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Préface

Cet ouvrage est né d'un ensemble de cours que nous avons donné a I’Ecole
Mohhamadia d’Ingénieurs & Rabat. Il n’est pas con¢gu comme une premiére
introduction & la mécanique des solides, mais comme une étude complémentaire
destinée & un public déja au courant des résultats classiques de la résistance des
matériaux. Nous continuons en effet de penser qu’une introduction inductive
& cette discipline permet, dans un premier temps, d’acquérir progressivement
une compréhension physique des principaux phénoménes de la mécanique des
solides. Le fait méme que cette approche est limitée incite alors & aller plus loin,
ce qui motive un seconde approche, plus déductive et plus fondamentale.

L’élasticité est une science déja ancienne et par conséquent, ses résultats
sont trés nombreux. Il est donc nécessaire, dans le cadre d’un cours, de faire des
choix. Notre but a été d’essayer d’allier un niveau théorique acceptable & un souci
d’applicabilité — nos lecons sont, destinées & des éléves ingénieurs mécaniciens.

Dans cet esprit, aprés un premier chapitre d’introduction mathématique,
nécessaire a la compréhension de la suite, nous abordons successivement la ci-
nématique des milieux déformables, le principe des travaux virtuels et ’étude
des corps hyperélastiques dans le cadre géométriquement non linéaire. Dans une
premiére lecture, on peut passer les sections relatives aux équations générales
de compatibilité, aux interprétations des contraintes de Kirchhoff-Trefftz, a la
stabilité locale et aux déformations avec variations de température.

Les équations de I’élasticité linéaire sont établies au chapitre 4. En ce qui
concerne la compatibilité, on peut, en premiére lecture, s’arréter aprés les équa-
tions de Beltrami-Michell.

Suivent trois chapitres d’application. Le premier traite de la torsion des
poutres prismatiques, un probléme ou les insuffisances de la résistance des ma-
tériaux sont criantes. A coté de solutions exactes classiques, nous y introduisons
des méthodes variationnelles conduisant immeédiatement & des solutions appro-
chées. Ceci prépare le lecteur a I’étude générale des principes variationnels, qui
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sera donnée plus loin. Les deux chapitres suivants forment un enchainement :
le probléme de Boussinesq est étudié parce qu’il sert de base au probléme de
Hertz ; ce dernier trouve de nombreuses applications en mécanique, notamment
en théorie des roulements. Sa résolution est compléte.

Nous exposons ensuite les principes variationnels, suivant la démarche de
Fraeijs de Veubeke. L’analyse duale, qui en est une conséquence, est développée
dans toute sa généralité, dans une approche qui nous est propre.

Le chapitre suivant est consacré a ’élasticité plane. Aprés I’établissement des
équations fondamentales et quelques exemples, nous développons la méthode de
résolution fondée sur 'utilisation de la variable complexe. Celle-ci est appliquée
aux problémes habituels, ainsi qu’a quelques problémes de concentration de
contrainte. Nous y avons ajouté une annexe relative aux disques d’épaisseur
variable en rotation, dans laquelle est présentée une méthode de conception des
roues de turbines originale et particuliérement simple.

Nous avons renoncé a développer la théorie rigoureuse des poutres de Barré
de Saint-Venant, qui est complexe et malheureusement, trés insuffisante pour
les besoins de la pratique, puisqu’elle suppose les efforts tranchants et la torsion
uniformes. Au lieu de cela, nous donnons ce que nous appelons une théorie
technique des poutres, fondée sur une approche variationnelle et incluant les
approches de Wagner pour la torsion non uniforme et de Vlassov pour les poutres
A parois minces ouvertes. Pour ces derniéres, nous présentons d’ailleurs une
étude de la torsion plus rigoureuse que ce dernier auteur. Le cas des caissons est
également envisagé, avec une approche de type éléments finis pour la recherche
du gauchissement et des champs de cisaillement de flexion.

La flexion des plaques est également étudiée dans un cadre variationnel.
Dans un premier temps, nous établissons la théorie de Reissner, puis nous envi-
sageons celle de Hencky et surtout, ’hypothése de Kirchhoff. Les résultats de ces
théories sont comparés et reliés entre eux. Nous présentons alors les méthodes
de résolution pour les rectangles (série double et série simple) et les plaques
circulaires.

Les théorémes énergétiques extérieurs (Castiglano, Menabrea, Clapeyron,
Betti, Maxwell) sont souvent présentés d’une maniére formelle et quelque peu
naive faisant appel & des forces concentrées dont on sait bien, pourtant, qu’elles
ménent & une énergie infinie en dehors de quelques cas particuliers. Rompant
avec cette tradition, nous les présentons comme des applications particuliéres
des principes variationnels, ce qui méne & un exposé précis et rigoureux. C’est
du reste 'occasion d’introduire le degré d’hyperstaticité.

Nous avons tenu & présenter la théorie des diagrammes d’influence, auxquels
nous continuons d’accorder un intérét pratique et pédagogique trés grand.
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Le dernier chapitre est consacré a la stabilité élastique. Outre la théorie
générale de la stabilité, nous y traitons un certain nombre de cas de bifurcation
courants, flambage, voilement des plaques, déversement de poutres fléchies.

Enfin, nous avons consacré une annexe a I’écriture des équations de 1’élasti-
cité en coordonnées curvilignes.

De nombreux exercices sont inclus. Parmi ceux-ci, certains sont de simples
applications, mais d’autres constituent des variantes de la théorie, des com-
pléments & celle-ci ou des théories approchées utiles que nous n’avons pas cru
bon d’inclure au texte principal, pour ne pas alourdir celui-ci. Beaucoup sont
entiérement résolus.

A la fin de la rédaction de cet ouvrage, nous avons une pensée particuliére
pour nos anciens étudiants de Rabat qui, par leur exigence et leur soif de savoir,
nous ont conduit & un réel approfondissement de ces matiéres. Qu'’ils en soient
remerciés.
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Chapitre 1

Préliminaires mathématiques

1.1 Préambule

Il est utile d’introduire des notations rendant 1’établissement des équations
aussi simple que possible. Cet ouvrage fait usage des notations indicielles. Bien
qu’un peu déroutantes au premier abord, ces notations présentent le double
avantage d’étre concises et d’abolir la nécessité de retenir un grand nombre
de formules du calcul vectoriel. Nous engageons donc le lecteur & consacrer sa
meilleure attention & ce chapitre introductif et & ne le quitter qu’aprés s’étre
assuré qu’il le domine parfaitement, car de 14 dépend la compréhension des
chapitres qui suivent.

1.2 Vecteurs

Etant donné une base orthonormée (e, es, e3) de I’espace physique, on peut
décomposer tout vecteur u dans cette base, ce qui introduit les composantes u;

de ce vecteur :
3
i=1

Le vecteur est totalement déterminé par ses composantes et inversement, de
méme qu’une fonction est déterminée par ses valeurs. D’ailleurs, on peut consi-
dérer le vecteur u comme une fonction de la variable i pouvant prendre les
valeurs 1, 2 et 3, fonction, disions-nous, qui a chaque valeur de i associe les



2 CHAPITRE 1. PRELIMINAIRES MATHEMATIQUES

composantes u;, comme 'illustre la figure 1.1 . Lorsque ’on manipule des fonc-

I 2 3

' >R
U u, u,

F1GURE 1.1 — Un vecteur considéré comme fonction de i=1,2,3

tions, il est courant de décrire les opérations sur les valeurs et non pas sur les
fonctions elles-mémes. On écrira par exemple

f(z) = sin2z + cos? z 4 arctg x

notation dans laquelle on exprime les opérations & effectuer pour un x donné.
Personne n’écrira

f=9+h+!
avec
g : xv+>sin2zx
h : x> cos’x
{ : x> arctgzr

tout simplement parce que cette notation est trop lourde.
En revanche, on trouve souvent tout normal d’écrire

graddiv u — rotrot u=f

1. Bourbaki [5] s’est servi de ce point de vue pour définir les produits d’ensembles
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quitte & expliciter séparément les opérations — souvent longues — menant au
calcul effectif des composantes! Ce faisant, on court encore le risque de ne pas
s’apercevoir que cette équation équivaut a

Au="f

et peut étre traitée par les méthodes propres aux problémes harmoniques.

La notation indicielle est au calcul vectoriel ce que la notation f(x) est au
calcul des fonctions : I’écriture la plus élémentaire. En voici les régles. Elles sont
simples et ne nécessitent aucun effort de mémoire particulier.

Un vecteur est donc représenté par une composante générique : le vecteur u
se note u;. C’est précisément la présence de I'indice qui nous permettra de voir
qu’il s’agit d’un vecteur : un scalaire ne posséde pas d’indice.

La somme de deux vecteurs u; et v; s’obtient en sommant les composantes.
On 'écrira donc tout naturellement

et en général, une combinaison linéaire de deux vecteurs s’écrira
Au; + po; (1.3)

Une autre opération courante entre deux vecteurs est leur produit scalaire.
On sait que ce produit vaut

3
u-v= E U;V;
=1

On aurait donc pu décider de noter le produit scalaire sous cette forme. Néan-
moins, le signe Z?:1 alourdit considérablement l’écriture de la formule et, &
vrai dire, on peut s’en passer moyennant une convention de notation introduite
par Einstein, qui consiste a dire que chaque fois qu’un indice est répété dans
un mondme, celui-ci représente en fait la somme des trois termes obtenus en
donnant successivement a cet indice les valeurs 1, 2 et 3. En conséquence, nous
écrirons

u-v=uv; (1.4)

L’indice i de cette expression, qui a pris toutes les valeurs possibles, disparait
du résultat, qui est un scalaire. On dit que c’est un indice muet.
L’avantage de ces notations apparait déja lorsque ’on considére la relation

a-(b+c)=a-b+a-c
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qui, en calcul vectoriel classique, demande & étre démontrée et retenue, alors
que nous ’écrirons sous la forme évidente

ai(bi + ¢;) = aib; + aic; (1.5)

1.3 Tenseurs

Une grandeur b;; & deux indices qui, appliquée & un vecteur c;, donne un
autre vecteur a; selon la loi

a; = bijcj (16)

est un tenseur du second ordre. Un vecteur est encore appelé tenseur du premier
ordre et un scalaire, tenseur d’ordre 0. Plus généralement, et par récurrence,
une grandeur b;, _,;,..;, & (k+¢) indices qui, appliquée & un tenseur d’ordre ¢,
Cj,...4.» donne un tenseur d’ordre k, a;,. 4, selon la loi

@iy iy = Yiy.igga . jeCin e (1.7)

est un tenseur d’ordre (k + /).
Le plus simple des tenseurs du second ordre est le tenseur de Kronecker,
défini par

_J 1sii=y
6”_{ Osii#j (1.8)

C’est, bien un tenseur, car il applique un vecteur a; sur lui-méme :
a; = 5ijaj (19)

Nous utiliserons également un tenseur du troisiéme ordre e;;i, appelé alter-
nateur, et défini par

+1  si (4,4, k) est une permutation paire de (1,2, 3)
eijk =<4 —1 si(4,7,k) est une permutation impaire de (1,2, 3) (1.10)
0 si (4,7, k) n’est pas une permutation de (1,2, 3)

Ce tenseur permet d’exprimer le produit vectoriel a; de deux vecteurs b; et cy
par

a; = ejjpbjcy (1.11)
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comme on le vérifie aisément ?. Pour ¢ = 2, par exemple, e;;;; ne différera de zéro
que si le triplet (i, j, k) vaut (2,3, 1) (permutation paire) ou (2, 1, 3) (permutation
impaire), ce qui donne

az = ea31bzcy + ea13b1c3 = bzey — bics

et I’on retrouve bien la deuxiéme composante du produit vectoriel.
La plupart des manipulations concernant ’alternateur reposent sur la for-
mule fondamentale
€ijkCitm = 0;10km — 0jm Okl (1.12)
Tout d’abord, cette formule est évidente si j = k ou [ = m. Il reste donc &
examiner le cas j # k, [ # m. On remarque pour commencer que

di1 Oz Oi3
€ijk = det 5]' 5j (5j (1.13)
Or1 Or2 O3
ce qui entraine
i1 Oi2 043 di1 01 Oma

3 1)
€ijkCilm = Zdet 5j1 5]' 5j 61‘2 6[2 6m2
i=1 Ok1 Or2 O3 0i3 013 Om3

3 1 0ii Oim
= Z det, (5]‘ i 5j 5j
i=1 Ski Okl Okm

De ces déterminants, un seul peut ne pas étre nul, celui pour lequel i, j et k
sont tous différents. Ce déterminant s’écrit

1 da  dim
det | O (Sjl (5j = jl(;km — 5jm5kl
0 kit Okm

comme annonceé.

L’égalité (1.12) meéne simplement & des relations qui, en calcul vectoriel clas-
sique, n’ont aucun caractére d’évidence. Calculons par exemple la valeur du
double produit vectoriel

d=(axb)xc

2. En toute rigueur, ’alternateur est un pseudo-tenseur, car le produit vectoriel est un
pseudo-vecteur, changeant de sens lors du passage d’un systéme d’axes droitier & un systéme
d’axes gaucher.
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d; = eijk(a X b)jck = eijk(eﬂmalbm)ck
Une permutation paire donne e;;;, = e, d’olt
di = €;ki€jima1bmCr = (0k10im — Okmdir)rbmcr
soit
d; = aibic; — a;bicy

ce qui équivaut & la formule classique

d=b(a-c)—a(b-c)

1.4 Transformations d’axes

Etant donné une base orthonormée {e;}, comment passer & une autre base
orthonormée {E;} ? Le principe est évidemment que les vecteurs doivent rester
le mémes, ce qui s’écrit

Chaque vecteur de la base {e;} peut étre décomposé dans 'autre base, sous
la forme
ei = T/ (1.15)

La matrice de transformation T2 posséde d’ailleurs quelques propriétés liées a
I'orthonormalité des deux bases : on a en effet

Oij = €; - € = Ty T By, - By = T3 T (1.16)

ce qui signifie qu’il s’agit d’une matrice orthonormale. On sait que le déterminant
d’une telle matrice vaut +£1. Dans le cas ou il est positif, la transformation est
dite de signe positif et elle conserve le caractére droitier ou gaucher du systéme
d’axes. Dans le cas contraire, on dit que le transformation est de signe négatif
et elle inverse le caractére gaucher ou droitier du systéme d’axes.

La transformation inverse est

Ei = Tjiej (117)
Revenant au vecteur u, on aura donc

u=1u;e; = UjEj = UjTijei

3. Ce n’est pas un tenseur!
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soit
U; = TijUj (1.18)

Réciproquement,

Telle est donc la loi de transformation d’un vecteur. Examinons & présent
le cas d’un tenseur du second ordre. Nous avons défini celui-ci par le fait qu’il
transforme un vecteur en un autre selon la loi

bz‘ = G4;Cy
On en déduit successivement

bi = a;;T50:C

et
By, = Tikb; = TixTjea:;C
soit
A = Ty Tiiai; (1.20)
et, réciproquement,
aij = T Tj1Ap (1.21)

Plus généralement, on tenseur d’ordre n se transforme suivant la loi

LT

Intn

A

Jrevsin (1.22)

Qiy..iyy = leil .

1.5 Opérateurs de dérivation

Toujours par souci de concision, nous noterons D; la dérivée partielle 9/0z;
par rapport a la ¢ variable. Ainsi, le gradient d’un scalaire ¢ sera le vecteur de
composantes

Dip (1.23)

C’est bien un vecteur, car la différentielle de ¢, qui est un scalaire, s’écrit
dy = Dypdx;

oul dz; est un vecteur.
La divergence d’un vecteur u; admettra la représentation simple

divu = Dju; (1.24)



8 CHAPITRE 1. PRELIMINAIRES MATHEMATIQUES

et en rassemblant ces deux formules, on obtient le laplacien :
divgrady = D0 = Ap (1.25)

ol 'on a noté D“ pour Dle
Le rotationnel se construit & la maniére du produit vectoriel : si u; est un
vecteur, son rotationnel w; est donné par

wi = €ijpDjug (1.26)

Ici encore, on obtient trés aisément des formules utiles. Ainsi, le rotationnel
du rotationnel est donné par
(rot rot u); = e;jDj(errsDrug)
(5ir6js - 5i86jr)Dj'rus
= Dijuj — Djju;
ce qui équivaut a
rot rot u = grad divu— Au (1.27)

résultat que nous obtenons avec la plus grande aisance.

1.6 Théoréme de Gauss-Ostrogradsky

Considérons un champ de tenseurs F', dont nous omettons ici les indices
éventuels, car ils ne jouent aucun role dans ce qui suit. Si V' est un volume
suffisamment régulier de surface S, et si n; est le vecteur normal a cette surface,
on a la formule générale

/ D;FdV = / n;FdS (1.28)
1% S

11 suffit évidemment de démontrer cette proposition pour une valeur quelconque
de 4, soit ¢ = 1. On découpe le corps en prismes élémentaires, limités pour les
grandes valeurs de 7 par une surface dS; et, de I'autre co6té, par une surface
dS_ (voir figure 1.2). Ces prismes ont chacun une surface projetée sur le plan
(Oxa, Ox3) égale a dSy, d’on

T14
/ DleV = / dSo/ Dlel'l
1% So T1—

- /SO(F+ — F)ds
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>

FIGURE 1.2 — Théoréme de Gauss-Ostrogradsky

Sp étant la projection de S; et S_, on a, en tenant compte des orientations

relatives,
dSO = TLYdSJr = —nde,

ce qui entraine

/ (F+ 7F7)d50 :/ F+7’Li~_dS+ +/ Fi’lll_dsi
So Sy S

soit finalement, comme S = S; U S_ U S,, ou S, est 'éventuelle partie de la
surface ou n; = 0, partie dont la contribution est de toute fagon nulle, on a bien

/DleV:/andS
v s

Voici quelques applications de ce théoréme :
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Théoréme de la divergence

% s
/divude/u~ndS
1% S

Théoréme du gradient

soit

/Dde:/nigodS
v s

/gradcpdV:/gondS
v 5

Théoréme du rotationnel

soit

/eijijude:/eijknjude
\%4 S

/rotudV:/nxudS
1% s

Formule d’intégration par parties Il convient encore de noter la formule
suivante, dite d’intégration par parties : si F et G sont deux tenseurs, on a

soit

/ FDlGdVZ / FnZGdS—/ GDleV (1.29)
1% s 1%
résultat qui se déduit aisément du fait que

/ niFGdS = / Dy(FG)dV = / FD,GdV + / GD;FdV
S 14 14 |4
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1.7 Eléments propres des tenseurs symétriques

1.7.1 Eléments propres

Un tenseur du second ordre a;; est dit symétrique si I’on a toujours
Qij = aji , L7 ]

Les composantes de ce tenseur peuvent étre représentées dans le tableau

a1 a2 ais
a2z Q23 (1.30)
SYM ass

qui montre & I’évidence que seules , six d’entre elles sont indépendantes.
Par application de ce tenseur sur un vecteur b;, on obtient en général un
autre vecteur
Cj = aijbj

qui différe du vecteur de départ & la fois par sa norme et par son orientation.
Mais ne peut-on trouver des vecteurs b; particuliers dont 'image ne différe que
par la norme et, éventuellement, le sens, comme l'illustre la figure 1.3. Il s’agit

rmpropre propre

FI1GURE 1.3 — Vecteurs propres et impropres

d’obtenir la relation
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ou encore,

(aij — Adiz)bj =0

Matriciellement, cela revient a chercher les éléments propres de la matrice (1.30).
On sait qu’une matrice symétrique & n dimensions posséde exactement n vec-
teurs propres orthogonaux entre eux. Soient donc

b p2 | p3)

les trois vecteurs propres orthonormés, correspondant aux trois valeurs propres
AL X et X3, Les trois vecteurs en question sont appelés directions princi-
pales du tenseur, et les valeurs propres, valeurs principales.

1.7.2 Développement spectral du tenseur

I est équivalent de donner les composantes du tenseur symétrique a;; ou de
donner ses valeurs et directions principales®, comme ’atteste la formule

3
ai; = > AP (1.32)
k=1

Pour démontrer cette formule, remarquons d’abord que tout vecteur ¢; admet

la décomposition
E)N g (k
¢ = Z(czbé ))b; )
k

On a donc

QAj5Cj = Z aijbg»k)bgk)C[

k
S AR e,
k

4. On pourrait croire que le nombre de paramétres est différent. En fait, il n’en est rien.
Pour définir la premiére direction principale, il faut deux angles; pour la seconde, il n’en faut
plus qu’un, car elle est orthogonale a la premiére, et la troisiéme direction principale se déduit
directement par orthogonalité aux deux premiéres. Il faut donc les trois valeurs propres et les
trois parameétres définissant la base, ce qui fait bien 6 paramétres en tout.
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1.7.3 Caractére d’invariance des éléments propres

Lors d’une transformation de coordonnées, que devient 1’équation (1.31)?
Multipliant cette équation par T;, on obtient

Tiraijb; = NIipb; = By

soit encore
Tirai;TjeBe = ABy,

ce qui équivaut a
ApyBy = A\By, (1.33)

Dés lors, les valeurs principales sont indépendantes du systéme d’axes choisi.
On dit qu’elles sont invariantes. L’équation caractéristique scalaire

aip — A a2 a3
as1 agz — A azz | =0
asy ass ass — A

a la forme générale
N A ON —DLA+13=0

avec
Il = ai1 + ag2 + ass (trace)
1
I2 = 5(01“'(1]']' - aijaij) (134)
13 = det(aij)

Ses racines étant AV, A2 et A\ elle ne peut que s’écrire
AL —N)A® A -\ =0

ce qui entraine

L = MDD A@ 4G
I = XOXD L a@NE L A@X\O (1.35)
I = AD)\®)\G) (1.36)

Il en découle que ces trois grandeurs sont également invariantes, ce qui justifie
qu’on les nomme les trois invariants d’un tenseur symétrique.
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1.7.4 Décomposition d’un tenseur symétrique en un ten-
seur isotrope et un déviateur

Le tenseur symétrique ¢;; admet n’importe quel vecteur comme vecteur

propre, avec la valeur propre 1. En conséquence, si a;; est un tenseur symé-
) 5@ 3
?

()

trique de directions principales bgl et de valeurs principales A1), \(?),
AB3) on aura
(ai; — ad;)b} = (A®) — )b (1.37)

J

Le second invariant du tenseur du premier membre vaudra donc

Lo = A =)@ —a)+ (0@ —a)(A® —a) + 0@ —a)(AV — )
= I, —2al +3a?

et admet, pour a = 11 /3, un minimum égal &

N [12
Iy =15 — 3 (1.38)

Le tenseur ainsi obtenu s’appelle déviateur de a;; et on le note a;; :
R 1
Qi = Q5 — gaaéi]‘ (139)

Son premier invariant est nul :
A 1
I =ai; — gaéééii =0

et son second invariant prend la forme

1. . L
IQ = §(aiiajj — aijaij) = —Eaijaij (140)

Il est donc toujours négatif et sa nullité entraine celle du déviateur tout entier,
dont (—1I5) constitue une norme.

On en déduit par ailleurs qu’'un tenseur symétrique dont les deux premiers
invariants sont nuls est nul. En effet,

I
Qij = Qij + o

3%

et par la formule (1.38), I est nul.
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1.8 Structure des tenseurs antisymétriques du se-
cond ordre

Un tenseur w;; est antisymétrique si
Wij = —Wjj (1.41)
En particulier, ses termes diagonaux sont nuls. Introduisant le (pseudo-) vecteur

1
Wk = 5 €kijWij (1.42)

on obtient alors
1

CpgkWk = 5 CEpqkClijWij

2
1
= 5 (0pidj = Gpjdqi)wij
1
= 5( pa — Wap)
= Wpq
ce qui illustre la correspondance biunivoque entre le tenseur w;; et le vecteur
wg. L’expression
Wij = €ijkWk (1.43)

est la forme canonique des tenseurs antisymétriques du second ordre.

1.9 Exercices
Exercice 1 Calculer Uexpression (a x b) - (¢ x d)
Solution - Le résultat f; est donné par

fi = eyrajbreirscrds
= (5jr6ks - 6j35kr)ajbkcrds
ajcjbkdk — ajdjbkck

ce qui revient & dire que

(axb)-(exd)=(a-c)(b-d)—(a-d)(b-c)



16 CHAPITRE 1. PRELIMINAIRES MATHEMATIQUES

Exercice 2 Montrer que si a;; est un tenseur symétrique, on a e;jra;r = 0. En
déduire que divrot u = 0.

Solution - On a en effet, en changeant le nom des indices muets,

§(eijkajk + €ikjar;)

et, en vertu de la symétrie de a;;, le second membre s’écrit encore

CijkGjk =

1
i(eijk + eikj)ajk =0

car € = —€ikj-
La seconde assertion résulte du fait que

divrot u = Di(eijijuk) = eiirDijur
avec Dij = D]z
Exercice 3 Montrer que rot grady =0

Exercice 4 Démontrer la formule de Green

/ngdV—/gAde:/f@dS—/ggdS’
% Vv S 311 S 871

Exercice 5 x A partir de la formule de Gauss-Ostrogradsky, démontrer la for-

mule de Stokes-Ampere
/rotu-ndS:/u-tds
s c

t étant la tangente au contour C de la surface, orientée suivant la régle du
tire-bouchon autour de la mormale. La surface S sera supposée projetable sans
recouvrement sur un plan.

Solution - Soit V le volume du cylindre limité par la surface S et sa projection
So, et soit Sy sa surface latérale (fig. 1.4). Pour un vecteur v; quelconque, on a
alors

0 = / eijkDijvde
\%4

= /Sn,'eijijvde—F/S nieijijvk.dS—F/ nieijijvde
0

Se
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FIGURE 1.4 — Stokes-Ampére

Etant donné un vecteur u; sur la surface S de hauteur h(z,v), nous choisissons
arbitrairement 1’interpolation

vi(w,y,2) = m“i(%y)

Dés lors, la contribution sur Sy est nulle. Sur la surface latérale, I'intégrand
vaut, dans le systéme d’axes (53, z,n),
z

z
(Dgv, — Dyvg) = 7 (Dsuz — Dzug) — o5

1
uzDgh — Euﬁ

d’ot, en notant Cy la projection de C sur le plan de base,

oz z ug
/ (Dgu, — Dyug)dS = / dﬁ/ [ Dpu, — s5u.Dgh — —=]dz
S, Co o h h h

1
/ [EDBUZ — *uzDBh — Uﬂ]dﬁ
o 2 2

h
Dg(fuz)dﬁ— (ua —|—uZD5h)dﬁ
Co 2 CO

= —/ (Uﬁ—I-uzDgh)dﬁ

Co

Or, sur C, on a (fig. 1.5)
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gz Deh df
dp

FIGURE 1.5 — Tangente & C

ds = bﬁeg + D@hdﬁez

si bien que cette intégrale de contour n’est autre que

- / u-ds
c
Au total, on obtient bien

/rotu'nde/u~ds:O
s c

Exercice 6 Montrer les relations
1. [gxn;dS = (mesV)d;;
2. [¢nidS =0
3. [seijrnjzrdS =0

ou S est la surface frontiére d’un volume V.



Chapitre 2

Cinématique des corps
continus déformables

2.1 Description du mouvement

Considérons un corps continu occupant, dans un état de référence arbitraire,
un volume V. Un point quelconque de ce corps peut étre repéré, dans cet état
de référence, par ses coordonnées x; dans un repére cartésien.

Imaginons que ce corps se déforme en fonction d’un paramétre d’évolution
t, qui pourra étre le temps (bien que cette identification ne soit pas nécessaire
en statique). Il prendra donc, a I’instant ¢, une autre configuration, occupant un
volume V' (¢). Un point situé en x; dans la configuration de référence, prendra
alors une nouvelle position, de coordonnées §; dans le méme repére cartésien
(fig-2.1). On appelle déplacement de ce point le vecteur

Il est clair que I'on peut considérer ce déplacement aussi bien comme une fonc-
tion des coordonnées de départ x; que comme une fonction des coordonnées
d’arrivée ;. Les premiéres sont appelées coordonnées matérielles pour la rai-
son que définir un corps dans une configuration de référence, convenue une fois
pour toutes, revient en quelque sorte & « donner un nom »& chaque particule.
Dr’ailleurs, en supposant que l'on ait pu graver un réseau de coordonnées sur
le corps dans cette position, ce réseau se retrouvera, déformé bien sir, dans la
position au temps ¢, ou il définira un systéme de coordonnées curvilignes que

19
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Y

FI1GURE 2.1 — Déplacement

I’on appelle les coordonnées convectées. Ces coordonnées ont, toujours, pour un
point matériel donné, la méme valeur que les coordonnées matérielles (fig. 2.2).

pad ™
/ A |
A U; ==
A A [T 1T £ o g/,"
= 7
/ y
=

FIGURE 2.2 — Coordonnées convectées

Utiliser les coordonnées matérielles pour décrire le déplacement, c’est donc
parler du déplacement du point qui, en ¢ = 0, occupait la position z; : il s’agit
d’une description lagrangienne.

A Tinverse, les coordonnées &; donnent la position spatiale du corps au temps
t, ce qui leur vaut le nom de coordonnées spatiales. Décrire le mouvement a
I’aide des coordonnées spatiales, c’est donc parler du déplacement du point qui,
a 'instant ¢, occupe la position &; : il s’agit d’'une description eulérienne.

2.2 Choix de la description

En mécanique des fluides, la plupart des problémes consistent & étudier des
écoulements perpétuels, bien qu’éventuellement variables, et on s’intéresse gé-
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néralement aux champs de vitesses et de pressions dans une portion détermi-
née de 'espace, sans se soucier des positions préalables des particules. Dans
ces circonstances, la description eulérienne s’impose. Seuls, quelques problémes
d’oscillations admettent une formulation lagrangienne plus élégante [14].

Au contraire, en calcul des structures, les corps considérés sont fréquemment
anisotropes ou méme inhomogeénes et, presque toujours, de forme compliquée.
La seule configuration ou les directions d’anisotropie, les frontiéres de matériaux
différents et, plus simplement, la forme des corps, sont connues, est la position
de référence. C’est pourquoi la description lagrangienne est de régle dans le cal-
cul des structures, et nous l’adopterons toujours dans ce qui suit. Remarquons
qu’en conséquence, les volumes et les surfaces considérés dans les diverses inté-
grations sont toujours des volumes et des surfaces de référence, indépendantes
des déplacements.

2.3 Tenseur des déformations de Green

Nous dirons qu’un corps se déforme si la distance entre deux au moins de
ses points varie. Comment mesurer cette déformation ? Comme la distance est
une notion cumulative le long d’un segment de droite, il suffit en fait de mesurer
la variation de distance dans le voisinage de chaque point. Soit donc P(x;) un
point quelconque du corps, et Q(x; + dz;) un point voisin. La déformation les
ameéne respectivement en P’(&;) et Q'(&; + d€), avec (fig.2.3)

Q(X[" dXz)

utddi ,Qlz+dz.)

P(E)
FIGURE 2.3 — Définition de la déformation

& = Tty
&+ds = (x4 dx) + (i + duy)
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Dans la configuration de référence, la distance entre ces deux points est donnée
par

ds® = dx;dx;
La déformation transforme cette distance en

ds'? = d&;dé; = (dx; + dug) (dx; + duyg)

Exprimant du; comme la différentielle du déplacement :

dui = Djuid:cj
on obtient

ds”? = (dz;+ Djudz;)(dz; + Dyu;dzy)
= ((Sij + Djui)dl‘j((sik + Dkul)dxk
= (5jk + Djuk + Dk’LLj + Djukaui)dxjdwk

Pour savoir si cette distance différe de la distance de référence, il suffit d’en faire
la différence. L’usage veut que ’on en calcule plutot la demi-différence :

1 1
i(dS/Q —ds®) = i(Djuk + Dyuj + Dju;Dyu;)dajday, = vipdridr,  (2.2)

ou apparait le tenseur symétrique
1
Yik = i(Djuk + Dyuj + Dju; Dyu,) (2.3)

appelé tenseur des déformations de Green. fait remarquable, & partir des six
composantes indépendantes de ce tenseur en un point, il est possible de calculer
la variation des longueurs infinitésimales dans toutes les directions autour du
point considéré : il suffit en effet, & partir du vecteur dx;, de calculer v;,dz;dzy,.

* Remarque La description ci-dessus considére que la déformation se mesure
uniquement par des variations de longueur. En se rappelant la structure micro-
scopique de la matiére, on congoit sans peine que l’orientation relative de deux
particules voisines puisse jouer un role, menant & des configurations physique-
ment différentes, bien que v;; = 0 partout (fig.2.4). (Ce serait le cas & cause
d’effets magnétiques, par exemple). Dans ce cas, il faudrait encore pouvoir me-
surer les variations d’orientation. De tels effets sont ignorés dans le cadre de
la théorie classique des milieux continus. Il existe cependant des théories dites
asymétriques ou des effets de ce genre sont pris en compte a 'aide de couples
de contrainte (stress couples) [58, 10].
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Etat]

Ftat?

FIGURE 2.4 — Effet de l'orientation des particules

2.4 Interprétation du tenseur de Green

Pour interpréter les composantes du tenseur des déformations, il est utile de
faire appel aux coordonnées convectées. La base (e;,7 = 1,2, 3) des coordonnée
matérielles vérifie évidemment la relation

Son image aprés déformation est donnée par les vecteurs
g = D;P’ (2.5)

formant la base (covariante) locale des coordonnées convectées. Insistons sur le
fait qu’en chaque point, la base (g;) peut avoir une orientation différente et que
le plus souvent, |g;| # 1.

La distance entre deux points voisins P et P + dP est donnée, dans la
configuration de référence par

ds* = dP - dP = dx;dx;
Dans la configuration déformée, on a

si bien que
ds? = dP’ - dP’ = g;du; - gjdx; = g;jdr;dz; (2.6)
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ou s’introduit le tenseur métrique de la configuration déformée
9ij = 8i " 8 (2.7)

qui est visiblement symétrique. La comparaison des équations (2.6) et (2.2)

donne visiblement .

Yij = g(gij — i) (2.8)

Examinons d’abord une composante diagonale de ;;, 11 pour fixer les idées.
Le vecteur e; prend, au cours de la déformation, une longueur

g1l =ledl(14)=1+2 (2.9)

€ étant son allongement proportionnel, au sens de la résistance des matériaux.
On a
_ 2 _ 2
g1 =|gi1"=14+2+¢
d’ou
1 1 2

€
71125(911—511)25(1‘1'254-52—1):5"'5 (2.10)

Lorsque ’allongement proportionnel est petit, il vient simplement
Y11 R E (2.11)

Pourquoi, se demandera-t-on, n’avoir pas essayé de généraliser les allonge-
ments proportionnels de 'ingénieur, plutoét que d’introduire une autre mesure
de déformation ? La réponse est qu'une telle approche, bien que possible, méne
4 un tenseur n’ayant pas de forme analytique simple avec les déplacements (dé-
formation de Jaumann, [34, 36]. (Voir aussi exercice 10).

L’interprétation des termes croisés est aussi simple. Nous examinerons le
terme ;2. Dans la configuration de référence, les vecteurs de base e; et e, sont
orthogonaux,

€] ey = 0

Dans la configuration déformée, les vecteurs g1 et go vérifient, en vertu de (2.8)

181l = V142711, |82] = V14272

et
g1-82 =€ e+ 2712 = 2712
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Le cosinus de I’angle 015 entre g; et et go est donc donné par

: 2
cos b2 = 81 82 _ 12 (2.12)

lgillga] VI F 2711v/T + 2722

Pour de petites déformations, on a

cos 10 = Sin(g —012) = g — 01
et
\/m ~1, \/m ~ 1
si bien que
g — 019 = 2719 (2.13)

ce qui signifie que les termes croisés du tenseur de Green mesurent la variation
des angles droits.

2.5 Equations de compatibilité

Nous avons vu comment calculer le tenseur des déformations a partir des
déplacements. Posons-nous a présent le probléme inverse [81, 53] : on donne
en chaque point le tenseur de Green +;; ou, ce qui est équivalent, la métrique
déformée g;;, et on désire retrouver les coordonnées &; ou les déplacements u;.
Ce probléme admet-il une solution ? Si oui, est-elle unique ?

Nous ne discuterons ici que le cas de corps simplement connexes. Supposons
connue la position P’ d’un point matériel P. Pour en déduire la position de ses
voisins, il faut intégrer les équations

DiP' =g;

Mais les g; eux-mémes ne sont pas encore connus, et il faudra aussi que nous
les intégrions. Sur ce point, notons d’abord la condition d’intégrabilité

Dig]‘ = DijPI = ngi (214)

Comme préliminaire & l'intégration de la base {g;}, remarquons que le ten-
seur métrique g;; admet toujours un inverse g*/ défini par la relation

gzmgmj = 5;
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car la matrice {g;; } est définie positive. On peut, a partir de cette inverse, définir
une seconde base

USSR Y P
g =9°8;
qui vérifie visiblement
i i ik _ ik, i
g8 =9"gr 8 =9 gkj = 9;
Pour distinguer les deux bases, on appelle {g;} base covariante et {g'} base
contravariante. Selon la base choisie, on écrira
_ i RS
a=ag; oua=a;g
distinguant soigneusement les composantes contravariantes (indice supérieur)
des composantes covariantes (indice inférieur). Ceci étant, si 'on pose
a=ag'
on a
i i
a-g; =ae;g -8gj :aiéj = aj;
et, de méme,
a-g'=ad
Nous pouvons a présent examiner I'intégration de la base covariante {g;}.

