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A Monte Carlo study was achieved to assess the relative efficiency of ten non parametric error rate
estimators in 2, 3 and 5-group linear discriminant analysis. The simulation design took into account the

number p of variables (4, 6, 10, 18) together wit the size sample n so that: n/p= 1.5, 2.5 and 5. Three
values of the overlap, e of the populations were considered (e=0.05, e=0.1, e=0.15) and their common
distribution was Normal, Chi-square with 12, 8, and 4 df; the heteroscedasticity degree, I" was
measured by the value of the power function, 1-3 of the homoscedasticity test related to I" (1-3 =0.05,

1-3 =0.4, 1- =0.6, 1- 3 =0.8). For each combination of these factors, the actual error rate was empirically

computed as well as the ten estimators. The efficiency parameter of the estimators was their relative
error, bias and efficiency with regard to the actual error rate, empirically computed. The results showed

the overall best performance €632 estimator. On the contrary, €0, epp, eppCV and eA recorded the

lowest performance in terms of mean relative error and mean relative bias. The ranks of the estimators
were not influenced by the number of groups but for high values of the later, the mean relative bias of

the estimators tend to zero.
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INTRODUCTION

Discriminant analysis is a statistical method of allocation
of unknown individual to one group, from at least two
foreknown groups, by using a classification rule
previously established on well-known individuals. A
number of classification rules are available and the most
used are linear, quadratic and logistic methods.

Many classification rules have been proposed in
literature and the most common is the linear classification
rule (Fisher, 1936).

Let's suppose g p-variate populations P, (k =1.,...,g),

with  mean vectors, p,(k=1,...,g) and common

covariance matrices, X . The linear rule (LR ) is a
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Normal-based classification rule for which F =N(p,,X)
(McLachlan, 1992):

LR(x, ,N(u,.T)) -
(x; -0.5(p, +p, )) - (n —n);

Inp,/p) +

(1.1)
kl=1,..g ; k1)

The unknown observation vector x; is assignto G, if:
LR(x, ,N(u,,)) <0 Vi=l..,g; [#k.

In the case of data samples, LR can be established by
replacing in (1.1) the parameters, p, (k =1,...,g) and X

by their estimates, i, (k=1,...,g) and )f.k ; ¥ is consi-



dered in (1.1) as the estimated pooled covariance matrix
of the k populations.

Whatever the rule established is, it is subject to a
probability of misclassifications. Then, an actual error rate
is associated with any classification rule established on
data samples in order to evaluate its efficiency. In
practice, it is impossible to precisely determine the actual
error rate, because it is only computed on the actual
parameters of the populations, which are usually
unknown. To solve this problem, some parametric and
non parametric estimators of the actual error rate were
established (MclLachlan, 1992). Parametric estimators
were established for two normal homoscedastic groups
and estimated the actual error rate, using some para-
meters related to the considered samples such as the
estimated Mahalanobis distance between the two groups.
On the contrary, non-parametric error rate estimators do
not depend on any hypothesis of use and were based on
resampling methods. For two-group discriminant
analysis, many comparison studies of error rate esti-
mators have been done in linear discriminant analysis, in
order to deduce the ones that have the lowest errors
compared with the theoretical actual error rate. A
thorough review of these studies was provided by
Schiavo and Hand (2000). However, in real world
problems, more than two groups are often considered in
discriminant analysis. This paper evaluated and com-
pared by simulation technique, the efficiency of ten non
parametric error rate estimators for 2, 3 and 5 groups
submitted to linear discriminant analysis.

Actual error rate

The actual error rate can be defined as the theoretical
proportion of misclassified observations, obtained by
validating a classification rule established on data
samples to any other observation taken from the same
populations. This error rate is useful in practice because
it gives the expected misclassification rate when a
previously established rule is used.

Let's assume two samples, E; and E, with p varia-

bles and common size n. The mean vectors and the
pooled covariance matrix are x; , X, and S |,

respectively. Let’s also suppose that these samples are
taken from normal populations, P; and P, with mean

vector p, (k =1, 2). The actual error rate specific to the

group k, ec, (k=1, 2) and the overall actual error rate
are given by McLachlan (1975):

[uk—éoa RS
JE —X)'S XS - %)

ec,=P< (—1)k and
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2
ec:z Prec
k=1
(2.1)

where p, and ® are respectively, the prior probability

related to the group k and the cumulative function of the
Normal distribution.

