
 

 

 SUBMITTED TO DIABETES & METABOLISM 

 

 

CENTRAL NERVOUS SYSTEM:  A CONDUCTOR ORCHESTRATING 

METABOLIC REGULATIONS HARMED BY BOTH HYPERGLYCAEMIA 

AND HYPOGLYCAEMIA  
 

 André J. SCHEEN (1)  

 

(1) Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU 

Sart Tilman, University of Liège, Liège, Belgium 

 

Running title : Brain and diabetes 

 

French Title : Le système nerveux central, un chef d’orchestre des régulations métaboliques exposé 

aux dommages de l’hyperglycémie et de l’hypoglycémie.  

 

 

Address for correspondence :    Pr André J. SCHEEN 

      Department of Medicine 

      CHU Sart Tilman (B35) 

      B-4000 LIEGE 1 

      BELGIUM 

      Phone : 32-4-3667238 

      FAX   : 32-4-3667068 

      Email : Andre.Scheen @ chu.ulg.ac.be   



SUMMARY  

Recent evidence suggests a key role for the brain in the control of energy metabolism, body fat 

content and glucose metabolism. Neuronal systems, which regulate energy intake, energy 

expenditure, and endogenous glucose production, sense and respond to input from hormonal and 

nutrient-related signals that convey information regarding both body energy stores and current 

energy availability. In response to this input, adaptive changes occur that promote energy 

homeostasis and the maintenance of blood glucose levels in the normal range. Defects in this 

control system are implicated in the link between obesity and type 2 diabetes mellitus. Central 

nervous system may be considered as the conductor of an orchestra implicating many peripheral 

organs involved in these homeostatic processes. However, brain is mainly a glucose-dependent 

organ, which can be damaged by both hypoglycaemia and hyperglycaemia. Hypoglycaemia 

unawareness is a major problem in clinical practice and is associated with an increased risk of 

coma. Stroke is another acute complication associated with diabetes mellitus, especially in elderly 

people, and control of glucose level in this emergency situation remains challenging. The prognosis 

of stroke is worse in diabetic patients and both the prevention management of at risk patients should 

be improved. Finally, chronic diabetic encephalopathies, which may lead to cognitive dysfunction 

and even dementia, are also recognized. They may result from recurrent hypoglycaemia and/or from 

chronic hyperglycaemia leading to cerebral vascular damages. Functional imaging is of interest to 

explore diabetes-associated cerebral abnormalities. Thus, the intimate relationship between brain 

and diabetes is increasingly acknowledged in both research and clinical practice.   
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RESUME 

   

Des observations récentes suggèrent que le cerveau joue un rôle essentiel dans le contrôle du 

métabolisme énergétique, des réserves adipeuses et du métabolisme du glucose. Les systèmes 

neuronaux qui règlent l’apport calorique, les dépenses énergétiques et la production endogène du 

glucose sont sensibles et répondent à des signaux hormonaux et nutritionnels qui donnent 

l’information concernant les réserves et la disponibilité énergétiques. En réponse à ces influx 

surviennent des changements adaptatifs qui jouent un rôle dans l’homéostasie énergétique et le 

maintien de la normoglycémie.  Des anomalies dans ce système de contrôle sont impliquées dans 

l’intrication entre obésité et diabète de type 2. Le système nerveux central peut être considéré 

comme le chef d’orchestre des nombreux organes impliqués dans ces processus d’homéostasie. 



Cependant, le cerveau est essentiellement un organe gluco-dépendant, qui peut être lésé à la fois par 

l’hypoglycémie et par l’hyperglycémie. Le défaut de perception de l’hypoglycémie 

(“hypoglycaemia  unawareness”) est un problème majeur en pratique clinique et est associé à un 

risque accru de coma.  La thrombose cérébrale est une autre complication aiguë associée au diabète, 

généralement chez le sujet plus âgé, et le contrôle de la glycémie dans cette situation d’urgence 

reste un défi. Le pronostic des accidents vasculaires cérébraux est moins bon chez les patients 

diabétiques et tant leur prévention spécifique que leur prise en charge spécialisée doivent être 

améliorées. Enfin, les encéphalopathies diabétiques sont de plus en plus reconnues et peuvent 

conduire à des troubles cognitifs, voire à la démence. Ces anomalies cérébrales peuvent résulter 

d’hypoglycémies récurrentes et/ou d’une hyperglycémie chronique responsable d’une angiopathie 

cérébrale. L’imagerie fonctionnelle est intéressante pour explorer les anomalies du système nerveux 

central associées au diabète. Ainsi, les relations intimes entre cerveau et diabète sont de plus en plus 

reconnues, à la fois en recherche et en pratique clinique.  

