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RÉSUMÉ

Dans cet article, on étudie la qualité de validation des modèles de régression logistique
binaire. En particulier, on s’intéresse à l’effet de la proportion d’individus ayant le caractère
étudié (codés 1) sur cette qualité. De même, on évalue l’intérêt qu’il peut y avoir à séparer ou
non les étapes de sélection et d’ajustement sur des échantillons indépendants. L’ensemble de
l’étude est basée sur des données simulées.

La proportion d’individus codés 1 a une influence sur la qualité des modèles. Cet effet
est d’autant plus important que la proportion est très faible. Des situations de non-convergence
ont d’ailleurs été rencontrées. Par contre, la qualité des modèles est assez constante pour les
proportions 25 % et 50 %. Pour cette seconde modalité, la précision des estimations est un peu
supérieure et surtout l’effet des autres facteurs étudiés s’estompe.

Par ailleurs, les simulations ont montré que la séparation des étapes de sélection et
d’ajustement sur deux échantillons distincts ne conduit jamais à une meilleure qualité de
validation des modèles. Au contraire, cette qualité est généralement moindre mais l’écart n’est
que de l’ordre de 10 %.

Mots-clés : Régression logistique binaire, proportion d’individus, nombre d’échantillons,
qualité de validation.

ABSTRACT

In this paper, we summarize a study of the quality of validation given by binary logistic
regression models. We have studied the effect of the proportion of events (i.e. proportion of
individuals having the code 1) and the way of using data for selecting variables and fitting
a model. In particular, we show the interest of performing those two steps separately or not.
Artificial data were used to carry out this study.

We show that the proportion of events influences the quality of the models. Especially,
this effect is important when the proportion is very low (5 % in our study). We also meet
problems like non-convergence of the algorithm when trying to fit a model. However, quality
is much better when a proportion equal to 25 % or 50 % is used. For the latter one, precision
of the estimations is even a little bit better and the others studied factors have no effect.

The simulations also show that separating selection and fitting is not an interesting
strategy because we never obtain a good quality. Difference of quality is however close to 10
per cent.

Keywords : Binary logistic regression, proportion of individuals, number of samples, quality
of validation.
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1. Introduction

Parmi les méthodes de régression, la régression logistique est employée
notamment lorsque la variable dépendante ne prend que deux valeurs possibles; dans
ce cas, on parle de régression logistique binaire. Celle-ci est sans aucun doute la
forme la plus courante de régression logistique, dans des domaines aussi variés que
la médecine, la biologie, l’économie, etc. [Collett, 1991; Ryan, 2000].

Dans ce cadre, le premier objectif de ce travail est de préciser davantage l’impact
de la proportion d’individus codés 1 (le code 1 signifie la survenue de l’événement) sur
la qualité de validation des modèles, sujet qui a été peu étudié, si ce n’est récemment
pour le nombre d’événements par variable explicative (EPV ou Events Per Variable)
qui est le rapport entre le nombre d’individus codés 1 et le nombre de variables
explicatives. En particulier, il a été montré qu’un nombre minimum d’EPV doit être
utilisé pour parvenir à une estimation fiable des coefficients de régression [Peduzzi
et al., 1996; Steyergerg et al., 1999, 2000].

Cette question est d’importance car si on sait que la modélisation se réalise
normalement lorsque la proportion d’individus dans chaque groupe est équivalente,
on ne dispose guère d’information en cas de déséquilibre et a priori les résultats
devraient être comparables par exemple pour 25 % ou 75 % d’individus codés 1.

Notons cependant qu’une situation de déséquilibre important est assez fréquente
en médecine par exemple pour l’étude d’une maladie rare ou grave qui ne peut être
basée que sur un nombre restreint d’individus dits positifs, ayant été codés 1.

Le second objectif de la recherche est relatif à la procédure de modélisation.

En effet, pour établir un modèle, trois étapes sont nécessaires : la sélection
des variables explicatives, l’ajustement du modèle aux données à partir des variables
retenues et la validation du modèle. Ces étapes peuvent se réaliser sur les mêmes
données, ce qui est le cas si les individus sont peu nombreux; dans ce cas, on obtient
un modèle «artificiellement» adéquat.

