l’élément de rack, nous complétons ces données géométriques
avec les paramètres du profilé en U lorsque c’est nécessaire. Le phénomène que nous vou-
lons mettre en évidence est clairement visible sur la figure 6.62 où le maillage ALE est
comparé au maillage lagrangien au niveau de la dernière passe. On constate que certaines
zones de raffinement du maillage lagrangien se sont décalées vers l’extérieur du profil.
La tôle a subi localement des allongements transverses à proximité des plis et les petites
mailles, qui sont nécessaires pour représenter correctement la courbure de la tôle au niveau
des rayons, ont suivi ce mouvement de matière et ne sont plus en contact avec ces rayons.
Le pli est donc finalement mal représenté en dernière passe, car il est en contact avec des
mailles de taille beaucoup plus grande. Le maillage initial de la tôle a été construit en sup-
posant un élargissement homogène sur la largeur de la tôle. Dans le cas de ce profilé, les
déformations ne sont pas homogènes et le problème doit être résolu en augmentant la taille
des zones de raffinement (paramètre α).

Par contre, en formalisme ALE, les zones de raffinement ont été placées précisément sur
les rayons lors du maillage de la fleur de profilage. Puisque le mouvement du maillage n’est
pas directement lié à celui de la matière, les inhomogénéités d’allongement transverse ne
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ALE Lagrangien

! !

FIGURE 6.62 – Comparaison du maillage ALE et du maillage lagrangien à la sortie de la dernière tête. Le
profil lagrangien a subi un allongement transverse non homogène qui a eu pour effet de déplacer certaines
zones finement maillées pour décrire correctement les rayons des plis. En formalisme ALE, le maillage de
la dernière passe reste positionné sur les rayons indépendamment du mouvement de la matière.

modifient pas la position de ces zones. Elles restent donc idéalement placées et permettent
une prise en compte optimale des contacts.

Le problème de déplacement de zones de raffinement du maillage lagrangien est déjà
bien visible sur des profils de faible largeur tels que celui-ci, mais il est encore plus im-
portant sur des profils très larges. C’est une des raisons pour lesquelles nous n’avons pas
encore simulé ce type de profil avec nos modèles actuels de profilage. D’après cet exemple,
on peut imaginer que, dans le cas de profils larges et complexes, le formalisme ALE faci-
litera la mise au point du maillage initial de la tôle puisqu’il permet de s’affranchir de la
prédiction de l’allongement transverse pour placer et dimensionner correctement les zones
de raffinement sur la largeur de la tôle. C’est donc un avantage supplémentaire indéniable
du modèle ALE par rapport au modèle lagrangien.
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6.5.3 Bavolet

Cette dernière application montre l’intérêt de modèle ALE pour simuler des lignes in-
dustrielles de profilage de plus grande taille. Ces lignes ne peuvent généralement pas être
simulées en utilisant le formalisme lagrangien ou, du moins, en utilisant le modèle lagran-
gien dont nous disposons. Le profil étudié est un bavolet, c’est-à-dire un élément du châssis
d’une automobile situé sous les portières, dont la fleur de profilage est schématisée sur la
figure 6.63. Contrairement aux profils précédents, il s’agit d’un profil non symétrique fermé.
Néanmoins, nous ne simulerons pas l’opération de soudage du profil en fin de ligne.

166.69 mm

e = 1.5 mm

profil final désiré

FIGURE 6.63 – Fleur de profilage du bavolet. Les passes sont numérotées suivant la convention de COPRA qui
débute par la dernière passe et termine par la tôle plane, numérotée elle aussi.

Les dimensions du profil désiré en fin d’opération sont reprises sur la figure 6.64. La
largeur initiale de la tôle est 166.69 mm et son épaisseur 1.5 mm. La distance intertête
est constante et fixée à 350 mm. Cette géométrie, qui nous a été fournie par ArcelorMittal,
correspond à une ligne de production réelle. Nous sommes donc bien au-delà de la simula-
tion d’un simple exercice COPRA ou même d’une ligne pilote. Comme pour les applications
précédentes concernant des profils complexes, nous ne disposons malheureusement pas de
tous les paramètres nécessaires à la simulation. Nous choisissons donc de compléter ces
données géométriques par certaines valeurs reprises dans des paramètres du profil en U
(section 6.4). Autrement dit, l’acier utilisé est du DP1000. La vitesse d’avancement est fixée
à v = 0.2 m/s. Par contre, pour faciliter la simulation, le frottement du modèle ALE sera
négligé (µ= 0).

Le profilage s’effectue en 16 passes sur une machine de plus de cinq mètres de long.
Pour mieux se rendre compte de cette longueur, la figure 6.65 représente la configuration
initiale de la tôle du modèle ALE ainsi que la succession des 16 têtes de profilage.

