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So far, the masses of excited states of mixed orbital symmetry and in particular those of nonstrange
[70, 1−] baryons derived in the 1/Nc expansion were based on the separation of a system of Nc

quarks into a symmetric core and an excited quark. Here we avoid this separation and show that
an advantage of this new approach is to substantially reduce the number of linearly independent
operators entering the mass formula. A novelty is that the isospin-isospin term becomes as dominant
in ∆ as the spin-spin term in N resonances.

I. INTRODUCTION

In 1974 ’t Hooft [1] suggested a perturbative expan-
sion of QCD in terms of the parameter 1/Nc where Nc

is the number of colors. This suggestion, together with
the power counting rules of Witten [2] has lead to the
1/Nc expansion method which allows to systematically
analyze baryon properties. The current research status
is described, for example, in Ref. [3]. The success of
the method stems from the discovery that the ground
state baryons have an exact contracted SU(2Nf ) symme-
try when Nc → ∞ [4, 5], Nf being the number of flavors.
A considerable amount of work has been devoted to the
ground state baryons [5, 6, 7, 8, 9, 10, 11]. For Nc → ∞
the baryon masses are degenerate. For finite Nc the mass
splitting starts at order 1/Nc. Operator reduction rules
simplify the 1/Nc expansion [6, 7]. It is customary to
drop higher order corrections of order 1/N2

c .
It is thought that ’t Hooft’s suggestion [1] would lead

to an 1/Nc expansion to hold in all QCD regimes. Ac-
cordingly, the applicability of the approach to excited
states is a subject of current investigation.

In the language of the constituent quark model the
excited states can be grouped into excitation bands with
N = 1, 2, 3, etc. units of excitation energy. Among them,
the N = 1 band, or equivalently the [70, 1−] multiplet,
has been most extensively studied, either for Nf = 2 [12,
13, 14, 15, 16, 17, 18, 19] or for Nf = 3 [20]. In the latter
case, first order corrections in SU(3) symmetry breaking
were also included. In either case, the conclusion was
that the splitting starts at order N0

c .
The N = 2 band contains the [56′, 0+], [56, 2+],

[70, ℓ+] (ℓ = 0, 2) and [20, 1+] multiplets. There are
no physical resonances associated to [20, 1+]. The few
studies related to the N = 2 band concern the [56′, 0+]
for Nf = 2 [21], [56, 2+] for Nf = 3 [22] and [70, ℓ+] for
Nf = 2 [23], later extended to Nf = 3 [24]. The method
has also been applied to highly excited nonstrange and
strange baryons belonging to [56, 4+] [25] which is the
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lowest of the 17 multiplets of the N = 4 band [26].
The mass operator M is defined as a linear combina-

tion of independent operators Oi

M =
∑

i

ciOi, (1)

where the coefficients ci are reduced matrix elements that
encode the QCD dynamics and are determined from a fit
to the existing data. Here we are concerned with non-
strange baryons only. The building blocks of the opera-
tors Oi are the SU(2Nf ) generators Si, Ta and Gia and
the SO(3) generators ℓi. Their general form is

Oi =
1

Nn−1
c

O
(k)
ℓ · O(k)

SF , (2)

where O
(k)
ℓ is a k-rank tensor in SO(3) and O

(k)
SF a k-rank

tensor in SU(2)-spin, but invariant in SU(Nf ). Thus Oi

are rotational invariant. For the ground state one has
k = 0. The excited states also require k = 1 and k = 2
terms.

The spin-flavor (SF) operators O
(k)
SF are combinations

of SU(2Nf ) generators, the lower index i in the left hand
side of (2) representing a specific combination. Each
n-body operator is multiplied by an explicit factor of
1/Nn−1

c resulting from the power counting rules. Some
compensating Nc factors may arise in the matrix ele-
ments when Oi contains a coherent operator such as Gia

or T a.
The excited states belonging to [56, ℓ] multiplets are

rather simple and can be studied by analogy with the
ground state. In this case both the orbital and the spin-
flavor parts of the wave function are symmetric. Natu-
rally, it turned out that the splitting starts at order 1/Nc

[22, 25], as for the ground state.
The states belonging to [70, ℓ] multiplets are appar-

ently more difficult. So far, the general practice was to
decouple the baryon into an excited quark and a sym-
metric core. This means that each generator of SU(2Nf )
must be written as a sum of two terms, one acting on
the excited quark and the other on the core. As a con-
sequence, the number of linearly independent operators
Oi increases tremendously and the number of coefficients
ci, to be determined, becomes much larger than the ex-
perimental data available. For example, for the [70, 1−]
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multiplet with Nf = 2 one has 13 linearly independent
operators up to order 1/Nc included [16], instead of 7
(see below). We recall that there are only 7 nonstrange
resonances belonging to this band. Consequently, select-
ing the most dominant operators is very difficult so that
one risks to make an arbitrary choice [16].

In this practice the matrix elements of the excited
quark are straightforward, as being described by single-
particle operators. The matrix elements of the core op-
erators Si

c, T
a
c are also simple to calculate, while those

of Gia
c are more involved. Analytic formulas for the ma-

trix elements of all SU(4) generators have been derived in
Ref. [27]. Every matrix element is factorized according
to a generalized Wigner-Eckart theorem into a reduced
matrix element and an SU(4) Clebsch-Gordan coefficient.
These matrix elements have been used in nuclear physics,
which is governed by the SU(4) symmetry. Recently we
have extended the approach of Ref. [27] to SU(6) [28] and
obtained matrix elements of all SU(6) generators between
symmetric [Nc] states.

