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Abstract

We derive general analytic formulae for the matrix elements of the SU(6) generators for mixed

symmetric [Nc − 1, 1] spin-flavor states with an arbitrary number Nc of quarks. They are relevant

for baryon spectroscopy in the 1/Nc expansion method applied to light baryons and can be used to

study excited states. In this way previous work on non-strange baryons can be extended to both

non-strange and strange baryons.

∗ e-mail address: Nicolas.Matagne@theo.physik.uni-giessen.de
† e-mail address: fstancu@ulg.ac.be

1

http://arxiv.org/abs/0812.1365v2


I. INTRODUCTION

In the 1/Nc expansion method [1, 2] the ground state baryons have an approximate

SU(2Nf ) symmetry when the number of colors Nc is large but finite. This stems from the

property that when Nc → ∞ the SU(2Nf) is an exact contracted symmetry [3, 4] and in

that limit the baryons are degenerate. At large but finite Nc the mass splitting starts at

order 1/Nc for the ground or excited symmetric states and at order N0
c for mixed symmetric

states.

Here we consider light baryons with Nf = 3, thus we deal with SU(6) symmetry. In this

case the building blocks of the mass operator are the generators of SU(6). For the excited

states the symmetry is extended to SU(6) × SO(3). Therefore the generators of SO(3) also

appear in the mass formula.

The study of excited states of symmetric orbital symmetry is straightforward. However

the study of excited states of mixed orbital symmetry, or equivalently mixed spin-flavor

symmetry, presented so far some difficulty related to the fact the matrix elements of SU(6)

generators between mixed symmetric [Nc − 1, 1] spin-flavor states were unknown. Accord-

ingly, a method based on the separation of a system of Nc quarks into a symmetric “core”

of Nc − 1 quarks and an excited quark was proposed [5] and applied to the [70, 1−] and

[70, ℓ+] (ℓ = 0, 2) multiplets, for Nf = 2 [5, 6] and Nf = 3 [7, 8]. The orbital-spin-flavor

wave function describing such a decoupled system is not totally symmetric, as it should be.

Its approximate form is explained at large in Ref. [9]. In addition, to match the decoupling,

in Ref. [5] each generator of SU(2Nf ) was written as a sum of two terms, one acting on the

core and the other on the excited quark. As a consequence, the number of linearly indepen-

dent operators appearing in the mass formula increases and the number of coefficients to be

determined generally becomes larger or nearly as large as the number of the experimental

data available. For example, for the [70, 1−] multiplet with Nf = 3 one has at least 15

linearly independent operators up to order 1/Nc included [5] and 7 known masses. Then

one must select the most dominant operators, which is a very difficult task, not free from

ambiguities [7].

In Ref. [10] we have proposed a new approach where the separation of the system into

a symmetric core of Nc − 1 quarks and an excited quark can be avoided. The approach

was restricted to Nf = 2. In this way the number of linearly independent operators was
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substantially reduced. In addition the method has important physical consequences. We

have shown for example that the term containing the isospin-isospin interaction in the mass

formula of ∆, neglected in all previous applications, becomes as dominant as the pure spin-

spin term in N . To obtain such results the matrix elements of the generators of SU(4) were

needed. General analytic expression were available from nuclear physics studies [11]. It was

easy enough to adjust them to a system of Nc quarks.

Let us explain the previous situation in detail. In the scheme based on the separation of

the system into a symmetric core of Nc − 1 quarks and an excited quark the SU(2)-isospin

Casimir operator was written as T 2 = T 2
c + 2t · Tc + 3/4, where the lower index c refers to

the core, and decomposed into three independent pieces, corresponding to the terms in the

above decomposition. In SU(4) T 2
c and S2

c have identical matrix elements because the spin

and isospin states of a symmetric core are identical, so that T 2
c can be neglected. But t · Tc

has different matrix elements from s · Sc as one can clearly see from Table II of Ref. [5].

Then in the decoupling scheme the isospin can be introduced only through t · Tc. In Ref.

[9] Table VI we have shown that the introduction of the operators
1

Nc
t · Tc together with

1

Nc
S2

c and
1

Nc
s · Sc separately deteriorates the fit. This may explain why

1

Nc
t · Tc has been

avoided in previous numerical fits both in SU(4) [5] and in SU(6) [7]. We avoided it as well

[6] in line with our predecessors.

To extend the application of the method of Ref. [10] from non-strange to both non-

strange and strange baryons one needs to know the matrix elements of the generators of

SU(6). In this work we derive these matrix elements.

We recall that the group SU(6) has 35 generators Si, T a, Gia with i = 1, 2, 3 and a =

1, 2, . . . , 8 where Si are the generators of the spin subgroup SU(2) and T a the generators of

the flavor subgroup SU(3). The group algebra is

[Si, Sj] = iεijkSk, [T a, T b] = ifabcT c,

[Si, Gja] = iεijkGka, [T a, Gjb] = ifabcGic,

[Gia, Gjb] =
i

4
δijfabcT c +

i

2
εijk

(
1

3
δabSk + dabcGkc

)

, (1)

by which the normalization of the generators is fixed.

We redefine the generators forming the algebra (1) as

Ei =
Si

√
3
; Ea =

T a

√
2
; Eia =

√
2Gia. (2)

3



Note that the generic name for every generator will also be Eia [11]. Specifications will be

made whenever necessary. Here we search for the matrix elements of Si, T a and Gia between

SU(6) states of symmetry [Nc − 1, 1]. As we shall see below, the matrix elements of Si and

T a are straightforward. The remaining problem is to derive the matrix elements of Gia.

