Extra-solar planet imaging: grouvs. space based coronagraphs

Charles Hanot¹, Olivier Absil¹, Anthony Boccaletti², Christophe Vérinaud³, Jean Surdej¹

¹ AEOS, ULg, Belgium
² LESIA, Paris, France
³ LAOG, Grenoble, France

In the spirit of Lyot, October 28 2010

Ground vs. space, not a fair comparison?

Direct imaging of high contrast objects:

- Huge contrast ratio:
 - Earth-like exoplanet: 10^7 ($10\mu m$) & 10^{10} (vis.)
- High angular resolution
- Small inner working angle
- High dynamic range
- Wavefront quality

Ground vs. space, not a fair comparison?

Before

Direct imaging of high contrast objects:
Huge contrast ratio: → SPACE
Earth-like exoplanet: 10⁷ (10µm) & 10¹⁰ (vis.)
High angular resolution → OK
Small inner working angle → OK
High dynamic range → SPACE
Wavefront quality → SPACE

Ground vs. space, not a fair comparison?

Today

• Direct imaging of high contrast objects:

- Huge contrast ratio: → OK
 ⇒Earth-like exoplanet: 10⁷ (10µm) & 10¹⁰ (vis.)
 - High angular resolution -> OK
 - Small inner working angle -> OK
 - High dynamic range → OK
 - Wavefront quality -> OK

Serabyn 2010

JWST/ MIRI

- Mid-InfraRed Instrument (5-27µm)
- FQPM Coronagraph. @ 11.4µm
- $\lambda/D \approx 0.36$ "
- FOV \approx 15"

VLT/SPHERE

- Extreme adaptive optics (XAO)
- FQPM Coronagraphs @ 1.6µm
- $\lambda/D \approx 40$ mas
- FOV ≈ 5.5 "

E-ELT/EPICS

- Vis-NIR imager and spectrograph
- Extreme adaptive optics (XAO)
- Coronagraphs (0.95-1.65µm)
- $\lambda/D \approx 8$ mas
- FOV ≈ 0.4 "

Performance comparison around young MS K-M stars

- Most abundant stellar type
- Planetary systems not well known
 - Planet formation/migration similar to Sun-like stars?
- Currently a hot topic
 - RV and transit surveys starting
- Prospects for super-Earths in habitable zones
 Low luminosity
 - For a given contrast, fainter planets can be imaged

Why young main sequence stars?

"Main sequence"

- Thick disks have disappeared
- Planetary systems mostly formed
- "Young"
 - Planets are still warm and luminous → easier
 Cooling models poorly constrained
 Moving groups and associations
 Nearby (typically 20 50 pc)
 Ages relatively well defined

Evolutionary models

Fortney et al. 2008

I.Age, distance and magnitude

M0V,10pc, 12 Myr, 1h

I.Age, distance and magnitude

2. Coro. profile \Rightarrow contrast

M0V,10pc, 12 Myr, 1h

I.Age, distance and magnitude

2. Coro. profile \Rightarrow contrast

$3. \Rightarrow$ Companion magnitude

I.Age, distance and magnitude

2. Coro. profile \Rightarrow contrast

$3. \Rightarrow$ Companion magnitude

4. Evol. model \Rightarrow mass

Simulations & assumptions

MIRIReference subtraction

MIRI

M0V,10pc, 12 Myr, 1h

Simulations & assumptions

MIRI

Reference subtraction

SPHERE

Reference subtraction
Ref subtraction + SDI

Simulations & assumptions

MIRIReference subtraction

SPHERE
Reference subtraction
Ref subtraction + SDI
EPICS
Ref subtraction + SDI + Pol.

Sample and sensitivity for MIRI

					0.2"		0.5″		1.0"		2.0"	
Name	Dist (pc)	Age (Myr)	Sp type	V	a AU	M Mjup	a AU	M Mjup	a AU	M Mjup	a AU	M Mjup
AU Mic	9.9	12	M1Ve	8.8	2	0.50	5	0.30	10	0.16	25	0.10
TWA 8A	21.0	8	M3Ve	12.2	4	0.40	11	0.25	21	0.19	53	0.16
TWA 8B	21.0	8	M5	15.2	4	0.33	11	0.23	21	0.18	53	0.17
WW PsA	23.6	12	M4	12.2	5	0.50	12	0.30	24	0.21	59	0.20
CD-57 1054	26.3	12	M0/1	10.0	5	0.80	13	0.50	26	0.25	66	0.23
V1005 Ori	26.7	12	M0.5V	10.1	5	0.80	13	0.50	27	0.25	67	0.23
TWA 12	32.0	8	M1Ve	12.9	6	0.80	16	0.45	32	0.26	80	0.25
CPD-66 3080B	31.4	12	M3Ve	12.7	6	0.80	16	0.42	31	0.28	79	0.27
TWA 7	38.0	8	M2Ve	11.7	8	0.90	19	0.52	38	0.30	95	0.28
GJ 4020 A	24.0	50	M0	10.2	5	2.00	12	1.10	24	0.60	60	0.50
GJ 9809	24.9	50	M0	10.9	5	2.00	12	1.10	25	0.60	62	0.50
CT Tuc	37.5	30	M0Ve	11.5	7	1.70	19	0.95	37	0.55	94	0.50

Comparison with NIRCam

MIRI better than NIRCam for planets <1.5" (~40AU) Only MIRI can access planets <0.8" (~20AU)

MIRI vs SPHERE

Most M stars too faint for SPHERE's AO SPHERE competitive with MIRI <0.5"

0.2"

MIRI vs SPHERE vs EPICS

2"

50

Most M stars too faint for EPICS's AO too EPICS always more sensitive EPICS FOV \approx MIRI IWA

0.2"

Ground-based L band coronagraphy?

Why?

- Strehl much better
- Background still OK
- IWFS => Fainter stars

Poster:

- O.Absil (NACO L + VVC) Talks:
 - C. Delacroix (VVC)
 - M. Kasper (NACO L)
 - S. Quanz (NACO)

Conclusions

Conclusions

- Today, ground-based facilities are competitive
- Dedicated space-based coronagraphs must focus on aspects that cannot be done from ground
 - Spectroscopy across the full IR
 - low-mass planets around faint M dwarfs
- Optimizing current facilities make sense (cf. L band)
- Exploiting advanced reduction methods !