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This paper deals with the analysis of electrostatic problem involving moving devices by means of a per-
turbation finite element method. A reference problem withou any moving parts is first solved and gives the
source for a sequence of perturbation problems in subdomag restricted to the neighbourhood of these parts.
The source accounts for all the previous calculations for peceding positions what increases the efficiency of the
simulations. This proposed approach also improves the conytation accuracy and decreases the complexity of

the analysis of moving conductors thanks to the use of indepelent and adaptively refined meshes.
Index Terms— Electrostatic analysis, finite element methods, movemenperturbation methods.

1. Introduction

HE finite element (FE) analysis of problems involving moveineften requires a completely new computation
T and mesh for every position of the moving part [1]. This maydoenputationally expensive specially when
dealing with 3D models]2].

In [3], an iterative perturbation FE method (PFEM) has bessdifor computing electrostatic field distortions and the
ensuing charges and forces appearing on moving condueiijens subjected to fixed potentials. A reference problem
without moving parts is first solved and gives the source fseguence of independent perturbation problems (one per
moving part). An iterative process is then used to obtainexipe solution for relative positions when the coupling
between the source and perturbing regions is significanteder, for some critical positions, many iterations may be
required to ensure accuracy which increases the compuodhtimst.

In this paper, an extension to this approach is presented, M@ source (feeding the sequence) of perturbation
problems for each position is computed considering not éfierence problem at initial position (only) but exploiting
instead all the previous calculations for preceding pas#i The iterative process is thus accelerated and congnaht
cost reduced. Hereafter, the considered conductors aggose@ to move with small speed in the absence of any

magnetic field in order to satisfy the static field assumptibime method is highlighted and validated on a test case.
2. PFEM for Moving Electrostatic Conductors

A. Canonical problem in a strong form

An electrostatic problemp is defined in a bounded domaf?), of the 2-D or 3-D Euclidean space. The subscript
p refers to the associated problemThe domain(,, comprises fixed or moving conductive regions denotedby.
The boundary of2,, is denoted by, (possibly at infinity), with complementary pais , andI'; ,, and the boundary
of Q., by ., (Fig.[).
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The governing differential equations and constitutive ke
curle, = 0, divd, =0, d, =¢p€, (1a-b-c)
with associated boundary conditions (BCs)
nxe,|r,,=0, n-d,|[r,,=0, (2a-b)

wheree, is the electric fieldd, is the electric flux densitys, is the electric permittivity and is the unit normal
exterior to2,, . In (@b), we assume that there is no volume charge density,inFrom [1a), the electric field, can
be derived from an electric scalar potentig| i.e., e, = —grad v,,.

At the discrete level, independent meshes are used for @altlgmsp. This allows an adapted mesh refinement of
different regions and avoids any intersection conflict lestwthe boundaries of problemslefined in moving domains.

The distortion of the mesh is thus avoided in case of a clitlesplacement or deformation of the moving regions.

B. Perturbation problems

The addition of a perturbing moving conductive regi@p, to a reference configuration modifies the electric
field distribution and leads to electric field distortion®. ithe so-called perturbation fields.
In the FE perturbation simulation of moving conductofssuccessive sub-problems= 1, ..., P are solved. The

summation of their solutions gives the total solution of tdwenplete problem as

P P P
v=> v, e=Y¢g, d=) d,. (3a-b-c)
p=1 p=1 p=1

For a significant coupling between a given sub-donfajnand the other sub-domains, an iterative process is used

to determine an accurate solutiop of problemp. In this caseyp, is obtained as a series of corrections, i.e.
Vp =Up1+Vp2+vp3+ ... (4)

whereuw, ; is the solution of sub-problem, i. The iterative process is repeated until convergence favengolerance.
As each problemp, i is perturbed by all the others, its solution, i.e. corrattig,;, must take into account the influence
of all the previous corrections, ; of the other sub-problems, with=1, ...,p—1; j=tand¢g=p+1,...,P; j =i — 1.
Further, initial solutions, o are set to zero.
In this paper, the added perturbing moving regfor, is a perfect conductor. The source of each sub-prohieim
is the result of the summation of all the previously caleedasolutionsy, ; and it is applied as a non-homogeneous

Dirichlet BC, i.e.

P
Vpi Irey=— Y Vg (5)
qg=1
q#Pp
wherej is the last iteration index for which the associated sofui®known.

