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Abstract 

The numerical models describing the behaviour of electrostatically actuated microsystems often disregard fringing 
fields. However, taking the fringing fields into account is crucial for an accurate computation of the electrostatic forces. 
In this work, the finite element method is applied for modeling electrostatic actuators. The electrostatic force 
distribution is obtained by locally applying the virtual work method. A micro-beam and a comb drive are considered as 
test cases. The impact of the fringing field effects on the accuracy of electrostatic forces is shown through 2D and 3D 
parametric studies. 

1. Introduction 

Microelectromechanical systems (MEMS) are integrated micro devices or systems consisting of electrical and 
mechanical components. These systems are widely used as sensors and actuators on the micro scale. Electrostatic 
actuation is predominantly opted for most microactuators due to its good mechanical flexibility, high energy density and 
low power consumption. 

Structurally, a simple electrostatically actuated microsystem consists of an upper cantilever beam (movable) and a 
lower ground electrode (fixed). In such a system, the deflection caused by differences of potential and the redistribution 
of charges due to the change in geometry constitute the strong coupling between the mechanical and electrostatic 
models [1]. Several mathematical models have been developed to compute the electrostatic forces [2], [3]. These are 
however often established on a mass-spring model under geometric and electrostatic assumptions [4] that usually 
neglects the fringing fields.  

The finite element (FE) method is here applied for modeling microelectromechanical devices considering the 
fringing field effects. Through 2D and 3D analyses, the aim is to demonstrate the impact of the fringing effects on the 
evaluation of the electrostatic forces. The local electrostatic forces are computed by means of the virtual work 
method [5].  

A micro-beam and a comb drive are considered as test cases. Results of 2D and 3D geometrical parametric studies 
are discussed and the influence of fringing field effects is evidenced. 

2. Finite Element Formulations of MEMS 

An electrostatic problem is considered in a domain . It consists of computing the electric field e in , and ensuing 
quantities such as the electric forces, the sources of which are conductors with applied voltages. 

The electric field e derives from an electric scalar potential v, i.e. e = – grad v. The electric potential can be set to a 
constant value on each conductor to account for the voltage sources. The electrostatic problem can be solved via the 
weak form of the Poisson equation, div (– grad v) = q, i.e., 

,	ݒ	܌܉ܚ܏	ߝ−) ᇱ)ஐݒ	܌܉ܚ܏ + ,ݍ) ᇱ)ஐݒ −< ܖ ∙ ,܌ ᇱݒ >୻೏= ᇱݒ	∀ ,0 ∈  (1) ,(Ω)ܨ

where ε is the electric permittivity, q is the electric charge density, d is the electric flux density (with d = ε e) and F() 
is the function space defined on containing the basis functions for v as well as for the test function v’ [6]; ( · , · ) and 
< · , · > respectively denote a volume integral in  and a surface integral on  of products of scalar or vector fields. 
The surface integral term in (1) is used for fixing a natural boundary condition (usually homogeneous for a tangent 
electric field constraint) on a portion d of the boundary of ; the normal n is exterior to . 

In charge free regions, (1) reduces to 

,	ݒ	܌܉ܚ܏	ߝ−) ᇱ)ஐݒ	܌܉ܚ܏ −< ܖ ∙ ,܌ ᇱݒ >୻೏= ᇱݒ	∀ ,0 ∈  (2) .(Ω)ܨ

The electric force distribution is calculated by locally applying the virtual work principle [5]. At the discrete level, 
the force at each node is obtained by deriving the electric energy in the surrounding elements with respect to the 
displacement. Let us assume that the movable part of a rigid body is surrounded by free space, the contribution of a 
reference element   to the force in a given direction is  
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for a virtual displacement u in this direction. J is the geometrical Jacobian matrix and |J| is its determinant. 
The derivative in (3) has to be performed by keeping the electric field e constant, which is ensured by the nodal 

element discretisation [7]. 

3. Application Examples 

Two electrostatically actuated MEM devices, namely a micro-beam and a comb drive, are modeled using the FE 
method. The electric forces are computed by means of the virtual work method. The aim is to explore via 2D and 3D 
analyses the strong dependence of fringing field effects on geometrical parameters when these structures are subjected 
to voltages. 

Micro-beam 

A micro-beam is studied as first test case (Fig. 1). The considered geometrical parameters are the air gap g (distance 
between both electrodes), the length L, the width w and the thickness t of the beam. These parameters are varied in 
order to determine the effect of the fringing fields in the accurate computation of the force. The applied voltage is fixed 
to 5V. 

A factor, hereafter called the fringing factor, is defined as the relative difference between the electrostatic force Ff 
computed by the virtual work method on the actual geometry with the finite element method and the force estimated 
analytically Fnf by neglecting the fringing fields, i.e. 

Fringing	factor = ி೑ିி೙೑

ி೙೑
.                                                                       (4) 

The analytical expression for the transverse force acting on the beam without any fringing correction is given by 

௡௙ܨ = ଵ
ଶ
଴ܵߝ

௏మ

g² 
,                                                                     (5) 

where S is the surface area of the beam section facing the ground electrode and V is the applied voltage. 
Both 2D and 3D models are considered. The 3D model considers both the finite length and width of the beam. A 

first 2D model is defined for the transverse cross section of the beam, thus neglecting the finite length fringing effects. 
The reference beam length L is fixed to 30 µm. The fringing factor is shown in Figs. 2 and 3 for different values of the 
ratios w/g and w/t, respectively. 

