Antagonistic Activity of Yeast against Post-harvest Diseases of Tropical Fruits *

by

Haïsec JIAKLI **, Ludvine LASSOIE ** & Rachid LAHILALI **

KEYWORDS. — Candida oleophila Strain O; Colletotrichum musae; Fusarium moniliforme; Cephalosporium sp.; Penicillium digitatum; Penicillium italicum; Citrus and Banana.

SUMMARY. — Candida oleophila Strain O was previously selected for its high and reliable antagonistic activity against Botrytis cinerea and Penicillium expansum, two important wound pathogens on post-harvest apples. The evaluation of this antagonistic strain on wound pathogens of tropical fruits has been recently undertaken with its application at three concentrations (10³, 10⁴, 10⁵ cfu/ml), on a fungal complex formed by the association of Colletotrichum musae (10³ conidia/ml), Fusarium moniliforme (10³ conidia/ml) and Cephalosporium sp. (10³ conidia/ml), representing crown rot, the most important post-harvest disease of exported banana. The application of strain O at 10³ cfu/ml showed the highest protective level (56 %). The influence of incubation period between strain O (10³ cfu/ml) and the fungal complex incubation has also been studied. Strain O was applied 24 h before the complex, but also 15 min. or 3 h after its inoculation. The highest protective level was observed when strain O was applied 24 h before the complex.

On the other hand, the efficacy of strain O (10³, 10⁴ and 10⁵ cfu/ml) was also assessed against two major wound pathogens of citrus, P. digitatum and P. italicum (10³, 10⁴ and 10⁵ spores/ml), on "Clementine" and "Maroc-late" varicites. The highest protective level (up to 100 %) was detected with the application of strain O at 10³ cfu/ml whatever the pathogen and the citrus variety. The antagonistic activity of C. oleophila was also dependent on the incubation time before pathogen inoculation. The protective level increased with time between application of the antagonist and inoculation of fungal spores.

MOTS-CLES. — Candida oleophila souche O; Colletotrichum musae; Fusarium moniliforme; Cephalosporium sp.; Penicillium digitatum; Penicillium italicum; Agrumes et bananes.

RESUME. — Activité antagoniste de levures vis-à-vis des maladies de post-récolte des fruits tropicaux. — Candida oleophila souche O a été préalablement sélectionnée pour son activité antagoniste élevée et stable face à Botrytis cinerea et Penicillium expansum, deux pathogènes de blessures importants en post-récolte. Le niveau de protection offert par la souche O a été testé plus récemment vis-à-vis d’autres pathogènes de blessures touchant certains fruits tropicaux. L’activité antagoniste de la souche O appli-

* Paper read at the Sixth Raymond Vanbree Conference held on 18 February 2004. Text received on 24 March 2004.
** Unité de Phytopathologie, Faculté Universitaire des Sciences Agronomiques, Passage des Déportés 2, B 5030 Gembloux (Belgium).
Qué à trois concentrations (10^6, 10^7 et 10^8 ufc/ml) a été évaluée par rapport à un complexe parasitaire formé de Colletotrichum musae (103 conidies/ml), Fusarium moniliforme (10^4 conidies/ml) et Cephalosporium sp. (10^5 conidies/ml). Ce complexe est responsable du développement de pourritures de la couronne, la plus importante maladie post-récolte touchant les bananes d'exportation. L'application de la souche O à 10^6 ufc/ml a permis d'obtenir le niveau de protection le plus élevé (56%). L'étude de l'influence du temps séparant l'application de la souche O de celle du complexe parasitaire a révélé que la protection pouvait être considérablement renforcée lorsque la souche O était appliquée 24 heures avant le complexe, et ce, en comparaison avec une application de la souche O effectuée 15 minutes et 3 heures après l'inoculation du complexe parasitaire.

D'autre part, l'efficacité de la souche O (10^6, 10^7 et 10^8 ufc/ml) a été évaluée vis-à-vis de P. digitatum et P. italicum (10^4, 10^5 et 10^6 conidies/ml), deux pathogènes importants des agrumes. Deux variétés d'agrumes ont été utilisées : «Clémentine» et «Maroc-Late». L'emploi de la souche O à 10^6 ufc/ml a permis d'atteindre des niveaux de protection de 100% et ce, quels que soient le pathogène et la variété d'agrumes. De plus, l'efficacité de C. oleophila souche O était également dépendante du temps séparant l'application de la levure de celle du pathogène.

