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Préface

Cet ouvrage est né d'un ensemble de cours que nous avons donné a I’Ecole
Mohhamadia d’Ingénieurs & Rabat. Il n’est pas con¢gu comme une premiére
introduction & la mécanique des solides, mais comme une étude complémentaire
destinée & un public déja au courant des résultats classiques de la résistance des
matériaux. Nous continuons en effet de penser qu’une introduction inductive
& cette discipline permet, dans un premier temps, d’acquérir progressivement
une compréhension physique des principaux phénoménes de la mécanique des
solides. Le fait méme que cette approche est limitée incite alors & aller plus loin,
ce qui motive un seconde approche, plus déductive et plus fondamentale.

L’élasticité est une science déja ancienne et par conséquent, ses résultats
sont trés nombreux. Il est donc nécessaire, dans le cadre d’un cours, de faire des
choix. Notre but a été d’essayer d’allier un niveau théorique acceptable & un souci
d’applicabilité — nos lecons sont, destinées & des éléves ingénieurs mécaniciens.

Dans cet esprit, aprés un premier chapitre d’introduction mathématique,
nécessaire a la compréhension de la suite, nous abordons successivement la ci-
nématique des milieux déformables, le principe des travaux virtuels et ’étude
des corps hyperélastiques dans le cadre géométriquement non linéaire. Dans une
premiére lecture, on peut passer les sections relatives aux équations générales
de compatibilité, aux interprétations des contraintes de Kirchhoff-Trefftz, a la
stabilité locale et aux déformations avec variations de température.

Les équations de I’élasticité linéaire sont établies au chapitre 4. En ce qui
concerne la compatibilité, on peut, en premiére lecture, s’arréter aprés les équa-
tions de Beltrami-Michell.

Suivent trois chapitres d’application. Le premier traite de la torsion des
poutres prismatiques, un probléme ou les insuffisances de la résistance des ma-
tériaux sont criantes. A coté de solutions exactes classiques, nous y introduisons
des méthodes variationnelles conduisant immeédiatement & des solutions appro-
chées. Ceci prépare le lecteur a I’étude générale des principes variationnels, qui
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sera donnée plus loin. Les deux chapitres suivants forment un enchainement :
le probléme de Boussinesq est étudié parce qu’il sert de base au probléme de
Hertz ; ce dernier trouve de nombreuses applications en mécanique, notamment
en théorie des roulements. Sa résolution est compléte.

Nous exposons ensuite les principes variationnels, suivant la démarche de
Fraeijs de Veubeke. L’analyse duale, qui en est une conséquence, est développée
dans toute sa généralité, dans une approche qui nous est propre.

Le chapitre suivant est consacré a ’élasticité plane. Aprés I’établissement des
équations fondamentales et quelques exemples, nous développons la méthode de
résolution fondée sur 'utilisation de la variable complexe. Celle-ci est appliquée
aux problémes habituels, ainsi qu’a quelques problémes de concentration de
contrainte. Nous y avons ajouté une annexe relative aux disques d’épaisseur
variable en rotation, dans laquelle est présentée une méthode de conception des
roues de turbines originale et particuliérement simple.

Nous avons renoncé a développer la théorie rigoureuse des poutres de Barré
de Saint-Venant, qui est complexe et malheureusement, trés insuffisante pour
les besoins de la pratique, puisqu’elle suppose les efforts tranchants et la torsion
uniformes. Au lieu de cela, nous donnons ce que nous appelons une théorie
technique des poutres, fondée sur une approche variationnelle et incluant les
approches de Wagner pour la torsion non uniforme et de Vlassov pour les poutres
A parois minces ouvertes. Pour ces derniéres, nous présentons d’ailleurs une
étude de la torsion plus rigoureuse que ce dernier auteur. Le cas des caissons est
également envisagé, avec une approche de type éléments finis pour la recherche
du gauchissement et des champs de cisaillement de flexion.

La flexion des plaques est également étudiée dans un cadre variationnel.
Dans un premier temps, nous établissons la théorie de Reissner, puis nous envi-
sageons celle de Hencky et surtout, ’hypothése de Kirchhoff. Les résultats de ces
théories sont comparés et reliés entre eux. Nous présentons alors les méthodes
de résolution pour les rectangles (série double et série simple) et les plaques
circulaires.

Les théorémes énergétiques extérieurs (Castiglano, Menabrea, Clapeyron,
Betti, Maxwell) sont souvent présentés d’une maniére formelle et quelque peu
naive faisant appel & des forces concentrées dont on sait bien, pourtant, qu’elles
ménent & une énergie infinie en dehors de quelques cas particuliers. Rompant
avec cette tradition, nous les présentons comme des applications particuliéres
des principes variationnels, ce qui méne & un exposé précis et rigoureux. C’est
du reste 'occasion d’introduire le degré d’hyperstaticité.

Nous avons tenu & présenter la théorie des diagrammes d’influence, auxquels
nous continuons d’accorder un intérét pratique et pédagogique trés grand.
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Le dernier chapitre est consacré a la stabilité élastique. Outre la théorie
générale de la stabilité, nous y traitons un certain nombre de cas de bifurcation
courants, flambage, voilement des plaques, déversement de poutres fléchies.

Enfin, nous avons consacré une annexe a I’écriture des équations de 1’élasti-
cité en coordonnées curvilignes.

De nombreux exercices sont inclus. Parmi ceux-ci, certains sont de simples
applications, mais d’autres constituent des variantes de la théorie, des com-
pléments & celle-ci ou des théories approchées utiles que nous n’avons pas cru
bon d’inclure au texte principal, pour ne pas alourdir celui-ci. Beaucoup sont
entiérement résolus.

A la fin de la rédaction de cet ouvrage, nous avons une pensée particuliére
pour nos anciens étudiants de Rabat qui, par leur exigence et leur soif de savoir,
nous ont conduit & un réel approfondissement de ces matiéres. Qu'’ils en soient
remerciés.
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Chapitre 1

Préliminaires mathématiques

1.1 Préambule

Il est utile d’introduire des notations rendant 1’établissement des équations
aussi simple que possible. Cet ouvrage fait usage des notations indicielles. Bien
qu’un peu déroutantes au premier abord, ces notations présentent le double
avantage d’étre concises et d’abolir la nécessité de retenir un grand nombre
de formules du calcul vectoriel. Nous engageons donc le lecteur & consacrer sa
meilleure attention & ce chapitre introductif et & ne le quitter qu’aprés s’étre
assuré qu’il le domine parfaitement, car de 14 dépend la compréhension des
chapitres qui suivent.

1.2 Vecteurs

Etant donné une base orthonormée (e, es, e3) de I’espace physique, on peut
décomposer tout vecteur u dans cette base, ce qui introduit les composantes u;

de ce vecteur :
3
i=1

Le vecteur est totalement déterminé par ses composantes et inversement, de
méme qu’une fonction est déterminée par ses valeurs. D’ailleurs, on peut consi-
dérer le vecteur u comme une fonction de la variable i pouvant prendre les
valeurs 1, 2 et 3, fonction, disions-nous, qui a chaque valeur de i associe les
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composantes u;, comme 'illustre la figure 1.1 . Lorsque ’on manipule des fonc-

I 2 3

' >R
U u, u,

F1GURE 1.1 — Un vecteur considéré comme fonction de i=1,2,3

tions, il est courant de décrire les opérations sur les valeurs et non pas sur les
fonctions elles-mémes. On écrira par exemple

f(z) = sin2z + cos? z 4 arctg x

notation dans laquelle on exprime les opérations & effectuer pour un x donné.
Personne n’écrira

f=9+h+!
avec
g : xv+>sin2zx
h : x> cos’x
{ : x> arctgzr

tout simplement parce que cette notation est trop lourde.
En revanche, on trouve souvent tout normal d’écrire

graddiv u — rotrot u=f

1. Bourbaki [5] s’est servi de ce point de vue pour définir les produits d’ensembles
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quitte & expliciter séparément les opérations — souvent longues — menant au
calcul effectif des composantes! Ce faisant, on court encore le risque de ne pas
s’apercevoir que cette équation équivaut a

Au="f

et peut étre traitée par les méthodes propres aux problémes harmoniques.

La notation indicielle est au calcul vectoriel ce que la notation f(x) est au
calcul des fonctions : I’écriture la plus élémentaire. En voici les régles. Elles sont
simples et ne nécessitent aucun effort de mémoire particulier.

Un vecteur est donc représenté par une composante générique : le vecteur u
se note u;. C’est précisément la présence de I'indice qui nous permettra de voir
qu’il s’agit d’un vecteur : un scalaire ne posséde pas d’indice.

La somme de deux vecteurs u; et v; s’obtient en sommant les composantes.
On 'écrira donc tout naturellement

et en général, une combinaison linéaire de deux vecteurs s’écrira
Au; + po; (1.3)

Une autre opération courante entre deux vecteurs est leur produit scalaire.
On sait que ce produit vaut

3
u-v= E U;V;
=1

On aurait donc pu décider de noter le produit scalaire sous cette forme. Néan-
moins, le signe Z?:1 alourdit considérablement l’écriture de la formule et, &
vrai dire, on peut s’en passer moyennant une convention de notation introduite
par Einstein, qui consiste a dire que chaque fois qu’un indice est répété dans
un mondme, celui-ci représente en fait la somme des trois termes obtenus en
donnant successivement a cet indice les valeurs 1, 2 et 3. En conséquence, nous
écrirons

u-v=uv; (1.4)

L’indice i de cette expression, qui a pris toutes les valeurs possibles, disparait
du résultat, qui est un scalaire. On dit que c’est un indice muet.
L’avantage de ces notations apparait déja lorsque ’on considére la relation

a-(b+c)=a-b+a-c
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qui, en calcul vectoriel classique, demande & étre démontrée et retenue, alors
que nous ’écrirons sous la forme évidente

ai(bi + ¢;) = aib; + aic; (1.5)

1.3 Tenseurs

Une grandeur b;; & deux indices qui, appliquée & un vecteur c;, donne un
autre vecteur a; selon la loi

a; = bijcj (16)

est un tenseur du second ordre. Un vecteur est encore appelé tenseur du premier
ordre et un scalaire, tenseur d’ordre 0. Plus généralement, et par récurrence,
une grandeur b;, _,;,..;, & (k+¢) indices qui, appliquée & un tenseur d’ordre ¢,
Cj,...4.» donne un tenseur d’ordre k, a;,. 4, selon la loi

@iy iy = Yiy.igga . jeCin e (1.7)

est un tenseur d’ordre (k + /).
Le plus simple des tenseurs du second ordre est le tenseur de Kronecker,
défini par

_J 1sii=y
6”_{ Osii#j (1.8)

C’est, bien un tenseur, car il applique un vecteur a; sur lui-méme :
a; = 5ijaj (19)

Nous utiliserons également un tenseur du troisiéme ordre e;;i, appelé alter-
nateur, et défini par

+1  si (4,4, k) est une permutation paire de (1,2, 3)
eijk =<4 —1 si(4,7,k) est une permutation impaire de (1,2, 3) (1.10)
0 si (4,7, k) n’est pas une permutation de (1,2, 3)

Ce tenseur permet d’exprimer le produit vectoriel a; de deux vecteurs b; et cy
par

a; = ejjpbjcy (1.11)
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comme on le vérifie aisément ?. Pour ¢ = 2, par exemple, e;;;; ne différera de zéro
que si le triplet (i, j, k) vaut (2,3, 1) (permutation paire) ou (2, 1, 3) (permutation
impaire), ce qui donne

az = ea31bzcy + ea13b1c3 = bzey — bics

et I’on retrouve bien la deuxiéme composante du produit vectoriel.
La plupart des manipulations concernant ’alternateur reposent sur la for-
mule fondamentale
€ijkCitm = 0;10km — 0jm Okl (1.12)
Tout d’abord, cette formule est évidente si j = k ou [ = m. Il reste donc &
examiner le cas j # k, [ # m. On remarque pour commencer que

di1 Oz Oi3
€ijk = det 5]' 5j (5j (1.13)
Or1 Or2 O3
ce qui entraine
i1 Oi2 043 di1 01 Oma

3 1)
€ijkCilm = Zdet 5j1 5]' 5j 61‘2 6[2 6m2
i=1 Ok1 Or2 O3 0i3 013 Om3

3 1 0ii Oim
= Z det, (5]‘ i 5j 5j
i=1 Ski Okl Okm

De ces déterminants, un seul peut ne pas étre nul, celui pour lequel i, j et k
sont tous différents. Ce déterminant s’écrit

1 da  dim
det | O (Sjl (5j = jl(;km — 5jm5kl
0 kit Okm

comme annonceé.

L’égalité (1.12) meéne simplement & des relations qui, en calcul vectoriel clas-
sique, n’ont aucun caractére d’évidence. Calculons par exemple la valeur du
double produit vectoriel

d=(axb)xc

2. En toute rigueur, ’alternateur est un pseudo-tenseur, car le produit vectoriel est un
pseudo-vecteur, changeant de sens lors du passage d’un systéme d’axes droitier & un systéme
d’axes gaucher.
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d; = eijk(a X b)jck = eijk(eﬂmalbm)ck
Une permutation paire donne e;;;, = e, d’olt
di = €;ki€jima1bmCr = (0k10im — Okmdir)rbmcr
soit
d; = aibic; — a;bicy

ce qui équivaut & la formule classique

d=b(a-c)—a(b-c)

1.4 Transformations d’axes

Etant donné une base orthonormée {e;}, comment passer & une autre base
orthonormée {E;} ? Le principe est évidemment que les vecteurs doivent rester
le mémes, ce qui s’écrit

Chaque vecteur de la base {e;} peut étre décomposé dans 'autre base, sous
la forme
ei = T/ (1.15)

La matrice de transformation T2 posséde d’ailleurs quelques propriétés liées a
I'orthonormalité des deux bases : on a en effet

Oij = €; - € = Ty T By, - By = T3 T (1.16)

ce qui signifie qu’il s’agit d’une matrice orthonormale. On sait que le déterminant
d’une telle matrice vaut +£1. Dans le cas ou il est positif, la transformation est
dite de signe positif et elle conserve le caractére droitier ou gaucher du systéme
d’axes. Dans le cas contraire, on dit que le transformation est de signe négatif
et elle inverse le caractére gaucher ou droitier du systéme d’axes.

La transformation inverse est

Ei = Tjiej (117)
Revenant au vecteur u, on aura donc

u=1u;e; = UjEj = UjTijei

3. Ce n’est pas un tenseur!
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soit
U; = TijUj (1.18)

Réciproquement,

Telle est donc la loi de transformation d’un vecteur. Examinons & présent
le cas d’un tenseur du second ordre. Nous avons défini celui-ci par le fait qu’il
transforme un vecteur en un autre selon la loi

bz‘ = G4;Cy
On en déduit successivement

bi = a;;T50:C

et
By, = Tikb; = TixTjea:;C
soit
A = Ty Tiiai; (1.20)
et, réciproquement,
aij = T Tj1Ap (1.21)

Plus généralement, on tenseur d’ordre n se transforme suivant la loi

LT

Intn

A

Jrevsin (1.22)

Qiy..iyy = leil .

1.5 Opérateurs de dérivation

Toujours par souci de concision, nous noterons D; la dérivée partielle 9/0z;
par rapport a la ¢ variable. Ainsi, le gradient d’un scalaire ¢ sera le vecteur de
composantes

Dip (1.23)

C’est bien un vecteur, car la différentielle de ¢, qui est un scalaire, s’écrit
dy = Dypdx;

oul dz; est un vecteur.
La divergence d’un vecteur u; admettra la représentation simple

divu = Dju; (1.24)
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et en rassemblant ces deux formules, on obtient le laplacien :
divgrady = D0 = Ap (1.25)

ol 'on a noté D“ pour Dle
Le rotationnel se construit & la maniére du produit vectoriel : si u; est un
vecteur, son rotationnel w; est donné par

wi = €ijpDjug (1.26)

Ici encore, on obtient trés aisément des formules utiles. Ainsi, le rotationnel
du rotationnel est donné par
(rot rot u); = e;jDj(errsDrug)
(5ir6js - 5i86jr)Dj'rus
= Dijuj — Djju;
ce qui équivaut a
rot rot u = grad divu— Au (1.27)

résultat que nous obtenons avec la plus grande aisance.

1.6 Théoréme de Gauss-Ostrogradsky

Considérons un champ de tenseurs F', dont nous omettons ici les indices
éventuels, car ils ne jouent aucun role dans ce qui suit. Si V' est un volume
suffisamment régulier de surface S, et si n; est le vecteur normal a cette surface,
on a la formule générale

/ D;FdV = / n;FdS (1.28)
1% S

11 suffit évidemment de démontrer cette proposition pour une valeur quelconque
de 4, soit ¢ = 1. On découpe le corps en prismes élémentaires, limités pour les
grandes valeurs de 7 par une surface dS; et, de I'autre co6té, par une surface
dS_ (voir figure 1.2). Ces prismes ont chacun une surface projetée sur le plan
(Oxa, Ox3) égale a dSy, d’on

T14
/ DleV = / dSo/ Dlel'l
1% So T1—

- /SO(F+ — F)ds
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>

FIGURE 1.2 — Théoréme de Gauss-Ostrogradsky

Sp étant la projection de S; et S_, on a, en tenant compte des orientations

relatives,
dSO = TLYdSJr = —nde,

ce qui entraine

/ (F+ 7F7)d50 :/ F+7’Li~_dS+ +/ Fi’lll_dsi
So Sy S

soit finalement, comme S = S; U S_ U S,, ou S, est 'éventuelle partie de la
surface ou n; = 0, partie dont la contribution est de toute fagon nulle, on a bien

/DleV:/andS
v s

Voici quelques applications de ce théoréme :
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Théoréme de la divergence

% s
/divude/u~ndS
1% S

Théoréme du gradient

soit

/Dde:/nigodS
v s

/gradcpdV:/gondS
v 5

Théoréme du rotationnel

soit

/eijijude:/eijknjude
\%4 S

/rotudV:/nxudS
1% s

Formule d’intégration par parties Il convient encore de noter la formule
suivante, dite d’intégration par parties : si F et G sont deux tenseurs, on a

soit

/ FDlGdVZ / FnZGdS—/ GDleV (1.29)
1% s 1%
résultat qui se déduit aisément du fait que

/ niFGdS = / Dy(FG)dV = / FD,GdV + / GD;FdV
S 14 14 |4
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1.7 Eléments propres des tenseurs symétriques

1.7.1 Eléments propres

Un tenseur du second ordre a;; est dit symétrique si I’on a toujours
Qij = aji , L7 ]

Les composantes de ce tenseur peuvent étre représentées dans le tableau

a1 a2 ais
a2z Q23 (1.30)
SYM ass

qui montre & I’évidence que seules , six d’entre elles sont indépendantes.
Par application de ce tenseur sur un vecteur b;, on obtient en général un
autre vecteur
Cj = aijbj

qui différe du vecteur de départ & la fois par sa norme et par son orientation.
Mais ne peut-on trouver des vecteurs b; particuliers dont 'image ne différe que
par la norme et, éventuellement, le sens, comme l'illustre la figure 1.3. Il s’agit

rmpropre propre

FI1GURE 1.3 — Vecteurs propres et impropres

d’obtenir la relation
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ou encore,

(aij — Adiz)bj =0

Matriciellement, cela revient a chercher les éléments propres de la matrice (1.30).
On sait qu’une matrice symétrique & n dimensions posséde exactement n vec-
teurs propres orthogonaux entre eux. Soient donc

b p2 | p3)

les trois vecteurs propres orthonormés, correspondant aux trois valeurs propres
AL X et X3, Les trois vecteurs en question sont appelés directions princi-
pales du tenseur, et les valeurs propres, valeurs principales.

1.7.2 Développement spectral du tenseur

I est équivalent de donner les composantes du tenseur symétrique a;; ou de
donner ses valeurs et directions principales®, comme ’atteste la formule

3
ai; = > AP (1.32)
k=1

Pour démontrer cette formule, remarquons d’abord que tout vecteur ¢; admet

la décomposition
E)N g (k
¢ = Z(czbé ))b; )
k

On a donc

QAj5Cj = Z aijbg»k)bgk)C[

k
S AR e,
k

4. On pourrait croire que le nombre de paramétres est différent. En fait, il n’en est rien.
Pour définir la premiére direction principale, il faut deux angles; pour la seconde, il n’en faut
plus qu’un, car elle est orthogonale a la premiére, et la troisiéme direction principale se déduit
directement par orthogonalité aux deux premiéres. Il faut donc les trois valeurs propres et les
trois parameétres définissant la base, ce qui fait bien 6 paramétres en tout.
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1.7.3 Caractére d’invariance des éléments propres

Lors d’une transformation de coordonnées, que devient 1’équation (1.31)?
Multipliant cette équation par T;, on obtient

Tiraijb; = NIipb; = By

soit encore
Tirai;TjeBe = ABy,

ce qui équivaut a
ApyBy = A\By, (1.33)

Dés lors, les valeurs principales sont indépendantes du systéme d’axes choisi.
On dit qu’elles sont invariantes. L’équation caractéristique scalaire

aip — A a2 a3
as1 agz — A azz | =0
asy ass ass — A

a la forme générale
N A ON —DLA+13=0

avec
Il = ai1 + ag2 + ass (trace)
1
I2 = 5(01“'(1]']' - aijaij) (134)
13 = det(aij)

Ses racines étant AV, A2 et A\ elle ne peut que s’écrire
AL —N)A® A -\ =0

ce qui entraine

L = MDD A@ 4G
I = XOXD L a@NE L A@X\O (1.35)
I = AD)\®)\G) (1.36)

Il en découle que ces trois grandeurs sont également invariantes, ce qui justifie
qu’on les nomme les trois invariants d’un tenseur symétrique.
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1.7.4 Décomposition d’un tenseur symétrique en un ten-
seur isotrope et un déviateur

Le tenseur symétrique ¢;; admet n’importe quel vecteur comme vecteur

propre, avec la valeur propre 1. En conséquence, si a;; est un tenseur symé-
) 5@ 3
?

()

trique de directions principales bgl et de valeurs principales A1), \(?),
AB3) on aura
(ai; — ad;)b} = (A®) — )b (1.37)

J

Le second invariant du tenseur du premier membre vaudra donc

Lo = A =)@ —a)+ (0@ —a)(A® —a) + 0@ —a)(AV — )
= I, —2al +3a?

et admet, pour a = 11 /3, un minimum égal &

N [12
Iy =15 — 3 (1.38)

Le tenseur ainsi obtenu s’appelle déviateur de a;; et on le note a;; :
R 1
Qi = Q5 — gaaéi]‘ (139)

Son premier invariant est nul :
A 1
I =ai; — gaéééii =0

et son second invariant prend la forme

1. . L
IQ = §(aiiajj — aijaij) = —Eaijaij (140)

Il est donc toujours négatif et sa nullité entraine celle du déviateur tout entier,
dont (—1I5) constitue une norme.

On en déduit par ailleurs qu’'un tenseur symétrique dont les deux premiers
invariants sont nuls est nul. En effet,

I
Qij = Qij + o

3%

et par la formule (1.38), I est nul.
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1.8 Structure des tenseurs antisymétriques du se-
cond ordre

Un tenseur w;; est antisymétrique si
Wij = —Wjj (1.41)
En particulier, ses termes diagonaux sont nuls. Introduisant le (pseudo-) vecteur

1
Wk = 5 €kijWij (1.42)

on obtient alors
1

CpgkWk = 5 CEpqkClijWij

2
1
= 5 (0pidj = Gpjdqi)wij
1
= 5( pa — Wap)
= Wpq
ce qui illustre la correspondance biunivoque entre le tenseur w;; et le vecteur
wg. L’expression
Wij = €ijkWk (1.43)

est la forme canonique des tenseurs antisymétriques du second ordre.

1.9 Exercices
Exercice 1 Calculer Uexpression (a x b) - (¢ x d)
Solution - Le résultat f; est donné par

fi = eyrajbreirscrds
= (5jr6ks - 6j35kr)ajbkcrds
ajcjbkdk — ajdjbkck

ce qui revient & dire que

(axb)-(exd)=(a-c)(b-d)—(a-d)(b-c)
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Exercice 2 Montrer que si a;; est un tenseur symétrique, on a e;jra;r = 0. En
déduire que divrot u = 0.

Solution - On a en effet, en changeant le nom des indices muets,

§(eijkajk + €ikjar;)

et, en vertu de la symétrie de a;;, le second membre s’écrit encore

CijkGjk =

1
i(eijk + eikj)ajk =0

car € = —€ikj-
La seconde assertion résulte du fait que

divrot u = Di(eijijuk) = eiirDijur
avec Dij = D]z
Exercice 3 Montrer que rot grady =0

Exercice 4 Démontrer la formule de Green

/ngdV—/gAde:/f@dS—/ggdS’
% Vv S 311 S 871

Exercice 5 x A partir de la formule de Gauss-Ostrogradsky, démontrer la for-

mule de Stokes-Ampere
/rotu-ndS:/u-tds
s c

t étant la tangente au contour C de la surface, orientée suivant la régle du
tire-bouchon autour de la mormale. La surface S sera supposée projetable sans
recouvrement sur un plan.

Solution - Soit V le volume du cylindre limité par la surface S et sa projection
So, et soit Sy sa surface latérale (fig. 1.4). Pour un vecteur v; quelconque, on a
alors

0 = / eijkDijvde
\%4

= /Sn,'eijijvde—F/S nieijijvk.dS—F/ nieijijvde
0

Se
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FIGURE 1.4 — Stokes-Ampére

Etant donné un vecteur u; sur la surface S de hauteur h(z,v), nous choisissons
arbitrairement 1’interpolation

vi(w,y,2) = m“i(%y)

Dés lors, la contribution sur Sy est nulle. Sur la surface latérale, I'intégrand
vaut, dans le systéme d’axes (53, z,n),
z

z
(Dgv, — Dyvg) = 7 (Dsuz — Dzug) — o5

1
uzDgh — Euﬁ

d’ot, en notant Cy la projection de C sur le plan de base,

oz z ug
/ (Dgu, — Dyug)dS = / dﬁ/ [ Dpu, — s5u.Dgh — —=]dz
S, Co o h h h

1
/ [EDBUZ — *uzDBh — Uﬂ]dﬁ
o 2 2

h
Dg(fuz)dﬁ— (ua —|—uZD5h)dﬁ
Co 2 CO

= —/ (Uﬁ—I-uzDgh)dﬁ

Co

Or, sur C, on a (fig. 1.5)
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gz Deh df
dp

FIGURE 1.5 — Tangente & C

ds = bﬁeg + D@hdﬁez

si bien que cette intégrale de contour n’est autre que

- / u-ds
c
Au total, on obtient bien

/rotu'nde/u~ds:O
s c

Exercice 6 Montrer les relations
1. [gxn;dS = (mesV)d;;
2. [¢nidS =0
3. [seijrnjzrdS =0

ou S est la surface frontiére d’un volume V.



Chapitre 2

Cinématique des corps
continus déformables

2.1 Description du mouvement

Considérons un corps continu occupant, dans un état de référence arbitraire,
un volume V. Un point quelconque de ce corps peut étre repéré, dans cet état
de référence, par ses coordonnées x; dans un repére cartésien.

Imaginons que ce corps se déforme en fonction d’un paramétre d’évolution
t, qui pourra étre le temps (bien que cette identification ne soit pas nécessaire
en statique). Il prendra donc, a I’instant ¢, une autre configuration, occupant un
volume V' (¢). Un point situé en x; dans la configuration de référence, prendra
alors une nouvelle position, de coordonnées §; dans le méme repére cartésien
(fig-2.1). On appelle déplacement de ce point le vecteur

Il est clair que I'on peut considérer ce déplacement aussi bien comme une fonc-
tion des coordonnées de départ x; que comme une fonction des coordonnées
d’arrivée ;. Les premiéres sont appelées coordonnées matérielles pour la rai-
son que définir un corps dans une configuration de référence, convenue une fois
pour toutes, revient en quelque sorte & « donner un nom »& chaque particule.
Dr’ailleurs, en supposant que l'on ait pu graver un réseau de coordonnées sur
le corps dans cette position, ce réseau se retrouvera, déformé bien sir, dans la
position au temps ¢, ou il définira un systéme de coordonnées curvilignes que

19
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Y

FI1GURE 2.1 — Déplacement

I’on appelle les coordonnées convectées. Ces coordonnées ont, toujours, pour un
point matériel donné, la méme valeur que les coordonnées matérielles (fig. 2.2).

pad ™
/ A |
A U; ==
A A [T 1T £ o g/,"
= 7
/ y
=

FIGURE 2.2 — Coordonnées convectées

Utiliser les coordonnées matérielles pour décrire le déplacement, c’est donc
parler du déplacement du point qui, en ¢ = 0, occupait la position z; : il s’agit
d’une description lagrangienne.

A Tinverse, les coordonnées &; donnent la position spatiale du corps au temps
t, ce qui leur vaut le nom de coordonnées spatiales. Décrire le mouvement a
I’aide des coordonnées spatiales, c’est donc parler du déplacement du point qui,
a 'instant ¢, occupe la position &; : il s’agit d’'une description eulérienne.

2.2 Choix de la description

En mécanique des fluides, la plupart des problémes consistent & étudier des
écoulements perpétuels, bien qu’éventuellement variables, et on s’intéresse gé-
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néralement aux champs de vitesses et de pressions dans une portion détermi-
née de 'espace, sans se soucier des positions préalables des particules. Dans
ces circonstances, la description eulérienne s’impose. Seuls, quelques problémes
d’oscillations admettent une formulation lagrangienne plus élégante [14].

Au contraire, en calcul des structures, les corps considérés sont fréquemment
anisotropes ou méme inhomogeénes et, presque toujours, de forme compliquée.
La seule configuration ou les directions d’anisotropie, les frontiéres de matériaux
différents et, plus simplement, la forme des corps, sont connues, est la position
de référence. C’est pourquoi la description lagrangienne est de régle dans le cal-
cul des structures, et nous l’adopterons toujours dans ce qui suit. Remarquons
qu’en conséquence, les volumes et les surfaces considérés dans les diverses inté-
grations sont toujours des volumes et des surfaces de référence, indépendantes
des déplacements.

2.3 Tenseur des déformations de Green

Nous dirons qu’un corps se déforme si la distance entre deux au moins de
ses points varie. Comment mesurer cette déformation ? Comme la distance est
une notion cumulative le long d’un segment de droite, il suffit en fait de mesurer
la variation de distance dans le voisinage de chaque point. Soit donc P(x;) un
point quelconque du corps, et Q(x; + dz;) un point voisin. La déformation les
ameéne respectivement en P’(&;) et Q'(&; + d€), avec (fig.2.3)

Q(X[" dXz)

utddi ,Qlz+dz.)

P(E)
FIGURE 2.3 — Définition de la déformation

& = Tty
&+ds = (x4 dx) + (i + duy)
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Dans la configuration de référence, la distance entre ces deux points est donnée
par

ds® = dx;dx;
La déformation transforme cette distance en

ds'? = d&;dé; = (dx; + dug) (dx; + duyg)

Exprimant du; comme la différentielle du déplacement :

dui = Djuid:cj
on obtient

ds”? = (dz;+ Djudz;)(dz; + Dyu;dzy)
= ((Sij + Djui)dl‘j((sik + Dkul)dxk
= (5jk + Djuk + Dk’LLj + Djukaui)dxjdwk

Pour savoir si cette distance différe de la distance de référence, il suffit d’en faire
la différence. L’usage veut que ’on en calcule plutot la demi-différence :

1 1
i(dS/Q —ds®) = i(Djuk + Dyuj + Dju;Dyu;)dajday, = vipdridr,  (2.2)

ou apparait le tenseur symétrique
1
Yik = i(Djuk + Dyuj + Dju; Dyu,) (2.3)

appelé tenseur des déformations de Green. fait remarquable, & partir des six
composantes indépendantes de ce tenseur en un point, il est possible de calculer
la variation des longueurs infinitésimales dans toutes les directions autour du
point considéré : il suffit en effet, & partir du vecteur dx;, de calculer v;,dz;dzy,.

* Remarque La description ci-dessus considére que la déformation se mesure
uniquement par des variations de longueur. En se rappelant la structure micro-
scopique de la matiére, on congoit sans peine que l’orientation relative de deux
particules voisines puisse jouer un role, menant & des configurations physique-
ment différentes, bien que v;; = 0 partout (fig.2.4). (Ce serait le cas & cause
d’effets magnétiques, par exemple). Dans ce cas, il faudrait encore pouvoir me-
surer les variations d’orientation. De tels effets sont ignorés dans le cadre de
la théorie classique des milieux continus. Il existe cependant des théories dites
asymétriques ou des effets de ce genre sont pris en compte a 'aide de couples
de contrainte (stress couples) [58, 10].
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Etat]

Ftat?

FIGURE 2.4 — Effet de l'orientation des particules

2.4 Interprétation du tenseur de Green

Pour interpréter les composantes du tenseur des déformations, il est utile de
faire appel aux coordonnées convectées. La base (e;,7 = 1,2, 3) des coordonnée
matérielles vérifie évidemment la relation

Son image aprés déformation est donnée par les vecteurs
g = D;P’ (2.5)

formant la base (covariante) locale des coordonnées convectées. Insistons sur le
fait qu’en chaque point, la base (g;) peut avoir une orientation différente et que
le plus souvent, |g;| # 1.

La distance entre deux points voisins P et P + dP est donnée, dans la
configuration de référence par

ds* = dP - dP = dx;dx;
Dans la configuration déformée, on a

si bien que
ds? = dP’ - dP’ = g;du; - gjdx; = g;jdr;dz; (2.6)
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ou s’introduit le tenseur métrique de la configuration déformée
9ij = 8i " 8 (2.7)

qui est visiblement symétrique. La comparaison des équations (2.6) et (2.2)

donne visiblement .

Yij = g(gij — i) (2.8)

Examinons d’abord une composante diagonale de ;;, 11 pour fixer les idées.
Le vecteur e; prend, au cours de la déformation, une longueur

g1l =ledl(14)=1+2 (2.9)

€ étant son allongement proportionnel, au sens de la résistance des matériaux.
On a
_ 2 _ 2
g1 =|gi1"=14+2+¢
d’ou
1 1 2

€
71125(911—511)25(1‘1'254-52—1):5"'5 (2.10)

Lorsque ’allongement proportionnel est petit, il vient simplement
Y11 R E (2.11)

Pourquoi, se demandera-t-on, n’avoir pas essayé de généraliser les allonge-
ments proportionnels de 'ingénieur, plutoét que d’introduire une autre mesure
de déformation ? La réponse est qu'une telle approche, bien que possible, méne
4 un tenseur n’ayant pas de forme analytique simple avec les déplacements (dé-
formation de Jaumann, [34, 36]. (Voir aussi exercice 10).

L’interprétation des termes croisés est aussi simple. Nous examinerons le
terme ;2. Dans la configuration de référence, les vecteurs de base e; et e, sont
orthogonaux,

€] ey = 0

Dans la configuration déformée, les vecteurs g1 et go vérifient, en vertu de (2.8)

181l = V142711, |82] = V14272

et
g1-82 =€ e+ 2712 = 2712
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Le cosinus de I’angle 015 entre g; et et go est donc donné par

: 2
cos b2 = 81 82 _ 12 (2.12)

lgillga] VI F 2711v/T + 2722

Pour de petites déformations, on a

cos 10 = Sin(g —012) = g — 01
et
\/m ~1, \/m ~ 1
si bien que
g — 019 = 2719 (2.13)

ce qui signifie que les termes croisés du tenseur de Green mesurent la variation
des angles droits.

2.5 Equations de compatibilité

Nous avons vu comment calculer le tenseur des déformations a partir des
déplacements. Posons-nous a présent le probléme inverse [81, 53] : on donne
en chaque point le tenseur de Green +;; ou, ce qui est équivalent, la métrique
déformée g;;, et on désire retrouver les coordonnées &; ou les déplacements u;.
Ce probléme admet-il une solution ? Si oui, est-elle unique ?