Si cette base est connue en un point, il faut intégrer & partir de ce point les
équations

Digi = (Dig; - )8’ = Tijig’ (2.15)
ou les I'yj;, dits symboles de Christoffel, doivent vérifier, en vertu de (2.14)
Ukij = Digi - 8 = Digr - 85 = Liji (2.16)

c’est-a-dire étre symétrique par rapport a leurs indices extrémes. Nous allons
montrer que ces symboles peuvent étre déduits du tenseur des déformations. On
a en effet

Dygij = Di(gi - 8j) = Drgi - 85 + 8i - Digj = T'kji + Tiji (2.17)

(lemme de Ricci). Ecrivant cette relation en permutant les indices, on obtient
les trois relations

Dygij = Thij +Tiji
Djgri = Tjki+Ljik
Digjr = Tijk+TLir;
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dont on tire, en vertu de (2.16)
1
Prij = 5(Drgij + Djigri — Digjn) (2.18)
De plus, comme
Digij = Di(6ij + 27ij) = 2Dri;
on obtient
Tij = Divij + Dyve: — Divje (2.19)

Cette relation permet de calculer, & partir des déformations, les symboles de
Christoffel dont on a besoin pour intégrer la base covariante a partir des équa-
tions (2.15). Il reste encore a se poser la question de la compatibilité de ces
équations, qui ne sera réalisée que si les dérivées croisées sont égales, ce qui
s’écrit

Dp(Dqgi) = Dg(Dpgi) (2:20)

Calculons donc
Dp(Dygi) = Dp(Tyjig’) = &’ Dplyji + Tgjs Dy’
Pour obtenir les dérivées de la base contravariante (g7), notons que
0= Dy, = Dy(&’ - 8n) = &m - Dpg’ + & - Dygnm

ce qui entraine

m

Dyg’ = (gm-Dpg’)g
—(g’ - Dpg™)g™

= —¢"" (g Dpgm)g™
= _gjerpémgm

et
Dy(Dqygi) = 8™ (DpLgmi — gﬂrpemrqji)
La condition de compatibilité s’écrit donc

Rmipq = Dprqmi - qupmi - gjé(rpfmrqji - Fqémrpji) =0

On notera que le tenseur R4 est connu sous le nom de tenseur de courbure.
Il nous reste a ’expliciter en termes des déformations. On a

DPqui = Dp<Dq7mi + Di’)/mq - Dm')/iq)
= Dpg¥mi + DpiYmg — Dpmiq
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et, en permutant les indices p et g,
qupmi = qu'Ymi + in’ymp - qu’ypi
ce qui meéne & la forme finale des équations de compatibilité,

Dpi_’qu + qu’Ypi - me’)/iq - in’ymp
-9’ {(Dp'}/fm + Dinype — DZ'me)(Dq'in + Divjq — Dj%’q) (2.21)
_(Dq')’lm + DmYqe — Dl’qu)(Dp'in + Divpj — Dj'Vpi)} =0

A priori, le tenseur de courbure posséde 3* = 81 composantes. Cependant,
elles ne sont pas toutes indépendantes En effet, on peut vérifier que
Rinigp = —Rmipg

Rimpg = —Rmipq (a)
b
c

qumi - Rmipq

La relation (a) réduit a trois le nombre de valeurs du couple (i, m) pour lesquelles
les Rimpq sont indépendants et non nuls, & savoir,

(i,m) = (1,2), (2,3) et (3,1)
De meéme, la relation (b) permet de ne considérer que les couples

(p,q) = (1,2), (2,3) et (3,1)
Enfin, en vertu de la relation (c), la matrice

R1212 R1223 R1231

Raz12  Razoz  Raszz
R3112 R3i23 Raiz

est symétrique, donc compte siz composantes indépendantes, & savoir,

Ri212, Ri223, Ri231, Ra323, R2331, R3131

Les équations de compatibilité sont donc au nombre de siz.

Récapitulons. Supposant les équations de compatibilité (2.21) vérifiées, on
peut intégrer les équations (2.15). Il reste & se donner la base {g;} en un point
Py arbitraire. Le choix des g;(Pg) devra vérifier les conditions

lg1(Po) > = 14 2711 (Po)
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et de méme pour les deux autres vecteurs de base, ce qui fixe leurs normes. Les
angles entre les vecteurs de base sont fixés par les conditions

gi(Po) - g;(Po) = 27i;(Po), i # j

L’orientation de cette base locale est cependant arbitraire : les bases convectées
sont définies 4 une rotation prés.

Les g; étant déterminés, on peut calculer les coordonnées de tous les points
en intégrant les relations

DiP' =g;

mais il faut encore se donner les coordonnées &;(Py) du point ou démarre le
processus d’intégration, ce qui donne encore la liberté d’une translation du corps.

En conclusion, un champ de tenseurs symétriques v;; ne peut étre un champ
de déformation de Green, c’est-a-dire avoir la forme

1
2

que s’il vérifie les sixz équations de compatibilité (2.21). Dans ce cas, le champ
de déplacement u; est déterminé a une translation et une rotation preés.

2.6 Hypothéses simplificatrices

Les équations de compatibilité (2.21) s’appliquent dans le cas général des
grandes déformations. Malheureusement, elles sont compliquées, d’une part par
leur non-linéarité (équations presque linéaires) et par le fait que le tenseur de
déformation apparait implicitement dans ¢/. En restreignant le champ de 1’ana-
lyse, on peut les simplifier quelque peu.

2.6.1 Petites déformations

L’hypothése des petites déformations consiste & poser
sup M <I'«1ppdans V (2.22)
a#0 ;A

c’est-a-dire que les déformations principales sont inférieures en valeur absolue a
I'. Cette hypothése, trés généralement applicable aux métaux dans le domaine
élastique, permet d’écrire

gij = 0ij + O(1), ¢ =67 + O()
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et raméne les équations de compatibilité a la forme approchée plus simple [53]

Dpifqu + quVpi - me'Yiq - in,}’mp
—(DpYjm + Dm¥pj — Djvpm)(Dgvji + Divig — DjYig) (2.23)
_(Dq'ij + Dimvygy — Djl’Yq7rL)(DP7ji + Diypj — Dj’Ypi)} =0

ot les v;; n’apparaissent plus que sous forme explicite.

2.6.2 Petits déplacements

L’hypothése dite des petits déplacements — il serait plus correct de dire des
petits gradients de déplacement — consiste & poser

sup |Dju;| <T < 1 pp dans V (2.24)
2

Cette hypothése, plus forte que la précédente, entraine

Yij = %( Din—I— Djui—l— Diuijum) ~ %(Diu]‘ + Djum) = Eij
O T r I2
(2.25)
Nous démontrerons indépendamment au chapitre 5 que les équations de com-
patibilité pour les déformations linéaires ¢;; sont

Dyiemg + Dgmepi — Dpméeiq — Dgi€mq = 0

soit les relations (2.23) ou les produits de ;; sont négligés devant leurs dérivées.

2.6.3 Gradients de déplacements modérés

1l s’agit d’un hypothése intermédiaire entre les deux précédentes, bien utile
en théorie de la stabilité (bifurcation de I’équilibre). Elle suppose de toute fagon
que les déformations sont petites (O(T")), mais ajoute une hypothése que I'on
peut présenter de deux fagons équivalentes :

Premiére définition : on admet que, quels que soient i et j, on a
|D;u;| < OTY?) (2.26)
Dans ce cadre, on a

2y11 = 2Dywi+  (Diw)?*+  (Diug)®+  (Dius)?
O I T I T
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ce qui entraine visiblement
D1u1 = O(F)

L’examen de 722 et de 33 donne de méme

DQUQ = O(F) et D3U3 = O(F)

Deuxiéme définition : on admet que
Dyuy = O(7), Daus = O(T) et Dyuz = O(T) (2.27)
Moyennant cette hypothése, on a
2(711 — Diur) = O(T) = (D1us)? + (Dyuz)?
ce qui n’est, possible que si
Diugy = O(TY?) et Dyug = O(T?)
De la méme facon, ’examen de 22 conduit aux conditions
Dyuy = O(I'Y/2) et Dyusg = O(T'/?)
et celui de 33, aux conditions
Dsyuy = O(TY2) et Dyuy = O(T'Y?)

de sorte que les conditions (2.26) sont également vérifiées. Les deux présentations
sont donc équivalentes.

Dans ce cadre, on peut simplifier ’expression des déformations de Green a
condition d’admettre une erreur O(T'?) sur les déformations directes et O(T'3/2)
sur les déformations croisées. En effet, considérons d’abord 711 . Le terme %(Dlul)z
est O(I'?), donc on peut écrire

1 1
’}/11 = D1u1 + §(D1U2)2 + §(D1’LL3)2 + O(F2) (228)
Par le méme raisonnement,
_ 1 2 1 2 2
Y22 = Daug+ 2(D2U1) + 2(D2U3) +O(I7) (2.29)

1 1
Y33 = D37.L3 + 5(D3U1)2 + §(D3'U,2)2 + O(Fz) (230)
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Passons aux déformations croisées. On a

2vi2 = Diug + Dour+ DiuiDaun+ DiugDous+  DiugDaus
@) r r3/2 ['3/2 r

ce qui permet d’écrire

2vi2 = Djuy + Dauy + DyuzDouz + O(I%/?) (2.31)
et, de la méme facon, on obtient aisément

2y23 = Dous + Dus + Dauy Dyuy + O(I%/2) (2.32)

2v31 = Dauy + Dyug + DsugDyug + O(13/?) (2.33)
2.7 Exercices

Exercice 7 Déterminer, a partir de l’expression générale des déformations de
Green, un champs de déplacement conduisant a

Vi1 = Y22 = V33 0
2’}/12 = [0
Yi3=73 = 0

Solution - On cherchera un déplacement de la forme suivante :
uy = A(y)7 Uz = B(y)7 us = 0

Il vient alors

M1 = 0
/ 1 12 1 12
Y22 = B + *A + —B'"” = O
2 2

733 = 0
2’}/12 = A/ =«
2vi3 = 0
2723 = 0

On en déduit
0= B"?+2B' + A” = B? +2B' + o?
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soit
B =—-1++1—-a?

Cette solution n’a de sens que si |a] < 1, ce qui est bien normal si I’on veut bien
se référer a I'interprétation (6.12) des déformations croisées. Pour av = 0, on doit
avoir B’ = 0, ce qui méne & choisir le signe + pour le radical. Une solution est
donc

U = oy
uy = (—14++v1-—a?)y
uz = 0

Exercice 8 Déterminer de la méme maniére un champ de déplacement donnant
Y11 = @, les autres déformations étant nulles.

Exercice 9 Montrer que les déformations doivent vérifier les conditions sui-
vantes :
a) 14+2v1>0,147v92>0,147v33>0

b) 2ly12] < /(1 +2911) (1 + 2922)
¢) Dans le cas d’un cisaillement pur, (711 = Y22 = v33 = 0), on doit avoir

1

\/’Y%g + 713 + 935 — 4712723731 < 3

Solution - L’élément de longueur aprés déformation, qui s’écrit
d&;d€; = (Og1 + 2ke)dzrdy

doit étre positif quels que soient dxj et dxy, ce qui signifie que la matrice

14291 2v12 2v13
2991 14 2729 2723
2731 2732 1+ 2933

doit étre définie positive. En particulier, ses éléments diagonaux doivent étre
positifs, d’ou a). Les déterminants emboités,

Al = 1 + 2’)/11
Ay = (14 2711)(1+ 2722) — 477y
Az = (14 2911)(1 + 2722)(1 + 2733) + 16713721732

— 4775 (1 + v33) — 4vi5(1 + 2722) — 4935(1 + 2911)

doivent étre positifs. Cela étant,
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b) équivaut & Ag >0
c¢) découle directement de Az > 0

Exercice 10 = Montrer qu’il est possible de trouver un tenseur symétrique h;;
tel que
gij = 0ij + 2hij + himhjm

Solution - La relation ci-dessus s’écrit encore

9i; = OimOjm + himOjm + OimPjm + himhjm

Passons aux axes principaux du tenseur g;; par la transformation
g;q =T,:T4j9i5, Tpilgi = Opq (orthogonalité)

On obtient
{9pe} = diag(gi1, 932, 933)
tous ces éléments étant strictement positifs. La transformation inverse est visi-
blement
Grs = TprTysdpq

Définissons alors, dans les axes principaux du tenseur métrique, le tenseur « ra-

cine carrée »
{age} = diag(v/ 911, v/ 9520 v/ 933)

Il est clair que
* * %
Cpgrq = pr
Les composantes du tenseur racine carrée dans le systéme de départ sont données

par
*

ars = TprTys Upq

On a donc

AimGjm = TpiTqma;qTrosma;is
= Ty 5q5a;qa:s
= TTrja,,ar,
= TpiTTj g;r

9ij
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11 suffit alors de poser
hij = aij = dij

On remarquera que dans les axes principaux de déformation, on a

=V L e =05 — 1 by = /g5~ 1

c’est-a-dire que dans les axes principaux, ce tenseur représente les allongements
proportionnels, ce qui le rend séduisant. En contrepartie, il ne contient les dépla-
cements que de maniére implicite. Ce tenseur est connu sous le nom de tenseur
de déformation de Jaumann.
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Chapitre 3

Principe des travaux virtuels

3.1 Déplacements virtuels

A partir d’'une certaine configuration du corps V', décrite par des dépla-
cements u;, considérons une configuration trés voisine, correspondant aux dé-
placements 4;. On appelle variation du déplacement ou déplacement virtuel le
champ

(5ui = fLZ‘ — Uy (31)

A cette variation correspond une modification des déformations de Green

1 1
;Y'ij - Yij = 7(Dza_; + Djai + Diﬁijam) - 7(Diuj + Djul + Diu'rrLDjum)

2 2
Tenant compte de le définition des déplacements virtuels, on obtient
1
’%j —Yij = E(Di(suj + DJ(SUI + Diu7rLDj6u7n + DjumDi(Sum)
1
—|—§Di5uij6um
1
= Oy = +§52%j (3.2)
avec )
572’]’ = §(Dl§u] + Djéul + Diuijéum + DjumDiéum) (33)
et

37
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Le terme 0v;;, linéaire en la variation du déplacement, est appelé variation
premiére ou, simplement, variation de la déformation. Il constitue une espéce
de différentielle de la déformation par rapport & la variation de déplacement. Le
deuxiéme terme, 67,5, est la variation seconde. 11 est du second ordre et donc
négligeable pour de trés petites variations de déplacement.

Plus généralement, une fonction f(u;) admet la modification

1 1
Fui +u;) =0f + 5<52f+ §63f+...

ot 'on regroupe les termes homogénes d’ordre 1,2,3, ... en les du;. Le terme § f
est appelé variation (premiére) de f.

3.2 Travail virtuel de déformation

Nous admettrons comme axiome fondamental qu’une déformation virtuelle
07;; d’un élément de volume dV d’un corps continu quelconque nécessite un
travail de déformation virtuel §WdV. Pour déformer le corps entier, il faudra
donc produire un travail virtuel

SU = / SWdV (3.5)
\%4

Il est naturel d’admettre que la densité de travail virtuel 6 dépend directement
de la déformation virtuelle, et d’exprimer en conséquence W sous la forme

oW = 811(5"}/11 + 822(5"}/22 + 8335"}/33 + 28125")/12 + 25135"}/13 + 2523(5’}/23 (36)

ce qui fait apparaitre six nouvelles grandeurs s'!, 522, 33, 512, 513 et 523 dont
la dimension est celle d’une pression :
FL
[Sij] _ [5W] _ L3 _ E
ol 1D

Nous appellerons ces six grandeurs contraintes de Kirchhoff- Trefftz. Elles appa-
raissent en effet sous cette forme dans les travaux de Kirchhoff [51], mais c’est
a Trefftz [89] que revient linterprétation que nous en donnerons en section 3.5.

Les coefficients 2 introduits pour les termes croisés dans ’expression (3.6)
permettent d’écrire la densité du travail virtuel de déformation d’une maniére
plus compacte en introduisant les termes fictifs
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qui complétent le tenseur des contraintes : on a alors

SW = s"M0yi1 + 8720702 + 8726733 + 12012 + 830713
+523657993 + 52 0721 + 5310731 + 5725732
= Y6y (3.7

Il convient cependant d’étre attentif au fait suivant : si ’on utilise la relation
(3.6), tenant explicitement compte de la symétrie des contraintes et des défor-
mations, on obtient

sl — ow §22 — 57W 33 — 57W
11’ dv22” 0733
ow ow ow
2512 = O g3 = 0D ggm_ O 3.8
012 0713 023 38

tandis que si 'on utilise la relation (3.7) en faisant volontairement abstraction
des relations de symétrie, il vient uniformément

oW

Sij =
07

(3.9)

Insistons finalement sur le fait que nous ne postulons nullement que §W soit une
différentielle totale. Les considérations qui précédent sont donc valables pour des
déformations irréversibles.

3.3 Notion d’équilibre

Nous supposerons que le corps V est soumis & un systéme de charges, dont
nous ne préciserons par pour le moment la distribution. Lors d’un déplacement
virtuel du;, ces charges produisent un travail virtuel 07 ayant la forme générale

0T =Y Fidu; (3.10)
\%

Nous dirons que le corps V est en équilibre dans une configuration donnée si,
pour tout déplacement du;, le travail virtuel de déformation U est exactement
égal au travail virtuel des charges 67T :

U = 5T You (3.11)
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C’est le principe des travauz virtuels, qui constitue donc un définition énergétique
de I’équilibre.

Cette définition admet un cas particulier important. Pour un déplacement
virtuel de corps rigide (translation ou rotation sans déformation), on a dv;; =
0 dans tout le corps et, par conséquent, 0/ = 0. Il en résulte la condition
d’équilibre

0T = 0 pour un déplacement de corps rigide (3.12)
en bon accord avec une propriété connue de la statique des corps parfaitement
rigides.

3.4 Equations locales d’équilibre

En admettant au départ que la déformation peut étre mesurée par le tenseur
de Green, on restreint automatiquement la classe des charges que la structure
peut admettre. Pour mettre ce fait en évidence, calculons explicitement d/. On
a

1
1 1
ce qui entraine
1 .. 1 ..
oW = 55” (6jm + Djum)Di(Sum + 53” (5”” + Dzum)Dj(Sum (313)

Il se trouve que les deux termes de cette somme sont identiques. En effet, la
symétrie des contraintes permet d’écrire le premier sous la forme équivalente

1
58]1(51‘7” + Dium)Dj(Sum

Les indices i et j étant muets, on peut donner & ¢ et j les noms respectifs j et

i, ce qui donne

1 ..
5813 ((Sjm + Djum)D,(Sum
soit précisément le second terme. Cette propriété permet de donner au travail

virtuel de déformation la forme plus simple

U = / 59 (8im + Ditty) D0ty dV = / timDjoumdV (3.14)
14 \4
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en introduisant les grandeurs

connues sous le nom de contraintes de Piola. Ces contraintes non symétriques ne
seront utilisées ici que pour abréger les écritures et nous nous raménerons fina-
lement aux contraintes de Kirchhoff-Trefftz. Une simple intégration par parties
donne alors

5U=/tjmnj5umd5—/(Djtjm)éumdS (316)
S 14

Les deux intégrales qui composent cette expression peuvent étre identifiées, la
premiére a un travail virtuel a la surface et la seconde, & un travail virtuel dans
le volume. On en déduit que le travail virtuel des charges pourra avoir la forme

5T = / t O dS + / FmOtmdV (3.17)
S Vv

ou apparaissent les tractions de surface t,, et le forces de volume f,,, liées aux
contraintes par les équations locales d’équilibre

Njtjm = tm sur S
{ Ditjm + fm = 0 dansV (3.18)
soit, en termes des contraintes de Kirchhoff-Trefftz,
D;[s7(6im + Dium)| + frn = 0 dansV (3.19)
1 (87 (Gim + Ditm)] = tm sur S :

Les équations (3.19) sont connues sous le nom d’équations de Signorini [34].
Elles sont non linéaires par le fait qu’elles font intervenir les déplacements.
Les équations d’équilibre en termes des contraintes de Piola sont plus simples,
puisque linéaires. Mais il faut leur adjoindre des équations supplémentaires pour
restituer leur définition en termes des contraintes de Kirchhoff-Trefftz, qui fixe
leur dissymétrie. Ces équations sont [34, 36]

tjm(5jp + Djup) = Sji((sim + Dium)((;jp + Djup) = tip(éim -+ Dlum) (320)

symétrique

Nous avons donc montré que le principe des travaux virtuels ne peut étre
vérifié que si le travail virtuel des charges a la forme (3.16), les efforts f,, et t,,
étant alors définis par (3.19) . Montrons a présent que si le travail virtuel des
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charges a la forme (3.16), le principe des travaux virtuels impliguera les relations
d’équilibre local (3.19). On aura en effet

0=0U—-0T = /(timDiéum — fmOuy,)dV — / tmOUydS
1%

/(nz m 6umds / z im + fm (5’&de(3 21)

A ce stade, le raisonnement repose sur un théoréme du calcul des variations :

Théoréme 1 Soit V un ouvert de frontiére S , et soient f une fonction conti-
nue sur 'V et g une fonction continue sur S. Si l’égalité

/féudV—F/géudSzO
v s

est vérifiée pour toute fonction du continiment dérivable dans V' et prolongeable
sur S, alors on a f =0 dansV et g =0 sur S.

Démonstration - Montrons d’abord que f = 0. En supposant le contraire, soit
y € V un point ou f # 0, par exemple, f > 0. Il existe une boule Bgr(y) de
centre y et de rayon R ou f > 0; comme V est ouvert, on peut supposer que
cette boule est entiérement contenue dans V. Considérons alors la fonction

_ [ (R —x—y[)? dans  Bg(y)
du(x) = { 0 hors de  Br(y)

Cette fonction est continiiment dérivable. On a

/féudV—F/gdudS:/ foudV >0
v s v

en contradiction avec I’hypothése. Donc f = 0 dans V.
Au vu de cette premiére conclusion, on a pour tout du

/fdudV—&—/chdSz/ O~6udV+/g5udS=/g5udS
v s v s s

Montrons & présent que g = 0 . En supposant le contraire, soit z € S un point
ot g # 0, par exemple, g > 0. Il existe une boule Bg(z) telle que g > 0 dans
Bgr(z) N S. Alors, la fonction

[ (R?2—|x—2z/*)? dans Bg(z)nV
du(x) = { 0 hors de Bg(z)NV
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est contintiment dérivable dans V et contintiment prolongeable & S. On a

/géudS >0
s

ce qui contredit I’hypotheése, donc g = 0 sur S, CQFD.
L’application de ce théoréme & notre probléme conduit aux conclusions

Ditim+fm = 0 dansV
Nitim = tm;m sur S

Remarquons cependant que les équations locales d’équilibre ne sont obte-
nues que moyennant une régularité suffisante du probléme. Dans le cas ot cette
régularité n’est pas acquise, c’est au principe des travaux virtuels qu’il faut faire
appel pour obtenir les équations dont on a besoin. Au sens du mathématicien, les
solutions au sens classique (local) des équations de Signorini sont des solutions
fortes. Les solutions de I’équilibre au sens des travaux virtuels sont des solutions
faibles|63]. Il est peut étre utile de préciser que 'univers de I'ingénieur est peuplé
de solutions faibles, bien plus que de solutions fortes. Les discontinuités de ma-
tériau, les charges peu réguliéres ménent invariablement & des solutions faibles.
Ceci justifie le parti pris dans cet exposé de présenter directement 1’équilibre
sous la forme des travaux virtuels.

3.5 Interprétation de Trefftz

Trefftz [89] a donné linterprétation suivante des contraintes de Kirchhoff-
Trefftz. Considérons les équations d’équilibre a la surface, qui s’écrivent

nz[s” (51'_7' + Djum)] = tm

Observons d’abord que le second membre représente, localement, la charge de
surface divisée par la surface de référence (et non pas la surface déformée!). Par
ailleurs, on peut écrire cette équation sous la forme

n75”D]£m =tm
d’ou

t = tmem:(nisij)DjEmem
= (nisY)g; (3.22)
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ou apparait la base convectée. Cette relation signifie que si 'on décompose le
vecteur traction de surface dans la base convectée,

t="T'g, (3.23)
(ce qui équivaut & TV =t - g7), le reste du calcul revient & définir 77 comme la
projection de s* sur la normale de référence :
nist =TI (3.24)
A titre d’exemple, dans une poutre qui fléchirait & la Navier sous une traction
de surface t 3.1, on aurait

1 |t[sin® _,  |t|cos®
(31 |g2|

)

et comme n; =1 et no =0,

iz
&,
fi—a»e,
t

7

7

/ ;

FI1GURE 3.1 — Interprétation de Trefftz

T1:1'811+O'8122811, T2:1'812+0'S22



3.6. RELATION AVEC LES CONTRAINTES EULERIENNES 45

ce qui donne
t|sin 6 t|cosd
JRET [t] sin 512 [t] cos

V911 ’ vV 922

3.6 Relation avec les contraintes eulériennes

3.6.1 Contraintes eulériennes

Une autre interprétation, beaucoup plus profonde, peut étre obtenue en re-
lation avec la description eulérienne. Nous noterons V' le volume déformé, S’ sa
surface et n’ la normale unitaire a cette surface. Nous écrirons en outre 9; pour
0/9¢;. Enfin, nous utiliserons la matrice jacobienne

Jij = Dj&; (3.25)
qui a pour inverse

ng = 8j$1' (326)
et pour déterminant

J =det(J) (3.27)

Le travail virtuel de déformation peut étre transformé comme suit

U = / $9 D& Didu,dV
14

y 1
/ sY Djmei(Sum ?dV’

1 ..
// 75”Dj§mD7;§p3p5ude’

/ TmpOpOtuy, dV’ (3.28)
V/
ol apparaissent les contraintes eulériennes
1T
Omp = ?5 ngmDigp (329)

qui sont visiblement symétriques. On peut écrire, en adoptant les notations
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dyadiques,

T = Ompem €y

::%WQ@@m®w@%)

1
= 75Jgi®gj (330)

Ce qui signifie que les contraintes de Kirchhoff- Trefftz s’identifient, au facteur
J prés, aux composantes contravariantes du tenseur o dans la base convectée.
Cette conclusion est trés importante, comme nous le verrons sur un exemple plus
loin. Mais auparavant, il est utile de préciser certains faits relatifs aux charges.

3.6.2 Relation entre les charges dans les deux descriptions

Le travail virtuel des charges appliquées s’écrit, dans la description lagran-
gienne,

(57—:/ fléuldV—l—/tzéuzdS (331)
\%4 S

Dans la description eulérienne, on écrira naturellement
0T = flou;dvV’ +/ tdu;dS’ (3.32)
v’ 5
ce qui ménera aux équations d’équilibre

g — '
{ 005 + fi 0 dansV (3.33)

nioj = t; sur S

Mais les deux expressions (3.31) et (3.32) du travail virtuel des charges ne seront
équivalentes que si sont vérifiées les relations

fidv = fiav’ (3.34)

et
t;dS = t;dS’ (3.35)

Pour la premiére, cela implique, comme dV’' = JdV,

fi=JFf (3.36)
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La condition (3.35) est un peu plus difficile & exploiter. Il nous faut pour cela
déterminer le rapport entre dS et dS’. A cette fin, considérons une fonction ¢
quelconque. On a

/ nhpdS' = / DipdV' = / T I DjpdV = / In;J pdS
S’ / 1% S
ce qui implique
njdS' = Jn;J;; dS (3.37)
On en déduit

dS" = njdS'nidS" = T*n;J 5 ny ;) dS? = T2 gMngn;dS?

ds" = J\/g*ingn;dS (3.38)

C’est la relation cherchée. On a donc
ds t;
th=t -

‘ s’ TN gFngng

Du reste, on peut encore déduire de (3.37) les composantes de la normale spa-
tiale :

soit

(3.39)

-1

d
Jol= - = 3.40
7 ds T IV nine  /g¥ngng ( )

n; = Jn;

3.6.3 Cas des petites déformations

Lorsque les déformations sont petites, on peut écrire
J ~ 1, gijninj ~1

ce qui permet de confondre sans grande erreur les charges définies dans la struc-
ture de référence et celles de la structure déformée. En outre, les angles entre les
vecteurs de la base déformée différent peu d’un angle droit. Les contraintes de
Kirchhoff-Trefftz s’assimilent alors & des contraintes eulériennes, calculées dans
un systéme d’axes particulier. Il se trouve d’ailleurs que ce systéme d’axes est le
plus pratique que l’on puisse trouver. Imaginons par exemple un corps composé
de deux piéces collées (fig. 3.2). Les colles résistent d’une fagon trés limitée en
extension (contrainte o sur la figure 3.3) et d’une fagon bien meilleure en cisaille-
ment (contrainte 7 sur la la figure 3.3) Sur la figure 2, la contrainte normale sur
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e Colle
P /________
77/ S S )

AN

FI1GURE 3.2 — Piéce collée

la, colle est & peu de chose prés s%2 et celle de cisaillement, approximativement
s'2 et ce, quelle que soit la forme prise par le joint collé. En supposant que le
critére de mise hors service soit de la forme

P ()
Olim "lim

F( $22 | 512 )
Olim Tlim

quel que soit le déplacement, tant que les déformations restent faibles.

on pourra ’écrire simplement

3.7 Exercices

Exercice 11 Interpréter les contraintes de Piola dans le cas d’une poutre flé-
chissant a la Navier (fig. 3.1)
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§o
T
D e
S
T
Yo

FIGURE 3.3 — Résistance de la colle

Solution - On a tout simplement
0 = niti +notiz =111
—t = nitiz +nolay =112

On notera le caractére artificiel de ces contraintes, qui ne tiennent aucun compte
de la déformation.

Exercice 12 x Déduire l’expression générale des déplacements virtuels de corps
rigide a partir de la condition 6v;; =0

Solution - On a
1
5’)’1‘]‘ = §(Dz§ij5Um + Dj§mDi6um)
1

en faisant usage de la matrice jacobienne définie en section 3.6.1. Multipliant
cette équation par 2JZ-;1J;11 et contractant, on obtient

= Jlyly .D. —17-17 1.
0 = Jip J]q Jm’LD]éum + Jip qu ijDl(Sum

= 5mpJ]:]1Dj5um + 5qu1‘;1Di5Um

== apéuq + 5q5up

Ces équations admettent de toute évidence une solution générale du type

Opdug = Qpgq
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avec {1,q = —€)gp. Mais alors, on a
Okpq = Okpdtlg = Opiduy = 0p€lig
ce qui entraine la chaine suivante :
Qg = OpQig = —0pQqie = —0qQpk = 0y hp = OpSlgp = —Okflpq

dont on déduit
OkQpg =0

On obtient donc, en donnant au tenseur antisymétrique €2,, sa forme canonique
Qpg = eparflr
la forme générale
dug = ag+ Qpe&p = ap + epgilpSli
= aq+ eqipSli&p
soit la combinaison d’une translation et d’une rotation d’ensemble.

Exercice 13 x Soit un corps libre dans Uespace, chargé de forces f; dans V
et de charges t; sur S. Montrer que pour que ce champ de forces puisse étre
équilibré intérieurement par un champ de contraintes de maniére que U = 6T,
il est mécessaire que soient vérifiées les conditions

Jy fidV + [gtidS = 0 (E:'quilibre de translation)
€ipg Ly EpfadV + [ &ptqdS] = 0 (Equilibre de rotation)

Solution - Pour un déplacement virtuel de corps rigide, on doit avoir §7 = 0.
Or, (voir exercice 12), ces déplacements sont de la forme

ou; = a; + eiqupfq

d’oul la condition

a; ( /V fdV + [5 tidS> + Qpepgi < /V & f:dV + /S £qtidS> =0

quels que soient a; et €y, ce qui entraine les conditions annoncées.

Exercice 14 La condition SU= 0 s’applique également auxr mécanismes par-
faits, c’est-a-dire composés de corps rigides articulés sans frottement. En déduire
la réaction au point A de la poutre représentée en figure 3.4.
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100N 200N 300N

500 600 300| 700 200 300 |, 400 200 400

N .
Uy \
77;;7, 7 /

% /
é‘l
62\ 6”

FIGURE 3.4 — Poutre

O
S
™

O~

Solution - 1l suffit de considérer R4 comme une force, 'appui en A étant coupé.
Le mécanisme ainsi constitué peut alors prendre des déplacements selon la figure,
ce qui permet d’écrire

0T = Rada — 10087, 4+ 20055 — 30063 = 0

Or,
5 = 151—?;)()5,4:0,45455,4
5 = %88&:1,273@
200
5y = 57)885’_0,36375A
67 = 28 = 0,90930
5 = 2005 0 45466,

400
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si bien que
01 02 03

= 100=L — 20022 &
R4 00(5,4 006A+3005A

= 100-0,4545 —200-0,3637 + 300 - 0,4546 = 109, 1N

Exercice 15 Déterminer la loi P = f(z) pour le quadrilatére articulé de la
figure 3.5. Le ressort, de longueur naturelle ¢, a une énergie de déformation

(A2
2

Les barres sont supposées indéformables et idéalement articulées.

N

P
Q
N
-

U==k

FIGURE 3.5 — Quadrilatére articulé

Solution - Le principe des travaux virtuels s’écrit
kEALOAL = Pox

Pour exprimer les liaisons entre Al et x, le plus simple est d’utiliser le paramétre
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FIGURE 3.6 — Déformation du quadrilatére

0 représenté en figure 3.6. On a en effet
h=2acosf et {4+ Al=2asinf
d’ott
r=aVv2—h=a(V2-2cosf)

et
Al =2asinf —{ = a(2sinfh — V/2)

On en déduit
0r = 2asinf6f et SAL = 2acosBf

ce qui raméne ’équation d’équilibre &
ka(2sinf — v/2)2acosf = P - 2asin f
Divisant les deux membres par 2a sin #, on obtient

P = ka(2cos — V2 cotg §)

53
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Cette équation atteint un maximum pour

dP V2
— = —2sinf 4+ —— | =
do ka ( s+ sin® 9) 0

soit pour

sin® 6 =

|

ce qui donne € = 62,99°. il y correspond la charge maximale
Ppaz = 0,1874ka

correspondant & une instabilité. On peut établir le tableau suivant :

0(°) | P/(ka) | xz/a 5/a

0 —oo 20,5858 | -1,414
10 -6,051 -0,5786 | -1,067
20 -2,006 -0,4652 | -0,7302
30 -0,7174 | - 0,3478 | -0,4142
40 -0,1533 | -0,1179 | -0,1286
45 0 0 0

50 0,09801 | 0,1286 | 0,1179
60 0,1835 | 0,4142 | 0,3178
62,99 | 0,1874 | 0,5059 | 0,3676
70 0,1693 | 0,7302 | 0,4652
80 0,09793 | 1,067 | 0,5554
90 0 1,414 | 0,5858

Ces résultats sont illustrés par la figure 3.7.
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FIGURE 3.7 — Quadrilatére articulé : solution
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Chapitre 4

Corps hyperélastiques

4.1 Hyperélasticité

Dans ce qui précéde, le travail de déformation a été introduit sans hypothése
sur sa nature physique. Lorsque ’on suppose qu’il est conservatif, c’est-a-dire
que OW est la différentielle totale d’une densité d’énergie de déformation W, le
corps est dit hyperélastique. On a alors

oW
a%‘j

S g

(4.1)

si 'on fait abstraction, dans la dérivation, des relations de symétrie v;; = v;;.
Les équations (4.1) n’ont de solution que si
s sk

= 4.2
Ok 0ij (42)

ce qui exprime analytiquement la condition d’hyperélasticité.

Comme l'a fait remarquer Lord Kelvin [46], il serait totalement erroné de
croire que l’hyperélasticité implique ’absence d’échange de chaleur. Dans le cas
d’une sollicitations statique (mise en charge lente et progressive, comme on la
réalise lors d’un essai de traction), la lenteur de la transformation permet de
considérer que le corps garde constamment la température de ’ambiance, c’est-
a-dire que la température reste constante. Si U et S sont respectivement la
densité d’énergie interne et la densité d’entropie, on aura donc

SW = 6U — T6S = §(U — TS) = 6F (4.3)

a7
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ou F est la densité d’énergie libre. Nous verrons d’ailleurs dans la suite que la
variation d’entropie n’est pas nulle lors de la déformation. Par contre, dans le
cas des wvibrations, la lenteur relative des échanges de chaleur permet de poser
en premiére approximation que l’entropie ne varie pas, si bien que

SW = 6U (4.4)

Ainsi, la nature de ’énergie de déformation est différente dans le cas d’une
sollicitation statique et dans le cas des vibrations. Il en résulte une différence
entre les modules correspondant & ces deux types de sollicitations. Ceci sera
étudié en détail en section 4.5 de ce chapitre.