The SU(6) generators are the components of an irreducible tensor operator which trans-

form according to the adjoint representation [214], equivalent to 35, in dimensional notation.

There are several ways to calculate the matrix elements of the SU(6) generators. In the stan-

dard group theory the matrix elements of any irreducible tensor can be expressed in terms of

a generalized Wigner-Eckart theorem which is a factorization theorem, involving the prod-

uct between a reduced matrix element and a Clebsch-Gordan (CG) coefficient. The CG

coefficient of SU(6) factorizes into CG coefficients of SU(2), SU(3) and an isoscalar factor

of SU(6), see Eq. (13). The latter is the quantity we derive here.

In the 60’ties the literature provided a few examples of isoscalar factors needed in particle

physics, thus for Nc = 3. Cook and Murtanza [12] considered the full CG series of the direct

products 35×35, 56×35 and 56×56. Carter, Coyne and Meshkov [13] derived the isoscalar

factors for 56 × 35 → 56 independently from Schülke [14] who also calculated the isoscalar

factors for 35 × 35 → 35 like Cook and Murtanza. Moreover Carter and Coyne [15] derived

the isoscalar factors of the whole CG series 35×70 = 20+56+2×70+540+560+1134.

In Ref. [16] we have obtained analytic formulae for isoscalar factors of arbitrary Nc which for

Nc = 3 correspond to 56 × 35 → 56. Up to a phase we have found full agreement with Refs.

[12, 13, 14]. In the present case, by setting Nc = 3 in our formulae, we could, in principle,

compare the results with either column 70I or column 70II of Ref. [15], for 35×70 → 70. In

fact, following our definition, one does not need to compute the isoscalar factors of both 70I

and 70II to derive the matrix elements of the generators. However a multiplicity 2 problem

can appear in the direct product of two SU(3) irreducible representations (see Eq. (18)

below). For Nc = 3, this is the case for the product (8× 8) → 8. Here we shall use the label

ρ [16] to distinguish between the two representations when the multiplicity is 2. In Ref. [15],

the authors follow the notation of [17] by using the label S for the symmetric product and

A for antisymmetric product corresponding respectively to ρ = 2 and ρ = 1 in our notation.

For consistency with previous work [16], we follow the definition of Ref. [11], (see Eq. (16)

below), which simplifies the problem, in the sense that we obtain vanishing SU(6) isoscalar

factors for the products (84,2 × 81)S while Carter and Coyne obtain non-vanishing values for
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the isoscalar factors for these products. Thus the comparison is impossible. Such ambiguities

are typical for all groups, including the permutation group, whenever the multiplicity in the

CG series is larger than one [18]. As mentioned above, for unitary groups, following Gell-

Mann, it is customary to introduce the symmetric S or D coupling and antisymmetric A or

F coupling. The choice is based on convenience anyhow [19].

The paper is organized as follows. In the next section we introduce the SU(6) basis states.

In Sec. III we remind the generalized Wigner-Eckart theorem which allows a factorization

of the matrix elements into Clebsch-Gordan coefficients and some specific isoscalar factors.

In Sec. IV we derive the unknown isoscalar factors. In Sec. V we discuss possible physical

applications to the mass spectrum and in the last section we summarize our results.

II. THE WAVE FUNCTION

We deal with a system of Nc quarks having one unit of orbital excitation. Therefore

the orbital (O) wave function must have a mixed symmetry [Nc − 1, 1], which describes the

lowest excitations in a baryon. The fact that this is the lowest excitation with L = 1 is

well known in group theory and has been extensively applied to nuclear shell model, see e.g.

[20] or [21]. Moreover the Nc − 1 independent basis states of the [Nc − 1, 1] irrep written in

the Young-Yamanouchi basis, see below, is equivalent to a basis written in terms of Nc − 1

internal Jacobi coordinates, thus the center of mass motion is automatically removed. An

example for four quarks can be found in Ref. [22].

The colour wave function being antisymmetric, the orbital-spin-flavor wave part must be

symmetric. Then the spin-flavor (FS) part must have the same symmetry as the orbital

part in order to obtain a totally symmetric state in the orbital-spin-flavor space. The general

form of such a wave function is [23]

|[Nc]〉 =
1

√

d[Nc−1,1]

∑

Y

|[Nc − 1, 1]Y 〉O|[Nc − 1, 1]Y 〉FS, (3)

where d[Nc−1,1] = Nc−1 is the dimension of the representation [Nc −1, 1] of the permutation

group SNc
and Y is a symbol for a Young tableau (Yamanouchi symbol). The sum is

performed over all possible standard Young tableaux. In each term the first basis vector

represents the orbital space and the second the spin-flavor space. In this sum there is only

one Y (the normal Young tableau) where the last particle is in the second row and Nc − 2
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terms where the last particle is in the first row. The explicit form of the orbital part is not

needed.

More precisely, we write Y = (pqy) where p is the row of the Nc-th particle, q the row

of the (Nc − 1)-th particle and y is the Young tableau of the remaining particles. Let us

denote by p, p′ and p′′ the position of the last particle in the spin-flavor, spin and flavor

Young tableaux respectively. They are indicated by crosses in the example given by Eqs.

