Sensitivity to Ampicillin and Cephalothin of Enzymes Involved in Wall Peptide Crosslinking in *Escherichia coli* K12, Strain 44

Service de Microbiologie, Faculté de Médecine, Institut de Botanique, Université de Liège, Department of Microbiology, New York University School of Medicine, New York, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Department of Biochemistry, Sub-Department of Chemical Microbiology, University of Cambridge, and National Institute for Medical Research, London

(Received August 10, 1973)

After extraction of the membranes of *Escherichia coli* K12 strain 44 by Brij-36T, each of the four enzyme activities (natural transpeptidase, unnatural transpeptidase, carboxypeptidase and endopeptidase) of the wall peptide crosslinking system, occurs in two forms characterized by large differences in their sensitivity to ampicillin (but much smaller differences in their sensitivity to cephalothin). The fractionation of the enzyme activities into two groups of low and high sensitivity to ampicillin is achieved essentially by chromatography of the membrane extract on DEAE-cellulose.

In *Escherichia coli* K12, strain 44, the DD-carboxypeptidase, transpeptidase and endopeptidase activities are membrane bound [1, 2]. Fractionation of the enzyme complex revealed the existence of two systems: a DD-carboxypeptidase-transpeptidase system for which the glutamate-amidated tetrapeptide D-alanyl-D-isoglutaminyl-(L)-meso-diaminopimelyl-(L)-D-alanine was a substrate and/or an inhibitor, and a DD-carboxypeptidase-endopeptidase system on which the glutamate-amidated tetrapeptide had no effect [2]. The use of β-lactam antibiotics that are known to interfere with the wall peptide crosslinking reaction in *E. coli* [3] was likely to provide further information on the properties and the functioning of the enzymes involved. The results of these investigations are presented in this paper. *E. coli* K12, strain 44, a β-lactamase-negative mutant and the fractions derived from its membrane [2], were of particular interest in this type of research. Indeed, the study of the action of β-lactam antibiotics on the peptide crosslinking system of wild strains of *E. coli* is complicated by the presence of cell bound β-lactamases [4-6] which hydrolyze the penicillin molecule into penicilloic acid [7]. The isolation of the β-lactamase-negative mutant, strain 44, is also described in the present paper.

Abbreviation. Brij-36T, polyoxyethylated (n = 10) lauryl ether.

MATERIALS AND METHODS

Strain

E. coli K12 F−, strain PA601 (originally from Dr E. Wollmann, Institut Pasteur, Paris) was selected because it exhibited a wide number of markers (thr−, leu−, his−, arg−, pro−, B1−, ade−, lac−, gal−, zyl−, mal−, β, (λ)−, /str) and had no episomal β-lactamase. It had, however, a chromosomal β-lactamase.

Culture Media

(A) Broth medium contained 8 g broth Difco, 3 g yeast extract Difco, water, 11 (final volume).
(B) Broth agar medium was the above broth medium supplemented with agar, 18 g/l. (C) Soft broth agar medium was the above broth medium supplemented with agar, 9 g/l. (D) Minimum medium contained 40 g glucose, 450 ml phosphate-citrate buffer pH 7, water to 11, final volume. The phosphate-citrate buffer contained per 1: 7 g K2HPO4, 2 g KH2PO4, 0.5 g disodium citrate · 5.5 H2O, 0.1 g MgSO4 · 7 H2O, 1 g (NH4)2SO4. (E) Minimum agar medium was the above medium supplemented with agar: 18 g/l. (F) EMB agar medium was made from the following solutions: solution no 1 (100 ml) containing 0.4 g eosine and 0.065 g methylene blue; solution no 2 (100 ml) containing 5 g NaCl, 2 g K2HPO4, 2 g KH2PO4. The pH value was 6.5-7. Solution no 3

(700 ml) containing 10 g proteose peptone Difco, 1 g yeast extract Difco, 18 g agar; solution no. 4 (100 ml) containing 10 g of either lactose, galactose, xylose or maltose. (G) Difco antibiotic medium no 3.

Determination of Auxotrophic Characters

Minimum agar medium E was supplemented with the following growth factors: vitamin B₁ (20 μg/ml), the amino acids threonine, leucine, histidine, arginine, proline (34 μg/ml of each) and adenine (27 μg/ml). Determination of auxotrophic characters was made by replica plating on the above medium from which one of the growth factors was omitted in turn. For carbohydrate requirements, replicas were made on EMBA medium E supplemented with one of the selected sugars. Fermenting colonies were dark black while non-fermenting colonies were white.

