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A Monte Carlo study was achieved to assess the relative efficiency of ten non parametric error rate 
estimators in 2, 3 and 5-group linear discriminant analysis. The simulation design took into account the 
number p  of variables (4, 6, 10, 18) together wit the size sample n  so that: pn/ = 1.5, 2.5 and 5. Three 
values of the overlap, e of the populations were considered (e=0.05, e=0.1, e=0.15) and their common 
distribution was Normal, Chi-square with 12, 8, and 4 df; the heteroscedasticity degree, Γ  was 
measured by the value of the power function, 1-�  of the homoscedasticity test related to Γ  (1-� =0.05, 

1-� =0.4, 1-� =0.6, 1-� =0.8). For each combination of these factors, the actual error rate was empirically 
computed as well as the ten estimators. The efficiency parameter of the estimators was their relative 
error, bias and efficiency with regard to the actual error rate, empirically computed. The results showed 
the overall best performance e632 estimator. On the contrary, 0e , epp , eppCV  and eA  recorded the 
lowest performance in terms of mean relative error and mean relative bias. The ranks of the estimators 
were not influenced by the number of groups but for high values of the later, the mean relative bias of 
the estimators tend to zero. 
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INTRODUCTION 
 
Discriminant analysis is a statistical method of allocation 
of unknown individual to one group, from at least two 
foreknown groups, by using a classification rule 
previously established on well-known individuals. A 
number of classification rules are available and the most 
used are linear, quadratic and logistic methods.  

Many classification rules have been proposed in 
literature and the most common is the linear classification 
rule (Fisher, 1936).  
 
Let’s suppose g p-variate populations ),...,1(P gkk = , 

with mean vectors, ),...,1( gkk =�  and common 

covariance matrices, � . The linear rule ( LR ) is a  
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Normal-based classification rule for which F = ),N( �� k  
(McLachlan, 1992):  
 

( )),N(,LR �� kix = )/ln( lk pp +

( ) )()(5.0 1'

lklki ����� −+− −x ;                              

                                                                                   (1.1) 
);,...1,( lkglk ≠=  

 

The unknown observation vector ix  is assign to kG  if: 
 

( )),N(,LR �� kix  ≤  0       klgl ≠=∀ ;,...,1 . 

 
In the case of data samples, LR can be established by 
replacing in (1.1) the parameters, ),...,1( gkk =�  and �  

by their estimates, ),...,1(ˆ gkk =�  and k�̂ ;  �̂   is  consi-  



 
 
 
 
 
dered in (1.1) as the estimated pooled covariance matrix 
of the k populations. 

Whatever the rule established is, it is subject to a 
probability of misclassifications. Then, an actual error rate 
is associated with any classification rule established on 
data samples in order to evaluate its efficiency. In 
practice, it is impossible to precisely determine the actual 
error rate, because it is only computed on the actual 
parameters of the populations, which are usually 
unknown. To solve this problem, some parametric and 
non parametric estimators of the actual error rate were 
established (McLachlan, 1992). Parametric estimators 
were established for two normal homoscedastic groups 
and estimated the actual error rate, using some para-
meters related to the considered samples such as the 
estimated Mahalanobis distance between the two groups. 
On the contrary, non-parametric error rate estimators do 
not depend on any hypothesis of use and were based on 
resampling methods. For two-group discriminant 
analysis, many comparison studies of error rate esti-
mators have been done in linear discriminant analysis, in 
order to deduce the ones that have the lowest errors 
compared with the theoretical actual error rate. A 
thorough review of these studies was provided by 
Schiavo and Hand (2000). However, in real world 
problems, more than two groups are often considered in 
discriminant analysis. This paper evaluated and com-
pared by simulation technique, the efficiency of ten non 
parametric error rate estimators for 2, 3 and 5 groups 
submitted to linear discriminant analysis.  
 
 
Actual error rate 
 
The actual error rate can be defined as the theoretical 
proportion of misclassified observations, obtained by 
validating a classification rule established on data 
samples to any other observation taken from the same 
populations. This error rate is useful in practice because 
it gives the expected misclassification rate when a 
previously established rule is used. 