(8)-(11) below. Similarly for the (Nc − 1)-th particle we have q, q′ and q′′ and for the rest

y, y′ and y′′. We need now to decompose the spin-flavor wave function into its spin and

flavor parts separately. For this purpose we use the Clebsch-Gordan (CG) coefficients of SNc
,

denoted by S([f ′]p′q′y′[f ′′]p′′q′′y′′|[f ]pqy) and their factorization property [23]. Denoting by

K([f ′]p′[f ′′]p′′|[f ]p) the isoscalar factors of SNc
we have [9]

S([f ′]p′q′y′[f ′′]p′′q′′y′′|[f ]pqy) = K([f ′]p′[f ′′]p′′|[f ]p)S([f ′
p′]q

′y′[f ′′
p′′]q

′′y′′|[fp]qy), (4)

where the second factor in the right-hand side is a CG coefficient of SNc−1 containing the

partitions [f ′
p′], [f ′′

p′′] and [fp] obtained after the removal of the Nc-th quark.

Using the above property we can write the spin-flavor part of the wave function as

|[Nc − 1, 1]p; (λµ)Y II3; SS3〉 =
∑

p′p′′
K([f ′]p′[f ′′]p′′|[Nc − 1, 1]p)|SS3; p

′〉|(λµ)Y II3; p
′′〉 (5)

where the spin part is

|SS3; p
′〉 =

∑

m1,m2






Sc
1

2
S

m1 m2 S3




 |Scm1〉|1/2m2〉, (6)

with Sc = S − 1/2 if p′ = 1 and Sc = S + 1/2 if p′ = 2 and the flavor part is

|(λµ)Y II3, p
′′〉 =

∑

Yc,Ic,Ic3 ,

yii3






(λcµc) (10) (λµ)

YcIc yi Y I











Ic i I

Ic3 i3 I3




 |(λcµc)YcIcIc3〉|(10)yii3〉, (7)

with (λc, µc) = (λ−1, µ) for p′′ = 1, (λc, µc) = (λ+1, µ−1) for p′′ = 2 and (λc, µc) = (λ, µ+1)

for p′′ = 3. Each SU(3) irreducible representation carries the label (λµ).

Let us illustrate Eq. (5) in terms of Young tableaux by taking the Nc = 7 and p = 2. We

have the following cases
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× = K([43]2[52]1|[61]2) × × ×
, (8)

× = K([52]1[43]2|[61]2)
× × × , (9)

× = K([43]1[43]1|[61]2)
× × ×

+ K([43]2[43]2|[61]2) × × × , (10)

× = K([43]1[331]3|[61]2)
× ×

×
. (11)

When Nc = 3 the above spin-flavor states correspond to 210, 48, 28 and 21 multiplets. For

the purpose of the present study we actually need only the case p = 2. In this case the

isoscalar factors K([f ′]p′[f ′′]p′′|[Nc − 1, 1]p) for arbitrary Nc have the following algebraic

form [6]

K
([

Nc + 1

2
,
Nc − 1

2

]

2
[
Nc + 3

2
,
Nc − 3

2

]

1|[Nc − 1, 1]2
)

= 1,

K
([

Nc + 3

2
,
Nc − 3

2

]

1
[
Nc + 1

2
,
Nc − 1

2

]

1|[Nc − 1, 1]2
)

= 1,

K
([

Nc + 1

2
,
Nc − 1

2

]

1
[
Nc + 1

2
,
Nc − 1

2

]

1|[Nc − 1, 1]2
)

= −
√

3(Nc − 1)

4Nc
,

K
([

Nc + 1

2
,
Nc − 1

2

]

2
[
Nc + 1

2
,
Nc − 1

2

]

2|[Nc − 1, 1]2
)

=

√

Nc + 3

4Nc

,

K
([

Nc + 1

2
,
Nc − 1

2

]

1
[
Nc − 1

2
,
Nc − 1

2
, 1

]

3|[Nc − 1, 1]2
)

= 1. (12)

For completeness we mention that the isoscalar factors for p = 1 and non-strange states can

be found in Ref. [9].

III. MATRIX ELEMENTS OF SU(6) GENERATORS: THE GENERALIZED

WIGNER-ECKART THEOREM

For the spin Si and the flavor T a operators the matrix elements can be obtained from

the Wigner-Eckart theorem in a similar manner as for symmetric Nc states [16]. As already
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mentioned, the SU(6) generators are the components of an irreducible tensor operator which

transform according to the adjoint representation [214], equivalent to 35, in dimensional

notation. The matrix elements of any irreducible tensor can be expressed in terms of a

generalized Wigner-Eckart theorem which is a factorization theorem, involving the product

between a reduced matrix element and a Clebsch-Gordan (CG) coefficient. The case SU(4)

⊃ SU(2) × SU(2) has been worked out by Hecht and Pang [11] in a general form needed for

applications to nuclear physics.

By using the generalized Wigner-Eckart theorem, in Ref. [16] we have derived explicit

formulas for the matrix elements of SU(6) generators for symmetric states of Nc quarks of

partition [Nc]. Here we use a different procedure to obtain the matrix elements of SU(6)

generators between mixed symmetric states [Nc − 1, 1]. When Nc = 3 they correspond to

the representation [70].