Here we propose a method where no decoupling is nec-
essary. All one needs to know are the matrix elements of
the SU(2Nf ) generators between mixed symmetric states
[Nc − 1, 1]. For SU(4) they were obtained by Hecht and
Pang [27]. They can be easily applied to a system of
Nc nonstrange quarks. To our knowledge such matrix
elements are yet unknown for Nf = 3.

II. THE WAVE FUNCTION

We deal with a system of Nc quarks having one unit of
orbital excitation. Then the orbital wave function must
have a mixed symmetry [Nc − 1, 1]. Its spin-flavor part
must have the same symmetry in order to obtain a totally
symmetric state in the orbital-spin-flavor space. The gen-
eral form of such a wave function is [29]

|[Nc]〉 =
1

√

d[Nc−1,1]

∑

Y

|[Nc − 1, 1]Y 〉O|[Nc − 1, 1]Y 〉FS

(3)
where d[Nc−1,1] = Nc − 1 is the dimension of the repre-
sentation [Nc − 1, 1] of the permutation group SNc

and
Y is a symbol for a Young tableau (Yamanouchi sym-
bol). The sum is performed over all possible standard
Young tableaux. In each term the first basis vector rep-
resents the orbital space (O) and the second the spin-
flavor space (FS). In this sum there is only one Y (the
normal Young tableau) where the last particle is in the
second row and Nc − 2 terms where the last particle is
in the first row. All these terms were neglected in the
procedure of decoupling the excited quark, which implies
that the permutation symmetry SNc

was broken, i.e. the
orbital-spin-flavor wave function was no more symmetric,
as it should be. One can easily prove the above assertion
by looking at the expression of the wave function, Eqs.
(3.4)-(3.5) in the second paper of Ref. [16], for example.
This definition contains the coefficients cρη which are de-

fined as coefficients of an “orthogonal rotation”. In Ref.
[23] we have shown that cρη are some specific isoscalar
factors of the permutation group SNc

[29]. These are
factors of the Clebsch-Gordan coefficients, factorized as
isoscalar factors times Clebsch-Gordan coefficients of the
group SNc−1. In the case under concern the isoscalar
factors incorporate the position of the Nc-th particle in a
Young tableau. By identifying our expressions with those
of Ref. [16] we found that they correspond to the term
where the last particle is located in the second row of the
Young tableau of the representation [Nc−1, 1]. Thus the
other Nc − 2 terms of the wave function, with the Nc-th
particle in the first row, are missing. In Appendix A we
show explicitly which are the missing terms for Nc = 3
in the sectors 28, 48 and 210. In addition, as an example,
the orbital basis vectors of configuration s4p, containing
one unit of orbital excitation, which span the invariant
subspace of the irreducible representation [41] of S5 are
given in Appendix B. The definition and the orthogonal-
ity properties together with examples of isoscalar factors
can be found in Ref. [30]. In Sec. VI we discuss the
validity of the approximate (asymmetric) wave function
of Ref. [16].

If there is no decoupling, there is no need to specify
Y , the matrix elements being identical for all Y ’s, due to
Weyl’s duality between a linear group and a symmetric
group in a given tensor space [34]. Then the explicit form

of a wave function of total angular momentum ~J = ~ℓ+ ~S
and isospin I is

|ℓSII3; JJ3〉 =
∑

mℓ,S3

(

ℓ S J
mℓ S3 J3

)

×|[Nc − 1, 1]ℓmℓ〉 |[Nc − 1, 1]SS3II3〉, (4)

each term containing an SU(2) Clebsch-Gordan (CG) co-
efficient, an orbital part |[Nc − 1, 1]ℓmℓ〉 an a spin-flavor
part |[Nc − 1, 1]SS3II3〉.

III. SU(4) GENERATORS AS TENSOR
OPERATORS

The SU(4) generators Si, Ta and Gia, globally denoted
by Eia [27], are components of an irreducible tensor op-
erator which transform according to the adjoint repre-
sentation [211] of dimension 15 of SU(4). We recall that
the SU(4) algebra is

[Si, Ta] = 0, [Si, Gja] = iεijkGka,

[Ta, Gib] = iεabcGic,

[Si, Sj ] = iεijkSk, [Ta, Tb] = iεabcTc,

[Gia, Gjb] =
i

4
δijεabcTc +

i

4
δabεijkSk. (5)

As one can see, the tensor operators Eia are of three
types: Ei (i = 1,2,3) which form the subalgebra of
SU(2)-spin, Ea (a = 1,2,3) which form the subalgebra
of SU(2)-isospin and Eia which act both in the spin and
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the isospin spaces. They are related to Si, Ta and Gia

(i = 1, 2, 3; a = 1, 2, 3) by

Ei =
Si√
2
; Ea =

Ta√
2
; Eia =

√
2Gia. (6)

The matrix elements of every Eia between states be-
longing to the representation [Nc−1, 1] can be expressed
as a generalized Wigner-Eckart theorem which reads [27]

