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RESUME

Dans cet article, on étudie la qualité de validation des modeles de régression logistique
binaire. En particulier, on s’intéresse a I’effet de la proportion d’individus ayant le caractere
étudié (codés 1) sur cette qualité. De mé&me, on évalue I’intérét qu’il peut y avoir a séparer ou
non les étapes de sélection et d’ajustement sur des échantillons indépendants. L’ensemble de
I’étude est basée sur des données simulées.

La proportion d’individus codés 1 a une influence sur la qualité des modeles. Cet effet
est d’autant plus important que la proportion est trés faible. Des situations de non-convergence
ont d’ailleurs été rencontrées. Par contre, la qualité des modeles est assez constante pour les
proportions 25 % et 50 %. Pour cette seconde modalité, la précision des estimations est un peu
supérieure et surtout I’effet des autres facteurs étudiés s’estompe.

Par ailleurs, les simulations ont montré que la séparation des étapes de sélection et
d’ajustement sur deux échantillons distincts ne conduit jamais a une meilleure qualité de
validation des modeles. Au contraire, cette qualité est généralement moindre mais I’écart n’est
que de I’ordre de 10 %.

Mots-clés : Régression logistique binaire, proportion d’individus, nombre d’échantillons,
qualité de validation.

ABSTRACT

In this paper, we summarize a study of the quality of validation given by binary logistic
regression models. We have studied the effect of the proportion of events (i.e. proportion of
individuals having the code 1) and the way of using data for selecting variables and fitting
a model. In particular, we show the interest of performing those two steps separately or not.
Artificial data were used to carry out this study.

We show that the proportion of events influences the quality of the models. Especially,
this effect is important when the proportion is very low (5 % in our study). We also meet
problems like non-convergence of the algorithm when trying to fit a model. However, quality
is much better when a proportion equal to 25 % or 50 % is used. For the latter one, precision
of the estimations is even a little bit better and the others studied factors have no effect.

The simulations also show that separating selection and fitting is not an interesting
strategy because we never obtain a good quality. Difference of quality is however close to 10
per cent.

Keywords : Binary logistic regression, proportion of individuals, number of samples, quality
of validation.
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1. Introduction

Parmi les méthodes de régression, la régression logistique est employée
notamment lorsque la variable dépendante ne prend que deux valeurs possibles; dans
ce cas, on parle de régression logistique binaire. Celle-ci est sans aucun doute la
forme la plus courante de régression logistique, dans des domaines aussi variés que
la médecine, la biologie, I’économie, etc. [Collett, 1991; Ryan, 2000].

Dans ce cadre, le premier objectif de ce travail est de préciser davantage I’impact
de la proportion d’individus codés 1 (le code 1 signifie la survenue de 1’événement) sur
la qualité de validation des modeles, sujet qui a été peu étudié, si ce n’est récemment
pour le nombre d’événements par variable explicative (EPV ou Events Per Variable)
qui est le rapport entre le nombre d’individus codés 1 et le nombre de variables
explicatives. En particulier, il a été montré qu’un nombre minimum d’EPYV doit €tre
utilisé pour parvenir a une estimation fiable des coefficients de régression [Peduzzi
et al., 1996; Steyergerg et al., 1999, 2000].

Cette question est d’importance car si on sait que la modélisation se réalise
normalement lorsque la proportion d’individus dans chaque groupe est équivalente,
on ne dispose guere d’information en cas de déséquilibre et a priori les résultats
devraient étre comparables par exemple pour 25 % ou 75 % d’individus codés 1.

Notons cependant qu’une situation de déséquilibre important est assez fréquente
en médecine par exemple pour I’étude d’une maladie rare ou grave qui ne peut étre
basée que sur un nombre restreint d’individus dits positifs, ayant été codés 1.

Le second objectif de la recherche est relatif a la procédure de modélisation.

En effet, pour établir un modele, trois étapes sont nécessaires : la sélection
des variables explicatives, 1’ajustement du modele aux données a partir des variables
retenues et la validation du modele. Ces étapes peuvent se réaliser sur les mémes
données, ce qui est le cas si les individus sont peu nombreux; dans ce cas, on obtient
un modele «artificiellement» adéquat.

