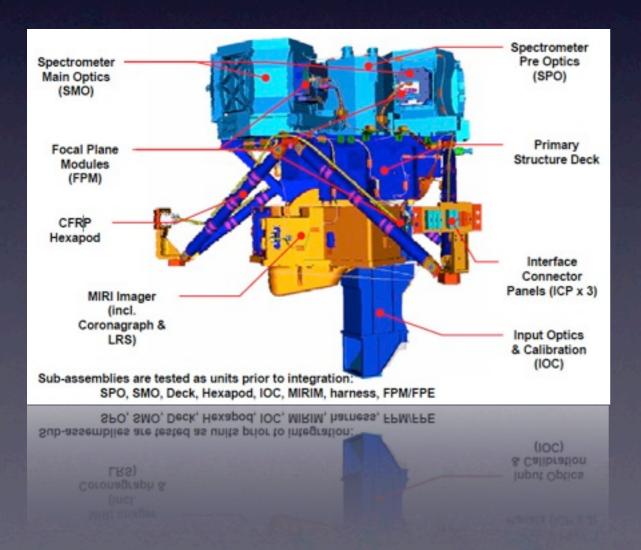
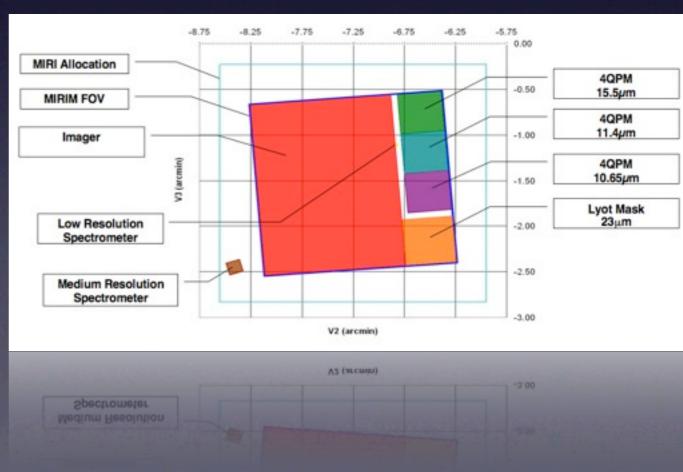
Performance comparison between JWST/MIRI+NIRCam & VLT/SPHERE for exoplanet detection

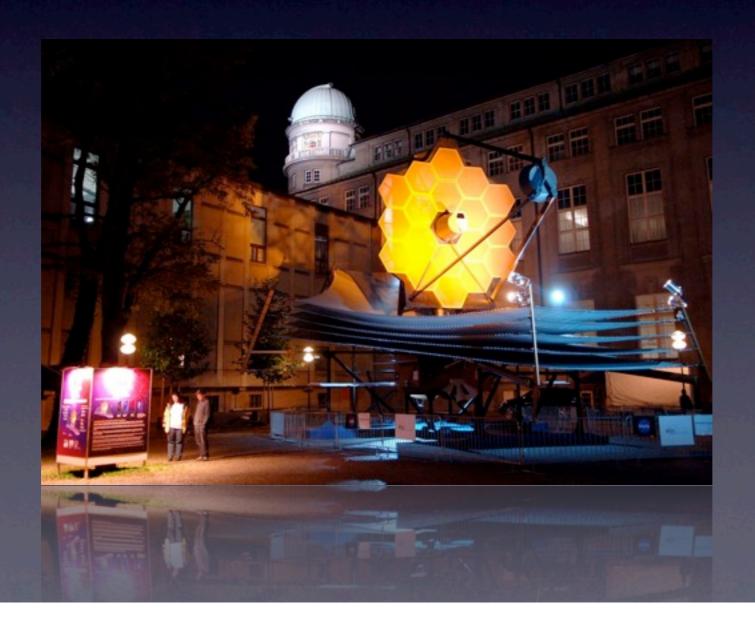
Charles Hanot, Olivier Absil, Jean Surdej