Nous ne discuterons ici que le cas de corps simplement connexes. Supposons
connue la position P’ d’un point matériel P. Pour en déduire la position de ses
voisins, il faut intégrer les équations

DiP' =g;

Mais les g; eux-mémes ne sont pas encore connus, et il faudra aussi que nous
les intégrions. Sur ce point, notons d’abord la condition d’intégrabilité

Dig]‘ = DijPI = ngi (214)

Comme préliminaire & l'intégration de la base {g;}, remarquons que le ten-
seur métrique g;; admet toujours un inverse g*/ défini par la relation

gzmgmj = 5;
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car la matrice {g;; } est définie positive. On peut, a partir de cette inverse, définir
une seconde base

USSR Y P
g =9°8;
qui vérifie visiblement
i i ik _ ik, i
g8 =9"gr 8 =9 gkj = 9;
Pour distinguer les deux bases, on appelle {g;} base covariante et {g'} base
contravariante. Selon la base choisie, on écrira
_ i RS
a=ag; oua=a;g
distinguant soigneusement les composantes contravariantes (indice supérieur)
des composantes covariantes (indice inférieur). Ceci étant, si 'on pose
a=ag'
on a
i i
a-g; =ae;g -8gj :aiéj = aj;
et, de méme,
a-g'=ad
Nous pouvons a présent examiner I'intégration de la base covariante {g;}.

Si cette base est connue en un point, il faut intégrer & partir de ce point les
équations

Digi = (Dig; - )8’ = Tijig’ (2.15)
ou les I'yj;, dits symboles de Christoffel, doivent vérifier, en vertu de (2.14)
Ukij = Digi - 8 = Digr - 85 = Liji (2.16)

c’est-a-dire étre symétrique par rapport a leurs indices extrémes. Nous allons
montrer que ces symboles peuvent étre déduits du tenseur des déformations. On
a en effet

Dygij = Di(gi - 8j) = Drgi - 85 + 8i - Digj = T'kji + Tiji (2.17)

(lemme de Ricci). Ecrivant cette relation en permutant les indices, on obtient
les trois relations

Dygij = Thij +Tiji
Djgri = Tjki+Ljik
Digjr = Tijk+TLir;
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dont on tire, en vertu de (2.16)
1
Prij = 5(Drgij + Djigri — Digjn) (2.18)
De plus, comme
Digij = Di(6ij + 27ij) = 2Dri;
on obtient
Tij = Divij + Dyve: — Divje (2.19)

Cette relation permet de calculer, & partir des déformations, les symboles de
Christoffel dont on a besoin pour intégrer la base covariante a partir des équa-
tions (2.15). Il reste encore a se poser la question de la compatibilité de ces
équations, qui ne sera réalisée que si les dérivées croisées sont égales, ce qui
s’écrit

Dp(Dqgi) = Dg(Dpgi) (2:20)

Calculons donc
Dp(Dygi) = Dp(Tyjig’) = &’ Dplyji + Tgjs Dy’
Pour obtenir les dérivées de la base contravariante (g7), notons que
0= Dy, = Dy(&’ - 8n) = &m - Dpg’ + & - Dygnm

ce qui entraine

m

Dyg’ = (gm-Dpg’)g
—(g’ - Dpg™)g™

= —¢"" (g Dpgm)g™
= _gjerpémgm

et
Dy(Dqygi) = 8™ (DpLgmi — gﬂrpemrqji)
La condition de compatibilité s’écrit donc

Rmipq = Dprqmi - qupmi - gjé(rpfmrqji - Fqémrpji) =0

On notera que le tenseur R4 est connu sous le nom de tenseur de courbure.
Il nous reste a ’expliciter en termes des déformations. On a

DPqui = Dp<Dq7mi + Di’)/mq - Dm')/iq)
= Dpg¥mi + DpiYmg — Dpmiq
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et, en permutant les indices p et g,
qupmi = qu'Ymi + in’ymp - qu’ypi
ce qui meéne & la forme finale des équations de compatibilité,

Dpi_’qu + qu’Ypi - me’)/iq - in’ymp
-9’ {(Dp'}/fm + Dinype — DZ'me)(Dq'in + Divjq — Dj%’q) (2.21)
_(Dq')’lm + DmYqe — Dl’qu)(Dp'in + Divpj — Dj'Vpi)} =0

A priori, le tenseur de courbure posséde 3* = 81 composantes. Cependant,
elles ne sont pas toutes indépendantes En effet, on peut vérifier que
Rinigp = —Rmipg

Rimpg = —Rmipq (a)
b
c

qumi - Rmipq

La relation (a) réduit a trois le nombre de valeurs du couple (i, m) pour lesquelles
les Rimpq sont indépendants et non nuls, & savoir,

(i,m) = (1,2), (2,3) et (3,1)
De meéme, la relation (b) permet de ne considérer que les couples

(p,q) = (1,2), (2,3) et (3,1)
Enfin, en vertu de la relation (c), la matrice

R1212 R1223 R1231

Raz12  Razoz  Raszz
R3112 R3i23 Raiz

est symétrique, donc compte siz composantes indépendantes, & savoir,

Ri212, Ri223, Ri231, Ra323, R2331, R3131

Les équations de compatibilité sont donc au nombre de siz.

Récapitulons. Supposant les équations de compatibilité (2.21) vérifiées, on
peut intégrer les équations (2.15). Il reste & se donner la base {g;} en un point
Py arbitraire. Le choix des g;(Pg) devra vérifier les conditions

lg1(Po) > = 14 2711 (Po)
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et de méme pour les deux autres vecteurs de base, ce qui fixe leurs normes. Les
angles entre les vecteurs de base sont fixés par les conditions

gi(Po) - g;(Po) = 27i;(Po), i # j

L’orientation de cette base locale est cependant arbitraire : les bases convectées
sont définies 4 une rotation prés.

Les g; étant déterminés, on peut calculer les coordonnées de tous les points
en intégrant les relations

DiP' =g;

mais il faut encore se donner les coordonnées &;(Py) du point ou démarre le
processus d’intégration, ce qui donne encore la liberté d’une translation du corps.

En conclusion, un champ de tenseurs symétriques v;; ne peut étre un champ
de déformation de Green, c’est-a-dire avoir la forme

1
2

que s’il vérifie les sixz équations de compatibilité (2.21). Dans ce cas, le champ
de déplacement u; est déterminé a une translation et une rotation preés.

2.6 Hypothéses simplificatrices

Les équations de compatibilité (2.21) s’appliquent dans le cas général des
grandes déformations. Malheureusement, elles sont compliquées, d’une part par
leur non-linéarité (équations presque linéaires) et par le fait que le tenseur de
déformation apparait implicitement dans ¢/. En restreignant le champ de 1’ana-
lyse, on peut les simplifier quelque peu.

2.6.1 Petites déformations

L’hypothése des petites déformations consiste & poser
sup M <I'«1ppdans V (2.22)
a#0 ;A

c’est-a-dire que les déformations principales sont inférieures en valeur absolue a
I'. Cette hypothése, trés généralement applicable aux métaux dans le domaine
élastique, permet d’écrire

gij = 0ij + O(1), ¢ =67 + O()
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et raméne les équations de compatibilité a la forme approchée plus simple [53]

Dpifqu + quVpi - me'Yiq - in,}’mp
—(DpYjm + Dm¥pj — Djvpm)(Dgvji + Divig — DjYig) (2.23)
_(Dq'ij + Dimvygy — Djl’Yq7rL)(DP7ji + Diypj — Dj’Ypi)} =0

ot les v;; n’apparaissent plus que sous forme explicite.

2.6.2 Petits déplacements

L’hypothése dite des petits déplacements — il serait plus correct de dire des
petits gradients de déplacement — consiste & poser

sup |Dju;| <T < 1 pp dans V (2.24)
2

Cette hypothése, plus forte que la précédente, entraine

Yij = %( Din—I— Djui—l— Diuijum) ~ %(Diu]‘ + Djum) = Eij
O T r I2
(2.25)
Nous démontrerons indépendamment au chapitre 5 que les équations de com-
patibilité pour les déformations linéaires ¢;; sont

Dyiemg + Dgmepi — Dpméeiq — Dgi€mq = 0

soit les relations (2.23) ou les produits de ;; sont négligés devant leurs dérivées.

2.6.3 Gradients de déplacements modérés

1l s’agit d’un hypothése intermédiaire entre les deux précédentes, bien utile
en théorie de la stabilité (bifurcation de I’équilibre). Elle suppose de toute fagon
que les déformations sont petites (O(T")), mais ajoute une hypothése que I'on
peut présenter de deux fagons équivalentes :

Premiére définition : on admet que, quels que soient i et j, on a
|D;u;| < OTY?) (2.26)
Dans ce cadre, on a

2y11 = 2Dywi+  (Diw)?*+  (Diug)®+  (Dius)?
O I T I T
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ce qui entraine visiblement
D1u1 = O(F)

L’examen de 722 et de 33 donne de méme

DQUQ = O(F) et D3U3 = O(F)

Deuxiéme définition : on admet que
Dyuy = O(7), Daus = O(T) et Dyuz = O(T) (2.27)
Moyennant cette hypothése, on a
2(711 — Diur) = O(T) = (D1us)? + (Dyuz)?
ce qui n’est, possible que si
Diugy = O(TY?) et Dyug = O(T?)
De la méme facon, ’examen de 22 conduit aux conditions
Dyuy = O(I'Y/2) et Dyusg = O(T'/?)
et celui de 33, aux conditions
Dsyuy = O(TY2) et Dyuy = O(T'Y?)

de sorte que les conditions (2.26) sont également vérifiées. Les deux présentations
sont donc équivalentes.

Dans ce cadre, on peut simplifier ’expression des déformations de Green a
condition d’admettre une erreur O(T'?) sur les déformations directes et O(T'3/2)
sur les déformations croisées. En effet, considérons d’abord 711 . Le terme %(Dlul)z
est O(I'?), donc on peut écrire

1 1
’}/11 = D1u1 + §(D1U2)2 + §(D1’LL3)2 + O(F2) (228)
Par le méme raisonnement,
_ 1 2 1 2 2
Y22 = Daug+ 2(D2U1) + 2(D2U3) +O(I7) (2.29)

1 1
Y33 = D37.L3 + 5(D3U1)2 + §(D3'U,2)2 + O(Fz) (230)
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Passons aux déformations croisées. On a

2vi2 = Diug + Dour+ DiuiDaun+ DiugDous+  DiugDaus
@) r r3/2 ['3/2 r

ce qui permet d’écrire

2vi2 = Djuy + Dauy + DyuzDouz + O(I%/?) (2.31)
et, de la méme facon, on obtient aisément

2y23 = Dous + Dus + Dauy Dyuy + O(I%/2) (2.32)

2v31 = Dauy + Dyug + DsugDyug + O(13/?) (2.33)
2.7 Exercices

Exercice 7 Déterminer, a partir de l’expression générale des déformations de
Green, un champs de déplacement conduisant a

Vi1 = Y22 = V33 0
2’}/12 = [0
Yi3=73 = 0

Solution - On cherchera un déplacement de la forme suivante :
uy = A(y)7 Uz = B(y)7 us = 0

Il vient alors

M1 = 0
/ 1 12 1 12
Y22 = B + *A + —B'"” = O
2 2

733 = 0
2’}/12 = A/ =«
2vi3 = 0
2723 = 0

On en déduit
0= B"?+2B' + A” = B? +2B' + o?
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soit
B =—-1++1—-a?

Cette solution n’a de sens que si |a] < 1, ce qui est bien normal si I’on veut bien
se référer a I'interprétation (6.12) des déformations croisées. Pour av = 0, on doit
avoir B’ = 0, ce qui méne & choisir le signe + pour le radical. Une solution est
donc

U = oy
uy = (—14++v1-—a?)y
uz = 0

Exercice 8 Déterminer de la méme maniére un champ de déplacement donnant
Y11 = @, les autres déformations étant nulles.

Exercice 9 Montrer que les déformations doivent vérifier les conditions sui-
vantes :
a) 14+2v1>0,147v92>0,147v33>0

b) 2ly12] < /(1 +2911) (1 + 2922)
¢) Dans le cas d’un cisaillement pur, (711 = Y22 = v33 = 0), on doit avoir

1

\/’Y%g + 713 + 935 — 4712723731 < 3

Solution - L’élément de longueur aprés déformation, qui s’écrit
d&;d€; = (Og1 + 2ke)dzrdy

doit étre positif quels que soient dxj et dxy, ce qui signifie que la matrice

14291 2v12 2v13
2991 14 2729 2723
2731 2732 1+ 2933

doit étre définie positive. En particulier, ses éléments diagonaux doivent étre
positifs, d’ou a). Les déterminants emboités,

Al = 1 + 2’)/11
Ay = (14 2711)(1+ 2722) — 477y
Az = (14 2911)(1 + 2722)(1 + 2733) + 16713721732

— 4775 (1 + v33) — 4vi5(1 + 2722) — 4935(1 + 2911)

doivent étre positifs. Cela étant,
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b) équivaut & Ag >0
c¢) découle directement de Az > 0

Exercice 10 = Montrer qu’il est possible de trouver un tenseur symétrique h;;
tel que
gij = 0ij + 2hij + himhjm

Solution - La relation ci-dessus s’écrit encore

9i; = OimOjm + himOjm + OimPjm + himhjm

Passons aux axes principaux du tenseur g;; par la transformation
g;q =T,:T4j9i5, Tpilgi = Opq (orthogonalité)

On obtient
{9pe} = diag(gi1, 932, 933)
tous ces éléments étant strictement positifs. La transformation inverse est visi-
blement
Grs = TprTysdpq

Définissons alors, dans les axes principaux du tenseur métrique, le tenseur « ra-

cine carrée »
{age} = diag(v/ 911, v/ 9520 v/ 933)

Il est clair que
* * %
Cpgrq = pr
Les composantes du tenseur racine carrée dans le systéme de départ sont données

par
*

ars = TprTys Upq

On a donc

AimGjm = TpiTqma;qTrosma;is
= Ty 5q5a;qa:s
= TTrja,,ar,
= TpiTTj g;r

9ij
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11 suffit alors de poser
hij = aij = dij

On remarquera que dans les axes principaux de déformation, on a

=V L e =05 — 1 by = /g5~ 1

c’est-a-dire que dans les axes principaux, ce tenseur représente les allongements
proportionnels, ce qui le rend séduisant. En contrepartie, il ne contient les dépla-
cements que de maniére implicite. Ce tenseur est connu sous le nom de tenseur
de déformation de Jaumann.
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Chapitre 3

Principe des travaux virtuels

3.1 Déplacements virtuels

A partir d’'une certaine configuration du corps V', décrite par des dépla-
cements u;, considérons une configuration trés voisine, correspondant aux dé-
placements 4;. On appelle variation du déplacement ou déplacement virtuel le
champ

(5ui = fLZ‘ — Uy (31)

A cette variation correspond une modification des déformations de Green

1 1
;Y'ij - Yij = 7(Dza_; + Djai + Diﬁijam) - 7(Diuj + Djul + Diu'rrLDjum)

2 2
Tenant compte de le définition des déplacements virtuels, on obtient
1
’%j —Yij = E(Di(suj + DJ(SUI + Diu7rLDj6u7n + DjumDi(Sum)
1
—|—§Di5uij6um
1
= Oy = +§52%j (3.2)
avec )
572’]’ = §(Dl§u] + Djéul + Diuijéum + DjumDiéum) (33)
et

37
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Le terme 0v;;, linéaire en la variation du déplacement, est appelé variation
premiére ou, simplement, variation de la déformation. Il constitue une espéce
de différentielle de la déformation par rapport & la variation de déplacement. Le
deuxiéme terme, 67,5, est la variation seconde. 11 est du second ordre et donc
négligeable pour de trés petites variations de déplacement.

Plus généralement, une fonction f(u;) admet la modification

1 1
Fui +u;) =0f + 5<52f+ §63f+...

ot 'on regroupe les termes homogénes d’ordre 1,2,3, ... en les du;. Le terme § f
est appelé variation (premiére) de f.

3.2 Travail virtuel de déformation

Nous admettrons comme axiome fondamental qu’une déformation virtuelle
07;; d’un élément de volume dV d’un corps continu quelconque nécessite un
travail de déformation virtuel §WdV. Pour déformer le corps entier, il faudra
donc produire un travail virtuel

SU = / SWdV (3.5)
\%4

Il est naturel d’admettre que la densité de travail virtuel 6 dépend directement
de la déformation virtuelle, et d’exprimer en conséquence W sous la forme

oW = 811(5"}/11 + 822(5"}/22 + 8335"}/33 + 28125")/12 + 25135"}/13 + 2523(5’}/23 (36)

ce qui fait apparaitre six nouvelles grandeurs s'!, 522, 33, 512, 513 et 523 dont
la dimension est celle d’une pression :
FL
[Sij] _ [5W] _ L3 _ E
ol 1D

Nous appellerons ces six grandeurs contraintes de Kirchhoff- Trefftz. Elles appa-
raissent en effet sous cette forme dans les travaux de Kirchhoff [51], mais c’est
a Trefftz [89] que revient linterprétation que nous en donnerons en section 3.5.

Les coefficients 2 introduits pour les termes croisés dans ’expression (3.6)
permettent d’écrire la densité du travail virtuel de déformation d’une maniére
plus compacte en introduisant les termes fictifs
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qui complétent le tenseur des contraintes : on a alors

SW = s"M0yi1 + 8720702 + 8726733 + 12012 + 830713
+523657993 + 52 0721 + 5310731 + 5725732
= Y6y (3.7

Il convient cependant d’étre attentif au fait suivant : si ’on utilise la relation
(3.6), tenant explicitement compte de la symétrie des contraintes et des défor-
mations, on obtient

sl — ow §22 — 57W 33 — 57W
11’ dv22” 0733
ow ow ow
2512 = O g3 = 0D ggm_ O 3.8
012 0713 023 38

tandis que si 'on utilise la relation (3.7) en faisant volontairement abstraction
des relations de symétrie, il vient uniformément

oW

Sij =
07

(3.9)

Insistons finalement sur le fait que nous ne postulons nullement que §W soit une
différentielle totale. Les considérations qui précédent sont donc valables pour des
déformations irréversibles.

3.3 Notion d’équilibre

Nous supposerons que le corps V est soumis & un systéme de charges, dont
nous ne préciserons par pour le moment la distribution. Lors d’un déplacement
virtuel du;, ces charges produisent un travail virtuel 07 ayant la forme générale

0T =Y Fidu; (3.10)
\%

Nous dirons que le corps V est en équilibre dans une configuration donnée si,
pour tout déplacement du;, le travail virtuel de déformation U est exactement
égal au travail virtuel des charges 67T :

U = 5T You (3.11)
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C’est le principe des travauz virtuels, qui constitue donc un définition énergétique
de I’équilibre.

Cette définition admet un cas particulier important. Pour un déplacement
virtuel de corps rigide (translation ou rotation sans déformation), on a dv;; =
0 dans tout le corps et, par conséquent, 0/ = 0. Il en résulte la condition
d’équilibre

0T = 0 pour un déplacement de corps rigide (3.12)
en bon accord avec une propriété connue de la statique des corps parfaitement
rigides.

3.4 Equations locales d’équilibre

En admettant au départ que la déformation peut étre mesurée par le tenseur
de Green, on restreint automatiquement la classe des charges que la structure
peut admettre. Pour mettre ce fait en évidence, calculons explicitement d/. On
a

1
1 1
ce qui entraine
1 .. 1 ..
oW = 55” (6jm + Djum)Di(Sum + 53” (5”” + Dzum)Dj(Sum (313)

Il se trouve que les deux termes de cette somme sont identiques. En effet, la
symétrie des contraintes permet d’écrire le premier sous la forme équivalente

1
58]1(51‘7” + Dium)Dj(Sum

Les indices i et j étant muets, on peut donner & ¢ et j les noms respectifs j et

i, ce qui donne

1 ..
5813 ((Sjm + Djum)D,(Sum
soit précisément le second terme. Cette propriété permet de donner au travail

virtuel de déformation la forme plus simple

U = / 59 (8im + Ditty) D0ty dV = / timDjoumdV (3.14)
14 \4
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en introduisant les grandeurs

connues sous le nom de contraintes de Piola. Ces contraintes non symétriques ne
seront utilisées ici que pour abréger les écritures et nous nous raménerons fina-
lement aux contraintes de Kirchhoff-Trefftz. Une simple intégration par parties
donne alors

5U=/tjmnj5umd5—/(Djtjm)éumdS (316)
S 14

Les deux intégrales qui composent cette expression peuvent étre identifiées, la
premiére a un travail virtuel a la surface et la seconde, & un travail virtuel dans
le volume. On en déduit que le travail virtuel des charges pourra avoir la forme

5T = / t O dS + / FmOtmdV (3.17)
S Vv

ou apparaissent les tractions de surface t,, et le forces de volume f,,, liées aux
contraintes par les équations locales d’équilibre

Njtjm = tm sur S
{ Ditjm + fm = 0 dansV (3.18)
soit, en termes des contraintes de Kirchhoff-Trefftz,
D;[s7(6im + Dium)| + frn = 0 dansV (3.19)
1 (87 (Gim + Ditm)] = tm sur S :

Les équations (3.19) sont connues sous le nom d’équations de Signorini [34].
Elles sont non linéaires par le fait qu’elles font intervenir les déplacements.
Les équations d’équilibre en termes des contraintes de Piola sont plus simples,
puisque linéaires. Mais il faut leur adjoindre des équations supplémentaires pour
restituer leur définition en termes des contraintes de Kirchhoff-Trefftz, qui fixe
leur dissymétrie. Ces équations sont [34, 36]

tjm(5jp + Djup) = Sji((sim + Dium)((;jp + Djup) = tip(éim -+ Dlum) (320)

symétrique

Nous avons donc montré que le principe des travaux virtuels ne peut étre
vérifié que si le travail virtuel des charges a la forme (3.16), les efforts f,, et t,,
étant alors définis par (3.19) . Montrons a présent que si le travail virtuel des
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charges a la forme (3.16), le principe des travaux virtuels impliguera les relations
d’équilibre local (3.19). On aura en effet

0=0U—-0T = /(timDiéum — fmOuy,)dV — / tmOUydS
1%

/(nz m 6umds / z im + fm (5’&de(3 21)

A ce stade, le raisonnement repose sur un théoréme du calcul des variations :

Théoréme 1 Soit V un ouvert de frontiére S , et soient f une fonction conti-
nue sur 'V et g une fonction continue sur S. Si l’égalité

/féudV—F/géudSzO
v s

est vérifiée pour toute fonction du continiment dérivable dans V' et prolongeable
sur S, alors on a f =0 dansV et g =0 sur S.

Démonstration - Montrons d’abord que f = 0. En supposant le contraire, soit
y € V un point ou f # 0, par exemple, f > 0. Il existe une boule Bgr(y) de
centre y et de rayon R ou f > 0; comme V est ouvert, on peut supposer que
cette boule est entiérement contenue dans V. Considérons alors la fonction

_ [ (R —x—y[)? dans  Bg(y)
du(x) = { 0 hors de  Br(y)

Cette fonction est continiiment dérivable. On a

/féudV—F/gdudS:/ foudV >0
v s v

en contradiction avec I’hypothése. Donc f = 0 dans V.
Au vu de cette premiére conclusion, on a pour tout du

/fdudV—&—/chdSz/ O~6udV+/g5udS=/g5udS
v s v s s

Montrons & présent que g = 0 . En supposant le contraire, soit z € S un point
ot g # 0, par exemple, g > 0. Il existe une boule Bg(z) telle que g > 0 dans
Bgr(z) N S. Alors, la fonction

[ (R?2—|x—2z/*)? dans Bg(z)nV
du(x) = { 0 hors de Bg(z)NV
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est contintiment dérivable dans V et contintiment prolongeable & S. On a

/géudS >0
s

ce qui contredit I’hypotheése, donc g = 0 sur S, CQFD.
L’application de ce théoréme & notre probléme conduit aux conclusions

Ditim+fm = 0 dansV
Nitim = tm;m sur S

Remarquons cependant que les équations locales d’équilibre ne sont obte-
nues que moyennant une régularité suffisante du probléme. Dans le cas ot cette
régularité n’est pas acquise, c’est au principe des travaux virtuels qu’il faut faire
appel pour obtenir les équations dont on a besoin. Au sens du mathématicien, les
solutions au sens classique (local) des équations de Signorini sont des solutions
fortes. Les solutions de I’équilibre au sens des travaux virtuels sont des solutions
faibles|63]. Il est peut étre utile de préciser que 'univers de I'ingénieur est peuplé
de solutions faibles, bien plus que de solutions fortes. Les discontinuités de ma-
tériau, les charges peu réguliéres ménent invariablement & des solutions faibles.
Ceci justifie le parti pris dans cet exposé de présenter directement 1’équilibre
sous la forme des travaux virtuels.

3.5 Interprétation de Trefftz

Trefftz [89] a donné linterprétation suivante des contraintes de Kirchhoff-
Trefftz. Considérons les équations d’équilibre a la surface, qui s’écrivent

nz[s” (51'_7' + Djum)] = tm

Observons d’abord que le second membre représente, localement, la charge de
surface divisée par la surface de référence (et non pas la surface déformée!). Par
ailleurs, on peut écrire cette équation sous la forme

n75”D]£m =tm
d’ou

t = tmem:(nisij)DjEmem
= (nisY)g; (3.22)
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ou apparait la base convectée. Cette relation signifie que si 'on décompose le
vecteur traction de surface dans la base convectée,

t="T'g, (3.23)
(ce qui équivaut & TV =t - g7), le reste du calcul revient & définir 77 comme la
projection de s* sur la normale de référence :
nist =TI (3.24)
A titre d’exemple, dans une poutre qui fléchirait & la Navier sous une traction
de surface t 3.1, on aurait

1 |t[sin® _,  |t|cos®
(31 |g2|

)

et comme n; =1 et no =0,

iz
&,
fi—a»e,
t

7

7

/ ;

FI1GURE 3.1 — Interprétation de Trefftz

T1:1'811+O'8122811, T2:1'812+0'S22
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ce qui donne
t|sin 6 t|cosd
JRET [t] sin 512 [t] cos

V911 ’ vV 922

3.6 Relation avec les contraintes eulériennes

3.6.1 Contraintes eulériennes

Une autre interprétation, beaucoup plus profonde, peut étre obtenue en re-
lation avec la description eulérienne. Nous noterons V' le volume déformé, S’ sa
surface et n’ la normale unitaire a cette surface. Nous écrirons en outre 9; pour
0/9¢;. Enfin, nous utiliserons la matrice jacobienne

Jij = Dj&; (3.25)
qui a pour inverse

ng = 8j$1' (326)
et pour déterminant

J =det(J) (3.27)

Le travail virtuel de déformation peut étre transformé comme suit

U = / $9 D& Didu,dV
14

y 1
/ sY Djmei(Sum ?dV’

1 ..
// 75”Dj§mD7;§p3p5ude’

/ TmpOpOtuy, dV’ (3.28)
V/
ol apparaissent les contraintes eulériennes
1T
Omp = ?5 ngmDigp (329)

qui sont visiblement symétriques. On peut écrire, en adoptant les notations



46 CHAPITRE 3. PRINCIPE DES TRAVAUX VIRTUELS

dyadiques,

T = Ompem €y

::%WQ@@m®w@%)

1
= 75Jgi®gj (330)

Ce qui signifie que les contraintes de Kirchhoff- Trefftz s’identifient, au facteur
J prés, aux composantes contravariantes du tenseur o dans la base convectée.
Cette conclusion est trés importante, comme nous le verrons sur un exemple plus
loin. Mais auparavant, il est utile de préciser certains faits relatifs aux charges.

3.6.2 Relation entre les charges dans les deux descriptions

Le travail virtuel des charges appliquées s’écrit, dans la description lagran-
gienne,

(57—:/ fléuldV—l—/tzéuzdS (331)
\%4 S

Dans la description eulérienne, on écrira naturellement
0T = flou;dvV’ +/ tdu;dS’ (3.32)
v’ 5
ce qui ménera aux équations d’équilibre

g — '
{ 005 + fi 0 dansV (3.33)

nioj = t; sur S

Mais les deux expressions (3.31) et (3.32) du travail virtuel des charges ne seront
équivalentes que si sont vérifiées les relations

fidv = fiav’ (3.34)

et
t;dS = t;dS’ (3.35)

Pour la premiére, cela implique, comme dV’' = JdV,

fi=JFf (3.36)
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La condition (3.35) est un peu plus difficile & exploiter. Il nous faut pour cela
déterminer le rapport entre dS et dS’. A cette fin, considérons une fonction ¢
quelconque. On a

/ nhpdS' = / DipdV' = / T I DjpdV = / In;J pdS
S’ / 1% S
ce qui implique
njdS' = Jn;J;; dS (3.37)
On en déduit

dS" = njdS'nidS" = T*n;J 5 ny ;) dS? = T2 gMngn;dS?

ds" = J\/g*ingn;dS (3.38)

C’est la relation cherchée. On a donc
ds t;
th=t -

‘ s’ TN gFngng

Du reste, on peut encore déduire de (3.37) les composantes de la normale spa-
tiale :

soit

(3.39)

-1

d
Jol= - = 3.40
7 ds T IV nine  /g¥ngng ( )

n; = Jn;

3.6.3 Cas des petites déformations

Lorsque les déformations sont petites, on peut écrire
J ~ 1, gijninj ~1

ce qui permet de confondre sans grande erreur les charges définies dans la struc-
ture de référence et celles de la structure déformée. En outre, les angles entre les
vecteurs de la base déformée différent peu d’un angle droit. Les contraintes de
Kirchhoff-Trefftz s’assimilent alors & des contraintes eulériennes, calculées dans
un systéme d’axes particulier. Il se trouve d’ailleurs que ce systéme d’axes est le
plus pratique que l’on puisse trouver. Imaginons par exemple un corps composé
de deux piéces collées (fig. 3.2). Les colles résistent d’une fagon trés limitée en
extension (contrainte o sur la figure 3.3) et d’une fagon bien meilleure en cisaille-
ment (contrainte 7 sur la la figure 3.3) Sur la figure 2, la contrainte normale sur
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e Colle
P /________
77/ S S )

AN

FI1GURE 3.2 — Piéce collée

la, colle est & peu de chose prés s%2 et celle de cisaillement, approximativement
s'2 et ce, quelle que soit la forme prise par le joint collé. En supposant que le
critére de mise hors service soit de la forme

P ()
Olim "lim

F( $22 | 512 )
Olim Tlim

quel que soit le déplacement, tant que les déformations restent faibles.

on pourra ’écrire simplement

3.7 Exercices

Exercice 11 Interpréter les contraintes de Piola dans le cas d’une poutre flé-
chissant a la Navier (fig. 3.1)
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§o
T
D e
S
T
Yo

FIGURE 3.3 — Résistance de la colle

Solution - On a tout simplement
0 = niti +notiz =111
—t = nitiz +nolay =112

On notera le caractére artificiel de ces contraintes, qui ne tiennent aucun compte
de la déformation.

Exercice 12 x Déduire l’expression générale des déplacements virtuels de corps
rigide a partir de la condition 6v;; =0

Solution - On a
1
5’)’1‘]‘ = §(Dz§ij5Um + Dj§mDi6um)
1

en faisant usage de la matrice jacobienne définie en section 3.6.1. Multipliant
cette équation par 2JZ-;1J;11 et contractant, on obtient

= Jlyly .D. —17-17 1.
0 = Jip J]q Jm’LD]éum + Jip qu ijDl(Sum

= 5mpJ]:]1Dj5um + 5qu1‘;1Di5Um

== apéuq + 5q5up

Ces équations admettent de toute évidence une solution générale du type

Opdug = Qpgq
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avec {1,q = —€)gp. Mais alors, on a
Okpq = Okpdtlg = Opiduy = 0p€lig
ce qui entraine la chaine suivante :
Qg = OpQig = —0pQqie = —0qQpk = 0y hp = OpSlgp = —Okflpq

dont on déduit
OkQpg =0

On obtient donc, en donnant au tenseur antisymétrique €2,, sa forme canonique
Qpg = eparflr
la forme générale
dug = ag+ Qpe&p = ap + epgilpSli
= aq+ eqipSli&p
soit la combinaison d’une translation et d’une rotation d’ensemble.

Exercice 13 x Soit un corps libre dans Uespace, chargé de forces f; dans V
et de charges t; sur S. Montrer que pour que ce champ de forces puisse étre
équilibré intérieurement par un champ de contraintes de maniére que U = 6T,
il est mécessaire que soient vérifiées les conditions

Jy fidV + [gtidS = 0 (E:'quilibre de translation)
€ipg Ly EpfadV + [ &ptqdS] = 0 (Equilibre de rotation)

Solution - Pour un déplacement virtuel de corps rigide, on doit avoir §7 = 0.
Or, (voir exercice 12), ces déplacements sont de la forme

ou; = a; + eiqupfq

d’oul la condition

a; ( /V fdV + [5 tidS> + Qpepgi < /V & f:dV + /S £qtidS> =0

quels que soient a; et €y, ce qui entraine les conditions annoncées.

Exercice 14 La condition SU= 0 s’applique également auxr mécanismes par-
faits, c’est-a-dire composés de corps rigides articulés sans frottement. En déduire
la réaction au point A de la poutre représentée en figure 3.4.
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100N 200N 300N

500 600 300| 700 200 300 |, 400 200 400

N .
Uy \
77;;7, 7 /

% /
é‘l
62\ 6”

FIGURE 3.4 — Poutre

O
S
™

O~

Solution - 1l suffit de considérer R4 comme une force, 'appui en A étant coupé.
Le mécanisme ainsi constitué peut alors prendre des déplacements selon la figure,
ce qui permet d’écrire

0T = Rada — 10087, 4+ 20055 — 30063 = 0

Or,
5 = 151—?;)()5,4:0,45455,4
5 = %88&:1,273@
200
5y = 57)885’_0,36375A
67 = 28 = 0,90930
5 = 2005 0 45466,

400



52 CHAPITRE 3. PRINCIPE DES TRAVAUX VIRTUELS

si bien que
01 02 03

= 100=L — 20022 &
R4 00(5,4 006A+3005A

= 100-0,4545 —200-0,3637 + 300 - 0,4546 = 109, 1N

Exercice 15 Déterminer la loi P = f(z) pour le quadrilatére articulé de la
figure 3.5. Le ressort, de longueur naturelle ¢, a une énergie de déformation

(A2
2

Les barres sont supposées indéformables et idéalement articulées.

N

P
Q
N
-

U==k

FIGURE 3.5 — Quadrilatére articulé

Solution - Le principe des travaux virtuels s’écrit
kEALOAL = Pox

Pour exprimer les liaisons entre Al et x, le plus simple est d’utiliser le paramétre
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FIGURE 3.6 — Déformation du quadrilatére

0 représenté en figure 3.6. On a en effet
h=2acosf et {4+ Al=2asinf
d’ott
r=aVv2—h=a(V2-2cosf)

et
Al =2asinf —{ = a(2sinfh — V/2)

On en déduit
0r = 2asinf6f et SAL = 2acosBf

ce qui raméne ’équation d’équilibre &
ka(2sinf — v/2)2acosf = P - 2asin f
Divisant les deux membres par 2a sin #, on obtient

P = ka(2cos — V2 cotg §)

53
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Cette équation atteint un maximum pour

dP V2
— = —2sinf 4+ —— | =
do ka ( s+ sin® 9) 0

soit pour

sin® 6 =

|

ce qui donne € = 62,99°. il y correspond la charge maximale
Ppaz = 0,1874ka

correspondant & une instabilité. On peut établir le tableau suivant :

0(°) | P/(ka) | xz/a 5/a

0 —oo 20,5858 | -1,414
10 -6,051 -0,5786 | -1,067
20 -2,006 -0,4652 | -0,7302
30 -0,7174 | - 0,3478 | -0,4142
40 -0,1533 | -0,1179 | -0,1286
45 0 0 0

50 0,09801 | 0,1286 | 0,1179
60 0,1835 | 0,4142 | 0,3178
62,99 | 0,1874 | 0,5059 | 0,3676
70 0,1693 | 0,7302 | 0,4652
80 0,09793 | 1,067 | 0,5554
90 0 1,414 | 0,5858

Ces résultats sont illustrés par la figure 3.7.
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FIGURE 3.7 — Quadrilatére articulé : solution

55



56

CHAPITRE 3. PRINCIPE DES TRAVAUX VIRTUELS



Chapitre 4

Corps hyperélastiques

4.1 Hyperélasticité

Dans ce qui précéde, le travail de déformation a été introduit sans hypothése
sur sa nature physique. Lorsque ’on suppose qu’il est conservatif, c’est-a-dire
que OW est la différentielle totale d’une densité d’énergie de déformation W, le
corps est dit hyperélastique. On a alors

oW
a%‘j

S g

(4.1)

si 'on fait abstraction, dans la dérivation, des relations de symétrie v;; = v;;.
Les équations (4.1) n’ont de solution que si
s sk

= 4.2
Ok 0ij (42)

ce qui exprime analytiquement la condition d’hyperélasticité.