Let’s assume two samples, E1 and E2 with p  varia-
bles and common size n . The mean vectors and the 

pooled covariance matrix are 1x , 2x  and S , 
respectively. Let’s also suppose that these samples are 
taken from normal populations, P1 and P2, with mean 
vector k� ( k =1, 2). The actual error rate specific to the 

group k , kec  ( k =1, 2) and the overall actual error rate 
are given by McLachlan (1975): 
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kkecpec ,                   

                                                                       (2.1) 
 
where kp  and Φ  are respectively, the prior probability 

related to the group k  and the cumulative function of the 
Normal distribution. 

The relations (2.1) can only be used in two-group 
discriminant analysis when the linear rule is established 
on two normal homoscedastic populations. In the other 
cases, the actual error rate associated with a classi-
fication rule can be empirically computed, for two groups, 
by determining the proportion of misclassified obser-
vations when the rule is established on the samples E1 
and E2 and validated on a couple of large samples, of 
size 10,000 for example. 
 
 
Estimation of the actual error rate 
 
For more than two groups submitted to discriminant 
analysis, only non parametric estimators can be used to 
assess the actual error rate associated with an 
established rule; parametric estimators were only 
conceived for two-group discriminant analysis. Ten non-
parametric error rate estimators were considered in the 
study and presented below.  

Resubstitution estimator, eA  (Smith, 1947): that is, 
proportion of misclassified observations when the rule 
was established and validated on the same samples. 

Cross validation estimator, eCV  (Lachenbruch, 1967): 
that is, proportion of misclassified observations when gn  
discriminant analyses were done on gn -1 observations 
by removing, at each step, one observation and by 
allocating the removed observation to one of the 
considered groups on the basis of the rule established on 
the gn -1 observations. 
 

1eS  and 2eS  Estimators (Hand, 1986):  
 

eCV
n

neS 12
2

1 +=  and eCV
n

neS 32
2

2 += .                                               

                                                                                (3.1) 
epp  Estimator (Fukunaga and Kessell, 1972):  
 

( )�
=

−=
gn

i
igign

epp
1

1 )(�),...,(�̂max
1

1 xx .                                                                     

                                                                                (3.2) 
The symbols )(�̂ ik x ( k = g,...,1 ) represented the 

posterior probability that an individual i ,  of  observations  
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vector ix  belongs to kG : 

�
=

=
g

l
ilikik ff

1

)(ˆ/)(ˆ)(�̂ xxx   ;  

 

)(ˆ
ikf x  was the value of the estimated density function 

at ix for population kG .  
 
eppCV  Estimator (Fukunaga and Kessell, 1972): that is, 
computed by using the relation (3.2) in which the 
posterior probabilities, )(�̂ ik x ( k = g,...,1 ) of the 

observations vector ix  was determined, using the 
classification rule established on gn -1 observations, the 

vector ix , being removed. Jackknife estimator, 
eJc  (Quenouille, 1949): that is, computed by realising 
gn  discriminant analyses on gn -1 observations. For 
each sample of gn -1 observations, the observation i  

being removed, the resubstitution estimator, )(ikeA , 

specific to kG  ( k = g,...,1 ), was computed. By assuming 

kAe , the means of )(ikeA : 
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The Jackknife estimator is computed as: 
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   keA  being the resubstitution estimators specific to kG  
and computed from the overall sample. 
 
Ordinary bootstrap estimator, eboot  (Efron, 1983): that 
is, computed on 100 bootstrap samples, a sample of size 
n  being taken with replacement in each initial sample of  
size n . For each bootstrap sample, the classification rule 

was established and the resubstitution estimator, *
kjeA  

( 100,...,1;,...,1 == jgk ) specific to kG  was computed. 
The same rule was also used to compute the proportions, 

*
kr  of misclassified observations, the rule being validated 

on the initial sample. The bias, ),...,1( gkbk =  of *
kjeA  

was computed as follows: 
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The overall bootstrap estimator was computed as: 
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keA  being the resubstitution estimator specific to kG  
when the rule was established on the gn  initial 
observations. 
 