La géométrie des outils est évidemment beaucoup plus complexe que dans le cas d’un
profil simple en U. Pour se faire une idée de leurs formes très variées, la figure 6.66 re-
présente la septième tête de profilage. Elle a été choisie pour mettre en évidence certaines
difficultés supplémentaires concernant le contact qui apparaissent dans de ce problème.
Sur cette tête, on remarque que, contrairement aux profils précédents, le bord de la tôle
est directement en contact avec les outils. Il est donc nécessaire de définir des éléments de
contact entre les nœuds de ce bord et les galets en question. Ce type de contact particulier,
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FIGURE 6.64 – Dimensions du profil final désiré du bavolet.

direction
de profilage

tête #16

tête #1

FIGURE 6.65 – Profilage du bavolet. Vue générale des 16 têtes de profilage et du maillage initial du modèle
ALE (longueur totale de la machine = 5.25 m)

que nous n’avions pas rencontré auparavant, permet de bloquer latéralement le profil dans
la tête lors de son passage. On évite ainsi les problèmes de pliages incomplets que nous
avons décrits dans le cas du profil de l’élément de rack. Au niveau du contact avec ce bord,
les outils forment une encoche et possèdent inévitablement un angle vif puisqu’ils décrivent
l’angle droit formé par la surface inférieure de la tôle et son bord latéral. Ces coins sont évi-
demment problématiques dans le contexte de l’algorithme de contact. La normale en un
coin est discontinue et la force de contact risque donc de ne pas être définie correctement.
Pour contourner cette difficulté, on décide alors de ne pas fusionner les galets qui forment le
coin. Chacun des galets, prolongées suffisamment pour que les contacts soient toujours bien
définis, est traitée séparément. Les galets s’interpénètrent donc dans le modèle numérique.

Numériquement, cela revient à définir, pour les nœuds de l’arête de la tôle venant se
loger dans un de ces coins, deux séries distinctes d’éléments de contact. La prolongation
de ces lignes est effectuée, grâce au logiciel COPRA, en même temps que les différentes
opérations de modification de la géométrie des galets décrites à la figure 6.8.

Pour ce procédé particulier de mise à forme d’un bavolet, toutes nos tentatives pour
obtenir des résultats à l’aide du modèle lagrangien ont été un vouées à l’échec. La taille du
modèle devient très importante principalement à cause des nombreux éléments de contact
qui doivent être définis sur les surfaces de la tôle. Il en faut, en effet, au minimum 16 par
nœud auxquels on doit ajouter ceux dont nous venons de parler pour le traitement des

335



CHAPITRE 6. APPLICATION AU PROFILAGE
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FIGURE 6.66 – Géométrie de la 7ième tête de la ligne de profilage du bavolet. Le bord de la tôle est en contact
avec les galets supérieurs. Les arêtes de ce bord sont logées à des endroits où la normale à la surface de l’outil
est discontinue (angles vifs). Il est alors nécessaire de définir plusieurs matrices de contact indépendantes
pour gérer ces contacts complexes.

coins. La simulation lagrangienne est donc très lente et très gourmande en mémoire. De
plus, l’engagement de la tôle dans les têtes de profilage successives est d’autant plus pro-
blématique que l’on progresse le long de la ligne de profilage. Nous sommes arrivés, au
mieux, à faire avancer la tôle jusqu’à la septième tête. Légèrement en amont de celle-ci,
nous avons été surpris de constater que la tôle, qui possède plus ou moins la géométrie im-
posée par la sixième passe, est incapable de s’engager d’elle-même entre les galets, comme
le montre la figure 6.67. En pratique, selon les explications d’ArcelorMittal, cette ligne de
profilage est une ligne continue et l’engagement de l’extrémité de la bande n’est pas une
opération courante. Lorsque c’est nécessaire, l’opérateur de cette ligne engage l’extrémité
de la bobine manuellement à l’aide d’un outil auxiliaire qui n’est pas modélisé ici. On est
donc dans un cas où le modèle lagrangien est incapable de fournir des résultats.

Nous abandonnons donc l’idée de simuler cette ligne en formalisme lagrangien. Nous
allons voir la facilité avec laquelle un tel procédé, malgré sa complexité géométrique, peut-
être modélisé en formalisme ALE.