〈[Nc − 1, 1]I ′I ′3S
′S′

3|Eia|[Nc − 1, 1]II3SS3〉 =
√

C [Nc−1,1](SU(4))

(

S Si S′

S3 Si
3 S′

3

)(

I Ia I ′

I3 Ia
3 I ′3

)

×
(

[Nc − 1, 1] [211] [Nc − 1, 1]
SI SiIa S′I ′

)

ρ=1

, (7)

where C [Nc−1,1](SU(4)) = Nc(3Nc + 4)/8 is the eigen-
value of the SU(4) Casimir operator for the representa-
tion [Nc − 1, 1]. The other three factors are: an SU(2)-
spin CG coefficient, an SU(2)-isospin CG coefficient and
an isoscalar factor of SU(4). Note that the isoscalar fac-
tor carries a lower index ρ = 1. In general, this index
is necessary to distinguish between irreducible represen-
tations, whenever the multiplicity in the inner product
[Nc − 1, 1] × [211] → [Nc − 1, 1] is larger than one. In
that case, the matrix elements of the SU(4) generators
in a fixed irreducible representation [f ] are defined such
as the reduced matrix elements take the following values
[27]

〈[f ]||E||[f ]〉 =

{
√

C[Nc−1,1](SU(4)) for ρ = 1
0 for ρ 6= 1

. (8)

Thus the knowledge of the matrix elements of SU(4) gen-
erators amounts to the knowledge of the corresponding
SU(4) isoscalar factors. In Ref. [27] a variety of isoscalar
factors were obtained. We need those for [f ] = [Nc−1, 1].
They are reproduced in Table I in terms of our notation
and typographical errors corrected. They contain the
phase factor introduced in Eq. (35) of Ref. [27]. As com-
pared to the symmetric [Nc] representation, where I = S
always, here one has I = S (13 cases) but also I 6= S (10
cases). Some of the properties of these isoscalar factors
are given in Appendix C.

One can easily identify the matrix elements associated
to the generators of SU(4). One has S2I2 = 10 for Si,
S2I2 = 01 for Ta and S2I2 = 11 for Gia, where 1 or 0 is
the rank of the SU(2)-spin or SU(2)-isospin tensor con-
tained in the generator. The generalized Wigner-Eckart
theorem (7) is used to calculate the matrix elements of
Oi needed for the mass operator, as described below.

IV. THE MASS OPERATOR

As specified in the introduction, here we are concerned
with nonstrange baryons only. Table II contains the
seven independent operators up to order 1/Nc appear-
ing in the mass operator Eq. (1). As already mentioned,

the building blocks of Oi are Si, T a, Gia and ℓi. We also
need the rank k = 2 tensor operator

ℓ(2)ij =
1

2

{

ℓi, ℓj
}

− 1

3
δi,−j

~ℓ · ~ℓ, (9)

which, like ℓi, acts on the orbital wave function |ℓmℓ〉
of the whole system of Nc quarks (see Ref. [23] for the

normalization of ℓ(2)ij).
In Table II the first nontrivial operator is the spin-

orbit operator O2. In the spirit of the Hartree picture
[2], generally adopted for the description of baryons, we
identify the spin-orbit operator with the single-particle
operator

ℓ · s =

Nc
∑

i=1

ℓ(i) · s(i). (10)

Accordingly, its matrix elements are of order N0
c . For

simplicity we ignore the two-body part of the spin-orbit
operator, denoted by 1/Nc (ℓ · Sc) in Ref. [16], as being
of a lower order (the lower case indicates operators acting
on the excited quark and the subscript c is attached to
those acting on the core).

The operators O3 and O4 are two-body and linearly
independent. However, in the decoupling procedure the
corresponding isospin-isospin operator taT a

c /Nc has al-
ways been avoided in the numerical analysis [16, 20].

To be consistent with Ref. [16] we assume that the
operators O5 and O6 are dominantly two-body, which
means that they carry a factor 1/Nc. Moreover, as Gia

sums coherently, it introduces an extra factor Nc and
makes the matrix elements of O5 and O6 of order N0

c

as well (what it matters in the mass operator are the
products c5O5 and c6O6 and it will turn out that their
contribution is small in any case).

We have also included in the fit the following operator

O7 =
3

N2
c

SiT aGia, (11)

an SU(4) invariant built from products of all generators
of SU(4), Si, Ta and Gia. In the core plus excited quark
procedure its counterpart was listed in Table I of the
second paper of Ref. [16] as O16 = gScTc/N

2
c but com-

pletely ignored in the numerical fit, one reason being that
the number of operators in the mass formula was much
too large as compared to the data. The operator O16 is
only a part of O7, as it can be easily seen. As shown be-
low, its matrix elements are of order 1/Nc, like those of
the pure spin O3 or pure isospin O4 operators. Therefore
there is no a priori reason to ignore it.

Naturally, one should also include the operator

O8 =
1

Nc
ℓ(2)S · S, (12)

also of order 1/Nc. However, in our basis we found a pro-
portionality relation between expectation values of two
different operators

〈ℓ(2)ijSiSj〉 = 12〈ℓ(2)ijGiaGia〉, (13)
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TABLE I: Isoscalar factors of SU(4) for [Nc − 1, 1] × [211] → [Nc − 1, 1] defined by Eq. (7).