0e  Estimator (Chatterjee and Chatterjee, 1983): that is, 

computed on 100 bootstrap samples, )100,...,1(t* =ii , 

taken from the initial sample t . For each bootstrap sam-
ple, a classification rule is established and the proportion 
of misclassified observations of t , which do not belong to 

*ti , was computed. The 0e  estimator is the mean of the 
100 proportions.  
 

632e  Estimator (Efron, 1983): that is, computed as 
follows: 
 

0632.0368.0632 eeAe +=                              (3.7)                                     
 
                                                                                                              
SIMULATION DESIGN 
 
Discriminant model 
 
We consider the case of 2, 3 and 5 groups submitted to 
linear discriminant analysis and characterized by their 
means and covariances matrices. In the case of 2 
groups, the mean vector, km ( k =1, 2) was so that: 

1m = 0 ; 2m  = )'0,...,0,(m ;  m ∈  IR+. 
 

The covariance matrix, k� ( k =1, 2), was a diagonal 

matrix with kv ( k =1, 2), the vector of diagonal elements 
so that: 
 

1v = 1(v ) ; 2v = (�v )  where  �  ∈  IR+ and 

(�v )= (� , )'1,...,1  
 
In the case of 3 and 5 groups, the mean vectors, km  and 

covariance matrices, k�  were given below:  
For 3 groups: 



 
 
 
 
 
m1= 0 ; m2 = )'0,...,0,(m  ;  m3 = )'0...,0,,0( m  ;  1v = 

1(v ) ; 2v = 3v = (�v ).    
For 5 groups: 
m1= 0; m2 = )'0,...,0,(m  ; m3 = )'0...,0,,0( m  ; m4 = 

)'0,...0,( m−   ; m5 = )'0,...,0,,0( m− . 

1v = 1(v ) ; 2v = 3v = 4v = 5v = (�v ). 
 
It was known that the linear rule is invariant under a non 
singular linear transformation (McLachlan, 1992). So, 
appropriate linear transformations applied to the simple 
models proposed above, will help to extend the results of 
the study to a large variety of real world problems. 

To assess the heteroscedasticity degree of the popu-
lations, a heteroscedasticity parameter Γ  is defined for g 
populations submitted to discriminant analysis as: 
  

Γ = �
=

−
g

k 1

ln (| k� |/|� |),                                               (4.1)                                                                 

                                                                          
with k�  and � , the covariance matrix of kG  and the 
pooled covariance matrix of the g populations 

respectively. For data samples, an estimated Γ̂  can be 

computed by replacing k�  and � , respectively by k�̂  

and �̂ . 
By considering the discriminant model proposed above, 

it can analytically be shown that the parameters gΓ (g = 

2, 3 and 5) and �  (defined in section 4.1) were linked by 
the following relations: 
 

                      
                                                                                  (4.2) 
 
The inverse of these functions helped to choose 
appropriate values of gΓ  according to � . 
 
 
Population features and comparison criteria 
 
The factors considered in the assessment of the effi-
ciency of the non parametric error rate estimators were 
the number g of groups (g = 2, 3 and 5), the common 
distribution of the variables of the p-variate populations 
that is Normal (named N), Chi-square with 12, 8 and 4 
degrees of freedom, named C(12), C(8) and C(4), 
respectively. The number p   of  variables  was  4,  6,  10 
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Table 1. Values of kΓ  according to the 4 values of 1-� . 

 
 g = 2 g = 3 g = 5 
1-� = 0.05 0.0000 0.0000 0.0000 

1-� = 0.4 1.2686 1.6331 2.1446 

1-� = 0.6 1.7009 2.1901 2.8644 

1-� = 0.8 2.1851 2.7979 3.6571 

 
 