TREFWOORDEN. - Candida oleophila afstaining O ; Colletotrichum musae ; Fusarium moniliforme ; Cephalosporium sp. ; Penicillium digitatum ; Penicillium italicum ; Citrusvruchten en bananen.

SAMENVATTING. - Antagonistische werking van gisten tegen na-aanzetten van tropische vruchten. - Candida oleophila werd van te voren geselecteerd voor zijn hoge tegenstrijdige en stabiele activiteit tegenover Botrytis cinerea en Penicillium expansum, twee belangrijke pathogenen van verwarengen, op appels in post-oogst. Het beschermingsniveau dat wordt bereikt door de afstaining O werd onlangs eveneens getest ten aanzien van andere pathogenen van verwarengen die bepaalde tropische vruchten treffen. De antagonistische activiteit van de afstaining O met drie concentraties (10^6, 10^7 en 10^8 ufc/ml) ten opzichte van een parasitaïr complex gevormd door Colletotrichum musae (10^5 conidies/ml), Fusarium moniliforme (10^5 conidies/ml) en Cephalosporium sp. (10^5 conidies/ml) werd gecëleerd. Dit complex is verantwoordelijk voor de ontwikkeling van rotting van de kroon, de belangrijkste post-oogstziekte bij de bananen voor uitvoer. De toepassing van de afstaining O aan 10^6 ufc/ml heeft het mogelijk gemaakt om het hoogste beschermingsniveau te verkrijgen (56%). De studie van de invloed van de tijd die de toepassing van de afstaining O van die van het parasitaire complex scheidt, heeft eveneens aangetoond dat de bescherming aanzienlijk versterkt kon worden wanneer de afstaining O 24 uur voor het complex werd toegepast en dit in vergelijking met een toepassing van de afstaining O die 13 minuten en 3 uur na inoculatie van het parasitaire complex wordt uitgevoerd.

Anderezijds werd de doeltreffelijkheid van de afstaining O (10^6, 10^7 en 10^8 ufc/ml) to.v. P. digitatum en P. italicum (10^4, 10^5 en 10^6 conidies/ml), twee belangrijke pathogenen van de citrusvruchten, geëvalueerd. Twee variëteiten van citrusvruchten werden gebruikt : „Clémentine” en „Maroc-Late”. Het gebruik van de afstaining O aan 10^6 ufc/ml heeft het mogelijk gemaakt om beschermingsniveaus van 100% te bereiken en dit ongeacht het pathogeen en de variëteit van citrusvruchten. Bovendien is de doeltreffelijkheid van C. oleophila afstaining O alweer afhankelijk van de tijd die de toepassing van de gist van die van de pathogene scheidt.
Introduction

The post-harvest diseases cause important losses of fruits. In the United States, these losses are ranged from 1 to 70%, depending on the commodity (Janisiewicz & Korsten 2002). Post-harvest citrus diseases are responsible for significant economic losses in the world (Darrow et al. 1989). These losses are provoked by green and blue decays caused respectively by Penicillium digitatum and P. italicum (Chalutz & Wilson 1990). On the other hand, the quality of exported bananas has also decreased due to various post-harvest diseases and particularly the banana’s crown rot disease, which is considered as the most important post-harvest disease of exported bananas, present in all growing countries (Krauss & Johanson 2000). In the rainy season, losses of more than 10% have been recorded on Windward Islands, bananas arriving in the UK (Krauss & Johanson 2000). Organisms involved in the disease are numerous and vary according to locality, time of year and other factors (Slabaugh 1994). However, the most frequently isolated fungi from the crown rot include Colletotrichum musae (major pathogen), Botryodiplodia theobromae, Cephalosporum sp., Cercospora paradoxa, Verticillium theobromae and Fusarium sp. (Meredith 1971).