4.2 Développement en série de Taylor de I’éner-
gie de déformation
Nous nous limiterons, dans ce qui suit, & ’étude des petites déformations.

Cette restriction permet de développer la densité d’énergie de déformation en
une série de Taylor, que nous limiterons au second ordre :

ow 1/ W 3
Wi(y)=Wy+ <%>07ij t3 (871']'87’61)0 Yig vk + O(Y) (4.5)

En dérivant ce développement par rapport aux déformations, on obtient 'ex-
pression suivantes des contraintes ! :

8W) ( 92w > ,
sij=\5—) t|la-5—) m+OQ 4.6
N (3%‘3‘ 0 70kt / ) (4.6)
Les deux termes significatifs de cette expression s’interprétent comme suit : le
terme oW

0

@ = (a ) (4.7)

Yii /o

représente les contraintes résiduelles, présentes dans I’état non déformé; le se-
cond terme est linéaire en la déformation et fait apparaitre le tenseur du qua-

triéme ordre s
Ciiti = | =————— 4.8
I (3%1‘3%1 ) 0 (48)

1. Dorénavant, nous écrirons s;; au lieu de s*7, car nous ne ferons plus référence au caractére
tensoriel covariant des contraintes
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dit tenseur des modules élastiques. L’expression (4.6) donne donc, en négligeant
O(+?),
sij = 855 + Clijr e (4.9)

et I'énergie s’écrit & O(y3) prés
0 1
W =Wy + Sii%ij icijkl’yij'ykl (4.10)

La question du mombre de modules indépendants a fait, au X1X¢ siécle,
I’objet de nombreuses controverses. C’est ainsi que 1’on a connu des théories
« & modules rares »et des théories « & modules nombreux »(de 1 & 36 modules)
[46, 49, 47, 50, 66, 83, 87]. La maniére la plus simple de traiter le probléme
consiste & remarquer que les déformations forment six grandeurs indépendantes

Gi = 7
Gy = 72
Gs = 733
Gy = M2
Gs = 793
Gse = 731 (4.11)

La matrice hessienne de I’énergie, définie par

PW
H:=|—— 4.12
N (3Gi3Gj)o (412

est d’ailleurs appelée matrice de Hooke. Cette matrice symétrique de dimension
6 x 6 posséde en général

6x7

5 =

termes indépendants. Tel est le nombre de modules indépendants d’un solide
anisotrope.
Dans le cas d’un solide isotrope, le terme quadratique

21

1
Wy = §Cijkl%'j7kl (4.13)

de la densité d’énergie de déformation doit avoir une expression indépendante
du systéme d’axes choisi. Il ne peut donc dépendre que des invariants du tenseur
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des déformations,

1:1 = i
L, = *%(’Yij - %’Y@eigij)(%‘j - %’Ymmcsij)
Is = det(v)

Le choix de I» plutot que I> est dicté par des conditions de commodité. Parmi
ces trois invariants, seuls I; et I5 sont susceptibles de former une combinaison
quadratique, qui aura la forme

. K
Wy = —2GI, + 5112 (4.14)

Les grandeurs G et K sont appelées respectivement module de Coulomb et mo-
dule de compressibilité (Bulk modulus). Cette derniére appellation provient du
fait que dans le cadre des petites déformations, on a

dV' = JdV =~ dV

ce qui revient & dire que

av’ —dv
=|—=|J -1 1
=1l =17 ~ 1 <

Or,
det(gij) = T =1+ (T =D =1+ 21+ 17 (4.15)

Calculons

142y 2712 2713

det(gi;) = 2791 142722 2793
2y31 2732 142733
= 1427 +0(y%) (4.16)

Identifiant les expressions (4.15) et (4.16), on obtient
20 =27 + O(v*) + O(n?)

soit
dv' —dv

o (4.17)

Yii =
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Dans la pratique, on utilise souvent deux autres modules, & savoir le module
de Young E et le coefficient de Poisson v, qui sont liés aux précédents par les
relations

E
¢ = 2(1+v)
E 2G(1+v)

K = =

3(1—-2v)  3(1-2v)

9KG

E = 3K +2G

1 /(3K —2G

En fonction de G et v, on calcule aisément

14

Wa = G(vijvij + ———-"VeeVis) (4.19)
1—-2v

On rencontre aussi les coefficients de Lamé, provenant de l’expression de W5 en

termes des invariants I; et I :

A
W2:2,u12+§12

Ces modules sont liés & G et K par les relations

2
p=GetA=K- 3G (4.20)

4.3 Postulat de la stabilité locale

Isolons un morceau infiniment petit dV' du corps hyperélastique. Placé dans
la structure, il est en équilibre avec son voisinage, pour une certaine valeur
de la déformation. Imaginons qu’on le découpe du corps : toute relation de
compatibilité, c’est-a-dire d’égalité des déplacements de sa frontiére avec les
déplacements de ses voisins étant coupée, il tendra vers une position d’équilibre
propre définie par la condition

ow _o
8%‘;‘
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Le postulat de stabilité locale consiste & affirmer que cette position d’équilibre
propre correspond & un minimum d’énergie. Analytiquement, comme

1
W = )7 + Ecijkl'ﬂj')/kl

la condition d’équilibre s’écrit

ow 0
19 a,y” ij ijki Ykl
La solution 'y?j de cette équation constitue la déformation de relaxation. La
condition de stabilité locale s’écrit alors
1 < o*wW

0= Wy +0v) = W(n) = 2\ o700
)

> 67i6vk + O(57°)
’YO

et, en négligeant le troisiéme ordre, elle s’exprime par la condition
82w = Cijr107ij0vk > 0 (4.21)

quelle que soit la variation de déformation d+;;. Cette condition revient & ad-
mettre que la matrice de Hooke est définie positive. Introduite pour la premiére
fois par Kirchhoff [49, 52] et utilisée aprés lui par Clebsch [9], cette condition
est actuellement admise de maniére assez générale [56].

Dans le cas d’'un corps isotrope, les deux formes quadratiques (—fg) et I?
sont positives et indépendantes. La positivité de la matrice de Hooke sera donc
réalisée si

G>0et K >0 (4.22)

Dans ce cadre, en effet, on ne pourra avoir Wo = 0 que si I et fg sont simulta-
nément nuls, ce qui, nous I’avons vu, entraine 7;; = 0. En termes du module de
Young et du coefficient de Poisson, les conditions (4.22) impliquent d’abord

IKG

E=-—""_>0
3K +2G

c’est-a-dire que le module de Young est positif. Le coefficient de Poisson, donné
par
3K -2G  3-2¢
"TOeK+2G  6+22
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pourra varier entre 1/2 pour G/K = 0 et —1 pour G/K = oo. Les conditions
sont donc, si les modules G et K sont finis,

1
l<v< 5
Il est & noter que les corps élastiques connus vérifient tous v > 0, bien que des
valeurs négatives ne soient pas absurdes sur le plan énergétique. Le cas extréme
K = oo se rencontre dans les corps incompressibles, au rang desquels on classe
généralement le caoutchouc. Le fait que K soit infini entraine quelques parti-
cularités qui nécessitent, dans les méthodes numériques, un traitement spécial
[37, 13, 16, 15].

4.4 Stabilité structurale de I’état de référence

Il faut se garder de croire que la stabilité locale définie ci-dessus implique
la stabilité structurale dans le cas général [36]. Ceci n’est vrai que dans le cas
de la linéarisation géométrique (petits déplacements). Dans le cadre des grands
déplacements, la non-linéarité des déformations en termes des déplacements peut
étre source d’instabilité. L’étude générale de la stabilité fera I’objet d’un chapitre
spécial. On pourra d’ailleurs consulter a ce sujet des ouvrages spécialisés [58, 86].

Nous remarquerons cependant, que, le plus souvent, la configuration de ré-
férence est un état d’équilibre stable. Il faut entendre par 1a que

USu) — Uy >0 (4.23)

I’égalité ne pouvant avoir lieu que si du; représente un déplacement de corps ri-
gide. Cette situation implique un certain nombre de faits que nous allons mettre
en évidence. A cette fin, développons la densité d’énergie de déformation sous
la forme

1
W(ou) = Wy + 6W + 552W + ...

ol apparaissent la variation premiére et la variation seconde. Par intégration,
on obtiendra

1
U(Su) = Uy + U + 5521/1 + ...
La condition d’équilibre, en ’absence de charge, s’écrit

U =0 (4.24)
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La condition de stabilité, déduite de (4.23), sera, au troisiéme ordre prés,
82U >0 (4.25)

I’égalité n’ayant lieu que si du; est un déplacement de corps rigide.
Calculons explicitement la variation premiére. On a, dans le cas général,

SW = 50:07ij + Cijrivij Oy

et, 'état de référence étant défini par «;; = 0, il vient
U = / s:07i;dV = 0 (4.26)
1%

quel que soit le champ de déplacements virtuels. On reconnait ’équation des
travaux virtuels en 'absence de charge, ce qui signifie que les contraintes rési-
duelles sont nécessairement auto-équilibrées. On dit encore que ce sont des états
d’autocontrainte.

Venons-en a la variation seconde. Dans ’expression générale

W = s9:6%7ij + Cijr107ij 07 + Cijra¥ii6 Vi

on note que, pour la position de référence,

vij = 0
1
5'7ij = §(Di6uj + DJ(S’U%)
52’7ij = Di5uij5um

ce qui meéne & ’expression

(52[/{ = / [sng,;(;uijéum + icl]kl(Dl(su] + Djéui)(Dkéul + Dléuk)}dv >0
1%

(4.27)
Cette condition montre que si, en chaque point, les trois valeurs principales des
contraintes résiduelles sont positives, la stabilité est assurée, puisque les mo-
dules sont définis positifs. Mais cette circonstance est rare et en réalité, il existe
presque toujours des zones ou les contraintes résiduelles principales sont néga-
tives. Lorsque ces contraintes résiduelles sont suffisamment grandes, la stabilité
peut étre compromise. La figure 4.1 donne un exemple d’une telle situation. La
barre centrale, trés élancée, peut étre comprimée a ’aide d’une vis, ce qui pro-
voque un état d’autocontrainte dans lequel les deux colonnes sont tendues et la
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1
T VI

FI1GURE 4.1 — Une structure pouvant étre instable dans son état de référence

barre centrale, comprimée. L’équilibre exige que la sommes des efforts dans les
colonnes égale leffort dans la barre centrale. Pour un effort de compression égal
a la charge d’Euler, la barre flambe, ce qui constitue une instabilité. Dans ce
cas, I’état de référence (barre rectiligne précomprimée) n’est pas stable, car la
moindre perturbation du déplacement transversal de la barre méne & un nouvel
état d’équilibre (flambé).

En conclusion, l'état de référence ne peut étre stable que si les contraintes
résiduelles de compression sont suffisamment modérées.

Passons a présent & la question de la relaxation des contraintes résiduelles :
peut-on trouver un champ de déplacements u{ qui relaze, ¢’est-a-dire annule to-
talement les tensions résiduelles ? 11 est clair que si un tel champ de déplacements
existe, les déformations %Qj qui en dérivent doivent vérifier la condition

sii (Vi) = S?j + Cijrivm =0
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soit
0 _ 0
Si; = —Clijki Vi

ce qui entraine
1
Uw)) = u0+/vs?ﬂ?jdv+5/‘/Cijmgﬂgldv
1
= U~ / CijrvgymdV < U (4.28)
v

Or, la stabilité de 1’équilibre de référence implique que cette inégalité n’est pas
possible dans le voisinage de cet état, car ’énergie n’y peut qu’augmenter. Ceci
ne signifie pas que la relaxation soit nécessairement impossible, mais seulement
qu’elle ne peut avoir lieu dans une configuration trés voisine de I’état de réfé-
rence. La stabilité de cet état équivaut en effet a dire qu’il se trouve au fond
d’un puits de potentiel. Mais on peut trés bien imaginer (fig 4.2) de passer

E:quf//'lz‘/:e instaple

i
Etat de
référence

Etat relaxé

FIGURE 4.2 — Relaxation par passage d’une instabilité

d’abord au sommet d’une « montagne »(point d’équilibre instable) pour redes-
cendre au fond d’un nouveau puits plus profond que le précédent, dans lequel
les contraintes résiduelles seraient relaxées.
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Ainsi, la relazation des contraintes résiduelles, quand elle est possible, sup-
pose toujours le passage d’une instabilité. Par ailleurs, il ressort de (4.28) que
l’état relaxé correspond a un minimum absolu d’énergie®.

Il est du reste assez aisé de trouver un exemple de relaxation par passage
d’une instabilité. Le systéme & deux barres de la figure 4.3 a étant supposé

a b

FIGURE 4.3 — Le systéme ci-dessus peut étre relaxé par passage d’une instabilité

monté sans contraintes résiduelles, on peut faire passer les deux barres a4 gauche
de leur leur ligne d’appui, moyennant une instabilité dite par claquage (snap
through) aprés quoi le systéme se retrouve dans une position d’équilibre sous
autocontrainte, représentée en b sur la méme figure. Dans cette position, les
deux barres sont comprimées, et le ressort est tendu. Cet état étant pris comme
référence, il ne peut y avoir de relaxation a gauche de la ligne d’appui des barres.
Pour annuler les contraintes, il faut nécessairement repasser 'instabilité en sens
inverse.

2. Ce probléme a été étudié dans le cadre des petits déplacements par Fraeijs de Veubeke
[36]. Comme il n’existe pas, en théorie linéaire, d’instabilités, la relaxation est alors totalement
impossible.
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4.5 Deéformations avec variations de température

4.5.1 Expression de ’énergie libre

Lorsque les températures des différents points du corps ne coincident pas
avec la température de référence Tp, il convient de développer 1’énergie libre,
non seulement en termes des déformations, mais encore en termes des écarts de
température

0=T-T, (4.29)

On écrira donc
oF oF
F=F(y;;,0) = F, —_— ” — ] 4
o0 = Rt () e+ (57),

2\ 45071/ T 07:;0T ) AR 0

+3%ordre

Les contraintes sont alors données par

OF
8%‘;‘

(6F) +< 0°F ) 9+( 0’F )
Mii ), Ovi; 0T ) 07:50Vk1 O’W

expression ou ’on voit apparaitre, outre les grandeurs connues s?j et Cyjxt, un
nouveau terme (—pj;;0), avec

( 82F ) <68”)
6ij = - 37 = -
vi;0T ) or /,

Il s’agit des contraintes qui naissent du fait que pour 7;; = 0, la dilatation
thermique est empéchée, ce qui induit des contraintes de compression lorsque la,
température s’éléve. Les grandeurs (—/3;;6) sont appelées contraintes de bridage
de Duhamel. L’expression générale des contraintes est donc

Sij =

sig= sy —Bi;0 + CijriVr (4.30)

~~
résiduelles bridage Duhamel  élastiques
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Comme on le sait, la dérivée de ’énergie libre par rapport a la température
est, au signe preés, égale & I’entropie. On a donc

oF
S = “ar

__@_827’?.._@9
- or ), \oy,or ), \or?),

Le premier terme sera tout naturellement noté Sy. Le deuxiéme fait intervenir
les 3;; déja définis. Enfin, pour le troisiéme, on note que

0*F B <8S > _pey
oT? oT —cte T
ou ¢, représente la capacité thermique par unité de masse, & déformation cons-

tante, généralisation naturelle de la capacité thermique & volume constant des
fluides. On a donc

Co
S = S0+ By + (%) 0 (431)

Rassemblant tous ces résultats, on obtient I’expression suivante pour la densité
d’énergie libre :

1 co\ 62
F(vij,T) = Fo + s)7ij — Sof + icijkl%j’)/kl — Bijbvij — (%)0 - (4.32)

4.5.2 Coefficients de dilatation thermique

Considérons un petit volume dV du corps, supposé a I’état relaxé a la tem-
pérature Tp. Chauffons ce petit volume en le bridant, c’est-a-dire en empéchant
tous ses déplacements. Au cours de cette opération, I’énergie libre prend la va-
leur

2
pcy\ 0
F=F-s0-(22) =
0 0 T /o 2
Relachons a présent les brides, laissant ainsi & ce petit volume la liberté de se
déformer, tout en maintenant sa température constante. (Ceci suppose que les
brides soient relachées progressivement et lentement.) L’énergie libre cherchera
un minimum, qu’elle atteindra pour

or
ij

= =30 + Cijrive =0
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soit pour une déformation
i3 (0) = Cr 4, Bri0

Le tenseur
aij = Cp B (4.33)

est appelé tenseur des coefficients de dilatation : c’est 'accroissement de v;; &
s;5 = 0, pour une variation de température unitaire. Dans le cas d’'un matériau
thermiquement isotrope, on a simplement

Q5 = aéij (4.34)

« étant le coefficient de dilatation thermique. En voici quelques valeurs :

Coefficients de dilatation
pour T = 30°C
Matériau 10% (K1)
Acier au carbone 11,1
Fonte grise 9,9
Bronze CuMn4Sn6 17,2
Laiton CuZn38 18,0
Aluminium, dural 23,1

4.5.3 Déformations adiabatiques

Nous avons déja signalé que les déformations d’un corps en vibration peuvent
étre considérées somme isentropiques et que cela entraine une légére modification
des modules par rapport au cas statique [47, 56]. La condition de constance de
I’entropie s’écrit

pc
S—So= (") 0+ By =0,

ce qui fournit la variation de température au cours de la déformation

T
0=~ (pcv ) ) Bigij (4.35)

Dans le cas d’un corps isotrope,

Bij = Cijridpia = Cijpra = 3K ad;;
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ce qui donne

T
0=-3 ( ) KO&’}/“‘ (436)
PCy /)

Ainsi, une augmentation de volume produit un abaissement de température, et
inversement, une diminution de volume éléve la température.

Le calcul des modules adiabatiques peut étre mené de plusieurs facons. On
pourrait par exemple développer ’expression de 1’énergie interne

U=F+TS

puis la dériver deux fois par rapport aux déformations. Il est plus simple de
raisonner comme suit : dans expression générale (4.30) des contraintes, intro-
duisons la variation de température (4.35) exprimant la constance de ’entropie :
il vient
0 T
sij = 8i; + | — | BrivkiBij + Cijrivr
PCv / o
Identifiant alors a
Sij = S(i)j + Cgﬁcl'Yk’l
on obtient simplement

T
ik = Cijra + <) Bij Bri (4.37)
0

pCy

Cas des corps isotropes
Examinons en détail le cas des corps isotropes. Comme
ﬂij = 3Koz51-j
on a

T T
ACij = () BijBri =9 () K?a®6;;61
PCv /g 0

v v

et

T
AC kY50 = 9 (
e

v

) K2y
0

ce qui permet d’écrire, dans le cas isentropique,

o1
U = U+ S?ﬂlj + i(oijkl + ACi k1) Vi Vel
0 -1 r 2 2
= U() + Sij’yij - QGIQ + i[K +9 - K« ]’Yii’}/kk
v/ o
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On constate donc que le module de Coulomb n’est pas affecté, tandis que le
module de compressibilité K est remplacé par

K=K +9 ( T ) K?a? (4.38)
0

pCy

La correction relative est donc

AK  K*_ K T ,

Comme nous le verrons ci-dessous, cette correction est de quelques centiémes,
ce qui permet de traiter les corrections du module de Young et du coefficient de
Poisson comme des différentielles. Des relations (4.18), on déduit d’abord

AB_AK 3K
E K 3K+G
(3K 4+ G)AK —3KAK
o 3K +G
_ _ G AK
- 3K+G K
_ BAK
T 9K K
soit
AE T
— —F((— 2 4.40
- (p%)oa (4.40)
de méme, comme
1+ E
V= —
2G

on a

Av :M:E(T)a2 (4.41)
0
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Exemple numérique

Considérons par exemple le cas de 'acier. On a

E = 2,1-10"Pa
v = 0,3
a = 1,1-107°K!
D 7800kg/m?
J
= 474"
v 7 K kg

ce qui donne, pour 7" = 293K,
E 2,1 101!

K= = =175-10°P
S0—2)  3.04 10 100Pa
. T 293
= 2= = .1,21-107° =9,671-10" P Pa?
4 <pcv>0°‘ 7800 - 474 ’ “
d’ou
AK
= 9Kp =9-(175-10%) - (9,671 - 107'°) = 0,01523
AE 5
- = Be= (2,1-10")-(9,671-107'%) = 2,031 - 1073
AE
Av = (1+v)7- =1,3-(2,031 107%) = 0,002640

La plus grande variation relative est celle du module de compressibilité. Elle est
de 1,5%. Pour le module de Young, elle n’est que de 2 pour mille. La petitesse
de ces différences justifie la pratique courante consistant & confondre les deux
types de modules.

4.5.4 Autre expression des modules adiabatiques

Proposons-nous d’exprimer ’entropie en termes de la température et des
contraintes. A cette fin, nous inverserons les relations

0
sij — 81 = Cijrivkr — Bij0

ce qui donne
_ 1 0 3
Yij = Cir(Skt — spr) + @b
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L’introduction de ce résultat dans l’expression (4.31) de I’entropie conduit a

pCy
T

S = So + aij(sij — s3y) + [( )0+a“ﬂ”] 0

Le facteur entre crochets est la dérivée de ’entropie par rapport & la tempéra-
ture, a contraintes constantes. Il est donc de la forme

<5‘S ) . pey
oT ), T
en notant ¢, la chaleur spécifique @ contraintes constantes. On a donc

_ 0 Pe
S =50+ Oéij(Sij — Sij) + (?p)o 0 (4.42)

Quant & la liaison entre ¢, et c,, elle est donnée par

ijBis T
Cp— Cy = % (4.43)

dans le cas général. Pour des corps isotropes, cela donne

_ 9K 2T
P

(4.44)

Cp — Cy

Dans le cas de ’acier traité dans la section précédente, on obtient

¢p— v 9-(175-10%) - (1,21-10719) - 293
o 7800 - 474

=0,0151

ce qui justifie le fait que l'on néglige d’ordinaire de distinguer les deux chaleurs
spécifiques.

Venons en & présent aux modules adiabatiques. De la formule (4.42) on
déduit que lors d’une déformation isentropique, la variation de température est

donnée par
T

0=——] cnlsn— s}
<PCP>0 ( 2

Dés lors, la déformation vaudra

. T
Yij = Cijii(sij — sij°) — (> o (s — spy)
PCp /o
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ce qui revient a dire que

_ T
(C*Yiim = Cijk — () ij Qg (4.45)
PCp /g
Dans le cas isotrope, on a donc
a \—1 1 T 2
(Cd) i = E[(l +V)0irbj — vOijbp] — | — | a”0i;0m (4.46)
PCp /o

Nous laissons au lecteur le soin de vérifier que les deux expressions (4.37) et
(4.45) des modules adiabatiques sont équivalentes, ce qui résulte de la relation
(4.43) entre ¢, et ¢,.

4.5.5 Mesure dynamique du module de Young

A ce stade, il convient de noter qu’il existe des méthodes fort précises de
détermination du module de Young adiabatique par des mesures de fréquences
propres. La figure 4.4 schématise un tel dispositif. Un barreau cylindrique est

4y

\_excrtation

FIGURE 4.4 — Mesure du module de Young par un essai vibratoire

appuyé en son milieu sur un trépied de faibles dimensions. Ses extrémités sont
excitées en vibrations longitudinales. La fréquence propre est donnée par

1 |FE
f:%\/;

ou / est la longueur du barreau et p sa masse volumique. Il en découle la relation

E = 4pl* f? (4.47)
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permettant de déterminer F & partir de la fréquence propre.

Couplé 4 un essai de traction, cet essai se fait de préférence, non pas sur un
barreau cylindrique, mais sur I’éprouvette de traction elle-méme. Dans ce cas, la
formule (4.47) n’est plus valable, mais on peut, avec une bonne approximation,
la remplacer par

E =1 - 4pl*f?

le facteur correctif étant donné par (fig. 4.5)

X

P’ WSS~

FIGURE 4.5 — Cas de I’éprouvette de traction

ffi% Qsin® Z2dz

P =
ffgz Qcos? ZEdx

formule que 'on obtient aisément par la méthode de Rayleigh. Dans le cas
d’éprouvettes de traction assez longues, on peut considérer que dans les régions
ot Q # Qg, Qp étant le section de la partie cylindrique,

2

L o T T
sin 7%1et cos? —= ~ 0

1

et en notant
A =0 —-Q

on obtient

/2 /2
/ Q sin® Edm = Qo=+ AQ sin® Edm
—/2 ¢ /2 ¢

Q

Qoz + AV
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AV étant la différence entre le volume de I’éprouvette et le volume d’une éprou-
vette cylindrique de section 2y et de méme longueur :

14

(Le volume V peut du reste étre obtenu par pesée ou par immersion.) De la
méme facon,

0/2
/ Q cos? Lxdz ~ Qog
iy / 2

ce qui conduit finalement & la formule approchée

AV
~14+2—
v + Qol
Cette derniére formule est d’autant meilleure que la longueur des épaulements
est plus faible devant la longueur de ’éprouvette.

4.6 Exercices

Exercice 16 Un expérimentateur obtient, a l’aide d’un essai de traction sur
un matériau, E = 200G Pa et, par un essai de torsion, G = 110G Pa. Quel est
le coefficient de Poisson ? Cette valeur est-elle normale sur le plan théorique ?
Est-ce une valeur habituelle ¢

Exercice 17 Soit le systéme a deux barres de la figure 4.6, dont la position
de repos correspond a4 'angle «. Exprimer 'énergie de déformation a l'aide du
tenseur de Green pour différents angles 0 et chercher les puits de potentiel.

FIGURE 4.6 — Systéme & deux barres
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Solution - Pour un angle 0, la longueur d’une barre devient a/ cos 8, si bien que
| a® a®> \cos’a 1 (cos’a )

T=\Ccos?28  costa) 2a2 2 \cos?d
L’énergie de déformation vaut alors (extension simple)

1 EQU (cos? a 2
=2 By =" —— 1
u 2 & 4 <00529 )

Cherchons les extrema de cette expression. On a

%_EQK 0082a_1 20082a -
g = 2 cos2 0 cos3 0 St

Cette expression ne s’annule que pour les valeurs suivantes :

0=0
cos = cos o soit 0 = +«

Il y a donc trois positions d’équilibre en ’absence de charge. Sont-ce des puits ?
On a

U _ B <0032 a 1) (20032 a o4 6(:08204 sin? 9>

do? 2 cos26 cos3 0 costf
EQU [2cos® a 2
—— [ ———si 4.4
+ =3 (60839 smH) (4.48)

— Pour # =0, on a cosa < cosf) = 1, d’out d’U/dbH? < 0 : instable.
— Pour 6 = +a, on a
et il s’agit d’un équilibre stable.
Les figures 4.7 et 4.8 représentent ’allure de la fonction U et de sa dérivée.

Exercice 18 Ezprimer directement, a partir de la loi
. K
Wy = —2GI5 + 513

la loi de Hooke. En particulier, montrer que six = 3Kyki. Fxprimer enfin la loi
de Hooke inverse.
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-
-X K
FIGURE 4.7 — Energie du systéme & deux barres

qu -
de

FIGURE 4.8 — Dérivée de I’énergie

Solution - On a

SoA K
Wy = QGLJJU + 5(%@2
d’ou
oWy 09 Ovu
Spq = = 2GYij—L + Kk
- Mpg i, pq pq
Comme
R 1
Yij = Vi — g%l&'j
on a

0Yi; 1 1
T 850 — =81p0140i; = OipOiq — —Opqi
8qu ipCj 3 IpQlqQij pOia — 5opa%i
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D’autre part,

O
6’ypq ipQlg Pq

Il en découle 1
Spq = 2GYi;j (0ipdjq — §5pq5ij) + Kk pq

et, comme 4;; = 0,

Spg = 2Gpq + KVkkOpq
En particulier, on a

Spp = KYkk0pp = 3Kk
comme annonce.

La loi inverse s’obtient en partant de

R 1 K
Ypa = %qu - ﬁ'ykk‘qu
Comme
_ sk
Vkk 3K
il vient
. 1
Toa = pat g’Ykk(qu
1 K Skk 1 Skk

g o Sk 2 Skk s
5GP T 5G 3K 1 T 33 Ope
_ 1 11 1N s
= g 3\ 2g " 3K ) MO

1+v 1/14+v 1-2v
- g m3\E B )

1
= E[(l +V)Spq — VSkkOpq]
Exercice 19 Partant de la loi connue de la résistance des matériaux
1
%ij = (L +v)sij —vsudi]

a) Ezprimer s;; en termes de ;.

b) Calculer la densité d’énergie de déformation Ws.

¢) Donner la matrice de Hooke et chercher les conditions pour qu’elle soit
définie positive.

Solution
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a) Ona
E n v 5
Sij = ij S11045
J 1+ V,y T 14w 1%
Comme ) 19
Vi = E[(l +v) = 3vs; = 5 s
on obtient
Ev

ij dij

T+ 79 Y Aoy =2 0
v

= 2Glvi; + E'ﬂl(sij]

b) W= [sidyi; = G(vijvis + T, i)

c) Posant = ¥, ona
1+ B p
g 1+B8 B 0
—oa| B B 148 :
0 1
1

Les conditions de positive définition sont (positivité des déterminants princi-
paux) :
1. 1+ 8 >0, soit 8 > —1.
2. 1+B)2—-p2=1+28>0,soit §>—1/2.
3. (1+8)3+28-38%(1+8)=1+33>0,soit > —1/3
La plus forte de ces conditions est § > —1/3, ce qui s’écrit encore
v 1 3v+1-2w 1+v

- — 0
120 "3~ 3(1-20) 30-20)

Le signe de cette fraction est identique a celui du produit (14 v)(1 —2v), positif
pour

1
—-l<v<-—
V=3
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Chapitre 5
Elasticité linéaire

5.1 Linéarisation géométrique

Les équations d’équilibre, que I’on utilise les contraintes de Piola, celles de
Kirchhoff-Trefftz ou encore les contraintes eulériennes, font toujours intervenir
les déplacements, ce qui rend le probléme non linéaire. Mais si, en plus des
déformations, les rotations sont petites, on peut écrire

0ij + Djui = by (5.1)

ce qui constitue le cadre de la linéarisation géométrique. On parle souvent de
théorie des petits déplacements, bien que cette dénomination soit impropre, car
aucune restriction n’est nécessaire sur les déplacements de translation.

Moyennant ’hypothése (5.1), les déformations admettent 1’expression li-
néaire simplifiée

1
Eij = E(DZ’LL] + Djui) (52)

Les contraintes de Kirchhoff-Trefftz, celles de Piola et les contraintes eulériennes
sont alors pratiquement identiques, et nous les noterons o;; conformément a la
tradition. Les équations d’équilibre s’écrivent

DjO'jZ‘ +fi = 0dansV (53)
05 = Oy dans V 5. )
n;oj; = t;surS 5.5)

83
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Enfin, nous supposerons souvent, dans ce qui suit, le corps isotrope, cas ou
il admettra les équations constitutives

14

Cet ensemble d’équations forme la base de I’élasticité linéaire. Bien que consi-
dérablement simplifiées, ces équations restent passablement difficiles & résoudre,
excepté par voie numérique.

Signalons encore qu’en élasticité linéaire, la structure est toujours stable :
les phénoménes du type flambement ne peuvent étre traités & partir de ces
équations. Il en résulte également que les contraintes résiduelles ne peuvent
jamais étre relaxées par voie élastique.

5.2 Unicité de la solution

Nous allons établir un résultat important dia a Kirchhoff [48, 49]. On appelle
déplacements de corps rigide ou encore, modes rigides (linéarisés) les solutions
des équations €;; = 0. Ces équations qui s’écrivent !

Dﬂl,j + Dj’l.ti =0
admettent de toute évidence les solutions
Diuj = Wij
avec w;; = wj;. Mais alors, on doit avoir
Dyw;j = Drjuj = Diguy = Diwy;
ce qui entraine la chaine suivante d’égalités :
Dyw;j = Diywpj = —Diwjp = —Djwi, = Djwy; = Dywj; = —Dyw;

soit
Dkwij =0

11 vient donc, en notant w;; = e;;rwk,

U = Q5 + €kW; Tk

1. La démonstration peut étre faite encore plus simplement a partir des équations de Bel-
trami (voir section 5.4), établies indépendamment de ce résultat.
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avec ai et w; constants, représentant respectivement une translation d’ensemble
et une rotation (linéarisée) d’ensemble.
Cela étant, le théoréme de Kirchhoff s’énonce comme suit :

Théoréme 2 Deuz champs de déplacements vérifiant les conditions d’équilibre
ne peuwvent différer que d’un mode rigide.

En effet, soient u; et v; deux solutions des équations d’équilibre. On a, pour
tout déplacement virtuel du;

/Jij(u)(SEijdV:(ST:/Uij(V)(SEijdV
14 \4

ce qui entraine

/ [05(0) — 0i;(Vv)]deij = / Cijrileij(u) —e45(v)]de;;dV =0
v v

Choisissant alors du; = u; — v;, on obtient

/ Cijrleij(u) —ei(v)][en(u) — ep(v)]dV =0
1%
ce qui, vu la positive définition des modules, implique

Sij(U7V) =0

5.3 Meéthode directe de résolution. Equation de
Nayvier

La résolution d’un probléme d’élasticité peut étre menée en exprimant toutes
les variables en termes des déplacements, suite & quoi on cherche pour quel
champ de déplacements I’équilibre est vérifié; c’est la méthode directe.

Cherchons I’équation correspondante dans le cas isotrope. Les relations

14
0ij = 2G <Eij + 71 — 2V€kk5ij> (5.7)

entrainent
14
DjO'ji =2G (Djfji + 1_21/D15kk>
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Notant alors que
2Dj€ji = Dj(DZ"U,j + Djui) = Dijuj + Djjui

on obtient aisément I’ équation de Navier

1

On peut lui donner une autre forme en notant que

G (Djjui +

Au = graddivu — rotrotu

ce qui, tous calculs faits, donne

G (2(12y)graddivu - rotrotu) +f=0 (5.9)

1-—2v

5.4 Meéthode semi-inverse. Compatibilité

Le cheminement de la méthode directe est tellement naturel que ’on ne
pense guére & en analyser les étapes. Ce n’est pourtant pas sans intérét, pour la
bonne compréhension de la méthode semi-inverse. Ces étapes sont reprises dans

le schéma suivant :
) c PR
u — ¢ — o — | Equilibre

Partant du champ de déplacements, on en a déduit le champ des déformations a
I’aide d’un opérateur de dérivation J; les contraintes se calculent alors & l'aide
de l'opérateur matriciel C, et il suffit alors de vérifier qu’elles sont en équilibre.

La méthode semi-inverse consiste a suivre le chemin opposé. Dans un certain
nombre de cas, en effet, il est assez aisé de trouver la solution générale, en termes
des contraintes, des équations d’équilibre (5.3), (5.4) et (5.5). On devra alors
suivre le chemin inverse, représenté ci-dessous :

? c! P
u — ¢ ¢— o +— | Equilibre

Le passage des contraintes aux déformations se fait aisément par la loi de Hooke
inverse qui existe toujours, car la matrice des modules est définie positive. Mais
peut-on, & partir d’un champ de déformations, remonter aux déplacements ? 11
est clair que ce n’est pas possible dans tous les cas, car s’il existe le plus sou-
vent plusieurs champs de contraintes qui vérifient 1’équilibre, le théoréme de
Kirchhoff nous apprend qu’il n’en existe qu’un seul qui dérive d’'un champ de
déplacements 2. (C’est évidemment la solution cherchée.) Il en résulte que 'in-

2. Puisque les modes rigides ne donnent pas de contraintes
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tégration du champ de déplacements ne sera possible que moyennant certaines
conditions sur les déformations appelées équations de compatibilité.

FIGURE 5.1 — Illustration de la compatibilité

Avant de déterminer ces conditions, essayons de les interpréter par un raison-
nement physique. A cette fin, imaginons (fig. 5.1) que le corps soit découpé en
morceaux trés petits, et que chacun de ces morceaux soit déformé de maniére
arbitraire. En dehors de cas trés particuliers, on ne pourra pas recoller entre
eux les morceaux ainsi déformés de maniére que leurs bords se correspondent
parfaitement. La compatibilité exprime précisément que ces morceaux pourront
étre réassemblés correctement, comme les piéces d’un puzzle.

La présentation la plus naturelle des équations de compatibilité est celle de
Beltrami, qui procéde par une voie constructive, donnant ainsi une méthode
d’intégration des déplacements.