Idéalement, les étapes d’ajustement et de validation devraient être séparées
c’est-à-dire réalisées sur deux échantillons distincts. Le modèle étant alors évalué
sur de nouveaux individus, le biais optimiste disparaı̂t. Ce n’est que récemment que
certains auteurs ont aussi évoqué l’utilisation de trois échantillons indépendants pour
réaliser les trois étapes, à savoir la sélection, l’ajustement et la validation [Celeux,
1994; Van Houwelingen et Le Cessie, 1990]. C’est pourquoi nous avons également
étudié cette possibilité.

Après cette introduction (paragraphe 1), les éléments essentiels du modèle
logistique sont rappelés (paragraphe 2) et nous détaillons les critères calculés. Au
paragraphe 3, nous abordons la manière dont l’étude s’est déroulée, c’est-à-dire les
simulations réalisées. Le paragraphe 4 est consacré à la présentation des résultats
obtenus sur ces données. Une illustration sur des données réelles est fournie au
paragraphe 5. Enfin, le paragraphe 6 présente les conclusions.
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2. Modèle logistique

2.1. Principes

Le modèle de régression logistique fait partie d’une famille de modèles appelés
modèles linéaires généralisés décrits par exemple dans les ouvrages de McCullagh
et Nelder [1989] ou Dobson [1990]. Dans un modèle linéaire généralisé, la relation
entre la variable à prédire Y et les variables prédictrices X1, . . . , Xp (matrice X de
p variables) est modélisée par :

g[E(Y )] = Xβ,

oùE(Y ) est l’espérance mathématique de la variable aléatoire Y , Xβ = β0 +X1β1

+ . . .+Xpβp avec β0, . . . , βp les coefficients, et g est une fonction appelée fonction
de lien. La fonction g adaptée lorsque Y est une variable binaire peut-être la fonction
logit,probit, log(−log). D’après Collett [1991], la fonction logit est la plus employée
pour sa simplicité essentiellement.

On définit, pour un individu i, la probabilité πi (on parle aussi de probabilité a
posteriori ou probabilité de l’événement) d’être dans le groupe des individus codés
1. La forme du modèle logistique s’écrit :

π =
e(β0+β1xi)

1 + e(β0+β1xi)
,

oùβ0 etβ1 sont les coefficients du modèle etxi la ième valeur de la variable explicative
X . La transformation de πi utilisée s’appelle la transformation logit. Elle est donnée
par la relation suivante :

logit(πi) = log

(
πi

1− πi

)
= g = β0 + β1xi

où le log représente le logarithme népérien. Lorsque p variables sont disponibles, la
fonction g s’écrit (avec j l’indice des variables et i celui des individus) :

g = β0 + β1x1i + β2x2i + . . . βpxpi

ou

g = β0 +
∑
j

βjxji.

2.2. Validation externe

Lorsqu’un nombre suffisant d’individus sont disponibles, alors il est courant
d’en réserver une partie pour l’ajustement du modèle, l’autre partie servant pour la va-
lidation. On parle ainsi respectivement d’échantillon d’apprentissage et d’échantillon
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de validation. La proportion d’individus réservés pour la validation est couramment
de 25 % à 50 % du nombre total d’individus.

Les coefficients du modèle, obtenus sur le premier échantillon, sont alors utilisés
sur le second échantillon de manière à calculer des probabilités a posteriori π̂i. La
qualité de validation est ensuite déterminée sur la base de ces probabilités et des
valeurs binaires yi où yi prend la valeur 1 si l’événement d’intérêt a lieu, 0 sinon.

Pour ce travail, deux critères sont considérés : la statistique de Hosmer et
Lemeshow et le critère c, encore connu sous l’appellation surface sous la courbe
ROC (Receiver Operating Characteristic).

La statistique de Hosmer et Lemeshow [1989], notée χ2
HL, équivaut à une

analyse des résidus; elle est basée sur le regroupement des individus en k classes de
taille presque identique (10 classes dans cette étude) :

χ2
HL =

∑
k

(ok − ek)2
ek(1− ek/nk)

,

où nk est la taille de la classe k, ok est le nombre d’individus codés 1 de la classe
et ek est dans ce cas la fréquence attendue de cette classe, c’est-à-dire la somme des
probabilités a posteriori. Le nombre de degrés de liberté de la variable χ2 est dans ce
cas égal au nombre de classes.