Comme l'a fait remarquer Lord Kelvin [46], il serait totalement erroné de
croire que l’hyperélasticité implique ’absence d’échange de chaleur. Dans le cas
d’une sollicitations statique (mise en charge lente et progressive, comme on la
réalise lors d’un essai de traction), la lenteur de la transformation permet de
considérer que le corps garde constamment la température de ’ambiance, c’est-
a-dire que la température reste constante. Si U et S sont respectivement la
densité d’énergie interne et la densité d’entropie, on aura donc

SW = 6U — T6S = §(U — TS) = 6F (4.3)

a7
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ou F est la densité d’énergie libre. Nous verrons d’ailleurs dans la suite que la
variation d’entropie n’est pas nulle lors de la déformation. Par contre, dans le
cas des wvibrations, la lenteur relative des échanges de chaleur permet de poser
en premiére approximation que l’entropie ne varie pas, si bien que

SW = 6U (4.4)

Ainsi, la nature de ’énergie de déformation est différente dans le cas d’une
sollicitation statique et dans le cas des vibrations. Il en résulte une différence
entre les modules correspondant & ces deux types de sollicitations. Ceci sera
étudié en détail en section 4.5 de ce chapitre.

4.2 Développement en série de Taylor de I’éner-
gie de déformation
Nous nous limiterons, dans ce qui suit, & ’étude des petites déformations.

Cette restriction permet de développer la densité d’énergie de déformation en
une série de Taylor, que nous limiterons au second ordre :

ow 1/ W 3
Wi(y)=Wy+ <%>07ij t3 (871']'87’61)0 Yig vk + O(Y) (4.5)

En dérivant ce développement par rapport aux déformations, on obtient 'ex-
pression suivantes des contraintes ! :

8W) ( 92w > ,
sij=\5—) t|la-5—) m+OQ 4.6
N (3%‘3‘ 0 70kt / ) (4.6)
Les deux termes significatifs de cette expression s’interprétent comme suit : le
terme oW

0

@ = (a ) (4.7)

Yii /o

représente les contraintes résiduelles, présentes dans I’état non déformé; le se-
cond terme est linéaire en la déformation et fait apparaitre le tenseur du qua-

triéme ordre s
Ciiti = | =————— 4.8
I (3%1‘3%1 ) 0 (48)

1. Dorénavant, nous écrirons s;; au lieu de s*7, car nous ne ferons plus référence au caractére
tensoriel covariant des contraintes
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dit tenseur des modules élastiques. L’expression (4.6) donne donc, en négligeant
O(+?),
sij = 855 + Clijr e (4.9)

et I'énergie s’écrit & O(y3) prés
0 1
W =Wy + Sii%ij icijkl’yij'ykl (4.10)

La question du mombre de modules indépendants a fait, au X1X¢ siécle,
I’objet de nombreuses controverses. C’est ainsi que 1’on a connu des théories
« & modules rares »et des théories « & modules nombreux »(de 1 & 36 modules)
[46, 49, 47, 50, 66, 83, 87]. La maniére la plus simple de traiter le probléme
consiste & remarquer que les déformations forment six grandeurs indépendantes

Gi = 7
Gy = 72
Gs = 733
Gy = M2
Gs = 793
Gse = 731 (4.11)

La matrice hessienne de I’énergie, définie par

PW
H:=|—— 4.12
N (3Gi3Gj)o (412

est d’ailleurs appelée matrice de Hooke. Cette matrice symétrique de dimension
6 x 6 posséde en général

6x7

5 =

termes indépendants. Tel est le nombre de modules indépendants d’un solide
anisotrope.
Dans le cas d’un solide isotrope, le terme quadratique

21

1
Wy = §Cijkl%'j7kl (4.13)

de la densité d’énergie de déformation doit avoir une expression indépendante
du systéme d’axes choisi. Il ne peut donc dépendre que des invariants du tenseur
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des déformations,

1:1 = i
L, = *%(’Yij - %’Y@eigij)(%‘j - %’Ymmcsij)
Is = det(v)

Le choix de I» plutot que I> est dicté par des conditions de commodité. Parmi
ces trois invariants, seuls I; et I5 sont susceptibles de former une combinaison
quadratique, qui aura la forme

. K
Wy = —2GI, + 5112 (4.14)

Les grandeurs G et K sont appelées respectivement module de Coulomb et mo-
dule de compressibilité (Bulk modulus). Cette derniére appellation provient du
fait que dans le cadre des petites déformations, on a

dV' = JdV =~ dV

ce qui revient & dire que

av’ —dv
=|—=|J -1 1
=1l =17 ~ 1 <

Or,
det(gij) = T =1+ (T =D =1+ 21+ 17 (4.15)

Calculons

142y 2712 2713

det(gi;) = 2791 142722 2793
2y31 2732 142733
= 1427 +0(y%) (4.16)

Identifiant les expressions (4.15) et (4.16), on obtient
20 =27 + O(v*) + O(n?)

soit
dv' —dv

o (4.17)

Yii =
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Dans la pratique, on utilise souvent deux autres modules, & savoir le module
de Young E et le coefficient de Poisson v, qui sont liés aux précédents par les
relations

E
¢ = 2(1+v)
E 2G(1+v)

K = =

3(1—-2v)  3(1-2v)

9KG

E = 3K +2G

1 /(3K —2G

En fonction de G et v, on calcule aisément

14

Wa = G(vijvij + ———-"VeeVis) (4.19)
1—-2v

On rencontre aussi les coefficients de Lamé, provenant de l’expression de W5 en

termes des invariants I; et I :

A
W2:2,u12+§12

Ces modules sont liés & G et K par les relations

2
p=GetA=K- 3G (4.20)

4.3 Postulat de la stabilité locale

Isolons un morceau infiniment petit dV' du corps hyperélastique. Placé dans
la structure, il est en équilibre avec son voisinage, pour une certaine valeur
de la déformation. Imaginons qu’on le découpe du corps : toute relation de
compatibilité, c’est-a-dire d’égalité des déplacements de sa frontiére avec les
déplacements de ses voisins étant coupée, il tendra vers une position d’équilibre
propre définie par la condition

ow _o
8%‘;‘
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Le postulat de stabilité locale consiste & affirmer que cette position d’équilibre
propre correspond & un minimum d’énergie. Analytiquement, comme

1
W = )7 + Ecijkl'ﬂj')/kl

la condition d’équilibre s’écrit

ow 0
19 a,y” ij ijki Ykl
La solution 'y?j de cette équation constitue la déformation de relaxation. La
condition de stabilité locale s’écrit alors
1 < o*wW

0= Wy +0v) = W(n) = 2\ o700
)

> 67i6vk + O(57°)
’YO

et, en négligeant le troisiéme ordre, elle s’exprime par la condition
82w = Cijr107ij0vk > 0 (4.21)

quelle que soit la variation de déformation d+;;. Cette condition revient & ad-
mettre que la matrice de Hooke est définie positive. Introduite pour la premiére
fois par Kirchhoff [49, 52] et utilisée aprés lui par Clebsch [9], cette condition
est actuellement admise de maniére assez générale [56].

Dans le cas d’'un corps isotrope, les deux formes quadratiques (—fg) et I?
sont positives et indépendantes. La positivité de la matrice de Hooke sera donc
réalisée si

G>0et K >0 (4.22)

Dans ce cadre, en effet, on ne pourra avoir Wo = 0 que si I et fg sont simulta-
nément nuls, ce qui, nous I’avons vu, entraine 7;; = 0. En termes du module de
Young et du coefficient de Poisson, les conditions (4.22) impliquent d’abord

IKG

E=-—""_>0
3K +2G

c’est-a-dire que le module de Young est positif. Le coefficient de Poisson, donné
par
3K -2G  3-2¢
"TOeK+2G  6+22
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pourra varier entre 1/2 pour G/K = 0 et —1 pour G/K = oo. Les conditions
sont donc, si les modules G et K sont finis,

1
l<v< 5
Il est & noter que les corps élastiques connus vérifient tous v > 0, bien que des
valeurs négatives ne soient pas absurdes sur le plan énergétique. Le cas extréme
K = oo se rencontre dans les corps incompressibles, au rang desquels on classe
généralement le caoutchouc. Le fait que K soit infini entraine quelques parti-
cularités qui nécessitent, dans les méthodes numériques, un traitement spécial
[37, 13, 16, 15].

4.4 Stabilité structurale de I’état de référence

Il faut se garder de croire que la stabilité locale définie ci-dessus implique
la stabilité structurale dans le cas général [36]. Ceci n’est vrai que dans le cas
de la linéarisation géométrique (petits déplacements). Dans le cadre des grands
déplacements, la non-linéarité des déformations en termes des déplacements peut
étre source d’instabilité. L’étude générale de la stabilité fera I’objet d’un chapitre
spécial. On pourra d’ailleurs consulter a ce sujet des ouvrages spécialisés [58, 86].

Nous remarquerons cependant, que, le plus souvent, la configuration de ré-
férence est un état d’équilibre stable. Il faut entendre par 1a que

USu) — Uy >0 (4.23)

I’égalité ne pouvant avoir lieu que si du; représente un déplacement de corps ri-
gide. Cette situation implique un certain nombre de faits que nous allons mettre
en évidence. A cette fin, développons la densité d’énergie de déformation sous
la forme

1
W(ou) = Wy + 6W + 552W + ...

ol apparaissent la variation premiére et la variation seconde. Par intégration,
on obtiendra

1
U(Su) = Uy + U + 5521/1 + ...
La condition d’équilibre, en ’absence de charge, s’écrit

U =0 (4.24)
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La condition de stabilité, déduite de (4.23), sera, au troisiéme ordre prés,
82U >0 (4.25)

I’égalité n’ayant lieu que si du; est un déplacement de corps rigide.
Calculons explicitement la variation premiére. On a, dans le cas général,

SW = 50:07ij + Cijrivij Oy

et, 'état de référence étant défini par «;; = 0, il vient
U = / s:07i;dV = 0 (4.26)
1%

quel que soit le champ de déplacements virtuels. On reconnait ’équation des
travaux virtuels en 'absence de charge, ce qui signifie que les contraintes rési-
duelles sont nécessairement auto-équilibrées. On dit encore que ce sont des états
d’autocontrainte.

Venons-en a la variation seconde. Dans ’expression générale

W = s9:6%7ij + Cijr107ij 07 + Cijra¥ii6 Vi

on note que, pour la position de référence,

vij = 0
1
5'7ij = §(Di6uj + DJ(S’U%)
52’7ij = Di5uij5um

ce qui meéne & ’expression

(52[/{ = / [sng,;(;uijéum + icl]kl(Dl(su] + Djéui)(Dkéul + Dléuk)}dv >0
1%

(4.27)
Cette condition montre que si, en chaque point, les trois valeurs principales des
contraintes résiduelles sont positives, la stabilité est assurée, puisque les mo-
dules sont définis positifs. Mais cette circonstance est rare et en réalité, il existe
presque toujours des zones ou les contraintes résiduelles principales sont néga-
tives. Lorsque ces contraintes résiduelles sont suffisamment grandes, la stabilité
peut étre compromise. La figure 4.1 donne un exemple d’une telle situation. La
barre centrale, trés élancée, peut étre comprimée a ’aide d’une vis, ce qui pro-
voque un état d’autocontrainte dans lequel les deux colonnes sont tendues et la
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1
T VI

FI1GURE 4.1 — Une structure pouvant étre instable dans son état de référence

barre centrale, comprimée. L’équilibre exige que la sommes des efforts dans les
colonnes égale leffort dans la barre centrale. Pour un effort de compression égal
a la charge d’Euler, la barre flambe, ce qui constitue une instabilité. Dans ce
cas, I’état de référence (barre rectiligne précomprimée) n’est pas stable, car la
moindre perturbation du déplacement transversal de la barre méne & un nouvel
état d’équilibre (flambé).

En conclusion, l'état de référence ne peut étre stable que si les contraintes
résiduelles de compression sont suffisamment modérées.

Passons a présent & la question de la relaxation des contraintes résiduelles :
peut-on trouver un champ de déplacements u{ qui relaze, ¢’est-a-dire annule to-
talement les tensions résiduelles ? 11 est clair que si un tel champ de déplacements
existe, les déformations %Qj qui en dérivent doivent vérifier la condition

sii (Vi) = S?j + Cijrivm =0
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soit
0 _ 0
Si; = —Clijki Vi

ce qui entraine
1
Uw)) = u0+/vs?ﬂ?jdv+5/‘/Cijmgﬂgldv
1
= U~ / CijrvgymdV < U (4.28)
v

Or, la stabilité de 1’équilibre de référence implique que cette inégalité n’est pas
possible dans le voisinage de cet état, car ’énergie n’y peut qu’augmenter. Ceci
ne signifie pas que la relaxation soit nécessairement impossible, mais seulement
qu’elle ne peut avoir lieu dans une configuration trés voisine de I’état de réfé-
rence. La stabilité de cet état équivaut en effet a dire qu’il se trouve au fond
d’un puits de potentiel. Mais on peut trés bien imaginer (fig 4.2) de passer

E:quf//'lz‘/:e instaple

i
Etat de
référence

Etat relaxé

FIGURE 4.2 — Relaxation par passage d’une instabilité

d’abord au sommet d’une « montagne »(point d’équilibre instable) pour redes-
cendre au fond d’un nouveau puits plus profond que le précédent, dans lequel
les contraintes résiduelles seraient relaxées.
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Ainsi, la relazation des contraintes résiduelles, quand elle est possible, sup-
pose toujours le passage d’une instabilité. Par ailleurs, il ressort de (4.28) que
l’état relaxé correspond a un minimum absolu d’énergie®.

Il est du reste assez aisé de trouver un exemple de relaxation par passage
d’une instabilité. Le systéme & deux barres de la figure 4.3 a étant supposé

a b

FIGURE 4.3 — Le systéme ci-dessus peut étre relaxé par passage d’une instabilité

monté sans contraintes résiduelles, on peut faire passer les deux barres a4 gauche
de leur leur ligne d’appui, moyennant une instabilité dite par claquage (snap
through) aprés quoi le systéme se retrouve dans une position d’équilibre sous
autocontrainte, représentée en b sur la méme figure. Dans cette position, les
deux barres sont comprimées, et le ressort est tendu. Cet état étant pris comme
référence, il ne peut y avoir de relaxation a gauche de la ligne d’appui des barres.
Pour annuler les contraintes, il faut nécessairement repasser 'instabilité en sens
inverse.

2. Ce probléme a été étudié dans le cadre des petits déplacements par Fraeijs de Veubeke
[36]. Comme il n’existe pas, en théorie linéaire, d’instabilités, la relaxation est alors totalement
impossible.
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4.5 Deéformations avec variations de température

4.5.1 Expression de ’énergie libre

Lorsque les températures des différents points du corps ne coincident pas
avec la température de référence Tp, il convient de développer 1’énergie libre,
non seulement en termes des déformations, mais encore en termes des écarts de
température

0=T-T, (4.29)

On écrira donc
oF oF
F=F(y;;,0) = F, —_— ” — ] 4
o0 = Rt () e+ (57),

2\ 45071/ T 07:;0T ) AR 0

+3%ordre

Les contraintes sont alors données par

OF
8%‘;‘

(6F) +< 0°F ) 9+( 0’F )
Mii ), Ovi; 0T ) 07:50Vk1 O’W

expression ou ’on voit apparaitre, outre les grandeurs connues s?j et Cyjxt, un
nouveau terme (—pj;;0), avec

( 82F ) <68”)
6ij = - 37 = -
vi;0T ) or /,

Il s’agit des contraintes qui naissent du fait que pour 7;; = 0, la dilatation
thermique est empéchée, ce qui induit des contraintes de compression lorsque la,
température s’éléve. Les grandeurs (—/3;;6) sont appelées contraintes de bridage
de Duhamel. L’expression générale des contraintes est donc

Sij =

sig= sy —Bi;0 + CijriVr (4.30)

~~
résiduelles bridage Duhamel  élastiques
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Comme on le sait, la dérivée de ’énergie libre par rapport a la température
est, au signe preés, égale & I’entropie. On a donc

oF
S = “ar

__@_827’?.._@9
- or ), \oy,or ), \or?),

Le premier terme sera tout naturellement noté Sy. Le deuxiéme fait intervenir
les 3;; déja définis. Enfin, pour le troisiéme, on note que

0*F B <8S > _pey
oT? oT —cte T
ou ¢, représente la capacité thermique par unité de masse, & déformation cons-

tante, généralisation naturelle de la capacité thermique & volume constant des
fluides. On a donc

Co
S = S0+ By + (%) 0 (431)

Rassemblant tous ces résultats, on obtient I’expression suivante pour la densité
d’énergie libre :

1 co\ 62
F(vij,T) = Fo + s)7ij — Sof + icijkl%j’)/kl — Bijbvij — (%)0 - (4.32)

4.5.2 Coefficients de dilatation thermique

Considérons un petit volume dV du corps, supposé a I’état relaxé a la tem-
pérature Tp. Chauffons ce petit volume en le bridant, c’est-a-dire en empéchant
tous ses déplacements. Au cours de cette opération, I’énergie libre prend la va-
leur

2
pcy\ 0
F=F-s0-(22) =
0 0 T /o 2
Relachons a présent les brides, laissant ainsi & ce petit volume la liberté de se
déformer, tout en maintenant sa température constante. (Ceci suppose que les
brides soient relachées progressivement et lentement.) L’énergie libre cherchera
un minimum, qu’elle atteindra pour

or
ij

= =30 + Cijrive =0
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soit pour une déformation
i3 (0) = Cr 4, Bri0

Le tenseur
aij = Cp B (4.33)

est appelé tenseur des coefficients de dilatation : c’est 'accroissement de v;; &
s;5 = 0, pour une variation de température unitaire. Dans le cas d’'un matériau
thermiquement isotrope, on a simplement

Q5 = aéij (4.34)

« étant le coefficient de dilatation thermique. En voici quelques valeurs :

Coefficients de dilatation
pour T = 30°C
Matériau 10% (K1)
Acier au carbone 11,1
Fonte grise 9,9
Bronze CuMn4Sn6 17,2
Laiton CuZn38 18,0
Aluminium, dural 23,1

4.5.3 Déformations adiabatiques

Nous avons déja signalé que les déformations d’un corps en vibration peuvent
étre considérées somme isentropiques et que cela entraine une légére modification
des modules par rapport au cas statique [47, 56]. La condition de constance de
I’entropie s’écrit

pc
S—So= (") 0+ By =0,

ce qui fournit la variation de température au cours de la déformation

T
0=~ (pcv ) ) Bigij (4.35)

Dans le cas d’un corps isotrope,

Bij = Cijridpia = Cijpra = 3K ad;;
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ce qui donne

T
0=-3 ( ) KO&’}/“‘ (436)
PCy /)

Ainsi, une augmentation de volume produit un abaissement de température, et
inversement, une diminution de volume éléve la température.

Le calcul des modules adiabatiques peut étre mené de plusieurs facons. On
pourrait par exemple développer ’expression de 1’énergie interne

U=F+TS

puis la dériver deux fois par rapport aux déformations. Il est plus simple de
raisonner comme suit : dans expression générale (4.30) des contraintes, intro-
duisons la variation de température (4.35) exprimant la constance de ’entropie :
il vient
0 T
sij = 8i; + | — | BrivkiBij + Cijrivr
PCv / o
Identifiant alors a
Sij = S(i)j + Cgﬁcl'Yk’l
on obtient simplement

T
ik = Cijra + <) Bij Bri (4.37)
0

pCy

Cas des corps isotropes
Examinons en détail le cas des corps isotropes. Comme
ﬂij = 3Koz51-j
on a

T T
ACij = () BijBri =9 () K?a®6;;61
PCv /g 0

v v

et

T
AC kY50 = 9 (
e

v

) K2y
0

ce qui permet d’écrire, dans le cas isentropique,

o1
U = U+ S?ﬂlj + i(oijkl + ACi k1) Vi Vel
0 -1 r 2 2
= U() + Sij’yij - QGIQ + i[K +9 - K« ]’Yii’}/kk
v/ o
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On constate donc que le module de Coulomb n’est pas affecté, tandis que le
module de compressibilité K est remplacé par

K=K +9 ( T ) K?a? (4.38)
0

pCy

La correction relative est donc

AK  K*_ K T ,

Comme nous le verrons ci-dessous, cette correction est de quelques centiémes,
ce qui permet de traiter les corrections du module de Young et du coefficient de
Poisson comme des différentielles. Des relations (4.18), on déduit d’abord

AB_AK 3K
E K 3K+G
(3K 4+ G)AK —3KAK
o 3K +G
_ _ G AK
- 3K+G K
_ BAK
T 9K K
soit
AE T
— —F((— 2 4.40
- (p%)oa (4.40)
de méme, comme
1+ E
V= —
2G

on a

Av :M:E(T)a2 (4.41)
0



4.5. DEFORMATIONS AVEC VARIATIONS DE TEMPERATURE 73

Exemple numérique

Considérons par exemple le cas de 'acier. On a

E = 2,1-10"Pa
v = 0,3
a = 1,1-107°K!
D 7800kg/m?
J
= 474"
v 7 K kg

ce qui donne, pour 7" = 293K,
E 2,1 101!

K= = =175-10°P
S0—2)  3.04 10 100Pa
. T 293
= 2= = .1,21-107° =9,671-10" P Pa?
4 <pcv>0°‘ 7800 - 474 ’ “
d’ou
AK
= 9Kp =9-(175-10%) - (9,671 - 107'°) = 0,01523
AE 5
- = Be= (2,1-10")-(9,671-107'%) = 2,031 - 1073
AE
Av = (1+v)7- =1,3-(2,031 107%) = 0,002640

La plus grande variation relative est celle du module de compressibilité. Elle est
de 1,5%. Pour le module de Young, elle n’est que de 2 pour mille. La petitesse
de ces différences justifie la pratique courante consistant & confondre les deux
types de modules.

4.5.4 Autre expression des modules adiabatiques

Proposons-nous d’exprimer ’entropie en termes de la température et des
contraintes. A cette fin, nous inverserons les relations

0
sij — 81 = Cijrivkr — Bij0

ce qui donne
_ 1 0 3
Yij = Cir(Skt — spr) + @b
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L’introduction de ce résultat dans l’expression (4.31) de I’entropie conduit a

pCy
T

S = So + aij(sij — s3y) + [( )0+a“ﬂ”] 0

Le facteur entre crochets est la dérivée de ’entropie par rapport & la tempéra-
ture, a contraintes constantes. Il est donc de la forme

<5‘S ) . pey
oT ), T
en notant ¢, la chaleur spécifique @ contraintes constantes. On a donc

_ 0 Pe
S =50+ Oéij(Sij — Sij) + (?p)o 0 (4.42)

Quant & la liaison entre ¢, et c,, elle est donnée par

ijBis T
Cp— Cy = % (4.43)

dans le cas général. Pour des corps isotropes, cela donne

_ 9K 2T
P

(4.44)

Cp — Cy

Dans le cas de ’acier traité dans la section précédente, on obtient

¢p— v 9-(175-10%) - (1,21-10719) - 293
o 7800 - 474

=0,0151

ce qui justifie le fait que l'on néglige d’ordinaire de distinguer les deux chaleurs
spécifiques.

Venons en & présent aux modules adiabatiques. De la formule (4.42) on
déduit que lors d’une déformation isentropique, la variation de température est

donnée par
T

0=——] cnlsn— s}
<PCP>0 ( 2

Dés lors, la déformation vaudra

. T
Yij = Cijii(sij — sij°) — (> o (s — spy)
PCp /o
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ce qui revient a dire que

_ T
(C*Yiim = Cijk — () ij Qg (4.45)
PCp /g
Dans le cas isotrope, on a donc
a \—1 1 T 2
(Cd) i = E[(l +V)0irbj — vOijbp] — | — | a”0i;0m (4.46)
PCp /o

Nous laissons au lecteur le soin de vérifier que les deux expressions (4.37) et
(4.45) des modules adiabatiques sont équivalentes, ce qui résulte de la relation
(4.43) entre ¢, et ¢,.

4.5.5 Mesure dynamique du module de Young

A ce stade, il convient de noter qu’il existe des méthodes fort précises de
détermination du module de Young adiabatique par des mesures de fréquences
propres. La figure 4.4 schématise un tel dispositif. Un barreau cylindrique est

4y

\_excrtation

FIGURE 4.4 — Mesure du module de Young par un essai vibratoire

appuyé en son milieu sur un trépied de faibles dimensions. Ses extrémités sont
excitées en vibrations longitudinales. La fréquence propre est donnée par

1 |FE
f:%\/;

ou / est la longueur du barreau et p sa masse volumique. Il en découle la relation

E = 4pl* f? (4.47)



76 CHAPITRE 4. CORPS HYPERELASTIQUES

permettant de déterminer F & partir de la fréquence propre.

Couplé 4 un essai de traction, cet essai se fait de préférence, non pas sur un
barreau cylindrique, mais sur I’éprouvette de traction elle-méme. Dans ce cas, la
formule (4.47) n’est plus valable, mais on peut, avec une bonne approximation,
la remplacer par

E =1 - 4pl*f?

le facteur correctif étant donné par (fig. 4.5)

X

P’ WSS~

FIGURE 4.5 — Cas de I’éprouvette de traction

ffi% Qsin® Z2dz

P =
ffgz Qcos? ZEdx

formule que 'on obtient aisément par la méthode de Rayleigh. Dans le cas
d’éprouvettes de traction assez longues, on peut considérer que dans les régions
ot Q # Qg, Qp étant le section de la partie cylindrique,

2

L o T T
sin 7%1et cos? —= ~ 0

1

et en notant
A =0 —-Q

on obtient

/2 /2
/ Q sin® Edm = Qo=+ AQ sin® Edm
—/2 ¢ /2 ¢

Q

Qoz + AV
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AV étant la différence entre le volume de I’éprouvette et le volume d’une éprou-
vette cylindrique de section 2y et de méme longueur :

14

(Le volume V peut du reste étre obtenu par pesée ou par immersion.) De la
méme facon,

0/2
/ Q cos? Lxdz ~ Qog
iy / 2

ce qui conduit finalement & la formule approchée

AV
~14+2—
v + Qol
Cette derniére formule est d’autant meilleure que la longueur des épaulements
est plus faible devant la longueur de ’éprouvette.

4.6 Exercices

Exercice 16 Un expérimentateur obtient, a l’aide d’un essai de traction sur
un matériau, E = 200G Pa et, par un essai de torsion, G = 110G Pa. Quel est
le coefficient de Poisson ? Cette valeur est-elle normale sur le plan théorique ?
Est-ce une valeur habituelle ¢

Exercice 17 Soit le systéme a deux barres de la figure 4.6, dont la position
de repos correspond a4 'angle «. Exprimer 'énergie de déformation a l'aide du
tenseur de Green pour différents angles 0 et chercher les puits de potentiel.

FIGURE 4.6 — Systéme & deux barres
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Solution - Pour un angle 0, la longueur d’une barre devient a/ cos 8, si bien que
| a® a®> \cos’a 1 (cos’a )

T=\Ccos?28  costa) 2a2 2 \cos?d
L’énergie de déformation vaut alors (extension simple)

1 EQU (cos? a 2
=2 By =" —— 1
u 2 & 4 <00529 )

Cherchons les extrema de cette expression. On a

%_EQK 0082a_1 20082a -
g = 2 cos2 0 cos3 0 St

Cette expression ne s’annule que pour les valeurs suivantes :

0=0
cos = cos o soit 0 = +«

Il y a donc trois positions d’équilibre en ’absence de charge. Sont-ce des puits ?
On a

U _ B <0032 a 1) (20032 a o4 6(:08204 sin? 9>

do? 2 cos26 cos3 0 costf
EQU [2cos® a 2
—— [ ———si 4.4
+ =3 (60839 smH) (4.48)

— Pour # =0, on a cosa < cosf) = 1, d’out d’U/dbH? < 0 : instable.
— Pour 6 = +a, on a
et il s’agit d’un équilibre stable.
Les figures 4.7 et 4.8 représentent ’allure de la fonction U et de sa dérivée.

Exercice 18 Ezprimer directement, a partir de la loi
. K
Wy = —2GI5 + 513

la loi de Hooke. En particulier, montrer que six = 3Kyki. Fxprimer enfin la loi
de Hooke inverse.
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-
-X K
FIGURE 4.7 — Energie du systéme & deux barres

qu -
de

FIGURE 4.8 — Dérivée de I’énergie

Solution - On a

SoA K
Wy = QGLJJU + 5(%@2
d’ou
oWy 09 Ovu
Spq = = 2GYij—L + Kk
- Mpg i, pq pq
Comme
R 1
Yij = Vi — g%l&'j
on a

0Yi; 1 1
T 850 — =81p0140i; = OipOiq — —Opqi
8qu ipCj 3 IpQlqQij pOia — 5opa%i
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D’autre part,

O
6’ypq ipQlg Pq

Il en découle 1
Spq = 2GYi;j (0ipdjq — §5pq5ij) + Kk pq

et, comme 4;; = 0,

Spg = 2Gpq + KVkkOpq
En particulier, on a

Spp = KYkk0pp = 3Kk
comme annonce.

La loi inverse s’obtient en partant de

R 1 K
Ypa = %qu - ﬁ'ykk‘qu
Comme
_ sk
Vkk 3K
il vient
. 1
Toa = pat g’Ykk(qu
1 K Skk 1 Skk

g o Sk 2 Skk s
5GP T 5G 3K 1 T 33 Ope
_ 1 11 1N s
= g 3\ 2g " 3K ) MO

1+v 1/14+v 1-2v
- g m3\E B )

1
= E[(l +V)Spq — VSkkOpq]
Exercice 19 Partant de la loi connue de la résistance des matériaux
1
%ij = (L +v)sij —vsudi]

a) Ezprimer s;; en termes de ;.

b) Calculer la densité d’énergie de déformation Ws.

¢) Donner la matrice de Hooke et chercher les conditions pour qu’elle soit
définie positive.

Solution
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a) Ona
E n v 5
Sij = ij S11045
J 1+ V,y T 14w 1%
Comme ) 19
Vi = E[(l +v) = 3vs; = 5 s
on obtient
Ev

ij dij

T+ 79 Y Aoy =2 0
v

= 2Glvi; + E'ﬂl(sij]

b) W= [sidyi; = G(vijvis + T, i)

c) Posant = ¥, ona
1+ B p
g 1+B8 B 0
—oa| B B 148 :
0 1
1

Les conditions de positive définition sont (positivité des déterminants princi-
paux) :
1. 1+ 8 >0, soit 8 > —1.
2. 1+B)2—-p2=1+28>0,soit §>—1/2.
3. (1+8)3+28-38%(1+8)=1+33>0,soit > —1/3
La plus forte de ces conditions est § > —1/3, ce qui s’écrit encore
v 1 3v+1-2w 1+v

- — 0
120 "3~ 3(1-20) 30-20)

Le signe de cette fraction est identique a celui du produit (14 v)(1 —2v), positif
pour

1
—-l<v<-—
V=3
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Chapitre 5
Elasticité linéaire

5.1 Linéarisation géométrique

Les équations d’équilibre, que I’on utilise les contraintes de Piola, celles de
Kirchhoff-Trefftz ou encore les contraintes eulériennes, font toujours intervenir
les déplacements, ce qui rend le probléme non linéaire. Mais si, en plus des
déformations, les rotations sont petites, on peut écrire

0ij + Djui = by (5.1)

ce qui constitue le cadre de la linéarisation géométrique. On parle souvent de
théorie des petits déplacements, bien que cette dénomination soit impropre, car
aucune restriction n’est nécessaire sur les déplacements de translation.

Moyennant ’hypothése (5.1), les déformations admettent 1’expression li-
néaire simplifiée

1
Eij = E(DZ’LL] + Djui) (52)

Les contraintes de Kirchhoff-Trefftz, celles de Piola et les contraintes eulériennes
sont alors pratiquement identiques, et nous les noterons o;; conformément a la
tradition. Les équations d’équilibre s’écrivent

DjO'jZ‘ +fi = 0dansV (53)
05 = Oy dans V 5. )
n;oj; = t;surS 5.5)

83
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Enfin, nous supposerons souvent, dans ce qui suit, le corps isotrope, cas ou
il admettra les équations constitutives

14

Cet ensemble d’équations forme la base de I’élasticité linéaire. Bien que consi-
dérablement simplifiées, ces équations restent passablement difficiles & résoudre,
excepté par voie numérique.

Signalons encore qu’en élasticité linéaire, la structure est toujours stable :
les phénoménes du type flambement ne peuvent étre traités & partir de ces
équations. Il en résulte également que les contraintes résiduelles ne peuvent
jamais étre relaxées par voie élastique.

5.2 Unicité de la solution

Nous allons établir un résultat important dia a Kirchhoff [48, 49]. On appelle
déplacements de corps rigide ou encore, modes rigides (linéarisés) les solutions
des équations €;; = 0. Ces équations qui s’écrivent !

Dﬂl,j + Dj’l.ti =0
admettent de toute évidence les solutions
Diuj = Wij
avec w;; = wj;. Mais alors, on doit avoir
Dyw;j = Drjuj = Diguy = Diwy;
ce qui entraine la chaine suivante d’égalités :
Dyw;j = Diywpj = —Diwjp = —Djwi, = Djwy; = Dywj; = —Dyw;

soit
Dkwij =0

11 vient donc, en notant w;; = e;;rwk,

U = Q5 + €kW; Tk

1. La démonstration peut étre faite encore plus simplement a partir des équations de Bel-
trami (voir section 5.4), établies indépendamment de ce résultat.
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avec ai et w; constants, représentant respectivement une translation d’ensemble
et une rotation (linéarisée) d’ensemble.
Cela étant, le théoréme de Kirchhoff s’énonce comme suit :

Théoréme 2 Deuz champs de déplacements vérifiant les conditions d’équilibre
ne peuwvent différer que d’un mode rigide.

En effet, soient u; et v; deux solutions des équations d’équilibre. On a, pour
tout déplacement virtuel du;

/Jij(u)(SEijdV:(ST:/Uij(V)(SEijdV
14 \4

ce qui entraine

/ [05(0) — 0i;(Vv)]deij = / Cijrileij(u) —e45(v)]de;;dV =0
v v

Choisissant alors du; = u; — v;, on obtient

/ Cijrleij(u) —ei(v)][en(u) — ep(v)]dV =0
1%
ce qui, vu la positive définition des modules, implique

Sij(U7V) =0

5.3 Meéthode directe de résolution. Equation de
Nayvier

La résolution d’un probléme d’élasticité peut étre menée en exprimant toutes
les variables en termes des déplacements, suite & quoi on cherche pour quel
champ de déplacements I’équilibre est vérifié; c’est la méthode directe.

Cherchons I’équation correspondante dans le cas isotrope. Les relations

14
0ij = 2G <Eij + 71 — 2V€kk5ij> (5.7)

entrainent
14
DjO'ji =2G (Djfji + 1_21/D15kk>
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Notant alors que
2Dj€ji = Dj(DZ"U,j + Djui) = Dijuj + Djjui

on obtient aisément I’ équation de Navier

1

On peut lui donner une autre forme en notant que

G (Djjui +

Au = graddivu — rotrotu

ce qui, tous calculs faits, donne

G (2(12y)graddivu - rotrotu) +f=0 (5.9)

1-—2v

5.4 Meéthode semi-inverse. Compatibilité

Le cheminement de la méthode directe est tellement naturel que ’on ne
pense guére & en analyser les étapes. Ce n’est pourtant pas sans intérét, pour la
bonne compréhension de la méthode semi-inverse. Ces étapes sont reprises dans

le schéma suivant :
) c PR
u — ¢ — o — | Equilibre

Partant du champ de déplacements, on en a déduit le champ des déformations a
I’aide d’un opérateur de dérivation J; les contraintes se calculent alors & l'aide
de l'opérateur matriciel C, et il suffit alors de vérifier qu’elles sont en équilibre.