By analogy to SU(4) [11] one can write the matrix elements of every SU(6) generator Eia

as

〈[Nc − 1, 1](λ′µ′)Y ′I ′I ′
3S

′S ′
3|Eia|[Nc − 1, 1](λµ)Y II3SS3〉 =

√

C [Nc−1,1](SU(6))






S Si S ′

S3 Si
3 S ′

3











I Ia I ′

I3 Ia
3 I ′

3






×
∑

ρ=1,2






(λµ) (λaµa) (λ′µ′)

Y I Y aIa Y ′I ′






ρ






[Nc − 1, 1] [214] [Nc − 1, 1]

(λµ)S (λaµa)Si (λ′µ′)S ′






ρ

, (13)

where C [Nc−1,1](SU(6)) = Nc(5Nc + 18)/12 is the SU(6) Casimir operator associated to the

irreducible representation [Nc − 1, 1], followed by Clebsch-Gordan coefficients of SU(2)-spin

and SU(2)-isospin. The sum over ρ is over terms containing products of isoscalar factors of

SU(3) and SU(6) respectively. In particular, T a is an SU(3) irreducible tensor operator of

components T
(11)
Y aIa, i.e. a corresponds to (λaµa). It is a scalar in SU(2) so that the index i

from Eia is no more necessary. The generators Si form a rank 1 tensor in SU(2) which is a

scalar in SU(3), so the index i suffices. Although we use the same symbol for the operator Si

and its quantum numbers we hope that no confusion is created. Thus, for the generators Si

and T a, which are elements of the su(2) and su(3) subalgebras of (1), the above expression

simplifies considerably. In particular, as Si acts only on the spin part of the wave function,

we apply the usual Wigner-Eckart theorem for SU(2) to get

〈[Nc − 1, 1](λ′µ′)Y ′I ′I ′
3; S

′S ′
3|Si|[Nc − 1, 1](λµ)Y II3; SS3〉 =

8



δSS′δλλ′δµµ′δY Y ′δII′δI3I′3

√

C(SU(2))






S 1 S ′

S3 i S ′
3




 , (14)

with C(SU(2)) = S(S + 1). Similarly, we use the Wigner-Eckart theorem for T a which is a

generator of the subgroup SU(3)

〈[Nc − 1, 1](λ′µ′)Y ′I ′I ′
3; S

′S ′
3|T a|[Nc − 1, 1](λµ)Y II3; SS3〉 =

δSS′δS3S′

3
δλλ′δµµ′

∑

ρ=1,2

〈(λ′µ′)||T (11)||(λµ)〉ρ






(λµ) (11) (λ′µ′)

Y II3 Y aIaIa
3 Y ′I ′I ′

3






ρ

, (15)

where the reduced matrix element is defined as [24]

〈(λµ)||T (11)||(λµ)〉ρ =







√

C(SU(3)) for ρ = 1

0 for ρ = 2
, (16)

in terms of the eigenvalue of the Casimir operator C(SU(3)) =
1

3
gλµ where

gλµ = λ2 + µ2 + λµ + 3λ + 3µ. (17)

Note that the presence of the index ρ has the same origin as in Eq. (13), namely it reflects

the multiplicity problem appearing in the direct product of SU(3) irreducible representations

(λµ) × (11) = (λ + 1, µ + 1) + (λ + 2, µ − 1) + (λµ)1 + (λµ)2

+ (λ − 1, µ + 2) + (λ − 2, µ + 1) + (λ + 1, µ − 2) + (λ − 1, µ − 1). (18)

Each SU(3) CG coefficient factorizes into an SU(2)-isospin CG coefficient and an SU(3)

isoscalar factor [17]





(λµ) (11) (λ′µ′)

Y II3 Y aIaIa
3 Y ′I ′I ′

3






ρ

=






I 1 I ′

I3 Ia
3 I ′

3











(λµ) (11) (λ′µ′)

Y I Y aIa Y ′I ′






ρ

. (19)

The analytic expression of the isoscalar factors can be found in Table 4 of Ref. [24].

Therefore the basic problem is to determine the matrix elements of Gia. The procedure

is described in the next section.

IV. SU(6) ISOSCALAR FACTORS

A. The general procedure

A convenient way to derive the matrix elements of Gia is by decoupling the Nc-th quark

from the system of Nc quarks in a mixed symmetric state [Nc − 1, 1]. Let us denote by Gia,
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Gia
c and gia the generators of the total, of the Nc − 1 system and of the decoupled quark.

Then one has

Gia = Gia
c + gia. (20)

As mentioned before the last quark can be either in the row p = 1 or in p = 2. Now we use

the important observation that the matrix elements of the generators are independent of the

choice of p as used, for example, in Appendix A of Ref. [9]. The explanation lies in Weyl’s

duality theorem according to which the basis vectors introduced in Sec. II form invariant

subspaces both for the permutation group and the SU(6) group [23]. It is therefore useful

to take p = 2 because in that case the system of Nc − 1 quarks is in a symmetric [Nc − 1]

state for which the matrix elements are already known from Ref. [16] where it is enough to

replace Nc by Nc − 1. The matrix elements of gia are the trivial case of symmetric states

with Nc = 1. In a short notation we therefore have

〈Gia〉 = 〈Gia
c 〉p + 〈gia〉p (21)

irrespective of the value p = 1 or 2.