Idéalement, les étapes d’ajustement et de validation devraient étre séparées
c’est-a-dire réalisées sur deux échantillons distincts. Le modele étant alors évalué
sur de nouveaux individus, le biais optimiste disparait. Ce n’est que récemment que
certains auteurs ont aussi évoqué I’utilisation de trois échantillons indépendants pour
réaliser les trois étapes, a savoir la sélection, I’ajustement et la validation [Celeux,
1994; Van Houwelingen et Le Cessie, 1990]. C’est pourquoi nous avons également
étudié cette possibilité.

Apres cette introduction (paragraphe 1), les éléments essentiels du modele
logistique sont rappelés (paragraphe 2) et nous détaillons les criteres calculés. Au
paragraphe 3, nous abordons la maniere dont I’étude s’est déroulée, c’est-a-dire les
simulations réalisées. Le paragraphe 4 est consacré a la présentation des résultats
obtenus sur ces données. Une illustration sur des données réelles est fournie au
paragraphe 5. Enfin, le paragraphe 6 présente les conclusions.
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2. Modeéele logistique
2.1. Principes

Le modele de régression logistique fait partie d’une famille de modeles appelés
modeles linéaires généralisés décrits par exemple dans les ouvrages de McCullagh
et Nelder [1989] ou Dobson [1990]. Dans un modele linéaire généralisé, la relation
entre la variable a prédire Y et les variables prédictrices X1, ..., X, (matrice X de
p variables) est modélisée par :

glE(Y)] = XB,

ol E(Y) est I’espérance mathématique de la variable aléatoire Y, X 3 = So + X151
+...+ X0, avec B, . . ., Bp les coefficients, et g est une fonction appelée fonction
de lien. La fonction g adaptée lorsque Y est une variable binaire peut-&tre la fonction
logit, probit,log(—log). D apres Collett [1991], 1a fonction logit est 1a plus employée
pour sa simplicité essentiellement.

On définit, pour un individu ¢, la probabilité m; (on parle aussi de probabilité a
posteriori ou probabilité de I’événement) d’étre dans le groupe des individus codés
1. La forme du modele logistique s’écrit :

6(/30+ﬁ111‘)
(S
1 +e(50+51$i)

otl 3y et (31 sont les coefficients du modele et 2; 1a i®™ valeur de la variable explicative

X. Latransformation de 7; utilisée s’appelle la transformation logit. Elle est donnée
par la relation suivante :

7

logit(m;) = log (1 i ) =g = o+ Pz

ou le log représente le logarithme népérien. Lorsque p variables sont disponibles, la
fonction g s’écrit (avec j I’indice des variables et 7 celui des individus) :

g = Bo + Brx1i + Boxoi + ... BpTpi
ou

9="00+) Biwji
j

2.2. Validation externe

Lorsqu’un nombre suffisant d’individus sont disponibles, alors il est courant
d’en réserver une partie pour I’ajustement du modele, I’ autre partie servant pour la va-
lidation. On parle ainsi respectivement d’échantillon d’apprentissage et d’échantillon
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de validation. La proportion d’individus réservés pour la validation est couramment
de 25 % a 50 % du nombre total d’individus.

Les coefficients du modele, obtenus sur le premier échantillon, sont alors utilisés
sur le second échantillon de maniére a calculer des probabilités a posteriori 7;. La
qualité de validation est ensuite déterminée sur la base de ces probabilités et des
valeurs binaires y; ol y; prend la valeur 1 si I’événement d’intérét a lieu, O sinon.

Pour ce travail, deux criteres sont considérés : la statistique de Hosmer et
Lemeshow et le critére ¢, encore connu sous 1’appellation surface sous la courbe
ROC (Receiver Operating Characteristic).

La statistique de Hosmer et Lemeshow [1989], notée X%{ 1, équivaut a une

analyse des résidus; elle est basée sur le regroupement des individus en & classes de
taille presque identique (10 classes dans cette étude) :

(ok — ex)?
X%{L = Z PP

A ek(l — 6k/nk)7

ol ny est la taille de la classe k, o est le nombre d’individus codés 1 de la classe
et e, est dans ce cas la fréquence attendue de cette classe, c’est-a-dire la somme des
probabilités a posteriori. Le nombre de degrés de liberté de la variable x? est dans ce
cas égal au nombre de classes.

