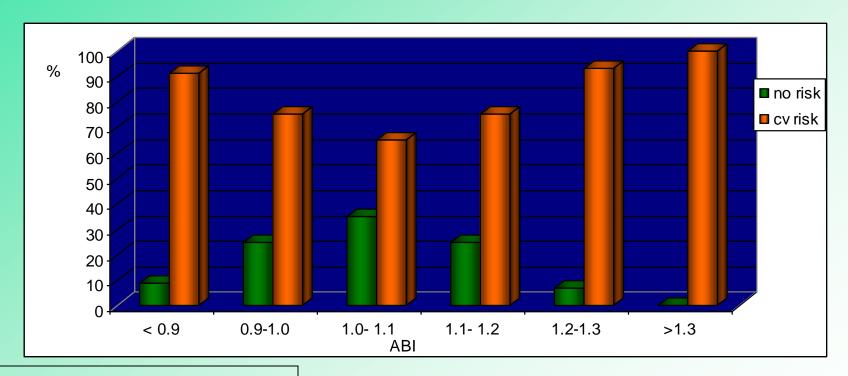
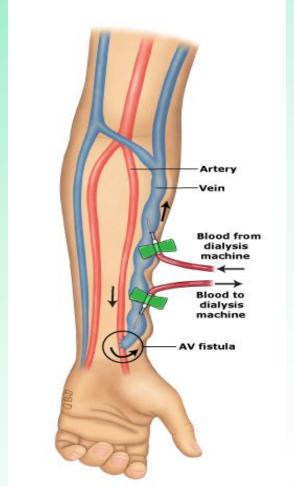

Are the complications of arteriovenous fistulas associated with an abnormal Ankle-Brachial Index in Hemodialysis? A 4y study

P. Xhignesse, A. Saint-Remy, B. Dubois, JC. Philips, JM. Krzesinski

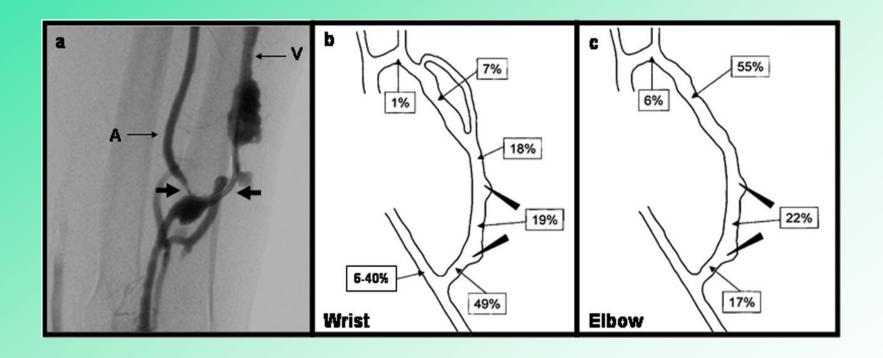
Nephrology Unit- CHU Liège- Ulg- Belgium



Atherothrombosis is a Systemic Disease: Increase for Myocardial Infarction and Stroke as a Function of ABI


Distribution of 83 HD patients according to CV risk and ABI

At least one cv complication: LVH; MI; stroke; Heart failure



AV fistula is the recommended vascular access in HD but Vascular access failure (stenosis and thrombosis) is frequent, especially due to atherosclerosis.

AVF problems

Roy-Chaudhury, P. et al. J Am Soc Nephrol 2006;17:1112-1127

Aims of the study

- 1. Could ABI<0.9 be a risk indicator of vascular access failure?
- 2. Could repeating ABI measurements be useful in the follow up of patients, especially for the AV Fistula outcome?

METHODS

Recording of Arteriovenous Fistula complications during 4y: thrombosis and stenosis requiring angioplasty

-Ankle Brachial Index = [Ankle SBP/Brachial SBP] (ABI) was measured after 1h of HD session on both ankles and on the non fistula arm.

-The lowest ratio was retained.

Technic: hand held doppler: Bidop ES-100V3 HADECO

ABI measured at baseline, after 1 and 4 years later

- Predialysis BP was averaged on the last 12 dialysis sessions.
- Biological parameters averaged on the last 3 months (CRP, lipids, Ca-P, PTH, albumin, uric acid).