La méthode semi-inverse consiste a suivre le chemin opposé. Dans un certain
nombre de cas, en effet, il est assez aisé de trouver la solution générale, en termes
des contraintes, des équations d’équilibre (5.3), (5.4) et (5.5). On devra alors
suivre le chemin inverse, représenté ci-dessous :

? c! P
u — ¢ ¢— o +— | Equilibre

Le passage des contraintes aux déformations se fait aisément par la loi de Hooke
inverse qui existe toujours, car la matrice des modules est définie positive. Mais
peut-on, & partir d’un champ de déformations, remonter aux déplacements ? 11
est clair que ce n’est pas possible dans tous les cas, car s’il existe le plus sou-
vent plusieurs champs de contraintes qui vérifient 1’équilibre, le théoréme de
Kirchhoff nous apprend qu’il n’en existe qu’un seul qui dérive d’'un champ de
déplacements 2. (C’est évidemment la solution cherchée.) Il en résulte que 'in-

2. Puisque les modes rigides ne donnent pas de contraintes
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tégration du champ de déplacements ne sera possible que moyennant certaines
conditions sur les déformations appelées équations de compatibilité.

FIGURE 5.1 — Illustration de la compatibilité

Avant de déterminer ces conditions, essayons de les interpréter par un raison-
nement physique. A cette fin, imaginons (fig. 5.1) que le corps soit découpé en
morceaux trés petits, et que chacun de ces morceaux soit déformé de maniére
arbitraire. En dehors de cas trés particuliers, on ne pourra pas recoller entre
eux les morceaux ainsi déformés de maniére que leurs bords se correspondent
parfaitement. La compatibilité exprime précisément que ces morceaux pourront
étre réassemblés correctement, comme les piéces d’un puzzle.

La présentation la plus naturelle des équations de compatibilité est celle de
Beltrami, qui procéde par une voie constructive, donnant ainsi une méthode
d’intégration des déplacements.

Partons de I’identité

1 1
Di’u]‘ = i(DﬂLJ —+ Djul) —+ i(Dlu] — Dju,;)

ou apparait, outre le tenseur des déformations, le tenseur antisymétrique

1
wij = §(DZ’U,] - D]'U/Z) (510)
Ce dernier est directement lié au demi-rotationnel
1
W = §€krsDrus (511)
puisque
1 1
CijkWk = §€kij€krsDrus = 5(5ir5js — 0is0jr) Dyrus = §(D¢Uj — Dju;) = wij
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On peut donc écrire
DZ"LL]‘ = €5 t €ijkWk (5.12)

Dans cette équation, seuls les €;; sont donnés. La question de la compatibilité
se raméne donc & déterminer s’il existe un champ wy, tel que (g, + eijrwi) soit
le gradient d’un vecteur. Pour qu’il en soit ainsi, il faut que les dérivées croisées
soient, égales, ce qui s’écrit

0= epmiDm(Diuj) = epmiDmEij + epmieijkmek
Le dernier terme du second membre s’écrit encore
mek(épjékm — 5plc5jm) = Dkwképj — Djwp
Il vient donc
Djwp — Dkwképj = epmiDmgij (5.13)
En particulier, en contractant sur les indices p et j, on obtient
Dj(.dj(l — 3) = ejmiDmeij =0

puisque €;; est un tenseur symétrique. Soustrayant cette équation, combinaison
de plusieurs des équations (5.13), & celles-ci, on obtient le systéme équivalent

Diw,=c¢ mle€1 5.14
P P J

Ce sont les équations de compatibilité de Beltrami, auxquelles il faut donc accor-
der le sens suivant : un champ de déformations €;; est compatible si et seulement
st on peut lui associer un champ de vecteurs-rotation w, qui vérifie les équations
de Beltrami.

Cependant, les cas ou ’on peut exhiber directement le bon vecteur-rotation
sont trés rares (voir un exemple en section 5.9). Dans la plupart des cas, il
est préférable de déterminer les conditions de son existence. Il s’agit encore de
I’égalité des dérivées croisées :

0 = egrj Dy (Djwp) = eqrjepmiDrmeij
ce qui correspond a la nullité du tenseur (symétrique) d’incompatibilité
qu = epmieqermrsij (515)
introduit par Washizu [93]. Les six équations
Tpg =0 (5.16)

sont, connues sous le nom d’équations de compatibilité de Barré de Saint-Venant.
Elle garantissent l’existence du vecteur w; et donc aussi la compatibilité.
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5.5 Propriétés du tenseur d’incompatibilité

Le tenseur d’incompatibilité jouit de quelques propriétés intéressantes. Tout
d’abord, que la compatibilité soit vérifiée ou non, on a toujours

DyTyq = epmi€qrjDpmr€ij = €qrjDr(epmiDpmeij) = 0 (5.17)

c’est-a-dire que le tenseur d’incompatibilité est toujours un champ intérieure-
ment, auto-équilibré.

Par ailleurs, ce tenseur permet de répondre & la question de 'existence d’un
vecteur w,, unique sur une surface. Il s’agit de savoir si sur toute courbe fermée
de cette surface (fig. 5.2), on a bien

B

A

FIGURE 5.2 — Unicité du vecteur-rotation sur une surface

Oz/dwp:/Djwpdmj
1 C

Djw, étant calculé a partir de (5.14). Utilisant le théoréme de Stokes-Ampeére,

on calcule
/CDjo.)pd.’L‘j = /CepmiDmEijdxj

/S nqeqerT(epmiDmaij)dS

ce qui donne

/dwp:/nqeqrjepmiDrmEide:/anquS
C S S
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et la nullité de cette grandeur sur toute courbe fermée tracée sur S nécessite
donc

ngTgp = 0 sur S (5.18)

C’est ce que nous appellerons les conditions de compatibilité superficielle.

5.6 Autre forme des équations de compatibilité
de Saint-Venant

On emploie souvent, au lieu du tenseur d’incompatibilité ci-dessus, une autre
expression équivalente, que nous utiliserons plus loin. On peut ’obtenir en s’ap-
puyant sur le fait suivant : si ap, est un tenseur symétrique, le tenseur

s = €klp€ksqUpq (519)
lui correspond biunivoquement. En effet, on a
s = (0150pq — O1g0ps)apg = applis — s
et, en particulier,
ay = 3app — ay = 2ay
ce qui permet d’obtenir aisément la relation inverse

als = §dpp(sls - dls

Dans le cas présent, il est donc indifférent d’annuler 73, ou le tenseur Ty qui lui
est associé par la relation (5.19). Or,

Tis = €kipChsqd pg

CkipCpmiChsqCqri DmrEij

(Okm Ot — OkiOtm ) (Okr0sj — OkjOsr) DmrEij
= (0kmO0ii — OkiOtm ) (Dmr€ij — DmsEik)

ce qui fournit une seconde forme des équations de compatibilité de Saint-Venant :

Tis = Digers — Digis — Diseur, + Discpr = 0 (5.20)
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5.7 Equations de Beltrami-Michell

Dans le cas d’un corps élastique homogéne et isotrope, il est possible d’ex-
primer directement les équations de compatibilité en termes des contraintes, ce
qui constitue un raccourci avantageux.

Rappelons d’abord 1’établissement de 1’équation de Hooke inverse. Partant
de (5.6), on calcule d’abord

1+v
Oii = 2G1 —,, G
d’ott L9
—2v
2Gei = 7 T, i
La réintroduction de ce résultat dans (5.6) donne
v 1-2v
2G€ij =045 — 71 “ oy 71 T O’ll(sij

soit encore, en multipliant les deux membres par 1/(2G) = (1 +v)/E,

l[(l +v)oi; — voudsj (5.21)

eij:E

Ceci posé, on a visiblement

2GT;; = (Dixoij + Dijokk — Dikojk — Djro)
v
- m(DkkUll(Sij + Dijoudpr — Dikoudjx — Djroudir)

Notant alors que, si I’équilibre est vérifié, on a
Dyoyj = —f;

on transforme I’expression obtenue en

1 v
——Djjone + (Difj + Djfi) — ——

9GTh = Dypors
GT kkaj+1+u 1+v

Dyioyidij

Ce résultat peut encore étre amélioré si I'on note que la contraction sur les
indices 4 et j donne

. 1—
2GT); = 2= Dyoii + 2Di f; = 0
14+v
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c’est-a-dire 1+
v
Dikoii = =7

D;f;

— UV
Il vient donc finalement

. 1 v
QGTZ-J— = Dkko'ij + 71 T Z/Dijakk + (lej + Djfz + 71 — VDkfkéij> =0 (522)

Ce sont les équations de Beltrami-Michell [61]. En I’absence de forces de volume,
elles se raménent & l’expression simple

1
Dyroij + 1o V.DijUk;k- =0 (5.23)
Ce sont des combinaisons de I’équilibre et de la compatibilité, qui n’auront donc
la valeur d’équations de compatibilité que si I’équilibre intérieur est déja vérifié
par ailleurs.

5.8 Compatibilité dans les corps multiplement con-
nexes

5.8.1 Introduction

Les conditions de compatibilité obtenues ci-dessus sont nécessaires pour as-
surer 'existence des déplacements. Mais sont-elles suffisantes ? Cette question se
réduit fondamentalement & la suivante : étant donné un champ f; irrotationnel
dans V', admet-il un potentiel ¢ tel que f; = D;p dans V' ? La construction du
potentiel est classique : étant donné un point a € V', on calcule ¢ en un point
x € V par la formule

p(x) = p(a) + /C fidx; (5.24)

Caz étant une courbe quelconque de V joignant a a x (fig. 5.3). Bien entendu,
cette formule ne définit un potentiel unique que si la valeur p(x) ne dépend pas
de la courbe choisie. Etant donné deux courbes différentes C; et Co (fig. 5.4), on
doit donc avoir
fidz; = fidz;
C Cs
ou, ce qui revient au méme

/ fidz; =0 (5.25)
C1U(—C2)
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FIGURE 5.3 — Intégration du potentiel

X
4

d

FIGURE 5.4 — Unicité du potentiel

en notant (—Cs) la courbe Co parcourue en sens inverse. En d’autres termes, la
circulation de f; sur tout circuit fermé doit étre nulle.
A ce stade, deux cas sont possibles :

1. Sur tout circuit fermé de V', on peut appuyer une surface S entiérement
contenue dans V. On dit alors que V est simplement conneze (fig. 5.5).

2. Il existe des circuits fermés de V' sur lesquels on ne peut appuyer aucune
surface entiérement contenue dans V. On dit alors que V' est multiplement
connezxe (fig. 5.5).

Considérons d’abord le premier cas, qui est du reste le seul & étre traité dans les
manuels élémentaires d’analyse. Par application du théoréme de Stokes-Ampére,
on a alors sur un circuit quelconque (fig. 5.7)

/f~ds=/n-rotfd$
c s
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FIGURE 5.6 — Multiplement connexe

soit, dans nos notations,

/fq;dmi:/nieijijfde
C S

et comme f; est irrotationnel,
c

donc P’existence du potentiel est assurée. Il en découle que dans un corps sim-
plement connexe, les conditions de compatibilité suffisent & assurer ’existence
du champ de déplacements.

5.8.2 Topologie des corps multiplement connexes

Dans un corps V' quelconque, deux circuits sont dits réconciliables si ’on
peut faire coincider le premier avec le second par une déformation continue ne
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FIGURE 5.7 — Cas d’un ouvert simplement connexe

FIGURE 5.8 — C; et Cy sont réconciliables

le faisant pas sortir du corps. La trajectoire de réconciliation définit donc une
surface S C V (fig. 5.8).

Certains circuits peuvent étre déformés jusqu’a ne plus former qu’un point :
on les appelle réductibles. Tout autre circuit est irréductible. Toute surface S
construite sur un circuit irréductible coupe donc OV (fig. 5.9).

Un circuit irréductible C est dit simple si 'on peut construire sur C une
surface S telle que S N CV soit d’un seul tenant. Sinon, C est dit composé.
Intuitivement, un circuit simple « n’entoure qu’un trou ».

Appliquée aux circuits simples, la condition C; R Cs (R signifie « réconciliable
avec ») est une relation d’équivalence (fig. 5.11) :

Ci R (i (trivial)
CiRCetCo RC3 = CiRCs
Cl R CQ = CQ R Cl
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F1GURE 5.10 — C; est simple, Cy est composé

Elle divise donc les circuits simples en classes d’équivalence. Le nombre de ces
classes, +1 (pour les circuits réductibles) définit la multiplicité de la connezion
du corps V.

5.8.3 Intégration d’un gradient sur un corps multiplement
connexe

L’intérét des définitions précédentes réside dans la propriété que voici :

Théoréme 3 Etant donné un champ irrotationnel f;, ses circulations sur deuz
circuits simples réconciliables sont identiques.

Soient en effet a € C; et b € Cs deux points qui se correspondent dans la
déformation de C; & Co (fig. 5.12). Lions-les par la trajectoire Cs de a vers b
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FIGURE 5.11 — « réconciliable avec » est une relation d’équivalence.

F1GURE 5.12 — Constantes cycliques

lors de cette déformation. Alors,

fidz; — fidz; =
Cl CQ

fidx; + fidx; — fidxz; — fidz; =0
Cs Co Cs C1

car le circuit C = (Cs,C2, —C3, —C1) est réductible, si bien que

/fidfﬂi =/ nieijr D frdS =0
C S12
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Ainsi, il existe, associée & chaque classe de circuits simples, une constante cy-
clique Ap égale a la circulation de f; sur un quelconque des circuits de cette
classe.

F1GURE 5.13 — Cas des circuits composés

Le cas des circuits composés s’y réduit aisément. En effet,comme le montre
la figure 5.13, il est possible de tracer autour de chaque composante connexe de
SN CV un circuit simple. A I’aide de ponts comme ci-dessus, on obtient que la
valeur de la circulation de f; vaut la somme des constantes cycliques relatives
aux différents trous embrassés.

De tout ceci, il résulte qu’un champ irrotationnel dans un ouvert de connexion
m-uple admet un potentiel si et seulement si les (m — 1) constantes cycliques
des classes de circuits simples sont nulles.

5.8.4 Conditions globales de compatibilité dans les corps
multiplement connexes

Partant des relations

Djwp = epmiDmsij

on commence par intégrer les rotations, en supposant vérifiées les conditions de
compatibilité de Saint-Venant :

y
wp(y) = wp(0) +/ epmiDmeijda;
0
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par un chemin quelconque. Pour assurer I'unicité, il faudra que sur chaque classe
de circuits simples, les trois constantes cycliques

Awpz/epmiDmsijdxj (526)
c

s’annulent, ce qui donne 3(m — 1) conditions pour un corps m fois connexe.
Les déplacements se calculent alors & partir des relations
Di’LLj = 5ij + eijpwp

Dans ce cas-ci, il faut faire attention & ’existence possible de Aw,. Pour deux

FIGURE 5.14 — Intégration des déplacements
circuits C; et Cy réconciliables (fig. 5.14), on a, avant de faire un tour,
w7 (b) = u5 (a) + /C (4 + exjpwy )i
3
et, aprés avoir fait un tour,
uf (b) = u] (a) + /Cs (gij + eijpw, )da;
soit, par différence,

Au;(b) = Auj(a) + eijpAwy(b; — a;) (5.27)

c’est-a-dire que le saut de déplacement se compose d’une translation Auj(a) et
d’une rotation e;;pAwy,(b; — a;). Tout saut est annulé moyennant les conditions
Aw, =0 et

Auj = /(Q’j + eijpwp)dxi =0 (528)
C
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5.8.5 Interprétation de Weintgarten-Volterra

F1GURE 5.15 — Coupure rendant le corps simplement connexe

FI1GURE 5.16 — Déplacements des lévres de la coupure

Comment interpréter le fait que les conditions locales de compatibilité ne
suffisent pas dans le cas d’un corps multiplement connexe? Faisons des cou-
pures rendant le corps simplement connexe. Il suffit pour cela de supprimer
Pexistence de circuits irréductibles (fig. 5.15). A partir des relations locales de
compatibilité, on peut alors construire un champ de déplacements dans le corps
ainsi transformé. Mais en général, les lévres de la coupure vont alors s’écarter
d’une translation et d’une rotation : ce sont les dislocations de Volterra [96, 91].
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Pour recoller le lévres de la coupure, il faudra appliquer au corps des efforts
capables de I'obliger & vérifier les équations globales Au, = 0 et Aw, = 0. Il
est donc possible, en fabriquant par exemple un tube par cintrage et soudage,
d’introduire des contraintes résiduelles. Ces contraintes ne pourront pas étre
annulées sans rompre la compatibilité. C’est pourquoi on dit encore qu’un corps
m fois connexe est 6(m — 1) fois cinématiquement hyperstatique.

5.9 Sur l'indépendance des équations de compa-
tibilité

Les équations de compatibilité de Saint-Venant sont au nombre de six. Mais
sont-elles totalement indépendantes? Nous allons montrer que, moyennement
certaines conditions sur la surface du corps, on peut se limiter & ne vérifier que
trois équations de compatibilité. Nous commencerons par établir deux lemmes
dus a Fraeijs de Veubeke [36], qui nous aideront & obtenir des théorémes plus
généraux dus & Washizu [93].

Lemme 1 Sil’on se donne arbitrairement les éléments diagonauz €11, €22, €33
du champ de déformation, il est toujours possible de le compléter de maniére a
le rendre compatible.

En effet, soit (u?,u9,uY) une solution particuliére des équations

0 0 0
Diuj = €11, Douy = €92, Daug = €33
Il suffira d’écrire

1 1 1
€12 = §(D1U8 + Dauf), €93 = §(D2Ug + D3uy), €31 = i(DSU? + Dyug)

Lemme 2 Si l’on se donne arbitrairement les termes non diagonauz €12, €93,
€31 du champ de déformation, il est toujours possible de le compléter de maniére
a le rendre compatible.
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En effet 3, il suffit de copier partiellement le raisonnement de Beltrami, en écri-
vant

Dou; = €21 —ws3
Dsuy = &31 +w2
Diuy = e12+ws
Dius = €30 —wi
Diuz = €13 —ws
Dous = €93+ wy (5.29)

Les deux premiéres équations seront compatibles, c’est-a-dire que ’on pourra
trouver un déplacement uq, si

D3ws + Daws = D3eay — Daesy (5.30)
La deuxiéme paire d’équations, relative a l'existence de usq, exige
D3(A)3 + D1w1 = D1532 — D3€12 (531)

Enfin, le troisiéme couple d’équations, relatif & ’existence de ug, conduit a la
condition

Diwi + Dows = Dog1g — Dieog (532)

Visiblement, la somme des trois conditions (5.30), (5.31), (5.32) donne
Dywy + Dowsy + D3ws =0

ce qui nous rameéne aux conditions

Diywy = —Dgzea1 + Daoegy
Dowy; = —Dieza + Dsero
D3wsz = —Dae13+ Digas

qui permettent toujours de trouver une solution particuliere w?. Il suffit alors
d’introduire ce champ w? dans les relations (5.29) pour obtenir une solution
particuliére u{ dont on pourra déduire les déformations manquantes.

3. La présente démonstration différe de celle de Fraeijs de Veubeke
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5.9.1 Deux résultats généraux sur les champs d’autocon-
trainte

Les deux lemmes ci-dessus vont nous permettre d’établir deux théorémes sur
les états d’autocontrainte.

Théoréme 4 Soit 0;; un état d’autocontrainte, c’est a dire vérifiant Djo;; = 0
dans 'V et njo;; =0 sur S. Si ce champ a ses termes diagonauz nuls dans V, il

est identiquement nul.

En effet, il résulte du deuxiéme lemme ci-dessus que ’on peut trouver un champ
de déplacement v; tel que

1 ) .
0ij = 5 (Divj + Djvi) , i #
Alors, comme 017 =0, 093 =0 et 033 =0, on a

(Di’l)j + DJUZ)dV

O’ij

N =

/ (20%, + 2035 + 203,)dV
v

I
—

= njaijvidS—/ ’UiDjO'jidV
S 14

Il
o

puisqu’il s’agit d’un état d’autocontrainte.

Théoréme 5 Soit 0;; un état d’autocontrainte, c’est a dire vérifiant Djo;; = 0
dans V et njo;; = 0 sur S. Si ce champ a ses termes non diagonauz nuls dans
V', il est identiquement nul.

Le schéma de la démonstration est le méme, en se basant sur le premier lemme

ci-dessus.

5.9.2 Les deux théorémes de Washizu

Revenons au tenseur d’incompatibilité T;;. On sait qu’il vérifie I’équilibre
intérieur :
D]‘Tji =0dans V

Il en découle les deux théorémes suivants :
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Théoréme 6 Si un champ de déformations satisfait aux seules équations de
compatibilité Ty, = 0, Ths = 0 et T33 = 0 dans un domaine V, le tenseur T;; est
nul dans V chaque fois que les conditions de surface n;Tj; = 0 sont vérifiées®.

En effet, les conditions sont telles que le tenseur d’incompatibilité est un état
d’autocontrainte dont les éléments diagonaux sont nuls. De la méme fagon, on
ale

Théoréme 7 Si un champ de déformations satisfait aux seules équations de
compatibilité T1o = 0, Toz = 0 et T3 = 0 dans un domaine V, le tenseur Tj; est
nul dans V' chaque fois que les conditions de surface n;Tj; = 0 sont vérifiées®.

5.9.3 Autre énoncé des théorémes de Washizu

Nous avons vu en section 5.5 que la nullité de ’expression n;T;, sur la sur-
face du corps est une condition nécessaire & l’existence d’un vecteur rotation
univoque sur cette surface. On peut donc encore énoncer le

Théoréme 8 Si le vecteur rotation est défini de maniére univoque sur la sur-
face, il suffira, pour assurer la nullité du tenseur d’incompatibilité, d’exiger un
des deuzx triplets de conditions T11 = Tos =T33 =0 ou T1o = Toy = T31 = 0.

5.10 Exercices

Exercice 20 Ecrire explicitement les siz composantes du tenseur d’incompati-
bilité T;;

Solution
Ti1 = Dagess + D3zean — 2Do3e03
Tro = Dszerr + Diiesz — 2D13€13
T33 = Di1€22 + Daserr — 2D12612
Ti2 = Dasesy + D3i1g23 — Dor1e33 — D3szenn
Toz = Dsig12 + Di2es1 — D3oern — Diies
T31 = Diseaz + Dazera — Dizean — Dazezr

4. Washizu exigeait en fait T;; = 0 sur S, ce qui est plus restrictif
5. Méme remarque que pour le théoréme précédent
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Exercice 21 Montrer qu’un champ de contraintes en équilibre homogeéne a l’in-
térieur de V est en général formé des dérivées secondes de trois fonctions de
contrainte que l’on peut définir d’au moins deux maniéres différentes.

Solution - Les relations
DjO'ji =0

admettent, si I’on fait provisoirement abstraction de la symétrie des contraintes,
la solution générale

0ji = €jDi A
les Aj; étant des fonctions de contrainte du premier ordre. On jouit, dans cette
expression, d’une invariance de jauge, en ce sens que ’on ne modifie pas les
contraintes en remplacant les A;; par

Ay = Ay + Dy

1; étant un vecteur quelconque. On peut en particulier choisir les ¢); de maniére
a annuler Aqq1, Ao et Ass : il suffit pour cela que

D1ty = —Ayy, Dathg = —Agg, D3thz = —Ass
La condition de symétrie des contraintes s’écrit alors
0 = erjigji = €jirejpgDpAgi = DypAqi(6ipdr — bigpr)

soit R . R
0= D;A,; — D Ay; = DAy

puisque, par construction, A;; = 0. La solution générale de cette équation a la
forme R

Ari = eimanBrn
A nouveau, on jouit d’une invariance de jauge, car on ne modifie pas les Ay; en
remplacant B,.,, par

Remarquons d’abord que I'on peut choisir les x, de maniére & symétriser B
en effet, pour obtenir

eirnBrn = eirnBrn + eirnDnXT =0

il faut que
einanXT = eirnBrn
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ce qui est possible si

Di<eirnBrn) =0
ce qui revient & dire
_erinDiBrn = _Ar’r =0
condition effectivement vérifiée. On obtient ainsi ’expression

0ij = €ik1€jmnDrm Bin (5.34)

avec By, symétrique. Mais on peut aller plus loin en jouant sur une nouvelle
forme de I'invariance de jauge, qui ne rompt pas la symétrie : il résulte en effet de
I’expression du tenseur d’incompatibilité que les contraintes ne sont pas altérées
si I’on remplace Bij par

t
—_

Bij = Bi; + i(Diﬁj + D;Bi)

Or, il est possible de trouver un champ 3; qui vérifie I'une des deux conditions
suivantes :

1. X(D;B; + DiB;)

2. D11 = —Bi1, Dafla = —Bay, D3fs = —Bss

fBM pour i # i

Pour le choix (1), le tenseur Bij se réduit a le seule diagonale. En notant
1 = Bi1, p2 = Bas et 3 = Bss, on obtient

o11 = Daaps + D33z
o2 = Dasp1 + Di1ips
o33 = Di1pa + Daapy
o2 = —Dizps
o253 = —Dazpr
031 = —Ds1p2

C’est le systéme de fonctions de contrainte de Mazwell (1870) [75].
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Le choix (2) méne a un tenseur Bij réduit a ses termes non diagonaux. En
notant ®; = —2Bsy3, $5 = —2B3; et &3 = —2B14, on obtient

o1 = Dy3®y

022 = D3P,

o33 = Di12®3
1

o1z = —§D3(D1‘1>1 + Dy®y — D3®3)
1

o3 = —§D2(D3<I>3 + D1®; — Dy®s)
1

o3 = —§D1 (D3®s + D3®3 — D1®4)

C’est le systéme de fonctions de contrainte de Morera (1892) [75].

Exercice 22 FEn théorie des poutres, on pose

0.z = a(z)+ab(z) +ye(z)

Ope = 0Oyy = 0

Montrer que, dans le cadre de ces hypothéses, et pour autant que la poutre soit
simplement conneze, il est toujouirs possible de trouver des contraintes oy, 0y
et 0., de maniére a assurer la compatibilité.

Exercice 23 Analyser les conséquences du théorémes d’unicité de Kirchhoff en
ce qui concerne

— la stabilité ;

— les contraintes résiduelles.
Peut-on étudier le flambement dans le cadre de la théorie linéaire ?

Exercice 24 Quelles sont les conditions pour qu’un champ de déformation de
la forme €;; = f(x)0;; soit compatible ?

Solution - On a

qu = epmieqermrf(sij = Dmrfepmieqri
= Dmrf(apqamr - 5pr5qm)
- Dmmfépq - quf

soit
Dpof = Dy fpq (5.35)
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Contractant sur p et g, on obtient
Dypf = 3Dumm f 50it Dy f =0
ce qui, comparé & (5.35) donne
Dpef =0
La solution de ces 6 équations est
f=ap+ o121 + agxe + aszs

Exercice 25 A partir des équations de Navier, étudier le probléme d’une spheére
creuse épaisse soumise a une pression interne. En déduire le cas limite d’une
faible épaisseur.

Solution - La symétrie du probléme implique ug = u, = 0 (dans les coordonnées
sphériques), soit u = ue,. On a encore Ju/90 = du/0p = 0 . Il en résulte

. 1 0,5 . 19,,
dlvu:m E(T sinfu) + 0+ 0 :T—ZE(T w)
et
N A
rotu:m o 90 9y =0
U 0 0

Les forces de volume étant nulles, on a simplement

graddivu =0
ce qui signifie que
divu =C
soit, explicitement,
d o
il = (Cr?
o (r*uw) T

On en déduit successivement

puis
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ce que 'on peut encore écrire

B
u=Ar+ —
r
Les déformations sont donc
ey = P = A-28
€00 =Epp = 5 = A+r§3
Err + oo + 6@@ = 3A
On en déduit aisément les contraintes :
o = 2G| &+ 15 divu)
2B 3v
= 2G (A A
r3 1-2v )
1+v A 23)

000 = Opp — 2G

Les conditions aux limites sont

o = —p en r=R;
o = 0 en r=R,
On en déduit d’abord
B ]ié 1+v
2 1—2v
ce qui donne
—  9G ALty 1_&2 _ EA __ R}
Orr = 1—2v r3 - 1—2v r3
R?

_ _ 1+ _ EA Rg
To0 = 0pp = 2GA7T (1 + 27‘3) = 1o (It 2r3)
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Pour r = R;, on trouve

BA (| R
P=1"9, R3

soit

La solution finale est donc

Orpr =

= (5.36)

0060 = Opp =

Quant au déplacement, il vaut

B 11+v R
=Ar+—==A - -
“ r+r2 {T+21—21/r2]

:m[(2—4u)+(1+1/)R§
) r

R}
2B
soit
RS
or -4+ 1Q+v)=%
u=-— T (5.37)

2F R3

"1

Dans le cas d’une faible épaisseur, c’est-a-dire t/R = n < 1, ou ¢ est I’épais-
seur, et R, le rayon, on a

r=R(1+np), avec —
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et
R.=R(1+ g), R = R(1 - g)

d’ou
&_1—1—17/2_1 7

R, 1-n/2 1—n/2

=1+71+0(?)

et
R\
) =1 2
(R) +3n+0(°)
De la méme facon, on a
r=R(1+O(n))

et

R. _1+n/2  l+up+n(z—p) 1 )
+a(g = p) +0r)

r 14+np 1+mnp
d’ou
R.\* 1
() =1+3n(5 —p) + O
r 2
On en déduit
B3 -p 400 (5-p+0n) 1
puis

3 t3n —p)+00?) +1
3n+0?)

000 = Opp =P

2tmG-p+O0W) _ p
3n(1+ O(n)) 21

(1+0(n)

et enfin

~ pR(1+0(m)) 2—4v) + (1 +v)[1 +3n(3 — p) + O(1?)]
- 2F 30+ O0(n2))

_PR(B-31)(1+0(m) _ pR

2E  3n(1+ O(n)) 2En

(1=v)(1+0(n)
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A un ordre de 7 prés, on a donc

o & =p(5 = p) (=00))
ow=0ps = B (= O/n)) (539)
_ pR*(1-v)
" 2t

On le constate, en comparaison des autres contraintes, o,, est de 'ordre des
termes négligés. Il est donc raisonnable de la considérer comme approzimative-
ment nulle. C’est pourquoi on considére généralement qu’une sphére mince sous
pression est en état plan de contrainte (o, =~ 0).

FIGURE 5.17 — Sphére mince : calcul de ogg.
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La valeur de ogp peut étre obtenue par le raisonnement simple que voici (fig.
5.17) : la résultante verticale des pressions sur la demi-sphére vaut

/2
p/ cosfdS = p/ cosf - 2w Rsin@ - Rdf
s 0

w/2
= prR? / sin 260d0
0
/2
B o | cos2f
- [,
R2

= p%(cos 0 — cos)
= prR?

Cet effort est équilibré par les contraintes ogg sur I’équateur, dont la résultante
vaut

oot - 2T R
On a donc
prR?  pR
g, = = —
%" onRt 2t

Un raisonnement semblable prouverait que o, a la méme valeur. On en déduit
d’ailleurs

_E_l( )_1_V _ﬁ(l )
g — R = E (ox:T:} VOypyp) = E gpyg = 2F1 14
d’ou =2
_ bR
u_2Et(1 v)

Exercice 26 Montrer que les hypothéses de Saint-Venant pour les poutres,
Op =Tgy =0y =0

impliquent

o, = ao(z) + za1(2) + yaz(z)
ol ag, a1 et az sont des fonctions affines de z pour que la compatibilité soit
vérifiée.

Solution - Les équations de Beltrami-Michell s’écrivent alors
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1.
L(‘yaz — 0
1+v ox2
1 0%,
- 9% _
1+v 0y?
1 0%, — 0
1+v0zdy
ce qui implique
o, = ag(z) + za1(z) + yaz(z)
2.
1 820'2 62Jz
Ao, + —— = 0= =0
et 1+ v 0xdy 0z
1 82UZ 1 da1
ATy, + —— = 0=2Ar,+———=0
g +1+1/8x82 g +1+de
1 9% 1 day
A — 2 = 0=A — =
7-yz_|—1—i—ucr“)g/<9,2 Ty2+1+1/d2



Chapitre 6

Torsion des poutres
prismatiques

6.1 Notion de poutre

Une poutre est un corps élancé, c’est-a-dire qu’une de ses dimensions surpasse
largement les autres (fig. 6.1). Nous placerons l’axe des z suivant la grande
dimension. Dans une poutre prismatique, la section €2 est indépendante de z.
Nous placerons ’origine des axes Gz, Gy de la section au centre de gravité de
celle-ci, dans les axes principaux d’inertie (le triedre (G,z,y,z) est supposé

dextrorsum). Dés lors,
/ xdQ = / yd§) = / xyd =0 (6.1)
Q Q Q

Nous noterons

Q:/ 1dQ, II:/:ﬂdQ, Iy:/y2dQ (6.2)
Q Q Q

La surface latérale de la poutre, y compris celle des trous éventuels, est appelée
manteau.

115
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Section 12

FIGURE 6.1 — Poutre

6.2 Torsion uniforme

Les hypothéses de la théorie classique des poutres de Barré de Saint-Venant
[4, 3] sont

0, =0, 0,=0, 75y =0
Pas de charge sur le manteau (6.3)
Pas de forces de volume

Parmi les différents états de contrainte possibles dans ce cadre, la torsion uni-
forme se caractérise par la condition supplémentaire

0,=0 (6.4)
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6.3 Equations d’équilibre

Les équations générales d’équilibre !

801 + asz + 87’12 +fx = 0
'rw 8011 B'ryz o
+ S+ T4 f, = 0
8TIZ + 37’yz + 8@ +fz 0
se réduisent, dans le cadre des hypothéses ci-dessus, a
0Ty 0Ty
=0 =0 6.5
0z T Oz (6:5)
et P P
Txz Tyz
=0 6.6
ox oy (6:6)
On satisfait a ces trois conditions en posant
0 0
Tr = GOZE | 7, = —GOZE 6.7)
dy Ay

0 étant une constante arbitraire et ¢, une fonction de x et y seulement, appelée
fonction de Prandtl [70]. Elle est définie & une constante additive prés.
Sur le manteau, on a n, = 0, et les conditions d’équilibre s’écrivent

N0z +NyTyy = 0
NgTey +Nyoy = 0
NgTez T NyTy, = 0

Vu les hypothéses, il ne subsiste que la seule équation
Ny Tz + NyTyz =0 (6.8)

En termes de la fonction de Prandtl, elle s’écrit

Oy Oy

Définissons sur le contour (fig. 6.2) le vecteur unitaire tangent positif comme

1. Dans les applications, nous utiliserons librement les notations d’ingénieur oz = oz,
Tey = Ozy €t Yzy = 2ezy, €tc. , pour autant qu’aucune confusion ne soit possible avec les
déformations de Green
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FIGURE 6.2 — Normale et tangente sur le contour

obtenu par rotation du vecteur normal extérieur de w/2 selon la régle du tire-
bouchon autour de ’aze z. Alors, comme

ng = cosf, ny, =sind
on obtient
i .
t, = cos(f + 5) =—sinf = -—n,
ty = sin(6 + g) =cosf = mn,
L’équation (6.9) devient alors

dp . O0p ¢ _

toot 1,20 = % =
or "oy o =V

ce qui signifie que ¢ est constante sur toute composante connexe du contour C.
Appelant Cy le contour extérieur, on fixe la constante arbitraire dans la définition
(6.7) de la fonction de Prandtl par la condition

SO‘CD =0 (6.10)

Sur les contours intérieurs C;, on peut seulement dire

ele; = @i (cte) (6.11)



6.3. EQUATIONS D’EQUILIBRE 119

On peut également prolonger la fonction ¢ & Q¢ = QU (|, ;) ot les Q; sont
les trous, en posant

® = ¢ dans
© = ¢; dans €

La fonction prolongée ¢ permet dans bien des cas de simplifier le probléme.
Proposons-nous de calculer les résultantes du champ de cisaillement. Les
efforts tranchants sont définis par

n:/uﬂmnz/@m
Q Q

On a
T, = GG/ aﬁdQ =GO a—SpalQ =Go pnyds =0
o Oy Qo y Co
T, = —GG/ 8—<’0d(2 = —G0/ a—@dQ =—-G0o pngds =0
0 333 Qo 83) Co

La résultante du torseur des contraintes tangentielles étant nulle, il posséde donc
un moment indépendant du point par rapport auquel il est calculé. Ce moment,
dit moment de torsion, vaut (fig. 6.3)

FIGURE 6.3 — Moment de torsion

M, = / (xTys — YTz2)dQ
Q
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M,

dp Oy
- Fay=r) a0
Go i (Iax +yay>d

dp &ﬁ)
= -G r—— +y—— | dQ
QO< Ox yay

or 0Oy
—-Go TNy + yny )pds + GO D ( + ) dQ)
CO( yny)$ 0.7 \az T oy

260 [ @d0
Qo

Ce résultat peut s’écrire

M,
J=— =2 pd2 6.12
&= ¢ (612)

6.4 Compatibilité

Nous exprimerons la compatibilité a ’aide des équations de Beltrami-Michell

1
DkkUij + mDijO—kk =0

Tenant compte des hypothéses et des équations d’équilibre (6.5), on obtient

V7. =0, V71, =0 (6.13)
en notant
0? H?
2o — 14
v 92 + a7 (6.14)

Ces équations, qui s’écrivent encore

27:0 27:0
v(?z: ’Vﬁ'y

impliquent
Vip=C = cte (6.15)
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6.5 Choix de la constante C

Partant des relations générales

Lo w 1 o o
GTIZ_’YEZ_aZ oz’ GTyz—’sz—az By

on obtient, en termes de ¢,

do_ou 0w 00 o0 ou
gﬁiyiaz—'—am’ gﬁwiaz—i_ay (6.16)

Dérivons la premiére de ces équations par rapport a y, et la seconde par rapport
a x. On obtient

0%w B 0% B 0%u
oxdy Oy Oydz
2 2 2
_Ow G0 O
Oxdy 0x?  0x0z

En sommant ces deux équations, on élimine w, ce qui donne

0 (Ov Ou
2 —_ _— — g
V7ot 0z (8:10 8z> 0

Le groupement entre parenthéses n’est autre que le double du vecteur rotation
local w autour de ’axe de la poutre. On a donc

Qa—w = —OV?p=—-C0
0z

Par conséquent, la torsion Ow/0z des fibres est constante par rapport ¢ z. On
s’apercoit qu’en posant

C=-2 (6.17)
on a simplement

Ow

_— = ~1

P 0 (6.18)

ce qui donne & 6 une signification simple. L’équation régissant la fonction de
Prandtl est alors
Vip= -2 (6.19)
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6.6 Intégration des déplacements u et v

Les déplacements u et v vérifient les équations constitutives

ou 1

9y = = E(Ul» —vo, —vo,) =0 (6.20)
0 1
FZ = &y =50y —vos —v0:) =0 (6.21)
Ju v 1
De plus,
o0 _on_,
or Oy «
ce qui, couplé avec (6.22), donne
v ou

Les équations (6.20) et (6.21) entrainent alors

Ow _ 0 (Ou _ Ow_ 0 (0vy_,

dr oy \ox) oy Ox\dy)
c’est-a-dire que l’angle de rotation w a une valeur unique dans toute la section.
On déduit donc de (6.23), (6.20) et (6.21)

u=1up(z) —w(2)y, v=1v9(z) +w(2)x (6.24)

Examinons la variation de ug et vg. Des équations

ou  Ow ov  Ow
TxZ—G(aZ—Fax), TyZ—G<8z+ay)

on déduit
OTs» 0%u 0w 0Ty v 0w
0=, _G(B,zz+8x8z>’0_ 0z _G(822+0y82>
et comme P 1
v =¢,=—(0,—vo, —voy) =0
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on obtient, & partir de (6.24) et (6.18)

?u  O%up 0%v 9%
— _— = — = .2
022 022’ 0722 022 (6.25)

Par conséquent,
ug = A1 + Asz, vg = By + Bsz (626)

Les paramétres A; et As régissent un déplacement de corps rigide et peuvent
donc étre omis. On a alors

u= Asz — (02)y, v = Baz+ (62)x

Posant
As B>
yr = 77 T = —7
on obtient
u=—0z(y —yr), v="~0z(x —xr) (6.27)

x7 et yr définissant les coordonnées d’un centre de torsion.

