Conception acoustique d’un studio d’écoute pour des séances d’auralisation.

Acoustical design of a listening studio for auralization sessions.

J.J. Embrechts and F. Duthoit

(University of Liege, Intelsig group, Laboratory of Acoustics)
1. The « AURALIAS » research project

« Audio-visual immersion for Room Acoustics applications Linked with an Interactive Auralization System »

Partners:

- Intelsig group, university of Liege
 (acoustics, signal and image processing)

- LISA research unit, university of Brussels
 (computer science, image processing)

- LUCID group, university of Liege
 (architecture, human-machine interaction)
1. AURALIAS

Objectives:
• to develop an auralization system for room acoustics projects,
• to design a system for a small number of users, sharing the same experience,
• to provide auralization by loudspeakers in a listening studio,
• to provide a visual immersion, through an image of the virtual room projected in front of the users,
• to allow interaction with the system: e.g. real-time displacements in the virtual room of the listener and the sound sources.

GA _ ABAV _ Leuven june 3rd 2009
2. Design of the listening studio

Main References:

• *Recording spaces, Ph. Newel, Focal Press* (1998)

• *Considérations acoustiques pour des petits studios en 5.1, L. Givernaud, Conférences SATIS* (2001), http://www.duanrevig.com/Satis%20202001.htm
2. Design of the listening studio

- **Requirements by AURALIAS:**
 - room dimensions: at least 6m x 6m x 3m,
 - good acoustical insulation,
 - low cost.

- **Acoustical criteria for a listening studio:**
 - the room acoustics should not mask the reverberation of the simulated room,
 - the studio should not be anechoic,
 - reverberation time: $Tr = 0.3 - 0.4$ s (all freq.),
 - early reflections (0-20ms) < direct sound minus 10 dB,
 - modal content ... (next)
2. Design of the listening studio

- **Acoustical criteria for a listening studio:**

 - modal content: $V > 40 \text{ m}^3$,

 - the ratio $H:W:L$ should approach $1:1.6:2.4$,

 - for surround sound 5.1 (*L. Givernaud*):

 1. $1.1 \ (W/H) < L/H < 4.5 \ (W/H)$ –4
 2. $L/H < 3$
 3. $W/H < 3$
2. Design of the listening studio

Initial situation

1.1 (W/H)=1.91 < L/H
L/H < 4.5 (W/H) –4 = 3.83
L/H = 2.73 < 3
W/H=1.74 < 3

H:W:L should approach
1:1.6:2.4
(1:1.74:2.73)
2. Design of the listening studio

Early reflections (1st order)

In the horizontal plane.

Identification of the major reflecting zones on the walls.

GA _ ABAV _ Leuven June 3rd 2009
2. Design of the listening studio

Early relections (1st order)

Listening « sweet spot » : 2m diameter.

Treatment n°1 : Changing the orientation of the front wall.
2. Design of the listening studio

Early relections
(1st order)

Listening « sweet spot » : 2m diameter.

Treatment n°2 :
Reflecting panels.

GA _ ABAV _ Leuven june 3rd 2009
2. Design of the listening studio

Early relections (1st order)

Listening « sweet spot » : 2m diameter.

Treatment n°3 : Absorbing and diffusing panels.

GA _ ABAV _ Leuven june 3rd 2009
2. Design of the listening studio

Absorbing material on the front and lateral walls:
- mineral wool panels, 10cm depth
2. Design of the listening studio

Schroeder wideband diffusers on the back wall:
- one-dimensional, diffusion in the vertical plane.
2. Design of the listening studio

Front view.
2. Design of the listening studio

Front view.
3. Acoustical performances

Reverberation times

ray-tracing simulation measured

GA _ ABAV _ Leuven june 3rd 2009
3. Acoustical performances

Definition (%)

ray-tracing simulation

measured

GA _ ABAV _ Leuven june 3rd 2009
3. Acoustical performances

Clarity (dB)

ray-tracing simulation
measured

GA _ ABAV _ Leuven june 3rd 2009
3. Acoustical performances

RASTI

<table>
<thead>
<tr>
<th>sources</th>
<th>ray-tracing</th>
<th>measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>0.83</td>
<td>0.85</td>
</tr>
<tr>
<td>S2</td>
<td>0.85</td>
<td>0.87</td>
</tr>
<tr>
<td>S3</td>
<td>0.85</td>
<td>0.9</td>
</tr>
<tr>
<td>S4</td>
<td>0.82</td>
<td>0.87</td>
</tr>
<tr>
<td>S5</td>
<td>0.8</td>
<td>0.84</td>
</tr>
<tr>
<td>S6</td>
<td>0.83</td>
<td>0.89</td>
</tr>
<tr>
<td>mean value</td>
<td>0.83</td>
<td>0.87</td>
</tr>
</tbody>
</table>