As expected, the fringing factor is always higher in the 3D cases, these considering the fringing fields at the beam 
end. Moreover, for a constant L, the fringing factor increases with a decrease of the ratios w/g and w/t, i.e. the effects of 
fringing fields dominate when increasing either g or t for a fixed value of w, or when the width w decreases for fixed 
values of g and t. 

A second 2D model considers then the longitudinal cross section of the beam. This time, it thus neglects the finite 
width fringing effects. Figs. 4 and 5 represent the fringing factor for different values of the ratios L/g and L/t 
respectively. The fringing increases when these ratios diminish, i.e. when the values of g and t increase for a fixed value 
of L, or when the length L decreases for fixed values of g and t. 

In order to point out the influence of the mesh refinement on the computation accuracy of the electrostatic force, 
different discretisations of the beam microsystem are considered. The geometrical parameters are defined as: 
L = 30 µm, w = 2 µm, t = 1 µm and g = 1 µm. 

A dimension lc is defined as the average size of the finite elements in the neighborhood of the corners of the beam. 
The relative error is computed taking the finest mesh as reference for both 2D and 3D cases. Fig. 6 illustrates the 
obtained relationship between the relative error and the average size lc of the finite elements in the neighborhood of the 
corners. It can be seen that the relative error can be reduced to a few percents with a element size lower than about the 
tenth of the lowest characteristic dimensions of the beam. 

Comb drive 

A comb drive is considered as a second test case. It consists of two combs typically arranged so that they can slide 
past one another until each finger occupies the slot in the opposite comb. The modeling of such a structure can be 
reduced to the half of two opposite fingers taking advantage of the periodicity conditions. The electric field is tangent to 
both cut surfaces d, i.e. n  d = 0 on d is used in (1). Fig. 7 shows the considered geometry of the microsystem with 
the length of the finger L, its width b, its thickness t, the gap between fingers g and the length of the overlap L-d. 
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Figs. 8 and 9 show examples of finite element meshes used for solving the electrostatic field problem in 2D and 3D 
cases respectively. Note that in both cases, the air region adjacent to the tip of the comb finger is finely meshed to 
reduce the error on the fringing field. 

Fig. 10 shows the distribution of the electric force density on the fingers boundaries. It points out the increase of the 
force density at the corners. 

The analytical expressions for estimating the electric forces along x and y axes, i.e. in longitudinal and transversal 
directions, are respectively [8]  
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where n is the number of the pairs of electrodes (here n = 2), V is the applied voltage and S is the surface area of the 
section of the overlapping finger given by (L – d) t. Particularizing (4) with (7) and (8), we obtain the corresponding 
fringing factor along x and y axes. 

Fig. 11 shows that the fringing factor for the longitudinal force becomes significant for some ratios b/t of the fingers 
for both 2D and 3D cases. The important difference between the curves representing fringing factor in 2D and 3D cases 
is due to the influence of the thickness t for a fixed value of the width. Fig. 12 shows that, for a fixed thickness t, the 
fringing factor of the transversal force (along the y-axis) decreases as the overlap length (L – d) between the two fingers 
increases. These behaviors are in accordance with those pointed out for the beam model. 

Conclusion 

The presence of fringing fields in two-dimensional and three-dimensional models of electrostatic micro devices, 
such as a micro-beam and a comb drive, has been emphasized and their effect on the accuracy of electrostatic forces has 
been represented via a fringing factor. The impact of the fringing fields with varying dimensions of microstructures has 
been pointed out through parametric studies and reveals the necessity to make use of 3D models for their accurate 
evaluation. 

The calculated electrostatic forces increase considerably due to the fringing field effects. The accurate calculation of 
these forces is crucial for an accurate evaluation of the mechanical displacements in electrostatically actuated 
microstructures. 
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Fig. 1. Geometry of the micro-beam with length L, 
width w and thickness t (ε0 = 8.854 10-12 F/m). 

 
Fig. 2. Fringing factor vs w/g (L =30 µm), showing 
the relative effect of the width w with respect to the 
gap g. 

 
Fig. 3. Fringing factor vs w/t (L =30 µm), showing 
the relative effect of the width w with respect to the 
thickness t. 

 
Fig. 4. Fringing factor vs L/g, showing the relative 
effect of the length L with respect to the gap g. 

 
Fig. 5. Fringing factor vs L/t, showing the relative 
effect of the length L  with respect to the thickness t. 

 

Fig. 6. Relative error vs the size lc of the finite 
elements in the neighborhood of the corners (with 
L = 30 µm, w = 2 µm, t = 1 µm, g = 1 µm). 
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Fig. 7. Geometry of the comb-drive.

 

 

 

Fig. 8. 2D finite element mesh of the air region 
surrounding the comb fingers. 

 

 

Fig. 9. Trace on the comb fingers boundaries of the 
surrounding 3D finite elements in the air.
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Fig. 9. Trace on the comb fingers boundaries of the 
surrounding 3D finite elements in the air.

Fig. 10. Distribution of electric forces in 2D.

Fig. 11. Fringing factor for the longitudinal forc
direction) vs b/t (L = 10 µm, g
relative effect of the width 
thickness t. 

Fig. 12. Fringing factor for the transversal force (
direction) vs (L-d)/t (b = 2 µm, g
the relative effect of the overlap length (
respect to the thickness t. 
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Fig. 10. Distribution of electric forces in 2D. 

 
Fig. 11. Fringing factor for the longitudinal force (x 

, g = 1 µm), showing the 
relative effect of the width b with respect to the 

 
Fig. 12. Fringing factor for the transversal force (y 

µm, g = 1 µm), showing 
the relative effect of the overlap length (L – d) with 