Le second critere mesure les capacités du modele a classer de nouveaux
individus dans la bonne catégorie (code 0 ou 1). Il s’agit du critere ¢ [SAS, 1995] :

ne +0,5(t — ne — ng)
t b

ol n. est le nombre de paires concordantes, n4 le nombre de paires discordantes, ¢ le
nombre total de paires c¢’est-a-dire t = n(n — 1)/2 et n Ieffectif total. La quantité
entre parentheses représente le nombre de paires d’ex equo. Si elle est négligeable,
alors le critere c est approximativement égal a la proportion de paires concordantes.

2.3. La non-convergence

La méthode d’ajustement d’un modele de régression logistique aux données
disponibles est celle du maximum de vraisemblance. Pour arriver a maximiser
la fonction de vraisemblance, il est nécessaire d’utiliser un algorithme particulier
(procédure itérative) décrit par exemple dans McCullagh et Nelder [1989] ou Collett
[1991].

Il n’est cependant pas toujours possible de déterminer avec précision une
estimation des coefficients du modele. Ainsi, dans le cas de la séparation complete
des deux groupes d’individus codés 0 ou 1 dans I’espace des variables explicatives,
I’algorithme ne parvient pas a converger, c’est-a-dire qu’il ne permet pas d’obtenir
une estimation précise des coefficients du modele (estimation et erreur standard avec
des valeurs trés grandes le plus souvent). Dans ce cas, on parle de non-convergence
et certains logiciels comme SAS ou MINITAB indiquent ce probleme.
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3. Simulations

3.1. Facteurs étudiés

L’ étude concerne, d’une part, la proportion d’individus codés 1 (n1 /n), a savoir
5 %, 25 % et 50 % et, d’autre part, la maniére d’utiliser les données pour mettre en
place les modeles et les valider. Pour la validation, un échantillon est isolé. Pour
établir les modeles sur les données restantes, nous définissons deux enchainements
(ench) c’est-a-dire deux manieres d’utiliser les données :

— type 1-1 : toutes les données restantes servent a sélectionner et a ajuster un
modele;

— type 1-2 : la sélection a lieu sur la moitié des données restantes, et 1’ajustement
sur I’autre moitié.

Par ailleurs, deux autres facteurs sont envisagés : le nombre de variables
explicatives et I’écart-type de la part aléatoire ou bruit.

Le nombre de variables explicatives retenues (nVar) est 6 ou 12, avec pour
chaque cas uniquement trois variables en relation directe avec le vecteur Y (variables
utiles); ce sont les variables X, X5, X3 qui servent a définir Y (paragraphe 3.2).

Pour I’écart-type (seps) de la part aléatoire que 1’on ajoute au modele lors de la
génération des données (paragraphe 3.2.), trois valeurs sont retenues : 0,5, 2 et 3,5. Ces
valeurs ont été choisies, lors d’essais préliminaires, de maniere a avoir respectivement
une trés bonne, une bonne et une moyenne qualité d’ajustement.

3.2. Génération des données

12 variables indépendantes de distribution uniforme U (0; 1) sont générées. Les
trois premieres variables définissent le vecteur Y de la maniere suivante :

Y = bo + b1 X1 + b2 Xo + ngg,

oub; (j =0,...,3)sont les coefficients dont les valeurs valent respectivement 0, 4,
2, 1. Ces valeurs sont arbitraires, mais résultent de travaux préliminaires sur données
observées qui ont montré que X; est trés discriminante, X5 un peu moins et X3
encore moins. Soit € le vecteur représentant la part aléatoire. Ce vecteur est généré
selon une loi N (0; seps) avec seps 1’écart-type valant 0,5, 2 ou 3,5. Les vecteurs YV’
et € sont alors ajoutés pour définir un nouveau vecteur Yc :

Ye=Y +e.