Partons de I’identité

1 1
Di’u]‘ = i(DﬂLJ —+ Djul) —+ i(Dlu] — Dju,;)

ou apparait, outre le tenseur des déformations, le tenseur antisymétrique

1
wij = §(DZ’U,] - D]'U/Z) (510)
Ce dernier est directement lié au demi-rotationnel
1
W = §€krsDrus (511)
puisque
1 1
CijkWk = §€kij€krsDrus = 5(5ir5js — 0is0jr) Dyrus = §(D¢Uj — Dju;) = wij
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On peut donc écrire
DZ"LL]‘ = €5 t €ijkWk (5.12)

Dans cette équation, seuls les €;; sont donnés. La question de la compatibilité
se raméne donc & déterminer s’il existe un champ wy, tel que (g, + eijrwi) soit
le gradient d’un vecteur. Pour qu’il en soit ainsi, il faut que les dérivées croisées
soient, égales, ce qui s’écrit

0= epmiDm(Diuj) = epmiDmEij + epmieijkmek
Le dernier terme du second membre s’écrit encore
mek(épjékm — 5plc5jm) = Dkwképj — Djwp
Il vient donc
Djwp — Dkwképj = epmiDmgij (5.13)
En particulier, en contractant sur les indices p et j, on obtient
Dj(.dj(l — 3) = ejmiDmeij =0

puisque €;; est un tenseur symétrique. Soustrayant cette équation, combinaison
de plusieurs des équations (5.13), & celles-ci, on obtient le systéme équivalent

Diw,=c¢ mle€1 5.14
P P J

Ce sont les équations de compatibilité de Beltrami, auxquelles il faut donc accor-
der le sens suivant : un champ de déformations €;; est compatible si et seulement
st on peut lui associer un champ de vecteurs-rotation w, qui vérifie les équations
de Beltrami.

Cependant, les cas ou ’on peut exhiber directement le bon vecteur-rotation
sont trés rares (voir un exemple en section 5.9). Dans la plupart des cas, il
est préférable de déterminer les conditions de son existence. Il s’agit encore de
I’égalité des dérivées croisées :

0 = egrj Dy (Djwp) = eqrjepmiDrmeij
ce qui correspond a la nullité du tenseur (symétrique) d’incompatibilité
qu = epmieqermrsij (515)
introduit par Washizu [93]. Les six équations
Tpg =0 (5.16)

sont, connues sous le nom d’équations de compatibilité de Barré de Saint-Venant.
Elle garantissent l’existence du vecteur w; et donc aussi la compatibilité.
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5.5 Propriétés du tenseur d’incompatibilité

Le tenseur d’incompatibilité jouit de quelques propriétés intéressantes. Tout
d’abord, que la compatibilité soit vérifiée ou non, on a toujours

DyTyq = epmi€qrjDpmr€ij = €qrjDr(epmiDpmeij) = 0 (5.17)

c’est-a-dire que le tenseur d’incompatibilité est toujours un champ intérieure-
ment, auto-équilibré.

Par ailleurs, ce tenseur permet de répondre & la question de 'existence d’un
vecteur w,, unique sur une surface. Il s’agit de savoir si sur toute courbe fermée
de cette surface (fig. 5.2), on a bien

B

A

FIGURE 5.2 — Unicité du vecteur-rotation sur une surface

Oz/dwp:/Djwpdmj
1 C

Djw, étant calculé a partir de (5.14). Utilisant le théoréme de Stokes-Ampeére,

on calcule
/CDjo.)pd.’L‘j = /CepmiDmEijdxj

/S nqeqerT(epmiDmaij)dS

ce qui donne

/dwp:/nqeqrjepmiDrmEide:/anquS
C S S



90 CHAPITRE 5. ELASTICITE LINEAIRE

et la nullité de cette grandeur sur toute courbe fermée tracée sur S nécessite
donc

ngTgp = 0 sur S (5.18)

C’est ce que nous appellerons les conditions de compatibilité superficielle.

5.6 Autre forme des équations de compatibilité
de Saint-Venant

On emploie souvent, au lieu du tenseur d’incompatibilité ci-dessus, une autre
expression équivalente, que nous utiliserons plus loin. On peut ’obtenir en s’ap-
puyant sur le fait suivant : si ap, est un tenseur symétrique, le tenseur

s = €klp€ksqUpq (519)
lui correspond biunivoquement. En effet, on a
s = (0150pq — O1g0ps)apg = applis — s
et, en particulier,
ay = 3app — ay = 2ay
ce qui permet d’obtenir aisément la relation inverse

als = §dpp(sls - dls

Dans le cas présent, il est donc indifférent d’annuler 73, ou le tenseur Ty qui lui
est associé par la relation (5.19). Or,

Tis = €kipChsqd pg

CkipCpmiChsqCqri DmrEij

(Okm Ot — OkiOtm ) (Okr0sj — OkjOsr) DmrEij
= (0kmO0ii — OkiOtm ) (Dmr€ij — DmsEik)

ce qui fournit une seconde forme des équations de compatibilité de Saint-Venant :

Tis = Digers — Digis — Diseur, + Discpr = 0 (5.20)
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5.7 Equations de Beltrami-Michell

Dans le cas d’un corps élastique homogéne et isotrope, il est possible d’ex-
primer directement les équations de compatibilité en termes des contraintes, ce
qui constitue un raccourci avantageux.

Rappelons d’abord 1’établissement de 1’équation de Hooke inverse. Partant
de (5.6), on calcule d’abord

1+v
Oii = 2G1 —,, G
d’ott L9
—2v
2Gei = 7 T, i
La réintroduction de ce résultat dans (5.6) donne
v 1-2v
2G€ij =045 — 71 “ oy 71 T O’ll(sij

soit encore, en multipliant les deux membres par 1/(2G) = (1 +v)/E,

l[(l +v)oi; — voudsj (5.21)

eij:E

Ceci posé, on a visiblement

2GT;; = (Dixoij + Dijokk — Dikojk — Djro)
v
- m(DkkUll(Sij + Dijoudpr — Dikoudjx — Djroudir)

Notant alors que, si I’équilibre est vérifié, on a
Dyoyj = —f;

on transforme I’expression obtenue en

1 v
——Djjone + (Difj + Djfi) — ——

9GTh = Dypors
GT kkaj+1+u 1+v

Dyioyidij

Ce résultat peut encore étre amélioré si I'on note que la contraction sur les
indices 4 et j donne

. 1—
2GT); = 2= Dyoii + 2Di f; = 0
14+v
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c’est-a-dire 1+
v
Dikoii = =7

D;f;

— UV
Il vient donc finalement

. 1 v
QGTZ-J— = Dkko'ij + 71 T Z/Dijakk + (lej + Djfz + 71 — VDkfkéij> =0 (522)

Ce sont les équations de Beltrami-Michell [61]. En I’absence de forces de volume,
elles se raménent & l’expression simple

1
Dyroij + 1o V.DijUk;k- =0 (5.23)
Ce sont des combinaisons de I’équilibre et de la compatibilité, qui n’auront donc
la valeur d’équations de compatibilité que si I’équilibre intérieur est déja vérifié
par ailleurs.

5.8 Compatibilité dans les corps multiplement con-
nexes

5.8.1 Introduction

Les conditions de compatibilité obtenues ci-dessus sont nécessaires pour as-
surer 'existence des déplacements. Mais sont-elles suffisantes ? Cette question se
réduit fondamentalement & la suivante : étant donné un champ f; irrotationnel
dans V', admet-il un potentiel ¢ tel que f; = D;p dans V' ? La construction du
potentiel est classique : étant donné un point a € V', on calcule ¢ en un point
x € V par la formule

p(x) = p(a) + /C fidx; (5.24)

Caz étant une courbe quelconque de V joignant a a x (fig. 5.3). Bien entendu,
cette formule ne définit un potentiel unique que si la valeur p(x) ne dépend pas
de la courbe choisie. Etant donné deux courbes différentes C; et Co (fig. 5.4), on
doit donc avoir
fidz; = fidz;
C Cs
ou, ce qui revient au méme

/ fidz; =0 (5.25)
C1U(—C2)
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FIGURE 5.3 — Intégration du potentiel

X
4

d

FIGURE 5.4 — Unicité du potentiel

en notant (—Cs) la courbe Co parcourue en sens inverse. En d’autres termes, la
circulation de f; sur tout circuit fermé doit étre nulle.
A ce stade, deux cas sont possibles :

1. Sur tout circuit fermé de V', on peut appuyer une surface S entiérement
contenue dans V. On dit alors que V est simplement conneze (fig. 5.5).

2. Il existe des circuits fermés de V' sur lesquels on ne peut appuyer aucune
surface entiérement contenue dans V. On dit alors que V' est multiplement
connezxe (fig. 5.5).

Considérons d’abord le premier cas, qui est du reste le seul & étre traité dans les
manuels élémentaires d’analyse. Par application du théoréme de Stokes-Ampére,
on a alors sur un circuit quelconque (fig. 5.7)

/f~ds=/n-rotfd$
c s
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FIGURE 5.6 — Multiplement connexe

soit, dans nos notations,

/fq;dmi:/nieijijfde
C S

et comme f; est irrotationnel,
c

donc P’existence du potentiel est assurée. Il en découle que dans un corps sim-
plement connexe, les conditions de compatibilité suffisent & assurer ’existence
du champ de déplacements.

5.8.2 Topologie des corps multiplement connexes

Dans un corps V' quelconque, deux circuits sont dits réconciliables si ’on
peut faire coincider le premier avec le second par une déformation continue ne
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FIGURE 5.7 — Cas d’un ouvert simplement connexe

FIGURE 5.8 — C; et Cy sont réconciliables

le faisant pas sortir du corps. La trajectoire de réconciliation définit donc une
surface S C V (fig. 5.8).

Certains circuits peuvent étre déformés jusqu’a ne plus former qu’un point :
on les appelle réductibles. Tout autre circuit est irréductible. Toute surface S
construite sur un circuit irréductible coupe donc OV (fig. 5.9).

Un circuit irréductible C est dit simple si 'on peut construire sur C une
surface S telle que S N CV soit d’un seul tenant. Sinon, C est dit composé.
Intuitivement, un circuit simple « n’entoure qu’un trou ».

Appliquée aux circuits simples, la condition C; R Cs (R signifie « réconciliable
avec ») est une relation d’équivalence (fig. 5.11) :

Ci R (i (trivial)
CiRCetCo RC3 = CiRCs
Cl R CQ = CQ R Cl
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F1GURE 5.10 — C; est simple, Cy est composé

Elle divise donc les circuits simples en classes d’équivalence. Le nombre de ces
classes, +1 (pour les circuits réductibles) définit la multiplicité de la connezion
du corps V.

5.8.3 Intégration d’un gradient sur un corps multiplement
connexe

L’intérét des définitions précédentes réside dans la propriété que voici :

Théoréme 3 Etant donné un champ irrotationnel f;, ses circulations sur deuz
circuits simples réconciliables sont identiques.

Soient en effet a € C; et b € Cs deux points qui se correspondent dans la
déformation de C; & Co (fig. 5.12). Lions-les par la trajectoire Cs de a vers b
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FIGURE 5.11 — « réconciliable avec » est une relation d’équivalence.

F1GURE 5.12 — Constantes cycliques

lors de cette déformation. Alors,

fidz; — fidz; =
Cl CQ

fidx; + fidx; — fidxz; — fidz; =0
Cs Co Cs C1

car le circuit C = (Cs,C2, —C3, —C1) est réductible, si bien que

/fidfﬂi =/ nieijr D frdS =0
C S12
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Ainsi, il existe, associée & chaque classe de circuits simples, une constante cy-
clique Ap égale a la circulation de f; sur un quelconque des circuits de cette
classe.

F1GURE 5.13 — Cas des circuits composés

Le cas des circuits composés s’y réduit aisément. En effet,comme le montre
la figure 5.13, il est possible de tracer autour de chaque composante connexe de
SN CV un circuit simple. A I’aide de ponts comme ci-dessus, on obtient que la
valeur de la circulation de f; vaut la somme des constantes cycliques relatives
aux différents trous embrassés.

De tout ceci, il résulte qu’un champ irrotationnel dans un ouvert de connexion
m-uple admet un potentiel si et seulement si les (m — 1) constantes cycliques
des classes de circuits simples sont nulles.

5.8.4 Conditions globales de compatibilité dans les corps
multiplement connexes

Partant des relations

Djwp = epmiDmsij

on commence par intégrer les rotations, en supposant vérifiées les conditions de
compatibilité de Saint-Venant :

y
wp(y) = wp(0) +/ epmiDmeijda;
0
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par un chemin quelconque. Pour assurer I'unicité, il faudra que sur chaque classe
de circuits simples, les trois constantes cycliques

Awpz/epmiDmsijdxj (526)
c

s’annulent, ce qui donne 3(m — 1) conditions pour un corps m fois connexe.
Les déplacements se calculent alors & partir des relations
Di’LLj = 5ij + eijpwp

Dans ce cas-ci, il faut faire attention & ’existence possible de Aw,. Pour deux

FIGURE 5.14 — Intégration des déplacements
circuits C; et Cy réconciliables (fig. 5.14), on a, avant de faire un tour,
w7 (b) = u5 (a) + /C (4 + exjpwy )i
3
et, aprés avoir fait un tour,
uf (b) = u] (a) + /Cs (gij + eijpw, )da;
soit, par différence,

Au;(b) = Auj(a) + eijpAwy(b; — a;) (5.27)

c’est-a-dire que le saut de déplacement se compose d’une translation Auj(a) et
d’une rotation e;;pAwy,(b; — a;). Tout saut est annulé moyennant les conditions
Aw, =0 et

Auj = /(Q’j + eijpwp)dxi =0 (528)
C
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5.8.5 Interprétation de Weintgarten-Volterra

F1GURE 5.15 — Coupure rendant le corps simplement connexe

FI1GURE 5.16 — Déplacements des lévres de la coupure

Comment interpréter le fait que les conditions locales de compatibilité ne
suffisent pas dans le cas d’un corps multiplement connexe? Faisons des cou-
pures rendant le corps simplement connexe. Il suffit pour cela de supprimer
Pexistence de circuits irréductibles (fig. 5.15). A partir des relations locales de
compatibilité, on peut alors construire un champ de déplacements dans le corps
ainsi transformé. Mais en général, les lévres de la coupure vont alors s’écarter
d’une translation et d’une rotation : ce sont les dislocations de Volterra [96, 91].
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Pour recoller le lévres de la coupure, il faudra appliquer au corps des efforts
capables de I'obliger & vérifier les équations globales Au, = 0 et Aw, = 0. Il
est donc possible, en fabriquant par exemple un tube par cintrage et soudage,
d’introduire des contraintes résiduelles. Ces contraintes ne pourront pas étre
annulées sans rompre la compatibilité. C’est pourquoi on dit encore qu’un corps
m fois connexe est 6(m — 1) fois cinématiquement hyperstatique.

5.9 Sur l'indépendance des équations de compa-
tibilité

Les équations de compatibilité de Saint-Venant sont au nombre de six. Mais
sont-elles totalement indépendantes? Nous allons montrer que, moyennement
certaines conditions sur la surface du corps, on peut se limiter & ne vérifier que
trois équations de compatibilité. Nous commencerons par établir deux lemmes
dus a Fraeijs de Veubeke [36], qui nous aideront & obtenir des théorémes plus
généraux dus & Washizu [93].

Lemme 1 Sil’on se donne arbitrairement les éléments diagonauz €11, €22, €33
du champ de déformation, il est toujours possible de le compléter de maniére a
le rendre compatible.

En effet, soit (u?,u9,uY) une solution particuliére des équations

0 0 0
Diuj = €11, Douy = €92, Daug = €33
Il suffira d’écrire

1 1 1
€12 = §(D1U8 + Dauf), €93 = §(D2Ug + D3uy), €31 = i(DSU? + Dyug)

Lemme 2 Si l’on se donne arbitrairement les termes non diagonauz €12, €93,
€31 du champ de déformation, il est toujours possible de le compléter de maniére
a le rendre compatible.
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En effet 3, il suffit de copier partiellement le raisonnement de Beltrami, en écri-
vant

Dou; = €21 —ws3
Dsuy = &31 +w2
Diuy = e12+ws
Dius = €30 —wi
Diuz = €13 —ws
Dous = €93+ wy (5.29)

Les deux premiéres équations seront compatibles, c’est-a-dire que ’on pourra
trouver un déplacement uq, si

D3ws + Daws = D3eay — Daesy (5.30)
La deuxiéme paire d’équations, relative a l'existence de usq, exige
D3(A)3 + D1w1 = D1532 — D3€12 (531)

Enfin, le troisiéme couple d’équations, relatif & ’existence de ug, conduit a la
condition

Diwi + Dows = Dog1g — Dieog (532)

Visiblement, la somme des trois conditions (5.30), (5.31), (5.32) donne
Dywy + Dowsy + D3ws =0

ce qui nous rameéne aux conditions

Diywy = —Dgzea1 + Daoegy
Dowy; = —Dieza + Dsero
D3wsz = —Dae13+ Digas

qui permettent toujours de trouver une solution particuliere w?. Il suffit alors
d’introduire ce champ w? dans les relations (5.29) pour obtenir une solution
particuliére u{ dont on pourra déduire les déformations manquantes.

3. La présente démonstration différe de celle de Fraeijs de Veubeke
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5.9.1 Deux résultats généraux sur les champs d’autocon-
trainte

Les deux lemmes ci-dessus vont nous permettre d’établir deux théorémes sur
les états d’autocontrainte.

Théoréme 4 Soit 0;; un état d’autocontrainte, c’est a dire vérifiant Djo;; = 0
dans 'V et njo;; =0 sur S. Si ce champ a ses termes diagonauz nuls dans V, il

est identiquement nul.

En effet, il résulte du deuxiéme lemme ci-dessus que ’on peut trouver un champ
de déplacement v; tel que

1 ) .
0ij = 5 (Divj + Djvi) , i #
Alors, comme 017 =0, 093 =0 et 033 =0, on a

(Di’l)j + DJUZ)dV

O’ij

N =

/ (20%, + 2035 + 203,)dV
v

I
—

= njaijvidS—/ ’UiDjO'jidV
S 14

Il
o

puisqu’il s’agit d’un état d’autocontrainte.

Théoréme 5 Soit 0;; un état d’autocontrainte, c’est a dire vérifiant Djo;; = 0
dans V et njo;; = 0 sur S. Si ce champ a ses termes non diagonauz nuls dans
V', il est identiquement nul.

Le schéma de la démonstration est le méme, en se basant sur le premier lemme

ci-dessus.

5.9.2 Les deux théorémes de Washizu

Revenons au tenseur d’incompatibilité T;;. On sait qu’il vérifie I’équilibre
intérieur :
D]‘Tji =0dans V

Il en découle les deux théorémes suivants :
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Théoréme 6 Si un champ de déformations satisfait aux seules équations de
compatibilité Ty, = 0, Ths = 0 et T33 = 0 dans un domaine V, le tenseur T;; est
nul dans V chaque fois que les conditions de surface n;Tj; = 0 sont vérifiées®.

En effet, les conditions sont telles que le tenseur d’incompatibilité est un état
d’autocontrainte dont les éléments diagonaux sont nuls. De la méme fagon, on
ale

Théoréme 7 Si un champ de déformations satisfait aux seules équations de
compatibilité T1o = 0, Toz = 0 et T3 = 0 dans un domaine V, le tenseur Tj; est
nul dans V' chaque fois que les conditions de surface n;Tj; = 0 sont vérifiées®.

5.9.3 Autre énoncé des théorémes de Washizu

Nous avons vu en section 5.5 que la nullité de ’expression n;T;, sur la sur-
face du corps est une condition nécessaire & l’existence d’un vecteur rotation
univoque sur cette surface. On peut donc encore énoncer le

Théoréme 8 Si le vecteur rotation est défini de maniére univoque sur la sur-
face, il suffira, pour assurer la nullité du tenseur d’incompatibilité, d’exiger un
des deuzx triplets de conditions T11 = Tos =T33 =0 ou T1o = Toy = T31 = 0.

5.10 Exercices

Exercice 20 Ecrire explicitement les siz composantes du tenseur d’incompati-
bilité T;;

Solution
Ti1 = Dagess + D3zean — 2Do3e03
Tro = Dszerr + Diiesz — 2D13€13
T33 = Di1€22 + Daserr — 2D12612
Ti2 = Dasesy + D3i1g23 — Dor1e33 — D3szenn
Toz = Dsig12 + Di2es1 — D3oern — Diies
T31 = Diseaz + Dazera — Dizean — Dazezr

4. Washizu exigeait en fait T;; = 0 sur S, ce qui est plus restrictif
5. Méme remarque que pour le théoréme précédent
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Exercice 21 Montrer qu’un champ de contraintes en équilibre homogeéne a l’in-
térieur de V est en général formé des dérivées secondes de trois fonctions de
contrainte que l’on peut définir d’au moins deux maniéres différentes.

Solution - Les relations
DjO'ji =0

admettent, si I’on fait provisoirement abstraction de la symétrie des contraintes,
la solution générale

0ji = €jDi A
les Aj; étant des fonctions de contrainte du premier ordre. On jouit, dans cette
expression, d’une invariance de jauge, en ce sens que ’on ne modifie pas les
contraintes en remplacant les A;; par

Ay = Ay + Dy

1; étant un vecteur quelconque. On peut en particulier choisir les ¢); de maniére
a annuler Aqq1, Ao et Ass : il suffit pour cela que

D1ty = —Ayy, Dathg = —Agg, D3thz = —Ass
La condition de symétrie des contraintes s’écrit alors
0 = erjigji = €jirejpgDpAgi = DypAqi(6ipdr — bigpr)

soit R . R
0= D;A,; — D Ay; = DAy

puisque, par construction, A;; = 0. La solution générale de cette équation a la
forme R

Ari = eimanBrn
A nouveau, on jouit d’une invariance de jauge, car on ne modifie pas les Ay; en
remplacant B,.,, par

Remarquons d’abord que I'on peut choisir les x, de maniére & symétriser B
en effet, pour obtenir

eirnBrn = eirnBrn + eirnDnXT =0

il faut que
einanXT = eirnBrn
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ce qui est possible si

Di<eirnBrn) =0
ce qui revient & dire
_erinDiBrn = _Ar’r =0
condition effectivement vérifiée. On obtient ainsi ’expression

0ij = €ik1€jmnDrm Bin (5.34)

avec By, symétrique. Mais on peut aller plus loin en jouant sur une nouvelle
forme de I'invariance de jauge, qui ne rompt pas la symétrie : il résulte en effet de
I’expression du tenseur d’incompatibilité que les contraintes ne sont pas altérées
si I’on remplace Bij par

t
—_

Bij = Bi; + i(Diﬁj + D;Bi)

Or, il est possible de trouver un champ 3; qui vérifie I'une des deux conditions
suivantes :

1. X(D;B; + DiB;)

2. D11 = —Bi1, Dafla = —Bay, D3fs = —Bss

fBM pour i # i

Pour le choix (1), le tenseur Bij se réduit a le seule diagonale. En notant
1 = Bi1, p2 = Bas et 3 = Bss, on obtient

o11 = Daaps + D33z
o2 = Dasp1 + Di1ips
o33 = Di1pa + Daapy
o2 = —Dizps
o253 = —Dazpr
031 = —Ds1p2

C’est le systéme de fonctions de contrainte de Mazwell (1870) [75].
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Le choix (2) méne a un tenseur Bij réduit a ses termes non diagonaux. En
notant ®; = —2Bsy3, $5 = —2B3; et &3 = —2B14, on obtient

o1 = Dy3®y

022 = D3P,

o33 = Di12®3
1

o1z = —§D3(D1‘1>1 + Dy®y — D3®3)
1

o3 = —§D2(D3<I>3 + D1®; — Dy®s)
1

o3 = —§D1 (D3®s + D3®3 — D1®4)

C’est le systéme de fonctions de contrainte de Morera (1892) [75].

Exercice 22 FEn théorie des poutres, on pose

0.z = a(z)+ab(z) +ye(z)

Ope = 0Oyy = 0

Montrer que, dans le cadre de ces hypothéses, et pour autant que la poutre soit
simplement conneze, il est toujouirs possible de trouver des contraintes oy, 0y
et 0., de maniére a assurer la compatibilité.

Exercice 23 Analyser les conséquences du théorémes d’unicité de Kirchhoff en
ce qui concerne

— la stabilité ;

— les contraintes résiduelles.
Peut-on étudier le flambement dans le cadre de la théorie linéaire ?

Exercice 24 Quelles sont les conditions pour qu’un champ de déformation de
la forme €;; = f(x)0;; soit compatible ?

Solution - On a

qu = epmieqermrf(sij = Dmrfepmieqri
= Dmrf(apqamr - 5pr5qm)
- Dmmfépq - quf

soit
Dpof = Dy fpq (5.35)
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Contractant sur p et g, on obtient
Dypf = 3Dumm f 50it Dy f =0
ce qui, comparé & (5.35) donne
Dpef =0
La solution de ces 6 équations est
f=ap+ o121 + agxe + aszs

Exercice 25 A partir des équations de Navier, étudier le probléme d’une spheére
creuse épaisse soumise a une pression interne. En déduire le cas limite d’une
faible épaisseur.

Solution - La symétrie du probléme implique ug = u, = 0 (dans les coordonnées
sphériques), soit u = ue,. On a encore Ju/90 = du/0p = 0 . Il en résulte

. 1 0,5 . 19,,
dlvu:m E(T sinfu) + 0+ 0 :T—ZE(T w)
et
N A
rotu:m o 90 9y =0
U 0 0

Les forces de volume étant nulles, on a simplement

graddivu =0
ce qui signifie que
divu =C
soit, explicitement,
d o
il = (Cr?
o (r*uw) T

On en déduit successivement

puis
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ce que 'on peut encore écrire

B
u=Ar+ —
r
Les déformations sont donc
ey = P = A-28
€00 =Epp = 5 = A+r§3
Err + oo + 6@@ = 3A
On en déduit aisément les contraintes :
o = 2G| &+ 15 divu)
2B 3v
= 2G (A A
r3 1-2v )
1+v A 23)

000 = Opp — 2G

Les conditions aux limites sont

o = —p en r=R;
o = 0 en r=R,
On en déduit d’abord
B ]ié 1+v
2 1—2v
ce qui donne
—  9G ALty 1_&2 _ EA __ R}
Orr = 1—2v r3 - 1—2v r3
R?

_ _ 1+ _ EA Rg
To0 = 0pp = 2GA7T (1 + 27‘3) = 1o (It 2r3)
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Pour r = R;, on trouve

BA (| R
P=1"9, R3

soit

La solution finale est donc

Orpr =

= (5.36)

0060 = Opp =

Quant au déplacement, il vaut

B 11+v R
=Ar+—==A - -
“ r+r2 {T+21—21/r2]

:m[(2—4u)+(1+1/)R§
) r

R}
2B
soit
RS
or -4+ 1Q+v)=%
u=-— T (5.37)

2F R3

"1

Dans le cas d’une faible épaisseur, c’est-a-dire t/R = n < 1, ou ¢ est I’épais-
seur, et R, le rayon, on a

r=R(1+np), avec —
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et
R.=R(1+ g), R = R(1 - g)

d’ou
&_1—1—17/2_1 7

R, 1-n/2 1—n/2

=1+71+0(?)

et
R\
) =1 2
(R) +3n+0(°)
De la méme facon, on a
r=R(1+O(n))

et

R. _1+n/2  l+up+n(z—p) 1 )
+a(g = p) +0r)

r 14+np 1+mnp
d’ou
R.\* 1
() =1+3n(5 —p) + O
r 2
On en déduit
B3 -p 400 (5-p+0n) 1
puis

3 t3n —p)+00?) +1
3n+0?)

000 = Opp =P

2tmG-p+O0W) _ p
3n(1+ O(n)) 21

(1+0(n)

et enfin

~ pR(1+0(m)) 2—4v) + (1 +v)[1 +3n(3 — p) + O(1?)]
- 2F 30+ O0(n2))

_PR(B-31)(1+0(m) _ pR

2E  3n(1+ O(n)) 2En

(1=v)(1+0(n)
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A un ordre de 7 prés, on a donc

o & =p(5 = p) (=00))
ow=0ps = B (= O/n)) (539)
_ pR*(1-v)
" 2t

On le constate, en comparaison des autres contraintes, o,, est de 'ordre des
termes négligés. Il est donc raisonnable de la considérer comme approzimative-
ment nulle. C’est pourquoi on considére généralement qu’une sphére mince sous
pression est en état plan de contrainte (o, =~ 0).

FIGURE 5.17 — Sphére mince : calcul de ogg.
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La valeur de ogp peut étre obtenue par le raisonnement simple que voici (fig.
5.17) : la résultante verticale des pressions sur la demi-sphére vaut

/2
p/ cosfdS = p/ cosf - 2w Rsin@ - Rdf
s 0

w/2
= prR? / sin 260d0
0
/2
B o | cos2f
- [,
R2

= p%(cos 0 — cos)
= prR?

Cet effort est équilibré par les contraintes ogg sur I’équateur, dont la résultante
vaut

oot - 2T R
On a donc
prR?  pR
g, = = —
%" onRt 2t

Un raisonnement semblable prouverait que o, a la méme valeur. On en déduit
d’ailleurs

_E_l( )_1_V _ﬁ(l )
g — R = E (ox:T:} VOypyp) = E gpyg = 2F1 14
d’ou =2
_ bR
u_2Et(1 v)

Exercice 26 Montrer que les hypothéses de Saint-Venant pour les poutres,
Op =Tgy =0y =0

impliquent

o, = ao(z) + za1(2) + yaz(z)
ol ag, a1 et az sont des fonctions affines de z pour que la compatibilité soit
vérifiée.

Solution - Les équations de Beltrami-Michell s’écrivent alors
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1.
L(‘yaz — 0
1+v ox2
1 0%,
- 9% _
1+v 0y?
1 0%, — 0
1+v0zdy
ce qui implique
o, = ag(z) + za1(z) + yaz(z)
2.
1 820'2 62Jz
Ao, + —— = 0= =0
et 1+ v 0xdy 0z
1 82UZ 1 da1
ATy, + —— = 0=2Ar,+———=0
g +1+1/8x82 g +1+de
1 9% 1 day
A — 2 = 0=A — =
7-yz_|—1—i—ucr“)g/<9,2 Ty2+1+1/d2



Chapitre 6

Torsion des poutres
prismatiques

6.1 Notion de poutre

Une poutre est un corps élancé, c’est-a-dire qu’une de ses dimensions surpasse
largement les autres (fig. 6.1). Nous placerons l’axe des z suivant la grande
dimension. Dans une poutre prismatique, la section €2 est indépendante de z.
Nous placerons ’origine des axes Gz, Gy de la section au centre de gravité de
celle-ci, dans les axes principaux d’inertie (le triedre (G,z,y,z) est supposé

dextrorsum). Dés lors,
/ xdQ = / yd§) = / xyd =0 (6.1)
Q Q Q

Nous noterons

Q:/ 1dQ, II:/:ﬂdQ, Iy:/y2dQ (6.2)
Q Q Q

La surface latérale de la poutre, y compris celle des trous éventuels, est appelée
manteau.

115



116 CHAPITRE 6. TORSION DES POUTRES PRISMATIQUES

Section 12

FIGURE 6.1 — Poutre

6.2 Torsion uniforme

Les hypothéses de la théorie classique des poutres de Barré de Saint-Venant
[4, 3] sont

0, =0, 0,=0, 75y =0
Pas de charge sur le manteau (6.3)
Pas de forces de volume

Parmi les différents états de contrainte possibles dans ce cadre, la torsion uni-
forme se caractérise par la condition supplémentaire

0,=0 (6.4)
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6.3 Equations d’équilibre

Les équations générales d’équilibre !

801 + asz + 87’12 +fx = 0
'rw 8011 B'ryz o
+ S+ T4 f, = 0
8TIZ + 37’yz + 8@ +fz 0
se réduisent, dans le cadre des hypothéses ci-dessus, a
0Ty 0Ty
=0 =0 6.5
0z T Oz (6:5)
et P P
Txz Tyz
=0 6.6
ox oy (6:6)
On satisfait a ces trois conditions en posant
0 0
Tr = GOZE | 7, = —GOZE 6.7)
dy Ay

0 étant une constante arbitraire et ¢, une fonction de x et y seulement, appelée
fonction de Prandtl [70]. Elle est définie & une constante additive prés.
Sur le manteau, on a n, = 0, et les conditions d’équilibre s’écrivent

N0z +NyTyy = 0
NgTey +Nyoy = 0
NgTez T NyTy, = 0

Vu les hypothéses, il ne subsiste que la seule équation
Ny Tz + NyTyz =0 (6.8)

En termes de la fonction de Prandtl, elle s’écrit

Oy Oy

Définissons sur le contour (fig. 6.2) le vecteur unitaire tangent positif comme

1. Dans les applications, nous utiliserons librement les notations d’ingénieur oz = oz,
Tey = Ozy €t Yzy = 2ezy, €tc. , pour autant qu’aucune confusion ne soit possible avec les
déformations de Green
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FIGURE 6.2 — Normale et tangente sur le contour

obtenu par rotation du vecteur normal extérieur de w/2 selon la régle du tire-
bouchon autour de ’aze z. Alors, comme

ng = cosf, ny, =sind
on obtient
i .
t, = cos(f + 5) =—sinf = -—n,
ty = sin(6 + g) =cosf = mn,
L’équation (6.9) devient alors

dp . O0p ¢ _

toot 1,20 = % =
or "oy o =V

ce qui signifie que ¢ est constante sur toute composante connexe du contour C.
Appelant Cy le contour extérieur, on fixe la constante arbitraire dans la définition
(6.7) de la fonction de Prandtl par la condition

SO‘CD =0 (6.10)

Sur les contours intérieurs C;, on peut seulement dire

ele; = @i (cte) (6.11)
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On peut également prolonger la fonction ¢ & Q¢ = QU (|, ;) ot les Q; sont
les trous, en posant

® = ¢ dans
© = ¢; dans €

La fonction prolongée ¢ permet dans bien des cas de simplifier le probléme.
Proposons-nous de calculer les résultantes du champ de cisaillement. Les
efforts tranchants sont définis par

n:/uﬂmnz/@m
Q Q

On a
T, = GG/ aﬁdQ =GO a—SpalQ =Go pnyds =0
o Oy Qo y Co
T, = —GG/ 8—<’0d(2 = —G0/ a—@dQ =—-G0o pngds =0
0 333 Qo 83) Co

La résultante du torseur des contraintes tangentielles étant nulle, il posséde donc
un moment indépendant du point par rapport auquel il est calculé. Ce moment,
dit moment de torsion, vaut (fig. 6.3)

FIGURE 6.3 — Moment de torsion

M, = / (xTys — YTz2)dQ
Q
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M,

dp Oy
- Fay=r) a0
Go i (Iax +yay>d

dp &ﬁ)
= -G r—— +y—— | dQ
QO< Ox yay

or 0Oy
—-Go TNy + yny )pds + GO D ( + ) dQ)
CO( yny)$ 0.7 \az T oy

260 [ @d0
Qo

Ce résultat peut s’écrire

M,
J=— =2 pd2 6.12
&= ¢ (612)

6.4 Compatibilité

Nous exprimerons la compatibilité a ’aide des équations de Beltrami-Michell

1
DkkUij + mDijO—kk =0

Tenant compte des hypothéses et des équations d’équilibre (6.5), on obtient

V7. =0, V71, =0 (6.13)
en notant
0? H?
2o — 14
v 92 + a7 (6.14)

Ces équations, qui s’écrivent encore

27:0 27:0
v(?z: ’Vﬁ'y

impliquent
Vip=C = cte (6.15)
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6.5 Choix de la constante C

Partant des relations générales

Lo w 1 o o
GTIZ_’YEZ_aZ oz’ GTyz—’sz—az By

on obtient, en termes de ¢,

do_ou 0w 00 o0 ou
gﬁiyiaz—'—am’ gﬁwiaz—i_ay (6.16)

Dérivons la premiére de ces équations par rapport a y, et la seconde par rapport
a x. On obtient

0%w B 0% B 0%u
oxdy Oy Oydz
2 2 2
_Ow G0 O
Oxdy 0x?  0x0z

En sommant ces deux équations, on élimine w, ce qui donne

0 (Ov Ou
2 —_ _— — g
V7ot 0z (8:10 8z> 0

Le groupement entre parenthéses n’est autre que le double du vecteur rotation
local w autour de ’axe de la poutre. On a donc

Qa—w = —OV?p=—-C0
0z

Par conséquent, la torsion Ow/0z des fibres est constante par rapport ¢ z. On
s’apercoit qu’en posant

C=-2 (6.17)
on a simplement

Ow

_— = ~1

P 0 (6.18)

ce qui donne & 6 une signification simple. L’équation régissant la fonction de
Prandtl est alors
Vip= -2 (6.19)
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6.6 Intégration des déplacements u et v

Les déplacements u et v vérifient les équations constitutives

ou 1

9y = = E(Ul» —vo, —vo,) =0 (6.20)
0 1
FZ = &y =50y —vos —v0:) =0 (6.21)
Ju v 1
De plus,
o0 _on_,
or Oy «
ce qui, couplé avec (6.22), donne
v ou

Les équations (6.20) et (6.21) entrainent alors

Ow _ 0 (Ou _ Ow_ 0 (0vy_,

dr oy \ox) oy Ox\dy)
c’est-a-dire que l’angle de rotation w a une valeur unique dans toute la section.
On déduit donc de (6.23), (6.20) et (6.21)

u=1up(z) —w(2)y, v=1v9(z) +w(2)x (6.24)

Examinons la variation de ug et vg. Des équations

ou  Ow ov  Ow
TxZ—G(aZ—Fax), TyZ—G<8z+ay)

on déduit
OTs» 0%u 0w 0Ty v 0w
0=, _G(B,zz+8x8z>’0_ 0z _G(822+0y82>
et comme P 1
v =¢,=—(0,—vo, —voy) =0
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on obtient, & partir de (6.24) et (6.18)

?u  O%up 0%v 9%
— _— = — = .2
022 022’ 0722 022 (6.25)

Par conséquent,
ug = A1 + Asz, vg = By + Bsz (626)

Les paramétres A; et As régissent un déplacement de corps rigide et peuvent
donc étre omis. On a alors

u= Asz — (02)y, v = Baz+ (62)x

Posant
As B>
yr = 77 T = —7
on obtient
u=—0z(y —yr), v="~0z(x —xr) (6.27)

x7 et yr définissant les coordonnées d’un centre de torsion.

