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This paper deals with the analysis of electrostatic problems involving moving devices by means of a per-

turbation finite element method. A reference problem without any moving parts is first solved and gives the

source for a sequence of perturbation problems in subdomains restricted to the neighbourhood of these parts.

The source accounts for all the previous calculations for preceding positions what increases the efficiency of the

simulations. This proposed approach also improves the computation accuracy and decreases the complexity of

the analysis of moving conductors thanks to the use of independent and adaptively refined meshes.

Index Terms− Electrostatic analysis, finite element methods, movement,perturbation methods.

1. Introduction

T HE finite element (FE) analysis of problems involving movement often requires a completely new computation

and mesh for every position of the moving part [1]. This may becomputationally expensive specially when

dealing with 3D models [2].

In [3], an iterative perturbation FE method (PFEM) has been used for computing electrostatic field distortions and the

ensuing charges and forces appearing on moving conductive regions subjected to fixed potentials. A reference problem

without moving parts is first solved and gives the source for asequence of independent perturbation problems (one per

moving part). An iterative process is then used to obtain a precise solution for relative positions when the coupling

between the source and perturbing regions is significant. However, for some critical positions, many iterations may be

required to ensure accuracy which increases the computational cost.

In this paper, an extension to this approach is presented. Now, the source (feeding the sequence) of perturbation

problems for each position is computed considering not the reference problem at initial position (only) but exploiting

instead all the previous calculations for preceding positions. The iterative process is thus accelerated and computational

cost reduced. Hereafter, the considered conductors are supposed to move with small speed in the absence of any

magnetic field in order to satisfy the static field assumption. The method is highlighted and validated on a test case.

2. PFEM for Moving Electrostatic Conductors

A. Canonical problem in a strong form

An electrostatic problemp is defined in a bounded domainΩp of the 2-D or 3-D Euclidean space. The subscript

p refers to the associated problemp. The domainΩp comprises fixed or moving conductive regions denoted byΩc,p.

The boundary ofΩp is denoted byΓp (possibly at infinity), with complementary partsΓe,p andΓd,p, and the boundary

of Ωc,p by Γc,p (Fig. 1).
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The governing differential equations and constitutive laware

curl ep = 0, div dp = 0, dp = εp ep, (1a-b-c)

with associated boundary conditions (BCs)

n × ep |Γe,p
= 0, n · dp |Γd,p

= 0, (2a-b)

whereep is the electric field,dp is the electric flux density,εp is the electric permittivity andn is the unit normal

exterior toΩp . In (1b), we assume that there is no volume charge density inΩp. From (1a), the electric fieldep can

be derived from an electric scalar potentialvp, i.e., ep = −grad vp.

At the discrete level, independent meshes are used for all problemsp. This allows an adapted mesh refinement of

different regions and avoids any intersection conflict between the boundaries of problemsp defined in moving domains.

The distortion of the mesh is thus avoided in case of a critical displacement or deformation of the moving regions.

B. Perturbation problems

The addition of a perturbing moving conductive regionΩc,p to a reference configuration modifies the electric

field distribution and leads to electric field distortions, i.e. the so-called perturbation fields.

In the FE perturbation simulation of moving conductors,P successive sub-problemsp = 1, ..., P are solved. The

summation of their solutions gives the total solution of thecomplete problem as

v =

P
∑

p=1

vp , e =

P
∑

p=1

ep , d =

P
∑

p=1

dp . (3a-b-c)

For a significant coupling between a given sub-domainΩp and the other sub-domains, an iterative process is used

to determine an accurate solutionvp of problemp. In this case,vp is obtained as a series of corrections, i.e.

vp = vp,1 + vp,2 + vp,3 + ... (4)

wherevp,i is the solution of sub-problemp, i. The iterative process is repeated until convergence for a given tolerance.

As each problemp, i is perturbed by all the others, its solution, i.e. correction vp,i, must take into account the influence

of all the previous correctionsvq,j of the other sub-problems, withq = 1, ..., p−1; j = i andq = p+ 1, ..., P ; j = i− 1.

Further, initial solutionsvp,0 are set to zero.

In this paper, the added perturbing moving regionΩc,p is a perfect conductor. The source of each sub-problemp, i

is the result of the summation of all the previously calculated solutionsvq,j and it is applied as a non-homogeneous

Dirichlet BC, i.e.

vp,i |Γc,p
= −

P
∑

q=1

q 6=p

vq,j , (5)

wherej is the last iteration index for which the associated solution is known.

In regions whit differentεp, an additional source term has to be considered in (1c) [3]. Because the added region

Ωc,p is a perfect conductor, all theεp are equal and denotedε.