The control of these post-harvest diseases on citrus and banana is mainly based on fungicide treatments (De Laeyre de Bellaire & Nolin 1994, Krauss et al. 1998, Jiaeki 1999) such as thiabendazole (TBZ) or imazalil (IMZ) sprayed on fruits during packing-house operations. Nevertheless, this practice was criticized because of the appearance of fungicide-resistant strains of post-harvest wound pathogens (Vinhas et al. 1993, Johanson & Blazquez 1992, East & Kenyon 1998). Furthermore, growing concern for the human safety and protection of environment imposed to develop alternatives to usual synthetic fungicides in order to control post-harvest diseases (Wisniewski & Wilson 1992). In this context, the biological control of post-harvest diseases of fruits has been shown as a realistic alternative to synthetic fungicide because the application sites are limited to the fruits, the environmental factors are defined and stable in the storage rooms, and the harvested commodities are of high value which allows to support costs of biological treatments potentially higher than chemical methods (Fukuda 1991, Wilson & Wisniewski 1992, Jiaeki et al. 1999). Effective biological control has been reported for post-harvest diseases of citrus (Chalutz & Wilson 1990, El-Ghobout et al. 2000). Research on the use of biological antagonists to control crown rot is more recent (Krauss 1996, Krauss et al. 1998, East & Kenyon 1998, de Costa & Sudasinghe 1998).

Candida oleophila strain O was previously selected and approved for control of wound post-harvest diseases of apples and pears (Jiaeki et al. 1993). The aim of the present study was to assess in vivo the antagonistic activity of the yeast C. oleophila strain O against both post-harvest diseases of citrus caused by P. digitatum and P. italicum and against banana’s crown rot disease. This study
evaluates also the influence of relative concentrations of both micro-organisms (antagonist and pathogen) and different incubation periods between strain O treatment and fungal complex inoculation on the protective level.

Effect of Relative Concentrations of Microorganisms (Pathogen and Antagonist) on Protective Level

In order to study the effect of the relative concentrations of strain O and both citrus pathogens on the protective level, citrus fruits were treated with 50 µl of C. oleophila strain O at concentrations of 10⁶, 10⁷ and 10⁸ cfu/ml. The concentrations were determined by the Burker cell. After disinfecting (sodium hypochlorite, 10 %) and drying, “Maroc late” fruits were wounded at two equidistant points at the equatorial side. Each wound was 5 mm in diameter and 4 mm in depth. On the other hand, “Clementine” fruits received a single wound with 5 mm in diameter and a depth ranged from 1 to 2 mm. One hour after the application of the antagonist, wounded fruits were inoculated by 50 µl of P. digitatum and P. italicum (10⁶, 10⁷ and 10⁸ spores/ml). Fifty µl of sterile distilled water was applied on the control before the inoculation of the pathogen. Fruits were kept during seven days at 24 °C under sixteen hours of photoperiod. Three fruits (six wounds for “Maroc late” variety and three wounds for “Clementine” variety) were used per treatment and two trials were carried out over time.

In case of bananas the protocol differs, according to disease epidemiology and natural contaminations. Green bananas (Musa acuminata AAA, Cavendish, cv Grande Naine) were harvested at the stage recommended by the method set up by Ganry (1978) to form clusters of four bananas. Crowns of these clusters were inoculated by three fungi implicated in the complex, namely: Colletotrichum musae, Fusarium moniliforme and Cephalosporium sp. Spore concentrations were adjusted to 10⁵ conidia/ml for C. musae and 10⁶ conidia/ml for both others. One hundred µl of conidial suspension were applied to the centre of the freshly exposed crown tissue.

Three hours after pathogen inoculation, strain O was applied at three different concentrations (10⁶, 10⁷, 10⁸ cfu/ml) by submerging banana’s crowns into strain O suspension for ten seconds. Two kinds of control were used for each experiment: a “non treated” control, only inoculated with the same pathogens and a “fungicide” control, submerged in a thiabendazole bath (500mg/L, Mertec 205) for one minute.

Bananas were then stored to simulate maritime transport for thirteen days long and Percentage of Crown Necrosed Surface (PCNS) was carried out by measuring the internal crown for surface in comparison with the total crown not surface.