6.7 Intégration du déplacement w

Eliminant ¢ entre les deux équations (6.16), on obtient, par (6.20) et (6.22)

9 o % N Pw 0w
OxOy 0x0z  0x%2  Oz2
g o 0% N Pw 0w
OxOy oydz  Oy?  Oy?
d’ott
Viw =0 (6.28)

Les conditions aux limites relatives au champ w s’obtiennent comme suit : par
(6.16),

ow dp  Ou % -
5 = gm0 (5re-w)
ow 70890 5‘1):70 <8<p >

aiy N dr 0z %+Z7:ET
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On a donc
ow dp dp
£ =0 [nzay - ny% +na(y —yr) — ny(x — xT)]
soit 5 5 9o
w ©
an =0 [t %+t 87+nw(y yr) _nv(x—xT)}
Comme 9p/0t = 0 sur le contour, on a simplement
O Blnaly —yr) —myle )] (6.29)
Tenant compte du fait que
d d
Ng =ty = dt(y yT) et ny**txzf%(xfxT)

on peut encore écrire

ow 9 d {(mxT)ZJF(ny)Q]

Dans le cas de sections multiplement connexes, I'intégrabilité de w n’est pas
garantie sans condition. En effet, on a , sur les C;,

oo o ow
o Toxr Yoy

H[tgc(ay Y yT) ty(‘ax ) xT)]
— —H[ny(y—l—y—yT)—i—nw(—i—x—xT)}

_9 [g +ng(x —x7) +ny(y — yT)}

La condition d’intégrabilité de w est alors

0_/&%‘: 9{/ ﬁdH/_ n:c(xxT)+ny(ny]d5}

soit, en faisant usage de la normale intérieure n~ = —n (fig. 6.4),



6.8. PRINCIPE VARIATIONNEL (PRANDTL) 125

FIGURE 6.4 — Normale intérieure

/ci %ids / [n; (x = x7) + 1 (y — yr)lds

i

0 0
x(x_xT)+ %(y_yT) dQ

I
EaEe
| —|
gl

20,

Ainsi, dans le cas de sections multiplement connexes, la fonction de Prandtl
devra encore vérifier les conditions

o
/Ci s =204 (6.31)

pour que 'unicité du déplacement w soit assurée.

6.8 Principe variationnel régissant la fonction de
Prandtl étendue

De I’équation

V2p = —2 dans Q
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on déduit, comme @|¢, =0 et ¢

C; = Pi,

0

/ (V2 + 2)60dQ
Q

= Z&pi/ a—@dsf/gradcpgradégonJrQ/5g0dQ
on Q Q

i Ci
/ %ds = 2Qi
C; 371

0 = 2) 6pi%+2 [ 5pdQ— | grady - graddpdQ
p Q Q

Tenant compte du fait que

on obtient

2 0pdS§) — / grady - gradd@ds?
Qo Qo

ou encore,

1
) {/ |grad¢>|2d9—2/ cﬁdQ} =0 (6.32)
2 Qo Qo
les variations §¢ étant astreintes aux conditions
dPle, =0, dp|a, = dpi(cte) (6.33)

Ce principe variationnel peut d’ailleurs servir de base pour démontrer ["unicité
de la solution . En effet, supposons qu’il existe deux solutions M) et ¢(2),
Elles vérifient

/ gradgV) - gradépdQ = 2 / 5pdQ)
Qo Q0
/ gradg® . gradépdQ = 2 / 8pdQ)
Qo QO
Soustrayant ces équations variationnelles, on obtient
/ grad(¢™) — ¢ . graddpdQ = 0
Q0

ou, en posant 1) = (1) — 3@,

/ gradi) - gradd@d) = 0
Qo
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Or, '(/AJ est une variation J¢ admissible, car elle vérifie les conditions (6.33) :

7[}‘60 = 95(1)\&) - @é? =0-0=0
Plo, = ¢Wla, — ¢P|a, = i — i = Pi(cte)

On a donc
/ gradz[} . gradd}dQ =0
Qo

ce qui implique
gradiy = 0 dans Qg

et, comme 1[1\00 =0,ona=0.

6.9 Principe variationnel régissant le gauchisse-
ment

Rappelons que l'on a

V2w = 0dansQ
ow

o, = One(y—yr) —ny(x - o) sur €

Il est donc naturel de poser
w = Ogr (6.34)

ce qui définit le gauchissement gr, ce qui donne
VZgr = 0dansQ

Ng <852T_y+yT>+ny <aagyT+x—xT> = OsurC

Il est encore équivalent d’écrire ’équation dans €2 sous la forme
0 8gT 0 6gT
il _ — [ == — =0 6.35
ax<az y+yT>+ay< +x—ar (6.35)
Pour éviter de faire apparaitre explicitement xzr et yr, définissons la fonction
auxiliaire
g =gr +yrx — TTY (6.36)
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Elle vérifie les équations

( +a@(6g m) = 0dans Q

)
(B e (B < owe s
On a donc

0 (0g d (0g
= — | = - — | == Q
/Q {31’ <393 y) "oy (31/ +x>} °91
_ 9g g
_/C[nz o y)—i—ny <8y+x>] dgds
dg ddg dg ddg
LG -) 32+ (5 =) Ty owee
L’intégrale de contour est nulle et comme
09\ _ by (09, \_ 0
6<8x y)_ax’6<8y+m - Oy
on obtient le principe
1 dg 2 dg >
5{2/9 [(ax‘y) “(5+)

Ici encore, ce principe variationnel permet d’assurer l'unicité de la solution.
Supposons en effet qu’il existe deux solutions g; et gs. Elles vérifient

g1 dég oq d6g
- — Q. =
LUE )3 (5+) 5 ’
992 dég 092 ddg
992 ) %9 a0 =
Jl(GE )5 (5 ) Gl - o
Soustrayons ces deux équations et posons ¥ = g; — go. Il vient

oY dég Oy Ddg B
/Q<3x ox + oy 8y)dQ_0

Or, 1 est une variation dg admissible, ce qui implique

dQ} =0 (6.38)

/ lgrady)[2dQ = 0
Q
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soit
grady =0

ou encore,
P = cte

La solution est donc définie & une constante additive prés. On fixe cette constante
en imposant la condition

/ gdQ =0 (6.39)
Q

qui exprime que le déplacement d’ensemble est nul.

6.10 Centre de torsion

Le moment est venu de choisir un centre de torsion (z7,yr). On exigera a
cet effet que

/ grxd) =0, / grydQ =0 (6.40)
Q Q
c’est-a-dire que les rotations moyennes de la section s’annulent. Comme

gr = g — Y% + TTY

on obtient les conditions
1 1
yr = — [ xgd, xr = —— [ ygdQ (6.41)
I, Q I'y Q

Ces coordonnées définissent le centre de torsion de Weinstein-Kappus [36, 28].

6.11 Meéthodes de résolution

Dans ce qui suit, nous présenterons d’abord quelques solutions exactes. Mal-
heureusement, la théorie ne s’applique facilement qu’a quelques sections simples.
Pour des géométries plus compliquées, on ne peut s’en tirer sans faire d’approxi-
mations. Un outil fécond pour construire celles-ci est constitué par les deux
principes variationnels ci-dessus.
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En approchant la fonction de Prandtl, on obtient une théorie sous-estimant?
la raideur de torsion, mesurée par le module

M,
2o [ a0
7= Ga /Qo‘pd

Au contraire, en approchant les gauchissements, on surestime la raideur de
torsion 3. Le module J se calcule alors par

M, dg dg
_ M 99 _a (99 0 42
== [, (o) v (5 -v)] 4 (042
Notant que, pour dg = g, on obtient par (6.38)
_ [ % (% 99 (99 _
A EIC TR I T T P

on a encore

Q) (6.44)

- dg 2 dg 2
=[G ) (5 )

On remarquera d’ailleurs que la relation(6.43) implique

(o)== |(52) + (32) ]
= () ()

Ainsi, la raideur de torsion de Barré de Saint-Venant est inférieure a la raideur

de torsion de Coulomb (I, + I,) chaque fois que le gauchissement g différe de
26r0.

si bien que

ds?

En effectuant deux calculs approchés, 'un pour la fonction de Prandtl,
lautre par le gauchissement g, on obtient deux valeurs différentes de J. Leur
proximité relative permet de juger de la qualité des approximations.
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FI1GURE 6.5 — Ellipse

6.12 Solutions exactes

6.12.1 Torsion d’une poutre a section elliptique

La fonction de Prandtl doit s’annuler sur le contour de ellipse de la figure
6.5 dont le contour a pour équation

Mais on a justement

si bien que la fonction

vérifie I’équation

et constitue donc la solution cherchée. On en déduit les contraintes

Ao a’y
v = G0 = ogp Y
T, G 3y G PR
) b2z
Tyz - 7G067y = 2G0a2 T b2

2. La justification de cette assertion sera donnée dans le chapitre relatif aux principes
variationnels en élasticité.
3. Idem.
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En ce qui concerne la raideur de torsion, il faut calculer
a2b? 22 g2
J=2 dQ2 =2 1—— —%)dQ
/Q ¥ a2 + b2 /Q ( 02 b2>

x=apcosh, y=">bpsinf

Posons

avec
p €]0,1], 6 €]0, 2|

Le jacobien vaut abp et on obtient

a3b3 1 (L3b3
:27a2+b2.27r/0( )dp*7r2+b2

Vu la symétrie du profil par rapport aux axes, le centre de torsion devra se
trouver & ’origine. Le gauchissement g vérifie les équations

dg dy 2a%y b2 — a?

o = oy VT @i VT EreY
dg dp 2% b2 — a2
ay ~ o YT T a@iR T ot

ce qui donne, en tenant compte de la condition fQ gd) =0,
b2 2

a
g:
¢

2 +b2xy

6.12.2 Torsion d’une poutre a section rectangulaire

Supposons que, dans la section représentée en figure 6.6, on ait b < a et
définissons la coordonnée auxiliaire

T=Yy+5
On cherche alors une solution par la méthode des séries simples de Lévy, qui

consiste & poser
= mrn
E ) sin —
n=1
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FIGURE 6.6 — Rectangle

ce qui permet de vérifier dés le départ les conditions de nullité de g en y = +b/2.
On a immédiatement

e 2.2
2 » n-m .. nmn
A4 Y = nE:1 <An - bQAn) S T

Pour résoudre I’équation V2p = —2, il convient de développer la fonction
unité en série de sinus. En raison de 'orthogonalité des sinus,

b
b
/0 sin m;m sin n%bmdn = §§mn

on obtient, pour
o)
. nmn
1= nz_:l Q, sin -

les relations

b b nmy b nmwn1b b "
50m _/0 s1an17— -— {cos —} =—[1-(-1)"

ce qui donne

4 §i  noest pair
oy = nm . . .
0 si n est impair

si bien que

1 4 i 1 . nmy
= — —sin —
n b
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L’équation & résoudre se développe donc en

= »  nim? 8 . nmn
> (A”_bQA"+m) sin ==

impair

> 5 71271'2 . TL?T?]
+ Z (An - bZAn> sin —= =0

Pour n pair, on obtient

ce qui donne
A, = Bnch$ +cnsh$

Les conditions A, (f+a/2) = 0 ménent alors & B, = C,, = 0.
Pour n impair, ’équation s’écrit

» n2m2 8

et admet pour solution particuliére

8b2
An = 373
d’ou la solution générale
nmwx nnT 8b2
A, = B, ch - + Cp, sh - + 3.3

Les conditions de nullité aux extrémités « = +a/2 s’écrivent

nmwa nwa 8b?
Buch (£7557) + Cush (£757) + 1575 =0
ce qui implique C,, =0 et
8 1
B, =

n37w3 ch L;)W«
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A, = 8 1— ch %~
n3m3 ch =%

Il vient donc

et la solution finale s’écrit

8b2 0 1 ch nrx
= L (1_ nfm)sinmm
T 1 n ch b b

est la primitive seconde de la série représentant la fonction(—2), nulle en n = 0
et 7 = b. Elle est donc égale a

b2
— — 2 -
nn—">0) =y 1

ce qui permet d’écrire ¢ sous la forme
b2 82 o~ 1 ch™™®  pnr(y+b/2
o= ( 2> a S b (y+1b/2)

— — sin
4 3 n3 ch &3¢ b

impair

La série restante se présente alors comme une correction aux extrémités des
deux premiers termes qui constituent la solution-limite pour b/a — co.
Une simple dérivation conduit & l’expression des contraintes :

Tez dyp 8b o= 1 ch™Z  nu(y+b/2)
—_— = —_ = —2y—- — _
Go By e 2:: n?chzze T
impair
T _ Op _ 8b g~ LshiE . nm(y+5/2)
G dr w2 = n? ch &3¢ b
mpair

La valeur maximale de 7., est obtenue en x = 0, y = +b/2 et vaut

(o9}

8b 1 1
vxlmae = GO |0+ 5 Y S
‘T |maz + ’/T2 — TL2 Ch n271;)a

impair
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Calculons a présent la raideur de torsion. On a

J = 2/<de
Q
b3 b/2
= —2a/ y>dy

2 —b/2

1 b2 00 hnﬂ'm b/2 b/2

6 Z 3/ / sin 7n7r(y+ /)dy
el n a/2 Ch b/2 b
impair

ab®  ab®  16b2 1 2b nma b
Z Zth— —

= — - — - — — 2
2 6 T ndnr 2b nw
irzgmr
soit finalement
ab?® 1926 <= 1 nwa
J=— 11— —— — th —
3 ™ a Z nd 2b
irﬁ;air

Dans cette expression, le facteur entre parenthéses constitue la correction par
rapport & la valeur ab®/3 qui est la limite du module de torsion pour a/b — oo.
On peut approcher la valeur ci-dessus par une expression plus simple que
I’on obtient de la maniére suivante. A partir de n = 3, on a nécessairement
(puisque a > b)
nma _ 37
— > — =4,712
20— 2
Pour cette valeur de 'argument, la tangente hyperbolique vaut 0, 99984 et différe
donc de 'unité de moins de deux dix-milliémes. On a donc

ab® 192 b Ta =1
J~—|1———|th—
3 ™ a 2b + nz:; nd
impair

11 suffit alors de calculer, & partir des résultats bien connus relatifs aux séries de
Riemann [1]

1
Yo ==> —5 —1=1,00425376279513961613...—1 = 4, 253763...1073
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ce qui donne la formule

ab? 192 b Ta
z—l——f(h— 4, 24'1*3)
J 3 [ ™ a ijL g 0 ]

qui a au moins le mérite de ne plus contenir de série & calculer.
Venons-en au calcul du gauchissement. Ici encore, la symétrie implique que
le centre de torsion coincide avec le centre de gravité. On a donc

9g 9o
or 8y+y
B 8b o= 1 ch™Z  nu(y+b/2)
= Va2 n?ehrze T
im;air
et
99 _ _9¢ _
oy or
8b =~ 1sh™Z  nu(y+b/2)
= —x—i—; le::l ?ch%sm b
impair
d’ou

gl S EE R
— n?ch "¢ b

impair

Il se décompose en un terme relatif aux sections longues — le terme (—xy) — et

un effet de bord & décroissance rapide si a/b est grand.

6.12.3 Trou circulaire axial trés petit dans un arbre cylin-
drique

La section est représentée en figure 6.7. Le trou circulaire est supposé trés
petit, c’est-a-dire que la distance r du centre du trou au contour de ’arbre vérifie

2
(9) —ex1
T

pour tout 5. L’équation du contour est

2 +b? — 2brcos f = R?
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FIGURE 6.7 — Arbre avec trou

Par ailleurs, la fonction

1, R? — b?
= ——71° 4 brcos
©o 57+ B+ 5
est une solution particuliére de 'équation V2p = —2, car il en est ainsi de

(—72/2), et les autres termes sont de la forme RF(z) avec

2 12
F(z)zbz—i—R b

et donc harmoniques. Visiblement, la fonction ¢y s’annule sur le contour exté-
rieur. Par contre, sur le cercle de rayon a, elle vaut

2 2 _p2

<p0=—%+abcosﬁ+ 5

ce qui n’est pas constant. Mais en y ajoutant la fonction

2 2
w1 =-—R (a b) :fa—bcosﬁ

z r
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on obtient une fonction constante sur le cercle de rayon a, & savoir

2 2 R2 12
@:—L+bcosﬁ r- )y =
2 T 2

La valeur de cette fonction sur le contour intérieur est

a2  R?—1? 2
ot TOU

tandis que sur le contour extérieur, sa valeur absolue est
2 2
a“bcos a
_@’beos < —br = O0(cR?)
T 72

trés petite devant la précédente, et tendant vers zéro avec .
Les contraintes valent alors

1 190p . a®
@Trz = ;% = —bsmﬁ (1 — 7’2)

1 dp a?
—Gomz = o —r—bcosﬁ(l—i—rz)

Sur le contour intérieur, on a
T, = GO(a — 2bcos f5)
et cette contrainte atteint pour f = 7 son maximum
Tmaz = GO(2b+ a)

Pour a — 0, le coefficient de concentration de contrainte vaut donc

Tmam _

- Gob

ag
Sur le contour extérieur, on a
a2
2+ TEZ = (Gh)? {TQ — 2brcos B (1 + 2)
r

2

+62cos2ﬂ(1+aQ
.

139
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et, pour a — 0,
72 = (GO)? [r* — 2br cos B + b%] = (GO)*R?

Il n’y a donc pas de supplément de contrainte sur le contour. En conclusion,
I'influence du trou sur la résistance ne se fait sentir que si

2GOb > GOR

c’est-a-dire si
b > i
2

6.13 Solutions approchées (fonction de Prandtl)

On peut obtenir de nombreuses solutions approchées en torsion en considé-
rant des fonctions d’essai ¢ nulles sur Cy et constantes sur les €);, dépendant de
quelques paramétres :

o=¢(x,y;00,...,0p)

On détermine alors les paramétres de maniére que la fonctionnelle

1 R R
Blai,...,ax) = / {2 |gradg|® — 2| d
Qo

soit minimale, ce qui conduit aux k équations

0B

9a, "

Pour déterminer les a;. C’est la méthode de Rayleigh-Ritz. Les a; étant obtenus,
on peut déterminer le champ de cisaillement par

T = (Tpz, Ty) = gradg X e,
et la constante J par

J:/ pdg
Qo

On notera que dans le cas d’une solution approchée, la constante J est toujours
sous-estimée (d’autant moins que la solution est plus proche de la réalité).
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FI1IGURE 6.8 — Théorie de Bredt

6.13.1 Théorie de Bredt

Pour traiter les caissons & parois minces & une cellule (fig. 6.8), Bredt [7] a
proposé la solution approchée suivante. On peut admettre que la variation de
©, entre le contour Cy ou cette fonction est nulle et le contour C; ou elle prend
une valeur constante A, est linéaire. On a alors

A
grady = ?en

e, étant le vecteur unitaire normal & la courbe moyenne C de la paroi, pointant
vers l'intérieur. On en déduit immédiatement

1 A% (1 A% [d
f/ lgradg|® dQy = —/ Stds = — @
2 Ja, 2 ).t 2 J.

et
A
Qo C 2
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en notant S la surface contenue dans la courbe C. Il vient finalement

B(A) = 1A?/ & _ous
27 Jot
Le minimum est obtenu pour
28

A= 5

Je E
On en déduit )
J=2AS = 15

f ds

Ct

résultat connu sous le nom de deuxiéme formule de Bredt. Par ailleurs, la
contrainte de cisaillement, toujours tangentielle, vaut

7':G€é
t

_ 00251

Jett

1
= G9J2—St

M
25t

C’est la premiére formule de Bredt.

6.13.2 Caissons multicellulaires

La méme méthode permet de traiter avec autant de facilité le probléme de la
torsion d’un caisson multicellulaire. Illustrons la méthode sur le caisson & trois
cellules de la figure 6.9. Le cisaillement dans la courbe Cio vaudra Gy, /t, celui
qui régne sur Ci2 vaudra GO(p1 — 2)/t, etc. On a donc

1 2 d 2 d 2 d
7/ grad@|2dQy = 2L L. 1 as . ¥3 as
2 Qo 2 Cio t 2 Ca0 t 2 Cso t

— 2 ds — 2 ds
+ (p1—p2) / 5 (p2 — ¥3) / as
2 Cin b 2 Cag T

et
2/ PdQy = 29151 + 2252 + 2353
Qo
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¢, <,
! 2 3
X
G
A — .
G0

FIGURE 6.9 — Caisson a trois cellules

S1, So et S3 étant les surfaces arrétées a mi-paroi. La minimisation de la diffé-
rence B de ces deux expressions méne aux trois équations

oB ds ds ds
— — + — - — —-25:1=0
(9(,01 </C1o t ‘/Cl2 t ) 1 <~/Clz t ) 72 '
(L L L
aQPQ Ci2 t 1 C20 t Ci2 t Casz t 72

(L8

Ca3 t

oB ds ds ds
o9 _ _ @3 &0 il — 928, =
8803 <\/ng t ) 902 + <\/C30 t + \/C23 t ) 803 53 0

permettant de déterminer aisément @1, o et 3. Ceux-ci connus, on a simple-
ment

J = 2(p151 + @292 + ©353)
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FIGURE 6.10 — Poutre & parois minces ouverte

6.13.3 Poutres a parois minces ouvertes

Dans le cas de poutre & parois minces ouvertes comme celle de la figure 6.10,
la fonction de Prandtl doit s’annuler sur tout le contour. On écrira donc

42
@-A(l—n> avec A = cte

En principe, il faudrait encore tenir compte de la nullité de ¢ aux extrémités
comme le point B de la figure. Cependant, cet effet de bord se fait sur une
longueur trés faible, de I'ordre de I’épaisseur t, et nous le négligerons a titre
d’approzimation supplémentaire®. Le champ de cisaillement se déduit par déri-
vation :

8An

12
1l est linéaire sur I’épaisseur. Calculons les deux termes de la fonctionnelle B &
minimiser :

lgradyp| =

ds
dp|?d = 3242 / =
/ lgradyp| 3 1018 ot

4. Strictement parlant, il s’agit d’une violation des principes de la méthode de Rayleigh-
Ritz.
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2/<de:2A/gtds:éA/tds
Q c3 3 Je

8 5 [ds 4
B(A)—3A/Ct 3A/Ctds

Le minimum de cette fonction de A s’obtient pour

O:@:EA §fé/td5
dA - 37 ). % "3/,

et

ce qui donne

ce qui donne
1 fc tds

B

A

On obtient donc

2
td
J= éA/tds _ 1(ctds)” df)
3 Je 3 ch
et

1A GO fytd
Tmas = GOlgrad@lmas = GI-—— = GO Jetds

min tmin ct

ou, en termes du moment de torsion,

3M,
tmin Jo tds

Tmax =

Pour une épaisseur ¢ constante, on a simplement

1
J = gGht3
avec
h= / ds
c
et
T=Got = 3M,

145
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T)’

|

|

|

!
__._!_.____H

b

FIGURE 6.11 — Section rectangulaire

6.13.4 Solution approchée pour les sections rectangulaires

Pour la section rectangulaire représentée en figure 6.11, on suppose b < h.
On cherche une solution de la forme

o) = (1- ) 10

f(y) étant une fonction a déterminer, avec la condition f(£h/2) = 0. On a donc

Op x
or —bjf(y)

0 x?
afg; (1 - 4bQ> f'()

d’ou

1
f/ |grady|?dQ
2 Jo

h/2 b/2 2
h/2 —b/2 b
1 "2 /16 , 8

_ - - b 12 d
2/_h/2 (3bf 15 / ) Y
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2/ gdez?/ =bfdy
Q —ny2 3

La condition d’extremum meéne & I’équation

On a d’autre part

8, ., 16 4
—1—56f + 3bf 3b—0
soit

10 )

f”—bjf:—i

La solution générale de I’équation homogéne s’écrit

10 h /10 h

147

et une solution particuliére de ’équation compléte est visiblement donnée par

ce qui donne au total

10 h 10 h b2
f—fo+f1—Ash\/b<y—2>+Bsh b<y+2>+4

Les conditions aux limites sont

/1 b?
eny=~h/2 : Bsh b—gh:fz

1 b?
eny=—h/2 : —Ash b—gh =-7
ce qui donne, en notant, pour la concision, 3 = \/TTO,
R B IR )
4 sh Bh sh Bh

On notera que

Shﬁ<yg) shﬂ(y+g)

shﬁychﬂg fshﬂgchﬂy

fshﬁychﬂg fshﬂgchﬁy

= 728hﬂg ch By
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et que

h h
sh Bh = 28h650h55

B () ey
I= 4 (1 chﬁé’)

b3 h/2
J = — fdy
3 —h/2

_ v 2 sh 32
3\ Beplk

b 2 h
- 5(r-5m2)

soit, en réintroduisant la valeur de S,

1 b hy/2,5
J=h(1- th ’
3 ( hv2,5 b )

ce qui donne finalement

On obtient donc

On a par ailleurs

4 1
Tmaz = gf(o)Ge = Gob (1 - s WF)

Cette solution approchée est trés proche de la réalité, comme le montre le tableau
suivant :

b 1 15 2 3 1 00
) approché | 0,140 | 0,195 | 0,228 | 0,263 | 0,281 | 0,333
exact | 0,141 | 0,196 | 0,229 | 0,263 | 0,281 | 0,333
Tmaa/(GOb) | approché | 0,605 | 0,815 | 0,915 | 0,983 | 0,996 | 1,000
exact | 0,675 | 0,852 | 0,928 | 0,977 | 0,090 | 1,000

6.14 Solutions approchées (gauchissement)

La fonctionnelle & minimiser est ici

1 dg 2 dg 2
A—Q/QKax‘y) ()
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la fonction g n’étant astreinte & aucune condition aux limites & priori. Le résultat
de la minimisation fournit la fonction g & une constante additive prés, que I’on

fixe par la condition
/ gdQ =0
Q

On peut alors obtenir le centre de torsion par les relations

1 1
T = —f/gydﬂ, yr = 7/ grdS)
Iy Q Ix Q

La raideur de torsion est alors donnée par

e [ ()]

et les contraintes valent

_ (% ol
Tm—GG(am—y),TyZ—Ge(ay—i-x)

6.14.1 Solution élémentaire pour les sections massives

La forme la plus simple que I’on puisse imaginer pour la fonction g est
g = Azxy
Cette fonction a bien son intégrale nulle. On obtient

A= / [(A—1)%° + (A+1)%2%]dQ = (A—1)’I, + (A+ 1)°L,
Q

Minimisons par rapport & la constante A :

dA
0= 1= 2A-1)I,+2(A+ 1)1,
soit
e I, — I,
IP

Pour la raideur de torsion, on obtient

I,—1,—I,—1I,\° I, — I, +I,+1,\°

p p
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soit
J_ 41,1,
I,
Les contraintes de cisaillement valent
I,
Tee = GOA-1)y=—-2G0—y
I,
I
Ty = GOA+1y= QGGI—x
p
Enfin,
I2y? + [22?
IT| = /72, + 72, = 2GO0

I
r étant la distance a D'axe.

Cette théorie, exacte pour une section elliptique, représente la correction
la plus élémentaire que ’on puisse apporter & celle de Coulomb. Elle donne
souvent une premiére approximation raisonnable. Examinons par exemple le
cas des sections rectangulaires. On a

[ hb? B bh?
o127 Y12

Nous poserons, pour fixer les idées, h > b. On a donc

bh? b?

et 1 1
J = zhb’—
3 14+ 4%
Quant aux contraintes, elles valent, selon cette théorie,
oy
Tee = —2G0—
x
Tyz = 2G0—=
hZ

Le maximum de leur résultante a lieu pour x = b/2, y = h/2 et vaut

Tmaz = Gebi1

1+5



6.14. SOLUTIONS APPROCHEES (GAUCHISSEMENT) 151

En comparaison, la théorie de Coulomb donne la valeur

2
Tmaz = GOV/D? + h? = GOby[1 + ZLZ

On peut donc établir le tableau suivant :
h/b 1 1,5 2 3 4 00
J/(hb?) approché | 0,167 | 0,231 | 0,267 | 0,300 | 0,314 | 0,333
exact | 0,141 | 0,196 | 0,229 | 0,263 | 0,281 | 0,333
Coulomb | 0,167 | 0,271 | 0,417 | 0,833 | 1,42 00
Tmaz/(GOD) | approché | 0,707 | 0,832 | 0,894 | 0,949 | 0,970 | 1,000
exact | 0,675 | 0,852 | 0,928 | 0,977 | 0,990 | 1,000
Coulomb | 1,000 | 1,803 | 2,236 | 3,162 | 4,123 0
On remarquera cependant que les contraintes maximales sont mal position-
nées.

6.14.2 Sections rectangulaires

On peut également approcher les sections rectangulaires en prenant un gau-
chissement de la forme

9(z,y) = yf(z)

en supposant que le grand coté h est dirigé suivant 'axe des z. L’autre coté a
pour longueur b. On a alors

dg /
Loy = (@) -1
dg B

et

12,
A= 2/h/2 [12<f S0 4 2)?] de

Variant f, on obtient ’équation

bS
—1gd7 T b =0

soit 19 19
Zf= ?z

fﬂ _ b2
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et les conditions naturelles d’extrémité

3
%(f'fl):Oenx:j:hﬂ

Une solution partielle de ’équation différentielle est
f=—x
Comme la solution générale de I’équation homogéne associée est
f=AchpBx+ Bsh(x

avec

on obtient comme solution générale de I’équation compléte
f=—-x+ AchBzx+ Bshpzx

Les conditions d’extrémité sont

h h h
f <) = —1+pAshf—-+pBBchf- =1
2 2 2
h h h
"-=)] = —-1-BAshB-+pBBchfp- =1
f(2) BAsh B3 + BB ch g
On en déduit aisément A = 0 et
B2
Bch Bz
ce qui donne finalement
h
Fo—zt2 S Bxh
BChﬁg
Pour effectuer le calcul de J, notons que
h/2 b3
g= [ |G =0+t 4| as
nya 12

h/2 b3 .
+/_h/2 [_IZ(f —1)+o(f +x)x|dx
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La premiére de ces intégrales est nulle, comme on s’en rend compte en posant
6f = f dans la variation premiére de A. Il suffit donc de calculer

h/2 13 3 rh/2 h
—/ o ona = -Z 2 Cﬁf—1 da
—hy2 12 12 J_pj2 \chB3
b3 4 h
= 5 (2h ﬁthﬂ2>
h? b h
= 2 thp=
6 38 3
et
}L/Q 2b h/2
bx(f 4+ x)dx = 7/ x sh fxdx
/—h/2 ( ) Bech R )
L {xchﬁxr” /h/2 ch Bz
ﬁChﬁg 5 _h/z —h/2 B
2b h
= chp= h B
B2 chph { g -5 52]
h? v
= _— h —
6 38 B
Au total, il vient
3 3 3
g et 2" hﬁffhb b g b3
3 38 3 W3 b

Il est intéressant de noter que ce résultat est trés proche de celui de la section

6.13.4. La seule différence est le facteur v/3 = 1,732 au lieu de /2,5 = 1,581.
La présente théorie est un petit peu plus raide que celle de la section 6.13.4 :
h/b 1 1,5 2 3 4 00

J/(hb3) ¢ | 0,140 | 0,195 | 0,228 | 0,263 | 0,280 | 0,333

exact | 0,141 | 0,196 | 0,229 | 0,263 | 0,281 | 0,333

g | 0,153 | 0,207 | 0,237 | 0,269 | 0,285 | 0,333

6.15 Exercices

Exercice 27 FEtudier la torsion d’une barre dont la section est un triangle équi-
latéral (probléme de Barré de Saint-Venant).
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a/2

FIGURE 6.12 — Triangle équilatéral

Suggestion - La fonction de Prandtl est le produit des équations des trois cotés,
a un facteur constant prés.
Solution - Dans le systéme d’axes de la figure 6.12, les équations des trois
cOtés sont
y=aV3, y=—av3, y=h

Essayons une fonction de Prandtl de la forme
plr,y) = K (y - x\/é) (y + x\/§) (y —h)
= K (yQ — 3x2) (y — h)
= K (y3 — hy? — 322y + 3hx2)

On obtient successivement

g—i = K(—6zy+ 6hx)
% = K(—6y+ 6h)

%Z = K(3y* — 2hy — 32%)
(;Z‘gf = K(6y— 2h)

si bien que
V2 = K(—6y + 6h + 6y — 2h) = 4Kh = —2
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A condition de poser
1 1

T2 a3
Le résultat est donc

1
w——%(y — hy? — 32%y + 3ha?)

Un examen des lignes de niveau de la fonction ¢ indique que la contrainte
tangentielle est maximale au milieu des cotés. On a

a‘P 2 2
=Go— oy %(Sy 2hy — 3x*)
etenx =0,y =h,
_ G9 2 op2y G6h
soit
Tmas = —Gg h_ GQZ\@ = 0,4330G0a

On calcule J par

J = /gon

y/V3
= 77/ / (y® — hy? — 32y + 3ha?)dx
y/V3

15\/??

soit encore

J = ﬁa‘l
80

On a enfin
Tmaz _ 20

Mt _a3

Exercice 28 Probleme de Weber (1921)[94] - Etudier la torsion d’une barre
ronde de diamétre b comportant une rainure semi-circulaire centrée sur la cir-
conférence (fig. 6.13).
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a) Chercher la fonction de Prandtl.
b) Rechercher la tension mazimale.

¢) Calculer le coefficient de concentration de contrainte

_ Tm(lZE
= Gov/2
et sa limite pour a/b — 0.
y
!
|
r 4\
/N2 ' ' b
| X
!
S
& |
L

FIGURE 6.13 — Barre rainurée

Suggestion pour le point a :

— Equation de C; : 72 —a® =0

— Equation de Cy : r —acos S =0
Multiplier ces deux équations, diviser par r, multiplier le tout par une constante
& déterminer, repasser en coordonnées cartésiennes, vérifier si 1’équation de
Prandtl est satisfaite

Solution de ¢ : la limite du coefficient de concentration de contrainte est 2.
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Exercice 29 FExprimer, pour M; = 20Nm, les contraintes dans la poutre a
parois minces de la figure 6.14, aux points A, B, C et le rapport k = M /6. On
donne : G = 80GPa.

FIGURE 6.14 — Poutre & parois minces

Solution - Par symeétrie, la fonction ¢ ne prend que trois valeurs différentes dans
les cellules, & savoir,

P1 =2 =3 = P4, P5 =Y = P7 = Ps €t P9

et les parois radiales ne jouent aucun role (si ce n’est le positionnement). On a
donc
2
el 1 (p5 — ¢9)

1/ |grad¢|2dQ:1—71'-80—}—1@#-50—1—77%20
2 Ja, 21 2 1 2 1
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et

R 802 — 502 502 — 202 202
2 pdQY = g m————— + s T———— + poT——
Q0 2 2 2

= 19507y + 105075 + 20070y

ce qui conduit aux équations

1300, —  50¢s5 = 1950 (1)
—50(,01 + 70905 - 20(p9 = 200 (2)
—200s + 20p9 = 200 (3)

On en déduit
(3) = w9 = @5+ 10

(2) et (3) = 5 =1 +25
et en conjuguant ce résultat avec (1),
Y1 = 40

d’ou
Y1 = 407 Y5 = 657 P9 = 75

Il en résulte

J = (1950 - 40 + 1050 - 65 + 200 - 75) = 506, 6 - 10®mm?* = 506, 6 - 10~ 2m*

d’oul
k= % = GJ =180-10%-506,6 - 10”7 = 40530Nm*/rad
On a alors
lgradg|sa = ? = 10mm
lgradg|p = ? = 25mm
lgradg|c = 4TO = 40mm

et pourM; = 20Nm = 2 - 10* Nmm, on a

GO = % = 39,48 - 103 N/mm?
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On calcule alors les contraintes en A, B et C par 7 = Gf|grad|, ce qui donne

74 = 0,3948M Pa
0,9870M Pa
1,579M Pa

B

TC
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Chapitre 7

Le probléme de Boussinesq

7.1 Introduction

Le probléme de Boussinesq [6] consiste & étudier un corps semi-infini soumis
& une charge ponctuelle normale au plan qui le limite. En lui-méme, ce probléme
n’a guére d’intérét pratique, mais il constitue une solution élémentaire utile dans
les problémes de contact.