Le second critère mesure les capacités du modèle à classer de nouveaux
individus dans la bonne catégorie (code 0 ou 1). Il s’agit du critère c [SAS, 1995] :

c =
nc + 0, 5(t− nc − nd)

t
,

où nc est le nombre de paires concordantes, nd le nombre de paires discordantes, t le
nombre total de paires c’est-à-dire t = n(n − 1)/2 et n l’effectif total. La quantité
entre parenthèses représente le nombre de paires d’ex æquo. Si elle est négligeable,
alors le critère c est approximativement égal à la proportion de paires concordantes.

2.3. La non-convergence

La méthode d’ajustement d’un modèle de régression logistique aux données
disponibles est celle du maximum de vraisemblance. Pour arriver à maximiser
la fonction de vraisemblance, il est nécessaire d’utiliser un algorithme particulier
(procédure itérative) décrit par exemple dans McCullagh et Nelder [1989] ou Collett
[1991].

Il n’est cependant pas toujours possible de déterminer avec précision une
estimation des coefficients du modèle. Ainsi, dans le cas de la séparation complète
des deux groupes d’individus codés 0 ou 1 dans l’espace des variables explicatives,
l’algorithme ne parvient pas à converger, c’est-à-dire qu’il ne permet pas d’obtenir
une estimation précise des coefficients du modèle (estimation et erreur standard avec
des valeurs très grandes le plus souvent). Dans ce cas, on parle de non-convergence
et certains logiciels comme SAS ou MINITAB indiquent ce problème.
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3. Simulations

3.1. Facteurs étudiés

L’étude concerne, d’une part, la proportion d’individus codés 1 (n1/n), à savoir
5 %, 25 % et 50 % et, d’autre part, la manière d’utiliser les données pour mettre en
place les modèles et les valider. Pour la validation, un échantillon est isolé. Pour
établir les modèles sur les données restantes, nous définissons deux enchaı̂nements
(ench) c’est-à-dire deux manières d’utiliser les données :

– type 1-1 : toutes les données restantes servent à sélectionner et à ajuster un
modèle;

– type 1-2 : la sélection a lieu sur la moitié des données restantes, et l’ajustement
sur l’autre moitié.

Par ailleurs, deux autres facteurs sont envisagés : le nombre de variables
explicatives et l’écart-type de la part aléatoire ou bruit.

Le nombre de variables explicatives retenues (nV ar) est 6 ou 12, avec pour
chaque cas uniquement trois variables en relation directe avec le vecteur Y (variables
utiles); ce sont les variables X1, X2, X3 qui servent à définir Y (paragraphe 3.2).

Pour l’écart-type (seps) de la part aléatoire que l’on ajoute au modèle lors de la
génération des données (paragraphe 3.2.), trois valeurs sont retenues : 0,5, 2 et 3,5. Ces
valeurs ont été choisies, lors d’essais préliminaires, de manière à avoir respectivement
une très bonne, une bonne et une moyenne qualité d’ajustement.

3.2. Génération des données

12 variables indépendantes de distribution uniformeU(0; 1) sont générées. Les
trois premières variables définissent le vecteur Y de la manière suivante :

Y = b0 + b1X1 + b2X2 + b3X3,

où bj (j = 0, . . . , 3) sont les coefficients dont les valeurs valent respectivement 0, 4,
2, 1. Ces valeurs sont arbitraires, mais résultent de travaux préliminaires sur données
observées qui ont montré que X1 est très discriminante, X2 un peu moins et X3

encore moins. Soit ε le vecteur représentant la part aléatoire. Ce vecteur est généré
selon une loi N(0; seps) avec seps l’écart-type valant 0,5, 2 ou 3,5. Les vecteurs Y
et ε sont alors ajoutés pour définir un nouveau vecteur Y c :

Y c = Y + ε.

On procède alors au codage des valeurs de Y c en 0 ou 1, selon la proportion n1/n
utilisée (5 %, 25 % ou 50 %). Les n−n1 plus petites valeurs du vecteur Y c reçoivent
le code 0 et les n1 autres valeurs le code 1.