 
18; three values of the common size sample, n  were 
considered for each value of p : pn/ = 1.5; pn/ =2.5 and 

pn/ =5. For each number g of groups, four values of the 

heteroscedasticity degree, kΓ ( =k 2, 3 and 5) of the 
populations were chosen from established empirical 
power function, 1-�  of the homoscedasticity test related 

to kΓ  under normality case (1- � =0.05: homosceda-

sticity; 1- � =0.4: low heteroscedasticity; 1- � =0.6: 

average heteroscedasticity; 1- � =0.8: high hetero-
scedasticity. Table 1 presents for each number of groups, 
the mean values of kΓ  related to each of the four values 

of 1-� . Three values of the overlap, e  of the populations 
were considered: e =0.05 (low overlap); e =0.1 (average 
overlap) and e =0.15 (high overlap). The group-prior 
probabilities were considered equal and the overlap was 
then equal to the optimal error rate. For each of the 
combination of population features described above, the 
values of the parameter m (defined in section 4.1) were 
iteratively computed to obtain each of the three values of 
the overlap (or optimal error rate) of the populations. 
However, the expression (2.3) for the computation of the 
overlap, e was difficult to manipulate for g>2 so that we 
used an empirical approach to compute the overlap, e . 

We presented below (without loss of generality), the 
computational method of e  for three p-variate 

populations, 1P , 2P  and 3P , of theoretical density func-

tions 1f , 2f and 3f . In the discriminant model consi-
dered in section 4.1, the differences between the means 
vectors were only carried by the first two variables of the 
populations. In such cases, the other variables did not 
influence the overlap, e  of the populations. So, it can be 
deduced from (2.3) that, for equal group-prior 
probabilities: 
 
 

e = )(3
1

321 eee ++  with:                          
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In (4.3), 1e , 2e  and 3e  represented the group-conditional 
error rates of the Bayes rule. The used empirical 
approach considered these conditional error rates as the 
volume of solids constituted of successive elementary 
volumes of width, dx  ( dx = ii xx −+1 ), length, 

dy ( dy = ii yy −+1 ) and height, the value of the bivariate 
probability density function at )(dx,dydx . The same 
method was used in the case of 2 and 5 groups. 

A total of 1728 combinations of the factors were 
considered and for each of them, 100 samples of size 
gn  were generated from the g populations. For each of 
them, the 10 non parametric error rate estimators were 
computed. The actual error rate ec  was also empirically 
computed for each sample by validating the established 
linear rule on a large sample of size 10,000g and used to 
calculate the Relative Error ( RE ), the Relative Bias 
( RB ) and the Relative Efficiency ( ffRE ) of each 
estimator: 

 

RE = 
ec

ec−estimator
100  ; RB =

ec
ec)(estimator100 −  ; 

ffRE =
min(RE)

or)RE(estimat .                                               (4.4)                  

                                                                    
In (4.4), the symbol min(RE) represented the relative 
error of the best estimator for the considered sample. The 
Mean Relative Error (MRE), the Mean Relative Bias 
(MRB) and the Mean Relative Efficiency (MREff) related 
to each estimator were computed for each of the 1728 
combinations of the factors. 
 
 
RESULTS 
 
The MRE of the non-parametric estimators for each 
combination of the factors were replaced by ranks. For a 
given combination of the factors, the ranks of the error 
rate estimators were computed, the estimator of the 
lowest relative error having the rank 1. The median ranks 
of the estimators were calculated for each factor  level  as  

 
 
 
 
well as their median rank for all the 1728 combinations of 
factors and placed in Table 2.  

It can be noticed that 632e  is the overall best 
estimator; the other estimator of good performance were 

2eS  and 1eS . On the contrary, 0e , epp  and eA  
recorded the lowest relative efficiencies. The ranks of the 
ten estimators for each level of population features did 
not globally depend on the number g of groups, except 

2eS  estimator whose relative performance slightly 
decreased with increased number of groups. The 
population features seemed not to have influenced the 
ranks of the estimators. However, eboot   and eppCV 

improved their ranks for increased values of the ratio pn/  

whereas opposite trend was observed in the case of eJc  

but also 1eS  and 2eS , especially for 5 groups. Moreover, 

the relative efficiency of eppCV and 632e  became low 
with the increased overlap of the populations. The 
median rank of the estimators for the levels of population 
features did not help to analyse the quantitative 
difference between their performances. Boxplots of the 
mean relative efficiencies (MREff) of the error rate 
estimators were presented in Figure 1.  