 

Mots-clé : Cerveau - Diabète – Glucose – Hyperglycémie - Hypoglycémie – Thrombose cérébrale - 

Démence 



1. INTRODUCTION 

 Diabetes mellitus (DM) is a complex disease that involves multiple organs implicated in 

numerous cross-talks. Indeed, besides the endocrine pancreas, many organ systems play a role in 

glucose metabolism and metabolic dysregulation including liver, muscles, adipose tissue, gut and 

kidneys [1]. Furthermore, diabetic complications resulting from chronic hyperglycaemia concern 

also many tissues, especially the arteries, the nerves, the heart, the kidneys, the eyes and the feet. 

Numerous papers were published describing the respective roles of most important organs in the 

pathophysiology of type 2 DM [1] and the complications associated with DM that may occur in the 

various peripheral organs [2]. However, brain (central nervous system, CNS) is often forgotten in 

this literature. Yet, brain may be considered as the conductor of the orchestra of all musicians 

involved in the regulation of glucose and energy metabolism (Figure 1) [1].  

 Furthermore, brain is a glucose-dependent organ, which may be dramatically affected by 

both hyperglycaemia or hypoglycaemia [3]. The high prevalence of CNS complications resulting 

from DM is a problem that is gaining more acceptance and attention. Not only well known acute 

(coma, stroke) complications but also chronic (encephalopathies, dementia) disorders have been 

recently described in details [4,5]. Recent evidence suggests morphological, electrophysiological 

and cognitive changes associated to chronic hyperglycaemia. Many of the CNS changes observed in 

diabetic patients and animal models of diabetes are reminiscent of the changes seen in normal 

aging. The central commonalities between diabetes-induced and age-related CNS changes have led 

to the theory of advanced brain aging in diabetic patients [6]. Furthermore, the pattern of volumetric 

and neurocognitive deficits in diabetic populations have been shown to be rather similar to that 

reported in populations of individuals with major depressive disorders [7]. It is not known, 

however, whether these observations may partly explain the known connection between DM and 

increased risk of depression [8]. Finally, patients with schizophrenia and schizoaffective disorders 

have also a higher incidence of glucose disorders compared to age-matched control subjects. 

Several underlying mechanisms have been proposed to explain this intimate connection between 

psychiatric disorders and metabolic disturbances, including DM [9]. 

 Besides glucose used as a preferential energy substrate by neurons, insulin also plays 

important and multifaceted roles in the brain. Circulating insulin crosses the blood-brain barrier into 

the CNS. There are many insulin receptors in various areas of the brain, which are expressed by 

both astrocytes and neurons. The two main insulin actions in the brain are control of food intake 

and effect on cognitive functions. Brain insulin decreases with aging and may be related to the 

decrease in cognitive functions, as has also been reported in Alzheimer's disease [10]. 



Dysregulation of insulin signaling has been linked to aging and metabolic and neurodegenerative 

disorders [11]. Insulin receptor signaling, which has been extensively studied in peripheral organ 

systems such as liver, muscle and adipocyte, has recently been implicated in various mechanisms 

that regulate structural and functional aspects of circuit development, including synaptic function 

and the development of dendritic arbor morphology. Therefore, one might speculate about a 

potential link between insulin receptor signaling malfunction and neurological disorders, including 

in patients with DM [12].  

 The symposium organized by the “Société Francophone du Diabète” entitled “Brain and 

diabetes” (December 3, 2010) has the ambition to cover many important aspects of the intimate 

relationship between CNS, on the one hand, integrated energy and glucose regulation or acute and 

chronic glucose-related cerebral complications on the other hand. We thank all the distinguished 

contributors who accepted our invitation and have submitted excellent manuscripts that are 

assembled in this special issue of Diabetes & Metabolism. 

 

 

2. CNS ORCHESTRATES ENERGY AND GLUCOSE HOMEOSTASIS 
  

 Growing evidence suggests that nutrient and hormonal signals converge and directly act on 

brain centres, leading to changes in fuel metabolism and, thus, stable body weight over time. 

Furthermore, these same signals act on the CNS to regulate glucose metabolism independently [13]. 

It has been proposed that this is not coincidental and that the CNS responds to peripheral signals to 

orchestrate changes in both energy and glucose homeostasis. In this way the CNS ensures that the 

nutrient demands of peripheral tissues (and likely of the brain itself) are being met. Consequently, 

dysfunction of the ability of the CNS to integrate fuel-sensing signals may underlie the etiology of 

metabolic diseases such as obesity and DM whose incidences are rising at epidemic proportions.  

[14]. 