Concernant les paramètres numériques, ceux-ci sont simplifiés pour accélérer le calcul.
Nous utiliserons des éléments SRI classiques au lieu des coûteux éléments EAS. Puisque
nous ne comptons pas dépouiller finement les résultats n’ayant pas de possibilité de compa-
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FIGURE 6.67 – Problème d’engagement de la tôle lagrangienne dans la 7ième tête. On constate que la tôle pro-
venant de la sixième tête est incapable d’entrer par elle-même dans la septième tête. Le modèle lagrangien
nécessite donc des outils supplémentaires pour guider l’extrémité de la tôle. En formalisme ALE, la tôle dont
le maillage est représenté en bleu sur la figure, est déjà engagée et le problème est automatiquement résolu.

raison expérimentale concernant ce procédé, le schéma de convection utilisé sera le schéma
de Godunov et les allongements longitudinaux ne seront pas calculés. Nous économisons
ainsi la convection des neuf composantes du tenseur F.

Nombre de mailles dans l’épaisseur (ny) 1
Nombre de mailles dans chaque pli (nx) 4
Taille des mailles selon la direction de profilage (Le

z) [mm] 30
Taille des mailles selon la direction transverse (Le

x) [mm] 6
Facteur d’agrandissement des zones de pli (α) 1.2
Longueur supplémentaire amont (Lamont) [mm] 350
Longueur supplémentaire aval (Laval) [mm] 350
Taille de maille a proximité des galets (l e

z1) [mm] 5
Taille de maille sous les galets (l e

z2) [mm] 3

TABLEAU 6.4 – Paramètres des maillages ALE pour la simulation du bavolet.

Le maillage utilisé, long de 5950 mm (Ltot), est décrit au tableau 6.4. La longueur des
mailles varie de 3 mm sous les galets à 30 mm dans l’espace intertête. On obtient ainsi un
maillage comportant 25420 éléments hexaédriques, soit au total 155652 degrés de libertés.
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Le déplacement convectif total d est fixé à 1.1 fois la longueur totale du maillage Ltot. La
simulation nécessite 2995 pas de temps et 8550 itérations et dure 3j19h01’ (sur PC3 – voir
annexe A).

d L= 0.4 tot

d L= 1.1 totd L= 0.9 tot

d = 0
conf. initiale

conf. finale

0.0 0.13

Déformation plastique
équivalente ( )e

p

FIGURE 6.68 – Simulation ALE de la mise à forme d’un bavolet. Déroulement de la simulation.

La figure 6.68 montre le déroulement de la simulation ALE. Quatre instants ont été
choisis pour décrire l’évolution de la forme de la tôle en aval de la dernière tête. Au début
du calcul, la section extrême est celle de la dernière passe. Le profil est fermé, car les deux
bords de la tôle sont l’un contre l’autre. Pendant la simulation, les déformations provoquées
par les différents outils se propagent le long du maillage. Le nouvel état de contraintes ob-
tenu en sortie induit un écartement des deux bords. On observe également des ondulations
importantes le long de la surface supérieure du profil. Celles-ci sont bien visibles sur la
configuration notée d = 0.9Ltot (elles sont mises en évidence par les deux lignes rouges).
Enfin, la configuration finale correspond au régime stationnaire. Le profil est toujours légè-
rement ouvert à cause du retour élastique. Le profil obtenu en fin de simulation et le profil
en dernière tête sont superposés sur la figure 6.69.

La figure 6.70 montre une vue différente de la configuration finale pour laquelle les
outils ont été rendus translucides. On peut observer clairement la succession des zones de
raffinement au niveau des contacts avec les outils et l’évolution de la déformation plastique
équivalente tout le long du maillage suite aux différents pliages entre les galets.
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profil dernière tête

FIGURE 6.69 – Simulation ALE de la mise à forme d’un bavolet. Mise en évidence du retour élastique après la
dernière passe. Le profil en rouge correspond au profil désiré.

0.0 0.13
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FIGURE 6.70 – Simulation ALE de la mise à forme d’un bavolet. Configuration finale correspondant au régime
stationnaire.
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Bien entendu, cette simulation ALE peut être grandement améliorée. Il ne s’agit ici que
d’une étude de faisabilité qui a pour seul but de démontrer l’intérêt du formalisme ALE pour
ce type de procédé. Une simulation plus précise nécessiterait l’utilisation d’éléments EAS,
du schéma de convection utilisant une reconstruction linéaire et d’un nombre de mailles
plus important dans l’épaisseur.

Il serait également très utile de modéliser l’opération de soudage. Une première mé-
thode très simple consisterait à créer un maillage ALE initial pour lequel les nœuds des
deux bords de la tôle seraient fusionnés. Le comportement local du matériau et les aspects
physiques chimiques de la soudure seraient donc totalement négligés. Toutefois, cette pro-
cédure simple permettait d’obtenir par exemple une première prédiction des contraintes
résiduelles dans le tube ainsi formé.