The relations (2.1) can only be used in two-group
discriminant analysis when the linear rule is established
on two normal homoscedastic populations. In the other
cases, the actual error rate associated with a classi-
fication rule can be empirically computed, for two groups,
by determining the proportion of misclassified obser-
vations when the rule is established on the samples E;
and E, and validated on a couple of large samples, of
size 10,000 for example.

Estimation of the actual error rate

For more than two groups submitted to discriminant
analysis, only non parametric estimators can be used to
assess the actual error rate associated with an
established rule; parametric estimators were only
conceived for two-group discriminant analysis. Ten non-
parametric error rate estimators were considered in the
study and presented below.

Resubstitution estimator, eA (Smith, 1947): that is,
proportion of misclassified observations when the rule
was established and validated on the same samples.

Cross validation estimator, eCV (Lachenbruch, 1967):
that is, proportion of misclassified observations when gn

discriminant analyses were done on gn-1 observations

by removing, at each step, one observation and by
allocating the removed observation to one of the
considered groups on the basis of the rule established on
the gn-1 observations.

eS, and eS, Estimators (Hand, 1986):

__2n __2n
eSl—aneCV and e52—2n+3eCV .

(3.1)
epp Estimator (Fukunaga and Kessell, 1972):

1 & .
epp :1——2‘max(r1 (X; )sees T, (X, )).
8n iz
(3.2)
The symbols T,(x;) ( k = 1,....,g ) represented the

posterior probability that an individual i, of observations
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vector x; belongsto G, :

T ) =f )DL ()

fk (x, ) was the value of the estimated density function

at x; for population G, .

eppCV Estimator (Fukunaga and Kessell, 1972): that is,
computed by using the relation (3.2) in which the
posterior probabilities, T,(x;) ( k = 1,....,g ) of the
observations vector x; was determined, using the
classification rule established on gn-1 observations, the
vector x; , being removed. Jackknife estimator,

eJc (Quenouille, 1949): that is, computed by realising
gn discriminant analyses on gn -1 observations. For

each sample of gn -1 observations, the observation i

being removed, the resubstitution estimator, eAk([) ,

specific to G, (k=1...., g), was computed. By assuming

€A, ,the means of €A, :

_ 1<
eA, = —ZeAkm ; (3.3)
n'i5
The Jackknife estimator is computed as:

elJc = l(i (eAk +(n—1)(eA, — €A, ))J
8 \ k=1
(3.4)

eA, being the resubstitution estimators specific to G,
and computed from the overall sample.

Ordinary bootstrap estimator, eboot (Efron, 1983): that
is, computed on 100 bootstrap samples, a sample of size
n being taken with replacement in each initial sample of

sizen . For each bootstrap sample, the classification rule

was established and the resubstitution estimator, eA,fj

(k=1,..,g:j=1,..100) specific to G, was computed.
The same rule was also used to compute the proportions,
rk* of misclassified observations, the rule being validated

on the initial sample. The bias, b, (k =1,..., g) of eA,;.

was computed as follows:

100

b, = 100 Z (€A, —r.). (3.5)

The overall bootstrap estimator was computed as:

Zg: (eA

1
eboot = —
8 k=1

b,), (3.6)

eA, being the resubstitution estimator specific to G,
when the rule was established on the grn initial
observations.

e0 Estimator (Chatterjee and Chatterjee, 1983): that is,
computed on 100 bootstrap samples, t: (i=l,...,100),

taken from the initial sample t. For each bootstrap sam-
ple, a classification rule is established and the proportion
of misclassified observations of t, which do not belong to
t+, was computed. The e estimator is the mean of the
100 proportions.

€632 Estimator (Efron,
follows:

1983): that is, computed as

€632 = 0.368eA +0.632¢0 (3.7)

SIMULATION DESIGN
Discriminant model

We consider the case of 2, 3 and 5 groups submitted to
linear discriminant analysis and characterized by their
means and covariances matrices. In the case of 2

groups, the mean vector, m, (k =1, 2) was so that:

m, =0;m,=(m0,.,0); me IR".

