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Within multi-Higgs-doublet models, one can impose symmetries on the Higgs potential, either discrete
or continuous, that mix several doublets. In two-Higgs-doublet model any such symmetry can be con-
served or spontaneously violated after the electroweak symmetry breaking (EWSB), depending on the
coefficients of the potential. With more than two doublets, there exist symmetries which are always
spontaneously violated after EWSB. We discuss the origin of this phenomenon and show its similarity to

frustration in condensed matter physics.
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1. Introduction

The electroweak theory relies on the Higgs mechanism of the
electroweak symmetry breaking (EWSB). Many different variants
of EWSB beyond the Standard Model have been proposed so far,
see e.g. [1], the N-Higgs-doublet models (NHDM) being among
the most conservative ones. On one hand, various realizations of
NHDM are attractive to a phenomenologist because they offer a
broad spectrum of new physics phenomena with little input. On
the other hand, they naturally arise in supersymmetric models and
in certain low-energy realizations of superstring/brane models, see
[2] and references therein. Thus, the multi-doublet models clearly
deserve a detailed study from different points of view.

When building a multi-Higgs-doublet model, one has to specify
the Higgs potential. The number of free parameters in the poten-
tial explodes as N increases. Even for the two-Higgs-doublet model
(2HDM) one already has 14 free parameters, which makes the
minimization of the potential intractable with the straightforward
algebra and necessitates introduction of more involved mathemati-
cal methods to study properties of a sufficiently general 2HDM, see
[3] and references therein. Generalization of these methods to gen-
eral N is a hard task; the first steps were recently made in [4,5].

One of the attractive features of NHDM is the possibility to in-
troduce additional symmetries in the space of Higgs families via
the Higgs potential, which can then affect the other sectors of
the theory. In 2HDM, the full list of symmetries of the potential
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is now known [3]: the symmetry group can be Zy, (Z2)?, (Z2)3,
0(2), 0(2) x Zp, or O(3). Trying to extend these symmetries into
the Yukawa sector, one can encounter models with remarkable CP-
properties [6]. With more than two doublets, classifying possible
symmetries of the potential seems to be a rather complicated task.
Just to mention several recent attempts to attack the problem, in
[7] the Abelian symmetries of 3HDM were classified, in [8] many
group-theoretic aspects of the Yukawa mass matrices in 3HDM
were analyzed, in [9] some symmetry features of multi-doublet
models and their traces in the Higgs mass spectrum were pre-
sented, while [5] contains a general strategy to identify discrete
symmetry groups of NHDM, with several 3HDM examples. How-
ever, the full list of symmetries that can be imposed on the scalar
potential of a multi-Higgs-doublet model is still unknown.

In this Letter we would like to draw attention to a peculiar fea-
ture that arises in models with more than two Higgs doublets. We
show that there exist certain explicit symmetries of the potential,
which are necessarily broken whenever the electroweak symme-
try breaking takes place. We term them “frustrated symmetries”
because of their similarity to the phenomenon of frustration in
condensed matter physics.

The two principal points of this short Letter is (1) the observa-
tion of this class of symmetries as a generic phenomenon in multi-
doublet models, which to our best knowledge remained unnoticed
before, and (2) the proof that it requires at least three doublets.
We do not have yet the full list of such symmetries for a generic
number of doublets. However already the specific 3HDM examples
given below lead to an interesting phenomenology, which requires
a dedicated study. In general, we think that such symmetries can
be an option to keep in mind when building models with desired
properties beyond the Standard Model.
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The structure of the Letter is the following. In Section 2 we
introduce a convenient framework for discussing symmetries of
the Higgs potential. Then in Section 3 we explain how frustrated
symmetries arise and give 3HDM examples. In Section 4 we make
several remarks and draw our conclusions.

2. Orbit space of NHDM

A detailed description of the orbit space of NHDM was given in
[4]. Here we just introduce the notation and mention some of its
results.