After lengthy calculations we obtain the following expression for the matrix elements in

the right-hand side of (21)

〈[Nc − 1, 1]p; (λ′µ′)Y ′I ′I ′
3; S

′m′
s|Gja

c |[Nc − 1, 1]p; (λµ)Y II3; Sms〉 =

(−1)1/2−S
√

(2S + 1)(2S ′
c + 1)

√

C [f ](SU(6))

2






S 1 S ′

ms j m′
s











I Ia I ′

I3 Ia
3 I ′

3






×
∑

p′,p′′,q′,q′′

(−1)S′

c(−1)λ−λc+λ′−λ′

c(−1)µ−µc+µ′−µ′

cK([f ′]p′[f ′′]p′′|[Nc − 1, 1]p)

×K([f ′]q′[f ′′]q′′|[Nc − 1, 1]p)







S 1 S ′

S ′
c 1/2 Sc







∑

ρ,ρc=1,2

〈(λµ)Y I; (11)Y aIa||(λ′µ′)Y ′I ′〉ρ

×U((10)(λcµc)(λ
′µ′)(11); (λµ)ρ(λ

′
cµ

′
c)ρc

)






[fc] [214] [fc]

(λcµc)Sc (11)1 (λ′
cµ

′
c)S

′
c






ρc

(22)

which contains a summation over the indices ρ and ρc related to the total system of Nc

quarks and to the core formed of Nc − 1 quarks. One has [f ] = [Nc − 2, 1] for p = 1 and

[f ] = [Nc − 1] for p = 2. The SU(3) Racah coefficients U appear due to the recoupling of

the last quark. The matrix elements of the separated quark are simpler, as expected

〈[Nc − 1, 1]p; (λ′µ′)Y ′I ′I ′
3; S

′m′
s|gja|[Nc − 1, 1]p; (λµ)Y II3; Sms〉 =
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(−1)S′−1/2
√

2(2S + 1)






S 1 S ′

ms j m′
s











I Ia I ′

I3 Ia
3 I ′

3






×
∑

p′,p′′,q′,q′′
(−1)ScK([f ′]p′[f ′′]p′′|[Nc − 1, 1]p)K([f ′]q′[f ′′]q′′|[Nc − 1, 1]p)







S 1 S ′

1/2 Sc 1/2







×
∑

ρ=1,2

〈(λµ)Y I; (11)Y aIa||(λ′µ′)Y ′I ′〉ρU((λcµc)(10)(λ′µ′)(11); (λµ)(10))ρ (23)

They all contain the isoscalar factors K given in the previous section. Inserting them in the

above expressions, together with the isoscalar factors 〈(λµ)Y I; (11)Y aIa||(λ′µ′)Y ′I ′〉ρ and

the SU(3) Racah coefficients U and performing the sums in (22) and (23) we can obtain the

matrix elements described in the next section.

As just mentioned above, for the calculations of the Gia
c and gia matrix elements one

needs to derive some SU(3) Racah coefficients. For that purpose, we follow the method

described by Hecht [24]. We have obtained the following formulas to be used in Eqs. (22)

and (23)

〈(λ′
cµ

′
c)Y

′
c I

′
c; (10)yi||(λ′µ′)Y ′I ′〉 U((10)(λcµc)(λ

′µ′)(11); (λµ)ρ(λ
′
cµ

′
c)ρc

) =

∑

Yc,Ya,Y,

Ic,Ia,I

(−1)λc−λ+µ−µc(−1)λ′

c−λ′+µ′−µ′

c(−1)i+Ia+I+I′c
√

(2I + 1)(2I ′
c + 1)







i Ic I

Ia I ′ I ′
c







×〈(λcµc)YcIc; (11)YaIa||(λ′
cµ

′
c)Y

′
c I

′
c〉ρc

〈(λµ)Y I; (11)YaIa||(λ′µ′)Y ′I ′〉ρ
×〈(λcµc)YcIc; (10)yi||(λµ)Y I〉, (24)

and

〈(λcµc)YcIc; (10)y′i′||(λ′µ′)Y ′I ′〉 U((λcµc)(10)(λ′µ′)(11); (λµ)ρ(10)) =

∑

y,Ya,Y,

i,Ia,I

(−1)Ic+i+I′+Ia

√

(2I + 1)(2i′ + 1)







Ic i I

Ia I ′ i′







〈(λcµc)YcIc; (10)yi||(λµ)Y I〉

×〈(10)yi; (11)YaIa||(10)y′i′〉 〈(λµ)Y I; (11)YaIa||(λ′µ′)Y ′I ′〉ρ. (25)

The required isoscalar factors can be found in Refs. [24, 25].

B. Results

Our analytic results for the non-vanishing isoscalar factors





[Nc − 1, 1] [214] [Nc − 1, 1]

(λµ)S (λaµa)Si (λ′µ′)S ′






ρ

, (26)
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associated to the matrix elements of Gia as defined in Eq. (13) together with the normal-

ization (2) are exhibited in Tables I, II, III and IV. For Nc = 3 they correspond to 28, 48,

210 and 21 multiplets respectively. To make the applications easier they are expressed in

terms of Nc and the spin of the total system which is fixed for each multiplet, namely 1/2,

3/2, 1/2 and 1/2 respectively. The values of the spin are consistent with the label of the

corresponding SU(3) irreducible representation (λµ) as illustrated by the examples (8)-(11),

i.e. one has λ = 2S and µ = (Nc − 2S)/2 for all the multiplets. The index ρ is specified

whenever necessary, with its two distinct values 1 and 2.

V. THE MASS OPERATOR OF STRANGE AND NON-STRANGE BARYONS

It is very important to apply the 1/Nc expansion method to both non-strange and strange

baryons together. First, we have at our disposal a larger number of experimental data than

for non-strange baryons alone and second, we can get a unified picture of all light baryons.