In regions whit different:,,, an additional source term has to be consideredlin (Ic) [8taBse the added region
Q. , is a perfect conductor, all the, are equal and denoted

Fig.[d illustrates the case of two sub-problems where sobipmp = 1 is chosen as a reference or source problem.
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3. Weak Finite Element Formulations
A. Canonical problem in a weak form

The electrostatic problem ([@a-c) can be solved as a solution of the electric scalangiatéormulation obtained

from the weak form of[{lLb), i.ediv(—egradv,) = 0, as
(—egrad vy, gradv’)q, — (n-dy,v")p, , = 0,0 € F(Q,), (6)

where F'(€2,,) is the function space defined 6t), containing the basis functions foy, as well as for the test function
o' [); (-,-)q and (-, -)r denote, respectively, a volume integralihand a surface integral oh of products of scalar
or vector fields. At the discrete levek((2,) is approximated with nodal FEs. The surface integral ternf@ncan
be associated with a global quantity or used for fixing a r@tBC (usually homogeneous for a tangent electric field
constraint) on a portioi' ,, of the boundary of,,.

Formulation [(B) is valid for any correction, ; in (d) involved in the iterative process. The associated Bof

I'., has to be strongly imposed iR((2,).

B. Projection of sources

The source of the perturbation problemis a scalar potentiad, applied as a BC[{5). Because this source is
interpolated in the mesh of probleg a projection method [5] is used to evaluatgin the mesh ofQ,,.
Given the perfectly conductive nature of the perturbingaed?. ,, the projection,, . of v, can be limited to

L. p. It reads
(gradvg,,,,,gradv’)r, = — (gradvg, gradv)r, = 0,Yv' € F'(T.,), @)

where the function spacé&(T'.,) containsv,,, . and its associated test functief. At the discrete levely,,, is
discretized with nodal FEs and is associated to a gauge ttmmdixing a nodal value i’ ,. For sake of simplicity,
Vg,..; Will be referred to asy,.

Further, the projection is to be extended to the whole donthip in case of a dielectric perturbing region. We
choose to directly projegirad v, in order to assure a better numerical behaviour in the egsejuations where the
involved quantities are also gradients.

When all components of previously calculated electric fieldreese, = —grad v, are needed (to give access also
to normal gradients) in the layer of FEs touchifig, in €,\Q.,, denoted(, ,, the projection[{l7) ofu, has to be
extended only to this transition layer. This way, the corapahal effort of the projection is also reduced. Having
access t®, ande, in this layer allows to compute there the perturbed eledigid e. Both charges and electric forces
can thus be calculated dr ,,.

Formulation [[6) has to account for non-homogeneous NeurBfhias well, i.e.
n-dyilrg,=—> N-dg;. (8)
q=1
q#p
The latter is not known in a strong sense. The associatedcguifitegral term in({6) can be evaluated via the weak
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formulation of problems;, j now applied to(2; ,, as

de_ E :n quv de

q;ép

= —(—egrad qu,j, gradv')q, ., V' € F(Q), 9)

q=1
qF#p

benefiting from the already known projection @f ; (7).

(n- dm,

C. Electrostatic charges

A suitable treatment of the surface integral term[ih (6) éxiesn naturally defining a global electric charge in
the weak sensé][4]. A test functien , is chosen equal to one dn. , and continuously varying towardsin the layer
., of FEs touchingl. ,, in Q,\Q .

Each solutionv,, ; calculated in[(B) and the projecteq ; () lead to an electric charge correcti@)), ; appearing
onTI'., in iteration:. This charge can be naturally obtained at the post-pravgsdage through the volume integral
in (®) limited to 2 ,,, i.e.,

P
Qp,i = — (—egrad vy, gradve ), , — (—€grad Z Vg.j> grad vep)a, , - (10)
=1
gaép
Further, the total electric charge appearinglqr, is given by
Qp= Z Qp,i - (11)

i>1
D. Electrostatic forces

As previously mentioned, the perturbed electric fieldan be computed in the transition lay@y, of FEs
touchingl'. , in ©,\Q. . The electric force distribution is calculated thus by lbcapplying the virtual work principle
[6] in Q,. At the discrete level, the force at each nodel®f, is obtained by deriving the electric energy in the
considered layer of FEs with respect to a virtual displageniehe contribution of a reference elemehtto the force
in a given direction is ol

F,. = / —2eJ ! —Je+ee—)dA, (12)
ou

for a virtual displacement in this direction.J is the geometrical Jacobian matrix with determingfit
Given the non-linearity of the force, a direct summation loé forces at each iteration is not possible. The total

electric fielde has to be updated at each iteration before computing theftote (12).