On procede alors au codage des valeurs de Yc en 0 ou 1, selon la proportion 71 /n
utilisée (5 %, 25 % ou 50 %). Les n — n1 plus petites valeurs du vecteur Y ¢ regoivent
le code O et les nq autres valeurs le code 1.

Sur I’ensemble des individus générés, 10 000 sont réservés pour la validation.
Les autres sont répartis en échantillons de taille 400 (enchainement de type 1-1) ou
200 + 200 (type 1-2) de maniere aléatoire et sans remise. La taille de 1’échantillon
de validation est assez importante de maniere a obtenir une estimation fiable d’une
proportion d’individus mal classés (surtout dans le cas ot n1 /n = 5 %).
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Pour chaque combinaison des facteurs étudiés, 20 répétitions ont été prévues.

La méthodologie adoptée est inspirée des travaux de Derksen et Keselman
[1992], Hosmer et al. [1997] et Press et Wilson [1978]. Les premiers ont étudié
I’impact d’un mélange de variables utiles et inutiles sur les résultats d’un processus de
sélection automatique en régression linéaire multiple. Les seconds justifient I’emploi
de valeurs préalablement fixées pour les coefficients d’'un modele de régression
logistique, tandis que les derniers, dans leur méthodologie de traitement des données,
ont rendu binaire une variable au préalable continue.

Notons enfin que toutes les sélections automatiques de variables et les ajuste-
ments ont été effectués a ’aide du logiciel SAS.

4. Analyse des résultats

4.1. Probleme de la non-convergence

La méthode stepwise de sélection des variables qui a été employée nécessite
des ajustements de modele aux données de 1’échantillon de sélection. Il est donc tout
a fait possible que des cas de non-convergence surviennent.

Une non-convergence pour une ou plusieurs variables retenues dans le cas d’un
enchainement de type 1-1 signifie un abandon du modele car les estimations des
coefficients fournies sont inexploitables. Pour un enchainement de type 1-2, nous
distinguons la sélection de 1’ajustement. Nous avons ainsi relevé les cas de non-
convergence en sélection. Les variables proposées ont tout de méme été utilisées en
ajustement de maniere & «récupérer» le maximum de modeles.

Comme le montre le tableau 1, une non-convergence est principalement
constatée lorsque trés peu d’individus sont codés 1 (proportion nq/n de 5 %) et
que I’écart-type seps est petit (0,5). Signalons que pour des échantillons de taille 400,
20 individus sont codés 1, ce qui représente un EPV de 3,3 ou 1,7 selon le nombre
de variables explicatives (6 ou 12). D’apres les travaux de Peduzzi et al [1996] et
Steyerberg et al. [1999, 2000], un EPV minimum de 10 est a respecter.

TABLEAU 1
Proportions de cas de non-convergence en ajustement en fonction
des facteurs étudiés (déterminées par rapport au nombre de répétitions);
en grisé : aucune non-convergence rencontrée

seps 0,5 2 3,5

ni/n 5% 25%  50% 5% 25% 50% | 5% 25% 50%
ench | nVar
1-1 6 17%

12 | 52%
1-2 6 27% 2%

12 | 25% 7% 2%
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En dehors des données de ce tableau, nous avons aussi pu remarquer des cas

de presque non-convergence, détectables par des fortes valeurs des estimations b;
des coefficients b; et/ou de I’écart-type de ces estimations. Une détection visuelle
de ces grandes valeurs des écarts-types des coefficients a été confirmée par le
calcul du déterminant des matrices de variances-covariances (matrices associées aux
estimateurs des paramétres) dont les valeurs s’échelonnent de 10~ & environ 3 - 10°.
Ainsi, pour la détermination des critéres c et %, , des modeles ont été éliminés, le
calcul des probabilités a posteriori n’ayant plus aucun sens (déterminant supérieur a
250).