Enfin, les aspects frictionnels devraient être inclus dans le modèle. Ceci demande de
rassembler de nombreux paramètres supplémentaires comme, par exemple, l’identification
des axes moteurs, leur vitesse de rotation et les conditions de lubrification sur chaque galet.
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6.6 Conclusions

Ce chapitre décrit l’application principale et tout à fait originale de ce travail de thèse. Il
s’agit d’un modèle de profilage stationnaire continu utilisant le formalisme ALE. Ce modèle
peut être complètement paramétré pour représenter de nombreuses lignes industrielles. La
mise en données est grandement facilitée par la possibilité d’importer la fleur de profilage
et la géométrie des outils à partir du logiciel COPRA qui est une référence incontournable
dans le domaine.

La difficulté principale dans l’élaboration du modèle ALE de profilage est de trouver
une configuration initiale du maillage qui permette de démarrer facilement le calcul et
d’atteindre finalement le régime stationnaire recherché. En effet, le maillage ALE est quasi
eulérien et doit rester confiné à tout instant entre les deux frontières eulériennes situées en
amont et en aval du procédé. Pour permettre un démarrage « en douceur » de la simulation,
une configuration artificielle de la tôle, proche de la configuration finale, est construite à
partir de la géométrie de la fleur de profilage. Le maillage est construit en interpolant les
sections de chaque passe dans les espaces intertêtes grâce à des splines cubiques. La simu-
lation ALE peut ainsi s’effectuer en une seule étape, contrairement au modèle lagrangien
qui nécessite de nombreux changements de conditions aux limites en cours de calcul.

La validation numérique de ce modèle ALE de profilage a été rendue possible grâce à
l’utilisation d’un modèle lagrangien préexistant et aux résultats d’une série d’essais expéri-
mentaux effectués sur une ligne de profilage pilote d’ArcelorMittal à Montataire (France).
Dans le cas du profil particulier étudié en forme de U, il est apparu que le modèle ALE
et le modèle lagrangien fournissent des résultats très similaires et ceux-ci sont en très bon
accord avec les mesures expérimentales.

Nous avons montré que le calcul précis de la géométrie de la tôle dans la profileuse,
de son angle de retour élastique et de l’évolution de l’allongement longitudinal le long de
la ligne nécessite obligatoirement l’utilisation du schéma de convection du second ordre.
Si les légères erreurs géométriques résultant de l’utilisation de l’algorithme de Godunov
peuvent éventuellement être tolérées, les valeurs calculées par ce même algorithme pour
les allongements sont complètement erronées et donc inexploitables en pratique.

L’indépendance des résultats obtenus en régime stationnaire vis-à-vis de la manière de
débuter le calcul a été prouvée par la mise au point d’un modèle ALE alternatif dédié uni-
quement aux profilés en U. Au lieu de démarrer la simulation avec un maillage relativement
complexe, la tôle initiale est cette fois plane. Les galets inférieurs, initialement éloignés de
leur position de référence, viennent emboutir la tôle dans une première phase de calcul. La
simulation est ensuite poursuivie jusqu’au régime stationnaire. Bien que le déroulement du
calcul soit complètement différent, on obtient ainsi les mêmes résultats que précédemment.

Au niveau du temps de calcul, on obtient une simulation ALE plus rapide que la si-
mulation lagrangienne équivalente. Ce gain de temps s’explique par une optimisation du
maillage dans le sens longitudinal. En effet, contrairement au cas lagrangien, on peut uti-
liser cette fois des petites mailles et des éléments de contact uniquement à proximité des

341



CHAPITRE 6. APPLICATION AU PROFILAGE

galets où la tôle subit des flexions. Le reste de la tôle du modèle ALE peut être maillé
beaucoup plus grossièrement.

Après cette étude détaillée de la ligne pilote, nous nous sommes intéressés à la mise à
forme de profilés plus complexes. Ceux-ci nous ont permis de mettre en évidence certains
points forts du modèle ALE par rapport à son homologue lagrangien.

Le profilage de l’élément de rack permet de montrer les problèmes liés à l’avancement
de la tôle lagrangienne dans la profileuse. En effet, pour pouvoir être représentatif de la
réalité, il est nécessaire que la tôle avance sans être fixée par l’unique action du frotte-
ment. Si des contacts complexes se produisent ou si le frottement réel est mal modélisé,
des glissements apparaissent sur certains galets et la tôle avance finalement à une vitesse
inférieure à celle prescrite ou même peut éventuellement ne plus avancer du tout. Dans ces
cas pathologiques, le problème d’avancement de la tôle est résolu dans le modèle ALE en
imposant directement la vitesse voulue sur les extrémités amont et aval du maillage.