Patients' characteristics (N=38)

- Age: 63.5y
- M/W: 22/16
- Dialysis vintage: 6.2y
- Diabetes mellitus:10
- Smokers: 21
- Past history of CV events: 30
- HTN: 33
- Statins : 10

ABI modifications at 4 years interval

		ABI levels 4 years later			
Baseline		< 0.9	0.9 – 1.3	> 1.3	Unc. arteries
0.9 – 1.3	n=20	4	10	1	5
< 0.9	n=14	11	1	0	2
>1.3 N = 38 * uncompressib	n=4 le arteries	0	0	1	3

Contribution of a single ABI

Last ABI>	ABI <0.9 N=15	ABI >0.9 N=23
Age	71.6 ± 16	64.5 ± 17
M/W	9/6	13/10
Dialysis vintage (years)	7.7 ± 7	11.6 ± 11
VAF: thromb, stenosis	8 (53%) (4T, 4 S)	17 (74%) (13T , 4S)
AVF survival time (m)	59 ± 46	80 ± 89
	Median: 60	Median: 65
Smoking	14 (93%) ^{0.009}	13 (56%)
Calcifications (XR ay chest)	13 (87%)0.04	14 (61%)
4y Mean Ca (mg/dl)	9.5 ± 0.5 0.02	8.5 ± 0.4
Predialytic SBP	153 ± 16 0.005	135 ± 20
(at 4 years)		
Predialytic Pulse P	82 ± 13 0.005	67 ± 15
(at 4 years)		

Contribution of a single ABI

Last ABI>	ABI <0.9 N=15	ABI >0.9 N=23
Age	71.6 ± 16	64.5 ± 17
M/W	9/6	13/10
Dialysis vintage (years)	7.7 ± 7	11.6 ± 11
VAF: thromb, stenosis	8 (53%) (4T, 4 S)	17 (74%) (13T , 4S)
AVF survival time (m)	59 ± 46	80 ± 89
	Median: 60	Median: 65
Smoking	14 (93%) ^{0.009}	13 (56%)
Calcifications (XR ay chest)	13 (87%)0.04	14 (61%)
4y Mean Ca (mg/dl)	9.5 ± 0.5 0.02	8.5 ± 0.4
Predialytic SBP (at 4 years)	153 ± 16 0.005	135 ± 20
Predialytic Pulse P (at 4 years)	82 ± 13 ^{0.005}	67 ± 15

Contribution of repeated ABI measurements at different occasions.

ABI evolution in 4 years	ABI <0.9 N=15	Unmeasurable ABI (uncompressible arteries)N=10
Age	71.6 ± 16	68.5 ± 12
M/W	9/6	7/3
Dialysis vintage (y)	7.7 ± 7	11.6 ± 11
VAF: thromb, stenosis	8 (53%)(4T,4S)	7 (70%) (7T)
Smoking (current and former)	11 (73%) ^{0.05}	4 (40%)
Baseline P (mg/dl)	4.64 ± 0.9	5.45 ± 0.9 0.06
Baseline PixCa (mg ² /dl ²)	39.6 ± 12	50 ± 9.6 ^{0.04}
Predialytic Pulse P (at 4 years)	82 ± 13 ^{0.04}	71 ± 17

Contribution of repeated ABI measurements at different occasions.

ABI evolution in 4 years	ABI <0.9 N=15	Unmeasurable ABI (uncompressible arteries)N=10
Age	71.6 ± 16	68.5 ± 12
M/W	9/6	7/3
Dialysis vintage (y)	7.7 ± 7	11.6 ± 11
VAF: thromb, stenosis	8 (53%)(4T,4S)	7 (70%) (7T)
Smoking (current and former)	11 (73%) ^{0.05}	4 (40%)
Baseline P (mg/dl)	4.64 ± 0.9	5.45 ± 0.9 0.06
Baseline PixCa (mg²/dl²)	39.6 ± 12	50 ± 9.6 0.04
Predialytic Pulse P (at 4 years)	82 ± 13 ^{0.04}	71 ± 17

Discussion and Conclusions (1)

In HD patients:

- A single ABI measurement when <0.9 is associated with classical cardiovascular risk factors well-known in peripheral artery occlusive disease, but also a high risk of mortality (data not shown).
- But, it does not predict an increase of vascular access failure frequency.