Sur l’ensemble des individus générés, 10 000 sont réservés pour la validation.
Les autres sont répartis en échantillons de taille 400 (enchaı̂nement de type 1-1) ou
200 + 200 (type 1-2) de manière aléatoire et sans remise. La taille de l’échantillon
de validation est assez importante de manière à obtenir une estimation fiable d’une
proportion d’individus mal classés (surtout dans le cas où n1/n = 5 %).
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Pour chaque combinaison des facteurs étudiés, 20 répétitions ont été prévues.

La méthodologie adoptée est inspirée des travaux de Derksen et Keselman
[1992], Hosmer et al. [1997] et Press et Wilson [1978]. Les premiers ont étudié
l’impact d’un mélange de variables utiles et inutiles sur les résultats d’un processus de
sélection automatique en régression linéaire multiple. Les seconds justifient l’emploi
de valeurs préalablement fixées pour les coefficients d’un modèle de régression
logistique, tandis que les derniers, dans leur méthodologie de traitement des données,
ont rendu binaire une variable au préalable continue.

Notons enfin que toutes les sélections automatiques de variables et les ajuste-
ments ont été effectués à l’aide du logiciel SAS.

4. Analyse des résultats

4.1. Problème de la non-convergence

La méthode stepwise de sélection des variables qui a été employée nécessite
des ajustements de modèle aux données de l’échantillon de sélection. Il est donc tout
à fait possible que des cas de non-convergence surviennent.

Une non-convergence pour une ou plusieurs variables retenues dans le cas d’un
enchaı̂nement de type 1-1 signifie un abandon du modèle car les estimations des
coefficients fournies sont inexploitables. Pour un enchaı̂nement de type 1-2, nous
distinguons la sélection de l’ajustement. Nous avons ainsi relevé les cas de non-
convergence en sélection. Les variables proposées ont tout de même été utilisées en
ajustement de manière à «récupérer» le maximum de modèles.

Comme le montre le tableau 1, une non-convergence est principalement
constatée lorsque très peu d’individus sont codés 1 (proportion n1/n de 5 %) et
que l’écart-type seps est petit (0,5). Signalons que pour des échantillons de taille 400,
20 individus sont codés 1, ce qui représente un EPV de 3,3 ou 1,7 selon le nombre
de variables explicatives (6 ou 12). D’après les travaux de Peduzzi et al [1996] et
Steyerberg et al. [1999, 2000], un EPV minimum de 10 est à respecter.

TABLEAU 1
Proportions de cas de non-convergence en ajustement en fonction

des facteurs étudiés (déterminées par rapport au nombre de répétitions);
en grisé : aucune non-convergence rencontrée

seps 0,5 2 3,5
n1/n 5% 25% 50% 5% 25% 50% 5% 25% 50%

ench nVar
1-1 6 17%

12 52%
1-2 6 27% 2%

12 25% 7% 2%
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En dehors des données de ce tableau, nous avons aussi pu remarquer des cas
de presque non-convergence, détectables par des fortes valeurs des estimations b̂j
des coefficients bj et/ou de l’écart-type de ces estimations. Une détection visuelle
de ces grandes valeurs des écarts-types des coefficients a été confirmée par le
calcul du déterminant des matrices de variances-covariances (matrices associées aux
estimateurs des paramètres) dont les valeurs s’échelonnent de 10−4 à environ 3 · 105.
Ainsi, pour la détermination des critères c et χ2

HL, des modèles ont été éliminés, le
calcul des probabilités a posteriori n’ayant plus aucun sens (déterminant supérieur à
250).

4.2. Analyse des valeurs de χ2
HL

Parmi les facteurs étudiés, le type d’enchaı̂nement représente la source de
variation la plus importante. L’enchaı̂nement de type 1-2 donne en moyenne des
valeurs 12 % plus élevées que celles du type 1-1. Le nombre de variables est le
second facteur de variation des résultats. Lorsque 12 variables sont employées, les
valeurs sont nettement plus élevées. L’écart-type de la part aléatoire conduit également
à des résultats très variables. Il s’agit surtout de la première modalité (seps = 0, 5)
qui procure des valeurs de χ2

HL les plus faibles, alors que les deux autres modalités
donnent des valeurs assez similaires. Enfin, parmi les modalités du facteurn1/n, c’est
la proportion 25 % qui permet d’obtenir les plus faibles valeurs de χ2

HL.