When the SU(3)-flavor symmetry is exact, the 1/Nc expansion mass operator describing

an excited state can be written as the linear combination

M (1) =
∑

i

ciOi, (27)

where ci are unknown coefficients which parametrize the QCD dynamics and the operators

Oi are of type

Oi =
1

Nn−1
c

O
(k)
ℓ · O(k)

SF (28)

where O
(k)
ℓ is a k-rank tensor in SO(3) and O

(k)
SF a k-rank tensor in SU(2), but scalar in

SU(3)-flavor (as shown by the upper index of M (1)). This implies that Oi is a combination

of SO(3) generators Li and of SU(6) generators. The presence of Li is necessary in describing

excited states.

When the SU(3)-flavor symmetry is broken the mass operator in the 1/Nc expansion

contains additional terms, as first performed in Ref. [26] for the symmetric baryon multiplet

M =
∑

i

ciOi +
∑

i

diBi, (29)

where the operators Bi are defined to have zero expectation values for nonstrange quarks.

The values of the coefficients ci and di are found by a numerical fit to data.

12



(λ1µ1)S1 (λ2µ2)S2 ρ











[Nc − 1, 1] [214] [Nc − 1, 1]

(λ1µ1)S1 (λ2µ2)S2 (λµ)S











ρ

(λµ)S (11)1 1 {12S(S + 1) + Nc[4S(S + 1) − 3]}

√
2

S(S + 1) [Nc(Nc + 6) + 12S(S + 1)] Nc(5Nc + 18)

(λµ)S (11)1 2
4S2(S + 1)2 − 2NcS(S + 1) − (S2 + S − 1)N2

c

2S(S + 1)

√

6(Nc − 2S + 4)(Nc + 2S + 6)

(Nc − 2S)(Nc + 2S + 2) [Nc(Nc + 6) + 12S(S + 1)] Nc(5Nc + 18)

(λµ)S + 1 (11)1 1 −
3
√

2S(2S + 3)(Nc + 2S + 2)
√

(S + 1)(2S + 1) [Nc(Nc + 6) + 12S(S + 1)] (5Nc + 18)

(λµ)S + 1 (11)1 2
Nc

S + 1

√

3(2S + 3)(Nc − 2S + 4)(Nc + 2S + 6)

2(2S + 1)(Nc − 2S) [Nc(Nc + 6) + 12S(S + 1)] (5Nc + 18)

(λ + 2, µ − 1)S (11)1 /
1

S + 1

√

3(2S + 3)(Nc + 2S + 2)(Nc + 2S + 6)

2(2S + 1)(Nc + 2S + 4)(5Nc + 18)

(λ − 1, µ − 1)S (11)1 /

√

12(Nc + 2S)

S(2S + 1)(Nc − 2S + 2)(Nc + 2S + 2)(5Nc + 18)

(λµ)S (11)0 1

√

Nc(Nc + 6) + 12S(S + 1)

2Nc(5Nc + 18)

(λµ)S (11)0 2 0

(λµ)S (00)1 /

√

4S(S + 1)

Nc(5Nc + 18)

TABLE I: Isoscalar factors of the SU(6) generators, Eqs. (2) and (13), corresponding to the 28 multiplet.
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(λ1µ1)S1 (λ2µ2)S2 ρ











[Nc − 1, 1] [214] [Nc − 1, 1]

(λ1µ1)S1 (λ2µ2)S2 (λ − 2, µ + 1)S











ρ

(λ − 2, µ + 1)S (11)1 1 [Nc(4S − 3) + 6S]

√

2(S + 1)

S [Nc(Nc + 6) + 12(S − 1)S] Nc(5Nc + 18)

(λ − 2, µ + 1)S (11)1 2 −
Nc − 2S

S

√

3(S − 1)(S + 1)(Nc − 2S + 6)(Nc + 2S)(Nc + 2S + 4)

2(Nc − 2S + 2) [Nc(Nc + 6) + 12(S − 1)S] Nc(5Nc + 18)

(λµ)S − 1 (11)1 /
Nc + 4S2

S

√

3(Nc + 2S + 4)

2(2S − 1)(2S + 1)(Nc + 2S + 2)Nc(5Nc + 18)

(λ − 2, µ + 1)S − 1 (11)1 1
3
√

2(S − 1)(Nc + 2S)
√

S [Nc(Nc + 6) + 12(S − 1)S] (5Nc + 18)

(λ − 2, µ + 1)S − 1 (11)1 2 −
Nc

S

√

3(Nc − 2S + 6)(Nc + 2S + 4)

2(Nc − 2S + 2) [Nc(Nc + 6) + 12(S − 1)S] (5Nc + 18)

(λ − 3, µ)S − 1 (11)1 / −2

√

3(S − 1)(Nc + 2S − 2)

(2S − 1)(Nc − 2S + 4)Nc(5Nc + 18)

(λ − 2, µ + 1)S (11)0 1

√

Nc(Nc + 6) + 12(S − 1)S

2Nc(5Nc + 18)

(λ − 2, µ + 1)S (11)0 2 0

(λ − 2, µ + 1)S (00)1 /

√

4S(S + 1)

Nc(5Nc + 18)

TABLE II: Isoscalar factors of the SU(6) generators, Eqs. (2) and (13), corresponding to the 48 multiplet.
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(λ1µ1)S1 (λ2µ2)S2 ρ











[Nc − 1, 1] [214] [Nc − 1, 1]

(λ1µ1)S1 (λ2µ2)S2 (λ + 2, µ − 1)S











ρ

(λ + 2, µ − 1)S (11)1 1 [Nc(4S + 7) + 6(S + 1)]

√
2S

(S + 1) [Nc(Nc + 6) + 12(S + 1)(S + 2)] Nc(5Nc + 18)