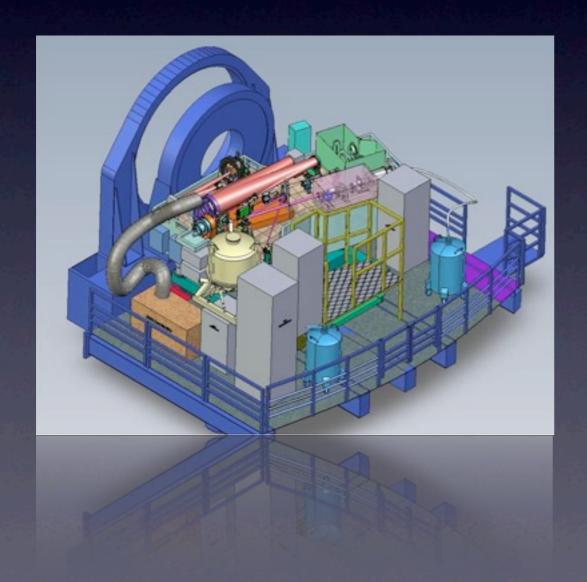
ARC meeting, I I February 2010

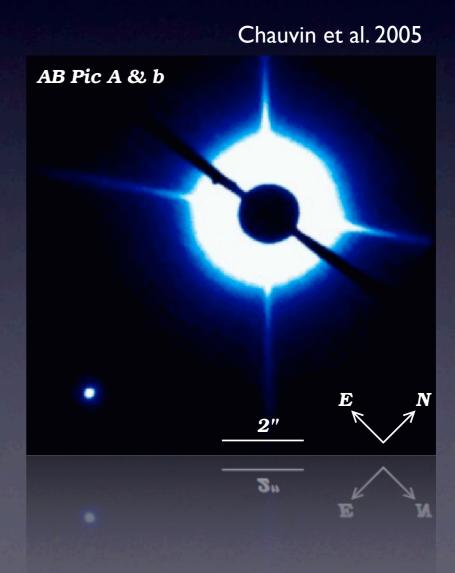

James Webb Space Telescope (JWST)


- Infrared-optimized 6.5 m telescope
- Detection of first galaxies
- Stars forming planetary systems

JWST/ MIRI


- Mid-InfraRed Instrument (5-27µm)
- Imager + Spectrograph
- Equiped with coronagraphs for high dynamic imaging


JWST/ NIRCam


- Near InfraRed Camera (0.6-2.3μm + 2.4-5 μm)
- Imager
- Equipped with coronagraphs for high dynamic imaging

VLT/SPHERE

- Extreme adaptive optics (XAO)
- Coronagraphs (1.4-2.4µm)
- Spectral differential imaging

Context and goals

MIRI GTO: short program proposal

- Well defined, well focused
- Immediate scientific return

Main goals

- Directly detect the smallest possible planets at 5-50 AU from main sequence stars
- Unveil new population of planets
- Follow-up: constrain theoretical cooling models

Why M stars?

Most abundant stellar type

Planetary systems not well known

Planet formation/migration similar to Sun-like stars?

Currently a hot topic

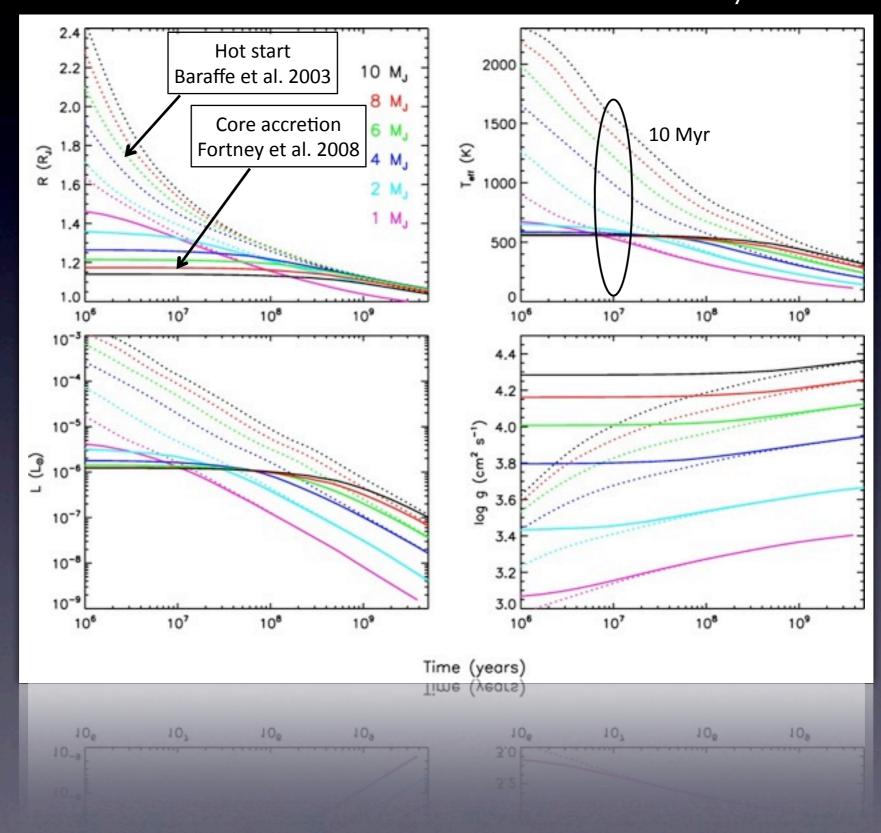
- RV and transit surveys starting
- Prospects for super-Earths in habitable zones