E. Taking movement into account

Up to now, the first position of a moving perturbing condudihr, has been considered. Now, the electrostatic
analysis will be carried out for its next positions.
In the PFEM simulation, the position of the moving condugtiegion(2. , is either a given function of time or
obtained from solving an equation of motion that determitres displacements df. ,. In the latter case, a weak
electromechanical coupling is considered where the étefrirces are the input forces for the mechanical problem.

Hereafter, the electrical problem is solved step-by-stpgithe implicit Euler method, which is unconditionallyalste.
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At the initial time ¢y, i.e. the first position, a problerh of the form [1a-c) is considered and called the reference or
source problem. Its solution, given by [4) will be exploited hereafter.
At t; = to + At, the conductofl. , moves and the solutiom, previously calculated (&) improves the source of

problemp at iterationl as
P

Up,1 [r. = —Uk — Z Vg5 (13)
qg=1
a#p.k

The improvement of this source is obvious singe accounts for all the previous calculations done in the first
position. The solution of perturbation probleml is now closer to the suitable correction 1), than that calculated
in to. The number of iterations to achieve the convergence,a thus reduced.

Next, we consider the reference problénat iteration: = 2. The sourcev;, that fed problenp, has to be counter-
balanced at this iteration. That is because the non-honemgsnDirichlet BC of problent has to be corrected. This

is done by subtracting the quantity — vy 1 from the other projected solutions ;, i.e.

P
k2 re == (D v — (0k — vk1))- (14)
q=1
a7k
For next iterationg > 2, the perturbation problems are solved analogously. The iterative process is repeattid u
convergence for a given tolerance.

The same reasoning of the resolutions holds for the next siteje.

4. Application

As example, an electrostatic actuated combdrive is cormiddhe geometry of its unit cell is shown in Fid. 3
(L =10 pm, b =2 pm and g = 2 pm). Applying a voltage difference between the comb structumdl result in
the displacement of its movable part by electrostatic fardéis movement is simulated here by varying the finger
engagement denoted as

The reference problem is defined in the dom&in surrounding the fixed comb (i.€Q. ). The latter is coarsely
meshed (Fid.J4r{ght)). The domairf2, containing the moving finger (i.eQ. ) has an adapted mesh especially fine in
the vicinity of the corners (Fid.l 4€ft)). The fringing field effects are thus precisely taken into@unt and the electric
forces are accurately calculated. The two meshes are indepewhat allows for any intersection of the perturbation
problem boundaries with the reference problem region rizd$eiThe distortion of the mesh is also avoided in case of
a critical displacement of the moving finger.

The electric charges appearing on the surface of the corabtstes and the outer surface @f are calculated by
both the FE perturbation technique and the conventional FE numerical results are compared in Eig. 5. A good
agreement is observed. In addition, the charge consenvafithe whole system is shown.

The electric forces on the outer surface of the moving fingeradso computed. In order to compare with the FE
solution, we consider the summation of the values ofaf@mponent of the electric forces at each node of both left
and right side of the mover (Fifil 6). The numerical resuligagvell (the relative error with respect to the FEM results
reaches3% with relative accuracyl %o).

In Fig.[d the number of iterations to achieve convergencéh(tie relative error of the electric potential beld®)

using the proposed approach is divided by a factor 2 in coismamith what was presented inl [3] where previous
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calculations for preceding positions are not exploitedsd éerations are then required in case of critical position
where the moving finger is close to the anchored electrode.
Furthermore, it has been verified that the PFEM solves this@eblem with a speed-up factor of 3 in comparison

to the classical FEM.

5. Conclusion

The perturbation finite element method proposed is suitédrienodeling electrostatic conductors involving
movement. The mover is discretized in a reduced sub-doméimasmesh that keeps its initial quality throughout the
whole movement even for a critical displacement. The corifyleof the problem is also decreased by considering
independent and adaptively refined meshes for each sulepmnobl

An electrostatic analysis of a combdrive involving rigid vement has been carried out. However, the proposed
method applies equally to the deformation of an elastic bdte example shows that a significant speed-up is

achieved and the accuracy is improved in comparison withrckagsical FEM calculations.
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Figure 1. Extraction of the moving conduct. , from the domainQ2, and the definition of a reduced subdom&ly containingQ2. , and its

surrounding.
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Figure 2. The distribution of the electric potential cotregs calculated in each sub-problem p=1,2 and the totaitisol v of the complete
problem (after convergence). Sub-problgm= 1 is chosen as the reference or source sub-problem.
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Figure 3. Geometry of a unit cell of a combdrive with a moving fingad fixed electrode.

Figure 4. Mesh of2; (right) and adapted mesh &I, with infinite boundaries around the moving fingésft).
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Figure 5. Electric charges versus finger displacement.
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Figure 6.

Figure 7.
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