6.7 Intégration du déplacement w

Eliminant ¢ entre les deux équations (6.16), on obtient, par (6.20) et (6.22)

9 o % N Pw 0w
OxOy 0x0z  0x%2  Oz2
g o 0% N Pw 0w
OxOy oydz  Oy?  Oy?
d’ott
Viw =0 (6.28)

Les conditions aux limites relatives au champ w s’obtiennent comme suit : par
(6.16),

ow dp  Ou % -
5 = gm0 (5re-w)
ow 70890 5‘1):70 <8<p >

aiy N dr 0z %+Z7:ET



124 CHAPITRE 6. TORSION DES POUTRES PRISMATIQUES

On a donc
ow dp dp
£ =0 [nzay - ny% +na(y —yr) — ny(x — xT)]
soit 5 5 9o
w ©
an =0 [t %+t 87+nw(y yr) _nv(x—xT)}
Comme 9p/0t = 0 sur le contour, on a simplement
O Blnaly —yr) —myle )] (6.29)
Tenant compte du fait que
d d
Ng =ty = dt(y yT) et ny**txzf%(xfxT)

on peut encore écrire

ow 9 d {(mxT)ZJF(ny)Q]

Dans le cas de sections multiplement connexes, I'intégrabilité de w n’est pas
garantie sans condition. En effet, on a , sur les C;,

oo o ow
o Toxr Yoy

H[tgc(ay Y yT) ty(‘ax ) xT)]
— —H[ny(y—l—y—yT)—i—nw(—i—x—xT)}

_9 [g +ng(x —x7) +ny(y — yT)}

La condition d’intégrabilité de w est alors

0_/&%‘: 9{/ ﬁdH/_ n:c(xxT)+ny(ny]d5}

soit, en faisant usage de la normale intérieure n~ = —n (fig. 6.4),
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FIGURE 6.4 — Normale intérieure

/ci %ids / [n; (x = x7) + 1 (y — yr)lds

i

0 0
x(x_xT)+ %(y_yT) dQ

I
EaEe
| —|
gl

20,

Ainsi, dans le cas de sections multiplement connexes, la fonction de Prandtl
devra encore vérifier les conditions

o
/Ci s =204 (6.31)

pour que 'unicité du déplacement w soit assurée.

6.8 Principe variationnel régissant la fonction de
Prandtl étendue

De I’équation

V2p = —2 dans Q
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on déduit, comme @|¢, =0 et ¢

C; = Pi,

0

/ (V2 + 2)60dQ
Q

= Z&pi/ a—@dsf/gradcpgradégonJrQ/5g0dQ
on Q Q

i Ci
/ %ds = 2Qi
C; 371

0 = 2) 6pi%+2 [ 5pdQ— | grady - graddpdQ
p Q Q

Tenant compte du fait que

on obtient

2 0pdS§) — / grady - gradd@ds?
Qo Qo

ou encore,

1
) {/ |grad¢>|2d9—2/ cﬁdQ} =0 (6.32)
2 Qo Qo
les variations §¢ étant astreintes aux conditions
dPle, =0, dp|a, = dpi(cte) (6.33)

Ce principe variationnel peut d’ailleurs servir de base pour démontrer ["unicité
de la solution . En effet, supposons qu’il existe deux solutions M) et ¢(2),
Elles vérifient

/ gradgV) - gradépdQ = 2 / 5pdQ)
Qo Q0
/ gradg® . gradépdQ = 2 / 8pdQ)
Qo QO
Soustrayant ces équations variationnelles, on obtient
/ grad(¢™) — ¢ . graddpdQ = 0
Q0

ou, en posant 1) = (1) — 3@,

/ gradi) - gradd@d) = 0
Qo
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Or, '(/AJ est une variation J¢ admissible, car elle vérifie les conditions (6.33) :

7[}‘60 = 95(1)\&) - @é? =0-0=0
Plo, = ¢Wla, — ¢P|a, = i — i = Pi(cte)

On a donc
/ gradz[} . gradd}dQ =0
Qo

ce qui implique
gradiy = 0 dans Qg

et, comme 1[1\00 =0,ona=0.

6.9 Principe variationnel régissant le gauchisse-
ment

Rappelons que l'on a

V2w = 0dansQ
ow

o, = One(y—yr) —ny(x - o) sur €

Il est donc naturel de poser
w = Ogr (6.34)

ce qui définit le gauchissement gr, ce qui donne
VZgr = 0dansQ

Ng <852T_y+yT>+ny <aagyT+x—xT> = OsurC

Il est encore équivalent d’écrire ’équation dans €2 sous la forme
0 8gT 0 6gT
il _ — [ == — =0 6.35
ax<az y+yT>+ay< +x—ar (6.35)
Pour éviter de faire apparaitre explicitement xzr et yr, définissons la fonction
auxiliaire
g =gr +yrx — TTY (6.36)
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Elle vérifie les équations

( +a@(6g m) = 0dans Q

)
(B e (B < owe s
On a donc

0 (0g d (0g
= — | = - — | == Q
/Q {31’ <393 y) "oy (31/ +x>} °91
_ 9g g
_/C[nz o y)—i—ny <8y+x>] dgds
dg ddg dg ddg
LG -) 32+ (5 =) Ty owee
L’intégrale de contour est nulle et comme
09\ _ by (09, \_ 0
6<8x y)_ax’6<8y+m - Oy
on obtient le principe
1 dg 2 dg >
5{2/9 [(ax‘y) “(5+)

Ici encore, ce principe variationnel permet d’assurer l'unicité de la solution.
Supposons en effet qu’il existe deux solutions g; et gs. Elles vérifient

g1 dég oq d6g
- — Q. =
LUE )3 (5+) 5 ’
992 dég 092 ddg
992 ) %9 a0 =
Jl(GE )5 (5 ) Gl - o
Soustrayons ces deux équations et posons ¥ = g; — go. Il vient

oY dég Oy Ddg B
/Q<3x ox + oy 8y)dQ_0

Or, 1 est une variation dg admissible, ce qui implique

dQ} =0 (6.38)

/ lgrady)[2dQ = 0
Q
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soit
grady =0

ou encore,
P = cte

La solution est donc définie & une constante additive prés. On fixe cette constante
en imposant la condition

/ gdQ =0 (6.39)
Q

qui exprime que le déplacement d’ensemble est nul.

6.10 Centre de torsion

Le moment est venu de choisir un centre de torsion (z7,yr). On exigera a
cet effet que

/ grxd) =0, / grydQ =0 (6.40)
Q Q
c’est-a-dire que les rotations moyennes de la section s’annulent. Comme

gr = g — Y% + TTY

on obtient les conditions
1 1
yr = — [ xgd, xr = —— [ ygdQ (6.41)
I, Q I'y Q

Ces coordonnées définissent le centre de torsion de Weinstein-Kappus [36, 28].

6.11 Meéthodes de résolution

Dans ce qui suit, nous présenterons d’abord quelques solutions exactes. Mal-
heureusement, la théorie ne s’applique facilement qu’a quelques sections simples.
Pour des géométries plus compliquées, on ne peut s’en tirer sans faire d’approxi-
mations. Un outil fécond pour construire celles-ci est constitué par les deux
principes variationnels ci-dessus.
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En approchant la fonction de Prandtl, on obtient une théorie sous-estimant?
la raideur de torsion, mesurée par le module

M,
2o [ a0
7= Ga /Qo‘pd

Au contraire, en approchant les gauchissements, on surestime la raideur de
torsion 3. Le module J se calcule alors par

M, dg dg
_ M 99 _a (99 0 42
== [, (o) v (5 -v)] 4 (042
Notant que, pour dg = g, on obtient par (6.38)
_ [ % (% 99 (99 _
A EIC TR I T T P

on a encore

Q) (6.44)

- dg 2 dg 2
=[G ) (5 )

On remarquera d’ailleurs que la relation(6.43) implique

(o)== |(52) + (32) ]
= () ()

Ainsi, la raideur de torsion de Barré de Saint-Venant est inférieure a la raideur

de torsion de Coulomb (I, + I,) chaque fois que le gauchissement g différe de
26r0.

si bien que

ds?

En effectuant deux calculs approchés, 'un pour la fonction de Prandtl,
lautre par le gauchissement g, on obtient deux valeurs différentes de J. Leur
proximité relative permet de juger de la qualité des approximations.
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FI1GURE 6.5 — Ellipse

6.12 Solutions exactes

6.12.1 Torsion d’une poutre a section elliptique

La fonction de Prandtl doit s’annuler sur le contour de ellipse de la figure
6.5 dont le contour a pour équation

Mais on a justement

si bien que la fonction

vérifie I’équation

et constitue donc la solution cherchée. On en déduit les contraintes

Ao a’y
v = G0 = ogp Y
T, G 3y G PR
) b2z
Tyz - 7G067y = 2G0a2 T b2

2. La justification de cette assertion sera donnée dans le chapitre relatif aux principes
variationnels en élasticité.
3. Idem.
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En ce qui concerne la raideur de torsion, il faut calculer
a2b? 22 g2
J=2 dQ2 =2 1—— —%)dQ
/Q ¥ a2 + b2 /Q ( 02 b2>

x=apcosh, y=">bpsinf

Posons

avec
p €]0,1], 6 €]0, 2|

Le jacobien vaut abp et on obtient

a3b3 1 (L3b3
:27a2+b2.27r/0( )dp*7r2+b2

Vu la symétrie du profil par rapport aux axes, le centre de torsion devra se
trouver & ’origine. Le gauchissement g vérifie les équations

dg dy 2a%y b2 — a?

o = oy VT @i VT EreY
dg dp 2% b2 — a2
ay ~ o YT T a@iR T ot

ce qui donne, en tenant compte de la condition fQ gd) =0,
b2 2

a
g:
¢

2 +b2xy

6.12.2 Torsion d’une poutre a section rectangulaire

Supposons que, dans la section représentée en figure 6.6, on ait b < a et
définissons la coordonnée auxiliaire

T=Yy+5
On cherche alors une solution par la méthode des séries simples de Lévy, qui

consiste & poser
= mrn
E ) sin —
n=1
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FIGURE 6.6 — Rectangle

ce qui permet de vérifier dés le départ les conditions de nullité de g en y = +b/2.
On a immédiatement

e 2.2
2 » n-m .. nmn
A4 Y = nE:1 <An - bQAn) S T

Pour résoudre I’équation V2p = —2, il convient de développer la fonction
unité en série de sinus. En raison de 'orthogonalité des sinus,

b
b
/0 sin m;m sin n%bmdn = §§mn

on obtient, pour
o)
. nmn
1= nz_:l Q, sin -

les relations

b b nmy b nmwn1b b "
50m _/0 s1an17— -— {cos —} =—[1-(-1)"

ce qui donne

4 §i  noest pair
oy = nm . . .
0 si n est impair

si bien que

1 4 i 1 . nmy
= — —sin —
n b
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L’équation & résoudre se développe donc en

= »  nim? 8 . nmn
> (A”_bQA"+m) sin ==

impair

> 5 71271'2 . TL?T?]
+ Z (An - bZAn> sin —= =0

Pour n pair, on obtient

ce qui donne
A, = Bnch$ +cnsh$

Les conditions A, (f+a/2) = 0 ménent alors & B, = C,, = 0.
Pour n impair, ’équation s’écrit

» n2m2 8

et admet pour solution particuliére

8b2
An = 373
d’ou la solution générale
nmwx nnT 8b2
A, = B, ch - + Cp, sh - + 3.3

Les conditions de nullité aux extrémités « = +a/2 s’écrivent

nmwa nwa 8b?
Buch (£7557) + Cush (£757) + 1575 =0
ce qui implique C,, =0 et
8 1
B, =

n37w3 ch L;)W«
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A, = 8 1— ch %~
n3m3 ch =%

Il vient donc

et la solution finale s’écrit

8b2 0 1 ch nrx
= L (1_ nfm)sinmm
T 1 n ch b b

est la primitive seconde de la série représentant la fonction(—2), nulle en n = 0
et 7 = b. Elle est donc égale a

b2
— — 2 -
nn—">0) =y 1

ce qui permet d’écrire ¢ sous la forme
b2 82 o~ 1 ch™™®  pnr(y+b/2
o= ( 2> a S b (y+1b/2)

— — sin
4 3 n3 ch &3¢ b

impair

La série restante se présente alors comme une correction aux extrémités des
deux premiers termes qui constituent la solution-limite pour b/a — co.
Une simple dérivation conduit & l’expression des contraintes :

Tez dyp 8b o= 1 ch™Z  nu(y+b/2)
—_— = —_ = —2y—- — _
Go By e 2:: n?chzze T
impair
T _ Op _ 8b g~ LshiE . nm(y+5/2)
G dr w2 = n? ch &3¢ b
mpair

La valeur maximale de 7., est obtenue en x = 0, y = +b/2 et vaut

(o9}

8b 1 1
vxlmae = GO |0+ 5 Y S
‘T |maz + ’/T2 — TL2 Ch n271;)a

impair
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Calculons a présent la raideur de torsion. On a

J = 2/<de
Q
b3 b/2
= —2a/ y>dy

2 —b/2

1 b2 00 hnﬂ'm b/2 b/2

6 Z 3/ / sin 7n7r(y+ /)dy
el n a/2 Ch b/2 b
impair

ab®  ab®  16b2 1 2b nma b
Z Zth— —

= — - — - — — 2
2 6 T ndnr 2b nw
irzgmr
soit finalement
ab?® 1926 <= 1 nwa
J=— 11— —— — th —
3 ™ a Z nd 2b
irﬁ;air

Dans cette expression, le facteur entre parenthéses constitue la correction par
rapport & la valeur ab®/3 qui est la limite du module de torsion pour a/b — oo.
On peut approcher la valeur ci-dessus par une expression plus simple que
I’on obtient de la maniére suivante. A partir de n = 3, on a nécessairement
(puisque a > b)
nma _ 37
— > — =4,712
20— 2
Pour cette valeur de 'argument, la tangente hyperbolique vaut 0, 99984 et différe
donc de 'unité de moins de deux dix-milliémes. On a donc

ab® 192 b Ta =1
J~—|1———|th—
3 ™ a 2b + nz:; nd
impair

11 suffit alors de calculer, & partir des résultats bien connus relatifs aux séries de
Riemann [1]

1
Yo ==> —5 —1=1,00425376279513961613...—1 = 4, 253763...1073
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ce qui donne la formule

ab? 192 b Ta
z—l——f(h— 4, 24'1*3)
J 3 [ ™ a ijL g 0 ]

qui a au moins le mérite de ne plus contenir de série & calculer.
Venons-en au calcul du gauchissement. Ici encore, la symétrie implique que
le centre de torsion coincide avec le centre de gravité. On a donc

9g 9o
or 8y+y
B 8b o= 1 ch™Z  nu(y+b/2)
= Va2 n?ehrze T
im;air
et
99 _ _9¢ _
oy or
8b =~ 1sh™Z  nu(y+b/2)
= —x—i—; le::l ?ch%sm b
impair
d’ou

gl S EE R
— n?ch "¢ b

impair

Il se décompose en un terme relatif aux sections longues — le terme (—xy) — et

un effet de bord & décroissance rapide si a/b est grand.

6.12.3 Trou circulaire axial trés petit dans un arbre cylin-
drique

La section est représentée en figure 6.7. Le trou circulaire est supposé trés
petit, c’est-a-dire que la distance r du centre du trou au contour de ’arbre vérifie

2
(9) —ex1
T

pour tout 5. L’équation du contour est

2 +b? — 2brcos f = R?
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FIGURE 6.7 — Arbre avec trou

Par ailleurs, la fonction

1, R? — b?
= ——71° 4 brcos
©o 57+ B+ 5
est une solution particuliére de 'équation V2p = —2, car il en est ainsi de

(—72/2), et les autres termes sont de la forme RF(z) avec

2 12
F(z)zbz—i—R b

et donc harmoniques. Visiblement, la fonction ¢y s’annule sur le contour exté-
rieur. Par contre, sur le cercle de rayon a, elle vaut

2 2 _p2

<p0=—%+abcosﬁ+ 5

ce qui n’est pas constant. Mais en y ajoutant la fonction

2 2
w1 =-—R (a b) :fa—bcosﬁ

z r
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on obtient une fonction constante sur le cercle de rayon a, & savoir

2 2 R2 12
@:—L+bcosﬁ r- )y =
2 T 2

La valeur de cette fonction sur le contour intérieur est

a2  R?—1? 2
ot TOU

tandis que sur le contour extérieur, sa valeur absolue est
2 2
a“bcos a
_@’beos < —br = O0(cR?)
T 72

trés petite devant la précédente, et tendant vers zéro avec .
Les contraintes valent alors

1 190p . a®
@Trz = ;% = —bsmﬁ (1 — 7’2)

1 dp a?
—Gomz = o —r—bcosﬁ(l—i—rz)

Sur le contour intérieur, on a
T, = GO(a — 2bcos f5)
et cette contrainte atteint pour f = 7 son maximum
Tmaz = GO(2b+ a)

Pour a — 0, le coefficient de concentration de contrainte vaut donc

Tmam _

- Gob

ag
Sur le contour extérieur, on a
a2
2+ TEZ = (Gh)? {TQ — 2brcos B (1 + 2)
r

2

+62cos2ﬂ(1+aQ
.

139
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et, pour a — 0,
72 = (GO)? [r* — 2br cos B + b%] = (GO)*R?

Il n’y a donc pas de supplément de contrainte sur le contour. En conclusion,
I'influence du trou sur la résistance ne se fait sentir que si

2GOb > GOR

c’est-a-dire si
b > i
2

6.13 Solutions approchées (fonction de Prandtl)

On peut obtenir de nombreuses solutions approchées en torsion en considé-
rant des fonctions d’essai ¢ nulles sur Cy et constantes sur les €);, dépendant de
quelques paramétres :

o=¢(x,y;00,...,0p)

On détermine alors les paramétres de maniére que la fonctionnelle

1 R R
Blai,...,ax) = / {2 |gradg|® — 2| d
Qo

soit minimale, ce qui conduit aux k équations

0B

9a, "

Pour déterminer les a;. C’est la méthode de Rayleigh-Ritz. Les a; étant obtenus,
on peut déterminer le champ de cisaillement par

T = (Tpz, Ty) = gradg X e,
et la constante J par

J:/ pdg
Qo

On notera que dans le cas d’une solution approchée, la constante J est toujours
sous-estimée (d’autant moins que la solution est plus proche de la réalité).
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FI1IGURE 6.8 — Théorie de Bredt

6.13.1 Théorie de Bredt

Pour traiter les caissons & parois minces & une cellule (fig. 6.8), Bredt [7] a
proposé la solution approchée suivante. On peut admettre que la variation de
©, entre le contour Cy ou cette fonction est nulle et le contour C; ou elle prend
une valeur constante A, est linéaire. On a alors

A
grady = ?en

e, étant le vecteur unitaire normal & la courbe moyenne C de la paroi, pointant
vers l'intérieur. On en déduit immédiatement

1 A% (1 A% [d
f/ lgradg|® dQy = —/ Stds = — @
2 Ja, 2 ).t 2 J.

et
A
Qo C 2
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en notant S la surface contenue dans la courbe C. Il vient finalement

B(A) = 1A?/ & _ous
27 Jot
Le minimum est obtenu pour
28

A= 5

Je E
On en déduit )
J=2AS = 15

f ds

Ct

résultat connu sous le nom de deuxiéme formule de Bredt. Par ailleurs, la
contrainte de cisaillement, toujours tangentielle, vaut

7':G€é
t

_ 00251

Jett

1
= G9J2—St

M
25t

C’est la premiére formule de Bredt.

6.13.2 Caissons multicellulaires

La méme méthode permet de traiter avec autant de facilité le probléme de la
torsion d’un caisson multicellulaire. Illustrons la méthode sur le caisson & trois
cellules de la figure 6.9. Le cisaillement dans la courbe Cio vaudra Gy, /t, celui
qui régne sur Ci2 vaudra GO(p1 — 2)/t, etc. On a donc

1 2 d 2 d 2 d
7/ grad@|2dQy = 2L L. 1 as . ¥3 as
2 Qo 2 Cio t 2 Ca0 t 2 Cso t

— 2 ds — 2 ds
+ (p1—p2) / 5 (p2 — ¥3) / as
2 Cin b 2 Cag T

et
2/ PdQy = 29151 + 2252 + 2353
Qo
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¢, <,
! 2 3
X
G
A — .
G0

FIGURE 6.9 — Caisson a trois cellules

S1, So et S3 étant les surfaces arrétées a mi-paroi. La minimisation de la diffé-
rence B de ces deux expressions méne aux trois équations

oB ds ds ds
— — + — - — —-25:1=0
(9(,01 </C1o t ‘/Cl2 t ) 1 <~/Clz t ) 72 '
(L L L
aQPQ Ci2 t 1 C20 t Ci2 t Casz t 72

(L8

Ca3 t

oB ds ds ds
o9 _ _ @3 &0 il — 928, =
8803 <\/ng t ) 902 + <\/C30 t + \/C23 t ) 803 53 0

permettant de déterminer aisément @1, o et 3. Ceux-ci connus, on a simple-
ment

J = 2(p151 + @292 + ©353)
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FIGURE 6.10 — Poutre & parois minces ouverte

6.13.3 Poutres a parois minces ouvertes

Dans le cas de poutre & parois minces ouvertes comme celle de la figure 6.10,
la fonction de Prandtl doit s’annuler sur tout le contour. On écrira donc

42
@-A(l—n> avec A = cte

En principe, il faudrait encore tenir compte de la nullité de ¢ aux extrémités
comme le point B de la figure. Cependant, cet effet de bord se fait sur une
longueur trés faible, de I'ordre de I’épaisseur t, et nous le négligerons a titre
d’approzimation supplémentaire®. Le champ de cisaillement se déduit par déri-
vation :

8An

12
1l est linéaire sur I’épaisseur. Calculons les deux termes de la fonctionnelle B &
minimiser :

lgradyp| =

ds
dp|?d = 3242 / =
/ lgradyp| 3 1018 ot

4. Strictement parlant, il s’agit d’une violation des principes de la méthode de Rayleigh-
Ritz.
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2/<de:2A/gtds:éA/tds
Q c3 3 Je

8 5 [ds 4
B(A)—3A/Ct 3A/Ctds

Le minimum de cette fonction de A s’obtient pour

O:@:EA §fé/td5
dA - 37 ). % "3/,

et

ce qui donne

ce qui donne
1 fc tds

B

A

On obtient donc

2
td
J= éA/tds _ 1(ctds)” df)
3 Je 3 ch
et

1A GO fytd
Tmas = GOlgrad@lmas = GI-—— = GO Jetds

min tmin ct

ou, en termes du moment de torsion,

3M,
tmin Jo tds

Tmax =

Pour une épaisseur ¢ constante, on a simplement

1
J = gGht3
avec
h= / ds
c
et
T=Got = 3M,

145
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T)’

|

|

|

!
__._!_.____H

b

FIGURE 6.11 — Section rectangulaire

6.13.4 Solution approchée pour les sections rectangulaires

Pour la section rectangulaire représentée en figure 6.11, on suppose b < h.
On cherche une solution de la forme

o) = (1- ) 10

f(y) étant une fonction a déterminer, avec la condition f(£h/2) = 0. On a donc

Op x
or —bjf(y)

0 x?
afg; (1 - 4bQ> f'()

d’ou

1
f/ |grady|?dQ
2 Jo

h/2 b/2 2
h/2 —b/2 b
1 "2 /16 , 8

_ - - b 12 d
2/_h/2 (3bf 15 / ) Y
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2/ gdez?/ =bfdy
Q —ny2 3

La condition d’extremum meéne & I’équation

On a d’autre part

8, ., 16 4
—1—56f + 3bf 3b—0
soit

10 )

f”—bjf:—i

La solution générale de I’équation homogéne s’écrit

10 h /10 h

147

et une solution particuliére de ’équation compléte est visiblement donnée par

ce qui donne au total

10 h 10 h b2
f—fo+f1—Ash\/b<y—2>+Bsh b<y+2>+4

Les conditions aux limites sont

/1 b?
eny=~h/2 : Bsh b—gh:fz

1 b?
eny=—h/2 : —Ash b—gh =-7
ce qui donne, en notant, pour la concision, 3 = \/TTO,
R B IR )
4 sh Bh sh Bh

On notera que

Shﬁ<yg) shﬂ(y+g)

shﬁychﬂg fshﬂgchﬂy

fshﬁychﬂg fshﬂgchﬁy

= 728hﬂg ch By
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et que

h h
sh Bh = 28h650h55

B () ey
I= 4 (1 chﬁé’)

b3 h/2
J = — fdy
3 —h/2

_ v 2 sh 32
3\ Beplk

b 2 h
- 5(r-5m2)

soit, en réintroduisant la valeur de S,

1 b hy/2,5
J=h(1- th ’
3 ( hv2,5 b )

ce qui donne finalement

On obtient donc

On a par ailleurs

4 1
Tmaz = gf(o)Ge = Gob (1 - s WF)

Cette solution approchée est trés proche de la réalité, comme le montre le tableau
suivant :

b 1 15 2 3 1 00
) approché | 0,140 | 0,195 | 0,228 | 0,263 | 0,281 | 0,333
exact | 0,141 | 0,196 | 0,229 | 0,263 | 0,281 | 0,333
Tmaa/(GOb) | approché | 0,605 | 0,815 | 0,915 | 0,983 | 0,996 | 1,000
exact | 0,675 | 0,852 | 0,928 | 0,977 | 0,090 | 1,000

6.14 Solutions approchées (gauchissement)

La fonctionnelle & minimiser est ici

1 dg 2 dg 2
A—Q/QKax‘y) ()
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la fonction g n’étant astreinte & aucune condition aux limites & priori. Le résultat
de la minimisation fournit la fonction g & une constante additive prés, que I’on

fixe par la condition
/ gdQ =0
Q

On peut alors obtenir le centre de torsion par les relations

1 1
T = —f/gydﬂ, yr = 7/ grdS)
Iy Q Ix Q

La raideur de torsion est alors donnée par

e [ ()]

et les contraintes valent

_ (% ol
Tm—GG(am—y),TyZ—Ge(ay—i-x)

6.14.1 Solution élémentaire pour les sections massives

La forme la plus simple que I’on puisse imaginer pour la fonction g est
g = Azxy
Cette fonction a bien son intégrale nulle. On obtient

A= / [(A—1)%° + (A+1)%2%]dQ = (A—1)’I, + (A+ 1)°L,
Q

Minimisons par rapport & la constante A :

dA
0= 1= 2A-1)I,+2(A+ 1)1,
soit
e I, — I,
IP

Pour la raideur de torsion, on obtient

I,—1,—I,—1I,\° I, — I, +I,+1,\°

p p
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soit
J_ 41,1,
I,
Les contraintes de cisaillement valent
I,
Tee = GOA-1)y=—-2G0—y
I,
I
Ty = GOA+1y= QGGI—x
p
Enfin,
I2y? + [22?
IT| = /72, + 72, = 2GO0

I
r étant la distance a D'axe.

Cette théorie, exacte pour une section elliptique, représente la correction
la plus élémentaire que ’on puisse apporter & celle de Coulomb. Elle donne
souvent une premiére approximation raisonnable. Examinons par exemple le
cas des sections rectangulaires. On a

[ hb? B bh?
o127 Y12

Nous poserons, pour fixer les idées, h > b. On a donc

bh? b?

et 1 1
J = zhb’—
3 14+ 4%
Quant aux contraintes, elles valent, selon cette théorie,
oy
Tee = —2G0—
x
Tyz = 2G0—=
hZ

Le maximum de leur résultante a lieu pour x = b/2, y = h/2 et vaut

Tmaz = Gebi1

1+5
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En comparaison, la théorie de Coulomb donne la valeur

2
Tmaz = GOV/D? + h? = GOby[1 + ZLZ

On peut donc établir le tableau suivant :
h/b 1 1,5 2 3 4 00
J/(hb?) approché | 0,167 | 0,231 | 0,267 | 0,300 | 0,314 | 0,333
exact | 0,141 | 0,196 | 0,229 | 0,263 | 0,281 | 0,333
Coulomb | 0,167 | 0,271 | 0,417 | 0,833 | 1,42 00
Tmaz/(GOD) | approché | 0,707 | 0,832 | 0,894 | 0,949 | 0,970 | 1,000
exact | 0,675 | 0,852 | 0,928 | 0,977 | 0,990 | 1,000
Coulomb | 1,000 | 1,803 | 2,236 | 3,162 | 4,123 0
On remarquera cependant que les contraintes maximales sont mal position-
nées.

6.14.2 Sections rectangulaires

On peut également approcher les sections rectangulaires en prenant un gau-
chissement de la forme

9(z,y) = yf(z)

en supposant que le grand coté h est dirigé suivant 'axe des z. L’autre coté a
pour longueur b. On a alors

dg /
Loy = (@) -1
dg B

et

12,
A= 2/h/2 [12<f S0 4 2)?] de

Variant f, on obtient ’équation

bS
—1gd7 T b =0

soit 19 19
Zf= ?z

fﬂ _ b2
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et les conditions naturelles d’extrémité

3
%(f'fl):Oenx:j:hﬂ

Une solution partielle de ’équation différentielle est
f=—x
Comme la solution générale de I’équation homogéne associée est
f=AchpBx+ Bsh(x

avec

on obtient comme solution générale de I’équation compléte
f=—-x+ AchBzx+ Bshpzx

Les conditions d’extrémité sont

h h h
f <) = —1+pAshf—-+pBBchf- =1
2 2 2
h h h
"-=)] = —-1-BAshB-+pBBchfp- =1
f(2) BAsh B3 + BB ch g
On en déduit aisément A = 0 et
B2
Bch Bz
ce qui donne finalement
h
Fo—zt2 S Bxh
BChﬁg
Pour effectuer le calcul de J, notons que
h/2 b3
g= [ |G =0+t 4| as
nya 12

h/2 b3 .
+/_h/2 [_IZ(f —1)+o(f +x)x|dx
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La premiére de ces intégrales est nulle, comme on s’en rend compte en posant
6f = f dans la variation premiére de A. Il suffit donc de calculer

h/2 13 3 rh/2 h
—/ o ona = -Z 2 Cﬁf—1 da
—hy2 12 12 J_pj2 \chB3
b3 4 h
= 5 (2h ﬁthﬂ2>
h? b h
= 2 thp=
6 38 3
et
}L/Q 2b h/2
bx(f 4+ x)dx = 7/ x sh fxdx
/—h/2 ( ) Bech R )
L {xchﬁxr” /h/2 ch Bz
ﬁChﬁg 5 _h/z —h/2 B
2b h
= chp= h B
B2 chph { g -5 52]
h? v
= _— h —
6 38 B
Au total, il vient
3 3 3
g et 2" hﬁffhb b g b3
3 38 3 W3 b

Il est intéressant de noter que ce résultat est trés proche de celui de la section

6.13.4. La seule différence est le facteur v/3 = 1,732 au lieu de /2,5 = 1,581.
La présente théorie est un petit peu plus raide que celle de la section 6.13.4 :
h/b 1 1,5 2 3 4 00

J/(hb3) ¢ | 0,140 | 0,195 | 0,228 | 0,263 | 0,280 | 0,333

exact | 0,141 | 0,196 | 0,229 | 0,263 | 0,281 | 0,333

g | 0,153 | 0,207 | 0,237 | 0,269 | 0,285 | 0,333

6.15 Exercices

Exercice 27 FEtudier la torsion d’une barre dont la section est un triangle équi-
latéral (probléme de Barré de Saint-Venant).
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a/2

FIGURE 6.12 — Triangle équilatéral

Suggestion - La fonction de Prandtl est le produit des équations des trois cotés,
a un facteur constant prés.
Solution - Dans le systéme d’axes de la figure 6.12, les équations des trois
cOtés sont
y=aV3, y=—av3, y=h

Essayons une fonction de Prandtl de la forme
plr,y) = K (y - x\/é) (y + x\/§) (y —h)
= K (yQ — 3x2) (y — h)
= K (y3 — hy? — 322y + 3hx2)

On obtient successivement

g—i = K(—6zy+ 6hx)
% = K(—6y+ 6h)

%Z = K(3y* — 2hy — 32%)
(;Z‘gf = K(6y— 2h)

si bien que
V2 = K(—6y + 6h + 6y — 2h) = 4Kh = —2
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A condition de poser
1 1

T2 a3
Le résultat est donc

1
w——%(y — hy? — 32%y + 3ha?)

Un examen des lignes de niveau de la fonction ¢ indique que la contrainte
tangentielle est maximale au milieu des cotés. On a

a‘P 2 2
=Go— oy %(Sy 2hy — 3x*)
etenx =0,y =h,
_ G9 2 op2y G6h
soit
Tmas = —Gg h_ GQZ\@ = 0,4330G0a

On calcule J par

J = /gon

y/V3
= 77/ / (y® — hy? — 32y + 3ha?)dx
y/V3

15\/??

soit encore

J = ﬁa‘l
80

On a enfin
Tmaz _ 20

Mt _a3

Exercice 28 Probleme de Weber (1921)[94] - Etudier la torsion d’une barre
ronde de diamétre b comportant une rainure semi-circulaire centrée sur la cir-
conférence (fig. 6.13).
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a) Chercher la fonction de Prandtl.
b) Rechercher la tension mazimale.