Fig. 2 illustrates the case of two sub-problems where sub-problemp = 1 is chosen as a reference or source problem.
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3. Weak Finite Element Formulations

A. Canonical problem in a weak form

The electrostatic problemp (1a-c) can be solved as a solution of the electric scalar potential formulation obtained

from the weak form of (1b), i.e.,div(−ε grad vp) = 0, as

(−ε grad vp, grad v
′)Ωp

− 〈n · dp, v′〉Γd,p
= 0, ∀v′ ∈ F (Ωp), (6)

whereF (Ωp) is the function space defined onΩp containing the basis functions forvp as well as for the test function

v′ [4]; (·, ·)Ω and 〈·, ·〉Γ denote, respectively, a volume integral inΩ and a surface integral onΓ of products of scalar

or vector fields. At the discrete level,F (Ωp) is approximated with nodal FEs. The surface integral term in(6) can

be associated with a global quantity or used for fixing a natural BC (usually homogeneous for a tangent electric field

constraint) on a portionΓd,p of the boundary ofΓp.

Formulation (6) is valid for any correctionvp,i in (4) involved in the iterative process. The associated BC (5) on

Γc,p has to be strongly imposed inF (Ωp).

B. Projection of sources

The source of the perturbation problemp is a scalar potentialvq applied as a BC (5). Because this source is

interpolated in the mesh of problemq, a projection method [5] is used to evaluatevq in the mesh ofΩp.

Given the perfectly conductive nature of the perturbing region Ωc,p, the projectionvqproj of vq can be limited to

Γc,p. It reads

〈grad vqproj , grad v
′〉Γc,p

− 〈grad vq, grad v
′〉Γc,p

= 0, ∀v′ ∈ F (Γc,p), (7)

where the function spaceF (Γc,p) containsvqproj and its associated test functionv′. At the discrete level,vqproj is

discretized with nodal FEs and is associated to a gauge condition fixing a nodal value inΓc,p. For sake of simplicity,

vqproj will be referred to asvq.

Further, the projection is to be extended to the whole domainΩc,p in case of a dielectric perturbing region. We

choose to directly projectgrad vq in order to assure a better numerical behaviour in the ensuing equations where the

involved quantities are also gradients.

When all components of previously calculated electric field sourceseq = −grad vq are needed (to give access also

to normal gradients) in the layer of FEs touchingΓc,p in Ωp\Ωc,p, denotedΩl,p, the projection (7) ofvq has to be

extended only to this transition layer. This way, the computational effort of the projection is also reduced. Having

access toep andeq in this layer allows to compute there the perturbed electricfielde. Both charges and electric forces

can thus be calculated onΓc,p.

Formulation (6) has to account for non-homogeneous NeumannBC as well, i.e.

n · dp,i |Γd,p
= −

∑

q=1

q 6=p

n · dq,j . (8)

The latter is not known in a strong sense. The associated surface integral term in (6) can be evaluated via the weak
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formulation of problemsq, j now applied toΩl,p, as

〈n · dp,i, v′〉Γd,p
= −〈

∑

q=1

q 6=p

n · dq,j , v
′〉Γd,p

= −(−ε grad
∑

q=1

q 6=p

vq,j , grad v
′)Ωl,p

, ∀v′ ∈ F (Ωl,p), (9)

benefiting from the already known projection ofvq,j (7).

C. Electrostatic charges

A suitable treatment of the surface integral term in (6) consists in naturally defining a global electric charge in

the weak sense [4]. A test functionvc,p is chosen equal to one onΓc,p and continuously varying towards0 in the layer

Ωl,p of FEs touchingΓc,p in Ωp\Ωc,p.

Each solutionvp,i calculated in (6) and the projectedvq,j (7) lead to an electric charge correctionQp,i appearing

on Γc,p in iteration i. This charge can be naturally obtained at the post-processing stage through the volume integral

in (6) limited toΩl,p, i.e.,

Qp,i =− (−ε grad vp,i, grad vc,p)Ωl,p
− (−ε grad

P
∑

q=1

q 6=p

vq,j , grad vc,p)Ωl,p
. (10)

Further, the total electric charge appearing onΓc,p is given by

Qp =
∑

i≥1

Qp,i . (11)

D. Electrostatic forces

As previously mentioned, the perturbed electric fielde can be computed in the transition layerΩl,p of FEs

touchingΓc,p in Ωp\Ωc,p. The electric force distribution is calculated thus by locally applying the virtual work principle

[6] in Ωl,p. At the discrete level, the force at each node ofΓc,p is obtained by deriving the electric energy in the

considered layer of FEs with respect to a virtual displacement. The contribution of a reference element∆ to the force

in a given direction is

Fr =

∫

∆

ε

2
(−2 e J−1

∂J

∂u
e + e e

∂|J |

∂u
) d∆, (12)

for a virtual displacementr in this direction.J is the geometrical Jacobian matrix with determinant|J |.

Given the non-linearity of the force, a direct summation of the forces at each iteration is not possible. The total

electric fielde has to be updated at each iteration before computing the total force (12).

E. Taking movement into account

Up to now, the first position of a moving perturbing conductorΩc,p has been considered. Now, the electrostatic

analysis will be carried out for its next positions.

In the PFEM simulation, the position of the moving conductive regionΩc,p is either a given function of time or

obtained from solving an equation of motion that determinesthe displacements ofΩc,p. In the latter case, a weak

electromechanical coupling is considered where the electric forces are the input forces for the mechanical problem.