La simulation du profilage de la traverse montre le déplacement des zones de raffine-
ment du maillage suite à des allongements transverses non homogènes sur la largeur. Les
petites mailles de ces zones ne sont plus localisées au niveau des plis et des problèmes de
contact ou de précision sur la représentation géométrique des plis peuvent apparaître. En
formalisme ALE, les déplacements transverses de matière n’influencent pas la position du
maillage et ce problème n’existe pas.

Enfin, la simulation du bavolet montre la possibilité de simuler des lignes industrielles
comportant un grand nombre de passes (16 dans ce cas précis). Sur ce type de profileuse,
le modèle lagrangien montre clairement ses limites. Il est fortement pénalisé par les condi-
tions de contact très difficiles qui apparaissent lors de l’engagement de l’extrémité amont
de la tôle dans les outils successifs. Au final, il semble très difficile de mener la simulation
lagrangienne à son terme alors que la simulation ALE se déroule sans surprise. Les cal-
culs sont, certes, longs (plusieurs jours), mais ils permettent d’obtenir tout de même des
résultats malgré la complexité géométrique du procédé.
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Chapitre 7

Conclusions générales

Nous clôturons ce manuscrit par un résumé des principaux apports originaux de la
thèse. Nous énumérons certains développements qui pourront être envisagées par la suite
pour améliorer les méthodes numériques et les modèles qui viennent d’être présentés.

7.1 Rappel du contexte du travail

Le formalisme Arbitraire Lagrangien Eulérien (ALE) n’est certainement pas une nou-
velle manière de formuler les équations d’équilibre de la mécanique des milieux continus.
Il peut être résumé en un découplage du mouvement du maillage et de celui de la matière :
le mouvement du maillage peut être arbitrairement choisi pour faciliter le déroulement du
calcul envisagé. En pratique, les buts du formalisme ALE sont, d’une part, la conservation
d’un maillage régulier lors de très grandes déformations (problèmes de lissage du mail-
lage) et, d’autre part, la diminution de la taille d’un modèle (problèmes eulériens ou quasi
eulériens).

La technique utilisée est conceptuellement très simple et peut être décrite aux non-
spécialistes comme un remaillage continu du modèle au cours du calcul (phase eulérienne
du « partitionnement de l’opérateur eulérien-lagrangien »). Pendant cette opération, qui
consiste à redéfinir un nouveau maillage et à transférer les données de l’ancien maillage
vers le nouveau, la topologie du maillage (nombre de nœuds et relations de voisinage entre
les mailles) reste constante, contrairement à un remaillage classique. Cette restriction est
nécessaire pour obtenir un algorithme qui peut être activé à la fin de chaque pas de temps
tout en restant compétitif vis-à-vis des modèles lagrangiens traditionnels.

Les premières contributions dans ce domaine de recherches datent de 1964 (Noh [157]).
Néanmoins, plus de 40 ans après, le formalisme ALE n’est toujours que très marginalement
utilisé lors de l’élaboration de modèles numériques en mécanique du solide. Les raisons sont
très diverses et nous avons tenté dans ce travail de les analyser et d’apporter des solutions
pour rendre cette méthode de calcul plus attractive et donc peut-être plus populaire.
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7.2 Gestion du maillage

La première étape de la phase eulérienne de l’algorithme ALE consiste donc à reposi-
tionner les nœuds pour redéfinir un nouveau maillage. En pratique, cette étape est déjà
problématique, car, d’une part, elle nécessite un travail supplémentaire au concepteur d’un
modèle numérique et, d’autre part, le nombre de méthodes que l’on peut introduire dans
un code de calcul est inévitablement limité. Les méthodes disponibles peuvent donc ne pas
convenir pour le procédé étudié.

Bien que nous ayons tout de même implémenté des méthodes de lissage traditionnelles
qui sont bien utiles lorsque l’on veut améliorer la qualité d’un maillage en cours de calcul,
nous nous sommes implicitement focalisés sur le traitement du maillage de problèmes 3D
quasi eulériens. Notre but était de posséder tous les éléments nécessaires à la modélisation
d’une ligne de profilage continue, qui est l’application principale visée par ce travail :
• Le problème majeur dans ce type d’application est la gestion du maillage surfacique

du profilé. Les nœuds de chaque face doivent être repositionnés sur la surface de la
tôle tout en conservant au mieux sa forme complexe. Pour ce faire, nous avons mis au
point une méthode originale qui consiste à lisser le maillage sur une approximation de
la surface basée sur des splines cubiques. Bien que coûteux, l’algorithme résultant est
robuste et très précis. Cette précision est capitale, car elle permet non seulement une
bonne représentation géométrique du procédé, mais elle va aussi diminuer les flux de
matière parasites qui peuvent détériorer considérablement la qualité du transfert des
grandeurs qui va suivre.
• Un second problème important, dans le cadre de la simulation du profilage, provient