S1 I1 S2I2 SI

(

[Nc − 1, 1] [211] [Nc − 1, 1]

S1I1 S2I2 SI

)

ρ=1

S + 1 S + 1 11 SS

√

S(S + 2)(2S + 3)(Nc − 2 − 2S)(Nc + 2 + 2S)

(2S + 1)(S + 1)2Nc(3Nc + 4)

S + 1 S 11 SS }

−
1

S + 1

√

(2S + 3)(Nc + 2 + 2S)

(2S + 1)(3Nc + 4)
S S + 1 11 SS

S S 11 SS −
Nc − (Nc + 2)S(S + 1)

S(S + 1)
√

Nc(3Nc + 4)

S S − 1 11 SS }

−
1

S

√

(2S − 1)(Nc − 2S)

(2S + 1)(3Nc + 4)
S − 1 S 11 SS

S − 1 S − 1 11 SS
1

S

√

(S − 1)(S + 1)(2S − 1)(Nc + 2S)(Nc − 2S)

(2S + 1)Nc(3Nc + 4)

S + 1 S 10 SS }

0

S S + 1 01 SS

S − 1 S 10 SS }

0

S S − 1 01 SS

S S 10 SS } √

4S(S + 1)

Nc(3Nc + 4)
S S 01 SS

S + 1 S 11 SS − 1

√

(2S + 3)(Nc + 2 + 2S)(Nc − 2S)

(2S + 1)Nc(3Nc + 4)

S S 11 SS − 1
1

S

√

Nc − 2S

3Nc + 4

S S − 1 11 SS − 1
1

S

√

(S − 1)(S + 1)Nc

3Nc + 4

S − 1 S 11 SS − 1 −
Nc + 4S2

S
√

(2S − 1)(2S + 1)Nc(3Nc + 4)

S − 1 S − 1 11 SS − 1
1

S

√

Nc + 2S

3Nc + 4

S − 1 S − 2 11 SS − 1

√

(2S − 3)(Nc + 2 − 2S)(Nc + 2S)

(2S − 1)Nc(3Nc + 4)

S S − 1 10 SS − 1

√

4S(S + 1)

Nc(3Nc + 4)

S − 1 S − 1 10 SS − 1 0

S S 10 SS − 1 0

S S − 1 01 SS − 1

√

4(S − 1)S

Nc(3Nc + 4)
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TABLE II: List of operators and the coefficients resulting from numerical fits. The values of ci are indicated under the headings
Fit n, in each case.

Operator Fit 1 (MeV) Fit 2 (MeV) Fit 3 (Mev) Fit 4 (MeV) Fit 5 (MeV) Fit 6 (MeV)

O1 = Nc l1 481 ± 5 482 ± 5 484 ± 4 484 ± 4 498 ± 3 495 ± 3

O2 = ℓisi
−31 ± 26 −20 ± 23 −12 ± 20 3 ± 15 38 ± 34 −30 ± 25

O3 =
1

Nc

SiSi 161 ± 16 149 ± 11 163 ± 16 150 ± 11 156 ± 16

O4 =
1

Nc

T aT a 169 ± 36 170 ± 36 141 ± 27 139 ± 27

O5 =
15

Nc

ℓ(2)ijGiaGja
−29 ± 31 −34 ± 30 −34 ± 31 −32 ± 29

O6 =
3

Nc

ℓiT aGia 32 ± 26 35 ± 26 −67 ± 30 28 ± 20

O7 =
3

N2
c

SiT aGia 649 ± 61

χ2
dof 0.43 0.68 0.94 1.04 11.5 0.24

TABLE III: Matrix elements of Oi for all states belonging to the [70, 1−] multiplet.

O1 O2 O3 O4 O5 O6 O7

2N 1
2

Nc −
2Nc − 3

3Nc

3

4Nc

3

4Nc

0
Nc − 6

4Nc

−
3(Nc − 6)

16N2
c

4N 1
2

Nc −
5

6

15

4Nc

3

4Nc

25

24
−

5

8

15

16Nc

2N 3
2

Nc

2Nc − 3

6Nc

3

4Nc

3

4Nc

0 −
Nc − 6

8Nc

−
3(Nc − 6)

16N2
c

4
N 3

2
Nc −

1

3

15

4Nc

3

4Nc

−
5

6
−

1

4

15

16Nc

4
N 5

2
Nc

1

2

15

4Nc

3

4Nc

5

24

3

8

15

16Nc

2∆ 1
2

Nc

1

3

3

4Nc

15

4Nc

0 −
5

4

15

16Nc

2∆ 3
2

Nc −
1

6

3

4Nc

15

4Nc

0
5

8

15

16Nc

4N 1
2
−

2N 1
2

0 0 0 0 −
25

12Nc

√

Nc(Nc + 3)

2
−

1

2Nc

√

Nc(Nc + 3)

2
0

4N 3
2
−

2N 3
2

0 0 0 0
5

24Nc

√

5Nc(Nc + 3) −
1

4Nc

√

5Nc(Nc + 3) 0

TABLE IV: The partial contribution and the total mass (MeV) predicted by the 1/Nc expansion using Fit 1. The last two
columns give the empirically known masses, name and status.