 Energy homeostasis is kept through a complex interplay of nutritional, neuronal and 

hormonal inputs that are integrated at the level of the CNS [15]. The hypothalamus is a key 

integrator of nutrient-induced signals of hunger and satiety, crucial for processing information 

regarding energy stores and food availability. Furthermore, there are more and more data 

supporting the importance of nervous regulation of both white and brown adipose tissue mass. 

Altogether available results showed the presence of a neural feedback loop between adipose tissues 

and the brain, which plays a major role in the regulation of energy homeostasis and has been shown 



to be altered in some physiological conditions as well as in metabolic pathologies. Different 

physiological parameters are regulated such as metabolism (lipolysis and thermogeneis), secretory 

activity (leptin and other adipokines) but also plasticity of adipose tissues (proliferation, 

differentiation and apoptosis) [16].  

 The CNS control of body weight [15], but also of blood glucose concentrations [17], 

depends on the exquisite coordination of the function of several organs and tissues, in particular the 

pancreas, liver, muscle, fat, gut and kidneys (Figure 1) [1]. These organs and tissues have major 

roles in the use and storage of nutrients in the form of glycogen or triglycerides and in the release of 

glucose or free fatty acids into the blood, in periods of metabolic needs [18]. These mechanisms are 

tightly regulated by hormonal and nervous signals, which are generated by specialized cells that 

detect variations in blood glucose or lipid concentrations. The hormones insulin and glucagon 

regulate glycaemic levels through their action on these organs, especially the liver. Furthermore, the 

sympathetic and parasympathetic branches of the autonomic nervous system, which are activated by 

glucose or lipid sensors, also modulate pancreatic hormone secretion as well as liver, muscle and fat 

glucose and lipid metabolism. Other signaling molecules, such as the adipocyte hormones leptin 

and adiponectin, have circulating plasma concentrations that reflect the level of fat stored in 

adipocytes. These signals are integrated at the level of the hypothalamus by the melanocortin 

pathway, which produces orexigenic and anorexigenic neuropeptides to control feeding behaviour, 

energy expenditure and glucose homeostasis. Work from several laboratories has explored the 

physiological role of glucose as a signal that regulates these homeostatic processes and has tested 

the hypothesis that the mechanism of glucose sensing that controls insulin secretion by the 

pancreatic B cells is also used by other cell types. These mechanisms integrate signals from other 

nutrients such as lipids and their deregulation may initiate metabolic diseases [18]. 

 The liver plays a pivotal role in the regulation of glucose metabolism because it is the key 

organ that maintains glucose levels during fasting via increased glycogenolysis and 

gluconeogenesis, two important biochemical pathways that increase hepatic glucose production 

(HGP). Furthermore, following the ingestion of a meal, insufficient reduction in HGP contributes to 

enhance post-prandial hyperglycaemia in patients with type 2 DM [1]. An emerging body of 

literature has demonstrated the important role of the hypothalamus in controlling HGP. The 

hypothalamus senses circulating nutrients and hormones, conveying the energy status to the CNS, 

which, in turn, controls HGP in part by way of the autonomic nervous system. Animal experiments 

suggest that overfeeding results in the failure of the hypothalamus to sense circulating nutrients and 

hormones, and in a loss of the central control of HGP [19]. Interestingly, connected to the 

hypothalamus via the peripheral nervous system, a system of plasma glucose-sensing in the portal 



vein allows the body to adapt its response to any variation of portal glycaemia. Intestinal 

gluconeogenesis, via the release of glucose into the portal vein, plays a key role in the control of 

hunger and satiety, and of HGP through the modulation of liver insulin sensitivity [20]. These data 

emphasize the importance of the liver-brain and gut-brain axis in the understanding of obesity and 

type 2 DM, which may lead to promising therapeutic implications. 

 Food intake and energy expenditure are tightly regulated by the brain, in a homeostatic 

process that integrates diverse hormonal, neuronal and metabolic signals [21]. The gastrointestinal 

tract is an important source of such signals, which include several hormones released by specialized 

enteroendocrine cells. These hormones exert powerful effects on appetite and energy expenditure. 