(λ + 2, µ − 1)S (11)1 2 −
Nc + 2(S + 1)

S + 1

√

3S(S + 2)(Nc − 2S − 2)(Nc − 2S + 2)(Nc + 2S + 8)

2(Nc + 2S + 4) [Nc(Nc + 6) + 12(S + 1)(S + 2)] Nc(5Nc + 18)

(λµ)S + 1 (11)1 /
Nc + 4(S + 1)2

S + 1

√

3(Nc − 2S + 2)

2(2S + 1)(2S + 3)(Nc − 2S)Nc(5Nc + 18)

(λµ)S (11)1 / −
1

S + 1

√

3(Nc + 2S + 2)(Nc − 2S + 2)

2(Nc − 2S)(5Nc + 18)

(λ + 2, µ − 1)S (11)0 1

√

Nc(Nc + 6) + 12(S + 1)(S + 2)

2Nc(5Nc + 18)

(λ + 2, µ − 1)S (11)0 2 0

(λ + 2, µ − 1)S (00)1 /

√

4S(S + 1)

Nc(5Nc + 18)

TABLE III: Isoscalar factors of the SU(6) generators, Eqs. (2) and (13) , corresponding to the 210 multiplet.
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(λ1µ1)S1 (λ2µ2)S2 ρ











[Nc − 1, 1] [214] [Nc − 1, 1]

(λ1µ1)S1 (λ2µ2)S2 (λ − 1, µ − 1)S











ρ

(λ − 1, µ − 1)S (11)1 1 [Nc(4S − 3) + 6S]

√

2(S + 1)

S [N2
c + 12(S2 − 1)] Nc(5Nc + 18)

(λ − 1, µ − 1)S (11)1 2 −{Nc(Nc + 6) − 4 [S(S − 1) − 3]}

√

3(2S − 1)(S + 1)(Nc − 2S − 2)(Nc + 2S − 2)

2S(2S + 1)(Nc − 2S + 2)(Nc + 2S + 2) [N2
c + 12(S2 − 1)] Nc(5Nc + 18)

(λµ)S + 1 (11)1 /

√

6(2S + 3)(Nc + 2S + 4)

(2S + 1)(Nc − 2S)Nc(5Nc + 18)

(λµ)S (11)1 /
1

S

√

6(Nc + 2S + 4)

(Nc − 2S)(Nc + 2S + 2)(5Nc + 18)

(λ − 1, µ − 1)S (11)0 1

√

N2
c + 12(S2 − 1)

2Nc(5Nc + 18)

(λ − 1, µ − 1)S (11)0 2 0

(λ − 1, µ − 1)S (00)1 /

√

4S(S + 1)

Nc(5Nc + 18)

TABLE IV: Isoscalar factors of the SU(6) generators, Eqs. (2) and (13), corresponding to the 21 multiplet.
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An essential step is to find all linearly independent operators contributing to a given order

O(1/Nc). In Table V we present a list of operators expected to be dominant up to order

1/Nc. The order of their matrix elements in SU(6), indicated in the second column of the

table is not always the same as in SU(4) [10]. For example the operator O4 is of order N0
c

while in SU(4) is of order 1/Nc. This can be understood by looking at its matrix elements

obtained from the relations (15)-(17)

1

Nc

T aT a =
1

12Nc

{Nc(Nc + 6) + 3λ(λ + 2) − 3f [2(Nc + 3) − 3f ]} , (30)

with λ, µ and f illustrated by the example in Figure 1. Let us remind that for any irreducible

representation of SU(3) two labels are enough. Usually one takes λ and µ. For the present

discussion, where Nc is needed, it is more convenient to use λ and f . For a system of Nc

quarks one has µ = (Nc−λ−3f)/2, which leads to Eq. (30). When Nc = 3 one has f = 0 for

the octet and the decuplet and f = 1 for the singlet of SU(3). By looking at Eq. (30), one

can notice that the first term in the bracket, Nc(Nc + 6), which is responsible for the order

of the operator O4, is the same for all representations. That justifies the new definition

introduced in Table V where (Nc + 6)/12 has been subtracted. It is important to stress

that this new definition of O4 gives the same matrix elements as the isospin-isospin operator

1/Nc(T
aT a), used in Ref. [10] for non-strange baryons (λ = 2I for non-strange baryons). The

new operator O4 is then a natural generalization to SU(3) of its SU(2)-isospin counterpart.

An important property is that the order of O4 is now N0
c and not 1/Nc as one would expect

from SU(4). This comes from the third term of Eq. (30) which contributes only for SU(6)

representations which become singlets for Nc = 3, as explained above. The SU(6) symmetry

is then broken to order 1 in the large Nc limit for the mixed symmetric representation

[Nc −1, 1]. This result, which does not appear for ground state baryons, should be analyzed

in more details in the future. Meanwhile one can notice that the order N0
c of O4 is consistent

with Eqs. (18) and (19) of Ref. [27] where one predicts five towers of states and where the

singlet always belongs to different towers from the octet and the decuplet. By adding more

operators in the restricted list of Table V as, for example, L(2)ijGiaGja, we might expect to

obtain results consistent with Ref. [27] in physical applications.

The order of O5 and O6 follow from the arguments given in Ref. [28]. Accordingly, unlike

the case of two light flavors, the matrix elements of the flavor generators T a and spin-flavor

generators Gia do not have the same Nc dependence everywhere in the flavor weight diagram.
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︸ ︷︷ ︸

f

︸ ︷︷ ︸

µ

︸ ︷︷ ︸

λ

FIG. 1: Young diagram of an SU(3) irreducible representation.