4.2. Analyse des valeurs de x3;;

Parmi les facteurs étudiés, le type d’enchainement représente la source de
variation la plus importante. L’enchainement de type 1-2 donne en moyenne des
valeurs 12 % plus élevées que celles du type 1-1. Le nombre de variables est le
second facteur de variation des résultats. Lorsque 12 variables sont employées, les
valeurs sont nettement plus élevées. L’ écart-type de la part aléatoire conduit également
a des résultats trés variables. Il s’agit surtout de la premiere modalité (seps = 0, 5)
qui procure des valeurs de x%; les plus faibles, alors que les deux autres modalités
donnent des valeurs assez similaires. Enfin, parmi les modalités du facteur ny /n, ¢’est
la proportion 25 % qui permet d’obtenir les plus faibles valeurs de x%;; .

Ces commentaires sont illustrés par le graphique de la figure 1 sauf en ce qui
concerne le facteur nVar.

X2 HL
45
43
41 4
39
37
35

33 D

31 A

0,5 2 3,5 0,5 2 3,5

seps

ench 1-1 ench 1-2

m5%
W25%
050%

FIGURE 1
Valeurs moyennes du x% ;. en fonction du type d’enchainement (ench),
de ’écart-type de la part aléatoire (seps) et de la proportion
d’individus codés 1 (5 %, 25 %, 50 %)

Tenant compte des probleémes de non-convergence évoqués au paragraphe 4.1,
si on retire de I’analyse la modalité 5 % du facteur n; /n et la modalité 0,5 du facteur
seps, les valeurs de X%, sont dans ces conditions beaucoup moins sujettes a des
variations. Il en ressort néanmoins que (tableau 2) :
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— DI’enchainement de type 1-2 donne systématiquement des valeurs plus élevées
et donc une moins bonne qualité de validation. Cependant, la progression de
X3, entre les deux types d’enchainement est toujours inférieure a 10 %;

— la proportion 25 % de ny /n conduit a des résultats un peu meilleurs a ceux de

50 %; dans ce cas (nq/n = 50 %), I’effet du nombre de variables explicatives
est plus important;

— le nombre de variables explicatives n’est pas un facteur de variation lorsque
ni/n =50 %.

TABLEAU 2
Valeurs de x%  (entre parenthéses : écart-type)
pour deux des trois modalités des facteurs seps et ny /n

ni/n 25 % 50 %
nVar 6 12 6 12
seps|ench
2 | 1-1 34,4 (6,6) 36,1 (6,2) (40,6 (3,2) 40,9 (2,7)
1-2 37,2 (7,9) 38,0 (8,4)|42,2 (4,2) 42,3 (4,6)
35 1-1 34,5 (5,3) 36,2 (5,2)|38,2 (3,1) 37,3 (3,3)
1-2 37,4 (6,2) 39,1 (5,2)|40,9 (5,5) 40,5 (5,7)

4.3. Analyse des valeurs de c

Les deux facteurs de variation les plus importants sont 1’écart-type de la part
aléatoire et la proportion d’individus codés 1. Sans surprise, quand 1’écart-type seps
augmente, les valeurs de ¢ diminuent. Pour le second facteur, la progression est
également inversement proportionnelle. La modalité 5 % conduit donc aux plus fortes
valeurs de ¢ donc a la meilleure qualité prédictive.

En ce qui concerne le nombre de variables explicatives, la modalité 12 aurait
tendance a donner des valeurs plus faibles pour ¢ donc une moins bonne qualité de
prédiction. Ce constat est également vérifié pour I’enchainement 1-2 par rapport au
type 1-1 (figure 2).

Si, comme pour le critere x%; ; , nous excluons de I’analyse la premiere modalité
des facteurs seps et nq /n, I’écart des valeurs de c entre les deux types d’enchainement
est toujours inférieur a 1 % quels que soient nV ar, seps et ny /n, ce qui évidemment
est insignifiant. Notons enfin que I’effet du nombre de variables explicatives est plus
faible lorsque 50 % d’individus codés 1 sont utilisés.
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R 0.80 0.80 -
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I ench 1-1 D ench 1-2
FIGURE 2

Valeurs moyennes de ¢ pour chaque combinaison seps — ni /n

en fonction du type d’enchainement (ench)
et du nombre de variables explicatives (6 ou 12)

5. Application a des données réelles

Le travail sur données simulées a été poursuivi sur quelques jeux de données
réelles [Duyme, 2001]. Pour cela, trois jeux de données ont été recueillis : il
s’agit de données agronomiques relatant le parcours ou itinéraire cultural de trois
cultures communes dans le nord de la France (la chicorée, la betterave sucricre et
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le blé). La variable a expliquer est le rendement de chaque culture exprimé en unité
conventionnelle par hectare. L’individu statistique est dans cette étude la parcelle. Les
variables explicatives présentent peu voire tres peu de corrélation : aucune valeur de
VIF (Variance Inflation Factor) ne dépasse 3 quelle que soit la culture.