In the N-Higgs-doublet model we introduce N Higgs dou-
blets ¢, a=1,..., N. The general renormalizable Higgs potential
of NHDM is constructed from the gauge-invariant combinations
(¢;r¢b), which describe the gauge orbits in the Higgs space. The
space of gauge orbits (the orbit space) can be represented as a cer-
tain algebraic manifold embedded in the Euclidean space RV of
bilinears

N—-1 .
=y oy 2 %ibe  Ti= ) Bikiyon. (1)
a a,b

where Al are the generators of SU(N): Pauli matrices for N = 2,
Gell-Mann matrices for N = 3, etc. The Higgs potential can then be
rewritten as a quadratic polynomial in bilinears ro and r;:

1 1
V = —Morg — Mjr; + EAoor(z) + Agitori + EAijrirf (2)

Note that when constructing a potential, we have the full freedom
to choose N2 components Mg, M; and N2(N2 + 1)/2 components
of Apg, Agi, and Ajj, provided the positivity constraints are satis-
fied.!

Some geometric properties of the orbit space manifold were
established in [4]. It is located inside a conical “shell” lying be-
tween two coaxial cones, the “forward lightcone” and a certain
inner cone:

N-2 R ri
—— L <i?<1, m=- 3)
2(IN-1) o

If the vector (1) corresponding to the vacuum expectation values
lies on the surface of the “forward lightcone”, (7i?) = 1, then the
vacuum is neutral; otherwise, the vacuum is charge-breaking. In
the case of two-Higgs-doublet model, N = 2, the inner cone disap-
pears, and the orbit space populates the entire unit ball in the 3D
(n)-space, including the point (1) = 0, which corresponds to the
following v.e.v.’s:

1 /0 1 (v
(¢1)=E<v>7 <¢2)=ﬁ<0>' (4)

The inner cone appears for N > 2 and makes the innermost part of
the unit ball not realizable in terms of doublets. For example, for
three-Higgs-doublet model, 1/2 < |ii| < 1.

Note also that if we were working with two Higgs singlets, or
if we were working in 2HDM but required that the minima always
be neutral, then the orbit space available would be represented by
a unit sphere, not ball. In this case, the point (i1) = 0 would not be
realizable anymore.

1 The explicit algebraic formulation of the positivity constraints in the most gen-
eral NHDM is not yet known, however it is easy to satisfy them when constructing
potentials with specific symmetries, see [5].

3. Frustrated symmetries
3.1. General observations

Suppose we have constructed a Higgs potential with an ex-
plicit symmetry. That is, we have found coefficients M;, Ag; and
Ajj in (2), such that the potential is left invariant under a group
G of transformation between doublets ¢,. We will restrict our-
selves only to unitary or antiunitary transformations, which leave
the Higgs kinetic term invariant. This means that ro is invariant
under G, while the components r; are transformed by orthogonal
transformations forming a subgroup of 0 (N2 —1).

The key observation is that imposing a symmetry often restricts
M; and Ag; stronger than A;j. In particular, it is possible to devise
such a symmetry group G of transformations of doublets, which
can be implemented via a non-trivial tensor Agjc), but not in a
vector M; or Ag; (see examples below). The Higgs potential with
such a symmetry is then

v© = —Mporg + %AOQT(Z) + %A,.(f)rirj. (5)
The group-theoretic explanation of this possibility comes from
counting singlets in different representations. The vector r; realizes
the adjoint representation of the group G, while r;r; transforms as
a product of two such representations. When constructing a G-
invariant potential, we look for singlets in r; or in rirj. One can
easily think of situations when there is no singlet in r;, while there
exists a singlet in r;r;. For such a group, the Higgs potential has no
linear r; term, but can contain various {r;rj}singler terms.

After EWSB, the doublets acquire some vacuum expectation val-
ues, which are translated into certain (rg) > 0 and (r;). If it turns
out that all (r;) =0, the vacuum remains invariant under the sym-
metry group G. Otherwise, if at least one component (r;) # 0, then
the vacuum spontaneously breaks the symmetry group G, either
completely or down to a proper subgroup, simply because by con-
struction no non-trivial vector (rj) can be G-symmetric. Thus, in
order to see if a given symmetry has a chance to be conserved in
a non-trivial vacuum, we need to check whether or not the point
i = (f)/(ro) = 0 belongs to the orbit space of the model.