¢) Calculer le coefficient de concentration de contrainte

_ Tm(lZE
= Gov/2
et sa limite pour a/b — 0.
y
!
|
r 4\
/N2 ' ' b
| X
!
S
& |
L

FIGURE 6.13 — Barre rainurée

Suggestion pour le point a :

— Equation de C; : 72 —a® =0

— Equation de Cy : r —acos S =0
Multiplier ces deux équations, diviser par r, multiplier le tout par une constante
& déterminer, repasser en coordonnées cartésiennes, vérifier si 1’équation de
Prandtl est satisfaite

Solution de ¢ : la limite du coefficient de concentration de contrainte est 2.
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Exercice 29 FExprimer, pour M; = 20Nm, les contraintes dans la poutre a
parois minces de la figure 6.14, aux points A, B, C et le rapport k = M /6. On
donne : G = 80GPa.

FIGURE 6.14 — Poutre & parois minces

Solution - Par symeétrie, la fonction ¢ ne prend que trois valeurs différentes dans
les cellules, & savoir,

P1 =2 =3 = P4, P5 =Y = P7 = Ps €t P9

et les parois radiales ne jouent aucun role (si ce n’est le positionnement). On a
donc
2
el 1 (p5 — ¢9)

1/ |grad¢|2dQ:1—71'-80—}—1@#-50—1—77%20
2 Ja, 21 2 1 2 1
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et

R 802 — 502 502 — 202 202
2 pdQY = g m————— + s T———— + poT——
Q0 2 2 2

= 19507y + 105075 + 20070y

ce qui conduit aux équations

1300, —  50¢s5 = 1950 (1)
—50(,01 + 70905 - 20(p9 = 200 (2)
—200s + 20p9 = 200 (3)

On en déduit
(3) = w9 = @5+ 10

(2) et (3) = 5 =1 +25
et en conjuguant ce résultat avec (1),
Y1 = 40

d’ou
Y1 = 407 Y5 = 657 P9 = 75

Il en résulte

J = (1950 - 40 + 1050 - 65 + 200 - 75) = 506, 6 - 10®mm?* = 506, 6 - 10~ 2m*

d’oul
k= % = GJ =180-10%-506,6 - 10”7 = 40530Nm*/rad
On a alors
lgradg|sa = ? = 10mm
lgradg|p = ? = 25mm
lgradg|c = 4TO = 40mm

et pourM; = 20Nm = 2 - 10* Nmm, on a

GO = % = 39,48 - 103 N/mm?
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On calcule alors les contraintes en A, B et C par 7 = Gf|grad|, ce qui donne

74 = 0,3948M Pa
0,9870M Pa
1,579M Pa

B

TC
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Chapitre 7

Le probléme de Boussinesq

7.1 Introduction

Le probléme de Boussinesq [6] consiste & étudier un corps semi-infini soumis
& une charge ponctuelle normale au plan qui le limite. En lui-méme, ce probléme
n’a guére d’intérét pratique, mais il constitue une solution élémentaire utile dans
les problémes de contact.

7.2 Systéme de coordonnées et équations

La symétrie du probléme suggére 1'usage de coordonnées sphériques ayant
pour origine le point d’application de la charge (voir fig. 7.1). Toujours pour des
raisons de symétrie, le déplacement u,, doit étre nul, de méme que toute espéce
de dérivées par rapport & la longitude ¢. Nous utiliserons alors les équations de
Navier, ce qui nécessite le calcul des opérateurs divergence et rotationnel. On a

T | 9 5 . g, .
Gfdlvufm E( sm@ur)Jr%(rsmﬁue) (7.1)
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|
|
|

FIGURE 7.1 — Probléme de Boussinesq

et
1 e. reg rsinfe,
) )
rotu Sang | or 00 0
Upr  TUg 0
1[0 (rug) ou,
= —|=—(rup) — —|e
rlor 0 @
= 2we,
en posant
1[0 Ou,
2w = - [m(rug) ~ 20 } (7.2)
Nous avons encore besoin de calculer
1 e. reg rsinf
rotrotu = ——— | 2 2 0
2 o or 00
resind 0 0 2wrsinf
2 0 2 0
= —— inf)e, — — in6 .
r2sin 6 00 (wrsinf)e rsiné or (crsin f)eg (7.3)
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L’introduction de ces résultats dans I’équation de Navier

2(1-v)

1% graddivu — rotrotu =0 (7.4)

conduit aux deux équations suivantes :

1—v 00 1 5] .
leVE_TQSiHQ%(wrsme) =0 (7.5)

1-v 100 1 0 .
=207 00 rsmgor@rsnd) = 0 (7.6)

Selon e, :

Selon ey :

On peut simplifier quelque peu ce systéme en remarquant que 1’équation
(7.4) implique, par passage a la divergence, la suivante :

Adivu = A© = 0 (7.7)

relation qui peut avantageusement remplacer 'une des deux précédentes.

7.3 Recherche de la solution générale

7.3.1 Forme générale de la solution

La solution générale procédera de la résolution des équations d’équilibre
(7.5) et (7.6). Mais on peut d’emblée remarquer qu'un changement d’échelle
ne peut changer la distribution angulaire des déplacements, car il n’affecte que
les valeurs du rayon et non celles de la colatitude 6. On peut donc donner aux
déplacements la forme générale séparée

f(r)g(0)

Par ailleurs, la force appliquée P doit étre équilibrée par des contraintes
agissant, sur ’hémisphére de rayon r, dont la surface vaut 27r2. Les contraintes
seront donc de la forme

h(0)

2

r

Les déplacements, combinaisons de primitives des contraintes, seront donc de la
forme

Up = Aia), ug = Bi@) (7.8)




164 CHAPITRE 7. LE PROBLEME DE BOUSSINESQ

A et B étant des fonctions de 6 seul. De ces expressions, on déduit par (7.1)
et(7.2) celles de la divergence et du rotationnel : d’une part,

1 0 0, . c(9)
0= g {3 (rsinfA) + 50 —(sin HB)} =2 (7.9)
avec
C = A+ B+ Bcotg (7.10)
et, d’autre part,
) sinf f0B A’ D(6)
wsinf = o (87’ — r) =3 (7.11)
ou A sing
p=2"0 (7.12)
2
7.3.2 Détermination de la fonction C
Exprimons & présent ’harmonicité de la divergence : on a d’abord
g (C 10
do = e,— | =
grad® e8r<r2>+ r89( )
C c’
= —ZT—SeT + T—?)eg
puis
AO = divgrad©
1 0 9 . C 0 .
= m |:(‘37= <_2T Sln97ﬂ3> =+ % (TSln9ﬁ>:|
1 C 7 C/
= 7“251119{ 2s1r10+ 5 sinf + — 0059}
La nullité de cette expression s’écrit
C” +C'cotgh+2C =0 (7.13)

Cette équation différentielle linéaire & coefficients variables admet visiblement
la solution particuliére suivante :

C1 = cost
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La méthode générale de résolution des équations différentielles linéaires voudrait
que 'on recherche une seconde solution particuliére de la forme

Cy = z(0) cos b

mais en réalité, on pourra résoudre le présent probléme en se limitant a la
solution
C =acosf (7.14)

a étant une constante & déterminer.

7.3.3 Détermination de la fonction D

Nous utiliserons a présent ’équation (7.6) qui, par (7.9) et (7.10), devient

1—-v 1 1 0 (D
—O - —(=Z)=0
1—2vr3 rsin @ Or (7’)

soit )

1-v C 1

= D=0

1—2vr3  73sinf

ou encore
D=—1"" rging (7.15)
=— sin .
1-—2v

Combinant cette relation avec (7.14), on obtient

1—v
1—2v

D= asin? @ (7.16)

7.3.4 Calcul de la fonction A

On déduit alors la fonction A de I’équation (7.12) :

2D _20-v)

= sng T 1oz sind
d’ou ( )
2(1 — v
A=-—22"Y g cos 1
2 acosf+b (7.17)

b étant une constante & déterminer.
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7.3.5 Calcul de la fonction B

En vertu de la relation (7.10), la fonction B vérifie I’équation

2(1 —
B’+Bcotg9:C’fA:a+(72y)acosf)fb
— v
soit
B’ + Bceotg = 1 : 2Zacosﬁ—b (7.18)

La solution générale By de I’équation homogéne associée qui s’écrit encore

B 3
B cotg g = — 0%
By

sin @

est donnée par
InBy = —Insinf +1Inc

ou encore, par
c
B = .1
Y7 sing (7.19)

Nous chercherons alors une solution particuliére de ’équation compléte par la
méthode de variation des constantes, ce qui revient & la chercher sous la forme

E(6)
= 7.20
sin 6 ( )
Ceci méne a I’équation
E' Ecosf FEcotgf 3—4v 0_b
— = acosf —
sin 6 sin? 6 sin 6 1—2v
soit
E = 2" sinfcosh — bsinf
1—2v
ce qui entraine
3—4v sin?6
= .21
E T—2,% 5 + bcosf (7.21)
Rassemblant les résultats (7.19), (7.20) et (7.21), on obtient
3—4
B=-°_+ v asin @ + bcotg (7.22)

sinf = 2(1—2v)
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Mais cette expression ne peut étre admise telle quelle, car en 6§ = 0, elle don-
nerait un déplacement wug infini pour tout r, du fait du sin 6§ aux dénominateurs
des deux termes extrémes. Il est donc nécessaire d’imposer une liaison entre b
et ¢ garantissant que

lim bcosf + ¢ £ 0o

6=0 sin@

Ceci ne sera réalisé que moyennant la condition ¢ = —b qui, introduite dans les
deux derniers termes du second membre de (7.22), donne

cosf—1 cos?f —1 bsin 6

sin@  sinf(cos@+1)  1+cosf

et raméne donc B & ’expression suivante :

3—4v sin 0
B=_———asinf —b—— 2
2(1 - 2V)asm€ bl + cos (7.23)

7.3.6 Expression générale des déplacements

Les relations (7.17) et(7.23) permettent d’écrire

2(1—v) cos® b

- - .24
1—2v r + T (7.24)

3—4r sinf b sinf

_ _ 0 2

o 2(1—V)a T 71+ cosf (7.25)
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7.3.7 Expression générale des déformations

On a

Er

€

Yro

Yo
VTre

ur _ 2(1-v)acosf b

or 1—-2v r2 r2
10ug u,
r 00 r

3—4v  cosf b cosb+ cos? 6+ sin? 6
2(1—2u)a 2 2 (1+ cosh)?
4—4y cos® b 1+2cosf+cosf
_2(1—2y)a r2 +ﬁ (14 cos9)?
1 cosf b cosf
72(1—2u)a 72 +r71+0059

& + lcotg@
r
acosf b 1+ cos — cost
3—4v—-4+4 —_—
2(1 - 21/)7"2( Y )+ r2 1+ cosf

1 acos&_f_ﬁ 1
2(1-2v) r2 r2 1+ cosf
1 du, 0 (W))

o0 TTar

21-v) a 3—4va b sinf
———~ —sinf — —sinf+2———
1—20 2" 1—ovr2t + 214 cosf

7asin0 b 2sinf

+7
r2 721+ cosf

7.3.8 Expression générale des contraintes

Partant de la relation de Hooke

v
05 = 2G <5ij + 1—2V6”5ij>

notons d’abord que

C  acosf
5”:@:*2: 5
T r

(7.26)

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)
(7.32)
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On obtient alors aisément

o acosfh 2 —v b

2G 2 1-2v 2 (7.33)
oo acosf b cosf

20 — .34
2G 272 + 721+ cosf (7.34)
Op __acos 0 i 1

26 272 + 21+ cosf (7.35)
Tro asinf 2b sinf

— = ——t —— 7.36
2G 72 + r2 1+ cosf ( )
Too = 0 (7.37)
Trp = 0 (738)

7.4 Conditions aux limites

mq

F1aURE 7.2 — Conditions sur la surface libre
Pour r > 0, les conditions sur la surface libre sont (fig. 7.2)

Jc9|(7'::|:7r/2 = O> Tr@‘@::ﬁ:ﬂ'/2 =0

On notera que la condition portant sur oy est automatiquement vérifiée. Quant
4 la nullité de 7,9, elle nécessite

—a+2b=0
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soit
a
b=— 7.39
. (7.39)
Il faut a présent exprimer a en termes de la charge P. Pour ce faire, on

notera que la résultante des contraintes sur n’importe quel hémisphére centré
sur le point d’application de la charge doit équilibrer P. Ainsi que le montre la

FI1GURE 7.3 — Equilibre global

figure 7.3, cette condition s’écrit
/ (70800 — 0, cos ) r* sin fdfdyp = P
s
ou, en tenant compte de la symétrie par rapport a ¢,
/2
P= / (Tr¢ 8in 0 — o, cos 0) 27r? sin Hd (7.40)
0

Nous ferons le calcul en séparant les termes contenant a et les termes contenant
b:
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a) Termes contenant a

71'/2 2 — v
P, = 27nGa / <sin39 2 cos20sin9> do
71'/2 3
= 7277Ga/ {(sin2 0 4 cos? 0) + cos? 0] sin 6df
0 1-2v
/2
/2 3 cos® 4
= —QwGa{— [cos@]o/ “ 1% [ 5,
_ ArGa(1—v)
1—-2v

b) Termes contenant b

7r/2 . 20
P, = 47Gb / (Sm + cos 9> sin 06
0 14 cosé

w/2
= 477Gb/ (1 — cos@ + cos ) sin 0do
0

= 47er[—cost9}g/2
= 4nGbHh

Au total, et en tenant compte de la relation b = a/2, on obtient

1—-v 1
P=P,+ P, =4rGa |- S| = —4rGa——
R =Ar “{ 1—21/+2} T = 2w)
soit
(1—20)P a
= b=2 7.41
“ oG 2 (7.41)

7.5 Solution du probléme de Boussinesq

Connaissant, ces valeurs, on peut enfin les réintroduire dans la solution gé-
nérale, ce qui fournit la solution du probléme de Boussinesq :
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1. Déplacements :

P
U = e [4(1 —v)cosb — (1 — 2v)] (7.42)
Psinf | 1—-2v
= -(3—-4 4
1o 4rGr {1 + cosd 8 V)] (7.43)
u, = 0 (7.44)
7.45)
2. Contraintes :
_ (1-2w)P 4 -2
op = 52 1 T, cosf (7.46)
_ 2
oy = (1-2v)P cos®0 (7.47)

2nr2 14 cosf

(1 —2v)P cosh — sin? 0
= -4
e 272 1+ cosf (7.48)

(1 —2v)Psinfcosf

= .4
Tro 2mr2 1+ cosf (7.49)
Tro = 0 (750)
Top = 0 (751)

Dans les problémes de contact, on s’intéresse spécialement aux déplacements
des points du plan limitant le demi-espace, qui valent

P(1-2v)
u’r|9:7‘r/2 = —W
P(1-v) P(1—1?)
- = — =— .52
uolo=r/ 2nGr mEr (7.52)

7.6 Exercice

Exercice 30 Etudier le probléeme de Lord Kelvin, consistant en une charge
concentrée dans un massif indéfini (fig. 7.4)

Suggestion : Ce probléme ne différe de celui de Boussinesq que par ses conditions
aux limites.
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Chapitre 8

Le probléme de Hertz

8.1 Introduction

Le probléme de Hertz [44] consiste a étudier les forces naissant lors du contact
pressé de deux solides élastiques. Ce probléme a notamment une importance
considérable dans 'étude des roulements & billes [82]. Bien que I'on se place

FIGURE 8.1 — Probléme de Hertz
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dans le cadre de la linéarisation géométrique et d’un matériau linéaire, la relation
entre la force et le rapprochement des deux corps en contact n’est pas linéaire,
pour la raison suivante : sous l'effet de la charge, les deux corps s’aplatissent en
leur contact (fig. 8.1), si bien qu'’il se forme une aire de contact d’autant plus
grande que 'effort est plus important. La raideur s’accroit donc avec la force.

La théorie des contacts ponctuels — on dit encore des contacts hertziens —
repose sur la solution du probléme de Boussinesq, qu’il convient donc d’avoir
étudié au préalable.

8.2 Considérations géométriques

8.2.1 Description de la surface d’un corps

F1GURE 8.2 — Courbure de la surface d’un corps

Considérons un corps C' de surface réguliére S (au moins deux fois différen-
tiable), posé en un point O sur un plan IT auquel sa surface est tangente (fig.
8.2). Nous adopterons le systéme d’axes suivants : Oz sera l’axe normal au plan,
dirigé vers l'intérieur du corps C'; Ox et Oy seront deux axes orthogonaux a
Oz et entre eux (et, par conséquent, situés dans le plan II). Dans ce systéme,
la surface du corps C' admet, dans un voisinage du point de contact O, une
équation de la forme

z=2Z(z,y) (8.1)
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Notre hypotheése de régularité de la surface nous permet, dans un voisinage éven-
tuellement plus petit que le précédent, d’utiliser un développement de Taylor
limité :

0z oz
Z(:Z?,y)Z(O,O)+<ar)Ol’+<ay>oy
1 (922N , [&Z 1/922\ 5 .
+2<ar2>01 +<amay>omy+2<ay2>oy +0(IL‘ +y)

Les conditions de contact entre le corps et le plan s’écrivant

Z(0,0) =0, <8Z> =0, (6Z>
or / oy /),

1 1
Z(w,y) ~ SEna® + Koy + 5 Kooy’ (8.2)

on se rameéne a

ou apparait le tenseur de courbureK;; défini par

0?7z 0?7z 0?7
o= (G7), 20 (i), o= (5), @9

Comme tout tenseur symétrique a deux dimensions, il admet deux axes propres
orthogonaux Ox et Oy tels que

1 1 -
Z(z,7) = §K11£f2 + §K22ﬂ2

Ces axes propres sont appelés azes principaux de courbure. Les valeurs propres
K11 et Koo sont les courbures principales et leurs inverses sont les rayons prin-
cipauzx de courbure. On notera dans la suite

En fonction du signe des courbures principales, on dit que le corps est conveze
ou concave : convere dans toute direction principale dont la courbure est po-
sitive, concave dans toute direction principale dont la courbure est négative et
enfin rectiligne dans toute direction principale de courbure nulle. Une surface
dont une courbure principale est nulle est développable. Seuls les plans ont leurs
deux courbures principales nulles.
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I ;\\_\7
Z

FIGURE 8.3 — Interpénétration fictive des deux corps

8.2.2 Contact de deux corps

Etant donné deux corps élastiques en contact, imaginons un instant qu’ils
puissent s’interpénétrer. Partant de leur position de premier contact, ils se pé-
nétrent mutuellement d’une profondeur h. Prenant l'origine des axes au point
A de la figure 8.3, les surfaces des deux corps admettront donc les équations
suivantes, en se limitant au second ordre :

.o 1N2 I
Corps I @ 20 = 335, Kz,

8.4
Corps IT : 2I1 = h*%Zijﬁ Kiljlximj 5

Le choix des signes est destiné & maintenir la convention de positivité des cour-
bures en cas de convexité. La réalité, bien entendu, est tout autre, et les deux
corps vont se repousser mutuellement comme le montre la figure 8.4. Le corps I
admettra un déplacement w! dirigé vers le haut (c’est-a-dire dans le sens des z
positifs) et le corps II, un déplacement w!! dirigé vers le bas, d’oii les valeurs

12
I _ I, .. I
zZ = 52 Kz +w
ij=1

12
o _ I I1
z = h-— 3 E K vizy —w

i,j=1
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surface
de contact

FIGURE 8.4 — Situation réelle

I 17

de maniére & assurer, dans la zone de contact, 1’égalité des cotes, z*' = z**, ce
qui implique un déplacement total
12
I IT I IT
w=w +w :h—§Z(Kij+Kij)xixj (8.5)
i,j=1
ou apparait le tenseur des courbures résultantes défini par
K=K} +K]! (8.6)

Dans ce qui suit, nous omettrons 'indice supérieur R pour alléger les écritures.
L’étude de ce tenseur est particuliérement instructive. Il admet en effet, comme
les tenseurs de courbure des corps, deux directions principales orthogonales,
dans lesquelles on peut écrire

1 1
w = h— Az? — Bj?, A:§K117 B = 51(22 (8.7)
Lorsque les deux valeurs propres Ki; et Koy sont positives, les lignes w = cte

sont des ellipses : on dit que le contact est ponctuel. Lorsque 'une des deux
est positive et ’autre, nulle, ces mémes lignes sont des droites : le contact est
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linéaire. Enfin, lorsque I'une au moins de ces valeurs propres est négative, le
déplacement est d’autant plus grand que 1’on s’éloigne du centre de contact dans
les directions correspondantes, ce qui signifie que le contact ne peut débuter &
Porigine : le probléme est alors mal posé. Dans ce qui suit, nous nous limiterons
aux contacts ponctuels.

Dans le cas relativement fréquent ot les deux corps se présentent de maniére
telle que leurs axes principaux de courbure soient confondus, on a simplement,
dans ces axes,

w=h— Az* — By?
avec

1 1
A=§(p{+p{1), B=§(p§+p§’) (8.8)

Dans le cas général, les axes principaux Oz’ et Oy’! du corps II peuvent

yI
yIr

xIL

o xL

F1GURE 8.5 — Axes principaux de courbure des deux corps

former un angle o avec ceux du corps I (fig. 8.5). Dans les axes principaux des
deux corps, on aura donc

= ol @)+ 5 )’
et
ho— AT — %p{I (xH)Q + %pél (y”)2
On peut ramener le tout dans les axes du corps I en notant que

1 = zlcosa+ylsina

v = —zlsina+ylcosa
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ce qui entraine

1
h—21 = 5 (p{f cos? o + pllsin® a) (IEI)2 + (p{l - péI) sin o cos axly!
1 . 2
+ 5 (p{l sin? o 4 pél cos? a) (yl)
et
1
w=h— 3 KZJa:ZIxj (8.9)
i,j=1

avec A

ff'n = pl+pllcos?a+ pif sin? o

Kio = (pl! —pil)sinacosa (8.10)

Koy = ph+pllcos®a+ pllsin® o

Les valeurs principales de la courbure résultante sont donc les solutions 24 et
2B de I’équation séculaire

K2 Ky — A
soit
A2 -\ (Kll + KQQ) + (K11K22 — K122) =0 (811)
Il vient donc, en posant arbitrairement B > A,
2B+ A)=Ku+Kn=(pi+pt" +p5+p") =D p (812
et
N N 2 PN N
2B - A) = (Ku + KQQ) 4 (K11K22 - K122)

A~ A~ 2 ~
\/(Kll - K22) +4K73,
I Ly (1T 11 cos2a2+ 7 I 2sin22a
(1 =+ (o1 =2 P1 — P2

(0= 20"+ (64" = o41)" 42 (6f = o) (o1 — 1) cos20]
F(p) (8.13)

1/2

1/2
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On utilise souvent 'angle auxiliaire § défini par

B-A _F(p)

cosd = BrA S, (8.14)
en fonction duquel on obtient aisément
A=(A+B), B s = 2 sl (s19)
+B 2 2 2
et
B:(A+B)AfB:%choszg (8.16)

Ainsi, il existe un systéme d’axes Ox, Oy dans lequel le déplacement total prend

la forme
w=h — Az* — Bjj? (8.17)

A et B ayant les expressions (8.15) et (8.16).

8.3 Equilibre de la surface de contact des corps

P
4B
B
iz /A 2
I W
BI

FIGURE 8.6 — Déplacement en B da & une charge en A

La surface de contact étant supposée trés petite par rapport aux dimensions
des corps, on peut identifier ceux-ci & des massifs indéfinis en ce qui concerne
les efforts. L’étude du probléme de Boussinesq nous a montré qu’une charge
concentrée en un point A produit en un autre point B situé sur la surface (fig.
8.6) un déplacement
I v P

wx (8.18)

TErr ram
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e\
cgm‘acz‘ \?qu

F1GURE 8.7 — Superposition de 'effet des pressions dans la zone de contact

Dés lors, par superposition, un systéme de pressions p appliquées sur la surface
de contact S (fig. 8.7) produit dans le corps II un déplacement

1 _ V2 n n
U)JIBI = - piAdSA = €7 piAdSA (819)
mErr Jsras S TAB
en posant
1-— V%I
5 = 8.20
n=p (8.20)

De la méme facon, le déplacement du corps I vaut

wh, = 6[/ Lo 45, (8.21)
s T'AB

valeur proportionnelle & la précédente, dans le rapport

I
Yp _ L

15 —
wp Err

(8.22)

Le déplacement est donc identique dans les deux corps dans le cas assez habituel
ou ils sont constitués de matériaux de mémes constantes élastiques F et v.
Enfin, le déplacement total, qui a la forme (8.17), vaut

wp = (E[ +E[[)/ piAdSA (823)
s TAB
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Il s’agit d’une équation intégrale en p4, que ’on désire résoudre analytique-
ment pour des valeurs quelconques de h, A et B. On notera ’analogie entre ce
probléme et ’expression donnant le potentiel en électrostatique :

Vi = / LA s,
v TAB
ou
densité de charge

pa = 47T'Eo

Or, il est bien connu (voir annexe) que le potentiel d’une charge uniforme dans

un ellipsoide s’écrit

_ pla, B, 7)
Vimy,2) = /ellipso'ide \/(33 — 04)2 ( — 2 )

dadBdy

= 7rpabc/oo (1 — « ) dg
0 a?+¢& b2+£ 62+£ V(@2 + &2 + &) (e +€)
(8.24)

L’expression de ce potentiel présente une forte ressemblance avec 1’équation
de w, n’était-ce le terme en z. Nous le supprimerons, ainsi que -, de la fagon

suivante. Commengons par mettre les variables & 1’échelle :

r=ar , y=by , z=cz
a=ad , =06 , y=cY

et exprimons V(z,y,0) en termes de ces variables sans dimensions. On a, en
notant B la boule unité,

V(9,0 / pabcdadﬁdv
Prfa2(s - 42 + 825 - B2 + 5

_Wpabc/ <1 v’ — v’ ) de
0 a+& b H+E) a2+ €0 +6)(c2 +¢€)

Divisons les deux derniers membres par ¢ et faisons ensuite tendre ¢ vers zéro.
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On obtient I'identité
/ pabdadBdy
P\a2(e - 6)2 4+ 525 - B)?

—wab/oo<l z? — y2> d<
pav | +& B+E) JE@@+ OB +¢)

dont le premier membre peut étre intégré par rapport & 4 entre les limites

+1/1 — &2 — 32 ce qui donne
/ 2pabdadpy/1 — a2 — B2d5
disque unité

Premier membre =
V(@ — a2+ 0 - )2

/ 2p\/1 — 2% — B2 dadp
B ellipse(a,b)

r

Le résultat final de ces manipulations est

/ p\/lf‘;—;f’g—jdadﬂ
ellipse(a,b)

r

B Lab [e’e] B .132 B y2 dé‘
2, (1 a?+¢ b2+£> VE(@® +6) (b +¢) (8.25)

Nous avons donc obtenu une distribution du type (8.23) conduisant a un dépla-
cement de la forme voulue (8.17). Ceci signifie que la solution consiste en une
pression de la forme

22 g2
P=DPH l_aiz_biz (8.26)
a laquelle correspondent les variables h, A, B par les relations
wab [ dé
h = (E]JrE]])pHi/ (8.27)
2 Jo VE@+E?+9)
wab [ d¢
A = (81+611)pH7/ (8.28)
2 Jo el + P07 +¢)

_ wab [ d¢
B = (e1+ sn)pHT/O NI CEIE (8.29)
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La pression maximale, encore appelée pression de Hertz, est liée a la résul-
tante P des pressions réciproques par la relation

2 2
ellipse(a,b) a b
Posant
x =apcosp, y=bpsing, p€|0,1[, ¢ €]0,27]
on obtient
2 2
dS = ab - 2mpdp, 1—%—%—2:\/1—/)2
a
d’ou

1
pP= pH27rab/ V1 —p2pdp
0

Posant encore p = sin&, on obtient

7'!'/2 2
P= pH27rab/ cos? € sin d€ = gﬂapr
0

soit
PH=-— (8.30)

équation qui signifie que la pression de Hertz vaut 1,5 fois la pression moyenne.
On peut ré-exprimer les résultats (8.27), (8.28) et (8.29) en termes de P au
lieu de pgy, ce qui donne

h = €[+611 / \/f a2—|—§ b2+f) (8.31)

A = €1+€jj \/f a2—|—§§ ECET (8.32)
_ E dg

B = (er+em) /0 NGRS (8.33)

8.4 Résolution des équations

Les équations (8.31) & (8.33) donnent la solution de principe du probléme :
connaissant A, B et P, on peut déterminer a et b par les deux derniéres équa-
tions, puis h par la premiére. Mais il faut pour cela parvenir & calculer les
intégrales des seconds membres.
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Tout d’abord, nous introduirons les intégrales elliptiques complétes

/2 d
K (m) :/ . E(m
0 vV1—msin“x

avec m €]0, 1], dont voici une table [1].

m K(m) E(m)

0 | 1,5780 | 1,5780
0,1 | 1,61244 | 1,53076
02 | 1,65962 | 1,48094
0,3 | 1,71386 | 1,44536
0,4 | 1,77752 | 1,39939
0,5 | 1,85407 | 1,35064
0,6 1,94957 | 1,29843
0,7 | 2,07536 | 1,24167
0.8 | 2,25721 | 1,17849
0,9 | 2,57809 | 1,10477
0,95 | 2,90834 | 1,06047
1 ’¢) 1

On remarquera que ces intégrales admettent I’expression équivalente

7T/2 dl‘
K(m):/ ——,
0 v1—mecos®x

187

w/2
) = / V1 — msin® zdz (8.34)
0

/2
E(m) = /o V1 —mcos? xdx (8.35)

Cela étant, il est aisé de transformer les intégrales apparaissant dans les formules

(8.31) & (8.33).

1. Tout d’abord, en posant & = a?tg? ¢ et e = b/a,

e i
11_/0 VE@ T O+ 9

2 [ /1+tg2¢

aJo e2+tg2yp

ato  /e2cos?p+sin? o

2/#/2 d(,O
alo /1—(1-e2)cos?p

2
ZK(1-¢é?
" (1—¢%)
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ce qui donne

h=(er+em) LR - ) (8.36)

2a

. Le méme changement de variables permet d’écrire

& B 7/ cos” pdp
VE@+ e +e) @b \/620082g0+sin2<p
B cos? pdyp
B a3 \/17 1—e?)cos?

Comme, par ailleurs,

1 1 1
2 2 2 2 2
cos”® p = 1_62(1—6 )cos® p = i 1_62[1—(1—6 ) cos” ]
on obtient
Iy = #[K(l —ef) — E(1 —¢?)
a3(1 — e2)
d’ou
A 3P 9 9
= (5+€2)m[K(1—6 ) — E(1 —¢)] (8.37)
Posant enfin ¢ = b? tg? ¢, on obtient
& B 7/ e cos” pdy
VE@® + &) (B2 + §)3 B Jo Ve2cos2p+sin’ g
_ 2 e cos? pdyp
¥Jo J1—(1—-e)cos?ep
Notant que
1— 2
cos?p = ﬁ cos? @
1
= 1_62[(1—6 ) — (1 — €e?)sin” ¢
1-(1—-e?)sin’yp e?
N 1—e2 1—e2
on obtient 5
2 2
Ii=2K1-¢) - E1-¢?)
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ce qui entraine

3P [%E(l — et -~ K(1 —¢?)] (8.38)

B=brensn—alk

Les équations (8.15), (8.16), (8.37) et (8.38) impliquent

A §  K(-e*)—E(1-¢€?)
p-Eg= IE(1—e?) - K(1—e?) (8.39)

€

Cette équation permet de calculer e en fonction du paramétre ¢ (graphiquement,
on peut tracer une courbe de § en fonction de e). La valeur de e étant connue,
on calcule a & partir de (8.37) et (8.38), en notant que

1 .50 1 50
A:§Zpsm 2 B:§chos 3

ce qui donne
1/3 1/3
3 1 9 9 i3 ( P
a:{sjn2gl—e2 [K(l—e)—E(l—e)}} (6[+€11) <Zp>
(8.40)

Pour une plus grande simplicité, on utilise généralement un module de Young
équivalent E,, défini par

1 1(1-vi 1-v} m
= = 8.41
B, 2 ( Er | En gler +en) (8.41)
a I'aide duquel on peut écrire
p 1/3
=k | =—=— 8.42
e <Em > p> (842

avec

1/3
ko = {61 [K(1-¢®) — E(1-¢%)] } (8.43)

wsinggl —e?

On en déduit d’abord
p 1/3
b=k | —— 8.44
’ (Em > p) (8.4
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avec

puis

avec

et enfin,

ol
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8.5 Comportements asymptotiques

8.5.1

Casoue=1

(8.45)

(8.46)

(8.47)

(8.48)

(8.49)

Pour e = 1, les formules ci-dessus ménent & des formes indéterminées, ce qui
rend nécessaire une étude du comportement des fonctions K et E au voisinage
de e = 1. On a, pour e proche de 'unité,

et

K(1—¢e?)

E(1—¢%)

~
~

%

%

NIH S— S—,

/2 —1)2
/ [1—(1—¢€?)sin®6] de
0

7\'/2 17 2
/ <1+ ¢ sin29>
0 2

7
1—en)X
+ ( 6)8

NN

/2 1/2
[1—(1—¢€*)sin*6] '~ do

/2 1— 2
(1 26 sin29>

—(1-e)g
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ce qui donne

Comme, pour e = 1, on a § = 90° et sin?(§/2) = 1/2, il vient

6m 1/3
ke = ( 2) =V/3=1,442
.4
ky = ks
3 1 NE]
k, = ———_=2"=0,2295
P 27 32/3 2 ’
3 1 & 323
ky = S—2== =1,04
h 73/32 2 040

8.5.2 Trés faibles valeurs de e

Pour e — 0, on peut montrer [1] que

K(1—€?) ~In(4e)

tandis que
B(l-e?)=~1
Il vient alors
; Qé _ K-F
895 T E_ g
e
. n(4/e) -
% —n (4/6)
~ e ln(4/e)

Comme c’est une petite valeur, on a encore

(=)

0
.2 2
sin” — ~ tg® —
B g

N}

191
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d’ou, par les formules (6.40) et suivantes,

1/3
6L -K 1
~ |—e K- FE
Fa [wKEleQ( )
6 1 [(E 1/3
~ |- - - K
P ()]
1/3
~ (6 / —2/3
v
1/3
kib ~ 9 61/3
T
1/3
Lo 3 16N
P 2k ky 4\ 7
2/3
1/6
kn =~ 2<7T> e*/31n(4/e)

8.6 Tables de la solution du probléme de Hertz

8.6.1 Valeurs courantes de ¢

1-— 62 € 5(0) ka k‘b k‘p k‘h

0 1 90 1,442 | 1,442 | 0,2296 | 1,040
0,1 0,9487 | 87,33 | 1,481 | 1,405 | 0,2294 | 1,040
0,2 0,8944 | 85,19 | 1,526 | 1,365 0,2292 | 1,039
0,3 0,8367 | 82,37 | 1,580 | 1,322 0,2286 | 1,036
0,4 0,7746 | 79,09 | 1,645 | 1,274 | 0,2278 | 1,032
0,5 0,7071 | 75,25 | 1,728 | 1,222 | 0,2261 | 1,025
0,6 0,6325 | 70,66 | 1,837 | 1,162 0,2237 | 1,013
0,7 0,5477 | 64,88 | 1,992 | 1,091 0,2197 | 0,9949
0,8 0,4472 | 57,16 | 2,241 | 1,002 | 0,2126 | 0,9618
0,9 0,3162 | 45,28 | 2,763 | 0,8737 | 0,1978 | 0,8910
0,95 0,2236 | 35,26 | 3,434 | 0,7678 | 0,1811 | 0,8088
1 0 0 00 0 0 0
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8.6.2 Valeurs asymptotiques pour e proche de zéro

e 5(0) ka k’b ]ﬂp k‘h

0,01 | 2,560 | 26,73 | 0,2673 | 0,06683 | 0,2140
0,02 | 4,754 | 16,84 | 0,3368 | 0,08420 | 0,3005
0,05 | 10,57 | 9,142 | 0,4571 | 0,1143 | 0,4577
0,1 18,97 | 5,759 | 0,5759 | 0,1440 0,6117
0,15 | 26,50 | 4,395 | 0,6592 | 0,1648 | 0,7134
0,20 | 33,52 | 3,628 | 0,7256 | 0,1814 | 0,7885

Ces résultats sont représentés graphiquement en figures 8.8 et 8.9

193
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0 o1 | 02

FI1GURE 8.8 — Solution du probléme de Hertz pour les valeurs courantes de e
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0.3 173 T
it
y <
B R
A kp | I
0.2 N
o s gl AN
| e~ IS 7
= 1 , | 0 T
—~2 N 160
Kh \\ o
. O,Iﬁ T p— 1—50 <
~ | 40 l
, 30
20
10
0
0 a5 10 ’

—T-e

FIGURE 8.9 — Solution du probléme de Hertz pour e proche de zéro
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8.7 Annexe : potentiel de ’ellipsoide chargé

Soit & chercher la solution du probléme

(8.50)

| —4mp dans un ellipsoide
av = { 0 en dehors

La solution qui suit est due & Dirichlet [57]. Nous nous référons & Appell [2]. La
surface de l’ellipsoide ayant pour équation

tout point extérieur vérifie

2 2 2
x Y z
ﬁ+b72+072_1>0

En un tel point, ’équation
2 Y2 52

—1=0 8.51
a2—|—u+b2+u+02+u ( )

admet une et une seule solution u > 0. En effet, en appelant f(u) le premier
membre de cette équation, on a le schéma de variation suivant :
U ‘ 0 S o
f [+ N\ -1

et on ne peut avoir qu'une seule fois f(£) = 0. Ceci définit une fonction £ des
points P = (z,y, z) telle que

&(P) = 0 si P estsurlasurface de Pellipsoide
&(P) > 0 si P estextérieur a lellipsoide

Cela étant, nous allons montrer que le potentiel V cherché est :

1. Si P est extérieur a ellipsoide,
o] 372 y2 Z2 df
V(P) = b 1-— - —
(P) 7Tpac/u ( a?+¢ b +¢ c2+£) ©(§)

p(&) = (a® +O* +6)(c* +¢)

ol
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2. Si P est intérieur a Uellipsoide,

B o 22 y? 22 d§
V(P) —wpabc/o (1 e PHE 02+5> (&)

en donnant la méme signification a ¢(§).