Almost all of them, i.e. peptide YY, pancreatic polypeptide, islet amyloid polypeptide, glucagon-

like peptide 1 (GLP-1), glucagon, oxyntomodulin, cholecystokinin and ghrelin, represent potential 

targets for the development of novel treatments for obesity and/or type 2 DM [21]. Over the past 

years tremendous amounts of clinical and fundamental data have been generated about GLP-1 and 

related therapeutic strategies for the treatment of type 2 DM. However, the cellular and 

physiological mechanisms through which GLP-1 is secreted, controls glycaemia, and behaves as a 

therapeutic agent are still unclear. Besides being a gut-derived hormone, GLP-1 is also a 

neurotransmitter synthesized in the brain. Early reports suggested that GLP-1 acts in the periphery 

to promote insulin secretion and affect glucose homeostasis, whereas central GLP-1 reduces food 

intake and body weight. However, current research indicates that in fact, GLP-1 in each location 

plays a role in these functions [22]. A growing number of evidences pointed out that the enteric and 

the CNS systems are main actors in the control of GLP-1 action. This involves the triggering of the 

gut-to-brain and to periphery axis where nutrients regulate the release of GLP-1 and activate the 

tightly regulated enteric and cerebral neuronal circuits. These integrate and redistribute the GLP-1-

dependent signals toward numerous targeted tissues, including the brain [23]. 

 In his Banting Lecture, De Fronzo recognizes that an important player to be implicated in 

the pathogenesis of type 2 DM is the brain, which, along with his seven companions (muscle, liver, 

adipose tissue, β-cell, α-cell, gut, kidney), forms the so-called “ominous octet” (Figure 1) [1]. It is 

abundantly clear that the current epidemic of DM is being driven by the epidemic of obesity. Obese 

individuals, both diabetic and nondiabetic, are characterized by insulin resistance and compensatory 

hyperinsulinemia. Food intake is increased in obese subjects despite the presence of 

hyperinsulinemia and the fact that insulin is known to be a potent appetite suppressant [10]. Thus, 

one could postulate that the insulin resistance in peripheral tissues also extends to the brain. The 

issue of impaired appetite regulation by insulin in obese subjects was confirmed using functional 

magnetic resonance imaging (MRI) to examine the cerebral response to an ingested glucose load. 

Whether the impaired functional MRI hypothalamic response in obese subjects contributes to or is a 



consequence of the insulin resistance and weight gain remains to be determined. Nonetheless, these 

results suggest that the brain, like other organs (liver, muscle, and fat) in the body, may be resistant 

to insulin [1]. 

 3. BRAIN, A GLUCOSE-DEPENDENT ORGAN EXPOSED TO HYPOGLYCAEMIA 

 Under most physiological conditions glucose is the primary fuel for the brain. The brain 

accounts for more than half the body's glucose use and because fuel stores such as glycogen are 

limited, it is very dependent on a continuous supply of glucose from the circulation. This probably 

explains why the glucose sensors thought to be dominant during hypoglycemia are found in a 

number of brain areas regions where the blood-brain barrier is leaky or absent, i.e. adjacent to the 

III or IV ventricles or to the circumventricular organs. This potentially allows glucose sensing 

neurons direct monitoring of glucose levels in the blood, brain, and cerebrospinal fluid. This is 

important because the presence of the blood-brain barrier ensures that brain glucose levels are only 

∼10–30% of the levels seen in the blood [24].  

 The defining feature of a glucose-sensing neuron is that it can use glucose not simply as a 

fuel but as a signaling molecule that regulates its activity. Such specialized neurons are glucose 

sensing in so far as glucose is the major metabolic substrate for the brain. However, the fact that 

these neurons can use other fuels such as lactate produced either by astrocytes or delivered locally 

to alter their function suggests that it is more likely glucose oxidation–derived intracellular ATP 

that determines the activity of these neurons. Glucose-sensing neurons, by virtue of specific sensing 

systems, directly or indirectly translate the rate or quantity of glucose oxidation into a neural signal 

that alters neuronal firing rates. Interestingly, these neurons appear to use signaling mechanisms 

that parallel those used by pancreatic β- and α-cells [24]. 

 Two predominant subtypes of glucose-sensing neurons have been identified: namely, 

glucose-excited (GE) neurons and glucose-inhibited (GI) neurons whose activity, respectively, 

increases and decreases as glucose levels rise. Potentially, the counterbalance between GI and GE 

neuronal activity forms the most sensitive means of regulating and maintaining blood glucose 

within a narrow physiological range as well as ensuring an adequate supply of glucose to the brain. 

Recurrent exposure to hypoglycaemia disturbs this relationship in a number of ways. They may 

include an increased capacity of glucose-sensing regions of the brain to use glucose and/or alternate 

fuels, as well as changes in both the mechanisms that sense glucose and those that fine-tune the 

hypoglycaemic stress response, the net effect being to reduce the glucose level at which 

counterregulation is initiated (see below) [24]. 