This figure confirms the best performance of 632e , but 

also of 2eS , 1eS , eJc , eboot and eCV  with how-ever, 
a loss of efficiency of about 28% of the latter compared to 

632e , which is equivalent to a mean relative error of 
12.8% for these estimators for 10% of relative error for 

632e . Except the resubstitution estimator, eA  that 
presented a loss of efficiency of more than 100% 
compared to e632, the other estimators presented losses 
of efficiency that vary from 28% to 70% compared to 
e632. As far as the dispersion of the MREff of the 
estimators was concerned, Figure 1 shows the very low 
variability of 632e , which maintained its best 
performance over the various populations features 
considered in the study. Estimators eppCV , 0e , epp  

and eA  that presented the lowest performance were also 
the less stable. 

The Mean Relative Bias (MRB) helped to appreciate 
the direction of the deviation of the estimators’ 
performance for 2, 3 and 5 groups. Table 3 shows that 
almost all the non parametric estimators performed well 
when the number of groups became more important. For 
2 and 3-group discriminant analyses, 1eS  and eJc  pre-
sented the lowest absolute MRB (2.5% for 2 groups and 
0.1 for 3 groups) whereas for 5 groups, 632e  became 
the best with 0.2% of absolute MRB. The resubstitution 
estimator, eA  presented the most optimistic bias 
whereas 0e  presented the most pessimistic one. 
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Table 2. Median ranks of the estimators according to the populations features. 
 

 632e  2eS  1eS  eJc  eboot  eCV  eppCV  0e  epp  eA  

G 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 
Global 1 1 1 2 3 4 4 4 4 5 5 5 5 5.5 6 6 6 5 7 7 6 7 7 8 8 9 8 10 10 10 
N 1 1 1 2 2 3 4 3.5 4 4.5 5 5 5 6 6 5 5 5 7.5 8 7 7 7 8 8 9 9 10 10 10 
C(12) 1 1 1 2 3 4 4 4 4 4 5 5 5 5 6 6 5.5 5 7 7 6 7 7 8 8 9 9 10 10 10 
C(8) 1 1 1 2 3 4 4 4 4 5 5 5 5 5 6 6 6 5 7 7 6 7 7 8 8 9 8 10 10 10 
C(4) 1 1 1 2 3 4 4 4 4 5 5 5 5 5 6 6 6 5 7 7 7 7 8 8 8 9 8 10 10 10 
e=0.05 1 1 1 2 3 3 4 5 4 5 5 5 5 4 6 6 6 6 6 6 5 8 8 8 8 9 9 10 10 10 
e=0.10 1 1 1 2 3 3.5 4 4 4 4 5 5 5 6 6 5 5 5 7 7 6 7 7 8 9 9 8 10 10 10 
e=0.15 4.5 1 1 2 3 5 4 3 3 5 5 4 6 6 6 6 5 5 8 8 7 6 7 7 8 9 8.5 10 10 10 
1-�=0.05   1 1 1 2.5 3 3 4 4 4 5 5 5 6 5 6 6 6 6 7 7 6 7 7.5 8 9 9 9 10 10 10 
1-�=0.4 1 1 1 2 3 3.5 4 4 4 5 5 5 5 6 6 6 6 6 7 7 6 7 7 8 8 9 8 10 10 10 
1-�=0.6 1 1 1 2 3 4 4 4 4 4 5 5 5 6 6 6 5 5 7 7 6 8 7 8 8 9 9 10 10 10 
1-�=0.8 2 1 1 2 3 4 4 4 3 4.5 5 5 5 5 6 5 6 5 7 7 7 7 7 8 8 9 8 10 10 10 
n/p=1.5 1 1 1 2 2 3 4 4 3 4 4 4 7 6 6 6 5 5 8 7 7 7 7 7 9 9 9 10 10 10 
n/p=2.5 1 1 1 2 3 3 4 4 4 5 5 5 5 4 5 6 6 5 8 8 7 7 7 8 9 9 9 10 10 10 
n/p=5 1 1 1 2 4 5 4 4 5 5 6 6 3 4 5 5 6 6 6 4 2 8 8 9 7 9 7 10 10 10 