Part. contrib. (MeV) Total (MeV) Exp. (MeV) Name, status

c1O1 c2O2 c3O3 c4O4 c5O5 c6O6

2
N 1

2
1444 10 40 42 0 -8 1529 ± 11 1538 ± 18 S11(1535)****

4
N 1

2
1444 26 201 42 -31 -20 1663 ± 20 1660 ± 20 S11(1650)****

2
N 3

2
1444 -5 40 42 0 4 1525 ± 8 1523 ± 8 D13(1520)****

4N 3
2

1444 10 201 42 25 -8 1714 ± 45 1700 ± 50 D13(1700)***

4N 5
2

1444 -16 201 42 -6 12 1677 ± 8 1678 ± 8 D15(1675)****

2∆ 1
2

1444 -10 40 211 0 -40 1645 ± 30 1645 ± 30 S31(1620)****

2∆ 3
2

1444 5 40 211 0 20 1720 ± 50 1720 ± 50 D33(1700)****
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for all states belonging to the [70, 1−] multiplet. This
implies that we cannot include O8 independently in the
fit to the experimental spectrum, because its expectation
values are proportional to those of O5.

The operators O5, O6 and O7 are normalized to allow
their coefficients ci to have a natural size [20, 31]. The
normalization factors follow from the matrix elements of
Oi presented in Table III. These matrix elements have
been calculated for all available states of the multiplet
[70, 1−] starting from the wave function (4) and using
the isoscalar factors of Table I. The general analytic
expressions of O5, O6 and O7, up to an obvious factor,
are given in Appendix D. For completeness, in Table III,
we also indicate the off-diagonal matrix elements of O5

and O6.

V. RESULTS

We have implemented the matrix elements of Table III
into the mass formula (1) and have performed several
distinct fits of the theoretical masses to the experiment
[32]. Each of the six fits corresponds to a selection of
operators Oi used in Eq. (1), such as to cover the most
relevant possibilities, in our view.

In this way we have obtained sets of values for the dy-
namical coefficients ci presented in Table II. In Tables
IV and V we present the masses of the nonstrange reso-
nances belonging to the [70, 1−] multiplet obtained from
the coefficients resulting from the Fit 1 and the Fit 6,
which correspond to the lowest values of χ2

dof .
In Tables IV and V we have also indicated the partial

contribution (without error bars) of each term present in
the total mass. These are obtained from the values of
ci of Table II and the values of 〈Oi〉 of Table III. The
Fit 1, containing all operators but O7, is indeed excel-
lent, giving χ2

dof ≃ 0.43. From Table II one can see that
the values of the coefficients c3 and c4 are closed to each
other, which shows the importance of including O4, be-
sides the usual O3. In addition, one can see that O3 is
dominant for the 4NJ resonances while O4 is dominant
for the 2∆J resonances, the contribution being of about
200 MeV in both cases. This brings a new aspect into
the description of excited states studied so far, where the
dominant term was always the spin-spin term [23], the
isospin term being absent in the numerical analysis. To
get a better idea about the role of the operator O4 we
have also made a fit by removing it from the definition
of the mass operator (1). The result is shown in Table
II column Fit 5. The χ2

dof deteriorates considerably, be-
coming 11.5 instead of 0.43. This clearly shows that O4

is crucial in the fit.
The coefficient c2 of the spin-orbit term is small and its

magnitude and sign remains comparable to that of Ref.
[24] obtained in the analysis of the [70, ℓ+] multiplet.
The value of c2 implies a small spin-orbit contribution
to the total mass, in agreement with the general pattern
observed for the excited states [23] and in agreement with

constituent quark models.
The error bars of c5 and c6 are comparable to their

central values. However, the removal of O5 and/or O6

from the mass operator does not deteriorate the fit too
badly, as shown in Table II, Fits 2–4, the χ2

dof becom-
ing at most 1.04. The contribution of O5 or of O6 is
comparable to that of the spin-orbit operator. Note that
the structure of O6 is related to that of the spin-orbit
term, which makes its small contribution entirely plau-
sible. Thus the contribution of all operators containing
angular momentum is small, which may be a dynamic
effect.

Table V shows explicitly the role of the operator O7,
never included so far in numerical fits. One can see that
this operator plays a dominant role in 4NJ and 2∆J ,
where it contributes with about 200 MeV to the mass,
value comparable to that of O3 or O4 in the Fit 1. Includ-
ing O3, O4 and O7 together, their contributions remains
equally large but c7 changes sign and χ2

dof increases to
from 0.24 to about 2. This suggests that O7 somehow
compensates for the pure spin S · S or pure isospin T · T
operators, or in other words, plays a kind of common
role with O3 and O4. We consider that more theoretical
work is needed to better understand the algebraic rela-
tions between various Oi operators, in particular to find
new operator identities for mixed symmetric states.

VI. VALIDITY OF THE APPROXIMATE WAVE
FUNCTION

In Sec. II it was mentioned that all previous studies
of the [70, 1−] multiplet were performed with the asym-
metric wave function (3.4) of the second paper of Ref.
[16]. Here we discuss the validity of this approximation
by comparing matrix elements of the same operators cal-
culated both with the exact (symmetric) and the approx-
imate (asymmetric) wave function.