7.2 Systéme de coordonnées et équations

La symétrie du probléme suggére 1'usage de coordonnées sphériques ayant
pour origine le point d’application de la charge (voir fig. 7.1). Toujours pour des
raisons de symétrie, le déplacement u,, doit étre nul, de méme que toute espéce
de dérivées par rapport & la longitude ¢. Nous utiliserons alors les équations de
Navier, ce qui nécessite le calcul des opérateurs divergence et rotationnel. On a

T | 9 5 . g, .
Gfdlvufm E( sm@ur)Jr%(rsmﬁue) (7.1)
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|
|
|

FIGURE 7.1 — Probléme de Boussinesq

et
1 e. reg rsinfe,
) )
rotu Sang | or 00 0
Upr  TUg 0
1[0 (rug) ou,
= —|=—(rup) — —|e
rlor 0 @
= 2we,
en posant
1[0 Ou,
2w = - [m(rug) ~ 20 } (7.2)
Nous avons encore besoin de calculer
1 e. reg rsinf
rotrotu = ——— | 2 2 0
2 o or 00
resind 0 0 2wrsinf
2 0 2 0
= —— inf)e, — — in6 .
r2sin 6 00 (wrsinf)e rsiné or (crsin f)eg (7.3)
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L’introduction de ces résultats dans I’équation de Navier

2(1-v)

1% graddivu — rotrotu =0 (7.4)

conduit aux deux équations suivantes :

1—v 00 1 5] .
leVE_TQSiHQ%(wrsme) =0 (7.5)

1-v 100 1 0 .
=207 00 rsmgor@rsnd) = 0 (7.6)

Selon e, :

Selon ey :

On peut simplifier quelque peu ce systéme en remarquant que 1’équation
(7.4) implique, par passage a la divergence, la suivante :

Adivu = A© = 0 (7.7)

relation qui peut avantageusement remplacer 'une des deux précédentes.

7.3 Recherche de la solution générale

7.3.1 Forme générale de la solution

La solution générale procédera de la résolution des équations d’équilibre
(7.5) et (7.6). Mais on peut d’emblée remarquer qu'un changement d’échelle
ne peut changer la distribution angulaire des déplacements, car il n’affecte que
les valeurs du rayon et non celles de la colatitude 6. On peut donc donner aux
déplacements la forme générale séparée

f(r)g(0)

Par ailleurs, la force appliquée P doit étre équilibrée par des contraintes
agissant, sur ’hémisphére de rayon r, dont la surface vaut 27r2. Les contraintes
seront donc de la forme

h(0)

2

r

Les déplacements, combinaisons de primitives des contraintes, seront donc de la
forme

Up = Aia), ug = Bi@) (7.8)
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A et B étant des fonctions de 6 seul. De ces expressions, on déduit par (7.1)
et(7.2) celles de la divergence et du rotationnel : d’une part,

1 0 0, . c(9)
0= g {3 (rsinfA) + 50 —(sin HB)} =2 (7.9)
avec
C = A+ B+ Bcotg (7.10)
et, d’autre part,
) sinf f0B A’ D(6)
wsinf = o (87’ — r) =3 (7.11)
ou A sing
p=2"0 (7.12)
2
7.3.2 Détermination de la fonction C
Exprimons & présent ’harmonicité de la divergence : on a d’abord
g (C 10
do = e,— | =
grad® e8r<r2>+ r89( )
C c’
= —ZT—SeT + T—?)eg
puis
AO = divgrad©
1 0 9 . C 0 .
= m |:(‘37= <_2T Sln97ﬂ3> =+ % (TSln9ﬁ>:|
1 C 7 C/
= 7“251119{ 2s1r10+ 5 sinf + — 0059}
La nullité de cette expression s’écrit
C” +C'cotgh+2C =0 (7.13)

Cette équation différentielle linéaire & coefficients variables admet visiblement
la solution particuliére suivante :

C1 = cost
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La méthode générale de résolution des équations différentielles linéaires voudrait
que 'on recherche une seconde solution particuliére de la forme

Cy = z(0) cos b

mais en réalité, on pourra résoudre le présent probléme en se limitant a la
solution
C =acosf (7.14)

a étant une constante & déterminer.

7.3.3 Détermination de la fonction D

Nous utiliserons a présent ’équation (7.6) qui, par (7.9) et (7.10), devient

1—-v 1 1 0 (D
—O - —(=Z)=0
1—2vr3 rsin @ Or (7’)

soit )

1-v C 1

= D=0

1—2vr3  73sinf

ou encore
D=—1"" rging (7.15)
=— sin .
1-—2v

Combinant cette relation avec (7.14), on obtient

1—v
1—2v

D= asin? @ (7.16)

7.3.4 Calcul de la fonction A

On déduit alors la fonction A de I’équation (7.12) :

2D _20-v)

= sng T 1oz sind
d’ou ( )
2(1 — v
A=-—22"Y g cos 1
2 acosf+b (7.17)

b étant une constante & déterminer.
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7.3.5 Calcul de la fonction B

En vertu de la relation (7.10), la fonction B vérifie I’équation

2(1 —
B’+Bcotg9:C’fA:a+(72y)acosf)fb
— v
soit
B’ + Bceotg = 1 : 2Zacosﬁ—b (7.18)

La solution générale By de I’équation homogéne associée qui s’écrit encore

B 3
B cotg g = — 0%
By

sin @

est donnée par
InBy = —Insinf +1Inc

ou encore, par
c
B = .1
Y7 sing (7.19)

Nous chercherons alors une solution particuliére de ’équation compléte par la
méthode de variation des constantes, ce qui revient & la chercher sous la forme

E(6)
= 7.20
sin 6 ( )
Ceci méne a I’équation
E' Ecosf FEcotgf 3—4v 0_b
— = acosf —
sin 6 sin? 6 sin 6 1—2v
soit
E = 2" sinfcosh — bsinf
1—2v
ce qui entraine
3—4v sin?6
= .21
E T—2,% 5 + bcosf (7.21)
Rassemblant les résultats (7.19), (7.20) et (7.21), on obtient
3—4
B=-°_+ v asin @ + bcotg (7.22)

sinf = 2(1—2v)
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Mais cette expression ne peut étre admise telle quelle, car en 6§ = 0, elle don-
nerait un déplacement wug infini pour tout r, du fait du sin 6§ aux dénominateurs
des deux termes extrémes. Il est donc nécessaire d’imposer une liaison entre b
et ¢ garantissant que

lim bcosf + ¢ £ 0o

6=0 sin@

Ceci ne sera réalisé que moyennant la condition ¢ = —b qui, introduite dans les
deux derniers termes du second membre de (7.22), donne

cosf—1 cos?f —1 bsin 6

sin@  sinf(cos@+1)  1+cosf

et raméne donc B & ’expression suivante :

3—4v sin 0
B=_———asinf —b—— 2
2(1 - 2V)asm€ bl + cos (7.23)

7.3.6 Expression générale des déplacements

Les relations (7.17) et(7.23) permettent d’écrire

2(1—v) cos® b

- - .24
1—2v r + T (7.24)

3—4r sinf b sinf

_ _ 0 2

o 2(1—V)a T 71+ cosf (7.25)
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7.3.7 Expression générale des déformations

On a

Er

€

Yro

Yo
VTre

ur _ 2(1-v)acosf b

or 1—-2v r2 r2
10ug u,
r 00 r

3—4v  cosf b cosb+ cos? 6+ sin? 6
2(1—2u)a 2 2 (1+ cosh)?
4—4y cos® b 1+2cosf+cosf
_2(1—2y)a r2 +ﬁ (14 cos9)?
1 cosf b cosf
72(1—2u)a 72 +r71+0059

& + lcotg@
r
acosf b 1+ cos — cost
3—4v—-4+4 —_—
2(1 - 21/)7"2( Y )+ r2 1+ cosf

1 acos&_f_ﬁ 1
2(1-2v) r2 r2 1+ cosf
1 du, 0 (W))

o0 TTar

21-v) a 3—4va b sinf
———~ —sinf — —sinf+2———
1—20 2" 1—ovr2t + 214 cosf

7asin0 b 2sinf

+7
r2 721+ cosf

7.3.8 Expression générale des contraintes

Partant de la relation de Hooke

v
05 = 2G <5ij + 1—2V6”5ij>

notons d’abord que

C  acosf
5”:@:*2: 5
T r

(7.26)

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)
(7.32)
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On obtient alors aisément

o acosfh 2 —v b

2G 2 1-2v 2 (7.33)
oo acosf b cosf

20 — .34
2G 272 + 721+ cosf (7.34)
Op __acos 0 i 1

26 272 + 21+ cosf (7.35)
Tro asinf 2b sinf

— = ——t —— 7.36
2G 72 + r2 1+ cosf ( )
Too = 0 (7.37)
Trp = 0 (738)

7.4 Conditions aux limites

mq

F1aURE 7.2 — Conditions sur la surface libre
Pour r > 0, les conditions sur la surface libre sont (fig. 7.2)

Jc9|(7'::|:7r/2 = O> Tr@‘@::ﬁ:ﬂ'/2 =0

On notera que la condition portant sur oy est automatiquement vérifiée. Quant
4 la nullité de 7,9, elle nécessite

—a+2b=0
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soit
a
b=— 7.39
. (7.39)
Il faut a présent exprimer a en termes de la charge P. Pour ce faire, on

notera que la résultante des contraintes sur n’importe quel hémisphére centré
sur le point d’application de la charge doit équilibrer P. Ainsi que le montre la

FI1GURE 7.3 — Equilibre global

figure 7.3, cette condition s’écrit
/ (70800 — 0, cos ) r* sin fdfdyp = P
s
ou, en tenant compte de la symétrie par rapport a ¢,
/2
P= / (Tr¢ 8in 0 — o, cos 0) 27r? sin Hd (7.40)
0

Nous ferons le calcul en séparant les termes contenant a et les termes contenant
b:
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a) Termes contenant a

71'/2 2 — v
P, = 27nGa / <sin39 2 cos20sin9> do
71'/2 3
= 7277Ga/ {(sin2 0 4 cos? 0) + cos? 0] sin 6df
0 1-2v
/2
/2 3 cos® 4
= —QwGa{— [cos@]o/ “ 1% [ 5,
_ ArGa(1—v)
1—-2v

b) Termes contenant b

7r/2 . 20
P, = 47Gb / (Sm + cos 9> sin 06
0 14 cosé

w/2
= 477Gb/ (1 — cos@ + cos ) sin 0do
0

= 47er[—cost9}g/2
= 4nGbHh

Au total, et en tenant compte de la relation b = a/2, on obtient

1—-v 1
P=P,+ P, =4rGa |- S| = —4rGa——
R =Ar “{ 1—21/+2} T = 2w)
soit
(1—20)P a
= b=2 7.41
“ oG 2 (7.41)

7.5 Solution du probléme de Boussinesq

Connaissant, ces valeurs, on peut enfin les réintroduire dans la solution gé-
nérale, ce qui fournit la solution du probléme de Boussinesq :
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1. Déplacements :

P
U = e [4(1 —v)cosb — (1 — 2v)] (7.42)
Psinf | 1—-2v
= -(3—-4 4
1o 4rGr {1 + cosd 8 V)] (7.43)
u, = 0 (7.44)
7.45)
2. Contraintes :
_ (1-2w)P 4 -2
op = 52 1 T, cosf (7.46)
_ 2
oy = (1-2v)P cos®0 (7.47)

2nr2 14 cosf

(1 —2v)P cosh — sin? 0
= -4
e 272 1+ cosf (7.48)

(1 —2v)Psinfcosf

= .4
Tro 2mr2 1+ cosf (7.49)
Tro = 0 (750)
Top = 0 (751)

Dans les problémes de contact, on s’intéresse spécialement aux déplacements
des points du plan limitant le demi-espace, qui valent

P(1-2v)
u’r|9:7‘r/2 = —W
P(1-v) P(1—1?)
- = — =— .52
uolo=r/ 2nGr mEr (7.52)

7.6 Exercice

Exercice 30 Etudier le probléeme de Lord Kelvin, consistant en une charge
concentrée dans un massif indéfini (fig. 7.4)

Suggestion : Ce probléme ne différe de celui de Boussinesq que par ses conditions
aux limites.
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Chapitre 8

Le probléme de Hertz

8.1 Introduction

Le probléme de Hertz [44] consiste a étudier les forces naissant lors du contact
pressé de deux solides élastiques. Ce probléme a notamment une importance
considérable dans 'étude des roulements & billes [82]. Bien que I'on se place

FIGURE 8.1 — Probléme de Hertz
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dans le cadre de la linéarisation géométrique et d’un matériau linéaire, la relation
entre la force et le rapprochement des deux corps en contact n’est pas linéaire,
pour la raison suivante : sous l'effet de la charge, les deux corps s’aplatissent en
leur contact (fig. 8.1), si bien qu'’il se forme une aire de contact d’autant plus
grande que 'effort est plus important. La raideur s’accroit donc avec la force.

La théorie des contacts ponctuels — on dit encore des contacts hertziens —
repose sur la solution du probléme de Boussinesq, qu’il convient donc d’avoir
étudié au préalable.

8.2 Considérations géométriques

8.2.1 Description de la surface d’un corps

F1GURE 8.2 — Courbure de la surface d’un corps

Considérons un corps C' de surface réguliére S (au moins deux fois différen-
tiable), posé en un point O sur un plan IT auquel sa surface est tangente (fig.
8.2). Nous adopterons le systéme d’axes suivants : Oz sera l’axe normal au plan,
dirigé vers l'intérieur du corps C'; Ox et Oy seront deux axes orthogonaux a
Oz et entre eux (et, par conséquent, situés dans le plan II). Dans ce systéme,
la surface du corps C' admet, dans un voisinage du point de contact O, une
équation de la forme

z=2Z(z,y) (8.1)
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Notre hypotheése de régularité de la surface nous permet, dans un voisinage éven-
tuellement plus petit que le précédent, d’utiliser un développement de Taylor
limité :

0z oz
Z(:Z?,y)Z(O,O)+<ar)Ol’+<ay>oy
1 (922N , [&Z 1/922\ 5 .
+2<ar2>01 +<amay>omy+2<ay2>oy +0(IL‘ +y)

Les conditions de contact entre le corps et le plan s’écrivant

Z(0,0) =0, <8Z> =0, (6Z>
or / oy /),

1 1
Z(w,y) ~ SEna® + Koy + 5 Kooy’ (8.2)

on se rameéne a

ou apparait le tenseur de courbureK;; défini par

0?7z 0?7z 0?7
o= (G7), 20 (i), o= (5), @9

Comme tout tenseur symétrique a deux dimensions, il admet deux axes propres
orthogonaux Ox et Oy tels que

1 1 -
Z(z,7) = §K11£f2 + §K22ﬂ2

Ces axes propres sont appelés azes principaux de courbure. Les valeurs propres
K11 et Koo sont les courbures principales et leurs inverses sont les rayons prin-
cipauzx de courbure. On notera dans la suite

En fonction du signe des courbures principales, on dit que le corps est conveze
ou concave : convere dans toute direction principale dont la courbure est po-
sitive, concave dans toute direction principale dont la courbure est négative et
enfin rectiligne dans toute direction principale de courbure nulle. Une surface
dont une courbure principale est nulle est développable. Seuls les plans ont leurs
deux courbures principales nulles.
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I ;\\_\7
Z

FIGURE 8.3 — Interpénétration fictive des deux corps

8.2.2 Contact de deux corps

Etant donné deux corps élastiques en contact, imaginons un instant qu’ils
puissent s’interpénétrer. Partant de leur position de premier contact, ils se pé-
nétrent mutuellement d’une profondeur h. Prenant l'origine des axes au point
A de la figure 8.3, les surfaces des deux corps admettront donc les équations
suivantes, en se limitant au second ordre :

.o 1N2 I
Corps I @ 20 = 335, Kz,

8.4
Corps IT : 2I1 = h*%Zijﬁ Kiljlximj 5

Le choix des signes est destiné & maintenir la convention de positivité des cour-
bures en cas de convexité. La réalité, bien entendu, est tout autre, et les deux
corps vont se repousser mutuellement comme le montre la figure 8.4. Le corps I
admettra un déplacement w! dirigé vers le haut (c’est-a-dire dans le sens des z
positifs) et le corps II, un déplacement w!! dirigé vers le bas, d’oii les valeurs

12
I _ I, .. I
zZ = 52 Kz +w
ij=1

12
o _ I I1
z = h-— 3 E K vizy —w

i,j=1
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surface
de contact

FIGURE 8.4 — Situation réelle

I 17

de maniére & assurer, dans la zone de contact, 1’égalité des cotes, z*' = z**, ce
qui implique un déplacement total
12
I IT I IT
w=w +w :h—§Z(Kij+Kij)xixj (8.5)
i,j=1
ou apparait le tenseur des courbures résultantes défini par
K=K} +K]! (8.6)

Dans ce qui suit, nous omettrons 'indice supérieur R pour alléger les écritures.
L’étude de ce tenseur est particuliérement instructive. Il admet en effet, comme
les tenseurs de courbure des corps, deux directions principales orthogonales,
dans lesquelles on peut écrire

1 1
w = h— Az? — Bj?, A:§K117 B = 51(22 (8.7)
Lorsque les deux valeurs propres Ki; et Koy sont positives, les lignes w = cte

sont des ellipses : on dit que le contact est ponctuel. Lorsque 'une des deux
est positive et ’autre, nulle, ces mémes lignes sont des droites : le contact est
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linéaire. Enfin, lorsque I'une au moins de ces valeurs propres est négative, le
déplacement est d’autant plus grand que 1’on s’éloigne du centre de contact dans
les directions correspondantes, ce qui signifie que le contact ne peut débuter &
Porigine : le probléme est alors mal posé. Dans ce qui suit, nous nous limiterons
aux contacts ponctuels.

Dans le cas relativement fréquent ot les deux corps se présentent de maniére
telle que leurs axes principaux de courbure soient confondus, on a simplement,
dans ces axes,

w=h— Az* — By?
avec

1 1
A=§(p{+p{1), B=§(p§+p§’) (8.8)

Dans le cas général, les axes principaux Oz’ et Oy’! du corps II peuvent

yI
yIr

xIL

o xL

F1GURE 8.5 — Axes principaux de courbure des deux corps

former un angle o avec ceux du corps I (fig. 8.5). Dans les axes principaux des
deux corps, on aura donc

= ol @)+ 5 )’
et
ho— AT — %p{I (xH)Q + %pél (y”)2
On peut ramener le tout dans les axes du corps I en notant que

1 = zlcosa+ylsina

v = —zlsina+ylcosa
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ce qui entraine

1
h—21 = 5 (p{f cos? o + pllsin® a) (IEI)2 + (p{l - péI) sin o cos axly!
1 . 2
+ 5 (p{l sin? o 4 pél cos? a) (yl)
et
1
w=h— 3 KZJa:ZIxj (8.9)
i,j=1

avec A

ff'n = pl+pllcos?a+ pif sin? o

Kio = (pl! —pil)sinacosa (8.10)

Koy = ph+pllcos®a+ pllsin® o

Les valeurs principales de la courbure résultante sont donc les solutions 24 et
2B de I’équation séculaire

K2 Ky — A
soit
A2 -\ (Kll + KQQ) + (K11K22 — K122) =0 (811)
Il vient donc, en posant arbitrairement B > A,
2B+ A)=Ku+Kn=(pi+pt" +p5+p") =D p (812
et
N N 2 PN N
2B - A) = (Ku + KQQ) 4 (K11K22 - K122)

A~ A~ 2 ~
\/(Kll - K22) +4K73,
I Ly (1T 11 cos2a2+ 7 I 2sin22a
(1 =+ (o1 =2 P1 — P2

(0= 20"+ (64" = o41)" 42 (6f = o) (o1 — 1) cos20]
F(p) (8.13)

1/2

1/2
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On utilise souvent 'angle auxiliaire § défini par

B-A _F(p)

cosd = BrA S, (8.14)
en fonction duquel on obtient aisément
A=(A+B), B s = 2 sl (s19)
+B 2 2 2
et
B:(A+B)AfB:%choszg (8.16)

Ainsi, il existe un systéme d’axes Ox, Oy dans lequel le déplacement total prend

la forme
w=h — Az* — Bjj? (8.17)

A et B ayant les expressions (8.15) et (8.16).

8.3 Equilibre de la surface de contact des corps

P
4B
B
iz /A 2
I W
BI

FIGURE 8.6 — Déplacement en B da & une charge en A

La surface de contact étant supposée trés petite par rapport aux dimensions
des corps, on peut identifier ceux-ci & des massifs indéfinis en ce qui concerne
les efforts. L’étude du probléme de Boussinesq nous a montré qu’une charge
concentrée en un point A produit en un autre point B situé sur la surface (fig.
8.6) un déplacement
I v P

wx (8.18)

TErr ram
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e\
cgm‘acz‘ \?qu

F1GURE 8.7 — Superposition de 'effet des pressions dans la zone de contact

Dés lors, par superposition, un systéme de pressions p appliquées sur la surface
de contact S (fig. 8.7) produit dans le corps II un déplacement

1 _ V2 n n
U)JIBI = - piAdSA = €7 piAdSA (819)
mErr Jsras S TAB
en posant
1-— V%I
5 = 8.20
n=p (8.20)

De la méme facon, le déplacement du corps I vaut

wh, = 6[/ Lo 45, (8.21)
s T'AB

valeur proportionnelle & la précédente, dans le rapport

I
Yp _ L

15 —
wp Err

(8.22)

Le déplacement est donc identique dans les deux corps dans le cas assez habituel
ou ils sont constitués de matériaux de mémes constantes élastiques F et v.
Enfin, le déplacement total, qui a la forme (8.17), vaut

wp = (E[ +E[[)/ piAdSA (823)
s TAB
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Il s’agit d’une équation intégrale en p4, que ’on désire résoudre analytique-
ment pour des valeurs quelconques de h, A et B. On notera ’analogie entre ce
probléme et ’expression donnant le potentiel en électrostatique :

Vi = / LA s,
v TAB
ou
densité de charge

pa = 47T'Eo

Or, il est bien connu (voir annexe) que le potentiel d’une charge uniforme dans

un ellipsoide s’écrit

_ pla, B, 7)
Vimy,2) = /ellipso'ide \/(33 — 04)2 ( — 2 )

dadBdy

= 7rpabc/oo (1 — « ) dg
0 a?+¢& b2+£ 62+£ V(@2 + &2 + &) (e +€)
(8.24)

L’expression de ce potentiel présente une forte ressemblance avec 1’équation
de w, n’était-ce le terme en z. Nous le supprimerons, ainsi que -, de la fagon

suivante. Commengons par mettre les variables & 1’échelle :

r=ar , y=by , z=cz
a=ad , =06 , y=cY

et exprimons V(z,y,0) en termes de ces variables sans dimensions. On a, en
notant B la boule unité,

V(9,0 / pabcdadﬁdv
Prfa2(s - 42 + 825 - B2 + 5

_Wpabc/ <1 v’ — v’ ) de
0 a+& b H+E) a2+ €0 +6)(c2 +¢€)

Divisons les deux derniers membres par ¢ et faisons ensuite tendre ¢ vers zéro.
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On obtient I'identité
/ pabdadBdy
P\a2(e - 6)2 4+ 525 - B)?

—wab/oo<l z? — y2> d<
pav | +& B+E) JE@@+ OB +¢)

dont le premier membre peut étre intégré par rapport & 4 entre les limites

+1/1 — &2 — 32 ce qui donne
/ 2pabdadpy/1 — a2 — B2d5
disque unité

Premier membre =
V(@ — a2+ 0 - )2

/ 2p\/1 — 2% — B2 dadp
B ellipse(a,b)

r

Le résultat final de ces manipulations est

/ p\/lf‘;—;f’g—jdadﬂ
ellipse(a,b)

r

B Lab [e’e] B .132 B y2 dé‘
2, (1 a?+¢ b2+£> VE(@® +6) (b +¢) (8.25)

Nous avons donc obtenu une distribution du type (8.23) conduisant a un dépla-
cement de la forme voulue (8.17). Ceci signifie que la solution consiste en une
pression de la forme

22 g2
P=DPH l_aiz_biz (8.26)
a laquelle correspondent les variables h, A, B par les relations
wab [ dé
h = (E]JrE]])pHi/ (8.27)
2 Jo VE@+E?+9)
wab [ d¢
A = (81+611)pH7/ (8.28)
2 Jo el + P07 +¢)

_ wab [ d¢
B = (e1+ sn)pHT/O NI CEIE (8.29)
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La pression maximale, encore appelée pression de Hertz, est liée a la résul-
tante P des pressions réciproques par la relation

2 2
ellipse(a,b) a b
Posant
x =apcosp, y=bpsing, p€|0,1[, ¢ €]0,27]
on obtient
2 2
dS = ab - 2mpdp, 1—%—%—2:\/1—/)2
a
d’ou

1
pP= pH27rab/ V1 —p2pdp
0

Posant encore p = sin&, on obtient

7'!'/2 2
P= pH27rab/ cos? € sin d€ = gﬂapr
0

soit
PH=-— (8.30)

équation qui signifie que la pression de Hertz vaut 1,5 fois la pression moyenne.
On peut ré-exprimer les résultats (8.27), (8.28) et (8.29) en termes de P au
lieu de pgy, ce qui donne

h = €[+611 / \/f a2—|—§ b2+f) (8.31)

A = €1+€jj \/f a2—|—§§ ECET (8.32)
_ E dg

B = (er+em) /0 NGRS (8.33)

8.4 Résolution des équations

Les équations (8.31) & (8.33) donnent la solution de principe du probléme :
connaissant A, B et P, on peut déterminer a et b par les deux derniéres équa-
tions, puis h par la premiére. Mais il faut pour cela parvenir & calculer les
intégrales des seconds membres.
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Tout d’abord, nous introduirons les intégrales elliptiques complétes

/2 d
K (m) :/ . E(m
0 vV1—msin“x

avec m €]0, 1], dont voici une table [1].

m K(m) E(m)

0 | 1,5780 | 1,5780
0,1 | 1,61244 | 1,53076
02 | 1,65962 | 1,48094
0,3 | 1,71386 | 1,44536
0,4 | 1,77752 | 1,39939
0,5 | 1,85407 | 1,35064
0,6 1,94957 | 1,29843
0,7 | 2,07536 | 1,24167
0.8 | 2,25721 | 1,17849
0,9 | 2,57809 | 1,10477
0,95 | 2,90834 | 1,06047
1 ’¢) 1

On remarquera que ces intégrales admettent I’expression équivalente

7T/2 dl‘
K(m):/ ——,
0 v1—mecos®x

187

w/2
) = / V1 — msin® zdz (8.34)
0

/2
E(m) = /o V1 —mcos? xdx (8.35)

Cela étant, il est aisé de transformer les intégrales apparaissant dans les formules

(8.31) & (8.33).

1. Tout d’abord, en posant & = a?tg? ¢ et e = b/a,

e i
11_/0 VE@ T O+ 9

2 [ /1+tg2¢

aJo e2+tg2yp

ato  /e2cos?p+sin? o

2/#/2 d(,O
alo /1—(1-e2)cos?p

2
ZK(1-¢é?
" (1—¢%)
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ce qui donne

h=(er+em) LR - ) (8.36)

2a

. Le méme changement de variables permet d’écrire

& B 7/ cos” pdp
VE@+ e +e) @b \/620082g0+sin2<p
B cos? pdyp
B a3 \/17 1—e?)cos?

Comme, par ailleurs,

1 1 1
2 2 2 2 2
cos”® p = 1_62(1—6 )cos® p = i 1_62[1—(1—6 ) cos” ]
on obtient
Iy = #[K(l —ef) — E(1 —¢?)
a3(1 — e2)
d’ou
A 3P 9 9
= (5+€2)m[K(1—6 ) — E(1 —¢)] (8.37)
Posant enfin ¢ = b? tg? ¢, on obtient
& B 7/ e cos” pdy
VE@® + &) (B2 + §)3 B Jo Ve2cos2p+sin’ g
_ 2 e cos? pdyp
¥Jo J1—(1—-e)cos?ep
Notant que
1— 2
cos?p = ﬁ cos? @
1
= 1_62[(1—6 ) — (1 — €e?)sin” ¢
1-(1—-e?)sin’yp e?
N 1—e2 1—e2
on obtient 5
2 2
Ii=2K1-¢) - E1-¢?)
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ce qui entraine

3P [%E(l — et -~ K(1 —¢?)] (8.38)

B=brensn—alk

Les équations (8.15), (8.16), (8.37) et (8.38) impliquent

A §  K(-e*)—E(1-¢€?)
p-Eg= IE(1—e?) - K(1—e?) (8.39)

€

Cette équation permet de calculer e en fonction du paramétre ¢ (graphiquement,
on peut tracer une courbe de § en fonction de e). La valeur de e étant connue,
on calcule a & partir de (8.37) et (8.38), en notant que

1 .50 1 50
A:§Zpsm 2 B:§chos 3

ce qui donne
1/3 1/3
3 1 9 9 i3 ( P
a:{sjn2gl—e2 [K(l—e)—E(l—e)}} (6[+€11) <Zp>
(8.40)

Pour une plus grande simplicité, on utilise généralement un module de Young
équivalent E,, défini par

1 1(1-vi 1-v} m
= = 8.41
B, 2 ( Er | En gler +en) (8.41)
a I'aide duquel on peut écrire
p 1/3
=k | =—=— 8.42
e <Em > p> (842

avec

1/3
ko = {61 [K(1-¢®) — E(1-¢%)] } (8.43)

wsinggl —e?

On en déduit d’abord
p 1/3
b=k | —— 8.44
’ (Em > p) (8.4
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avec

puis

avec

et enfin,

ol
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8.5 Comportements asymptotiques

8.5.1

Casoue=1

(8.45)

(8.46)

(8.47)

(8.48)

(8.49)

Pour e = 1, les formules ci-dessus ménent & des formes indéterminées, ce qui
rend nécessaire une étude du comportement des fonctions K et E au voisinage
de e = 1. On a, pour e proche de 'unité,

et

K(1—¢e?)

E(1—¢%)

~
~

%

%

NIH S— S—,

/2 —1)2
/ [1—(1—¢€?)sin®6] de
0

7\'/2 17 2
/ <1+ ¢ sin29>
0 2

7
1—en)X
+ ( 6)8

NN

/2 1/2
[1—(1—¢€*)sin*6] '~ do

/2 1— 2
(1 26 sin29>

—(1-e)g
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ce qui donne

Comme, pour e = 1, on a § = 90° et sin?(§/2) = 1/2, il vient

6m 1/3
ke = ( 2) =V/3=1,442
.4
ky = ks
3 1 NE]
k, = ———_=2"=0,2295
P 27 32/3 2 ’
3 1 & 323
ky = S—2== =1,04
h 73/32 2 040

8.5.2 Trés faibles valeurs de e

Pour e — 0, on peut montrer [1] que

K(1—€?) ~In(4e)

tandis que
B(l-e?)=~1
Il vient alors
; Qé _ K-F
895 T E_ g
e
. n(4/e) -
% —n (4/6)
~ e ln(4/e)

Comme c’est une petite valeur, on a encore

(=)

0
.2 2
sin” — ~ tg® —
B g

N}

191
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d’ou, par les formules (6.40) et suivantes,

1/3
6L -K 1
~ |—e K- FE
Fa [wKEleQ( )
6 1 [(E 1/3
~ |- - - K
P ()]
1/3
~ (6 / —2/3
v
1/3
kib ~ 9 61/3
T
1/3
Lo 3 16N
P 2k ky 4\ 7
2/3
1/6
kn =~ 2<7T> e*/31n(4/e)

8.6 Tables de la solution du probléme de Hertz

8.6.1 Valeurs courantes de ¢

1-— 62 € 5(0) ka k‘b k‘p k‘h

0 1 90 1,442 | 1,442 | 0,2296 | 1,040
0,1 0,9487 | 87,33 | 1,481 | 1,405 | 0,2294 | 1,040
0,2 0,8944 | 85,19 | 1,526 | 1,365 0,2292 | 1,039
0,3 0,8367 | 82,37 | 1,580 | 1,322 0,2286 | 1,036
0,4 0,7746 | 79,09 | 1,645 | 1,274 | 0,2278 | 1,032
0,5 0,7071 | 75,25 | 1,728 | 1,222 | 0,2261 | 1,025
0,6 0,6325 | 70,66 | 1,837 | 1,162 0,2237 | 1,013
0,7 0,5477 | 64,88 | 1,992 | 1,091 0,2197 | 0,9949
0,8 0,4472 | 57,16 | 2,241 | 1,002 | 0,2126 | 0,9618
0,9 0,3162 | 45,28 | 2,763 | 0,8737 | 0,1978 | 0,8910
0,95 0,2236 | 35,26 | 3,434 | 0,7678 | 0,1811 | 0,8088
1 0 0 00 0 0 0
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8.6.2 Valeurs asymptotiques pour e proche de zéro

e 5(0) ka k’b ]ﬂp k‘h

0,01 | 2,560 | 26,73 | 0,2673 | 0,06683 | 0,2140
0,02 | 4,754 | 16,84 | 0,3368 | 0,08420 | 0,3005
0,05 | 10,57 | 9,142 | 0,4571 | 0,1143 | 0,4577
0,1 18,97 | 5,759 | 0,5759 | 0,1440 0,6117
0,15 | 26,50 | 4,395 | 0,6592 | 0,1648 | 0,7134
0,20 | 33,52 | 3,628 | 0,7256 | 0,1814 | 0,7885

Ces résultats sont représentés graphiquement en figures 8.8 et 8.9

193
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0 o1 | 02

FI1GURE 8.8 — Solution du probléme de Hertz pour les valeurs courantes de e
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0.3 173 T
it
y <
B R
A kp | I
0.2 N
o s gl AN
| e~ IS 7
= 1 , | 0 T
—~2 N 160
Kh \\ o
. O,Iﬁ T p— 1—50 <
~ | 40 l
, 30
20
10
0
0 a5 10 ’

—T-e

FIGURE 8.9 — Solution du probléme de Hertz pour e proche de zéro
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8.7 Annexe : potentiel de ’ellipsoide chargé

Soit & chercher la solution du probléme

(8.50)

| —4mp dans un ellipsoide
av = { 0 en dehors

La solution qui suit est due & Dirichlet [57]. Nous nous référons & Appell [2]. La
surface de l’ellipsoide ayant pour équation

tout point extérieur vérifie

2 2 2
x Y z
ﬁ+b72+072_1>0

En un tel point, ’équation
2 Y2 52

—1=0 8.51
a2—|—u+b2+u+02+u ( )

admet une et une seule solution u > 0. En effet, en appelant f(u) le premier
membre de cette équation, on a le schéma de variation suivant :
U ‘ 0 S o
f [+ N\ -1

et on ne peut avoir qu'une seule fois f(£) = 0. Ceci définit une fonction £ des
points P = (z,y, z) telle que

&(P) = 0 si P estsurlasurface de Pellipsoide
&(P) > 0 si P estextérieur a lellipsoide

Cela étant, nous allons montrer que le potentiel V cherché est :

1. Si P est extérieur a ellipsoide,
o] 372 y2 Z2 df
V(P) = b 1-— - —
(P) 7Tpac/u ( a?+¢ b +¢ c2+£) ©(§)

p(&) = (a® +O* +6)(c* +¢)

ol
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2. Si P est intérieur a Uellipsoide,

B o 22 y? 22 d§
V(P) —wpabc/o (1 e PHE 02+5> (&)

en donnant la méme signification a ¢(§).

On notera que les deux formules se raccordent sur la surface de 1’ellipsoide, ol
u = 0.

Pour démontrer ce résultat, il nous suffira de calculer AV dans les deux cas
et de vérifier qu’a l'infini, V' tend vers zéro. Ce dernier point est évident, car
u — 0 & linfini.

8.7.1 Calcul de 0V/0x

P extérieur

Tenant compte du fait que u varie avec =,

o _ [ S
g = | 7

— mpabcx <1

B z2 B y? B 22 ) 1 Ou
a?+& P+E A+E) \Jo(u) oz

Le dernier terme, résultant du fait que la limite inférieure d’intégration est
variable, s’annule en vertu de la relation (8.51) qui définit u. Il reste donc

ov o0 de
v _ _ b %
gy = 2ot | CEGNEG

P intérieur

On trouve immédiatement

o _ o de
ow T abcx/o (@2 + )/ (©)
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8.7.2 Calcul de 9?°V/0x? et de AV

P extérieur

On calcule
o*V o0 d¢ 1 ou
—_— = —27rpabc/ —— 4+ 2wpabc——————— —
Ox? u (@ +8)Vp() (a® + u)\/p(u) Oz

Il est aisé de déterminer 92V /dy? et §*V/dz% par analogie. Il vient ainsi

AV = 2npabe [/u (a2+§+b2+§+62+§) ©(§)

L (e 0w,y o, = o
ou) \a*>+udx b +udy c2+udz

Arrivé & ce point, on notera d’abord que

0 1 1 2 c? a? 2
ag(@@) = S O O + @ O )
(a4 )1 + £

1 [ 1 N 1 N 1
2/p(€) a2 +&§ P+ 2+¢

]

ce qui entraine

/[1+1+1}d§:_i
a?+& BHE A pg)  Ve(d)

et

/“[1+1+1]d5__2
w @S e A /of) /()
Nous obtenons donc

x @ y @ z @_2 1
a?+udr bV +udy c2+udz o(u)

AV = 27 pabc [
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Le facteur entre crochets est nul. En effet, en dérivant successivement la relation
(8.51) par rapport & x, y et z, on obtient

2x [ 22 Y2 22 ] ou
= + + — =0

a?+u  [(a®24uw)?  (BP+u)? (4 u)?] Oz

9 r 2 2 2 14

R o _

B+u  [(a2+u)? (P4 u)?  (E+u)?] dy

2z [ 22 y? 22 ] ou
- - + To— o

A+u [(a®2+uw)?  (BP+u)?  (2+u)?] 0z

Multiplions la premiére équation par z/(a® + u), la deuxiéme par y/(b* + u) et
la troisiéme par z/(c? + u) et additionnons. On obtient, en notant

B 22 2 2
- = {(cﬂ + u)? - (0% 4 u)? * (c? +u)2}

la relation

x  Ou y Ou z  Ou\
2["'}_["']<a2+u8x+b2+u5y+62+u8z>_0

soit
r  Ou y  Ou z  Ou

2=—— — -
a?+udr bV 4+udy cE+udz

Ainsi, AV = 0 a 'extérieur de ellipsoide.