 
 

e632 eS2 eS1 eJc eboot eCV eppCV e0 epp eA

1

2

3

4

5

6

M
R

Ef
f

 
    
Figure 1. Boxplots of the MREff of the estimators. 
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Table 3.  Mean and standard deviation of the MRB of the error rate 
estimators.  
 
 g=2 g=3 g=5 
Estimateur m  �  m  �  m  �  

632e  -14.9 9.0 -0.5 5.1 -0.2 3.7 

2eS  -3.1 5.0 -5.6 4.9 -6.7 4.7 

1eS  2.4 5.6 -0.2 4.0 -1.4 2.8 

eJc  2.5 5.3 0.1 3.9 -0.6 2.8 
eboot  31.8 15.1 23.4 8.4 16.3 5.8 
eCV  5.6 7.0 2.8 4.8 1.5 3.3 
eppCV  39.6 14.8 -26.3 14.1 -14.6 11.8 
0e  26.7 14.9 24.2 13.0 20.7 10.3 

epp  -38.4 21.1 -36.9 17.4 -26.4 16.1 
eA  -86.3 11.2 -43.1 16.6 -35.9 14.1 

 
 
 
DISCUSSION AND CONCLUSION 
 
The estimation of the actual error rate for practical use is  
one of the relevant topics in discriminant studies and a 
synthesis of the various estimators of the actual error rate 
was provided in McLachlan (1992). Most studies have 
been done to compare in two group-discriminant analysis 
the performance of the error rate estimators, especially 
associated with the linear classification rule and a 
synthesis of them was done by Schiavo and Hand 
(2000). The originality of our study is that the relative 
efficiency of non parametric error rate estimators can be 
analysed in multi-group discriminant analysis. The 
obtained results helped to point out the overall best 
efficiency of e632 irrespective of the number of the 
considered groups. For two-group linear discriminant 
analysis many studies came almost to the same 
conclusions (Glèlè Kakaï and Palm, 2009; Wehberg and 
Schumacher, 2004; Glèlè Kakaï et al., 2003). Other 
studies pointed out the efficiency of this estimator for non 
linear classification rules. Jain et al. (1987), using 
multivariate normal distributions in nearest neighbour 
discriminant analysis, found that e632 outperformed all 
the other estimators ( eCV , eboot , 0e ). However, we 
noticed from the present study that for high overlap of the 
populations in the case of two groups, the performance of 
this estimator decreased. Fitzmaurice et al. (1991), using 
two-group discriminant analysis concluded that e632 
became less reliable as the true actual error rate 
increased above 0.35, but more reliable as the true error 
rate decreased. Other estimators that performed well in 
the present study were 1eS , 2eS  and eJc . On contrary, 

0e , epp , eppCV  and eA  recorded the lowest perfor-
mance, in most of the cases considered in the study.  

The ranks of estimators were less influenced by the 
populations’ features, probably due to the fact that they 
were all based on resampling methods that do not neces- 

 
 
 
 
sitate conditions of use. However, the number of groups 
had a high impact on the performance of the estimators. 
The later became more efficient as the number of group 
increased. 

The highest positive relative bias was obtained by eA  
whereas 0e  has the highest and negative relative bias. 
These results have been already obtained by Wehberg 
and Schumacher (2004), Chatterjee and Chatterjee 
(1983) and Chernick and Murthy (1985) who qualified eA 
and 0e  as the optimist and pessimist estimators, 
respectively. 
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