On notera que les deux formules se raccordent sur la surface de 1’ellipsoide, ol
u = 0.

Pour démontrer ce résultat, il nous suffira de calculer AV dans les deux cas
et de vérifier qu’a l'infini, V' tend vers zéro. Ce dernier point est évident, car
u — 0 & linfini.

8.7.1 Calcul de 0V/0x

P extérieur

Tenant compte du fait que u varie avec =,

o _ [ S
g = | 7

— mpabcx <1

B z2 B y? B 22 ) 1 Ou
a?+& P+E A+E) \Jo(u) oz

Le dernier terme, résultant du fait que la limite inférieure d’intégration est
variable, s’annule en vertu de la relation (8.51) qui définit u. Il reste donc

ov o0 de
v _ _ b %
gy = 2ot | CEGNEG

P intérieur

On trouve immédiatement

o _ o de
ow T abcx/o (@2 + )/ (©)
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8.7.2 Calcul de 9?°V/0x? et de AV

P extérieur

On calcule
o*V o0 d¢ 1 ou
—_— = —27rpabc/ —— 4+ 2wpabc——————— —
Ox? u (@ +8)Vp() (a® + u)\/p(u) Oz

Il est aisé de déterminer 92V /dy? et §*V/dz% par analogie. Il vient ainsi

AV = 2npabe [/u (a2+§+b2+§+62+§) ©(§)

L (e 0w,y o, = o
ou) \a*>+udx b +udy c2+udz

Arrivé & ce point, on notera d’abord que

0 1 1 2 c? a? 2
ag(@@) = S O O + @ O )
(a4 )1 + £

1 [ 1 N 1 N 1
2/p(€) a2 +&§ P+ 2+¢

]

ce qui entraine

/[1+1+1}d§:_i
a?+& BHE A pg)  Ve(d)

et

/“[1+1+1]d5__2
w @S e A /of) /()
Nous obtenons donc

x @ y @ z @_2 1
a?+udr bV +udy c2+udz o(u)

AV = 27 pabc [



8.7. ANNEXE : POTENTIEL DE L’ELLIPSOIDE CHARGE 199

Le facteur entre crochets est nul. En effet, en dérivant successivement la relation
(8.51) par rapport & x, y et z, on obtient

2x [ 22 Y2 22 ] ou
= + + — =0

a?+u  [(a®24uw)?  (BP+u)? (4 u)?] Oz

9 r 2 2 2 14

R o _

B+u  [(a2+u)? (P4 u)?  (E+u)?] dy

2z [ 22 y? 22 ] ou
- - + To— o

A+u [(a®2+uw)?  (BP+u)?  (2+u)?] 0z

Multiplions la premiére équation par z/(a® + u), la deuxiéme par y/(b* + u) et
la troisiéme par z/(c? + u) et additionnons. On obtient, en notant

B 22 2 2
- = {(cﬂ + u)? - (0% 4 u)? * (c? +u)2}

la relation

x  Ou y Ou z  Ou\
2["'}_["']<a2+u8x+b2+u5y+62+u8z>_0

soit
r  Ou y  Ou z  Ou

2=—— — -
a?+udr bV 4+udy cE+udz

Ainsi, AV = 0 a 'extérieur de ellipsoide.

P intérieur

On a directement

02V o0 de
Z  — _9x0ab [
2z C/o (@2 + €)v/o ()

et

AV

_277pabc/0 <a2 Iy + b2+ ¢ + c2 +f> ©(€)

1 1
47 pabe —
’ (x/w(OO) \/90(0))
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et comme
»(0) = abe

il vient
AV = —4mp

La démonstration est donc achevée.

8.8 Exercice

Exercice 31 Etudier le probléme de Hertz dans le cas de deuz sphéres, sans
passer par les intégrales elliptiques complétes.

FI1GURE 8.10 — Contact de deux sphéres

Solution - En supposant possible l'interférence des deux corps, on aurait (fig.
8.10)
2 2

h+ T T
2] = — — 21 = —
I 5R,’ II SRy
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en assimilant les sphéres & des paraboloides. La déformation meéne &

2 2
4 Z—h-i—L-i-w[ 211 = — "
! 2R; ’ 2Ry

+ wrr

avec zy = 2y, ce qui implique
w=w; +wi =h—Br?

avec

ou

Le probléme de Boussinesq donne, pour une charge concentrée (fig. 8.7)

1—V%I P P
e — e —
TR rap TAB

WBIT =

et, par superposition, si S est la surface de contact,

pa
wprr = 611/ ——dSa
s TAB

De la méme facon, on a

wBr = 51/ piAdSA
s TAB

d’ot la relation toujours vérifiée

WRIT €I

wpBr Er

(Dans le cas de deux matériaux identiques, on a donc wgrr = wpr). Il faut donc
résoudre I’équation intégrale

wp = (E[ +€11)/ piAdSA = h—BTQ
s TAB

ou encore,

2
PA 154 = h — pr?

wBp = ———
T, Js TaB
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en définissant F,, par

11 1—u?+1—u?,
Em_2 EI EII

Par symétrie, la zone de contact est un cercle de rayon a. Montrons que la
solution a la forme

2
p=pu 1—%=p—H1/r2—a2
a

a

Soit (fig. 8.11) B un point de la zone de contact situé a une distance r du centre

F1cURE 8.11 — Distance du point A au point B

de celle-ci. Considérons un segment M N passant par B, limité 4 la circonférence,
et faisant un angle ¥ avec OB. On a donc

OC = rsiny
CN = a? — r2sin® 4
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Il vient alors

PA s — | PA L drapd
s TAB S TAB
= /pAdTABdl//
S

Ainsi que l'illustre la figure (8.12), le diagramme de p étant sphérique, la section

FIGURE 8.12 — Calcul du déplacement en B

verticale M N est encore un demi-cercle de rayon v/a2 — r2 sin? 1, dont la surface

vaut

g( 2 _r2sin? )

11 suffit donc de calculer

/2
= pdrdy = = E(a2 — 2 sin? o) dep
P Js ya:i —7/2 2
= ii(c127r — —7r?)
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On a donc
2
wp = —(/— [ padrapdy
7TEm S
_ 2 py [(7m%a® w3r?
 7E, a 2 4
_ DHTAG _ PHT o
E., 2aF,,
ce qui donne
pHTAQ
h= 8.52
o (8:52)
et 1
_ 4 _ DbHT
=20 2E,,
d’ou 5
PnT
a = 8.53
On détermine py par la condition
2 2
P = / pdS = br 2,03 = “appa®
S a 3 3
ce qui donne
3P
= 8.54
PH =5 (8.54)

Il vient alors, en combinant (8.53) , (8.54) et (8.52),

a = _1 442(/Emzp (8.55)
ho= { (EZ) > p=1,040¢ (i) S (8.56)

o = \/85;3 (Em p "o, 2295*P(Em2p (8.57)

| ©




Chapitre 9

Principes variationnels de
I’élasticité géométriquement
linéaire

9.1 Introduction

Les principes variationnels constituent un outil fécond pour la construction
de solutions approchées en élasticité. De telles solutions ont déja été construites
dans le chapitre relatif & la torsion. Le présent chapitre développe ce concept
dans le cas général de I’élasticité géométriquement linéaire.

9.2 Principe du minimum de I’énergie totale

Considérons un corps élastique V. Pour exprimer ses liaisons avec la fon-
dation, nous distinguerons sur sa frontiére S deux parties distinctes et complé-
mentaires S7 et So telles que

S = S1US,
mes(Sy) # 0 (9.1)
mes(S1NS2) = 0

Sur S1, on imposera des déplacements %;, tandis que sur Sy, on imposera des
tractions de surface ¢;. En outre, le corps est soumis & des forces de volume

205
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fi. Dans ce qui suit, nous considérerons que les charges f; et f; sont mortes,
c’est-a-dire indépendantes des déplacements.
Un champ de déplacements u; sera dit cinématiquement admissible si, d’'une
part,
u; = u; sur Sp (9.2)

et si, d’autre part,

Un) = /V W (Du)dv < 00 (9.3)

ot W(Du) est la densité d’énergie de déformation calculée & partir de ce champ
de déplacements, D symbolisant ’opérateur de calcul des déformations. Notons
que dans les développements qui suivent, il n’est pas nécessaire de supposer le
matériau linéaire.

Définissons le potentiel des charges P par les conditions

PO) = 0
{ 6P(u) = —oT(w) = — fy, fidwidV — [ TidusdS (9-4)

On considére alors ’énergie totale
E(uw) =U(u) +P(u) (9.5)

Le principe du minimum de l’énergie totale, encore appelé principe de variation
des déplacements, stipule que parmi tous les déplacements cinématiquement ad-
missibles, celui qui vérifie I’équilibre est caractérisé par le fait qu’il minimise
l’énergie totale.

Soit en effet u la solution cherchée. Tout autre champ de déplacements ciné-
matiquement admissible v vérifiera par définition les conditions (9.2) et (9.3),
ce qui implique que la variation

u=v—u

vérifiera,
ou; = 0 sur Sq (9.6)

Il est équivalent de dire qu'une variation de déplacement d’énergie finie est
admissible si elle vérifie la condition (9.6). Cela étant, la recherche du minimum
est classique. On a

E(u+ ou) = E(u) + 6 + %625 +o((6u)?))
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et les conditions de minimum sont
5 =0, 6% > 0 You admissible (9.7)
La condition de nullité de la variation premiére s’écrit
0 =8U + 6P = 6U — 6T = 0 Vé(u) admissible (9.8)

Il s’agit d’un cas particulier du principe des travaux virtuels, restreint aux seuls
déplacements admissibles. Pour obtenir les équations locales qui en résultent,
on calcule

oW 1
= — 2 (D;bu; + D;bu;
ou v O 5 (Didu; + D;dus)dV

s, O€ij v g

d’ot, en tenant compte de 'expression (9.4) de 6P, on tire

D;ig 4+ fi = 0 dansV
n; oW’ =t sur S (9-9)
J 681‘_7’ g 2

L’énoncé du principe du minimum de I’énergie totale est di & Kirchhoff [48]
(1850).

De maniére générale, un principe variationnel contient certaines variables
soumises & priori & ce que l'on appelle des conditions essentielles. Le résultat
de la variation de ces variables conduit & ce que l'on appelle les conditions
naturelles. Dans le cas présent, on peut donc établir le tableau suivant :

Principe de I’énergie potentielle totale
Variable | Conditions essentielles | Conditions naturelles
U; u; = U; sur Sy Equilibre dans V et sur S

Supposons que l'on cherche une solution approchée en se limitant & certains
déplacements particuliers : on écrira par exemple

u; = @i(Tian, ..., ap) (9.10)

les oy, étant des paramétres scalaires. L’application correcte du principe de va-
riation des déplacements suppose que les conditions u; = @; soient vérifiées
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exactement, quelles que soient les valeurs des . On calculera alors

U(oa, ..., ap) / W(Do(z;a1,...,0p))dV

P(oq,...,ozp)

/ fipi(z;aq,. o ap)dV — / tigi(z; o, ..., 0p)dS
Sa

et
Elar,...,ap) =U(a1,...,ap) + Plag,...,ap)

ce qui raméne le probléme élastique & la minimisation d’une fonction de p va-
riables scalaires. La solution approchée sera donc caractérisée par les conditions

o€
e —1,... 11
9 0, k=1,...p (9.11)

Que perd-on par rapport a la solution exacte en travaillant de la sorte? En
adoptant la forme restrictive (9.10) pour les déplacements, on limite évidemment
I’ensemble des variations possibles. Ces variations sont « responsables »de la
vérification de 1’équilibre. De fait, la solution approchée ne vérifiera pas les
équations d’équilibre locales, mais seulement p conditions d’équilibre globales,
qui s’écrivent

3%
12
Fi e 08 (9.12)

OW Oeij (¢ dV / 7

1% 852-]- Bak

La procédure décrite ci-dessus pour construire une approximation est connue
sous le nom de méthode de Rayleigh-Ritz [71, 77, 88, 69, 95]. Dans ce type d’ap-
proche, ce sont toujours les conditions naturelles qui sont affaiblies (globalisées).

Enfin, la condition 626 = 82U > 0 permet de distinguer les minima des
maxima. Elle s’écrit explicitement

2
/ OW e (w)der(uw)dV > 0
1%

et est vérifiée & priori si 'on admet la stabilité locale du matériau, condition qui
s’écrit
oW

m définie pOSitiVe (913)
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9.3 Multiplicateurs de Lagrange

Rappelons briévement la technique des multiplicateurs de Lagrange pour
la résolution des problémes d’extrema liés. Soit & chercher le minimum d’une
fonction f(z1,...,z,) dans la variété V définie par les conditions

gl(xla"'v‘rn) :07"'7gp(x17'“,xn) =0 (p< n) (914)

Nous supposerons que ces p liaisons sont linéairement indépendantes, c’est-a-dire
que

P
Zakgradgk =0=a,=0,k=1,...p
k=1

Considérons de nouvelles variables

{ & =g1(2), -, & = gp(7)

&pt1, - - - €n arbitraires

pourvu que la relation x < £ soit biunivoque :

I(x) &)
06 7" 3w 7’
On a alors
of af of of
& = gt t gyt g —dbpn ot pede

Il est clair que pour des accroissements vérifiant les conditions (9.14), d&; =
.. =d&, =0, si bien que la condition d’extremum s’écrira

of 5f _
91 Ao d&pt1 +. 85” A dén =0 Y(d§pi1,- .., dEn)
Or, cette condition s’écrit encore
of , Of 1o _
df %6 1— - agpdﬁp 0 V(d&,...,d&)
Il existe donc p nombres
V7 N (9.15)

67&,..., p—aié_p
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tels que
d(f — )\191 — ... )\pgp) =0 (916)
Le systéme de (n + p) équations aux (n + p) inconnues (Z1,...,Zn, A1,...,Ap)
grad(f —Agi —...—Xpgp) = 0
{ g = 0, k=1,...p (9.17)
permet de déterminer le point extrémal cherché. Les p inconnues supplémen-
taires Aq,..., A, sont appelées multiplicateurs de Lagrange. En définissant la
fonction augmentée
fH (@A) = f(@) = Mg1(@) — ... = Mg (@) (9.18)
on constate que le systéme (9.17) s’écrit encore
af*
= 0 ) ) = ]‘7 )
oz, i n
(9.19)
af*
=0 k=1
8)\]{; ) 9 7p

FIGURE 9.1 — Interprétation des multiplicateurs de Lagrange

plicateurs de Lagrange obtenus & la solution : Ay est le tauz de variation de f
lorsque l’on perturbe la k¢ liaison. Illustrons ces considérations par un exemple.
Soit (fig. 9.1) un point lié & n ressorts et astreint a se déplacer dans une glissiére,
de telle facon que ses déplacements soient soumis a 1’équation

g=ucosfB+uvsinf=0 (9.20)
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(8 est I'inclinaison par rapport a l'axe des = de la normale & la glissiére). Le
point considéré est foumis & une force F inclinée d’un angle o sur 'axe des .
L’énergie du ressort n°i vaut

1
ou u; est le déplacement dans la direction de ce ressort :

u; = ucosf; + vsinb;

On a donc
1 .
U = 5zi:ki(ucosﬁi4—vs1n€,»)2
1 2 1 2
= K, ,u+ Kpuv+ =Ky,v
2 2
avec
K = Zkzicoszﬂi
i
Ky = Zkl sin 0; cos 0;
va = Z kl SiIl2 0,-
et
P =—F(ucosa+ vsina)
d’ou
E = U+P

1
= 3 Zki(ucosﬁi +vsin®;)? — F(ucosa + vsina)

En P’absence de liaison, la solution s’obtiendrait en écrivant

% = Kupu+ Kyv—Fcosa = 0
ou
(9.21)
o0&
= Kypu+ K,v—Fsina = 0

B
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Pour tenir compte de la liaison, on considérera la fonction augmentée
E*(u,v,\) =U+P — Mucosf+vsinf)

dont le point stationnaire est donné par

Kuuu+ Ky,v = Fcosa-+ Acospf
Kupu+ Kyyv = Fsina+ Asing (9.22)
ucosfB+ovsing = 0

Comparant le systéme (9.22) au systéme (9.21), on constate que A s’interpréte
comme une force normale & la glissiére. De fait, par (9.15),

o0&
A= g

représente ’effort nécessaire pour obtenir

(9.23)

d0g = ducosfB +dvsinf =1

C’est donc la réaction de la glissiére, positive dans la direction indiquée par
I’angle 3.

Les résultats qui précédent peuvent étre généralisés aux problémes variation-
nels. Le probléme consistant & chercher ’extremum de

Aug, ..., up) = / flur, ... u,)dV
v
moyennant les conditions
g1(u)=0,...,9,(u) =0 dans V

revient & écrire, en chaque point de V'

chaque fois que

ogr1 o 0gp o _
i 5%5%_0"”7;5%5%_0

Il faut donc, en chaque point de V, résoudre le probléme

{5f—zz_1)\kégk = 0
g = 0
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Les multiplicateurs A\, varient évidemment d’un point & ’autre : on a donc des
champs de multiplicateurs de Lagrange. La fonctionnelle augmentée est alors

A (u, A) = /v [f(u) = Negr(u)
k

les A\, étant des fonctions des coordonnées.

av

9.4 Principe a quatre champs de Fraeijs de Veu-
beke

Dans le principe de variation des déplacements, les déformations n’appa-
raissent que comme dérivées des déplacements. La compatibilité intérieure, ex-
primée par

1
€ij = §(Diuj + Djui) dans V (9.24)
est donc vérifiée a priori. De méme les conditions de compatibilité sur Sy,
u; = u; sur Sy (925)

doivent étre vérifiées & priori.

Une autre maniére de procéder consiste & considérer les déformations e;;
comme des variables indépendantes et & ignorer au départ les relations (9.25).
Dans cette optique, le probléme élastique consiste & minimiser la fonctionnelle

E(e,u) =U(e) + P(u) (9.26)
avec

Z/l(a):/VW(s)dV (9.27)

moyennant les liaisons (9.24) et (9.25), dont on tiendra compte & 'aide d’un
champ spatial de multiplicateurs de Lagrange o;; pour la condition (9.24) et d’un
champ superficiel de multiplicateurs de Lagrange ¢; pour la condition (9.25). La
fonctionnelle augmentée sera donc

E*(g,u,0,t) =
/ {W(E) + 045 [;(Dzu] + Djui) — e’:‘z‘j:| — fmz} 1%
1%

SQ Sl
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Elle sera extrémale par rapport & toutes les variables, sans conditions essen-
tielles. Ce principe est souvent attribué & Washizu [93], bien qu’il ait été énoncé
cinq ans plus tot par Fraeijs de Veubeke [27]. L’exposé ci-dessus suit du reste
ce dernier auteur qui, pour la méthode utilisée, faisait référence & Friedrichs
[11, 38]. En variant la fonctionnelle £* par rapport aux quatre champs ¢, u, o, t,
libres de toute liaison, on obtient toutes les équations de 1’élasticité.

1. En variant les déformations, on obtient visiblement ’équation

ow

ow _ 2
oo 0ij (9.29)

qui donne aux multiplicateurs o;; la signification énergétique de contraintes,
en tant que grandeurs liées aux déformations. Les relations (9.29) sont en
fait les équations constitutives.

2. La variation des déplacements donne
1 _
v O—iji(Diéuj + DJ(S’U,,L) — fzéuz 1%
S2 Sl
Effectuant une intégration par parties, on obtient
/ njaijéuidS - / (Djaij)(SuidV — / fzéuldV
s 1% v
—/ fi6uid5— tléuzdS =0 (931)
Sa S1

ce qui conduit aux équations

D]‘O'ij + ﬁ = 0Odans V (932)
n;o;; = 72' sur 52 (933)
n;oi; = tl‘ sur Sl (934)

L’équation (9.32) exprime ’équilibre intérieur pour les contraintes \;; ;
Péquation (9.33), I’équilibre sur Sy ; enfin, 'équation (9.34) permet d’in-
terpréter les t; comme des tractions de surface, réactions sur Sj.

3. La variation des contraintes o;; restitue les relations de compatibilité
(9.24). Ces contraintes apparaissent donc comme les réactions aux forces
qui voudraient provoquer la dislocation du corps.
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4. La variation des réactions t; restitue la compatibilité superficielle. Les t;
apparaissent donc comme les réactions aux forces qui voudraient rompre
les liaisons cinématiques sur S;.

Ces relations sont résumées dans le tableau suivant :

Principe a4 4 champs de FdV
Variable | Conditions essentielles | Conditions naturelles
U; néant Equilibre dans V, sur S et sur S5
€ij néant Equations constitutives
0ij néant Compatibilité intérieure
t; néant Compatibilité sur S

On constate donc que, dans un langage imagé,
— la variation des déplacements est « responsable » de ’équilibre : toute
restriction sur les déplacements ménera a des équations d’équilibre globa-

lisées ;

— la variation des contraintes o;; est « responsable » de la compatibilité
intérieure : toute restriction sur les contraintes ménera & des conditions
de compatibilité globalisées;

— la variation des réactions t; est « responsable » de la compatibilité exté-
rieure : toute restriction sur les ¢; ménera & une compatibilité superficielle
globalisée ;

— la variation des déformations ¢;; est « responsable » des équations consti-
tutives : toute restriction sur les déformations ménera a une globalisation
des équations constitutives.

9.5 Principe de Hellinger-Reissner

A partir du principe & quatre champs de Fraeijs de Veubeke, on peut en
obtenir d’autres, plus simples, en supposant certaines relations vérifiées a priori.
Supposons les équations constitutives (9.29) vérifiées. La fonctionnelle & uti-

liser sera alors

R(u,0,t) = minE* (e, u, o,t)

€

ou, bien entendu, les déformations cesseront d’étre indépendantes, et devront
étre exprimées en termes des o;;, ce qui pose le probléme de 'invertibilité des
relations constitutives.
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9.5.1 Invertibilité des relations constitutives
Les relations constitutives
oW
- 85ij
peuvent-elles étre inversées en une relation donnant e en fonction de o 7 Pour

construire une telle relation, on partira d’un couple (o,¢) donné et on notera
que les relations constitutives impliquent

O'ij

*wW

do:: =
* 65ij85kl

deyy = Hijriden

Si 'on peut inverser cette relation sous la forme
dgkl = Hi;lildakl (935)

on peut calculer € en fonction de o par intégration. Cette inversion est possible
si et seulement si

(Hijpme =0 avec  mg = mix) = N = 0

Comme nous le verrons en exercice, on peut aisément imaginer des structures
de la densité d’énergie de déformation pour lesquelles cette relation n’est pas
vérifiée. Il faut en outre remarquer que les relations (9.35) ne définissent des
déformations uinivalentes que si

82€ij _ 82€ij

8ak180pq aapqaakl

soit . .
OHiy _ OHy,,
80'pq 807@[

condition dont la vérification & priori n’est pas évidente. Une autre maniére de
procéder est fondée sur la transformation de Legendre, que nous allons introduire
ci-dessous.

9.5.2 Densité d’énergie complémentaire

Dans le principe & quatre champs, on voit apparaitre le groupement

A(O’7 E) = 045&i5 — W(E)
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dont les propriétés sont les suivantes :

oA
80‘,‘]‘ o Sij
oA ow
85,»j A 8€ij
Définissons la fonction
O(o) = max A(o,¢) (9.36)

Il s’agit d’une fonction de ¢ uniquement, ayant pour dérivées

0P 0A

= —_— = &
8gij 60” *

(9.37)

On l'appelle densité d’énergie complémentaire. Ce procédé de construction de
la fonction ®, qui permet en fait d’inverser les relations constitutives, porte le
nom de transformation de Legendre ou encore, de transformation de contact.
On donne a la fonction ®(o) le nom de densité d’énergie complémentaire.
Cette appellation provient du fait que dans le cas d’un probléme unidimen-
sionnel, si l'on trace la courbe o = F'(¢), la densité d’énergie de déformation
représente l'aire comprise entre cette courbe et l’axe des . La densité d’énergie
complémentaire représente l'aire comprise entre la courbe et axe des o (fig.
9.2). Elles se complétent mutuellement pour former un rectangle d’aire oe.

o e
— Qo)

Wire)

1

FIGURE 9.2 — Energie complémentaire

3

Dans le cas de relations constitutives linéaires et, plus généralement, homo-
génes de degré 1, on a, pour « € [0, 1]

oij(ae) = aoij(e)
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et en progressant par accroissement homogéne des déformations,
€
W) = / 053(e%)dzs,
0
1
= / O'ij(OéE)Eideé
0

1
0ij€ij ‘/O ado

1
= Ui (9.38)
si bien que la densité d’énergie de déformation et la densité d’énergie complé-
mentaire ont constamment la méme valeur. Ce résultat est connu sous le nom
de théoréme de Clapeyron intérieur.

9.5.3 Principe de Hellinger-Reissner

Nous sommes & présent en mesure d’expliciter la fonctionnelle de Hellinger-
Reissner,

R(ua g, :u’) = ming*(gv u, o, IU’> =
1 ~
= / |:O'ij2(Din + Djui) — (I’(O') — fzul] dv
1%

SQ Sl

C’est le principe de Hellinger-Reissner (Reissner I’a énoncé en 1950 [74] mais
il a été découvert plus tard que Hellinger 1’avait déja publié en 1914). Dans ce
principe,

1. la variation des contraintes conduit & une expression des conditions de
compatibilité sous la forme de relations entre les contraintes et les dérivées
des déplacements :

o 1
aCTij h 2

2. la variation des réactions t; conduit aux conditions de compatibilité exté-
rieures ;
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3. la variation des déplacements méne aux équations d’équilibre

DjO'ji + le = 0 dansV
n;o4; = EZ sur S2 (941)
n;jojg, = tl‘ sur Sl

Ces résultats sont résumés dans le tableau suivant :

Principe de Hellinger-Reissner
Variable | Conditions essentielles | Conditions naturelles
U; néant Equilibre dans V, sur Sy et sur Sy
Oij néant Compatibilité intérieure
(sous forme d’équations constitutives)
t; néant Compatibilité sur S;

9.6 Principe & deux champs de Fraeijs de Veu-
beke [33]

Dans le principe & quatre champs, on peut également imposer & priori I’équi-

libre, sous forme des travaux virtuels :

1 _
/ |:0'ij2(Di(5Uj + D](Sul) — fléuz} 1%
14

SQ Sl

Comme aucune restriction n’est imposée aux déplacements, on peut en particu-
lier poser du; = u;, ce qui donne

1 = _
/ |:O'7;j(D,L'Uj +Diui) — fzu,] dV — / tiu;dS — / tiu;dS = 0 (943)
Vv 2 82 Sl

Soustrayant cette relation a ’expression générale de £*, on obtient

/[W(S) - Uz‘j&‘j]dV—l-/ t;w;dS
v

S1

et comme 1’équilibre implique en particulier

ti = njaij



220 CHAPITRE 9. PRINCIPES VARIATIONNELS

on est conduit a la fonctionnelle

‘/.'.(E, O') = / [W(E) — aijsij]dV + / njaﬂﬂidS (944)
\4 1
dont le caractére stationnaire constitue le principe a deux champs de Fraeijs de
Veubeke. Dans ce principe, les déformations sont libres de toute liaison, et leur
variation fournit les équations constitutives

ow
861»]» =%y

Le résultat de la variation des contraintes o;;, soumises aux conditions d’équi-
libre, est la compatibilité, comme on peut s’en rendre compte en supprimant,
dans le tableau relatif au principe a quatre champs, les lignes relatives aux
déplacements et aux t; :

Principe & 2 champs de FDV
Variable | Conditions essentielles Conditions naturelles
€ij néant Equations constitutives
0ij équilibre dans V, surSy et sur Sy | Compatibilité

Signalons qu'il est possible de vérifier & priori I’équilibre pour f; = 0 a ’aide
de fonctions de contrainte : fonction d’Airy en état plan de contrainte, fonctions
de Maxwell ou de Morera dans le cas tridimensionnel et fonction de Prandtl en
torsion.

9.7 Principe du minimum de l’énergie complé-
mentaire

Ce principe, encore appelé principe de variation des contraintes, est le sy-
métrique du principe de variation des déplacements. On peut 1’établir de deux
maniéres.

1. Dans le principe & deux champs de Fraeijs de Veubeke, on assure a priori les
équations constitutives, ce qui méne a utiliser, comme dans le principe de
Hellinger-Reissner, la densité d’énergie complémentaire ®(o). On obtient
ainsi, aprés un changement de signe, la fonctionnelle

Clo) :/ ®(0)dV — [ njojudS (9.45)
v 5
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stationnaire par rapport a tous les états de contrainte statiquement ad-

missibles, c’est-a-dire vérifiant ’équilibre intérieur et extérieur.

2. Dans le principe de Hellinger-Reissner, on suppose l’équilibre vérifié a
priori. La transformation suit la méme voie que pour la déduction du
principe a deux champs de Fraeijs de Veubeke et donne également la fonc-

tionnelle (9.45).

Ce principe est résumé par le tableau suivant :

Principe de variation des contraintes
Variable | Conditions essentielles Conditions naturelles
Oij équilibre dans V, sur S; et sur Sy | Compatibilité

Si ’on utilise le principe de I’énergie complémentaire pour construire des so-
lutions approchées, les champs de contrainte utilisés doivent tous vérifier exac-
tement les conditions d’équilibre. La solution approchée ne vérifiera la compati-
bilité que sous certaines formes globales. Il ne sera donc plus possible de définir
des déplacements locaux et il faudra se satisfaire de certaines valeurs moyennes.

9.8 Note sur la forme faible de la compatibilité

Notons E l'espace des champs de tenseurs symétriques du second ordre sur

V', muni du produit scalaire
(¢, 9) = / PijidV
1%
Un champ de tenseurs compatible est par définition de la forme
1
eij(u) = 5 (Diuj + Djui)

ou u; est un champ de déplacements admissible, c’est-a-dire vérifiant

{ lle(u)]l fV gij(w)ei;(w)dV < oo

u; = U; sur Sp
Une variation de tenseur compatible est de la forme

651‘3’ = &ij (§u)

(9.46)
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ou du est la différence de deux champs de déplacements admissibles, de telle
sorte que sur Sp, on a
5ui =0
Les variations de tenseurs compatibles forment un sous-espace Cy de E. On
peut montrer que, muni du produit scalaire (9.46), ce sous-espace est complet
et donc, fermé dans E. On notera que si ’on connait un champ de déplacements
particulier ug tel que ug; = @; sur Sy, tout champ de déplacements admissible
est de la forme
u=ug+ Au

ol Au est une variation admissible de déplacement.

Considérons & présent le complément orthogonal Sy de Cy. Il est défini par
la condition

o €Sy <:>/ O'ij&'jdv =0 Vee(C
v
Ceci s’écrit explicitement
1
14

ce qui signifie que o est un champ d’autocontrainte. Ainsi, Sy n’st autre que
I’ensemble des champs d’autocontrainte. Comme C est fermé, I'orthogonal de
SQ est Co.

Soit & présent un champ de tenseurs (;; vérifiant

/ @ijao’ijdv—/ njéaijﬂidS =0 (947)
Vv

S1

pour tout champ d’autocontrainte ¢o;;. Introduisant un champ de déplacements
ug tel que ug; = u; sur Sq, on a

1
/Eij(uO)éUijdV = /5Uij§(DiUQj+DjU()i)dV
14 \%
= / ’Ilj(SO'iquidS—F/ nj(SO'iquidS-i-/ u()iDj(SaijdV
S1 Sa \%4
= / TLj(SO’iquidS—i‘O“rO
S1

La condition (9.47) est donc équivalente a

/ 004 [pij — €ij(uo)]dV =0 Voo
v



9.9. EXEMPLE DE SOLUTION APPROCHEE 223

ou
©ij — €ij(uo) € Co

ce qui revient & dire qu’il existe une variation admissible de déplacement Au
telle que
Pij = €ij(to) + €i5(Au)

ou encore
Yij = €ij (UO + Au)

et ceci exprime précisément la compatibilité.

9.9 Exemple de solution approchée construite par
le calcul des variations
Pour illustrer la méthode variationnelle de construction de solutions appro-

chées, étudions la flexion des poutres en I (fig. 9.3). Nous ferons les hypothéses
suivantes :

1. Les semelles sont parfaitement flexibles dans le plan x0y, ce qui revient a
dire qu’elles ne résistent qu’a 'extension. On posera donc

Oy = 0, = Ty = Tyz = T2z = 0 dans les semelles (9.48)

On supposera en outre le déplacement axial uniforme dans chacune des
semelles :
u=ug(z) (9.49)

I'indice (+) correspondant & la semelle inférieure (située en y > 0) et
I'indice (-), a autre semelle.

2. Dans l’dme, on admettra d’abord que I’état de contrainte est plan
Oz = Txz = Tyz = 0 (950)
On ajoutera les hypothéses cinématiques suivantes :

u = U(z)+ya(z)
{v — V) (9.51)

La premiére représente une flexion a la Navier. La seconde, assez bien vé-
rifiée si la poutre est raidie par des éléments transversaux non représentés
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e .

AT

qx)

T Ty

etz

Ty gL v

FIGURE 9.3 — Poutre en 1

ici, entraine que les charges transversales, de densité linéique g(x), ont un
travail virtuel

¢
57;:/0 q(z)oV (z)dx (9.52)

quel que soit leur point d’application sur la section de la poutre. C’est
pour cette raison que nous les avons représentées distribuées sur les deux
semelles.