Operator Matrix elements order in SU(6)

O1 = Nc l1 Nc

O2 = LiSi N0
c

O3 =
1

Nc

SiSi N−1
c

O4 =
1

Nc

(

T aT a −
1

12
Nc(Nc + 6)

)

N0
c

O5 =
3

Nc

LiT aGia N0
c

O6 =
3

N2
c

SiT aGia N−1
c

O7 =
1

Nc

L(2)ijSiSi N−1
c

B1 = S N0
c

TABLE V: Examples of operators Oi and B1 entering the mass formula.

The baryons under concern, located at the top of an SU(3) weight diagram, therefore having

finite strangeness, have matrix elements of T a which are of order O(1), O(
√

Nc) and O(Nc)

for a = 1, 2, 3, a = 4, 5, 6, 7 and a = 8 respectively and matrix elements of Gia which are

O(Nc), O(
√

Nc) and O(1). Then the corresponding combinations give for O5 and O6 the

order N0
c and N−1

c respectively. B1 is of course of order N0
c .

The contribution of SO(3), is first manifested in the operator O2 which represents the

spin-orbit coupling where Li and Si are the total angular momentum and spin components.

In applications one can also use the Hartree approximation [5] which is a one-body opera-

tor. This approximation is useful because it shows that the leading order of the spin-orbit

contribution is N0
c . Lastly, the operator O7 contains the SO(3) 2nd rank tensor, defined as

L(2)ij =
1

2

{

Li, Lj
}

− 1

3
δi,−j

~L · ~L, (31)
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which, like Li, acts on the orbital wave function |LmL〉 of the whole system of Nc quarks.

In SU(4) the practice on the [70, 1−] multiplet [10] showed that the operators O1, O3,

O4 (defined as
1

Nc
T aT a) and O6 are the most dominant. A problem is to find out if this

behavior also holds in SU(6). Also one has to reanalyze the [70, ℓ+] multiplet, studied so

far in the decoupling scheme only [8]. Applications to baryons belonging to the [70, ℓ±]

multiplets will be considered in subsequent studies.

We should finally mention, that the method based on the separation of the system into

a symmetric core of Nc − 1 quarks and an excited quark, as first used in Ref. [5], acquired

some support from the work of Pirjol and Schat [29], based on a large Nc quark model

Hamiltonian, where explicit results for the coefficients ci are presented both for the one

gluon exchange (OGE) and for the Goldstone boson exchange (GBE) hyperfine interactions,

with radial dependent form factors. An extension of the study of Collins and Georgi [30]

from Nc = 3 to large Nc is obtained in this way.

Including the space degree of freedom, Pirjol and Schat decompose the two-body operators

into tensor operators transforming as S, MS and E representations of SNc
(the latter exists

only for Nc > 3). Moreover, the splitting of the SU(4) generators into two pieces (see

introduction), Si = Si
c + si, T a = T a

c + ta and Gia = Gia
c + gia, matches the choice of their

basis states. The conclusion of Ref. [29] was that the inclusion of core and excited quark

operators is necessary, at variance with our simplified procedure.

A useful result is that Pirjol and Schat obtain a large Nc dependence similar to that of

the 1/Nc expansion method. The tower structure, first observed in the N = 1 band in Ref.

[31], is satisfied at leading order in 1/Nc. The resulting mass formula contains 6 independent

non-vanishing coefficients at order 1/Nc both for OGE and for GBE. They have to be found

by fitting the 7 resonance masses available in the N = 1 band. Therefore some arbitrariness is

imposed in combining OGE with GBE. In general, the arbitrariness could lead to anomalies,

as shown in Ref. [9].

On the other hand in the method based on the quark model Hamiltonian, the operator

SiT aGia is absent, but present in our case, see Table V. In Ref. [10] we have shown that

such an operator brings a dominant contribution to most of the nucleon masses in the N = 1

band. According to Ref. [5] this absence is allowed in SU(4) but, as explicitly stated there,

for more than two flavors a term like Si
ct

aGia
c , should be included in the mass operator. Thus

the extension to SU(6) of the work of Pirjol and Schat could, at least in this respect, raise
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problems.

The basic difference between our work and that of Pirjol and Schat is the radial depen-

dence is integrated out in our case, consistent with the 1/Nc expansion method. When there

is no radial dependence, the spin-spin operator is symmetric. The quadrupole operator of

the quark model makes its presence through its symmetric part, which is related to the

2nd-rank SO(3) operator (31), as in the work of Collins and Georgi [30], or of Carlson et al.

[5] and as in subsequent studies. So far, in applications, the spin-orbit term was treated in

the Hartree approximation. In this context, our operator basis is complete inasmuch as the

orbital part is always symmetric, thus the flavour-spin part should be symmetric too, so we

have only 〈MS|OS|MS〉 matrix elements in the flavour-spin space.

The differences between the two methods should be confronted in future applications

to nonstrange and strange baryons, from where one wishes to obtain meaningful physical

information on the coefficients ci.

VI. CONCLUSIONS

The isoscalar factors of the SU(6) generators derived in this study opens new applications

of the 1/Nc expansion method to baryons spectroscopy. It allows to combine data on non-

strange and strange baryons together and to lead to a more precise determination of the

coefficients ci and di which encode the QCD dynamics. Finally, our results presented in

Tables I-IV, can be used for other N -body problems governed by SU(6) symmetry and

where the spin is known.
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