Tris-Maleate Buffer

This contained per liter of final volume: 11.85 g Trizma-maleate, 1 g (NH₄)₂SO₄, 7 H₂O, 0.1 g MgSO₄, 7 H₂O, 5 mg Ca(NO₃)₂, 4 H₂O, 0.25 mg FeSO₄, 7 H₂O. The pH was brought to 5.5 with HCl.

Mutagen

N-Methyl-N-nitroso-N'-nitroguanidine was purchased from Koch-Light Lab. (England, Batch no 39620).

Single Cell Susceptibility to Rifampicin, Benzylpenicillin, Ampicillin and Cephalothin: LD₉₀ Values

E. coli was grown at 37 °C in broth medium A to a density of 5×10⁶ cells/ml and the cultures were diluted with a 70-fold dilution of the phosphate-citrate buffer (see medium D). Viable counts were made by suspending 100—200 cells in the soft broth agar medium C supplemented with various concentrations of antibiotics and spreading the suspensions on broth agar medium B containing the same concentrations of antibiotics. LD₉₀ values were determined graphically as the concentrations of antibiotic allowing 50% cell survival after overnight incubation at 37 °C.

Effect of Ampicillin and Cephalothin on Cellular Morphology

A log-phase culture of *E. coli* in medium G (absorbance of 0.4 at 550 nm) was supplemented with MgCl₂ (0.2% w/v) and sucrose (12% w/v). Aliquots (10 ml in 100-ml flasks) were then incubated for 90 min on a shaker at 37 °C in the presence of various concentrations of antibiotics. Changes in cell morphology were followed by phase-contrast microscopy.

β-Lactamase Activity of Colonies of E. coli

This was estimated by using the starch-iodide test of Perret [8] as described in [9]. The indicator plates were buffered at pH 7.4 with 10 mM phosphate and contained per 1: 18 g agar, 0.127 g iodine, 0.254 g KI, 3 g soluble starch, 0.2 g benzylpenicillin.

β-Lactamase Activity of Disrupted Cells of E. coli

In many strains of *E. coli*, the β-lactamase is cell bound and is located in the periplasmic region [5]. Two procedures were used to release it. (a) The cells from an overnight culture grown at 37 °C in broth media (A or C) were washed with 0.3 M phosphate buffer pH 7.4, resuspended in the same buffer (10 g wet weight of cells per 100 ml) and disrupted with a French press (Aminco Amer. Inst. Co Inc. Silver Spring Maryland no. 4—3348) at 6000 kg; the β-lactamase activity of the disrupted cell suspension was measured with benzylpenicillin by a technique modified from Novick and Dubnau [10]. (b) β-Lactamase activity was also released by converting the cells to spheroplasts with lysozyme and sodium ethylenediaminetetraacetate (EDTA) according to the technique of Osborn et al. [11] (see also Materials and Methods in [1]). The β-lactamase activity was measured on the dialyzed supernatants obtained after removal of the spheroplasts by centrifugation. One β-lactamase unit is that amount of enzyme which hydrolyzes 1 μmol benzylpenicillin per hour at 37 °C and pH 7.

Enzyme Preparations and Enzyme Activities

The enzyme preparations (crude membranes of *E. coli* K12, strain 44, Brij-36 T membrane extract, membrane fractions A', A, B' and B) were those used previously (see flow sheet, Table 1 in [2]). The various enzyme activities and the corresponding assays (natural model transpeptidase, unnatural model transpeptidase, dd-carboxypeptidase and endopeptidase) were described previously (see Table 2 in [2]). All incubations were carried out at 37 °C in 0.06 M Tris-HCl buffer pH 8.5, containing 0.05 M MgCl₂, 0.14 mM dithiothreitol and 0.36—8% (w/v) Brij-36 T (final volume: 35 μl).

RESULTS

Isolation and Properties of β-Lactamase-Negative E. coli Strain 44

Mutagenesis. *E. coli* K12 was grown at 37 °C in 150-ml flasks containing 10 ml broth medium on a New Brunswick shaker until each culture contained 5×10⁹ cells. The cells from each culture were collected on millipore filters, washed with the Tris-maleate buffer and resuspended in 10 ml of the same buffer containing 1 mg N-methyl-N-nitroso-N'-nitroguanidine.
incubation [12]. Each suspension was maintained at 37 °C for 15 min without shaking after which time the cells were collected by ultracentrifugation, washed with the Tris-maleate buffer, resuspended in 10 ml broth medium and grown in 150-ml flasks for 2 h at 37 °C with shaking.