Hereafter, the electrical problem is solved step-by-step using the implicit Euler method, which is unconditionally stable.
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At the initial time t0, i.e. the first position, a problemk of the form (1a-c) is considered and called the reference or

source problem. Its solutionvk given by (4) will be exploited hereafter.

At t1 = t0 +∆t, the conductorΩc,p moves and the solutionvk previously calculated (att0) improves the source of

problemp at iteration1 as

vp,1 |Γc,k
= −vk −

P
∑

q=1

q 6=p,k

vq,j . (13)

The improvement of this source is obvious sincevk accounts for all the previous calculations done in the first

position. The solution of perturbation problemp, 1 is now closer to the suitable correction inΩp than that calculated

in t0. The number of iterations to achieve the convergence ofvp is thus reduced.

Next, we consider the reference problemk at iterationi = 2. The sourcevk that fed problemp, has to be counter-

balanced at this iteration. That is because the non-homogeneous Dirichlet BC of problemk has to be corrected. This

is done by subtracting the quantityvk − vk,1 from the other projected solutionsvq,j , i.e.

vk,2 |Γc,k
= −

(

P
∑

q=1

q 6=k

vq,j − (vk − vk,1)
)

. (14)

For next iterationsi ≥ 2, the perturbation problemsp are solved analogously. The iterative process is repeated until

convergence for a given tolerance.

The same reasoning of the resolutions holds for the next timestep.

4. Application

As example, an electrostatic actuated combdrive is considered. The geometry of its unit cell is shown in Fig. 3

(L = 10 µm, b = 2 µm and g = 2 µm). Applying a voltage difference between the comb structures will result in

the displacement of its movable part by electrostatic forces. This movement is simulated here by varying the finger

engagement denoted asx.

The reference problem is defined in the domainΩ1 surrounding the fixed comb (i.e.,Ωc,1). The latter is coarsely

meshed (Fig. 4 (right)). The domainΩ2 containing the moving finger (i.e.,Ωc,2) has an adapted mesh especially fine in

the vicinity of the corners (Fig. 4 (left)). The fringing field effects are thus precisely taken into account and the electric

forces are accurately calculated. The two meshes are independent what allows for any intersection of the perturbation

problem boundaries with the reference problem region materials. The distortion of the mesh is also avoided in case of

a critical displacement of the moving finger.

The electric charges appearing on the surface of the comb structures and the outer surface ofΩ1 are calculated by

both the FE perturbation technique and the conventional FEM. The numerical results are compared in Fig. 5. A good

agreement is observed. In addition, the charge conservation of the whole system is shown.

The electric forces on the outer surface of the moving finger are also computed. In order to compare with the FE

solution, we consider the summation of the values of thex-component of the electric forces at each node of both left

and right side of the mover (Fig. 6). The numerical results agree well (the relative error with respect to the FEM results

reaches3% with relative accuracy1‰).

In Fig. 7 the number of iterations to achieve convergence (with the relative error of the electric potential below1%)

using the proposed approach is divided by a factor 2 in comparison with what was presented in [3] where previous
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calculations for preceding positions are not exploited. Less iterations are then required in case of critical positions

where the moving finger is close to the anchored electrode.

Furthermore, it has been verified that the PFEM solves this 2-D problem with a speed-up factor of 3 in comparison

to the classical FEM.

5. Conclusion

The perturbation finite element method proposed is suitablefor modeling electrostatic conductors involving

movement. The mover is discretized in a reduced sub-domain with a mesh that keeps its initial quality throughout the

whole movement even for a critical displacement. The complexity of the problem is also decreased by considering

independent and adaptively refined meshes for each subproblem.

An electrostatic analysis of a combdrive involving rigid movement has been carried out. However, the proposed

method applies equally to the deformation of an elastic body. The example shows that a significant speed-up is

achieved and the accuracy is improved in comparison with theclassical FEM calculations.
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Ωp

Fixed Ωc,p

Γp = Γe,p ∪ Γd,p

Γq = Γe,q ∪ Γd,q
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vq, eq, d q

vp, ep,d p

εp Moving Ωc,q+

Ωq

εq

n

Figure 1. Extraction of the moving conductorΩc,q from the domainΩp and the definition of a reduced subdomainΩq containingΩc,q and its

surrounding.
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+ v1,1 + v2,1

+ v1,2 + v2,2

+ v1,3 + v2,3

+ v1,4 + v2,4

v = v1 + v2

= (v1,1 + v1,2 + v1,3 + ...)

+(v2,1 + v2,2 + v2,3 + ...)

Convergence

Figure 2. The distribution of the electric potential corrections calculated in each sub-problem p=1,2 and the total solution v of the complete

problem (after convergence). Sub-problemp = 1 is chosen as the reference or source sub-problem.
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Figure 3. Geometry of a unit cell of a combdrive with a moving finger and fixed electrode.
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Figure 4. Mesh ofΩ1 (right) and adapted mesh ofΩ2 with infinite boundaries around the moving finger (left).
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Figure 6. Electric forces versus finger displacement (up). Relative error with regard to the conventional FEM (down).
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