Low luminosity

• Fainter planets can be imaged at a given contrast

Why young main sequence stars?

"Main sequence"


- Thick disks have disappeared
- Planetary systems mostly formed

"Young"

- Planets are still warm and luminous easier
 - Cooling models poorly constrained
- Moving groups and associations
 - Nearby (typically 20 50 pc)
 - Ages relatively well defined

Evolutionary models

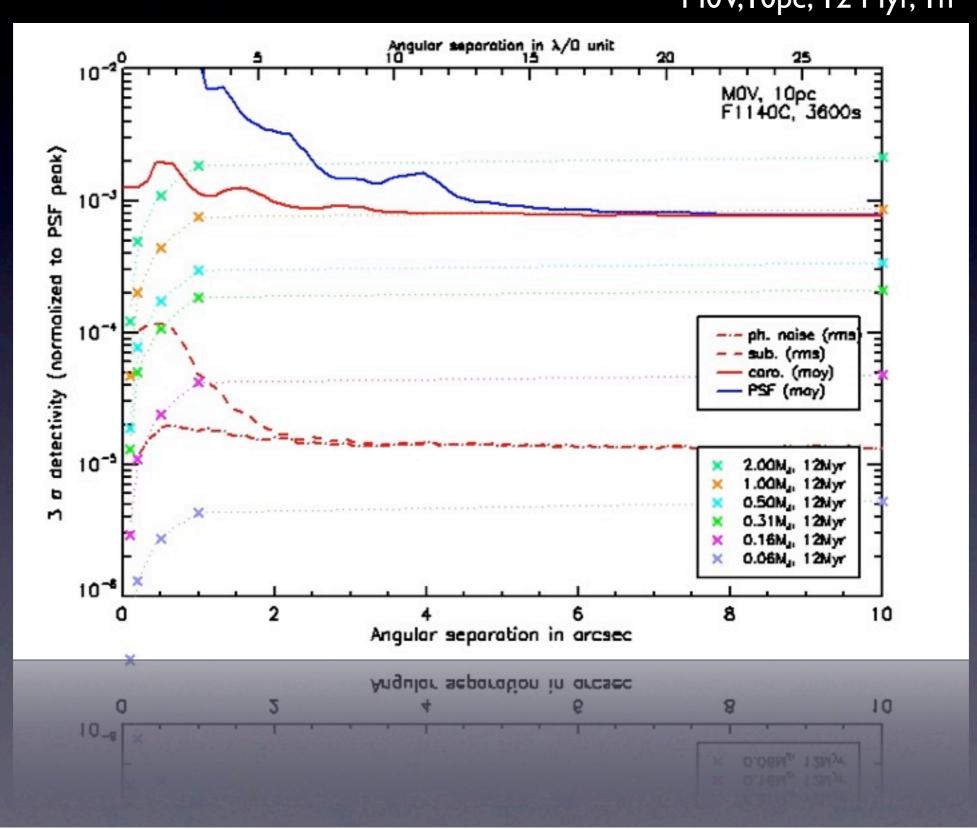
Fortney et al. 2008

Scientific return

Detection at 11.4 µm

- Age known planet temperature and mass from models
- First statistics of low-mass planets