The analysis of the results expressed in percentage of protection offered by C. oleophila strain O against P. digitatum and P. italicum on both orange varieties
Fig. 1. — Evaluation of the antagonistic activity of C. oleophila strain O against *P. digitatum* and *P. italicum* with respect to their relative concentrations. Protective level was observed on citrus varieties “Maroc-late” (fig. 1A) and “Clementine” (fig. 1B) after seven days of incubation at 24°C. Citrus fruits were treated with a suspension of 50 μl of strain O (10^5, 10^6 and 10^7 cfu/ml) and inoculated one hour later by a suspension of *P. digitatum* or *P. italicum* (10^5, 10^6 and 10^7 spores/ml). The average of protective level was calculated from two separate experiments. Each experiment contained three fruits per treatment. Vertical bars represent the standard error associated to their respective average.
"Maroc Late" and "Clementine" showed that the protective level was higher with increasing concentrations of antagonist and low concentrations of pathogen. This observation revealed a quantitative relationship between the concentration of *P. italicum* and *P. digitatum* and cell number of antagonistic strain used to control the disease development. The application of strain O at a concentration of 10⁵ cfu/ml offered only a weak protection whatever the applied concentration of both pathogens. Whatever the citrus variety studied, the protective level did not exceed 35% (fig. 1). The treatment with the highest concentration of the antagonist (10⁶ cfu/ml) allowed a higher efficacy. For example, strain O offered a total protection of 100% against both pathogens (inoculated at 10⁵ spores/ml) on the "Maroc-late" variety whereas the protective level reached 93% and 95% respectively for *P. digitatum* and *P. italicum* on the "Clementine" variety.

The different concentrations of strain O used to control banana's crown rot allowed to reduce the incidence of the disease. The use of strain O at 10⁵ cfu/ml showed also the highest protective level of 56% (fig. 2) whereas both lowest concentrations (10⁴ and 10⁵ cfu/ml) offered a protective level ranged between 23 and 29%.

![Percentage of Crown Necrosis Surface (PCNS) on inoculated banana clusters with the fungal complex and treated with C. oleophila strain O at various concentrations. Statistically similar values of PCNS are represented in the same colour. Values are expressed by means of six replicates, vertical bars represent standard errors. O6, O7, O8 correspond to treatment with strain O respectively applied at 10⁵, 10⁶, 10⁷ ufc/ml; control: no yeast applied; fungicide: bananas dipped in thiabendazole (500 mg/L) for one minute.](image)

Influence of the Fruit Incubation Period, between Strain O Application and Pathogen Inoculation, on the Protective level

This part was focused on the effect of growing time between the antagonist application and the pathogen inoculation. Both fruits were treated with strain O...
Fig. 3. — Evaluation of the antagonistic activity of yeast C. oleophila strain O with respect to incubation time separating the antagonist application and pathogen inoculation (P. digitatum and P. italicum). Protective level was observed on citrus varieties “Maro-late” (Fig 3A) and “Clementine” (Fig. 3B) after seven days of incubation at 24° C. Citrus fruits were treated with a suspension of strain O (10^5 cfu/ml) and inoculated with a suspension of P. digitatum or P. italicum (10^6 spores/ml). Strain O was applied on citrus either twelve hours after pathogen inoculation (a), at the same time (b), or twelve (c) or twenty-four (d) hours before pathogen inoculation. The average of protective level was calculated from two separate experiments. Each experiment contained three fruits per treatment. Vertical bars represent the standard error associated to their respective average.
at a concentration of 10⁶ cfu/ml. The application of the antagonist was made on citrus either twelve hours after the inoculation of the pathogen (10⁵ spores/ml), at the same time, or twelve or twenty-four hours before the pathogen inoculation. Concerning bananas, strain O was applied twenty-four hours before the fungal complex inoculation on the crown, or fifteen minutes or three hours after the complex inoculation.