Ces commentaires sont illustrés par le graphique de la figure 1 sauf en ce qui
concerne le facteur nV ar.
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0,5 2 3,5 0,5 2 3,5

seps
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25%

50%

ench  1-1 ench  1-2

 

χ2 HL

FIGURE 1
Valeurs moyennes du χ2

HL en fonction du type d’enchaı̂nement (ench),
de l’écart-type de la part aléatoire (seps) et de la proportion

d’individus codés 1 (5 %, 25 %, 50 %)

Tenant compte des problèmes de non-convergence évoqués au paragraphe 4.1,
si on retire de l’analyse la modalité 5 % du facteur n1/n et la modalité 0,5 du facteur
seps, les valeurs de χ2

HL sont dans ces conditions beaucoup moins sujettes à des
variations. Il en ressort néanmoins que (tableau 2) :
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– l’enchaı̂nement de type 1-2 donne systématiquement des valeurs plus élevées
et donc une moins bonne qualité de validation. Cependant, la progression de
χ2
HL entre les deux types d’enchaı̂nement est toujours inférieure à 10 %;

– la proportion 25 % de n1/n conduit à des résultats un peu meilleurs à ceux de
50 %; dans ce cas (n1/n = 50 %), l’effet du nombre de variables explicatives
est plus important;

– le nombre de variables explicatives n’est pas un facteur de variation lorsque
n1/n = 50 %.

TABLEAU 2
Valeurs de χ2

HL (entre parenthèses : écart-type)
pour deux des trois modalités des facteurs seps et n1/n

n1/n 25 % 50 %
nV ar 6 12 6 12

seps ench
2 1-1 34,4 (6,6) 36,1 (6,2) 40,6 (3,2) 40,9 (2,7)

1-2 37,2 (7,9) 38,0 (8,4) 42,2 (4,2) 42,3 (4,6)
3,5 1-1 34,5 (5,3) 36,2 (5,2) 38,2 (3,1) 37,3 (3,3)

1-2 37,4 (6,2) 39,1 (5,2) 40,9 (5,5) 40,5 (5,7)

4.3. Analyse des valeurs de c

Les deux facteurs de variation les plus importants sont l’écart-type de la part
aléatoire et la proportion d’individus codés 1. Sans surprise, quand l’écart-type seps
augmente, les valeurs de c diminuent. Pour le second facteur, la progression est
également inversement proportionnelle. La modalité 5 % conduit donc aux plus fortes
valeurs de c donc à la meilleure qualité prédictive.

En ce qui concerne le nombre de variables explicatives, la modalité 12 aurait
tendance à donner des valeurs plus faibles pour c donc une moins bonne qualité de
prédiction. Ce constat est également vérifié pour l’enchaı̂nement 1-2 par rapport au
type 1-1 (figure 2).

Si, comme pour le critèreχ2
HL, nous excluons de l’analyse la première modalité

des facteurs seps et n1/n, l’écart des valeurs de c entre les deux types d’enchaı̂nement
est toujours inférieur à 1 % quels que soient nV ar, seps et n1/n, ce qui évidemment
est insignifiant. Notons enfin que l’effet du nombre de variables explicatives est plus
faible lorsque 50 % d’individus codés 1 sont utilisés.
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FIGURE 2
Valeurs moyennes de c pour chaque combinaison seps− n1/n

en fonction du type d’enchaı̂nement (ench)
et du nombre de variables explicatives (6 ou 12)

5. Application à des données réelles

Le travail sur données simulées a été poursuivi sur quelques jeux de données
réelles [Duyme, 2001]. Pour cela, trois jeux de données ont été recueillis : il
s’agit de données agronomiques relatant le parcours ou itinéraire cultural de trois
cultures communes dans le nord de la France (la chicorée, la betterave sucrière et
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le blé). La variable à expliquer est le rendement de chaque culture exprimé en unité
conventionnelle par hectare. L’individu statistique est dans cette étude la parcelle. Les
variables explicatives présentent peu voire très peu de corrélation : aucune valeur de
VIF (Variance Inflation Factor) ne dépasse 3 quelle que soit la culture.

Pour chaque culture, nous disposions d’environ 375 parcelles, scindées en trois
échantillons de même taille (un échantillon par étape de construction d’un modèle –
sélection, ajustement et validation). La variable Y (le rendement) a été rendue binaire
en utilisant deux des trois quartiles, permettant de repérer 25 % ou 50 % des parcelles
ayant le meilleur rendement. La qualité de validation a été déterminée par la statistique
de Hosmer et Lemeshow, χ2

HL, en forçant une répartition en 8 classes, afin d’avoir
suffisamment d’individus par classe.