Pour chaque culture, nous disposions d’environ 375 parcelles, scindées en trois
échantillons de méme taille (un échantillon par étape de construction d’un modele —
sélection, ajustement et validation). La variable Y (le rendement) a été rendue binaire
en utilisant deux des trois quartiles, permettant de repérer 25 % ou 50 % des parcelles
ayant le meilleur rendement. La qualité de validation a été déterminée par la statistique
de Hosmer et Lemeshow, x%, en forgant une répartition en 8 classes, afin d’avoir
suffisamment d’individus par classe.

Les résultats moyens sont donnés a la figure 3. Ainsi, pour chaque culture, nous
remarquons que 1’enchainement de type 1-2 fournit des valeurs de la statistique de
Hosmer et Lemeshow un peu ou tres supérieures a celles de I’ autre enchainement.

XL

13

12
MW ench 1-1

1(1) ﬂ Cench 1-2

9 ‘
chicorée  betterave blé
FIGURE 3

Valeurs moyennes du X%{ 1, en fonction
du type d’enchainement (ench), par culture

6. Conclusion

Le principal probleme survenu dans cette étude par simulation est la non-
convergence, essentiellement pour une faible valeur d’écart-type (seps) et pour une
proportion de valeurs codées 1 voisine de 5 %. La non-convergence ne permet pas
d’ajuster un modele car les estimations des coefficients et des écarts-types sont
en dehors de toute réalité. La plupart des logiciels affichent a ce titre un message
d’avertissement.

Par ailleurs, il existe des situations ou 1’algorithme d’ajustement parvient a
converger, mais avec néanmoins une mauvaise précision des estimations des coeffi-
cients. C’est laraison pour laquelle nous avons préconisé le calcul du déterminant de la
matrice de variances-covariances associée aux estimateurs des parametres. Ce calcul
devrait étre systématiquement réalisé lorsque seulement 5 % seulement des individus
sont codés 1 (n1/n =5 %). Un moyen d’éviter le probléme de non-convergence ou
de presque non-convergence consiste a ré-équilibrer le nombre d’individus codés 0O
par rapport aux individus de I’autre code : cela reviendrait a échantillonner de maniere
aléatoire et sans remise parmi les individus au code 0 afin de diminuer leur nombre
et donc de diminuer la taille de 1’échantillon, ce qui permet d’accroitre la valeur de
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np /n. Ainsi, par exemple, sur 500 individus dont seulement 25 seraient codés 1, cela
reviendrait, si on désire avoir 25 % de 1, a n’utiliser que 20 % de I’ effectif total, ce qui
est difficilement recommandable. Si par contre la taille totale de I’échantillon ne per-
met pas de réduire le nombre d’individus codés O de maniére importante, alors nous
conseillons soit d’avoir quand méme plus de 5 % d’individus codés 1 soit d’envisager
I’utilisation de la régression logistique exacte qui dans ce cas permet de traiter tous
les individus de I’échantillon.

En dehors de ces situations spéciales, nous avons remarqué que la modalité
25 % de ny/n aboutit A une qualité de validation des modeles supérieure a celle
obtenue pour 50 %. Néanmoins, la précision des estimations est moins bonne. Ainsi,
pour un enchainement du type 1-2, nous recommandons d’équilibrer les nombres de
Oetde 1. Passer de 25 % a 50 % d’individus codés 1 revient a ne prendre que la moitié
des données disponibles. Pour un enchainement du type 1-1, Ieffet du facteur nV ar
est insignifiant.