Screening. The cultures were diluted to about 30 cells/ml with a 70-fold dilution of the phosphate-citrate buffer (see medium D). Aliquots (5 ml) containing about 150 cells were membrane filtered, the filters deposited on broth agar medium and maintained at 37 °C overnight. Filters (with about 150 visible colonies on each of them) were then transferred to plates of starch-iodide indicator agar media and maintained at 37 °C for 15 min, after which time, those colonies that were not surrounded by a decolorized area were considered as possible β-lactamase-negative mutants. Contact of the colonies with the starch-iodine medium was restricted to 15 min in order to avoid killing of the cells. Examination of 10000 colonies by this procedure resulted in a yield of 54 possible β-lactamase-negative colonies. These colonies were transferred from the filters and streaked on plates of broth agar medium. After an overnight incubation at 37 °C, one colony was picked up from each of the 54 cultures and inoculated in broth medium. The same screening procedure as above was repeated and yielded 17 possible β-lactamase-negative mutants. Each of them was further examined by performing β-lactamase assays according to Novick's technique (a) on cells disrupted with the help of a French press, (b) on the dialyzed periplasmic fractions obtained by spheroplasting the cells and (c) on the lyzed spheroplasts. One strain, i.e. strain 44, was eventually classified as a β-lactamase-negative mutant.

Strain 44 had all the auxotrophic markers of the parental strain PA601 (Materials and Methods). It had an unaltered generation time (30 min by shaking in medium F at 37 °C) and an unaltered susceptibility to rifampicin (LD50 values: 1.7 μg/ml). Strain 44 had no detectable β-lactamase activity (at least, less than 0.01 unit/g cells wet weight) while the parental strain contained 10 units of (periplasmic) β-lactamase per g cells (wet weight). Parallel to this, strain 44 was twice as sensitive to benzylpenicillin as the parental strain (LD50 values: 4.5 and 9 μg/ml, respectively), as measured by determining the susceptibility of single cells on antibiotic-containing agar media.

Effect of Ampicillin and Cephalothin on E. coli K12, Strain 44

On solid media, the LD50 values of ampicillin and cephalothin for strain 44 were 0.7 μM and 1.6 μM, respectively (Fig. 1). In liquid F broth (supplemented with MgCl2 and sucrose see Materials and Methods), ampicillin at 3–30 μM concentrations inhibited septation and caused complete transformation of the strain into long rod-shaped cells. At higher concentrations of ampicillin (from 32 to 55 μM), the filaments progressively disappeared and were replaced by oval-shaped forms exhibiting typical bulges. With cephalothin, the transitory transformation of the cells into filaments was not a clear-cut phenomenon. Partial filamentation was seen only within a narrow range of antibiotic concentrations (5–10 μM) and complete transformation into oval-shaped forms was already complete at 25 μM. Ampicillin and cephalothin also differ with regard to the sequence of the structural alterations they induce in Proteus mirabilis [13]. Marked cell elongation without division was caused by ampicillin (5.4–54 μM) and not by cephalothin. The occurrence in E. coli strain B of two distinct systems involved in cell division and cell elongation respectively was also revealed by their different sensitivity to penicillin [14].

Effects of Cephalothin and Ampicillin on the Unnatural Model Transpeptidase, DD-Carboxypeptidase and Endopeptidase Activities of the Brij-36T Membrane Extract

The three activities were inhibited by 50% at the same 1 μM concentration of cephalothin (ID50 values, Fig. 2). With ampicillin, the concentration dependence of the inhibition was much more complex (Fig. 2). It suggested the occurrence of two classes of enzymes of high and low sensitivity to ampicillin, respectively and distinguished the unnatural transpeptidase activity from the other two. About 50% of the total unnatural transpeptidase activity and
75% of the total dD-carboxypeptidase and endopeptidase activities of the membrane extract appeared to be attributable to highly ampicillin-sensitive enzymes.