du type de maillage utilisé. Pour une question de précision, on utilise de préférence
un maillage structuré, aligné sur la direction de l’écoulement. Ce maillage est locale-
ment raffiné pour permettre une meilleure prise en compte des contacts. Il est donc
nécessaire de préserver la densité variable de mailles lors de l’opération de lissage
sur les surfaces. La majorité des méthodes de lissage décrites dans la littérature ont
été développées pour des maillages à densité uniforme et ont donc tendance à uni-
formiser la taille des mailles. La seule méthode utilisable (le lissage isoparamétrique)
possède une vitesse de convergence extrêmement faible. Nous avons donc développé
une méthode de lissage originale, beaucoup plus rapide, qui permet de n’effectuer
qu’une ou deux itérations sur l’ensemble des nœuds dans le cas de l’application de
profilage visée.
• Enfin, une méthode particulière pour le traitement des extrémités du maillage a été

mise au point. Elle permet de délimiter la zone maillée par des surfaces généralement
planes nommées frontières eulériennes. Le maillage est reconstruit en calculant son
intersection avec ces surfaces s’il les a franchies pendant la phase lagrangienne du
pas de temps.
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7.3 Transfert des données

La deuxième étape de la phase eulérienne de l’algorithme ALE consiste à transférer
les grandeurs définies aux nœuds et aux points de Gauss du maillage, de sa configura-
tion lagrangienne (avant repositionnement des nœuds) vers sa configuration eulérienne
(après repositionnement). Si on énumère les difficultés de cette étape du point de vue de la
modélisation du profilage, on constate qu’avant ce travail, il n’existait pas d’algorithme de
transfert suffisamment précis pour retrouver les résultats du modèle lagrangien équivalent :
• Bien qu’il soit techniquement possible d’obtenir des résultats sur le problème de pro-

filage par un algorithme d’intégration temporelle explicite, nous préférons utiliser
des méthodes implicites qui évitent les artifices numériques (mass/load scaling – aug-
mentation artificielle de la densité des matériaux ou de la vitesse du procédé pour
augmenter la limite de stabilité du schéma) et qui permettent de calculer de manière
plus fine le phénomène de retour élastique. Les éléments finis hexaédriques tradition-
nellement utilisés dans ce contexte possèdent plus d’un point de Gauss. Pour ce type
d’élément, seuls des schémas de transfert précis au premier ordre sont disponibles
dans la littérature (Huerta, Casadei et Donéa [47, 114, 115]). Par contre, pour les
éléments finis sous intégrés utilisés en dynamique explicite, des schémas précis au
second ordre ont été développés par Benson [22]. Nous nous sommes donc inspiré
de ces travaux pour mettre au point un schéma précis au second ordre adapté aux
hexaèdres à huit points de Gauss utilisés en dynamique implicite. Ce schéma est ca-
pable de gérer également les éléments complexes de type EAS (Enhanced Assumed
Strain) qui sont nécessaires à la modélisation correcte de la flexion.
• Grâce à une réflexion importante concernant l’implémentation, nous avons pu tra-

duire le fait que ce schéma de transfert s’écrit mathématiquement de manière indé-
pendante de la dimension du problème (2D ou 3D) et de la nature du support des
données (nœuds ou points de Gauss). La difficulté principale de mise en œuvre de
l’algorithme de transfert est sans contexte la création automatique de maillages auxi-
liaires de cellules de convection autour des nœuds et des points de Gauss. Bien qu’il
ne s’agisse que d’une prouesse technique, cette caractéristique de notre implémen-
tation mérite d’être signalée, car, sans elle, nous serions limités à des applications
simples à deux dimensions comme on en rencontre encore souvent dans la littérature
sur le sujet.
• La gestion du frottement est également capitale en formalisme ALE. Une méthode

simple et originale permet de représenter correctement le collement et le glissement
de la matière sur un maillage mobile.
• Enfin, nous nous sommes longuement attardés sur les « détails » de l’algorithme de

convection qui permettent de conserver sa haute précision dans le cas de rotations
convectives de grande amplitude. Il s’agit de la manière dont les volumes et les flux
convectifs sont calculés, ainsi que la gestion des conditions aux limites lors de la
présence de flux parasites à travers les surfaces du maillage. Ces ajustements fins
de l’algorithme de convection sont indispensables pour envisager la simulation quasi
eulérienne de procédés impliquant des tôles minces en flexion (planage et profilage).