  Brain nutrient sensing permits fine regulation of physiological functions such as food intake 

and blood glucose regulation related to energy homeostasis. In some cases detection is probably not 

ensured by neurons themselves but by astrocytes, indicating that the two cell types are coupled in 

some way. Glucose sensing can be modulated by other nutrients (particularly fatty acids) and also 

by hormones (insulin, leptin and ghrelin) and peptides (NPY). The subtle cellular and molecular 

mechanisms involved in glucose sensing probably explain reported discrepancies in the expression 

of glucose transporters, hexokinases and channels [25]. Astrocytes might also be involved in one 

type of response, thus adding a new level of complexity.  

 The astrocyte-neuron lactate shuttle hypothesis occupies a centre stage in research on brain 

energetics [26]. Description of cell-specific metabolic characteristics have reinforced the view that 

a prominent conversion of glucose into lactate takes place in astrocytes, whereas neurons 

preferentially take up and oxidize lactate over glucose-derived pyruvate. Indeed, specific 

mechanisms are activated by glutamatergic activity to favour such a net lactate transfer between the 

two cell types. Moreover, demonstration in vivo of the existence and implication of the astrocyte-

neuron lactate shuttle hypothesis for particular neurophysiological processes is beginning to appear. 

A new concept of brain energetics based on metabolic compartmentalization between astrocytes 

and neurons is establishing itself as the leading paradigm that opens new perspectives in areas such 

as functional brain imaging and regulation of energy homeostasis [26]. 

 In healthy volunteers, hypoglycaemia is classically associated with symptomatic responses 

(resulting from sympathoadrenergic stimulation and cerebral neuroglucopenia), hierarchised 

counterregulatory neuroendocrine responses and a sequential pattern of brain regional engagement. 

The analysis of changes in relative cerebral perfusion using [(15)O]-H(2)O water positron emission 

tomography [27] demonstrates complex dynamic responses to the stressor of hypoglycaemia that 

would be expected to drive physiological and behavioural changes to remedy the state. 

Furthermore, distinct sets of brain regions are engaged in the process, providing a neural substrate 

for adaptive responses to stressors such acute hypoglycaemia.  

 While the clinical presentation is often characteristic, particularly for the experienced 

individual with diabetes, the neurogenic and neuroglycopenic symptoms of hypoglycemia are 

nonspecific and relatively insensitive; therefore, many episodes are not recognized. Iatrogenic 

hypoglycaemia is typically the result of the interplay of absolute or relative insulin excess and 

compromised glucose counterregulation in type 1 and advanced type 2 DM. Decrements in insulin, 

increments in glucagon, and, absent the latter, increments in epinephrine stand high in the hierarchy 

of redundant glucose counterregulatory factors that normally prevent or rapidly correct 



hypoglycaemia. In insulin-deficient DM (exogenous) insulin levels do not decrease as glucose 

levels fall, and the combination of deficient glucagon and epinephrine responses causes defective 

glucose counterregulation. Reduced sympathoadrenal responses cause hypoglycaemia unawareness. 

The concept of hypoglycemia-associated autonomic failure in DM posits that recent antecedent 

hypoglycaemia causes both defective glucose counterregulation and hypoglycaemia unawareness 

[28, 29]. By shifting glycaemic thresholds for the sympathoadrenal (including epinephrine) and the 

resulting neurogenic responses to lower plasma glucose concentrations, antecedent hypoglycaemia 

leads to a vicious cycle of recurrent hypoglycaemia and further impairment of glucose 

counterregulation. Thus, short-term avoidance of hypoglycaemia reverses hypoglycaemia 

unawareness in most affected patients, an important observation for all diabetes care providers. The 

clinical approach to minimizing hypoglycaemia while improving glycaemic control includes 

multiple strategies that are beyond the scope of this review [29, 30].   

 Hypoglycaemia is a frequent side-effect of treatment with insulin and sulfonylureas for 

people with DM, threatening potentially serious morbidity and preventing optimal glycaemic 

control [28, 30]. Indeed, fear of hypoglycaemia and development of syndromes such as impaired 

awareness and counterregulatory deficiency provide additional hazards for intensification of 

treatment. Hypoglycaemia can disrupt many everyday activities such as driving, work performance 

and recreational pursuits. Hypoglycaemic coma is a major adverse event in daily life of diabetic 

patients, which may has a negative social impact but also may be hazardous for daily life. 

Fortunately, severe brain damage following acute hypoglycaemic coma is rather rare. However, 

because of the associated sympthoadrenergic drive, profound hypoglycaemia may be deleterious for 

the heart, potentially leading to myocardial infarction and severe arrhythmias (which may explain 

the so called 'dead in bed' syndrome) [31, 32]. Recent data from the ACCORD (“Action to Control 

Cardiovascular Risk in Diabetes “) trial emphasizes the increased risk of cardiovascular mortality 

associated to severe hypoglycaemia in patients with type 2 DM, treated intensively or not [33].  