Effects of Cephalothin and Ampicillin on the Unnatural Model Transpeptidase, dD-Carboxypeptidase and Endopeptidase Activities of Fractions A and B

The sensitivity to the antibiotics (Fig. 2—4) was determined under conditions of initial velocities and with incubation times of 2—4 h. The ID₅₀ values of cephalothin were 0.9 μM for the three activities of fraction B and 5 μM for those of fraction A (Fig. 3). The ID₅₀ values of ampicillin were: 0.1 μM for the unnatural transpeptidase of fraction B and 0.7 mM for that of fraction A; 0.3 μM for the dD-carboxypeptidase of fraction B and 10 mM for that of fraction A; 4 μM for the endopeptidase of fraction B and 2 mM for that of fraction A (Fig. 3). Hence the activities of fraction B were about 1000 times more sensitive to ampicillin than those of fraction A.

The sensitivity to ampicillin of the enzyme activities of fractions A' and B' (see flow sheet, Table 1 in [2]) was virtually identical to that of the enzyme activities of fractions A and B, respectively (Fig. 4). It thus follows that the partition of the enzyme activities into two groups of low (fractions A' and A) and high (fractions B' and B) sensitivity to ampicillin was essentially achieved by chromatography on DEAE-cellulose. The enzyme fraction A' not adsorbed on DEAE-cellulose had a low sensitivity to ampicillin (ID₅₀ values: about 1 mM) and consequently, was not adsorbed on the ampicillin-affinose column (fraction A). The enzyme fraction B' adsorbed on and eluted from DEAE-cellulose had a high sensitivity to ampicillin (ID₅₀ values: about 0.1 μM) and consequently, was adsorbed on (and could be eluted from) the ampicillin-affinose column (fraction B). The chromatography on ampicillin-affinose, however, was a valuable means for further purification at least of fraction B' from which, as shown in Fig. 4, it appeared to remove some contaminating unnatural model transpeptidase of low sensitivity to ampicillin.

Effects of Ampicillin on Natural Model Transpeptidases

In a natural model transpeptidation, the pentapeptide L-alanyl-γ-D-glutamyl-(L)-meso-diaminopimelyl-(L)-D-alanyl-[¹⁴C]alanine undergoes concomitant hydrolysis and transpeptidation so that tetrapeptide and peptide dimer are reaction products produced simultaneously. Within the limits of experimental error, it was observed that inhibition of the hydrolysis of the pentapeptide occurred at that concentration of ampicillin that inhibited the dimerisation of the same pentapeptide (Table 1). As observed with the other enzyme activities studied, the ID₅₀ value of ampicillin for the natural model transpeptidase of fraction A' (10 mM) was about 1000 times higher than that of fraction B' (10 μM). Moreover, there was no apparent close relationship between the sensitivity of the natural model transpeptidase and the sensitivity of the carboxypeptidase and unnatural model transpeptidase.

DISCUSSION

β-Lactamase-negative mutants have been obtained from Bacilli [15], Staphylococci [10] and, while...
transpeptidase

Fig. 3. Sensitivity to ampicillin and cephalothin of the unnatural transpeptidase (○), DD-carboxypeptidase (△) and endopeptidase (□) activities of fraction A and B. For the tests used in the assays, the concentrations of the substrates and the final composition of the reaction mixtures, see Fig. 2. Concentration of Brij-36T, however, was 3–8% (w). The incubation times at 37 °C were 2 h in all cases, except for the estimation of the endopeptidase activity of fraction A in which case the incubation time was 4 h. In the absence of antibiotics, the yields of DD-carboxypeptidase activity were 28% with fraction A and 20% with fraction B (expressed in terms of UDP-

Table 1. ID₅₀ values of ampicillin for (a) the hydrolytic and transfer activities of the natural model transpeptidase (b) the unnatural model transpeptidase and (c) the DD-carboxypeptidase of fraction A' and B'.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Natural model transpeptidase hydrolysis (mM)</th>
<th>Unnatural DD-Carboxypeptidase (μM)</th>
<th>Endopeptidase (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A'</td>
<td>10</td>
<td>500</td>
<td>10</td>
</tr>
<tr>
<td>B'</td>
<td>0.010</td>
<td>0.010</td>
<td>0.5</td>
</tr>
</tbody>
</table>

This work was in progress, from *E. coli* K12 [16]. Mutations in *E. coli* K12 occurred in the structural gene of the chromosomal β-lactamase. The new locus was designated *ampC* [16]. It is closely linked to the regulatory gene *ampA* at 82 min on the chromosomal map.