The covariance matrix, X, ( k =1, 2), was a diagonal

matrix with v, (k =1, 2), the vector of diagonal elements
so that:

vy = v(l); v, =v(h) where A € IR" and
v(M)=(\,1,...,1)

In the case of 3 and 5 groups, the mean vectors, m, and

covariance matrices, X, were given below:
For 3 groups:



m=0; my= (m0,.,0) ; ms

v(l); v,=v;=v(N).

For 5 groups:

m= 0, m = (m0,...0) ; mg = (0,m0...0) ; my
(=m,0,..0)" ; ms= (0,—m,0,...0)".

Vl = V(l) , v2= V3 =V4=VS= V()\.)

(0,m,0...,0)' ;

It was known that the linear rule is invariant under a non
singular linear transformation (McLachlan, 1992). So,
appropriate linear transformations applied to the simple
models proposed above, will help to extend the results of
the study to a large variety of real world problems.

To assess the heteroscedasticity degree of the popu-
lations, a heteroscedasticity parameter I" is defined for g
populations submitted to discriminant analysis as:

C==>"In (X1 Z)), (4.1)

k=1

with X, and X, the covariance matrix of G, and the
pooled covariance matrix of the g populations
respectively. For data samples, an estimated [ can be
computed by replacing X, and X, respectively by )Alk
and ¥.

By considering the discriminant model proposed above,
it can analytically be shown that the parameters I (g =

2, 3 and 5) and A (defined in section 4.1) were linked by
the following relations:

[, () =In| — = el
3 | 2% 35

[(1+3)? Tasaw] o [asany]
L= | LO)=ln——

The inverse of these functions helped to choose
appropriate values of I'; according to A .

Population features and comparison criteria

The factors considered in the assessment of the effi-
ciency of the non parametric error rate estimators were
the number g of groups (g = 2, 3 and 5), the common
distribution of the variables of the p-variate populations
that is Normal (named N), Chi-square with 12, 8 and 4
degrees of freedom, named C(12), C(8) and C(4),
respectively. The number p of variables was 4, 6, 10
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Table 1. Values of I, according to the 4 values of 1-B.

g=2 g=3 g=>5
1-B=0.05 0.0000  0.0000 0.0000
1-Bp=04 1.2686  1.6331 2.1446
1-B=06 1.7009  2.1901 2.8644
1-B=08 2.1851  2.7979 3.6571

18; three values of the common size sample, n were
considered for each value of p: n/p=1.5; n/p=2.5 and

n/ p=5. For each number g of groups, four values of the

heteroscedasticity degree, I, (k =2, 3 and 5) of the

populations were chosen from established empirical
power function, 1-B of the homoscedasticity test related

to I, under normality case (1- 3 =0.05: homosceda-
sticity; 1- B =0.4: low heteroscedasticity; 1- f =0.6:
average heteroscedasticity; 1- f =0.8: high hetero-
scedasticity. Table 1 presents for each number of groups,
the mean values of I, related to each of the four values

of 1-B . Three values of the overlap, e of the populations

were considered: ¢=0.05 (low overlap); e=0.1 (average
overlap) and e =0.15 (high overlap). The group-prior
probabilities were considered equal and the overlap was
then equal to the optimal error rate. For each of the
combination of population features described above, the
values of the parameter m (defined in section 4.1) were
iteratively computed to obtain each of the three values of
the overlap (or optimal error rate) of the populations.
However, the expression (2.3) for the computation of the
overlap, e was difficult to manipulate for g>2 so that we
used an empirical approach to compute the overlap, e.
We presented below (without loss of generality), the
computational method of e for three p-variate

populations, P, , P, and P;, of theoretical density func-

tions f; , f, and f; . In the discriminant model consi-

dered in section 4.1, the differences between the means
vectors were only carried by the first two variables of the
populations. In such cases, the other variables did not
influence the overlap, e of the populations. So, it can be
deduced from (2.3) that, for equal group-prior
probabilities:

e= %—(el +e,+e;) with:
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e = .[fl (x)dxdy +

fo (x) >f; (x) and f, (x) >f3 (x)‘xeP1

[ £ Godxay

[ G021 () and fy () >, (0] R,

e, = Ifz (xX)dxdy +

Sy (x) >f, (x) and f, (x) >f; (»’f)‘xel’g

[ £, ()dxdy

f3 (x)>f, (x) and f5 (x) >f, (x)‘xePz

(4.3)

e, = jf3 (x)dxdy +
B () > L, (x0) and fy (x) > f; (0)|xePy

[ £, Codxdy

£ (> f, () and £y (0> f; ()] xePy

In (4.3), ¢, e, and e; represented the group-conditional

error rates of the Bayes rule. The used empirical
approach considered these conditional error rates as the
volume of solids constituted of successive elementary

volumes of width, dx length,

dy (dy =y,,—y; ) and height, the value of the bivariate
probability density function at dx(dx,dy) . The same
method was used in the case of 2 and 5 groups.

A total of 1728 combinations of the factors were

considered and for each of them, 100 samples of size
gn were generated from the g populations. For each of
them, the 10 non parametric error rate estimators were
computed. The actual error rate ec was also empirically
computed for each sample by validating the established
linear rule on a large sample of size 10,000g and used to

calculate the Relative Error ( RE ), the Relative Bias
(RB ) and the Relative Efficiency ( RE;) of each
estimator:

( dx = Xit1—Xi )!

RE = 100 |estimator —ec| . RB =100 (estimator —ec) .
ec ’ ec

RE(estimator)
RE; = MinRE) (4.4)
In (4.4), the symbol min(RE) represented the relative
error of the best estimator for the considered sample. The
Mean Relative Error (MRE), the Mean Relative Bias
(MRB) and the Mean Relative Efficiency (MREy) related
to each estimator were computed for each of the 1728
combinations of the factors.

RESULTS

The MRE of the non-parametric estimators for each
combination of the factors were replaced by ranks. For a
given combination of the factors, the ranks of the error
rate estimators were computed, the estimator of the
lowest relative error having the rank 1. The median ranks
of the estimators were calculated for each factor level as

well as their median rank for all the 1728 combinations of
factors and placed in Table 2.

It can be noticed that €632 is the overall best
estimator; the other estimator of good performance were
eS, and eS, . On the contrary, €0 , epp and eA
recorded the lowest relative efficiencies. The ranks of the
ten estimators for each level of population features did
not globally depend on the number g of groups, except
eS, estimator whose relative performance slightly
decreased with increased number of groups. The
population features seemed not to have influenced the
ranks of the estimators. However, eboot and eppCV

improved their ranks for increased values of the ratio n/p
whereas opposite trend was observed in the case of eJc
but also €S, and eS, , especially for 5 groups. Moreover,

the relative efficiency of eppCV and €632 became low
with the increased overlap of the populations. The
median rank of the estimators for the levels of population
features did not help to analyse the quantitative
difference between their performances. Boxplots of the
mean relative efficiencies (MREy) of the error rate
estimators were presented in Figure 1.

This figure confirms the best performance of €632, but

also of eS,, eS, , eJc, eboot and eCV with how-ever,
a loss of efficiency of about 28% of the latter compared to
€632, which is equivalent to a mean relative error of
12.8% for these estimators for 10% of relative error for
€632 . Except the resubstitution estimator, eA that
presented a loss of efficiency of more than 100%
compared to e632, the other estimators presented losses
of efficiency that vary from 28% to 70% compared to
e632. As far as the dispersion of the MREff of the
estimators was concerned, Figure 1 shows the very low
variability of €632 , which maintained its best
performance over the various populations features
considered in the study. Estimators eppCV, €0, epp

and eA that presented the lowest performance were also
the less stable.