 Thus, iatrogenic hypoglycaemia causes recurrent morbidity in most people with type 1 DM 

and many with type 2 DM, and it is sometimes fatal. The barrier of hypoglycaemia generally 

precludes maintenance of euglycaemia over a lifetime of DM and thus precludes full realization of 

euglycaemia's long-term benefits. Measures to reduce the risk of hypoglycaemia are labour-

intensive and require substantial resources [29, 30]. 

 

 3. DIABETES, STROKE, AND CONTROL OF GLYCAEMIA 



 Prospective observational data and results of clinical trials showed a clear association 

between DM and vascular disease, which extends to cerebrovascular disease [34]. Recent meta-

analyses included data for 698 782 people (52 765 non-fatal or fatal vascular outcomes; 8.49 

million person-years at risk) from 102 prospective studies. Adjusted hazard ratios (HRs) with DM 

were 2.27 (95% CI 1.95-2.65) for ischaemic stroke; 1.56 (1.19-2.05) for haemorrhagic stroke; and 

1.84 (1.59-2.13) for unclassified stroke compared to non-diabetic individuals [34]. The Dijon 

Stroke Registry is the only population-based registry in France which has collected neurological 

data without interruption for more than 20 years. This registry has produced reliable 

epidemiological data from a large non-selected population. Comparison of the descriptive 

epidemiology data between 1985 to 1989 and the 2000-2004 periods showed that the proportion of 

subjects with DM increased significantly [35]. 

 In DM, glycaemic control should be part of a global approach to vascular risk. The benefits 

of intervention to lower blood glucose in terms of microvascular health are well established but 

benefit on macrovascular, especially cerebrovascular, health has been less apparent. Recent large-

scale trials and meta-analyses have helped us to better define the role of glycaemic control in 

macrovascular disease. Although few studies of glycaemic therapy have used cerebrovascular 

disease as a primary endpoint, stroke-specific data can be derived from several large intervention 

studies [36]. Five trials provided information on 1,127 episodes of stroke during about 163 000 

person-years of follow-up. The mean HbA1c concentration was 0.9% lower for participants given 

intensive treatment than for those given standard treatment. However, intensive glycaemic control 

had no significant effect on events of stroke (HR : 0.93, 95% CI 0.81-1.06), contrasting with a 

highly significant reduction  (- 15 %) in coronary events.  

 DM and hyperglycaemia per se are associated with poor cerebrovascular health, both in 

terms of stroke risk and outcome thereafter. A period of hyperglycaemia is common, with elevated 

blood glucose in the periinfarct period consistently linked with poor outcome in patients with and 

without DM. The mechanisms that underlie this deleterious effect of dysglycaemia on ischaemic 

neuronal tissue remain to be established, although in vitro research, functional imaging, and animal 

work have provided some clues. However, the interaction between glycaemic control and critical 

neurological illness and injury is complex [37]. Hyperglycaemia can be either the cause or the result 

of severe brain injury. Interventions to control blood glucose are available but evidence of 

cerebrovascular efficacy are lacking.  



 The association between poor glycaemic control and an unfavourable prognosis of patients 

with acute ischemic stroke is particularly evident in individuals with persistent hyperglycaemia, 

patients without a known history of DM, and subjects with cortical infarction. While prompt 

correction of hyperglycaemia can be achieved, trials of acute insulin administration in stroke, as in 

other critical care populations, have been equivocal. In acute stroke, theoretical data suggest 

intervention to lower markedly elevated blood glucose may be of benefit, especially if thrombolysis 

is administered. However, trials have been underpowered to demonstrate treatment effect or had 

several limitations, and any intervention must be balanced against risk of hypoglycaemia [38]. 

Despite a lack of clinical evidence supporting the use of glycaemic control in the treatment of 

patients with stroke, international guidelines recommend treating this subset of critically ill patients 

for hyperglycaemia in the hospital setting. This treatment regime is, however, particularly 

challenging in patients with stroke, and is associated with an increased risk of the patient 

developing hypoglycaemia, which may be also deleterious for the brain [39]. The add-on value of 

using continuous glucose monitoring system to avoid both hyperglycaemia and hypoglycaemia in 

DM patients with acute stroke deserves further evaluation. 