Discussion and Conclusions (2)

In HD patients:

- Modification of ABI during FU gives more information on the outcome of the AVF.
- The uncompressible arteries at the lower limb was associated with a higher rate of AVF thrombosis and with more mineral metabolism abnormalities.
- A low ABI value during FU was more often associated with smoking and very high PP.

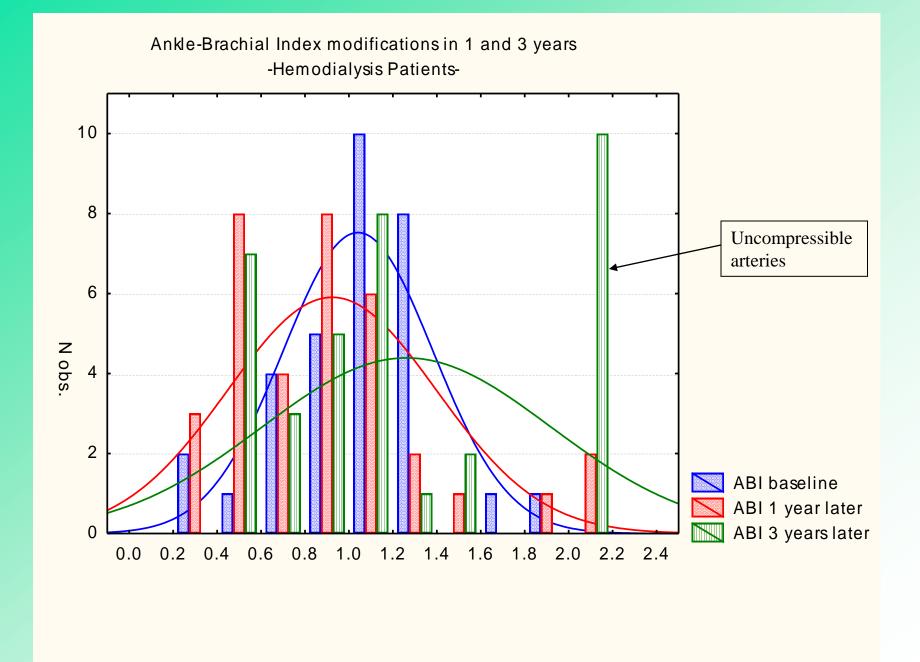
 We suggest that ABI should be regularly measured in HD population for estimation of CV risk but also of AV Fistula outcome!

Two types of risk factors

	Intimal/Atherosclerotic	Medial/Mönkeberg's
Risk Factor	Caldification	Calcification
B. P. C.	16	
Dyslipidemia	Yes	No
Advanced age	Yes	(Yes)
Elevated blood pressure	Yes	Reciprocal (medial lesions worsen blood pressure)
Male	Yes	No
Smoking	Yes	No
Inflammation	Yes (local)	Yes (systemic mediators)
Diabetes/glucose intolerance	Yes	Yes
Kidney disease		
Reduced GFR	No	Yes
Calcium		
Hypercalcemia	No	Yes
Positive balance	No	Yes
Hyperphosphatemia	Yes	Yes
PTH abnormalities	No	No No
Vitamin D administration	No	Yes
Duration of treatment with dialysis	No	Yes

ACCELERATED ATHEROSCLEROSIS IN PROLONGED MAINTENANCE HEMODIALYSIS

Armando Lindner, M.D., Bernard Charra, M.D., Donald J. Sherrard, M.D., and Belding H. Scribner, M.D.


Traditional risk factors

- Older age
- Hypertension
- Male gender
- Elevated LDL and Decreased HDL cholesterol
- Diabetes mellitus
- Tobacco use
- Psychosocial stress
- Family history of CVD

Non-traditional risk factors

- ECF overload
- Anemia
- Abnormal mineral metabolism
- Malnutrition
- Inflammation/Infection
- Thrombogenic factors
- Oxidative stress
- Proteinuria
- Uremic toxins