In all cases, protection offered by the strain O treatment increased with growing periods which separate the antagonist application from the pathogen inoculation. Strain O showed a protective level superior to 95% on "Maroc-late" variety against both pathogens when it was applied twenty-four hours before the pathogen inoculation. The protective level reached 100% on "Clementine" variety for the same inoculation period. The application of strain O twelve hours before pathogen inoculation allowed a protective level ranged between 70 and 80% respectively on "Maroc-late" and "Clementine" varieties. The antagonistic activity remained also important when both microorganisms (antagonist and pathogens) were simultaneously applied (fig. 3).

Similar results were also observed on banana (fig. 4). The protective level (37%) was remarkably reinforced, more than twice, when strain O at 10⁶ cfu/ml was applied twenty-four hours before the pathogens in comparison with the treatment where the antagonist was introduced 15 min. or 3 h. after the pathogens allowing respectively 24% and 20% of protection.

![Various treatments graph](image)

Fig. 4. — PCNS on banana clusters inoculated with the fungal complex and treated with C. oleophila strain O (10⁶ ufc/ml). Statistically similar values of PCNS are represented in the same colour. PCNS mean is the result of six replicates, and standard errors are represented by vertical bars. 24 h.: strain O applied 24 h. before the fungal complex inoculation; 15 min. and 3 h.: strain O respectively applied 15 min. and 3 h. after the fungal complex inoculation; control: no treatment; fungicide: bananas dipped in thiabendazole (500mg/L) for one minute.
Discussion

This study has showed the potential application of *C. oleophila* strain O as a biological control method against citrus green and blue molds and against banana's crown rot disease. A concentration of 10^6 cfu/ml of strain O gave higher protective level than the lower concentrations whatever the studied model. In this respect, Drobny et al. (1989) reported that an increase in *Debaryomyces hansenii* concentration resulted in more effective biocontrol of *P. digitatum* on citrus. Our results are also in accordance with those of El Giaout et al. (2000) who observed a more effective control of post-harvest decay with antagonistic yeasts applied at 10^6 cfu/ml and often no control of decay when biocontrol agents were applied at 10^5 cfu/ml.

The level of efficacy of strain O at 10^6 cfu/ml on post-harvest citrus diseases obtained in our laboratory was high and opens a good probability of transfer in practical conditions. This efficacy on citrus was higher than on banana's crown rot disease, where protection was limited and variable depending on the incidence's disease. Indeed, strict correlation between the severity of the banana's crown rot and the protective level by strain O at a concentration of 10^6 cfu/ml was observed. When the severity of the symptoms increased, protective level by strain O decreased. This observation is in accordance with a more important reduction of banana's crown rot in natural infestation conditions, where symptoms are generally less severe than those observed in our artificial conditions of inoculation.

This study has also highlighted that the protection can be reinforced by different strategies. Protection was increased when strain O was added before the pathogen inoculation in comparison with the addition of strain performed after it. This parameter must be considered in the development of a biological control method against fruit post-harvest diseases using this yeast strain.

Other techniques should also be considered to increase the protective level of biocontrol method. The polybag conditioning allows to reduce incidence of banana's anthracnose (Chillet & De Lapeyre de Bellaire 1996) and crown rot (Pacico 2001) by the establishment of a modified atmosphere during the banana's transport. This physical method should be tested in combination with strain O. The design of the yeast formulation is also important and in some cases allows a higher and more stable efficacy of the antagonist (Jutrè et al. 2002). Another possibility is the use of antagonist mixtures which probably increase the protective level (Krauss & Johanson 2000, Janiszewicz & Korsten 2002, Krauss et al. 1999). These strategies will be tested for both fruit models and more particularly on banana fruit.

ACKNOWLEDGEMENTS

The authors wish to thank the CIRAD-TLIOR (Neufchâtel, Guadeloupe-France), SICA KARUBANA and SICA BANAGUA in Guadeloupe, Department of Phytopatho-
logy of the National School of Agriculture of Meknes in Morocco and AUP ("Agence Universitaire de la Francophonie") for their collaboration and financial contribution to this paper.

REFERENCES

Chalutz, E. & Wilson, C. L. 1990. Postharvest biocontrol of green and blue and sour rot of citrus fruit by Debaryomyces hansenii. — *Plant Disease*, **74**: 134-137.