Follow-up with MIRI

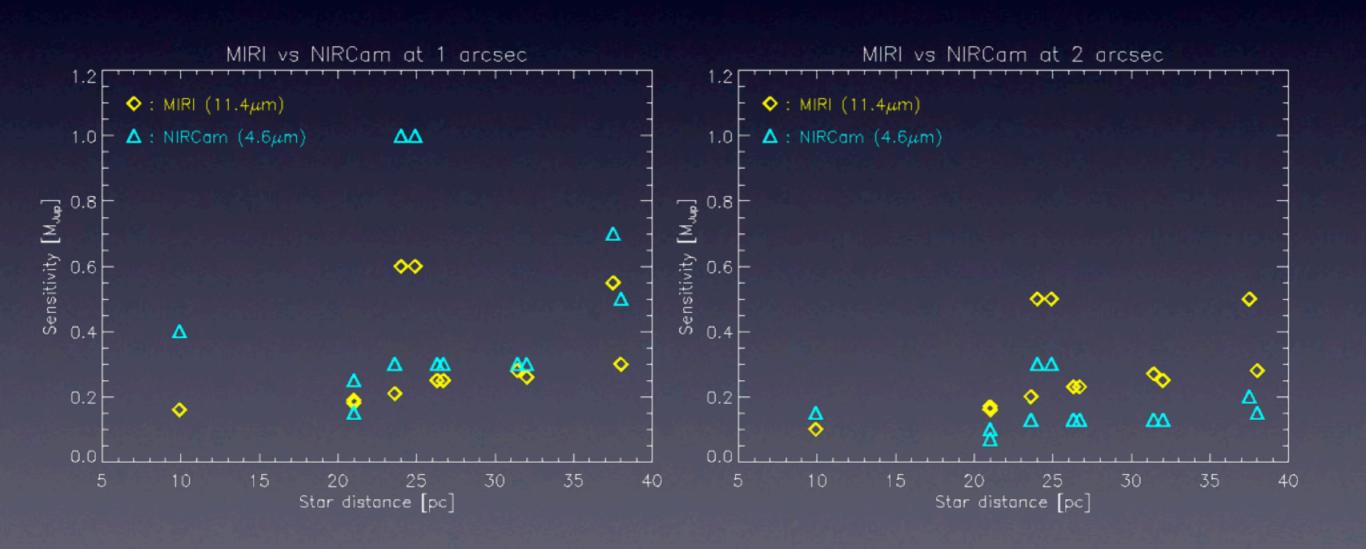

- 15.5 µm: model-independent temperature estimation
- 10.65 µm: search for ammonia

Follow-up with NIRCam at 4.6 µm

More constraints on theoretical models

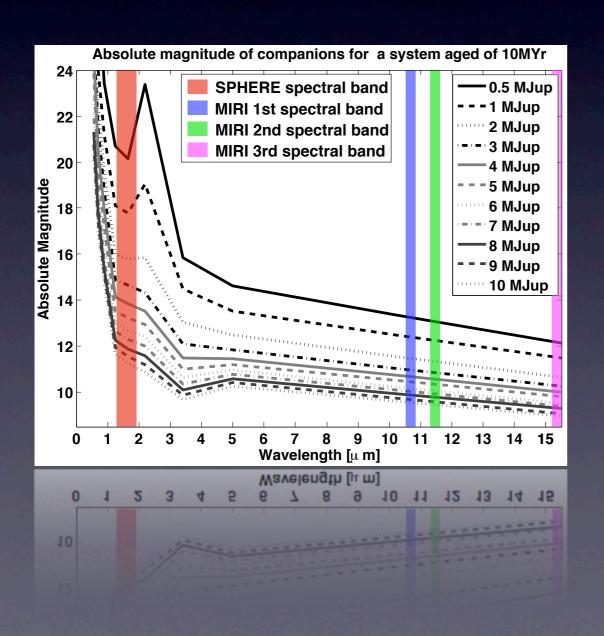
Illustrative result with MIRI

M0V,10pc, 12 Myr, 1h



Sample and sensitivity

					0.	2"	0.	0.5"		1.0"		2.0"	
Name	Dist (pc)	Age (Myr)	Sp type	V	a AU	M Mjup	a AU	M Mjup	a AU	M Mjup	a AU	M Mjup	
AU Mic	9.9	12	M1Ve	8.8	2	0.50	5	0.30	10	0.16	25	0.10	
TWA 8A	21.0	8	M3Ve	12.2	4	0.40	11	0.25	21	0.19	53	0.16	
TWA 8B	21.0	8	M5	15.2	4	0.33	11	0.23	21	0.18	53	0.17	
WW PsA	23.6	12	M4	12.2	5	0.50	12	0.30	24	0.21	59	0.20	
CD-57 1054	26.3	12	M0/1	10.0	5	0.80	13	0.50	26	0.25	66	0.23	
V1005 Ori	26.7	12	M0.5V	10.1	5	0.80	13	0.50	27	0.25	67	0.23	
TWA 12	32.0	8	M1Ve	12.9	6	0.80	16	0.45	32	0.26	80	0.25	
CPD-66 3080B	31.4	12	M3Ve	12.7	6	0.80	16	0.42	31	0.28	79	0.27	
TWA 7	38.0	8	M2Ve	11.7	8	0.90	19	0.52	38	0.30	95	0.28	
GJ 4020 A	24.0	50	M0	10.2	5	2.00	12	1.10	24	0.60	60	0.50	
GJ 9809	24.9	50	M0	10.9	5	2.00	12	1.10	25	0.60	62	0.50	
CT Tuc	37.5	30	M0Ve	11.5	7	1.70	19	0.95	37	0.55	94	0.50	