345



CHAPITRE 7. CONCLUSIONS GÉNÉRALES

7.4 Applications

Les applications ont été volontairement présentées dans un ordre de difficulté croissante
qui nous a permis de tirer des conclusions sur de premières simulations simples et les appli-
quer ensuite sur des modèles plus complexes. Nous ne voulons pas résumer ici une nouvelle
fois tous les détails de ces études. Nous insistons uniquement sur quelques remarques ou
« règles de bonne pratique », déduites de notre expérience, et qui vont peut-être parfois à
contre-courant de ce que l’on peut intuitivement penser.
• Le coût de la gestion du maillage vis-à-vis du coût de l’algorithme de convection est

généralement infime. La seule exception est le traitement des surfaces courbes pour
lesquelles l’algorithme de reconstruction de la surface spline doit être utilisé. Dans ce
cas, il est important de réduire au minimum le nombre d’itérations de lissage.
• La seule difficulté rencontrée lors du repositionnement des nœuds est apparue lors

du remaillage de la surface supérieure de la tôle en laminage. La présence d’un angle
vif provoque des oscillations d’autant plus grandes que cet angle est important, c’est-
à-dire que la réduction de la tôle est importante. La seule manière de les minimiser
actuellement est de raffiner le maillage à cet endroit.
• Pour l’algorithme de convection, nous avons vu à plusieurs reprises que, contraire-

ment à ce que l’on pourrait initialement penser, le schéma précis au premier ordre est
souvent largement suffisant pour retrouver les résultats lagrangiens de référence. On
peut par exemple sans crainte l’utiliser lorsque le maillage est simplement lissé pour
éviter des écrasements excessifs d’éléments finis. Même dans le cas de modèles quasi
eulériens, ce schéma, très économique par rapport à son homologue plus précis, peut
fournir une solution correcte, tant que l’on ne s’intéresse qu’au régime stationnaire et
que les distances de convection ne sont pas trop grandes. Le cas du laminage en est
un bel exemple. Plus la matière s’écoule sur de longues distances à travers le maillage,
plus il devient nécessaire d’utiliser le schéma du second ordre pour obtenir une évo-
lution précise des grandeurs inconnues le long de l’écoulement sur la configuration
finale.
• Le transfert des vitesses et des accélérations nodales est important uniquement dans le

cas où l’énergie du système doit être calculée précisément. Dans tous les autres cas, il
est intéressant de ne pas transférer ces valeurs non seulement parce que leur transfert
est inutilement coûteux, mais aussi parce que l’algorithme d’intégration temporelle
en bénéficie et converge beaucoup plus rapidement grâce à un meilleur prédicteur au
début de chaque pas de temps.
• Pour obtenir une solution ALE numériquement stable en régime stationnaire, il est

parfois utile de contrôler la taille du pas de temps. Par exemple, lorsque cette taille
varie, les conditions de contact peuvent fortement évoluer. Certains nœuds peuvent
entrer en contact alors qu’ils n’étaient pas entrés en contact au pas de temps précédent
avec un pas de temps plus petit. Ces variations se répercutent inévitablement sur
les grandeurs mesurées sous la forme d’oscillations et détériorent la convergence du
calcul.
• Au niveau du temps de calcul, le formalisme ALE peut être utilisé pour diminuer le

coût des simulations. Il faut cependant garder à l’esprit qu’à nombre de mailles égal, le
modèle ALE sera généralement plus lent qu’un modèle lagrangien équivalent puisque
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l’algorithme ALE nécessite une phase supplémentaire à chaque pas de temps. Le gain
de temps de calcul requiert donc souvent un travail d’optimisation de maillage. À
moins que le modèle soit très petit, on arrive ainsi le plus souvent à obtenir des
temps de calcul plus faibles qu’en formalisme lagrangien. Ces gains ne sont cependant
pas toujours extraordinaires si on compare les résultats obtenus sur ce maillage ALE
optimisé avec des résultats sur un maillage lagrangien lui aussi optimisé.
• Vu la faible valeur des réductions de temps de calcul qui sont parfois obtenus en

formalisme ALE, il semble légitime de se demander si l’effort supplémentaire de
conception d’un modèle ALE est bien justifié. Nous pensons que cela dépend gran-
dement du procédé modélisé. Dans le cas du profilage par exemple, le formalisme
ALE possède indéniablement de nombreux autres avantages. Outre le gain de temps
de calcul, le modèle ALE permet d’envisager des simulations de profilés très com-
plexes qui sont difficiles, voire impossibles à modéliser en formalisme lagrangien. La
gestion du contact, du frottement et des conditions aux limites est grandement fa-
cilitée en formalisme ALE. Nous devons aussi mentionner que les routines ALE de
notre implémentation ne sont pas autant optimisées que les routines lagrangiennes.
En particulier, l’accès aux données localisées aux points de Gauss et aux nœuds est
excessivement lent et pénalise donc nos algorithmes. Les gains de temps de calcul
devront être réévalués lorsque ce code sera optimisé.