Toujours pour un écart-type de ’erreur (seps) valant 2 ou 3,5, mais pour
ny/n = 50 %, la précision des estimations des coefficients des modeles est trés bonne,
surtout pour un enchainement du type 1-1. La qualité de validation est dans ce cas
tres peu dépendante du type d’enchalnement et du nombre de variables explicatives.
Nous préconisons cependant d’utiliser un enchainement du type 1-1.

En résumé, un enchainement du type 1-2 n’est jamais souhaitable. Cela signifie
qu’il n’est pas conseillé de séparer la sélection de I’ajustement sur des échantillons
deux fois plus petits. Il complique les manipulations de données et n’apporte pas
une meilleure précision des estimations ni une meilleure qualité de validation. Cet
enchainement devient équivalent (mais pas meilleur) a ’autre type (1-1) a condition
que seps soit grand (3,5 voire plus, sans que nous ne puissions donner d’information
précise pour seps > 3,5).

Notons pour terminer que les manipulations sur données réelles aboutissent a
des observations similaires a ce que nous avons obtenu sur données simulées.

Remerciements. — L’ accomplissement de ce travail a été facilité par les nom-
breux conseils et les remarques constructives du Professeur J.K. Lindsey (Université
de Liege) et du Professeur R. Palm (Faculté Universitaire des Sciences Agronomiques
de Gembloux). Nous tenons a les en remercier.

Références

CELEUX G. (1994), Introduction générale. In : CELEUX et NAKACHE. Analyse
discriminante sur variables qualitatives. Paris, Polytechnica, p.1-17.

COLLETT D. (1991), Modelling binary data. London, Chapman & Hall, 369p.

DERKSEN S., KESELMAN H.J. (1992), Backward, forward and stepwise automated
subset selection algorithms : frequency of obtaining authentic and noise
variables. British J. Math. Stat. Psych. 45, 265-282.

DOBSON A.J. (1990), An introduction to generalized linear models. London,
Chapman & Hall, 176p.



102 F. DUYME, J.-J. CLAUSTRIAUX, J.-J. DAUDIN

DUYME F. (2001), Qualité des modeles de régression logistique binaire : effet de la
proportion d’individus par catégorie et du mode d’utilisation des données (these
de doctorat). Gembloux, Faculté Universitaire des Sciences Agronomiques
(Belgique); Paris-Grignon, Institut National Agronomique (France), 181 p.

HOSMER D.W., LEMESHOW 8S. (1989), Applied logistic regression. New York,
Wiley, 307 p.

HOSMER D.W.,HOSMERT., LECESSIE S., LEMESHOW S. (1997), A comparison
of goodness-of-fit tests for the logistic regression model. Stat. Med. 16, 965-980.

McCULLAGH P, NELDER J.A. (1989), Generalized linear models. London, Chap-
man & Hall, 511p.

PEDUZZI P., CONCATO J., KEMPER E., HOLFORD T.R., FEINSTEIN A.R.
(1996), A simulation study of the number of events per variable in logistic
regression analysis. J. Clin. Epidemiol. 49, 1373-1379.

PRESS S.J., WILSON S. (1978), Choosing between logistic regression and discrimi-
nant analysis. J. Amer. Stat. Assoc. 73, 699-705.

RYAN T.P. (2000), Some issues in logistic regression. Comm. Stat.-Theo. Meth. 29,
2019-2032.

SAS Institute (1995), Logistic regression : examples using the SAS system version 6.
Cary, SAS Institute Inc., 163 p.

STEYERBERG E.W., EIKEMANS M.J.C., HABBEMA J.D.F. (1999), Stepwise
selection in small data sets : a simulation study of bias in logistic regression
analysis. J. Clin. Epidemiol. 52, 935-942.

STEYERBERG E.W., EDKEMANS M.J.C., HARRELL FE., HABBEMA J.D.F.
(2000), Prognostic modelling with logistic regression analysis : a comparison
of selection and estimation methods in small data sets. Stat. Med. 19, 1059-1079.

VAN HOUWELINGEN J.C., LE CESSIE S. (1990), Predictive value of statistical
models. Stat. Med. 9, 1303-1325.