P intérieur

On a directement

02V o0 de
Z  — _9x0ab [
2z C/o (@2 + €)v/o ()

et

AV

_277pabc/0 <a2 Iy + b2+ ¢ + c2 +f> ©(€)

1 1
47 pabe —
’ (x/w(OO) \/90(0))
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et comme
»(0) = abe

il vient
AV = —4mp

La démonstration est donc achevée.

8.8 Exercice

Exercice 31 Etudier le probléme de Hertz dans le cas de deuz sphéres, sans
passer par les intégrales elliptiques complétes.

FI1GURE 8.10 — Contact de deux sphéres

Solution - En supposant possible l'interférence des deux corps, on aurait (fig.
8.10)
2 2

h+ T T
2] = — — 21 = —
I 5R,’ II SRy
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en assimilant les sphéres & des paraboloides. La déformation meéne &

2 2
4 Z—h-i—L-i-w[ 211 = — "
! 2R; ’ 2Ry

+ wrr

avec zy = 2y, ce qui implique
w=w; +wi =h—Br?

avec

ou

Le probléme de Boussinesq donne, pour une charge concentrée (fig. 8.7)

1—V%I P P
e — e —
TR rap TAB

WBIT =

et, par superposition, si S est la surface de contact,

pa
wprr = 611/ ——dSa
s TAB

De la méme facon, on a

wBr = 51/ piAdSA
s TAB

d’ot la relation toujours vérifiée

WRIT €I

wpBr Er

(Dans le cas de deux matériaux identiques, on a donc wgrr = wpr). Il faut donc
résoudre I’équation intégrale

wp = (E[ +€11)/ piAdSA = h—BTQ
s TAB

ou encore,

2
PA 154 = h — pr?

wBp = ———
T, Js TaB
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en définissant F,, par

11 1—u?+1—u?,
Em_2 EI EII

Par symétrie, la zone de contact est un cercle de rayon a. Montrons que la
solution a la forme

2
p=pu 1—%=p—H1/r2—a2
a

a

Soit (fig. 8.11) B un point de la zone de contact situé a une distance r du centre

F1cURE 8.11 — Distance du point A au point B

de celle-ci. Considérons un segment M N passant par B, limité 4 la circonférence,
et faisant un angle ¥ avec OB. On a donc

OC = rsiny
CN = a? — r2sin® 4
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Il vient alors

PA s — | PA L drapd
s TAB S TAB
= /pAdTABdl//
S

Ainsi que l'illustre la figure (8.12), le diagramme de p étant sphérique, la section

FIGURE 8.12 — Calcul du déplacement en B

verticale M N est encore un demi-cercle de rayon v/a2 — r2 sin? 1, dont la surface

vaut

g( 2 _r2sin? )

11 suffit donc de calculer

/2
= pdrdy = = E(a2 — 2 sin? o) dep
P Js ya:i —7/2 2
= ii(c127r — —7r?)
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On a donc
2
wp = —(/— [ padrapdy
7TEm S
_ 2 py [(7m%a® w3r?
 7E, a 2 4
_ DHTAG _ PHT o
E., 2aF,,
ce qui donne
pHTAQ
h= 8.52
o (8:52)
et 1
_ 4 _ DbHT
=20 2E,,
d’ou 5
PnT
a = 8.53
On détermine py par la condition
2 2
P = / pdS = br 2,03 = “appa®
S a 3 3
ce qui donne
3P
= 8.54
PH =5 (8.54)

Il vient alors, en combinant (8.53) , (8.54) et (8.52),

a = _1 442(/Emzp (8.55)
ho= { (EZ) > p=1,040¢ (i) S (8.56)

o = \/85;3 (Em p "o, 2295*P(Em2p (8.57)

| ©




Chapitre 9

Principes variationnels de
I’élasticité géométriquement
linéaire

9.1 Introduction

Les principes variationnels constituent un outil fécond pour la construction
de solutions approchées en élasticité. De telles solutions ont déja été construites
dans le chapitre relatif & la torsion. Le présent chapitre développe ce concept
dans le cas général de I’élasticité géométriquement linéaire.

9.2 Principe du minimum de I’énergie totale

Considérons un corps élastique V. Pour exprimer ses liaisons avec la fon-
dation, nous distinguerons sur sa frontiére S deux parties distinctes et complé-
mentaires S7 et So telles que

S = S1US,
mes(Sy) # 0 (9.1)
mes(S1NS2) = 0

Sur S1, on imposera des déplacements %;, tandis que sur Sy, on imposera des
tractions de surface ¢;. En outre, le corps est soumis & des forces de volume

205
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fi. Dans ce qui suit, nous considérerons que les charges f; et f; sont mortes,
c’est-a-dire indépendantes des déplacements.
Un champ de déplacements u; sera dit cinématiquement admissible si, d’'une
part,
u; = u; sur Sp (9.2)

et si, d’autre part,

Un) = /V W (Du)dv < 00 (9.3)

ot W(Du) est la densité d’énergie de déformation calculée & partir de ce champ
de déplacements, D symbolisant ’opérateur de calcul des déformations. Notons
que dans les développements qui suivent, il n’est pas nécessaire de supposer le
matériau linéaire.

Définissons le potentiel des charges P par les conditions

PO) = 0
{ 6P(u) = —oT(w) = — fy, fidwidV — [ TidusdS (9-4)

On considére alors ’énergie totale
E(uw) =U(u) +P(u) (9.5)

Le principe du minimum de l’énergie totale, encore appelé principe de variation
des déplacements, stipule que parmi tous les déplacements cinématiquement ad-
missibles, celui qui vérifie I’équilibre est caractérisé par le fait qu’il minimise
l’énergie totale.

Soit en effet u la solution cherchée. Tout autre champ de déplacements ciné-
matiquement admissible v vérifiera par définition les conditions (9.2) et (9.3),
ce qui implique que la variation

u=v—u

vérifiera,
ou; = 0 sur Sq (9.6)

Il est équivalent de dire qu'une variation de déplacement d’énergie finie est
admissible si elle vérifie la condition (9.6). Cela étant, la recherche du minimum
est classique. On a

E(u+ ou) = E(u) + 6 + %625 +o((6u)?))
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et les conditions de minimum sont
5 =0, 6% > 0 You admissible (9.7)
La condition de nullité de la variation premiére s’écrit
0 =8U + 6P = 6U — 6T = 0 Vé(u) admissible (9.8)

Il s’agit d’un cas particulier du principe des travaux virtuels, restreint aux seuls
déplacements admissibles. Pour obtenir les équations locales qui en résultent,
on calcule

oW 1
= — 2 (D;bu; + D;bu;
ou v O 5 (Didu; + D;dus)dV

s, O€ij v g

d’ot, en tenant compte de 'expression (9.4) de 6P, on tire

D;ig 4+ fi = 0 dansV
n; oW’ =t sur S (9-9)
J 681‘_7’ g 2

L’énoncé du principe du minimum de I’énergie totale est di & Kirchhoff [48]
(1850).

De maniére générale, un principe variationnel contient certaines variables
soumises & priori & ce que l'on appelle des conditions essentielles. Le résultat
de la variation de ces variables conduit & ce que l'on appelle les conditions
naturelles. Dans le cas présent, on peut donc établir le tableau suivant :

Principe de I’énergie potentielle totale
Variable | Conditions essentielles | Conditions naturelles
U; u; = U; sur Sy Equilibre dans V et sur S

Supposons que l'on cherche une solution approchée en se limitant & certains
déplacements particuliers : on écrira par exemple

u; = @i(Tian, ..., ap) (9.10)

les oy, étant des paramétres scalaires. L’application correcte du principe de va-
riation des déplacements suppose que les conditions u; = @; soient vérifiées
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exactement, quelles que soient les valeurs des . On calculera alors

U(oa, ..., ap) / W(Do(z;a1,...,0p))dV

P(oq,...,ozp)

/ fipi(z;aq,. o ap)dV — / tigi(z; o, ..., 0p)dS
Sa

et
Elar,...,ap) =U(a1,...,ap) + Plag,...,ap)

ce qui raméne le probléme élastique & la minimisation d’une fonction de p va-
riables scalaires. La solution approchée sera donc caractérisée par les conditions

o€
e —1,... 11
9 0, k=1,...p (9.11)

Que perd-on par rapport a la solution exacte en travaillant de la sorte? En
adoptant la forme restrictive (9.10) pour les déplacements, on limite évidemment
I’ensemble des variations possibles. Ces variations sont « responsables »de la
vérification de 1’équilibre. De fait, la solution approchée ne vérifiera pas les
équations d’équilibre locales, mais seulement p conditions d’équilibre globales,
qui s’écrivent

3%
12
Fi e 08 (9.12)

OW Oeij (¢ dV / 7

1% 852-]- Bak

La procédure décrite ci-dessus pour construire une approximation est connue
sous le nom de méthode de Rayleigh-Ritz [71, 77, 88, 69, 95]. Dans ce type d’ap-
proche, ce sont toujours les conditions naturelles qui sont affaiblies (globalisées).

Enfin, la condition 626 = 82U > 0 permet de distinguer les minima des
maxima. Elle s’écrit explicitement

2
/ OW e (w)der(uw)dV > 0
1%

et est vérifiée & priori si 'on admet la stabilité locale du matériau, condition qui
s’écrit
oW

m définie pOSitiVe (913)



9.3. MULTIPLICATEURS DE LAGRANGE 209

9.3 Multiplicateurs de Lagrange

Rappelons briévement la technique des multiplicateurs de Lagrange pour
la résolution des problémes d’extrema liés. Soit & chercher le minimum d’une
fonction f(z1,...,z,) dans la variété V définie par les conditions

gl(xla"'v‘rn) :07"'7gp(x17'“,xn) =0 (p< n) (914)

Nous supposerons que ces p liaisons sont linéairement indépendantes, c’est-a-dire
que

P
Zakgradgk =0=a,=0,k=1,...p
k=1

Considérons de nouvelles variables

{ & =g1(2), -, & = gp(7)

&pt1, - - - €n arbitraires

pourvu que la relation x < £ soit biunivoque :

I(x) &)
06 7" 3w 7’
On a alors
of af of of
& = gt t gyt g —dbpn ot pede

Il est clair que pour des accroissements vérifiant les conditions (9.14), d&; =
.. =d&, =0, si bien que la condition d’extremum s’écrira

of 5f _
91 Ao d&pt1 +. 85” A dén =0 Y(d§pi1,- .., dEn)
Or, cette condition s’écrit encore
of , Of 1o _
df %6 1— - agpdﬁp 0 V(d&,...,d&)
Il existe donc p nombres
V7 N (9.15)

67&,..., p—aié_p
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tels que
d(f — )\191 — ... )\pgp) =0 (916)
Le systéme de (n + p) équations aux (n + p) inconnues (Z1,...,Zn, A1,...,Ap)
grad(f —Agi —...—Xpgp) = 0
{ g = 0, k=1,...p (9.17)
permet de déterminer le point extrémal cherché. Les p inconnues supplémen-
taires Aq,..., A, sont appelées multiplicateurs de Lagrange. En définissant la
fonction augmentée
fH (@A) = f(@) = Mg1(@) — ... = Mg (@) (9.18)
on constate que le systéme (9.17) s’écrit encore
af*
= 0 ) ) = ]‘7 )
oz, i n
(9.19)
af*
=0 k=1
8)\]{; ) 9 7p

FIGURE 9.1 — Interprétation des multiplicateurs de Lagrange

plicateurs de Lagrange obtenus & la solution : Ay est le tauz de variation de f
lorsque l’on perturbe la k¢ liaison. Illustrons ces considérations par un exemple.
Soit (fig. 9.1) un point lié & n ressorts et astreint a se déplacer dans une glissiére,
de telle facon que ses déplacements soient soumis a 1’équation

g=ucosfB+uvsinf=0 (9.20)
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(8 est I'inclinaison par rapport a l'axe des = de la normale & la glissiére). Le
point considéré est foumis & une force F inclinée d’un angle o sur 'axe des .
L’énergie du ressort n°i vaut

1
ou u; est le déplacement dans la direction de ce ressort :

u; = ucosf; + vsinb;

On a donc
1 .
U = 5zi:ki(ucosﬁi4—vs1n€,»)2
1 2 1 2
= K, ,u+ Kpuv+ =Ky,v
2 2
avec
K = Zkzicoszﬂi
i
Ky = Zkl sin 0; cos 0;
va = Z kl SiIl2 0,-
et
P =—F(ucosa+ vsina)
d’ou
E = U+P

1
= 3 Zki(ucosﬁi +vsin®;)? — F(ucosa + vsina)

En P’absence de liaison, la solution s’obtiendrait en écrivant

% = Kupu+ Kyv—Fcosa = 0
ou
(9.21)
o0&
= Kypu+ K,v—Fsina = 0

B
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Pour tenir compte de la liaison, on considérera la fonction augmentée
E*(u,v,\) =U+P — Mucosf+vsinf)

dont le point stationnaire est donné par

Kuuu+ Ky,v = Fcosa-+ Acospf
Kupu+ Kyyv = Fsina+ Asing (9.22)
ucosfB+ovsing = 0

Comparant le systéme (9.22) au systéme (9.21), on constate que A s’interpréte
comme une force normale & la glissiére. De fait, par (9.15),

o0&
A= g

représente ’effort nécessaire pour obtenir

(9.23)

d0g = ducosfB +dvsinf =1

C’est donc la réaction de la glissiére, positive dans la direction indiquée par
I’angle 3.

Les résultats qui précédent peuvent étre généralisés aux problémes variation-
nels. Le probléme consistant & chercher ’extremum de

Aug, ..., up) = / flur, ... u,)dV
v
moyennant les conditions
g1(u)=0,...,9,(u) =0 dans V

revient & écrire, en chaque point de V'

chaque fois que

ogr1 o 0gp o _
i 5%5%_0"”7;5%5%_0

Il faut donc, en chaque point de V, résoudre le probléme

{5f—zz_1)\kégk = 0
g = 0
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Les multiplicateurs A\, varient évidemment d’un point & ’autre : on a donc des
champs de multiplicateurs de Lagrange. La fonctionnelle augmentée est alors

A (u, A) = /v [f(u) = Negr(u)
k

les A\, étant des fonctions des coordonnées.

av

9.4 Principe a quatre champs de Fraeijs de Veu-
beke

Dans le principe de variation des déplacements, les déformations n’appa-
raissent que comme dérivées des déplacements. La compatibilité intérieure, ex-
primée par

1
€ij = §(Diuj + Djui) dans V (9.24)
est donc vérifiée a priori. De méme les conditions de compatibilité sur Sy,
u; = u; sur Sy (925)

doivent étre vérifiées & priori.

Une autre maniére de procéder consiste & considérer les déformations e;;
comme des variables indépendantes et & ignorer au départ les relations (9.25).
Dans cette optique, le probléme élastique consiste & minimiser la fonctionnelle

E(e,u) =U(e) + P(u) (9.26)
avec

Z/l(a):/VW(s)dV (9.27)

moyennant les liaisons (9.24) et (9.25), dont on tiendra compte & 'aide d’un
champ spatial de multiplicateurs de Lagrange o;; pour la condition (9.24) et d’un
champ superficiel de multiplicateurs de Lagrange ¢; pour la condition (9.25). La
fonctionnelle augmentée sera donc

E*(g,u,0,t) =
/ {W(E) + 045 [;(Dzu] + Djui) — e’:‘z‘j:| — fmz} 1%
1%

SQ Sl
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Elle sera extrémale par rapport & toutes les variables, sans conditions essen-
tielles. Ce principe est souvent attribué & Washizu [93], bien qu’il ait été énoncé
cinq ans plus tot par Fraeijs de Veubeke [27]. L’exposé ci-dessus suit du reste
ce dernier auteur qui, pour la méthode utilisée, faisait référence & Friedrichs
[11, 38]. En variant la fonctionnelle £* par rapport aux quatre champs ¢, u, o, t,
libres de toute liaison, on obtient toutes les équations de 1’élasticité.

1. En variant les déformations, on obtient visiblement ’équation

ow

ow _ 2
oo 0ij (9.29)

qui donne aux multiplicateurs o;; la signification énergétique de contraintes,
en tant que grandeurs liées aux déformations. Les relations (9.29) sont en
fait les équations constitutives.

2. La variation des déplacements donne
1 _
v O—iji(Diéuj + DJ(S’U,,L) — fzéuz 1%
S2 Sl
Effectuant une intégration par parties, on obtient
/ njaijéuidS - / (Djaij)(SuidV — / fzéuldV
s 1% v
—/ fi6uid5— tléuzdS =0 (931)
Sa S1

ce qui conduit aux équations

D]‘O'ij + ﬁ = 0Odans V (932)
n;o;; = 72' sur 52 (933)
n;oi; = tl‘ sur Sl (934)

L’équation (9.32) exprime ’équilibre intérieur pour les contraintes \;; ;
Péquation (9.33), I’équilibre sur Sy ; enfin, 'équation (9.34) permet d’in-
terpréter les t; comme des tractions de surface, réactions sur Sj.

3. La variation des contraintes o;; restitue les relations de compatibilité
(9.24). Ces contraintes apparaissent donc comme les réactions aux forces
qui voudraient provoquer la dislocation du corps.
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4. La variation des réactions t; restitue la compatibilité superficielle. Les t;
apparaissent donc comme les réactions aux forces qui voudraient rompre
les liaisons cinématiques sur S;.

Ces relations sont résumées dans le tableau suivant :

Principe a4 4 champs de FdV
Variable | Conditions essentielles | Conditions naturelles
U; néant Equilibre dans V, sur S et sur S5
€ij néant Equations constitutives
0ij néant Compatibilité intérieure
t; néant Compatibilité sur S

On constate donc que, dans un langage imagé,
— la variation des déplacements est « responsable » de ’équilibre : toute
restriction sur les déplacements ménera a des équations d’équilibre globa-

lisées ;

— la variation des contraintes o;; est « responsable » de la compatibilité
intérieure : toute restriction sur les contraintes ménera & des conditions
de compatibilité globalisées;

— la variation des réactions t; est « responsable » de la compatibilité exté-
rieure : toute restriction sur les ¢; ménera & une compatibilité superficielle
globalisée ;

— la variation des déformations ¢;; est « responsable » des équations consti-
tutives : toute restriction sur les déformations ménera a une globalisation
des équations constitutives.

9.5 Principe de Hellinger-Reissner

A partir du principe & quatre champs de Fraeijs de Veubeke, on peut en
obtenir d’autres, plus simples, en supposant certaines relations vérifiées a priori.
Supposons les équations constitutives (9.29) vérifiées. La fonctionnelle & uti-

liser sera alors

R(u,0,t) = minE* (e, u, o,t)

€

ou, bien entendu, les déformations cesseront d’étre indépendantes, et devront
étre exprimées en termes des o;;, ce qui pose le probléme de 'invertibilité des
relations constitutives.
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9.5.1 Invertibilité des relations constitutives
Les relations constitutives
oW
- 85ij
peuvent-elles étre inversées en une relation donnant e en fonction de o 7 Pour

construire une telle relation, on partira d’un couple (o,¢) donné et on notera
que les relations constitutives impliquent

O'ij

*wW

do:: =
* 65ij85kl

deyy = Hijriden

Si 'on peut inverser cette relation sous la forme
dgkl = Hi;lildakl (935)

on peut calculer € en fonction de o par intégration. Cette inversion est possible
si et seulement si

(Hijpme =0 avec  mg = mix) = N = 0

Comme nous le verrons en exercice, on peut aisément imaginer des structures
de la densité d’énergie de déformation pour lesquelles cette relation n’est pas
vérifiée. Il faut en outre remarquer que les relations (9.35) ne définissent des
déformations uinivalentes que si

82€ij _ 82€ij

8ak180pq aapqaakl

soit . .
OHiy _ OHy,,
80'pq 807@[

condition dont la vérification & priori n’est pas évidente. Une autre maniére de
procéder est fondée sur la transformation de Legendre, que nous allons introduire
ci-dessous.

9.5.2 Densité d’énergie complémentaire

Dans le principe & quatre champs, on voit apparaitre le groupement

A(O’7 E) = 045&i5 — W(E)
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dont les propriétés sont les suivantes :

oA
80‘,‘]‘ o Sij
oA ow
85,»j A 8€ij
Définissons la fonction
O(o) = max A(o,¢) (9.36)

Il s’agit d’une fonction de ¢ uniquement, ayant pour dérivées

0P 0A

= —_— = &
8gij 60” *

(9.37)

On l'appelle densité d’énergie complémentaire. Ce procédé de construction de
la fonction ®, qui permet en fait d’inverser les relations constitutives, porte le
nom de transformation de Legendre ou encore, de transformation de contact.
On donne a la fonction ®(o) le nom de densité d’énergie complémentaire.
Cette appellation provient du fait que dans le cas d’un probléme unidimen-
sionnel, si l'on trace la courbe o = F'(¢), la densité d’énergie de déformation
représente l'aire comprise entre cette courbe et l’axe des . La densité d’énergie
complémentaire représente l'aire comprise entre la courbe et axe des o (fig.
9.2). Elles se complétent mutuellement pour former un rectangle d’aire oe.

o e
— Qo)

Wire)

1

FIGURE 9.2 — Energie complémentaire

3

Dans le cas de relations constitutives linéaires et, plus généralement, homo-
génes de degré 1, on a, pour « € [0, 1]

oij(ae) = aoij(e)
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et en progressant par accroissement homogéne des déformations,
€
W) = / 053(e%)dzs,
0
1
= / O'ij(OéE)Eideé
0

1
0ij€ij ‘/O ado

1
= Ui (9.38)
si bien que la densité d’énergie de déformation et la densité d’énergie complé-
mentaire ont constamment la méme valeur. Ce résultat est connu sous le nom
de théoréme de Clapeyron intérieur.

9.5.3 Principe de Hellinger-Reissner

Nous sommes & présent en mesure d’expliciter la fonctionnelle de Hellinger-
Reissner,

R(ua g, :u’) = ming*(gv u, o, IU’> =
1 ~
= / |:O'ij2(Din + Djui) — (I’(O') — fzul] dv
1%

SQ Sl

C’est le principe de Hellinger-Reissner (Reissner I’a énoncé en 1950 [74] mais
il a été découvert plus tard que Hellinger 1’avait déja publié en 1914). Dans ce
principe,

1. la variation des contraintes conduit & une expression des conditions de
compatibilité sous la forme de relations entre les contraintes et les dérivées
des déplacements :

o 1
aCTij h 2

2. la variation des réactions t; conduit aux conditions de compatibilité exté-
rieures ;
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3. la variation des déplacements méne aux équations d’équilibre

DjO'ji + le = 0 dansV
n;o4; = EZ sur S2 (941)
n;jojg, = tl‘ sur Sl

Ces résultats sont résumés dans le tableau suivant :

Principe de Hellinger-Reissner
Variable | Conditions essentielles | Conditions naturelles
U; néant Equilibre dans V, sur Sy et sur Sy
Oij néant Compatibilité intérieure
(sous forme d’équations constitutives)
t; néant Compatibilité sur S;

9.6 Principe & deux champs de Fraeijs de Veu-
beke [33]

Dans le principe & quatre champs, on peut également imposer & priori I’équi-

libre, sous forme des travaux virtuels :

1 _
/ |:0'ij2(Di(5Uj + D](Sul) — fléuz} 1%
14

SQ Sl

Comme aucune restriction n’est imposée aux déplacements, on peut en particu-
lier poser du; = u;, ce qui donne

1 = _
/ |:O'7;j(D,L'Uj +Diui) — fzu,] dV — / tiu;dS — / tiu;dS = 0 (943)
Vv 2 82 Sl

Soustrayant cette relation a ’expression générale de £*, on obtient

/[W(S) - Uz‘j&‘j]dV—l-/ t;w;dS
v

S1

et comme 1’équilibre implique en particulier

ti = njaij
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on est conduit a la fonctionnelle

‘/.'.(E, O') = / [W(E) — aijsij]dV + / njaﬂﬂidS (944)
\4 1
dont le caractére stationnaire constitue le principe a deux champs de Fraeijs de
Veubeke. Dans ce principe, les déformations sont libres de toute liaison, et leur
variation fournit les équations constitutives

ow
861»]» =%y

Le résultat de la variation des contraintes o;;, soumises aux conditions d’équi-
libre, est la compatibilité, comme on peut s’en rendre compte en supprimant,
dans le tableau relatif au principe a quatre champs, les lignes relatives aux
déplacements et aux t; :

Principe & 2 champs de FDV
Variable | Conditions essentielles Conditions naturelles
€ij néant Equations constitutives
0ij équilibre dans V, surSy et sur Sy | Compatibilité

Signalons qu'il est possible de vérifier & priori I’équilibre pour f; = 0 a ’aide
de fonctions de contrainte : fonction d’Airy en état plan de contrainte, fonctions
de Maxwell ou de Morera dans le cas tridimensionnel et fonction de Prandtl en
torsion.

9.7 Principe du minimum de l’énergie complé-
mentaire

Ce principe, encore appelé principe de variation des contraintes, est le sy-
métrique du principe de variation des déplacements. On peut 1’établir de deux
maniéres.

1. Dans le principe & deux champs de Fraeijs de Veubeke, on assure a priori les
équations constitutives, ce qui méne a utiliser, comme dans le principe de
Hellinger-Reissner, la densité d’énergie complémentaire ®(o). On obtient
ainsi, aprés un changement de signe, la fonctionnelle

Clo) :/ ®(0)dV — [ njojudS (9.45)
v 5



9.8. NOTE SUR LA FORME FAIBLE DE LA COMPATIBILITE

221

stationnaire par rapport a tous les états de contrainte statiquement ad-

missibles, c’est-a-dire vérifiant ’équilibre intérieur et extérieur.

2. Dans le principe de Hellinger-Reissner, on suppose l’équilibre vérifié a
priori. La transformation suit la méme voie que pour la déduction du
principe a deux champs de Fraeijs de Veubeke et donne également la fonc-

tionnelle (9.45).

Ce principe est résumé par le tableau suivant :

Principe de variation des contraintes
Variable | Conditions essentielles Conditions naturelles
Oij équilibre dans V, sur S; et sur Sy | Compatibilité

Si ’on utilise le principe de I’énergie complémentaire pour construire des so-
lutions approchées, les champs de contrainte utilisés doivent tous vérifier exac-
tement les conditions d’équilibre. La solution approchée ne vérifiera la compati-
bilité que sous certaines formes globales. Il ne sera donc plus possible de définir
des déplacements locaux et il faudra se satisfaire de certaines valeurs moyennes.

9.8 Note sur la forme faible de la compatibilité

Notons E l'espace des champs de tenseurs symétriques du second ordre sur

V', muni du produit scalaire
(¢, 9) = / PijidV
1%
Un champ de tenseurs compatible est par définition de la forme
1
eij(u) = 5 (Diuj + Djui)

ou u; est un champ de déplacements admissible, c’est-a-dire vérifiant

{ lle(u)]l fV gij(w)ei;(w)dV < oo

u; = U; sur Sp
Une variation de tenseur compatible est de la forme

651‘3’ = &ij (§u)

(9.46)
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ou du est la différence de deux champs de déplacements admissibles, de telle
sorte que sur Sp, on a
5ui =0
Les variations de tenseurs compatibles forment un sous-espace Cy de E. On
peut montrer que, muni du produit scalaire (9.46), ce sous-espace est complet
et donc, fermé dans E. On notera que si ’on connait un champ de déplacements
particulier ug tel que ug; = @; sur Sy, tout champ de déplacements admissible
est de la forme
u=ug+ Au

ol Au est une variation admissible de déplacement.

Considérons & présent le complément orthogonal Sy de Cy. Il est défini par
la condition

o €Sy <:>/ O'ij&'jdv =0 Vee(C
v
Ceci s’écrit explicitement
1
14

ce qui signifie que o est un champ d’autocontrainte. Ainsi, Sy n’st autre que
I’ensemble des champs d’autocontrainte. Comme C est fermé, I'orthogonal de
SQ est Co.

Soit & présent un champ de tenseurs (;; vérifiant

/ @ijao’ijdv—/ njéaijﬂidS =0 (947)
Vv

S1

pour tout champ d’autocontrainte ¢o;;. Introduisant un champ de déplacements
ug tel que ug; = u; sur Sq, on a

1
/Eij(uO)éUijdV = /5Uij§(DiUQj+DjU()i)dV
14 \%
= / ’Ilj(SO'iquidS—F/ nj(SO'iquidS-i-/ u()iDj(SaijdV
S1 Sa \%4
= / TLj(SO’iquidS—i‘O“rO
S1

La condition (9.47) est donc équivalente a

/ 004 [pij — €ij(uo)]dV =0 Voo
v
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ou
©ij — €ij(uo) € Co

ce qui revient & dire qu’il existe une variation admissible de déplacement Au
telle que
Pij = €ij(to) + €i5(Au)

ou encore
Yij = €ij (UO + Au)

et ceci exprime précisément la compatibilité.

9.9 Exemple de solution approchée construite par
le calcul des variations
Pour illustrer la méthode variationnelle de construction de solutions appro-

chées, étudions la flexion des poutres en I (fig. 9.3). Nous ferons les hypothéses
suivantes :

1. Les semelles sont parfaitement flexibles dans le plan x0y, ce qui revient a
dire qu’elles ne résistent qu’a 'extension. On posera donc

Oy = 0, = Ty = Tyz = T2z = 0 dans les semelles (9.48)

On supposera en outre le déplacement axial uniforme dans chacune des
semelles :
u=ug(z) (9.49)

I'indice (+) correspondant & la semelle inférieure (située en y > 0) et
I'indice (-), a autre semelle.

2. Dans l’dme, on admettra d’abord que I’état de contrainte est plan
Oz = Txz = Tyz = 0 (950)
On ajoutera les hypothéses cinématiques suivantes :

u = U(z)+ya(z)
{v — V) (9.51)

La premiére représente une flexion a la Navier. La seconde, assez bien vé-
rifiée si la poutre est raidie par des éléments transversaux non représentés
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e .

AT

qx)

T Ty

etz

Ty gL v

FIGURE 9.3 — Poutre en 1

ici, entraine que les charges transversales, de densité linéique g(x), ont un
travail virtuel

¢
57;:/0 q(z)oV (z)dx (9.52)

quel que soit leur point d’application sur la section de la poutre. C’est
pour cette raison que nous les avons représentées distribuées sur les deux
semelles.

3. La liaison entre ’ame et la semelle sera assurée par les équations de com-
patibilité

v 1% (9.53)

semelles —
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et
h h
ugp =U+ 5% U- = U - 5 (9.54)
Pour fixer les idées, nous considérerons une poutre console de longueur /. les

conditions d’encastrement sont
U0)=0, «(0)=0, V(0)=0 (9.55)

En z = /¢, la poutre est soumise a des efforts longitudinaux p et transversaux
t. Au vu des hypothéses relatives aux efforts dans les semelles, on doit avoir
t = 0 sur celles-ci. Par contre, ces charges sont compatibles avec les hypothéses
relatives & I’ame, et fournissent un travail virtuel

0T = t_(SV(E)dQ = T(SV(E) onT = / tdQ) (9.56)
Yame ame

T étant ’effort tranchant imposé. Cette globalisation des efforts résulte des
hypothéses cinématiques. Quant aux efforts p, ils peuvent étre répartis aussi
bien sur ’ame que sur les semelles. Leur travail virtuel vaut

5T, = [ 5 {w(e) + ;(504(6)} do + / 5 [w(z) - Zaaw)] d0

Qy _

+ / poU (L) + ydau(£)] d§2
Qq
= NSU({) + Méa(f) (9.57)

avec

N = f9+ pdQ + [, pdQ+ fﬂa pdS) (effort normal) (9.58)
M = %ffh pdQ — B [ pdQ+ Jo, pydQ (moment)

La fonctionnelle du principe de Hellinger-Reissner s’écrit

R—/E | e (G + v ) 4 (a5
—Jo Q. %o \dz " Vaz Toy \* T 4z

2 2
oy toy— 2vo.oy T,

2F 2G

U hda\ o2 dU  hda\ o
B (Lo R T N (o R T
JF/Q+ [" <dx+2dx> ZE} +/Q [“ (daz 2dx> 2E]
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Par variation des différentes grandeurs qui interviennent dans cette fonction-
nelle, on peut obtenir les équations de la poutre.

1. Variation de oy : on obtient

oy — V0Og

g

soit,
Oy = V0y (9.60)
2. Variation de o, : dans [’dme, on obtient

dUu da

ce qui, combiné avec (9.60), donne
E dU da
=—7 | — — 9.61
e 1—u2(d$+yd:§) (9:61)
Dans les semelles, on a

dU  h da> 0.62)

=5 (G * 5

3. Variation de U : ce déplacement ne dépendant que de z, il faut d’abord
intégrer sur la section, ce qui donne

¢
U _
/ / odY —I—/ odSY —l—/ 0,dQY| ——dx = NSU(¢) =0
0 Q4 . Qo dz
ce qui fait apparaitre le groupement
N = deQ—}—/ deQ—l—/ 0,d) (9.63)
Q4 _ Qa

qui s’identifie & ’effort normal. 11 vient donc

¢
déU -

= N——dx — N§U (4

0 /0 7 U

INSUY. — NSU() — / Z ‘fTNaU(x)dm

0 X
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Tenant compte de la condition d’encastrement U (0) = 0, on obtient

dN
¢ = 0 dans |0,/
dz _ ’
{ N = N (9.64)
4. Variation de V : on obtient
¢
/ { {/ szdS} oV q5V} dz — TSV (£) =0
0 Qa d.’IJ
En définissant 1'effort tranchant
T = / ToydS (9.65)
on obtient
¢
0 = / (TW - q5V> dx — TSV (¢)
0 d:E
¢
- dr
= [TdV]é —ToV () — / ( + q> oVdx
0 dx
d’ot1, comme §V (0) = 0, les équations
dT
@ 4+q = 0 dans]0,/[
dz —
{ W) = T (9.66)

5. Variation de « : on obtient ici

¢
h h déo
—0,dS2 —/ —0,dS2 —|—/ o, d)| —
/0{[/9+2 o 2 Qay 1 dx
+ [/ szdQ} 5a} dx — Méa(f) =0
Qo

Définissant le moment
h

h
M= f/ 02dQ — f/ gxdsw/ o2y dS2 (9.67)
2 Ja, 2 Ja_ Q

a

et tenant compte de la définition (9.65), on obtient

0
0 = /(Mdéa—i-Téa)dac
0 dl’
aM

= [Méa]} — Mba(f) — /O ‘ (dm - T) Sovda
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ce qui, comme 0a(0) = 0, donne

M- — 7 dans ]0,/]
dx _ )
{ M) = (9.68)
6. Variation de 7., : il vient
dV
Ty =G (a + dx) dans I’ame (9.69)

Comme on peut le voir, les contraintes étant libres de toute liaison, les équa-
tions de compatibilité (9.60), (9.61), 9.62) et (9.69) sont vérifiées localement.
Au contraire, les restrictions faites sur les déplacements ménent a des équa-
tions d’équilibre globales. Ceci était prévisible & partir du tableau résumant le
fonctionnement du principe de Hellinger-Reissner.

Par ailleurs, en combinant les équations ((9.60), (9.61), 9.62) et (9.69) aux
définitions (9.63), (9.65) et (9.67) des résultantes, on peut obtenir des équations
constitutives globales. Ce seront, en notant b I’épaisseur de ’ame,

N = EA‘% avec A = Q++Q_+1E}LQ

T = GS(a+9%) avec S = bh (9.70)
2 2 3

M = EI% avee I = QM40 4 Gl

On retrouve ici des calculs simplifiés assez courants dans la pratique, consistant,
d’une part, a utiliser la section de ’ame comme section de cisaillement et, d’autre
part, a négliger 'inertie propre des semelles. Quant au facteur (1—22), il provient
de ’hypothése selon laquelle le déplacement vertical ne dépend pas de y.