In the previous section we showed that the point 7i = 0 belongs
to the orbit space only in the two-Higgs-doublet model. Therefore,
in 2HDM any symmetry imposed on the potential can, in princi-
ple, be conserved in the vacuum state provided we have chosen
appropriate coefficients of the potential. Indeed, if one acts on the
state (4) with any (anti)unitary transformation which mixes the
doublets, one arrives at the same state up to an electroweak trans-
formation. That is, the corresponding gauge orbit is G-symmetric.

In NHDM with N > 2, the point i = 0 cannot be realized
through doublets; therefore, the minimum of the G-symmetric po-
tential (5) unavoidably breaks the explicit symmetry in the space
of electroweak orbits. Spontaneous breaking of this symmetry al-
ways accompanies EWSB.

We call such a symmetry a frustrated symmetry for the follow-
ing reason: setting all n; = 0 is equivalent to setting all products
(qb;rqu) to zero while keeping all the norms |¢;|> non-zero and
equal. This is impossible to achieve with more than two doublets,
simply because we have too little freedom of where to place vacu-
um expectation values inside all three doublets. Even if the first
two doublets are chosen as in (4), the third doublet of the same
norm will have a non-zero product with the first or the second
doublet. In other words, although we can “optimize” the v.e.v.’s in
any pair of doublets (equal norms, zero product), these optimal
configurations are mutually incompatible in three or more dou-
blets and cannot be satisfied simultaneously.



LP. Ivanov, V. Keus / Physics Letters B 695 (2011) 459-462 461

This phenomenon resembles very much the concept of frustra-
tion in condensed matter physics, especially in the context of frus-
trated magnetism, see reviews [10]. The prototypical case is given
by the triangular spin lattice with antiferromagnetic exchange in-
teraction. The interaction energy in any spin pair can be minimized
by assigning the two spins to the opposite states, but it is im-
possible to arrange all the spins in the lattice so that all the pair
interactions are optimal. As the result, a sizeable fraction of all
links in the ground state of this lattice remain not optimal, and
they can be distributed in the lattice in many different ways. The
ground state is therefore highly degenerate and has a large entropy
even at zero temperature. In certain cases this leads to formation
of a fluid-like state, the spin liquid, with all sorts of unusual exci-
tations and collective phenomena, see a recent review [11] of this
exciting field.

Although in our case we have a finite version of such a system
(the number of doublets N is finite), the high degeneracy of the
ground state in a frustrated NHDM is of the same origin. It is in-
triguing to see whether other features of magnetically frustrated
systems can have their multi-Higgs-doublet counterparts.

3.2. 3HDM examples

Let us now give three examples of frustrated symmetries in the
three-Higgs-doublet model (3HDM).

The simplest case is given by the potential which is symmetric
under any SU(3) rotation and mixes the three doublets. It corre-
sponds to the exceptional case A;; =0:

V =—m?(¢ 1 + plda + dl3) + 1 (0161 + plb + dl3)°. (6)

Clearly, no non-trivial vacuum can be symmetric under the en-
tire SU(3) group, even up to EW transformations. However, this
example involves a continuous group, whose breaking generates
undesired massless scalars after EWSB.

To avoid massless scalars, one can impose discrete frustrated
symmetries. Our second example is given by the “tetrahedral
3HDM” defined by the following Higgs potential:

V = —Moro + Aorg + A1(r} + 15 +18) + Az (3 + 12 +13)
+ A3(r3 +15) + Aa(rira — rars +Ter7). (7)
In terms of doublets, this potential has the form:

— MO
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+ As[(Redlg2) (Im @l 2) + (Re phgps) (Im plp3)

+ (Regjgr) (Impip1)]. (8)

This potential is symmetric under the full (achiral) tetrahedral
symmetry group T4, which is isomorphic to Sy4. Its elements are in-
dependent sign flips of the doublets, the cyclic permutation of the
three doublets ¢1 — ¢2 — ¢3 — ¢1, antiunitary transformations
involving exchange of a pair of doublets applied together with the

(BT 1 + dopa + pigp3)

CP-transformation such as ¢ < qﬁ;, ¢3 — ¢)§, as well as their com-
binations. Note the absence of any term which is linear in r; in (7)
due to the fact that no such term respects the tetrahedral symme-
try.