 Reducing the excess cerebrovascular burden in patients with type 2 DM remains a major 

therapeutic challenge, especially with respect to the high risk of recurrent events. Targeting the 

traditional metabolic risk factors of hypertension, dyslipidaemia, and hyperglycaemia has failed to 

remove this excess risk, and agents targeting thrombotic risk (i.e., antiplatelet and anticoagulant 

drugs) remain poorly studied in the context of stroke in DM. This may relate to the accumulation of 

risk factors in type 2 DM as well as to diabetes-specific pathophysiological factors. There is a lack 

of prospective evidence to support the efficacy of interventions in the secondary prevention of 

cerebrovascular events in type 2 DM, particularly recurrent stroke events. Overall, there is a need 

for rigorous evaluations of new therapeutic approaches in both primary and secondary prevention of 

stroke as well as management of acute stroke in patients with type 2 DM [40]. 

 4. DIABETES AND COGNITIVE DYSFUNCTION 

 Reviews on the epidemiological studies on cognitive impairment in patients with DM found 

evidence of cross-sectional and prospective associations between type 2 DM and moderate 

cognitive impairment, on memory and executive functions [41]. Neuropsychology contributes 

greatly to the diagnosis of dementia in the general population and validated methods for the 

detection of cognitive disorders may also be applied to patients with DM [42]. Cognitive deficits 

can be detected several years before the clinical diagnosis of dementia. Neuropsychological 



assessment at an early stage of dementia has two goals: (a) to determine a memory disorder, not 

always associated with a memory complaint, and (b) to characterize the memory disorder in light of 

the cognitive neuropsychology and to assess other cognitive (and noncognitive) functions toward 

integrating the memory disorder in a syndrome. Considering the high prevalence of cognitive 

dysfunction among diabetic patients [41, 43], diabetologists should be aware of the global tools and 

the memory tests that describe the memory profile and indicate the underlying pathology. The 

results must be interpreted in the light of the history, rate of progression, imaging data, and nature 

of existing behavioural disturbances. Careful follow-up of patients is necessary to improve 

diagnostic accuracy [42].  

 Acute hypoglycaemia impairs cerebral function, and available data indicate that cognitive 

performance becomes impaired at a blood glucose level of 2.6-3.0 mmol/l in healthy subjects [44]. 

The onset of hypoglycaemic cognitive dysfunction is immediate, but recovery may be considerably 

delayed. There is persuasive evidence of adaptation to hypoglycaemia, partly due to increased brain 

glucose uptake capacity, although other mechanisms may exist. Patients who are exposed to chronic 

or recurrent hypoglycaemia become remarkably tolerant to the state, but this is insufficient to 

prevent severe hypoglycaemia with neuroglycopenic decompensation, probably because 

symptomatic and counterregulatory responses adapt even more. The chronic effects of recurrent 

hypoglycaemia remain contentious. Several case reports of hypoglycaemic brain damage and of 

cognitive deterioration attributed to repeated severe hypoglycaemic episodes have been published 

[44]. Children may be more prone to acute metabolic insults, and there is evidence of 

developmental disadvantage associated with hypoglycaemic events [45]. Recurrent hypoglycaemia 

is well established to diminish counter-regulatory responses to further hypoglycaemia, as already 

mentioned [28,29]. However, despite significant patient concern, the impact of recurrent 

hypoglycaemia on cognitive and neural function remains controversial. Overall, recurrent 

hypoglycaemia appears to cause brain adaptations which may enhance cognitive performance and 

fuel supply when euglycaemic but which pose significant threats during future hypoglycaemic 

episodes [44]. 

 With the aging of the population, the prevalence of two common disorders is expected to 

rise: DM and dementia. It has been shown that people with DM are approximately 1.5-fold more 

likely to experience cognitive decline and 1.6-fold more likely to develop frank dementia than 

individuals without diabetes. This is likely due to a higher prevalence of both vascular dementia 

and Alzheimer's disease [46]. Alzheimer's disease has characteristic histopathological, molecular, 

and biochemical abnormalities. Currently, there is a rapid growth in the literature pointing toward 



insulin deficiency and insulin resistance as mediators of Alzheimer disease-type neurodegeneration, 

but this surge of new information is riddled with conflicting and unresolved concepts regarding the 

potential contributions of type 2 DM, metabolic syndrome, and obesity to Alzheimer pathogenesis. 

The term "type 3 diabetes" reflects the fact that Alzheimer disease represents a form of DM that 

selectively involves the brain and has molecular and biochemical features that overlap with other 

types of DM [47]. 

 Diabetic encephalopathies are now accepted complications of DM [4]. They appear to differ 

in type 1 and type 2 DM as to underlying mechanisms and the nature of resulting cognitive deficits. 