First we consider the operator O2, common to previ-
ous and present calculations. It is a one-body operator,
defined by Eq. (10). Its matrix elements can be written
as

〈ℓ · s〉 = Nc〈ℓ(Nc) · s(Nc)〉, (14)

because the orbital-spin-flavor wave function is symmet-
ric. Thus it is enough to know the matrix element of
a single quark operator, say Nc. Let us illustrate the
case Nc = 5, for which the components of the orbital
wave function are given in Table VII. One can see
that only the first basis vector, associated to the nor-
mal Young tableau, gives a nonvanishing contribution to
〈ℓ(Nc) · s(Nc)〉 and this comes only from the term ssssp,
because it is the only one where the particle 5 is in a
p state. The generalization of this argument to an arbi-
trary Nc is obvious and equally good. Thus in the case of
a single excited quark it is equally well to calculate 〈ℓ · s〉
with the exact or with the approximate wave function of
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TABLE V: The partial contribution and the total mass (MeV) predicted by the 1/Nc expansion using Fit 6. The last two
columns give the empirically known masses, name and status.

Part. contrib. (MeV) Total (MeV) Exp. (MeV) Name, status

c1O1 c2O2 c5O5 c6O6 c7O7

2
N 1

2
1486 10 0 -7 41 1529 ± 11 1538 ± 18 S11(1535)****

4
N 1

2
1486 25 -33 -18 203 1663 ± 20 1660 ± 20 S11(1650)****

2
N 3

2
1486 -5 0 4 41 1525 ± 7 1523 ± 8 D13(1520)****

4N 3
2

1486 10 26 -7 203 1718 ± 41 1700 ± 50 D13(1700)***

4N 5
2

1486 -15 7 11 203 1677 ± 8 1678 ± 8 D15(1675)****

2∆ 1
2

1486 -10 0 -35 203 1643 ± 29 1645 ± 30 S31(1620)****

2∆ 3
2

1486 5 0 18 203 1711 ± 24 1720 ± 50 D33(1700)****

TABLE VI: Matrix elements of operators from the decoupling scheme [16] corresponding to the [70, 1−] multiplet. The columns
asym reproduce results obtained with the asymmetric wave function of Ref. [16] and the columns sym show results obtained
with the exact wave function (3), detailed in Appendix A.

〈s · Sc〉 〈S2
c 〉 〈t · Tc〉 〈T 2

c 〉

asym sym asym sym asym sym asym sym

28 −1

2
−1

2
1 1 −1

2
−1

2
1 1

48
1

2

1

2
2 2 −1 −1

2
2 1

210 −1 −1

2
2 1

1

2

1

2
2 2
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Ref. [16], because the missing terms in the latter func-
tion do not contribute. Note however that the spin-orbit
operator has a negligible contribution to the mass in all
previous and present calculations and in practice it can
be neglected.

Next we consider a few of the two-body operators of
Ref. [16] s · Sc, S2

c , t · Tc and T 2
c and restrict the dis-

cussion to the case of physical interest, Nc = 3, which is
enough for our purpose. Appendix A gives the approxi-
mate wave functions [16] and the exact wave functions for
the submultiplets 28, 48 and 210. The calculated matrix
elements are shown in Table VI. One can see that for
every operator there is a case where the approximation
fails. This failure is related to those missing parts of the
wave function, where the core has Ic 6= Sc. Moreover, the
approximate matrix elements of the operators s · Sc and
S2

c turn out to be isospin dependent and the approximate
matrix elements of the operators t · Tc and T 2

c are spin
dependent. Using the exact wave function, this anomaly
disappears.

For an arbitrary Nc we expect that the exact wave
function would generally give a dependence on Nc for
the matrix elements of operators from previous works,
entirely different from that of Table II and III of Ref.
[16]. As a by-product, one can also see that the operator
T 2

c , always ignored previously, has matrix elements com-
parable to those of S2

c . This is consistent with our result
that the isospin-isospin becomes as dominant in ∆ as the
spin-spin in N resonances.

VII. CONCLUSIONS

In this work we have studied the [70, 1−] multiplet
in the 1/Nc expansion by using a simple approach which
avoids the separation of the system into a core and an ex-
cited quark. This allows us to use an exact wave function
of a system of Nc quarks where both the orbital and spin-
flavor parts are in the mixed representation [Nc − 1, 1].
Previously the wave function was truncated to a single
term which implied that the symmetry SNc

was broken.
That asymmetric wave function was associated with de-
scribing the system as being decoupled into an excited
quark and a core with Nc −1 quarks in the ground state.
Such a description involves an excessively large number of
linearly independent operators in the mass formula and
the only possible way to make a fit was to arbitrarily se-
lect some of them. Not surprisingly, the asymmetric wave
function fails to reproduce the exact values of the matrix
elements of some dominant operators in the decoupling
scheme itself.

The present approach, based on a wave function with
the correct permutation symmetry, sheds an entirely new
light on the description of the baryon multiplet [70, 1−]
in the 1/Nc expansion. We have shown that the isospin
operator O4 is crucial in the fit to the existing data and
its contribution to the mass of the ∆ resonances is as im-
portant as that of the spin operator O3 for N resonances.

Also we found that the operator O7, never included pre-
vious fits and containing products of all generators of
SU(4), Eqs. (5), plays by itself a dominant role in 4N
and 2∆, states where the spin and isospin are different.
By contrast, all operators containing the O(3) generators
ℓi bring negligible contributions to the mass.