Comparison with NIRCam

MIRI better than NIRCam for planets <1.5" (~40AU)
Only MIRI can access planets <0.8" (~20AU)

Comparison with SPHERE

Most M stars too faint for SPHERE SPHERE more sensitive < 15AU

Name	Mov group	Dist (pc)	Age (Myr)	Sp Type	K _{mag}	N _{mag}	Mass (10AU)	Mass (20AU)
203	β Pic	39.1	12	F2 IV	5.4	5.12	9.5 / 4	0.75 / 2.5
2884	Tuc - Hor	41	30	B9 V	4.48	4.2	35 / 8	7.5 / 5.75
2885	Tuc - Hor	46	30	A2 V	4.11	4.13	45 / 11	30 / 5.5
3003	Tuc - Hor	47	30	A0 V	4.98	4.87	40 / 9	11 / 5.75
12894	Tuc - Hor	47.2	30	F2 V	5.45	5.23	25 / 8	8 / 6
14082	β Pic	39.4	12	F5 V	5.79	5.83	5.5 / 3.5	0.3 / 2
14228	Tuc - Hor	47.5	30	B8 V	4.13	3.8	65 / 11	22 / 7.5
16978	Tuc - Hor	47	30	B9 V	4.25	4.13	45 / 11	15 / 7.5
17332	AB Dor	32.6	50-70	G0+G5	5.52	5.43	9 / 7	0.45 / 5.5
25457	AB Dor	19.2	50-70	F5 V	4.18	4.24	0.5 / 5.5	0.39 / 6
29391	β Pic	29.8	12	F0 V	4.54	4.29	9.5 / 3.5	0.9 / 6.5
35850	β Pic	26.8	12	F7/8 V	4.93	5.08	3 / 3	0.15 / 2
98736	Castor	32	200	G5	6.03	6.47	3/ -	0.375 / -
146624	β Pic	43.1	12	A0 (V)	4.74	4.59	17 / 6	2 / 2.5
164249	β Pic	46.9	12	F5 V	5.91	5.83	10 / 4.5	3 / 2
165189	β Pic	43.9	12	A5 V	4.39	4.5	19 / 7	4 / 4
172167	Castor	7.75	200	A0 V	0.13	0.1	6/-	1 / -
172555	β Pic	29.2	12	A5 IV/V	4.3	4.27	9.5 / 3.5	0.3 / 2.5
181296	β Pic	47.7	12	A0 V	5.01	4.87	19 / 7	8.5 / 2.5
181327	β Pic	50.6	12	F5/6 V	5.91	5.84	13 / 5	5 / 2.5
195627	Tuc - Hor	27.6	30	F0 V	4.8	4.7	7.5 / 5	0.33 / 4.25
199143	β Pic	47.7	12	F8 V	5.81	5.99	12 / 5	2.5 / 2.5
207964	Tuc - Hor	46.5	30	F0 IV	4.9	4.8	35 / 7	3 / 4.25
210027	Castor	11.75	200	F5 V	2.56	2.85	3/-	0.5 / -
217343	AB Dor	32.1	50-70	G3 V	5.94	5.89	6 / 6	0.3 / 5
224392	Tuc - Hor	49	30	A1 V	4.82	4.77	50 / 9	6 / 4.25
GJ 226.2	Castor	25	200	K8 V	6.67	6.65	3/-	0.375 / -
GJ 466	Castor	39.87	200	M0 V	7.18	6.96	7.5/ -	1 / -
GJ 842.2	Castor	21	200	M0.5	6.73	6.86	0.45/ -	0.25 / -
			-					
GJ 842.2	Chator	21	200	M0.5	6.73	6.86	0.45/ -	0.25 / -
G.I. 466	Castor	39.87	200	M0 V	7.18	6.95	7.5/ -	1/-
GJ 226.2	Castor	25	200	K8 V	6.67	6.65		0.375 / -
								6 / 4.25