If all A’s except for A; are positive and if A4/+/12 < |Aq| < Ao,
then the potential has four neutral degenerate global minima at

(¢,‘0> — v — L (9)
V2 V3(Ag — A1)

Using the geometric technique developed in [5], one can show that
these are the global minima and they correspond to the vertices of
a regular tetrahedron in the {ni, n4,ng}-space at n =n3 =ns =
ny =ng = 0, which are the contact points of the critical equipoten-
tial surface with the orbit space of 3HDM. At each of these minima,
the tetrahedral symmetry group is broken down to a D3 group, the
symmetry group of the equilateral triangle. The “broken” transfor-
mations link the minima to each other.

The third 3HDM example of frustrated symmetry is the “oc-
tahedral 3HDM”, whose potential is again given by (7) but with
A4 = 0. The resulting potential is symmetric under the octahedral
group, which in addition to the tetrahedral group of transforma-
tions includes the exchanges of the doublets, e.g. ¢1 <> ¢2, and the
CP-transformation ¢; — ¢1T' separately, as well as their composi-
tions with other transformations. If A; < 0 as before, the v.e.v.’s
(9) again realize the global minima of this potential.

We note in passing a remarkable phenomenological feature of
this model: it is 2HDM-like. Due to remaining symmetry, it ex-
hibits certain degeneracy in the mass spectrum of the physical
Higgs bosons, yielding just one mass for both charged Higgs bosons
and three different masses for the neutral ones, which precisely
mimics the typical Higgs spectrum of 2HDM. It would be inter-
esting to see what experimental observables could distinguish this
model from the actual 2HDM.

Finally, we note that the octahedral symmetry can be imple-
mented in a slightly different fashion described in [5]. In that
case, there are six degenerate vacua with symmetry group of a
square.

(1, £1,£1},  v?

4. Discussion and conclusions

Let us make several additional remarks concerning the frus-
trated symmetries and put forth questions that deserve closer
study.

First, frustrated symmetries are not specific to doublets. They
can arise when the representation of the electroweak group has
lower dimensionality than the horizontal (Higgs family) space, i.e.
more than one singlet, more than two doublets, more than three
triplets, etc.

Second, various cyclic groups often used in constructing multi-
Higgs-doublet models do not represent a frustrated symmetry. In-
deed, a cyclic group can be realized as a group of phase rotations
of the individual doublets. But these phase rotations leave the
N — 1 coordinates (rj) invariant, corresponding to generators A;
of the Cartan subalgerba of su(N). Thus, the vacuum state with
(¢1) # 0 and all other (¢;) = 0 is invariant under this group (up
to an overall phase rotation). One can then easily construct a po-
tential with the cyclic symmetry whose global minimum will be
exactly at that point and will, therefore, conserve the symmetry of
the potential.

One might wonder whether frustrated symmetries must be
non-Abelian. We have at least one counterexample to this conjec-
ture: in a model with two singlets, the (Z3)> symmetry is frus-
trated, see remark at the end of Section 2.

Third, any non-trivial Yukawa sector of the model obviously vi-
olates a frustrated symmetry. However, if the reparametrization
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transformation is generalized to include simultaneous transforma-
tions of scalar and fermionic fields, then there is a chance to ex-
tend a frustrated symmetry to the full Lagrangian. Whether or not
any frustrated symmetry can be extended to the fermion sector in
this manner, remains to be studied.

Last, looking at the problem from a more phenomenological
side, it should be noted that a frustrated symmetry is not man-
ifested in the properties of physical Higgs bosons after EWSB. In-
deed, the vacuum expectation values and the Higgs mass spectrum
necessarily violate the symmetry. Still, knowing that the Higgs po-
tential has a symmetry before EWSB is important because it might
provide hints of the origin of the Higgs families. The following
question then arises: is it possible to infer its presence from the
experimental data, and if so, what observables should one look at?
A detailed phenomenological study is needed to clarify this issue.

In conclusion, we showed that in multi-Higgs-doublet mod-
els with more than two doublets one can impose symmetries on
the Higgs potential which are necessarily broken after EWSB. We
named them frustrated symmetries because of their resemblance
to the phenomenon of frustration in condensed matter physics.
We discussed the group-theoretic and geometric origin of such
symmetries and gave several examples in the three-Higgs-doublet
model. Existence of this class of symmetries is a generic feature of
multi-doublet models, and its phenomenological impact on model
building is yet to be studied.
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