According to epidemiological data, the increased incidence of Alzheimer's disease in type 2 DM is 

associated with insulin resistance, hyperinsulinaemia and hyperglycaemia, and commonly 

accompanying attributes such as hypercholesterolemia, hypertension and (abdominal) obesity. The 

pathobiology of accumulation of beta-amyloid and tau protein, the hallmarks of Alzheimer's 

disease, has been demonstrated in experimental data. Type 1 diabetic encephalopathy is likely to 

increase as a result of the global increase in the incidence of type 1 DM and its occurrence in 

increasingly younger patients may represent an alarming hazard. Alzheimer-like changes and 

dementia are not prominently increased in type 1 DM. Instead, the type 1 diabetic encephalopathy 

involves learning abilities, intelligence development and memory retrieval resulting in impaired 

school and professional performances. The major underlying component here appears to be insulin 

deficiency with downstream effects on the expression of neurotrophic factors, neurotransmitters, 

oxidative and apoptotic stressors resulting in defects in neuronal integrity, connectivity and loss 

commonly occurring in the still developing brain [10, 11]. Recent experimental data emphasize the 

role of impaired central insulin action and provide information as to potential therapies [4]. 

Therefore, the underlying mechanisms resulting in diabetic encephalopathies are complex and 

appear to differ between type 1 and type 2 DM. Major advances have been made in our 

understanding of their pathobiology. However, many questions remain to be clarified and we have 

to expand our understanding of these complications in order to find therapeutic means by which 

these disastrous consequences can be prevented and modified in patients with DM [4]. 

 People with DM, especially type 2 DM, are at increased risk of cognitive dysfunction and 

dementia [41, 43]. Possible risk factors such as hypo- and hyperglycaemia, vascular risk factors, 

micro- and macrovascular complications, depression and genetic factors may play a role. Those 

who have the metabolic syndrome with or without diabetes suffer more often from dysexecutive 

problems and slower psychomotor speed than do other patients. In epidemiological studies, DM has 

appeared to be a risk factor for all types of dementia, including vascular dementia, although the role 

of the metabolic syndrome in the risk of Alzheimer's disease is still a matter of debate. Drug 



interventional trials addressing the prevention of cognitive decline through action on features of the 

metabolic syndrome are disappointing-albeit scarce at this time [48]. 

 Type 2 DM is associated with modest cognitive decrements in non-demented patients that 

evolve only slowly over time, but also with an increased risk of more severe cognitive deficits and 

dementia. There seems to be a dissociation between these two 'types' of cognitive dysfunction with 

regard to affected age groups and course of development. Therefore, it has been hypothesized that 

the mild and severe cognitive deficits observed in patients with type 2 DM reflect separate 

processes, possibly with different risk factors and aetiologies [43]. What so ever, cognitive decline 

and dementia both place a heavy burden on patients and their relatives, and any means of 

preventing such age-related changes are worthy of consideration.  

 Most studies on cognitive dysfunction in type 2 DM have been performed in adults or 

elderly individuals [41, 43]. A recent preliminary study involving both MRI and 

neuropsychological evaluations documented brain abnormalities among obese adolescents with 

type 2 DM relative to obese adolescent controls. These abnormalities are not likely to result from 

education or socioeconomic bias and may result from a combination of subtle vascular changes, 

glucose and lipid metabolism abnormalities and subtle differences in adiposity in the absence of 

clinically significant vascular disease. Future efforts are needed to elucidate the underlying 

pathophysiological mechanisms and longitudinal studies would be interesting to see what might be 

the late prognosis of these young patients [49]. This may be a major concern from a public health 

point of view considering the increasing epidemics of obesity and type 2 DM in young individuals 

in the United States and many other countries. 

 

 5. CONCLUSION  

 The physiological and pathophysiological relationships between brain and DM are multiple. 

Hypothalamus may be considered as acting as an integrator of all peripheral signals to control both 

energy and glucose metabolism. CNS may also be exposed to acute damages in case of either 

severe hypoglycaemia or hyperglycaemia, but also may be exposed to various chronic 

encephalopathies, some of them mimicking Alzheimer disease. Specific prevention and treatment 

strategies should be evaluated and implemented in patients to reduce the increasingly recognized 

burden associated to diabetes-related CNS disorders We hope that the current special issue of 

Diabetes & Metabolism summarizing the lectures presented at the symposium “Brain and Diabetes” 

organized by the “Société Francophone du Diabète” (December 3, 2010) will be of interest for 

many people involved in diabetes research and care.  
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Figure 1 : Central nervous system (CNS) as conductor of the orchestra of all peripheral organs 

implicated in energy and glucose metabolism. 

 

Figure 2 :  Brain, a glucose-dependent organ exposed to acute and chronic adverse events 

associated to either hypoglycaemia or hyperglycaemia. 

 



 