3. La liaison entre ’ame et la semelle sera assurée par les équations de com-
patibilité

v 1% (9.53)

semelles —
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et
h h
ugp =U+ 5% U- = U - 5 (9.54)
Pour fixer les idées, nous considérerons une poutre console de longueur /. les

conditions d’encastrement sont
U0)=0, «(0)=0, V(0)=0 (9.55)

En z = /¢, la poutre est soumise a des efforts longitudinaux p et transversaux
t. Au vu des hypothéses relatives aux efforts dans les semelles, on doit avoir
t = 0 sur celles-ci. Par contre, ces charges sont compatibles avec les hypothéses
relatives & I’ame, et fournissent un travail virtuel

0T = t_(SV(E)dQ = T(SV(E) onT = / tdQ) (9.56)
Yame ame

T étant ’effort tranchant imposé. Cette globalisation des efforts résulte des
hypothéses cinématiques. Quant aux efforts p, ils peuvent étre répartis aussi
bien sur ’ame que sur les semelles. Leur travail virtuel vaut

5T, = [ 5 {w(e) + ;(504(6)} do + / 5 [w(z) - Zaaw)] d0

Qy _

+ / poU (L) + ydau(£)] d§2
Qq
= NSU({) + Méa(f) (9.57)

avec

N = f9+ pdQ + [, pdQ+ fﬂa pdS) (effort normal) (9.58)
M = %ffh pdQ — B [ pdQ+ Jo, pydQ (moment)

La fonctionnelle du principe de Hellinger-Reissner s’écrit

R—/E | e (G + v ) 4 (a5
—Jo Q. %o \dz " Vaz Toy \* T 4z

2 2
oy toy— 2vo.oy T,

2F 2G

U hda\ o2 dU  hda\ o
B (Lo R T N (o R T
JF/Q+ [" <dx+2dx> ZE} +/Q [“ (daz 2dx> 2E]
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Par variation des différentes grandeurs qui interviennent dans cette fonction-
nelle, on peut obtenir les équations de la poutre.

1. Variation de oy : on obtient

oy — V0Og

g

soit,
Oy = V0y (9.60)
2. Variation de o, : dans [’dme, on obtient

dUu da

ce qui, combiné avec (9.60), donne
E dU da
=—7 | — — 9.61
e 1—u2(d$+yd:§) (9:61)
Dans les semelles, on a

dU  h da> 0.62)

=5 (G * 5

3. Variation de U : ce déplacement ne dépendant que de z, il faut d’abord
intégrer sur la section, ce qui donne

¢
U _
/ / odY —I—/ odSY —l—/ 0,dQY| ——dx = NSU(¢) =0
0 Q4 . Qo dz
ce qui fait apparaitre le groupement
N = deQ—}—/ deQ—l—/ 0,d) (9.63)
Q4 _ Qa

qui s’identifie & ’effort normal. 11 vient donc

¢
déU -

= N——dx — N§U (4

0 /0 7 U

INSUY. — NSU() — / Z ‘fTNaU(x)dm

0 X
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Tenant compte de la condition d’encastrement U (0) = 0, on obtient

dN
¢ = 0 dans |0,/
dz _ ’
{ N = N (9.64)
4. Variation de V : on obtient
¢
/ { {/ szdS} oV q5V} dz — TSV (£) =0
0 Qa d.’IJ
En définissant 1'effort tranchant
T = / ToydS (9.65)
on obtient
¢
0 = / (TW - q5V> dx — TSV (¢)
0 d:E
¢
- dr
= [TdV]é —ToV () — / ( + q> oVdx
0 dx
d’ot1, comme §V (0) = 0, les équations
dT
@ 4+q = 0 dans]0,/[
dz —
{ W) = T (9.66)

5. Variation de « : on obtient ici

¢
h h déo
—0,dS2 —/ —0,dS2 —|—/ o, d)| —
/0{[/9+2 o 2 Qay 1 dx
+ [/ szdQ} 5a} dx — Méa(f) =0
Qo

Définissant le moment
h

h
M= f/ 02dQ — f/ gxdsw/ o2y dS2 (9.67)
2 Ja, 2 Ja_ Q

a

et tenant compte de la définition (9.65), on obtient

0
0 = /(Mdéa—i-Téa)dac
0 dl’
aM

= [Méa]} — Mba(f) — /O ‘ (dm - T) Sovda
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ce qui, comme 0a(0) = 0, donne

M- — 7 dans ]0,/]
dx _ )
{ M) = (9.68)
6. Variation de 7., : il vient
dV
Ty =G (a + dx) dans I’ame (9.69)

Comme on peut le voir, les contraintes étant libres de toute liaison, les équa-
tions de compatibilité (9.60), (9.61), 9.62) et (9.69) sont vérifiées localement.
Au contraire, les restrictions faites sur les déplacements ménent a des équa-
tions d’équilibre globales. Ceci était prévisible & partir du tableau résumant le
fonctionnement du principe de Hellinger-Reissner.

Par ailleurs, en combinant les équations ((9.60), (9.61), 9.62) et (9.69) aux
définitions (9.63), (9.65) et (9.67) des résultantes, on peut obtenir des équations
constitutives globales. Ce seront, en notant b I’épaisseur de ’ame,

N = EA‘% avec A = Q++Q_+1E}LQ

T = GS(a+9%) avec S = bh (9.70)
2 2 3

M = EI% avee I = QM40 4 Gl

On retrouve ici des calculs simplifiés assez courants dans la pratique, consistant,
d’une part, a utiliser la section de ’ame comme section de cisaillement et, d’autre
part, a négliger 'inertie propre des semelles. Quant au facteur (1—22), il provient
de ’hypothése selon laquelle le déplacement vertical ne dépend pas de y.

9.10 Classification des approches variationnelles

D’aprés le type d’hypothéses adoptées, on peut distinguer :

— les approches dont les hypothéses ne portent que sur les déplacements
(avec respect des conditions sur Sp), que l'on appelle cinématiquement
admissibles (C.A.);

— les approches dont les hypothéses ne portent que sur les contraintes (avec
respect de I’équilibre dans V et sur Ss), que l'on appelle statiquement
admissibles (S.A.);

— les approches dont les hypothéses portent & la fois sur les contraintes et
les déplacements, que ’on appelle mixtes.
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Les approches C.A. ménent & des équations d’équilibre approchées (globales),
tandis que les approches S.A. donnent des équations de compatibilité appro-
chées. Dans les approches mixtes, ni les équations d’équilibre, ni les équations
de compatibilité ne sont vérifiées localement.

Ainsi, la théorie de la section précédente est une approche mixte. Cependant,
si l'on considére que les hypothéses (9.48), (9.49) et (9.50) définissent la notion
de poutre en I, il s’agit d’une théorie C.A. dans ce cadre. On trouvera dans les
exercices du présent chapitre une théorie S.A. dans le cadre des poutres, qui
méne & une vérification locale de ’équilibre, mais non de la compatibilité.

9.11 Analyse duale

Qui dit solution approchée dit erreur. Ne peut-on pas essayer de chiffrer cette
derniére ? C’est ’objet de ’analyse duale, consistant & effectuer, pour un méme
probléme, une analyse C.A et une analyse S.A., puis de les comparer.

9.11.1 Cas des relations constitutives linéaires

Nos commencerons par envisager le cas de relations constitutives linéaires,
qui est le plus simple et celui dont les conclusions sont les plus fortes. Le présent
mode d’exposé suit la méthode développée par l'auteur [17, 21, 20, 18].

Soit donc un probléme élastique linéaire, dont la solution est caractérisée
par des déplacements u et des contraintes o, obtenues par variation des fonc-
tionnelles

fV W(Du)dV - fV f_'Z’U,ZdV - sz t_luldS
fV <I>(o)dV — fS1 njajiﬂidS’

—N

/Q(\')

Q&
I

Par définition de ’énergie complémentaire, on a

1
/ W (Du)dV + / O(0)dV = / aij§(DZ-uj + Dju;)dV
1% 1% 1%
Or, en posant, dans le théoréme des travaux virtuels,
ou; = u; dans V U Sy et du; = u; sur Sy

on obtient

1 - _
/ O'ij*(Din + Djul)dV - / fiuidS - tlu,dS — / njojmidS =0
v 2 v Ss S1
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c’est-a-dire
E(u)+C(o)=0 (9.71)

Pour un quelconque autre champ de déplacements C.A. @, on peut écrire
u; = u; + Au; et, comme ’énergie totale est une fonction quadratique,

E(u) = E(u+ Au)
1
= E(u)+6E(u; Au) + 5(525(u; Au)
1
= &(u)+ 5528(u; Au) (9.72)
puisque le déplacement u réalise la stationnarité. On a d’ailleurs

62€ (u; Au) = / Cijrigij(Au)er (Au)dV > 0 (9.73)
|4

et cette grandeur est une mesure énergétique de l’erreur, définie positive, que
Pon peut noter ||Aul.

De la méme facon, pour un quelconque autre champ de contraintes &, on
peut écrire & = 0 + Ao et on a comme ci-dessus

C() = Clo+Ao)
= C(o)+0C(o;Ac) + %52C(0; Ao)

Clo) + %52C(0;AJ) (9.74)

avec
520'(0';A0') = / Ci;]ile'ijAUkldV >0 (975)
Vv

cette grandeur étant une mesure énergétique de 'erreur, définie positive, que
lon peut noter ||Ac||. Additionnant les résultats (9.72) et (9.74), on obtient

1 1
E(@) +C(6) = E(u) +C(o) + 5525(u; Au) + 5520(0; Ao) (9.76)
soit, en tenant compte de (9.71),

E(@) +C(6) = = (|Aul? + |Ac]?) (9.77)

DN | =
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Cette formule sert de fondement & ’analyse duale de erreur : pour connaitre la
somme des erreurs d’énergie, il suffit d’additionner les valeurs des deux fonc-
tionnelles £(w) et C(F). On peut d’ailleurs développer certaines relations d’or-
thogonalité et, a partir de 14, montrer que /2[€(@) + C(5)] définit une distance
entre les deux approximations, mais ces faits, bien qu’intéressants, ne nous ser-
viront pas.

Dans le cadre de méthodes numériques comme celle des éléments finis, il
est utile de représenter la convergence d’approximations successives sur un dia-
gramme. A cette fin, définissons 1’énergie complémentaire prolongée C* par

o — { —&(u) pour approche C.A.

- C(c) pour lapproche S.A. (9.78)

On obtient alors, en fonction des paramétres de la discrétisation, des courbes de
convergence d’un des deux types représentés en figure (9.4). La premiére version,

€

; eq. model

-t 2

2140l exact

Haur
displ model
nr elts
&
exact
h

FIGURE 9.4 — Courbes de convergence

ol la convergence est exprimée en termes du nombre de degrés de liberté ou de
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Iinverse de la taille des éléments finis, est la plus courante. La seconde, dont
I’abscisse est 'inverse du nombre de degrés de liberté ou la taille d’'une maille,
est par certains cotés préférable, car la solution exacte est alors la valeur a
Porigine de C*, plus facile & estimer que la valeur asymptotique de la premiére
représentation.

9.11.2 Les cas particuliers de Fraeijs de Veubeke

La formule (9.77) admet deux cas particuliers, obtenus antérieurement par
Fraeijs de Veubeke [30, 32, 35]. Pour abréger les notations, nous écrirons

(U = foDuar . Pl - Ay fdV = J dS g 7o)

qu)(O')dV s Q(O’) = —fslnjajmidS

=
2
I

1. On suppose que sur Si, on a u; = 0. On suppose en outre que le champ
de déplacement u a été obtenu par une technique de Rayleigh-Ritz, c’est-
a-dire que

U (t;6u) + dP(6u) =0

pour tout éu de l’espace des déplacements approchés. Alors, la solution
exacte u et la solution approchée u sont des variations admissibles de
déplacement et on a

et de méme

ce qui entraine
et

D’autre part,
On a alors

U(@) < U(u) = B(o) < T(5) (9.80)

et
E(@) +C(5) = U(5) — U(@) (9.81)
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2. On suppose que f; = 0,; = 0. On suppose en outre que le champ de
contraintes & a été obtenu par une technique de Rayleigh-Ritz, c’est-a-dire
que

0V(5,06) +0Q(d6) =0

pour tout 66 de l’espace des contraintes approchées. Alors, la solution
exacte o et la solution approchée & sont des variations admissibles de
contrainte et on a

0U(o;0) =2¥(0) = —9Q(0)

et
ce qui entraine
Par ailleurs,

On a donc
U(5) <U(o)=U(u) <U(a) (9.82)

et
E(@) + C(5) =U(a) — U (5) (9.83)

9.11.3 Cas de relations constitutives non linéaires

On peut se poser la question de ce qu’il subsiste de ’analyse duale lorsque
les relations constitutives sont non linéaires. En examinant la démonstration du
cas linéaire, on remarque que tout repose sur le fait que la variation seconde de
I’énergie totale et de ’énergie complémentaire totale est positive. En fait, cela
revient & dire que W(e) et que ®(o) sont convezes.

Rappelons qu’une fonction W (e) est convexe si pour tout couple(e!,?), on
a systématiquement, pour 0 < A < 1, la relation

W ((L=Ne"+A?) < (1= NW (") + AW (e?) (9.84)
On notera d’abord le théoréme suivant :

Théoréme 9 Si W (e) est conveze, il en est de méme de ®(o).
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En effet, partant de la définition de ®(o),
®(0) = max (gijeij — W(e))
il est clair que pour un choix quelconque £* de €, on a
(o) > 04587, — W(e¥)

Choisissons £* correspondant par les équations constitutives au champ de contrainte
(1= A)o! + A% On a donc

@ ((L=No' +x0?) = (1= Noj; + Ao,) 5 — W(e¥) (9.85)
Mais
(o) = oyel — W)
2 2 _* *
®(0%) > ;€45 - W(e)
ce qui entraine
(L=N@(0") + A2(0?) > (1 = Noj; + Aoy;) &5, — W (") (9.86)

La comparaison de (9.85) et (9.86) donne
® (1= Mo+ A0?) < (1= N)2(c') + A2(0?)
Remarque - La réciproque est vraie, car on a également
Wi(e) = max (0ijeij — (o))

En outre, il est aisé de montrer le

Théoréme 10 Si W (e) est conveze et différentiable, on a

Wi(e+ Ae) > Wi(e) + <8W) Ag;j
681‘]' c

En effet, pour A € [0,1], on a

W (e + Ae) (1 =X)W(e) + AW (e + Ag)

W(e) + AW (e + Ae) — W(e)]

IAIA
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si bien que

Wie+ Mj) “WE) e ae) —wie)
Or,

iiﬂ% Wi(e + Aéj) W (e) _ (g:Z ) E Aci

Revenons a l'analyse duale. On a

E(u+ Au) — E(u) = /V[W(s + As) — W ()] + P(Au)

Le fait que £ soit stationnaire en w s’écrit

0& (u; Au) = /v <6W)EA€1‘]' +P(Au) =0

afij
Soustrayant ces deux relations, on obtient

ow
862‘]‘

E(u+ Au) — E(u) = /

[W(e+ Ae) —W(e) — (
1%

en vertu du théoréme 10. De la méme facon, on obtient aisément
Cloc+ Ac) > C(o)

et du reste, la relation (9.71) subsiste, car elle ne fait appel qu’au théoréme des
travaux virtuels et a la définition de ®(o) par transformation de Legendre.

Malheureusement, cela ne suffit pas pour obtenir une idée de la distance
entre les solutions approchées et la solution exacte. Il faut pour cela faire une
hypotheése plus restrictive, & savoir, la converité forte, qui consiste a supposer
qu’il existe deux constantes positives « et 3 telles que

W(e+Aeg) > W(e)+<ggj>€A5ij+a|Ag|2 057
P(oc+Ac) > @(a)+(%) Aoij + B|lAc|? .

Ces conditions sont remplies si W et ® sont de classe C? et que les valeurs
propres (v.p.) de leurs matrices hessiennes respectives

0*wW

Hiju = 55—
*J aEijaEkl
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et 920
Hl=-_—_-"
ijkl 8O'ija(7kl
vérifient
inf min[v.p.(H)] =
nf maln[v p-(H)) a>0
inf min[v.p.(H™')] = B>0

xeV o
On obtient alors une forme affaiblie de 'analyse duale, a savoir,
alle(Au)llg &(u) = E(u)
Blac] C(a) —C(o)
oit |.|lo figure la norme dans L?. En d’autres termes, la différence d’énergie

totale ou d’énergie complémentaire totale magjore 'erreur en norme L? des dé-
formations ou des contraintes

<
<

9.12 Bornes des raideurs et coefficients d’influence
directs

FIGURE 9.5 — Bornes des raideurs

Les relations (9.80) et (9.82) impliquent également la possibilité d’encadrer
les coefficients directs d’influence ou de raideur [79, 78, 80, 95]. Soit d’abord un
systéme de charges dont l'intensité est controlée par un paramétre P, appelé
charge généralisée (fig. 9.5). Sous ce systéme de charges, la structure subira
des déplacements conduisant & un travail 7. On appelle déplacement généralisé
conjugué a la charge généralisée P le rapport

T U 2V
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Le coefficient d’influence direct de la charge P est alors défini par

u T

F:—zi
P P2

(9.89)

Pour le déterminer, on peut utiliser un modéle C.A. : on aura alors, puisque
u; = 0 sur Sy,

T  2Uca

P2 p?

Dans un modeéle S.A., on définira Fs4 par

Foa =

20
Fsa="p1"
Il résulte alors de (9.80) que
Foa <F < Fsa (9.90)

De la méme facon, supposons que I’on impose & la structure un systéme de
déplacements de frontiére controlés par un paramétre U, appelé déplacement
généralisé. Si T est le travail de ces déplacements, la force généralisée conjuguée
est par définition

T U 20
P=—="=" 91
U U U (9.91)
et la raideur directe,
P T
K=—=— 92
TARiE (9.92)
Dans le cadre d’un modéle S.A., on calculera
Osa  2Vga
Ksa=— U2 = U2
et dans le cadre d’'un modéle C.A.,
2U
Kcoa = el
Il résulte alors de (9.82) que
Kga <K <Kca (9.93)

Cette possibilité d’encadrer la vraie valeur des raideurs ou des coefficients
d’influence rend de nombreux services en pratique.
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9.13 Exercices

Exercice 32 Montrer qu’il est possible d’imaginer des relations constitutives
homogeénes de degré 1 mais non linéaires.

Suggestion - Pour

W = \/el; +e3 + €55 + 712 + 733 + 731

(homogene de degré 2), on a

2e3 2¢3 2¢3
S — gy — 2033
27%2 275’3 2’7::331
T2 = —=—, Tog = ——, T3] = ——
2=y S e

et ces relations sont visiblement homogénes de degré 1 :

2 3.3 2 3
o11(ae) = 32;}1 = a% = ao11(e), etc.

On vérifie que

011€11 + 022€22 + 03€33 + T127Y12 + T237Y23 + 731731

_ 2(et) + ey + €3 + 71 + 793 + 751 — oW
w

Exercice 33 Montrer que si les relations constitutives sont invertibles,
1. W(e) ne peut étre homogéne de degré 1.

2. ®(o) ne peut étre constante.

Solution

1. Si W(e) est homogene de degré 1, on a, par le théoréme d’Euler sur les
fonctions homogenes,

ow
Wi(e) = —e¢y;
(6) 6613' € J
ce qui entraine
ow *wW
dW = de;; d
8€ij Fij + a&ljaf;‘kl EHl
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Comme, par ailleurs,

ow
dW = 7d€ij
85@‘
on obtient e
w
=7 e vd
85@' 65kl EijAELL Ekl
ce qui implique
o*wW
78@‘ =0
851j85k1
en contradiction avec ’hypothése.
2. Si ®(o) = cte, on a
0P 0
Ei g =
J 80’@'

donc la relation entre o et € n’est pas bijective.

Exercice 34 FEtudier la poutre en I décrite en section 9.9, pour qg(z) =0, en
faisant les hypothéses suivantes :

HI1. Les semelles sont parfaitement souples en flexion,
Oy =0, =Tgy =Ty, =Tz =0
et leur déplacement est uniforme :
u = uy(x)
H2. L’dme ne résiste qu’au cisaillement :
Op =0y =0, =Ty, =Tz, =0

a) Quelles distributions de charges d’extrémité p et t peut-elle admettre dans
ces hypotheéses ?

b) Ecrire les équations de la poutre.

¢) Dans le cadre des hypothéses H1, la solution de la section 9.9 est C.A., et
celle de cet ezercice est S.A.. Que peut-on en déduire pour les coefficients
d’influence relatifs a Ueffort tranchant d’extrémité ? Vérifier que c’est bien
le cas.

d) Etudier la compatibilité des déplacements de I’dme et des déplacements de
la semelle.
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Solution

a) Dans ’ame, les équations d’équilibre s’écrivent

780@ a’l'my aTmz . aTxy

0= ox oy 0z dy
0 :8sz doy | 07y _ OTay

ox dy 0z Ox
0 07y, | O7y | Do

Or dy 0z
La contrainte 7., est donc une constante, que nous noterons 7. Deés lors,
a Pextrémité,

— les charges p doivent étre concentrées sur les semelles ;
— les charges t doivent étre uniformément réparties sur I’ame seule.

b) L’énergie complémentaire de I’ame s’écrit

L .2 2
T T
A %Qadm = ﬁga( (994)

et la fonctionnelle de Hellinger-Reissner pour ’ame a pour expression

¢ 2
ou  Ov T
Ro = /0 [/Qa T <By + 833) an} dx — —QGQGZ (9.95)

Pour les semelles, on a

¢ 2 2
duy o3 / du_  o%
Ry = My %) g Cdu- 7 4
‘ /0 Vm <J+ dz 2E) "o (U dz 2E>

Enfin, les charges ont pour contribution

Re=P= —u+(Z)/

Q4

pd) — u,(ﬁ)/ pdQY — f/Q v(£)dQ

— Nyuy(6) = Nou_(0) _Tﬂia /Q o(0)dQ (9.97)

ou l'on a posé

]\7_,_:/ pdQ), N_ :/ pdS) (9.98)
Q4
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et

T = iQ, (9.99)

La fonctionnelle compléte est
R=Rs+Rs+R. (9.100)

Varions les différentes grandeurs :

(i) Variation de 7 : on obtient

¢
ou Ov T
57/0 {/Sa<ay+ax>da]da: e HoT =0

G [ ou v
= — 4+ — Q 101
T Qaé/o Um(afax)d ] e (6.101)

(ii) Variation de oy : il vient

¢
dui O’i>
0oy | =———=1dQ|dx=0
/0[/% (E-% ]

soit

ce qui donne

du
os(z) = Ed—; (9.102)
(iii) Variation de v : Dans I’ame, du est arbitraire; & la jonction de

I’ame et des semelles, on a

dur = du(x, :I:g)

I1 en découle

¢ ¢
ddu d h
T——df dx—i—/ / o, dQ, | —du(z, =)dx
/0{/9@ dy } 0 <Q+ " +> dx ( 2)

‘ d h _ _
—1—/0 (/Q O’dQ) d—éu(x, —§)da: — Nyouy(0) — N_ou_(£) =0

T
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Posant
Ni(z) = / oy (2)dQ, N_(z) = / o_(x)dQ (9.103)
Q _
on obtient, comme T est constant,
¢
h h dNy h dN_ h
_ h _ h
NG (0) = NyJou(t, 5) + [N-(0) = N_Ju(t,~5) =0

On en déduit les conditions d’extrémité

Ny () =N, N_({) = N_ (9.104)

et les conditions de transition Ame-semelles

AN, dN_
Ir br, T bt (9.105)
(iv) Variation de v :  on obtient
0
87; =0, 7()=q=1 (9.106)
2@—#
.
h+ia
G
0,
h a3a
.

FIGURE 9.6 — Poutre en I & ames inégales

Il est intéressant de ramener ces équations a la forme classique des poutres.
Notons que le centre de gravité de la section est placé du coté de la semelle
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la plus large, avec un rapport de segments Q4 /Q2_ (fig. 9.6). Nous poserons
donc

N(z) =N, (¢) + N_(x)

N =N, +N_
M(@) ~g g (- No(0) ~ 2N (@)
hvt :ﬁhg_ (N, —Q,N)
T(x) =rbh =T (9.107)
Il vient alors
%:% %:0, N(x) =cte= N
ﬁfzg+ig(Qf@?—9+%;):=MT=T, M(0) =M
%gzﬂ, T(x) =T (9.108)

On en déduit directement

et comme
QL+ Q- Q_
N(z M(x)=Ny(x)+ =—N_(x
() O (z) = Ni(x) 0, +(z)
on a
1 QL4+ 0 )
N, (z) = N(z)+ ———M(x
(@) 1+3+(() M)
B Q. 1
o a0 N(z)+ EM(I) (9.109)
et, de méme,
N_(&) = o= N(z) - ~M(a)
_x_Q++Q, T T
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On peut également établir les équations constitutives globales. On a d’abord

N, = B0, M N —po -
dz dz
puis
duy du_ du
N=E|Qi—+Q_— | =EQ Q_)— 11
(2% 0 22) — pa. a0 (9.110)
avec
i = fy ug + =
T 0 T 0 T
Pour le moment de flexion,
hE duy du_
M = ——— (.0, —— -0, 0 —
Qp + Q- < T dx T de )
_ EBEQuQ_h (duy  du-
0+ \dx dx
~do
= FEI— A11
T (9.111)
avec
. - \? Ry \? R2Q.Q
I1=0Q4 <Q+ +Q_> +Q_ <Q+ - Q_) = 010 (9.112)
et
Uy —U—
=T - A1
! W (9.113)

Enfin, pour effort tranchant,

ou Ov
G/Qa<ay+ar>dﬂa
G |bluy — )—i—ﬁ/ dQ)
Uy — U_ o Qav o

di
— Gbh <a + dx) (9.114)

T

avec )
v=5r /Qa vd2 (9.115)
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c) Dans la théorie de la section 9.9, pour une charge en bout, on a (en posant

Q. =0_=Q,)
dT d2M _
= = O:Tﬁ =0, M=-T{—x)
T 22
« = EI/de__E( _>
v T_ T T( 2
dz ~ GS cs T EI 2

- x lx x
Vo= T(GS 2EI_6EI>

et, & Pextrémité,

Le travail vaut donc

d’ou

L A
Fsa= st mi
Mais
{ { = QS%Z + 12([)1}5’1/2)7 I = Qsh; <I
S = S=bh
On a donc
Foa < Flgel < Fsa

d) Nous nous limiterons au cas des semelles identiques. On a, d’une part,

dui N:t 1 =
dx EQi N EQS

~ EQ,
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et, d’autre part,

ce qui entraine

gu_1
oy G Ox
“ 0 bh v
u T 00
iy = 22§27
q. Oy G de
soit
h h Tbh 400
u(x,2u(x,2]b ?—S%

a comparer a
20 -
bluy(x) —u_(x)] = ~ %0 Tlx

On constate que ces déplacements sont différents : la compatibilité locale
est violée, du fait des restrictions sur les contraintes.

TY
)
Iﬂ h
,_ \[G ‘
b
hy
P

FIGURE 9.7 — Poutre & section symétrique par rapport au plan de flexion
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Exercice 35 FEtablir une théorie statiquement admissible de la flexion des pou-
tres ayant le plan de flexion comme plan de symétrie (fig. 9.7), en faisant les
hypothéses suivantes :

o, = %M() Op =0y = Tyy =0
1

Tyz = FA(:%Z)

T, = T fdfb

Tz yzb dy

ot M est le moment de flexion, I Uinertie de la section ([,y*dQ), et b(y) la
largeur de la section selon x .

1. Montrer que ce systéme d’hypothéses garantit I’équilibre sur le manteau de
la poutre.

2. Ecrire le principe de Hellinger-Reissner dans le cadre des hypothéses ci-
dessus, pour une poutre console chargée en bout.

3. Etudier comment est vérifiée la compatibilité.

>

Déterminer la fonction A(y, z) pour que l’équilibre interne soit réalisé.

5. Transformer le principe variationnel en tenant compte de la forme obtenue
de A(y, z), de maniére a obtenir les équations globales de la poutre.

Solution

1. Appelant C; la partie du contour de la section située en x > 0 et C_ ’autre

partie, la normale sur C4 a ses composantes proportionnelles a (1, :F%j—z)
(fig. 9.8). En vertu des hypothéses, sur le manteau, le « vecteur »7 =
(Twzy Ty=) vaut

1db
T = (ii@TyzaTyZ)
done 1db 1db
7 -n=Fk( 2dyTyz:F2dyTyz> 0
2. On a

1 82 dy 0z bdy \ dx 0z

_E_A; L (b
2B  2GI? b2 \ dy

} dQ+P  (9.116)
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FIGURE 9.8 — Normale au manteau

Pour P, on considére des charges en bout :
P = [ (0 - g.u0) - ap(6)a0

a) En variant M, on obtient

6M<1 9 10 M):o

7)Y " EI

soit

dae M

dz FEI
en introduisant la rotation moyenne

1
= - dQ
o I/Qyw

b) En variant A, on obtient

1/b/2 aﬂ+@ +E@ aﬂ+@ d
I'J v |\Oy 0z bdy \ Ox 0z *

L s (2
GI? _y)s 2 \dy) |

On a immeédiatement

b/2 22 [ db\>
1+ —= () dr=2»
/—b/2 b2 \dy
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L’intégrale contenant les déplacements peut étre transformée comme suit
On a d’abord

/b/2 (81} xdbau) 0
—b/2 0z

T = — /b/2 v+ E@ dx 0%
b dy 0z 0z —b/2
en posant

b dy

1 b2 " : )
U= — v+ ——u | dr (déplacement vertical moyen

b /_b/2 ( bdy )

Passons a présent aux termes contenant w, qui s’écrivent

/ V(o wdbowy
b2 \Oy  bdy Ox
Dans le but de faire également apparaitre des moyennes, on notera que
1 [b2 1db (%2 1
Ly / wde ) = ——— / d 0
Oy | b )y

b/2
b2 dy

wdx + — — wdx 9.118
—b/2 by J_v2 ( )
Or, d’une part

10 /W gy L1db b . b +1/b/2 ow
- wdr = ——— |w | = w| —= -
by J_y2 b2dy 2

2

“—dy (9.119)
b b/2 dy
et, d’autre part,
1db [Y? Ldb . 1db [*? dw

—b/2 ox
11db b b2 g db ow
__Ltbtdby (b i 12

b2 dy {“’(2>+ ( )} b/,,/2 by oz (0120
Rassemblant les résultats (9.118), (9.119)
plement

(9.120), on obtient donc sim-

K] db 0 0 |1

/ (w N ww) g = b2
—b/2 dy

b/2 aw
- dr S = p2—
b dy Ox dy /_b/Qw m} ox
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en posant

1 b/2
w = 7/ wdz (déplacement axial moyen d’un segment y=cte)

bJ v
Cela étant, I’équation de compatibilité cherchée est
7 N N
oG (o oy
o (ay

Il s’agit d’une équation globalisée par segments y = cte, ce qui est logique,
puisque A est constante sur un tel segment.

. Les équations d’équilibre s’obtiennent en variant les déplacements.
a) La variation de u donne
) Id II)) dy dz az
x
-——Ay,l) = G

La forme de ¢, doit donc étre bien définie pour s’accorder au champ inté-
rieur.

b) Variant v, on obtient

1dA dA
7A(ya€) = Qy

I

Egalement, ¢y doit avoir une forme bien définie.
c¢) Venons-en a la variation de w. Il vient, dans €,

_ydM 104 1db,
Id: IT0y Ibdy

4 n —|—§@n =0
I\'Y bdy *)

Cette derniére relation est une identité. La précédente s’écrit

0A E@A dM

et, sur le contour,

 vayt T Vi
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Pour dM/dz = 0, cette équation se réduit a

dy ::__dy
A b
et a pour solution générale
B(z
141(y7z):: g:
Cherchons donc une solution particuliére de I’équation compléte sous la
forme Clu.2)
)2
Aoly2) = =5
11 vient
L0C _ Ldb, b, dM
boy dy | Bdy- Uz
soit
oc _ vt
oy  dz 4

Comme solution particuliére, on peut adopter

Cly ) = T 5)

avec

S(y) = / " )vay

Il s’agit du moment statique de la partie de la section située au-dessus de
y. Rappelons que

ho
S(—hy) = / " b(y)udy =0

dés lors que lorigine des axes est située au centre de gravité de la section.
La solution générale de I’équation compléte est donc

B(2) | dM 5(y)

On détermine B(z) en examinant les points y = —hy et y = ho. Trois cas
sont possibles :
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F1GURE 9.9 — Section avec méplat
|

FIGURE 9.10 — Section réguliére
20
il”

FIGURE 9.11 — Section & sommet anguleux

— Premier cas : le section y présente un méplat : b(he) # 0, par exemple
(fig. 9.9). Alors, sur ce méplat, on a la condition 7,, = 0, ce qui entraine

B(z) dM
(ha, 2) bha) + 7 = B(2)
La méme conclusion vaut si le méplat est situé en y = —hq, car S(—h1) =

0.
— Deuziéeme cas : la section coupe l'aze de y en lui étant perpendiculaire
(fig 9.10). Alors, 1,, = 0 en ce point (hq, pour fixer les idées). On a

= lim B(z) % im%:
0= (b@)*s(y)dz);‘yi@b(y) 0

ce qui n’est possible que si B(z) = 0.



9.13. EXERCICES 253

— Troisiéme cas : la section coupe l’aze de y en faisant avec lui un angle
0, avec 0 < 6 < 7 (fig 9.11). Alors, en supposant que cela se passe en
y = ho, posons £ = hy — y. Il vient

b(ha =€) = Etgf + O(E?)
et

ha
S(hs — €) A yb(y)dy

2—¢§

0
/(hg—E)(Etg9+(9(E2))dE
—£

_ & 3

donc % — 0 pour £ — 0 et comme b — 0, il faudra que B(z) = 0 pour
que A(y, z) reste fini.
En résumé, dans les trois cas ci-dessus, on a B =0 et

dM S(y)
Ay, 2) = 4z b
Les contraintes de cisaillement ont donc la forme définitive suivante :
_dM S(y)
v T T TIh
_ dM S(y) x db
et T T Ib bdy

5. On notera que
S 8w v z db ow = Ou
/* @w) <w+w”m
{ b/2 8w+3v>+xdb <8w+8u>} dx}d
b 9:) Tvay\or " 52 4
ow n o d
/ (81/ 32) !

comme nous ’avons vu en 3). On peut encore écrire

[0,
p, 102 L
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avec
h
2 S S x db
V:/ ﬁdy:/(v—l—u)dQ
oy 1 q Ib b dy
De plus,
/hz §@d B |:Sw:|h2 _/hz @ﬁd
i Toy ™ T T Ty
ha -
w
= —ybdy
/hl I
1/ J
I Ja
On a donc

/h2S @_’_@ dy = _i_dl
n I\ Oy 0z YT

Ceci permet d’écrire le principe variationnel, en posant

_1s

A
b

sous la forme

14 2 2
da dV M T _ _

ou l'on a posé

1 / 52 22 [ db\?
J— - ]_ + — -
o ), 122 »2 \ dy

soit

521w2db2d9 hzs211db2d
Jo % +1T2(@) — +ﬁ(d7,) y
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C’est la section réduite de cisaillement. Les équations globales sont

dM

= =7 M) = M
i% . T = T
M = EI%
T = GQ*(a+W>

dz

Exercice 36 FEtudier la méme poutre que ci-dessus, en posant

w = ya(z)
v = 0
v o= v(2)
o, = 0
oy, = 0
Tey = 0

Comparer aux résultats de ’exercice précédent.

Solution - Le principe de Hellinger-Reissner s’écrit ici

Y4 2 2
dv o T,
/ z Yz
2 — |- == -=L14dQ
/0 /sz [azya =)+, (a " dz) 2E 2G] s
_/ [pya(f) + g,v(€)] dQ stat.
Q

Variant o, on obtient
o, = Eyd/(z)

La variation de 7,. donne

d
TyzG(a+dZ>
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En variant «, on obtient
d

—— [ oydQ+ | TyzdQ =0
dz Q Q

[/ Uzydﬂ] :/pydﬂ
Q 2=0 Q

Ceci méne & définir
— le moment M = fQ yo,dQ
— Deffort tranchant 7" = 7,,,d$2
le moment d’extrémité M = [, pydQ

en fonction desquels ces équations s’écrivent

dM
il o
dx _
M) = M
En variant v, on obtient
d dr
— A} = — =0
dz /QTyZ dz
T = [oqdQ

() =

On peut réécrire ces équations en termes des résultantes. De simples intégrations

donnent
M = / yo.d) = E[—
dv
T = -dQ) = GQ —
fim (a - )
et

_M _T
Oz = II% Tyz—GQ

d’ou la forme globale de la fonctionnelle de Hellinger-Reissner
‘ 2 2
da dv M T _ _
M—+T e — Ma(l —Tv(L
/0 { dz i (Oé+ dz> 2ET1 QGQ} a v()
Par rapport a la solution de I'exercice précédent, qui est S.A., celle-ci est C.A
dans le cadre des hypothéses de poutre o, = 0, = T4y, = 0. La seule différence
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finale est la présence de ) a la place de 2*. La théorie des bornes nous permet
d’affirmer que

* *
exercice précédent < Q1réel <Q

(ce qui prouve en particulier que les sections de cisaillement sont toujours infé-
rieures aux sections).
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