A comment is in order regarding Refs. [18, 19] where
a submultiplet structure (distinct towers of states) has
been found, in the procedure of decoupling the system
into a core plus an excited quark. The present analysis
would give similar results. The reason is that the exis-
tence of three towers of states in the [70, 1−] multiplet is
due to the the presence of three operators when working
up to order N0

c : 11 (of order Nc) and ℓ · s and ℓ(2)GG/Nc

(of order N0
c ). The meson-baryon scattering analysis of

Ref. [19] proves the compatibility between the three tow-
ers and three resonance poles in the scattering amplitude
with quantum numbers corresponding to the states in the
[70, 1−] multiplet.

It would be interesting to reconsider the study of higher
excited baryons, for example those belonging to [70, ℓ+]
multiplets, in the spirit of the present approach.

In practical terms, the extension to three flavors would
involve a considerable amount of work on isoscalar factors
of SU(6) generators for mixed symmetric representations.

APPENDIX A

We consider the particular case of Nc = 3 to prove that
the wave function given by Eq. (3.4) of the first paper of
Ref. [16] breaks S3 symmetry.

The basis vectors which span the invariant subspace
of the mixed symmetric representation correspond to the
following Young tableaux

Xλ → 1 2

3
, Xρ → 1 3

2
, (A1)

where X = R, S, F and FS are the orbital, spin, flavor
and flavor-spin wave functions respectively.

In the spin space one can construct |Sλ〉 and |Sρ〉 by
first coupling the spin of quarks 1 and 2 to Sc followed
by the coupling of Sc to the spin of the third quark. We
explicitly have

|Sλ〉 =
∑

m1,m2

(

1 1/2 1/2

m1 m2 S3

)

|Sc = 1; m1〉
∣

∣

∣

∣

1

2
; m2

〉

,

(A2)
and

|Sρ〉 = |Sc = 0; m1 = 0〉
∣

∣

∣

∣

1

2
; m2 = S3

〉

, (A3)

and equivalently in the isospin space

|Fλ〉 =
∑

α1,α2

(

1 1/2 1/2

α1 α2 I3

)

|Ic = 1; α1〉
∣

∣

∣

∣

1

2
; α2

〉

,

(A4)
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and

|F ρ〉 = |Ic = 0; α1 = 0〉
∣

∣

∣

∣

1

2
; α2 = I3

〉

. (A5)

In the standard notation the states (FS)
λ

and (FS)
ρ

can
be written as (see e.g. [29])

(FS)
λ
I=3/2;S=1/2 = F SSλ, (A6)

(FS)ρ
I=3/2;S=1/2 = F SSρ, (A7)

(FS)
λ
I=1/2;S=3/2 = FλSS, (A8)

(FS)
ρ
I=1/2;S=3/2 = F ρSS, (A9)

(FS)λ
I=1/2;S=1/2 =

√

1

2

(

FλSλ − F ρSρ
)

, (A10)

(FS)
ρ
I=1/2;S=1/2 = −

√

1

2

(

FλSρ + F ρSλ
)

. (A11)

where FS and SS denote symmetric states in isospin and
spin respectively. In this notation the orbital-flavor-spin
wave function of a baryon, which must be symmetric un-
der S3, is a particular case of Eq. (3) and can be written
as

|[3]〉 =
1√
2
[Rλ(FS)

λ
+ Rρ(FS)

ρ
]. (A12)

We wish to rewrite the flavor-spin part of the wave
function (3.4) of the first paper of Ref. [16], denoted by
|II3; SS3〉 in the above notation.

Let us first consider the case I = 3/2, S = 1/2. One
has

|3/2 I3; 1/2 S3〉 =
∑

m1,m2,α1,α2

(

Sc 1/2 1/2

m1 m2 S3

)(

Ic 1/2 3/2

α1 α2 I3

)

cMS
−− |Sc = Ic = 1; m1α1〉 |1/2, m2; 1/2, α2〉, (A13)

where cMS
−− = 1. The spin-flavor states are factorisable

into spin and isospin, so that due to (A2) this state is
identical to (A6). For the case I = 1/2, S = 3/2, one has

|1/2 I3, 3/2 S3〉 =
∑

m1,m2,α1,α2

(

Sc 1/2 3/2

m1 m2 S3

)(

Ic 1/2 1/2

α1 α2 I3

)

cMS
++ |Sc = Ic = 1; m1α1〉 |1/2, m2; 1/2; α2〉, (A14)

where cMS
++ = 1. Due to (A4) this state is identical to (A8).

Next we consider the case I = 1/2, S = 1/2,

|1/2 I3, 1/2 S3〉 =
∑

m1,α1,η

(

Sc 1/2 1/2

m1 m2 S3

)(

Ic 1/2 1/2

α1 α2 I3

)

cMS
0η

∣

∣

∣

∣

Sc = Ic =
1

2
+

η

2
; m1α1

〉

|1/2, m2; 1/2, α2〉

=

√

1

2

{

∑

m1,α1

(

1 1/2 1/2

m1 m2 S3

)(

1 1/2 1/2

α1 α2 I3

)

|Sc = Ic = 1; m1α1〉 |1/2, m2; 1/2, α2〉

− |Sc = Ic = 0; m1 = α1 = 0〉 |1/2; m2 = α2 = 1/2〉
}

, (A15)

where we have introduced cMS
0+ =

√

1

2
and cMS

0− = −
√

1

2

after the second equality sign. Due to (A2)-(A5) this
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state is identical to (A10). This proves that in (A13),
(A14) and (A15) the second term of Eq. (A12) is missing.
Thus the wave function of Ref. [16]. is truncated. It
contains only one term instead of two as required by the
S3 symmetry. In Sec. VI we show that the missing terms
(A7), (A9) and (A11) have a considerable contribution to
the matrix elements of some operators used in the 1/Nc

expansion mass formula.