The Mean Relative Bias (MRB) helped to appreciate
the direction of the deviation of the estimators’
performance for 2, 3 and 5 groups. Table 3 shows that
almost all the non parametric estimators performed well
when the number of groups became more important. For

2 and 3-group discriminant analyses, eS, and eJc pre-
sented the lowest absolute MRB (2.5% for 2 groups and
0.1 for 3 groups) whereas for 5 groups, €632 became
the best with 0.2% of absolute MRB. The resubstitution
estimator, eA presented the most optimistic bias
whereas ¢( presented the most pessimistic one.
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Table 2. Median ranks of the estimators according to the populations features.

esS, eS, eJc eboot eCV eppCV e0 epp eA

e632

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

10
10
10
10
10
10
10

8
9
9
8
8
9
8

9
9
9
9
9
9
9

1

Global

5 75 8 7

5
6 55 5

5

5

4 35 4 45

3

7

6

1
1

4.5

e=0.05
e=0.10

4

3 35 4

2

9 85 10

9
9
9
9
9
9
9

8
9

’
)
’
)
’

e=0.15

1-

10
10
10
10
10
10
10

9
8
9
8
9
9
7

7 75 8

6

25 3 3
2

1

0.05 1
0.4

4

35 4

3

1
1

1-

1-=0.6
1-=0.8

n/p=1.5

2
1
1
1

n/p=2.5
n/p

=5

eA

€pp

eJc eboot eCV eppCV e0

eS1

e632 eS2

Figure 1. Boxplots of the MREj of the estimators.
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Table 3. Mean and standard deviation of the MRB of the error rate
estimators.

g=2 g=3 g=5

Estimateur m o m o m o

€632 -14.9 9.0 -0.5 51 -0.2 3.7
eS, -3.1 5.0 -5.6 4.9 -6.7 4.7
eS, 24 5.6 -0.2 4.0 -1.4 2.8
elJc 25 5.3 0.1 3.9 -0.6 2.8
eboot 31.8 15.1 23.4 8.4 16.3 5.8
eCV 5.6 7.0 2.8 4.8 1.5 3.3
eppCV 396 148 -263 141 -146 118
e0 26.7 149 24.2 13.0 20.7 10.3
epp -384 211 -369 174 -264 16.1
eA -86.3 11.2  -43.1 16.6 -359 141

DISCUSSION AND CONCLUSION

The estimation of the actual error rate for practical use is
one of the relevant topics in discriminant studies and a
synthesis of the various estimators of the actual error rate
was provided in McLachlan (1992). Most studies have
been done to compare in two group-discriminant analysis
the performance of the error rate estimators, especially
associated with the linear classification rule and a
synthesis of them was done by Schiavo and Hand
(2000). The originality of our study is that the relative
efficiency of non parametric error rate estimators can be
analysed in multi-group discriminant analysis. The
obtained results helped to point out the overall best
efficiency of €632 irrespective of the number of the
considered groups. For two-group linear discriminant
analysis many studies came almost to the same
conclusions (Glélé Kakai and Palm, 2009; Wehberg and
Schumacher, 2004; Glelé Kakai et al., 2003). Other
studies pointed out the efficiency of this estimator for non
linear classification rules. Jain et al. (1987), using
multivariate normal distributions in nearest neighbour
discriminant analysis, found that e632 outperformed all

the other estimators (eCV , eboot, e0). However, we
noticed from the present study that for high overlap of the
populations in the case of two groups, the performance of
this estimator decreased. Fitzmaurice et al. (1991), using
two-group discriminant analysis concluded that e632
became less reliable as the true actual error rate
increased above 0.35, but more reliable as the true error
rate decreased. Other estimators that performed well in

the present study were eS, , S, and eJc. On contrary,

e0, epp, eppCV and eA recorded the lowest perfor-

mance, in most of the cases considered in the study.

The ranks of estimators were less influenced by the
populations’ features, probably due to the fact that they
were all based on resampling methods that do not neces-

sitate conditions of use. However, the number of groups
had a high impact on the performance of the estimators.
The later became more efficient as the number of group
increased.

The highest positive relative bias was obtained by eA

whereas e0 has the highest and negative relative bias.
These results have been already obtained by Wehberg
and Schumacher (2004), Chatterjee and Chatterjee
(1983) and Chernick and Murthy (1985) who qualified eA

and e0 as the optimist and pessimist estimators,
respectively.
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