The peptide crosslinking enzyme complex, as it is extracted by Brij-36T from the membranes of *E. coli* K12 strain 44, occurs in two forms which can be separated from each other essentially by chromatography on DEAE-cellulose. One of them has a high sensitivity to ampicillin and cephalothin (ID₅₀ values: about 1 μM). The other is about 10 times less sensitive to cephalothin but 1000 to 10000 times more resistant to ampicillin. A comparison between the ID₅₀ values of ampicillin and cephalothin for the two isolated complexes and their ID₅₀ values *in vivo* show that the highly sensitive enzyme complex is probably the one which contains the enzyme(s) responsible for the killing effect of these antibiotics. Even if one assumes that the enzyme complex of low sensitivity to ampicillin is not an artefact created either by the isolation and/or the extraction of the...
plasma membrane, its physiological meaning and importance are obscure. It may be the result of an "aging" process. Initially synthesized at the central area of the cell [17] in a form highly sensitive to ampicillin, the peptide crosslinking enzyme complex, as the cell cycle proceeds, would be distributed over the surface of the rod in an altered form especially affecting its ampicillin sensitivity. On the other hand, elongation of E. coli K12, strain 44, when grown in a protected liquid medium, is inhibited at a concentration of ampicillin higher than that required to inhibit cell septation, whereas both septation and elongation are sensitive to almost the same concentration of cephalothin. Since, parallel to this, the two isolated enzyme complexes have a similar sensitivity to cephalothin in vitro whereas they greatly differed from each other with respect to their sensitivity to ampicillin, one might hypothesize that the enzyme complex of low sensitivity to ampicillin would be the one actively involved in cell elongation. It has been suggested that a transglycosaminidase of low sensitivity to penicillin would also occur in E. coli [14,18,19]. Whatever the exact mechanism, the present studies show that the peptide crosslinking system of E. coli can undergo desensitization to ampicillin (and to a lesser extent, to cephalothin), suggesting that the constituent enzymes have different binding sites for substrates and β-lactam antibiotics. A similar conclusion was reached for the DD-carboxypeptidase-transpeptidase single poly-peptide enzymes from Strep tomyces R61 and R39 [20,21] and for the DD-carboxypeptidase of Bacillus steaothermophilus [22]. The four activities of the highly sensitive enzyme complex (fractions B and B'), have relatively slight but distinct differences in their responses to ampicillin and the same is true for the four identical activities of the highly resistant enzyme complex (fractions A and A). Hence, the DD-carboxypeptidase-transpeptidase system which was defined on the basis of its ability to recognize the glutamate-amidated tetrapeptide [2], would consist of four synthetases predominantly acting either as natural or unnatural model transpeptidases and exhibiting a high or a low sensitivity to ampicillin. Similarly, the DD-carboxypeptidase-endopeptidase system which was defined on the basis of its inability to recognize the glutamate-amidated tetrapeptide [2], would consist of four hydrolases predominantly acting either as carboxypeptidase or endopeptidase and exhibiting a low or a high sensitivity to ampicillin. Such a multiplicity of enzyme activities is in apparent agreement with the occurrence of many different penicillin-binding sites in the membranes of E. coli [23]. As already discussed [2], however, it is possible that a limited number (two?) of different enzyme proteins could be involved in this complex system and that several distinct activities are catalyzed by a same enzyme protein of which the functioning would be altered by micro-environmental conditions.

Grants from the Fonds de la Recherche Fondamentale Collective, Brussels (no 515 and 1000) and the Institut pour l'Encouragement de la Recherche Scientifique dans l'Industrie et l'Agriculture, Brussels (no 1090 and 2013) are gratefully acknowledged. This work was also supported by grants from the National Science Foundation (no GB 1710) to M.R.J. Salton and from the National Institutes of Allergy and Infectious Diseases (no AI 11489) to J.J. Pollock. M. Nguyen-Distèche is indebted to the Centre National de la Recherche Scientifique for an eight-month training period at the Laboratoire de Chimie Bactérienne (Prof. J. Senez), Marseille (January-October, 1970). This paper is from a dissertation submitted by M.N.D. in partial fulfillment of the requirements for a Ph.D. degree, University of Liège (1973).

REFERENCES

M. Nguyen-Distèche, J.-M. Ghuysen and J. Coyette, Institut de Botanique, Université de Liège au Sart-Tilman, B-4000 par Liège 1, Belgium

J. J. Pollock's present address: Department of Oral Biology and Pathology, State University of New York at Stony Brook, Stony Brook, New York, U.S.A. 11790

J. Puig, Departamento de Biologia, Facultad de Ciencias, Universidad de Los Andes, Merida, Venezuela

P. Reynolds, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, Great Britain, CB2 1QW

M. R. J. Salton, Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York City, New York, U.S.A. 10016