APPENDIX B

As an example, in this Appendix we present the orbital
basis vectors which span the invariant subspace of the
representation [41] of S5.

An exact orbital-spin-flavor wave function of five
fermions (for which the color part is totally antisymmet-
ric) having the configuration s4p, i.e. a single quark ex-
cited to the p shell, has to be built from 4 independent
basis vectors, each having a distinct Young tableau, both
in the orbital and spin-flavor spaces. The basis vectors

in the orbital space are shown in Table VII [33]. Note
that every term in each state implies the normal order
of particles: 1, 2, 3, 4, 5. One can see that the first basis
vector, with the 5-th particle in the second row contains
the configuration ssssp, i.e. it is the only part of all
these basis vectors which has the first four quarks in the
ground state and the 5-th in a p state. One can see that
in fact any quark can be excited to the p shell in a prop-
erly symmetrized state. Thus the wave function used in
previous literature should contain only this ssssp term
[13, 14, 15, 16, 18, 20] if the core was unexcited. The
truncation of the spin-flavor part was discussed in Sec-
tion II.

APPENDIX C

The grouping in Table I is justified by the observation
that the isoscalar factors obey the following orthogonality
relation

∑

S1I1S2I2

(

[Nc − 1, 1] [211] [Nc − 1, 1]

S1I1 S2I2 SI

)

ρ

(

[Nc − 1, 1] [211] [Nc − 1, 1]

S1I1 S2I2 S′I ′

)

ρ

= δSS′δII′ , (C1)

which can be easily checked. For example, by taking
S = S′ and I = I ′ one can find that the squares of the
first 13 coefficients sum up to one.

For completeness also note that the isoscalar factors
obey the following symmetry property

(

[Nc − 1, 1] [211] [Nc − 1, 1]

I1S1 I2S2 (S − 1)S

)

ρ

=

(

[Nc − 1, 1] [211] [Nc − 1, 1]

S1I1 S2I2 S(S − 1)

)

ρ

. (C2)

APPENDIX D

Here we present the analytic form of the matrix el-
ements of operators proportional to O5 and O6. They

have been obtained following the approach described in
Sec. III. In that notation we have

〈ℓ′S′J ′J ′
3; I

′I ′3|ℓ(2)ijGiaGja|ℓSJJ3; II3〉 = δJ′JδJ3J′

3
δℓ′ℓδI′IδI′

3
I3

×(−1)J+ℓ−S Nc(3Nc + 4)

16

√
2S′ + 1

√

5ℓ(ℓ + 1)(2ℓ − 1)(2ℓ + 1)(2ℓ + 3)

6

{

ℓ ℓ 2

S S′ J

}

∑

S′′I′′

{

1 1 2

S S′ S′′

}

√

(2S′′ + 1)(2I ′′ + 1)

2I + 1
×
(

[Nc − 1, 1] [212] [Nc − 1, 1]

SI 11 S′′I ′′

)

1

(

[Nc − 1, 1] [212] [Nc − 1, 1]

S′′I ′′ 11 S′I

)

1

, (D1)
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TABLE VII: Young tableaux and the corresponding basis vectors of the irrep [41] of S5 for the configuration s4p [29].

Young tableau Young-Yamanouchi basis vectors of [41]

1 2 3 4

5

1√
20

(4ssssp − sssps − sspss− spsss − pssss)

1 2 3 5

4

1√
12

(3sssps − sspss − spsss − pssss)

1 2 4 5

3

1√
6

(2sspss − spsss − pssss)

1 3 4 5

2

1√
2

(spsss − pssss)

〈ℓ′S′J ′J ′
3; I

′I ′3|ℓiT aGia|ℓSJJ3; II3〉 = δJ′JδJ3J′

3
δℓ′ℓδI′IδI′

3I3(−1)J+ℓ+S′ Nc(3Nc + 4)

8

√
2S′ + 1

×
√

ℓ(ℓ + 1)(2ℓ + 1)

{

ℓ ℓ 1

S′ S J

}(

[Nc − 1, 1] [212] [Nc − 1, 1]

SI 11 S′I

)

1

(

[Nc − 1, 1] [212] [Nc − 1, 1]

S′I 01 S′I

)

1

, (D2)

and

〈ℓ′S′J ′J ′
3; I

′I ′3|SiT aGia|ℓSJJ3; II3〉 = δJ′JδJ′

3J3
δℓ′ℓδS′SδS′

3S3
δI′IδI′

3I3

×1

4

√

Nc(3Nc + 4)
√

I(I + 1)
√

S(S + 1)

(

[Nc − 1, 1] [212] [Nc − 1, 1]

SI 11 S′I ′

)

1

. (D3)
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