7.5 Perspectives

Pour terminer, cette section rassemble les sujets de recherches que nous jugeons priori-
taires pour la continuation de ce travail.
• Nous nous sommes principalement intéressés aux procédés de mise à forme de tôles

minces et plus particulièrement à leur solution en régime établi. Dans le cas du lami-
nage, du planage ou du profilage, il serait tout à fait possible de simuler des phéno-
mènes transitoires tels que des défauts de forme (ondulations, variation d’épaisseur),
des défauts dans le matériau (inhomogénéités ponctuelles), des effets dynamiques
(vibrations), etc. Pour obtenir un maillage ALE possédant moins de mailles qu’un
maillage lagrangien équivalent, il faudra cependant mettre au point des techniques
de relocalisation de nœuds plus complexes qui permettent de suivre le défaut lors
de son mouvement le long de la machine et de conserver à proximité de celui-ci un
maillage relativement fin.
• Dans le cas de procédés pour lesquels le formalisme ALE est utilisé pour contrôler la

qualité des mailles (extrusion, forgeage, impact, etc.), l’algorithme ALE devrait idéa-
lement être couplé à une procédure de remaillage complet ou partiel du solide qui
se déforme. Nous avons démontré que le formalisme ALE peut retarder considérable-
ment la nécessité de remaillage, mais il arrive toujours un moment ou les transfor-
mations subies par le milieu continu sont telles que le maillage initial n’est plus du
tout adapté à la poursuite du calcul, quelle que soit la méthode de lissage utilisée. Le
code de calcul idéal possède donc les deux approches et permet de les combiner de
manière optimale qui reste à définir.
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• Il serait également intéressant d’éliminer complètement les oscillations observées sur
la surface de la tôle en amont d’emprise dans le cas du laminage. Une solution élé-
gante consisterait à traiter le repositionnement des nœuds de cette surface comme
un problème de convection (Wisselink et Huétink [208]). En utilisant un algorithme
similaire à celui développé pour la convection des grandeurs aux points de Gauss,
qui, rappelons-le, conserve la monotonicité de la solution, il serait possible d’éliminer
totalement les oscillations indésirables sans passer par un raffinement du maillage.
• Nous sommes actuellement limités par les capacités de nos mailleurs quadrangu-

laires et hexaédriques pour optimiser les maillages. Il serait possible, en utilisant
un mailleur anisotrope quadrangulaire non structuré, de réduire encore largement
le nombre de mailles nécessaires dans bien des cas. Pour la simulation du profilage,
on pourrait ainsi générer des maillages 2D de section beaucoup plus complexes où le
nombre d’éléments sur l’épaisseur serait variable selon la largeur. C’est, d’après nous,
une étape indispensable pour pouvoir traiter efficacement le cas de profilés larges
avec notre modèle.

Enfin, puisque c’est une préoccupation industrielle majeure, nous indiquons certaines
pistes pour réduire encore le temps de calcul des simulations ALE :
• Comme nous l’avons déjà mentionné, l’accès aux données devrait être optimisé. C’est

une tâche purement informatique de structuration des données au sein du code qui
reste à faire.
• Le schéma de convection étant explicite, il peut être très facilement parallélisé. Les

méthodes de lissage itératives peuvent également bénéficier de la présence de plu-
sieurs processeurs sur la machine de calcul. C’est un travail qui est déjà prévu à l’heure
actuelle.
• Lorsqu’on analyse le déroulement d’une simulation ALE, on constate que, dans cer-

tains cas, les déplacements convectifs sont très faibles et qu’il serait bénéfique de re-
porter la phase eulérienne à plus tard. On remplacerait ainsi une série de convections
très faibles par un seul transport plus important, mais beaucoup plus économique.
La difficulté est alors de définir un critère d’activation de l’algorithme ALE qui soit
idéalement peu coûteux à évaluer et fiable.
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Annexe A

Machines

Il aurait été difficile d’utiliser une seule et même machine pour effectuer tous les calculs
présentés dans ce travail. À titre d’information, nous décrivons ici brièvement les caracté-
ristiques techniques des ordinateurs utilisés. Metafor est un code de calcul qui n’est pas
encore parallélisé. Le nombre de CPUs n’influence donc pas les temps de calcul.

CPU RAM OS
PC1 AMD Opteron 254, 2.8 GHz 8 Go Win Vista64
PC2 Intel Core2 Duo T7250 2 GHz 1 Go Win XP
PC3 Intel Core i7-940, 3 GHz 12 Go Linux64 Debian

TABLEAU A.1 – Description des machines utilisées dans ce travail.
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