Les résultats moyens sont donnés à la figure 3. Ainsi, pour chaque culture, nous
remarquons que l’enchaı̂nement de type 1-2 fournit des valeurs de la statistique de
Hosmer et Lemeshow un peu ou très supérieures à celles de l’autre enchaı̂nement.

9

10

11

12

13

chicorée betterave blé

ench 1-1

ench 1-2

χ HL
2

FIGURE 3
Valeurs moyennes du χ2

HL en fonction
du type d’enchaı̂nement (ench), par culture

6. Conclusion

Le principal problème survenu dans cette étude par simulation est la non-
convergence, essentiellement pour une faible valeur d’écart-type (seps) et pour une
proportion de valeurs codées 1 voisine de 5 %. La non-convergence ne permet pas
d’ajuster un modèle car les estimations des coefficients et des écarts-types sont
en dehors de toute réalité. La plupart des logiciels affichent à ce titre un message
d’avertissement.

Par ailleurs, il existe des situations où l’algorithme d’ajustement parvient à
converger, mais avec néanmoins une mauvaise précision des estimations des coeffi-
cients. C’est la raison pour laquelle nous avons préconisé le calcul du déterminant de la
matrice de variances-covariances associée aux estimateurs des paramètres. Ce calcul
devrait être systématiquement réalisé lorsque seulement 5 % seulement des individus
sont codés 1 (n1/n = 5 %). Un moyen d’éviter le problème de non-convergence ou
de presque non-convergence consiste à ré-équilibrer le nombre d’individus codés 0
par rapport aux individus de l’autre code : cela reviendrait à échantillonner de manière
aléatoire et sans remise parmi les individus au code 0 afin de diminuer leur nombre
et donc de diminuer la taille de l’échantillon, ce qui permet d’accroı̂tre la valeur de
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n1/n. Ainsi, par exemple, sur 500 individus dont seulement 25 seraient codés 1, cela
reviendrait, si on désire avoir 25 % de 1, à n’utiliser que 20 % de l’effectif total, ce qui
est difficilement recommandable. Si par contre la taille totale de l’échantillon ne per-
met pas de réduire le nombre d’individus codés 0 de manière importante, alors nous
conseillons soit d’avoir quand même plus de 5 % d’individus codés 1 soit d’envisager
l’utilisation de la régression logistique exacte qui dans ce cas permet de traiter tous
les individus de l’échantillon.

En dehors de ces situations spéciales, nous avons remarqué que la modalité
25 % de n1/n aboutit à une qualité de validation des modèles supérieure à celle
obtenue pour 50 %. Néanmoins, la précision des estimations est moins bonne. Ainsi,
pour un enchaı̂nement du type 1-2, nous recommandons d’équilibrer les nombres de
0 et de 1. Passer de 25 % à 50 % d’individus codés 1 revient à ne prendre que la moitié
des données disponibles. Pour un enchaı̂nement du type 1-1, l’effet du facteur nV ar
est insignifiant.

Toujours pour un écart-type de l’erreur (seps) valant 2 ou 3,5, mais pour
n1/n = 50%, la précision des estimations des coefficients des modèles est très bonne,
surtout pour un enchaı̂nement du type 1-1. La qualité de validation est dans ce cas
très peu dépendante du type d’enchaı̂nement et du nombre de variables explicatives.
Nous préconisons cependant d’utiliser un enchaı̂nement du type 1-1.

En résumé, un enchaı̂nement du type 1-2 n’est jamais souhaitable. Cela signifie
qu’il n’est pas conseillé de séparer la sélection de l’ajustement sur des échantillons
deux fois plus petits. Il complique les manipulations de données et n’apporte pas
une meilleure précision des estimations ni une meilleure qualité de validation. Cet
enchaı̂nement devient équivalent (mais pas meilleur) à l’autre type (1-1) à condition
que seps soit grand (3,5 voire plus, sans que nous ne puissions donner d’information
précise pour seps > 3, 5).

Notons pour terminer que les manipulations sur données réelles aboutissent à
des observations similaires à ce que nous avons obtenu sur données simulées.
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