9.10 Classification des approches variationnelles

D’aprés le type d’hypothéses adoptées, on peut distinguer :

— les approches dont les hypothéses ne portent que sur les déplacements
(avec respect des conditions sur Sp), que l'on appelle cinématiquement
admissibles (C.A.);

— les approches dont les hypothéses ne portent que sur les contraintes (avec
respect de I’équilibre dans V et sur Ss), que l'on appelle statiquement
admissibles (S.A.);

— les approches dont les hypothéses portent & la fois sur les contraintes et
les déplacements, que ’on appelle mixtes.
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Les approches C.A. ménent & des équations d’équilibre approchées (globales),
tandis que les approches S.A. donnent des équations de compatibilité appro-
chées. Dans les approches mixtes, ni les équations d’équilibre, ni les équations
de compatibilité ne sont vérifiées localement.

Ainsi, la théorie de la section précédente est une approche mixte. Cependant,
si l'on considére que les hypothéses (9.48), (9.49) et (9.50) définissent la notion
de poutre en I, il s’agit d’une théorie C.A. dans ce cadre. On trouvera dans les
exercices du présent chapitre une théorie S.A. dans le cadre des poutres, qui
méne & une vérification locale de ’équilibre, mais non de la compatibilité.

9.11 Analyse duale

Qui dit solution approchée dit erreur. Ne peut-on pas essayer de chiffrer cette
derniére ? C’est ’objet de ’analyse duale, consistant & effectuer, pour un méme
probléme, une analyse C.A et une analyse S.A., puis de les comparer.

9.11.1 Cas des relations constitutives linéaires

Nos commencerons par envisager le cas de relations constitutives linéaires,
qui est le plus simple et celui dont les conclusions sont les plus fortes. Le présent
mode d’exposé suit la méthode développée par l'auteur [17, 21, 20, 18].

Soit donc un probléme élastique linéaire, dont la solution est caractérisée
par des déplacements u et des contraintes o, obtenues par variation des fonc-
tionnelles

fV W(Du)dV - fV f_'Z’U,ZdV - sz t_luldS
fV <I>(o)dV — fS1 njajiﬂidS’

—N

/Q(\')

Q&
I

Par définition de ’énergie complémentaire, on a

1
/ W (Du)dV + / O(0)dV = / aij§(DZ-uj + Dju;)dV
1% 1% 1%
Or, en posant, dans le théoréme des travaux virtuels,
ou; = u; dans V U Sy et du; = u; sur Sy

on obtient

1 - _
/ O'ij*(Din + Djul)dV - / fiuidS - tlu,dS — / njojmidS =0
v 2 v Ss S1
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c’est-a-dire
E(u)+C(o)=0 (9.71)

Pour un quelconque autre champ de déplacements C.A. @, on peut écrire
u; = u; + Au; et, comme ’énergie totale est une fonction quadratique,

E(u) = E(u+ Au)
1
= E(u)+6E(u; Au) + 5(525(u; Au)
1
= &(u)+ 5528(u; Au) (9.72)
puisque le déplacement u réalise la stationnarité. On a d’ailleurs

62€ (u; Au) = / Cijrigij(Au)er (Au)dV > 0 (9.73)
|4

et cette grandeur est une mesure énergétique de l’erreur, définie positive, que
Pon peut noter ||Aul.

De la méme facon, pour un quelconque autre champ de contraintes &, on
peut écrire & = 0 + Ao et on a comme ci-dessus

C() = Clo+Ao)
= C(o)+0C(o;Ac) + %52C(0; Ao)

Clo) + %52C(0;AJ) (9.74)

avec
520'(0';A0') = / Ci;]ile'ijAUkldV >0 (975)
Vv

cette grandeur étant une mesure énergétique de 'erreur, définie positive, que
lon peut noter ||Ac||. Additionnant les résultats (9.72) et (9.74), on obtient

1 1
E(@) +C(6) = E(u) +C(o) + 5525(u; Au) + 5520(0; Ao) (9.76)
soit, en tenant compte de (9.71),

E(@) +C(6) = = (|Aul? + |Ac]?) (9.77)

DN | =
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Cette formule sert de fondement & ’analyse duale de erreur : pour connaitre la
somme des erreurs d’énergie, il suffit d’additionner les valeurs des deux fonc-
tionnelles £(w) et C(F). On peut d’ailleurs développer certaines relations d’or-
thogonalité et, a partir de 14, montrer que /2[€(@) + C(5)] définit une distance
entre les deux approximations, mais ces faits, bien qu’intéressants, ne nous ser-
viront pas.

Dans le cadre de méthodes numériques comme celle des éléments finis, il
est utile de représenter la convergence d’approximations successives sur un dia-
gramme. A cette fin, définissons 1’énergie complémentaire prolongée C* par

o — { —&(u) pour approche C.A.

- C(c) pour lapproche S.A. (9.78)

On obtient alors, en fonction des paramétres de la discrétisation, des courbes de
convergence d’un des deux types représentés en figure (9.4). La premiére version,

€

; eq. model

-t 2

2140l exact

Haur
displ model
nr elts
&
exact
h

FIGURE 9.4 — Courbes de convergence

ol la convergence est exprimée en termes du nombre de degrés de liberté ou de
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Iinverse de la taille des éléments finis, est la plus courante. La seconde, dont
I’abscisse est 'inverse du nombre de degrés de liberté ou la taille d’'une maille,
est par certains cotés préférable, car la solution exacte est alors la valeur a
Porigine de C*, plus facile & estimer que la valeur asymptotique de la premiére
représentation.

9.11.2 Les cas particuliers de Fraeijs de Veubeke

La formule (9.77) admet deux cas particuliers, obtenus antérieurement par
Fraeijs de Veubeke [30, 32, 35]. Pour abréger les notations, nous écrirons

(U = foDuar . Pl - Ay fdV = J dS g 7o)

qu)(O')dV s Q(O’) = —fslnjajmidS

=
2
I

1. On suppose que sur Si, on a u; = 0. On suppose en outre que le champ
de déplacement u a été obtenu par une technique de Rayleigh-Ritz, c’est-
a-dire que

U (t;6u) + dP(6u) =0

pour tout éu de l’espace des déplacements approchés. Alors, la solution
exacte u et la solution approchée u sont des variations admissibles de
déplacement et on a

et de méme

ce qui entraine
et

D’autre part,
On a alors

U(@) < U(u) = B(o) < T(5) (9.80)

et
E(@) +C(5) = U(5) — U(@) (9.81)
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2. On suppose que f; = 0,; = 0. On suppose en outre que le champ de
contraintes & a été obtenu par une technique de Rayleigh-Ritz, c’est-a-dire
que

0V(5,06) +0Q(d6) =0

pour tout 66 de l’espace des contraintes approchées. Alors, la solution
exacte o et la solution approchée & sont des variations admissibles de
contrainte et on a

0U(o;0) =2¥(0) = —9Q(0)

et
ce qui entraine
Par ailleurs,

On a donc
U(5) <U(o)=U(u) <U(a) (9.82)

et
E(@) + C(5) =U(a) — U (5) (9.83)

9.11.3 Cas de relations constitutives non linéaires

On peut se poser la question de ce qu’il subsiste de ’analyse duale lorsque
les relations constitutives sont non linéaires. En examinant la démonstration du
cas linéaire, on remarque que tout repose sur le fait que la variation seconde de
I’énergie totale et de ’énergie complémentaire totale est positive. En fait, cela
revient & dire que W(e) et que ®(o) sont convezes.

Rappelons qu’une fonction W (e) est convexe si pour tout couple(e!,?), on
a systématiquement, pour 0 < A < 1, la relation

W ((L=Ne"+A?) < (1= NW (") + AW (e?) (9.84)
On notera d’abord le théoréme suivant :

Théoréme 9 Si W (e) est conveze, il en est de méme de ®(o).
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En effet, partant de la définition de ®(o),
®(0) = max (gijeij — W(e))
il est clair que pour un choix quelconque £* de €, on a
(o) > 04587, — W(e¥)

Choisissons £* correspondant par les équations constitutives au champ de contrainte
(1= A)o! + A% On a donc

@ ((L=No' +x0?) = (1= Noj; + Ao,) 5 — W(e¥) (9.85)
Mais
(o) = oyel — W)
2 2 _* *
®(0%) > ;€45 - W(e)
ce qui entraine
(L=N@(0") + A2(0?) > (1 = Noj; + Aoy;) &5, — W (") (9.86)

La comparaison de (9.85) et (9.86) donne
® (1= Mo+ A0?) < (1= N)2(c') + A2(0?)
Remarque - La réciproque est vraie, car on a également
Wi(e) = max (0ijeij — (o))

En outre, il est aisé de montrer le

Théoréme 10 Si W (e) est conveze et différentiable, on a

Wi(e+ Ae) > Wi(e) + <8W) Ag;j
681‘]' c

En effet, pour A € [0,1], on a

W (e + Ae) (1 =X)W(e) + AW (e + Ag)

W(e) + AW (e + Ae) — W(e)]

IAIA
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si bien que

Wie+ Mj) “WE) e ae) —wie)
Or,

iiﬂ% Wi(e + Aéj) W (e) _ (g:Z ) E Aci

Revenons a l'analyse duale. On a

E(u+ Au) — E(u) = /V[W(s + As) — W ()] + P(Au)

Le fait que £ soit stationnaire en w s’écrit

0& (u; Au) = /v <6W)EA€1‘]' +P(Au) =0

afij
Soustrayant ces deux relations, on obtient

ow
862‘]‘

E(u+ Au) — E(u) = /

[W(e+ Ae) —W(e) — (
1%

en vertu du théoréme 10. De la méme facon, on obtient aisément
Cloc+ Ac) > C(o)

et du reste, la relation (9.71) subsiste, car elle ne fait appel qu’au théoréme des
travaux virtuels et a la définition de ®(o) par transformation de Legendre.

Malheureusement, cela ne suffit pas pour obtenir une idée de la distance
entre les solutions approchées et la solution exacte. Il faut pour cela faire une
hypotheése plus restrictive, & savoir, la converité forte, qui consiste a supposer
qu’il existe deux constantes positives « et 3 telles que

W(e+Aeg) > W(e)+<ggj>€A5ij+a|Ag|2 057
P(oc+Ac) > @(a)+(%) Aoij + B|lAc|? .

Ces conditions sont remplies si W et ® sont de classe C? et que les valeurs
propres (v.p.) de leurs matrices hessiennes respectives

0*wW

Hiju = 55—
*J aEijaEkl
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et 920
Hl=-_—_-"
ijkl 8O'ija(7kl
vérifient
inf min[v.p.(H)] =
nf maln[v p-(H)) a>0
inf min[v.p.(H™')] = B>0

xeV o
On obtient alors une forme affaiblie de 'analyse duale, a savoir,
alle(Au)llg &(u) = E(u)
Blac] C(a) —C(o)
oit |.|lo figure la norme dans L?. En d’autres termes, la différence d’énergie

totale ou d’énergie complémentaire totale magjore 'erreur en norme L? des dé-
formations ou des contraintes

<
<

9.12 Bornes des raideurs et coefficients d’influence
directs

FIGURE 9.5 — Bornes des raideurs

Les relations (9.80) et (9.82) impliquent également la possibilité d’encadrer
les coefficients directs d’influence ou de raideur [79, 78, 80, 95]. Soit d’abord un
systéme de charges dont l'intensité est controlée par un paramétre P, appelé
charge généralisée (fig. 9.5). Sous ce systéme de charges, la structure subira
des déplacements conduisant & un travail 7. On appelle déplacement généralisé
conjugué a la charge généralisée P le rapport

T U 2V
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Le coefficient d’influence direct de la charge P est alors défini par

u T

F:—zi
P P2

(9.89)

Pour le déterminer, on peut utiliser un modéle C.A. : on aura alors, puisque
u; = 0 sur Sy,

T  2Uca

P2 p?

Dans un modeéle S.A., on définira Fs4 par

Foa =

20
Fsa="p1"
Il résulte alors de (9.80) que
Foa <F < Fsa (9.90)

De la méme facon, supposons que I’on impose & la structure un systéme de
déplacements de frontiére controlés par un paramétre U, appelé déplacement
généralisé. Si T est le travail de ces déplacements, la force généralisée conjuguée
est par définition

T U 20
P=—="=" 91
U U U (9.91)
et la raideur directe,
P T
K=—=— 92
TARiE (9.92)
Dans le cadre d’un modéle S.A., on calculera
Osa  2Vga
Ksa=— U2 = U2
et dans le cadre d’'un modéle C.A.,
2U
Kcoa = el
Il résulte alors de (9.82) que
Kga <K <Kca (9.93)

Cette possibilité d’encadrer la vraie valeur des raideurs ou des coefficients
d’influence rend de nombreux services en pratique.
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9.13 Exercices

Exercice 32 Montrer qu’il est possible d’imaginer des relations constitutives
homogeénes de degré 1 mais non linéaires.

Suggestion - Pour

W = \/el; +e3 + €55 + 712 + 733 + 731

(homogene de degré 2), on a

2e3 2¢3 2¢3
S — gy — 2033
27%2 275’3 2’7::331
T2 = —=—, Tog = ——, T3] = ——
2=y S e

et ces relations sont visiblement homogénes de degré 1 :

2 3.3 2 3
o11(ae) = 32;}1 = a% = ao11(e), etc.

On vérifie que

011€11 + 022€22 + 03€33 + T127Y12 + T237Y23 + 731731

_ 2(et) + ey + €3 + 71 + 793 + 751 — oW
w

Exercice 33 Montrer que si les relations constitutives sont invertibles,
1. W(e) ne peut étre homogéne de degré 1.

2. ®(o) ne peut étre constante.

Solution

1. Si W(e) est homogene de degré 1, on a, par le théoréme d’Euler sur les
fonctions homogenes,

ow
Wi(e) = —e¢y;
(6) 6613' € J
ce qui entraine
ow *wW
dW = de;; d
8€ij Fij + a&ljaf;‘kl EHl
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Comme, par ailleurs,

ow
dW = 7d€ij
85@‘
on obtient e
w
=7 e vd
85@' 65kl EijAELL Ekl
ce qui implique
o*wW
78@‘ =0
851j85k1
en contradiction avec ’hypothése.
2. Si ®(o) = cte, on a
0P 0
Ei g =
J 80’@'

donc la relation entre o et € n’est pas bijective.

Exercice 34 FEtudier la poutre en I décrite en section 9.9, pour qg(z) =0, en
faisant les hypothéses suivantes :

HI1. Les semelles sont parfaitement souples en flexion,
Oy =0, =Tgy =Ty, =Tz =0
et leur déplacement est uniforme :
u = uy(x)
H2. L’dme ne résiste qu’au cisaillement :
Op =0y =0, =Ty, =Tz, =0

a) Quelles distributions de charges d’extrémité p et t peut-elle admettre dans
ces hypotheéses ?

b) Ecrire les équations de la poutre.

¢) Dans le cadre des hypothéses H1, la solution de la section 9.9 est C.A., et
celle de cet ezercice est S.A.. Que peut-on en déduire pour les coefficients
d’influence relatifs a Ueffort tranchant d’extrémité ? Vérifier que c’est bien
le cas.

d) Etudier la compatibilité des déplacements de I’dme et des déplacements de
la semelle.
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Solution

a) Dans ’ame, les équations d’équilibre s’écrivent

780@ a’l'my aTmz . aTxy

0= ox oy 0z dy
0 :8sz doy | 07y _ OTay

ox dy 0z Ox
0 07y, | O7y | Do

Or dy 0z
La contrainte 7., est donc une constante, que nous noterons 7. Deés lors,
a Pextrémité,

— les charges p doivent étre concentrées sur les semelles ;
— les charges t doivent étre uniformément réparties sur I’ame seule.

b) L’énergie complémentaire de I’ame s’écrit

L .2 2
T T
A %Qadm = ﬁga( (994)

et la fonctionnelle de Hellinger-Reissner pour ’ame a pour expression

¢ 2
ou  Ov T
Ro = /0 [/Qa T <By + 833) an} dx — —QGQGZ (9.95)

Pour les semelles, on a

¢ 2 2
duy o3 / du_  o%
Ry = My %) g Cdu- 7 4
‘ /0 Vm <J+ dz 2E) "o (U dz 2E>

Enfin, les charges ont pour contribution

Re=P= —u+(Z)/

Q4

pd) — u,(ﬁ)/ pdQY — f/Q v(£)dQ

— Nyuy(6) = Nou_(0) _Tﬂia /Q o(0)dQ (9.97)

ou l'on a posé

]\7_,_:/ pdQ), N_ :/ pdS) (9.98)
Q4
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et

T = iQ, (9.99)

La fonctionnelle compléte est
R=Rs+Rs+R. (9.100)

Varions les différentes grandeurs :

(i) Variation de 7 : on obtient

¢
ou Ov T
57/0 {/Sa<ay+ax>da]da: e HoT =0

G [ ou v
= — 4+ — Q 101
T Qaé/o Um(afax)d ] e (6.101)

(ii) Variation de oy : il vient

¢
dui O’i>
0oy | =———=1dQ|dx=0
/0[/% (E-% ]

soit

ce qui donne

du
os(z) = Ed—; (9.102)
(iii) Variation de v : Dans I’ame, du est arbitraire; & la jonction de

I’ame et des semelles, on a

dur = du(x, :I:g)

I1 en découle

¢ ¢
ddu d h
T——df dx—i—/ / o, dQ, | —du(z, =)dx
/0{/9@ dy } 0 <Q+ " +> dx ( 2)

‘ d h _ _
—1—/0 (/Q O’dQ) d—éu(x, —§)da: — Nyouy(0) — N_ou_(£) =0

T
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Posant
Ni(z) = / oy (2)dQ, N_(z) = / o_(x)dQ (9.103)
Q _
on obtient, comme T est constant,
¢
h h dNy h dN_ h
_ h _ h
NG (0) = NyJou(t, 5) + [N-(0) = N_Ju(t,~5) =0

On en déduit les conditions d’extrémité

Ny () =N, N_({) = N_ (9.104)

et les conditions de transition Ame-semelles

AN, dN_
Ir br, T bt (9.105)
(iv) Variation de v :  on obtient
0
87; =0, 7()=q=1 (9.106)
2@—#
.
h+ia
G
0,
h a3a
.

FIGURE 9.6 — Poutre en I & ames inégales

Il est intéressant de ramener ces équations a la forme classique des poutres.
Notons que le centre de gravité de la section est placé du coté de la semelle
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la plus large, avec un rapport de segments Q4 /Q2_ (fig. 9.6). Nous poserons
donc

N(z) =N, (¢) + N_(x)

N =N, +N_
M(@) ~g g (- No(0) ~ 2N (@)
hvt :ﬁhg_ (N, —Q,N)
T(x) =rbh =T (9.107)
Il vient alors
%:% %:0, N(x) =cte= N
ﬁfzg+ig(Qf@?—9+%;):=MT=T, M(0) =M
%gzﬂ, T(x) =T (9.108)

On en déduit directement

et comme
QL+ Q- Q_
N(z M(x)=Ny(x)+ =—N_(x
() O (z) = Ni(x) 0, +(z)
on a
1 QL4+ 0 )
N, (z) = N(z)+ ———M(x
(@) 1+3+(() M)
B Q. 1
o a0 N(z)+ EM(I) (9.109)
et, de méme,
N_(&) = o= N(z) - ~M(a)
_x_Q++Q, T T
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On peut également établir les équations constitutives globales. On a d’abord

N, = B0, M N —po -
dz dz
puis
duy du_ du
N=E|Qi—+Q_— | =EQ Q_)— 11
(2% 0 22) — pa. a0 (9.110)
avec
i = fy ug + =
T 0 T 0 T
Pour le moment de flexion,
hE duy du_
M = ——— (.0, —— -0, 0 —
Qp + Q- < T dx T de )
_ EBEQuQ_h (duy  du-
0+ \dx dx
~do
= FEI— A11
T (9.111)
avec
. - \? Ry \? R2Q.Q
I1=0Q4 <Q+ +Q_> +Q_ <Q+ - Q_) = 010 (9.112)
et
Uy —U—
=T - A1
! W (9.113)

Enfin, pour effort tranchant,

ou Ov
G/Qa<ay+ar>dﬂa
G |bluy — )—i—ﬁ/ dQ)
Uy — U_ o Qav o

di
— Gbh <a + dx) (9.114)

T

avec )
v=5r /Qa vd2 (9.115)
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c) Dans la théorie de la section 9.9, pour une charge en bout, on a (en posant

Q. =0_=Q,)
dT d2M _
= = O:Tﬁ =0, M=-T{—x)
T 22
« = EI/de__E( _>
v T_ T T( 2
dz ~ GS cs T EI 2

- x lx x
Vo= T(GS 2EI_6EI>

et, & Pextrémité,

Le travail vaut donc

d’ou

L A
Fsa= st mi
Mais
{ { = QS%Z + 12([)1}5’1/2)7 I = Qsh; <I
S = S=bh
On a donc
Foa < Flgel < Fsa

d) Nous nous limiterons au cas des semelles identiques. On a, d’une part,

dui N:t 1 =
dx EQi N EQS

~ EQ,
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et, d’autre part,

ce qui entraine

gu_1
oy G Ox
“ 0 bh v
u T 00
iy = 22§27
q. Oy G de
soit
h h Tbh 400
u(x,2u(x,2]b ?—S%

a comparer a
20 -
bluy(x) —u_(x)] = ~ %0 Tlx

On constate que ces déplacements sont différents : la compatibilité locale
est violée, du fait des restrictions sur les contraintes.

TY
)
Iﬂ h
,_ \[G ‘
b
hy
P

FIGURE 9.7 — Poutre & section symétrique par rapport au plan de flexion
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Exercice 35 FEtablir une théorie statiquement admissible de la flexion des pou-
tres ayant le plan de flexion comme plan de symétrie (fig. 9.7), en faisant les
hypothéses suivantes :

o, = %M() Op =0y = Tyy =0
1

Tyz = FA(:%Z)

T, = T fdfb

Tz yzb dy

ot M est le moment de flexion, I Uinertie de la section ([,y*dQ), et b(y) la
largeur de la section selon x .

1. Montrer que ce systéme d’hypothéses garantit I’équilibre sur le manteau de
la poutre.

2. Ecrire le principe de Hellinger-Reissner dans le cadre des hypothéses ci-
dessus, pour une poutre console chargée en bout.

3. Etudier comment est vérifiée la compatibilité.

>

Déterminer la fonction A(y, z) pour que l’équilibre interne soit réalisé.

5. Transformer le principe variationnel en tenant compte de la forme obtenue
de A(y, z), de maniére a obtenir les équations globales de la poutre.

Solution

1. Appelant C; la partie du contour de la section située en x > 0 et C_ ’autre

partie, la normale sur C4 a ses composantes proportionnelles a (1, :F%j—z)
(fig. 9.8). En vertu des hypothéses, sur le manteau, le « vecteur »7 =
(Twzy Ty=) vaut

1db
T = (ii@TyzaTyZ)
done 1db 1db
7 -n=Fk( 2dyTyz:F2dyTyz> 0
2. On a

1 82 dy 0z bdy \ dx 0z

_E_A; L (b
2B  2GI? b2 \ dy

} dQ+P  (9.116)
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FIGURE 9.8 — Normale au manteau

Pour P, on considére des charges en bout :
P = [ (0 - g.u0) - ap(6)a0

a) En variant M, on obtient

6M<1 9 10 M):o

7)Y " EI

soit

dae M

dz FEI
en introduisant la rotation moyenne

1
= - dQ
o I/Qyw

b) En variant A, on obtient

1/b/2 aﬂ+@ +E@ aﬂ+@ d
I'J v |\Oy 0z bdy \ Ox 0z *

L s (2
GI? _y)s 2 \dy) |

On a immeédiatement

b/2 22 [ db\>
1+ —= () dr=2»
/—b/2 b2 \dy




9.13. EXERCICES

249
L’intégrale contenant les déplacements peut étre transformée comme suit
On a d’abord

/b/2 (81} xdbau) 0
—b/2 0z

T = — /b/2 v+ E@ dx 0%
b dy 0z 0z —b/2
en posant

b dy

1 b2 " : )
U= — v+ ——u | dr (déplacement vertical moyen

b /_b/2 ( bdy )

Passons a présent aux termes contenant w, qui s’écrivent

/ V(o wdbowy
b2 \Oy  bdy Ox
Dans le but de faire également apparaitre des moyennes, on notera que
1 [b2 1db (%2 1
Ly / wde ) = ——— / d 0
Oy | b )y

b/2
b2 dy

wdx + — — wdx 9.118
—b/2 by J_v2 ( )
Or, d’une part

10 /W gy L1db b . b +1/b/2 ow
- wdr = ——— |w | = w| —= -
by J_y2 b2dy 2

2

“—dy (9.119)
b b/2 dy
et, d’autre part,
1db [Y? Ldb . 1db [*? dw

—b/2 ox
11db b b2 g db ow
__Ltbtdby (b i 12

b2 dy {“’(2>+ ( )} b/,,/2 by oz (0120
Rassemblant les résultats (9.118), (9.119)
plement

(9.120), on obtient donc sim-

K] db 0 0 |1

/ (w N ww) g = b2
—b/2 dy

b/2 aw
- dr S = p2—
b dy Ox dy /_b/Qw m} ox
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en posant

1 b/2
w = 7/ wdz (déplacement axial moyen d’un segment y=cte)

bJ v
Cela étant, I’équation de compatibilité cherchée est
7 N N
oG (o oy
o (ay

Il s’agit d’une équation globalisée par segments y = cte, ce qui est logique,
puisque A est constante sur un tel segment.

. Les équations d’équilibre s’obtiennent en variant les déplacements.
a) La variation de u donne
) Id II)) dy dz az
x
-——Ay,l) = G

La forme de ¢, doit donc étre bien définie pour s’accorder au champ inté-
rieur.

b) Variant v, on obtient

1dA dA
7A(ya€) = Qy

I

Egalement, ¢y doit avoir une forme bien définie.
c¢) Venons-en a la variation de w. Il vient, dans €,

_ydM 104 1db,
Id: IT0y Ibdy

4 n —|—§@n =0
I\'Y bdy *)

Cette derniére relation est une identité. La précédente s’écrit

0A E@A dM

et, sur le contour,

 vayt T Vi
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Pour dM/dz = 0, cette équation se réduit a

dy ::__dy
A b
et a pour solution générale
B(z
141(y7z):: g:
Cherchons donc une solution particuliére de I’équation compléte sous la
forme Clu.2)
)2
Aoly2) = =5
11 vient
L0C _ Ldb, b, dM
boy dy | Bdy- Uz
soit
oc _ vt
oy  dz 4

Comme solution particuliére, on peut adopter

Cly ) = T 5)

avec

S(y) = / " )vay

Il s’agit du moment statique de la partie de la section située au-dessus de
y. Rappelons que

ho
S(—hy) = / " b(y)udy =0

dés lors que lorigine des axes est située au centre de gravité de la section.
La solution générale de I’équation compléte est donc

B(2) | dM 5(y)

On détermine B(z) en examinant les points y = —hy et y = ho. Trois cas
sont possibles :
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F1GURE 9.9 — Section avec méplat
|

FIGURE 9.10 — Section réguliére
20
il”

FIGURE 9.11 — Section & sommet anguleux

— Premier cas : le section y présente un méplat : b(he) # 0, par exemple
(fig. 9.9). Alors, sur ce méplat, on a la condition 7,, = 0, ce qui entraine

B(z) dM
(ha, 2) bha) + 7 = B(2)
La méme conclusion vaut si le méplat est situé en y = —hq, car S(—h1) =

0.
— Deuziéeme cas : la section coupe l'aze de y en lui étant perpendiculaire
(fig 9.10). Alors, 1,, = 0 en ce point (hq, pour fixer les idées). On a

= lim B(z) % im%:
0= (b@)*s(y)dz);‘yi@b(y) 0

ce qui n’est possible que si B(z) = 0.
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— Troisiéme cas : la section coupe l’aze de y en faisant avec lui un angle
0, avec 0 < 6 < 7 (fig 9.11). Alors, en supposant que cela se passe en
y = ho, posons £ = hy — y. Il vient

b(ha =€) = Etgf + O(E?)
et

ha
S(hs — €) A yb(y)dy

2—¢§

0
/(hg—E)(Etg9+(9(E2))dE
—£

_ & 3

donc % — 0 pour £ — 0 et comme b — 0, il faudra que B(z) = 0 pour
que A(y, z) reste fini.
En résumé, dans les trois cas ci-dessus, on a B =0 et

dM S(y)
Ay, 2) = 4z b
Les contraintes de cisaillement ont donc la forme définitive suivante :
_dM S(y)
v T T TIh
_ dM S(y) x db
et T T Ib bdy

5. On notera que
S 8w v z db ow = Ou
/* @w) <w+w”m
{ b/2 8w+3v>+xdb <8w+8u>} dx}d
b 9:) Tvay\or " 52 4
ow n o d
/ (81/ 32) !

comme nous ’avons vu en 3). On peut encore écrire

[0,
p, 102 L
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avec
h
2 S S x db
V:/ ﬁdy:/(v—l—u)dQ
oy 1 q Ib b dy
De plus,
/hz §@d B |:Sw:|h2 _/hz @ﬁd
i Toy ™ T T Ty
ha -
w
= —ybdy
/hl I
1/ J
I Ja
On a donc

/h2S @_’_@ dy = _i_dl
n I\ Oy 0z YT

Ceci permet d’écrire le principe variationnel, en posant

_1s

A
b

sous la forme

14 2 2
da dV M T _ _

ou l'on a posé

1 / 52 22 [ db\?
J— - ]_ + — -
o ), 122 »2 \ dy

soit

521w2db2d9 hzs211db2d
Jo % +1T2(@) — +ﬁ(d7,) y
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C’est la section réduite de cisaillement. Les équations globales sont

dM

= =7 M) = M
i% . T = T
M = EI%
T = GQ*(a+W>

dz

Exercice 36 FEtudier la méme poutre que ci-dessus, en posant

w = ya(z)
v = 0
v o= v(2)
o, = 0
oy, = 0
Tey = 0

Comparer aux résultats de ’exercice précédent.

Solution - Le principe de Hellinger-Reissner s’écrit ici

Y4 2 2
dv o T,
/ z Yz
2 — |- == -=L14dQ
/0 /sz [azya =)+, (a " dz) 2E 2G] s
_/ [pya(f) + g,v(€)] dQ stat.
Q

Variant o, on obtient
o, = Eyd/(z)

La variation de 7,. donne

d
TyzG(a+dZ>
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En variant «, on obtient
d

—— [ oydQ+ | TyzdQ =0
dz Q Q

[/ Uzydﬂ] :/pydﬂ
Q 2=0 Q

Ceci méne & définir
— le moment M = fQ yo,dQ
— Deffort tranchant 7" = 7,,,d$2
le moment d’extrémité M = [, pydQ

en fonction desquels ces équations s’écrivent

dM
il o
dx _
M) = M
En variant v, on obtient
d dr
— A} = — =0
dz /QTyZ dz
T = [oqdQ

() =

On peut réécrire ces équations en termes des résultantes. De simples intégrations

donnent
M = / yo.d) = E[—
dv
T = -dQ) = GQ —
fim (a - )
et

_M _T
Oz = II% Tyz—GQ

d’ou la forme globale de la fonctionnelle de Hellinger-Reissner
‘ 2 2
da dv M T _ _
M—+T e — Ma(l —Tv(L
/0 { dz i (Oé+ dz> 2ET1 QGQ} a v()
Par rapport a la solution de I'exercice précédent, qui est S.A., celle-ci est C.A
dans le cadre des hypothéses de poutre o, = 0, = T4y, = 0. La seule différence
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finale est la présence de ) a la place de 2*. La théorie des bornes nous permet
d’affirmer que

* *
exercice précédent < Q1réel <Q

(ce qui prouve en particulier que les sections de cisaillement sont toujours infé-
rieures aux sections).



258 CHAPITRE 9. PRINCIPES VARIATIONNELS



Chapitre 10

Elasticité plane

10.1 Etat plan de contrainte

S
G5~ T57 %y 0

{

) S S,

FIGURE 10.1 — Etat plan de contrainte

Considérons (fig. 10.1) une plaque d’épaisseur ¢, sollicitée dans son plan et
ayant ses surfaces x3 = £¢/2 libres. On aura donc

033:Ta3206n CE3::|:t/2 (101)

en convenant que les indices grecs peuvent valoir 1 ou 2. La sollicitation étant
symétrique par rapport au plan moyen, on aura encore

uo(28,73) = ual(rs, —T3)
{ U3($5,$3) = —Ug(mﬁ’—x3) (102)

259
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Dans ces conditions, comme
2eq3 = Daus + Dsug,

on a encore

t/2 t/2 t/2
/ 2eq03dr3 = Dy, ugdrs + [ua]_t/Q =0 (103)
—t/2 —t/2
ce qui entraine
t/2 t/2
/ Tagdl‘g =2G €a3dl‘3 =0 (104)
—t/2 —t/2

Les équations locales d’équilibre selon x1 et x5 s’écrivent
Dﬁga,g + D3Ta3 4+ fa=0

Intégrons les sur I’épaisseur, et introduisons les moyennes

0—04[3 = t‘/_t/2 Uaﬁdxg et fa = gfoédx:g

On obtient

« 1 2 .
DﬂO’aﬁ + ; [Tag]t_/tm + fa =0

ce qui, vu les conditions (10.1), se raméne &
Dgops+ fo =0 (10.5)
De méme, intégrons sur I’épaisseur I’équation d’équilibre selon z3, qui s’écrit
Da7o3 + D3oss + f3 =0

II vient
t/2

/2

Da Tagd.rg + [0’33]75_/3/2 + / f3d1‘3 =0
—t/2 —t/2

Tenant compte des relations (10.1) et (10.4), on obtient la condition supplémen-

taire
t/2

fadrz =0 (10.6)
—t)2
qui ne fait qu’exprimer la symétrie de la sollicitation par rapport au plan moyen
de la plaque.
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Les équations constitutives locales s’écrivent

1

EO(B = E [(1 + V)O—aﬂ - V(O-’y'y + 033)6aﬁ]
14+v

Eas — E Tas
1

ess = L [(1+v)o33 = v(09y +033)]

En les intégrant sur I’épaisseur, on obtient respectivement

t/2 1
9 dl‘g = —
/t/2 or E
t/2 t/2
—v / awda:g—k/ 033dx3 | dap
—t/2 —t/2
0
t/2 1 t/2
/ Egdd]}d = E (1+V)/ O'33d£C3
t/2 —t/2

t/2 t/2
-V / U,Y'deg + / 033d£€3
—t/2 —t/2

Faisant ’hypothése supplémentaire

t/2
1+v) / Oapdrs
—t)2

t/2
/ O'33dl‘3 =0 (107)
—t/2

et définissant en outre les déformations moyennes
1 [t 1
5:;5 = 7/ €apdrs = f(DauE + Dguy,) (10.8)
tJ) i 2

ol apparaissent naturellement les déplacements moyens

1 [t/2
e 7/ UndTs (10.9)
tJ_ty2
ainsi que le gonflement
1 [t? 1
q = */ E33dl‘3 = — [U3]t_/tz/2 (10.10)
t —t/2 t
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on obtient .
cap = [(L+P)0%s —v07,0as] (10.11)
et 5
4= 50y (10.12)

Les relations (10.11) s’inversent sous la forme

* * *
o = ——: (] +rve
1 1 _ V2( 1 2)
* * * (10.13)
o5 = ——(e5+ve
2 1_ Vg( 2 1)
™ = Gy*
en écrivant
* % * % * *
€1 = €11, €3 = €9, ¥ = 267,
et
* * * * * *
01 =011, 02 =029, T = Tq2
et on a donc
el = Dyuj, €5 = Daus, v* = Diuj + Dauj (10.14)

Les équations moyennes (10.5), (10.13) et (10.14), fondées sur les hypothéses
(10.1), (10.2), (10.6) et (10.7), forment le systéme de 1’état plan de contrainte.
Il s’agit évidemment d’une théorie approchée et, en particulier, les équations
générales de Navier et de Beltrami-Michell ne s’appliquent pas directement &
cet état. Dans la pratique courante, on omet les étoiles dans les notations. Il ne
faut pas perdre de vue, cependant, que les solutions obtenues représentent des
moyennes.

10.2 Etat plan de déformation

L’état plan de déformation, qui s’applique aux corps trés longs dans la direc-
tion x3 et sollicités uniquement selon z; et s, se caractérise par les conditions

Ua = Ua(zp)
uz = 0 (10.15)
f3 =0
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On a alors exactement
1
Ea3 = i(DaU:g + Dgua) =0, e33=0 (1016)

Par conséquent, comme
1
€33 = E(Usz ~ V0aa)

on obtient
033 = VO qa (10.17)

et, dés lors,
Okk = Oqo + 033 = (1+V)cha (1018)

Introduisant ces résultats dans les autres relations de Hooke, on obtient

1
€ap = E[(l +V)0ap — VOEOag]
1
= E[(1+V)Uaﬁ 7’/(14’1/)0"‘/760‘5] (1019)
et
! (10.20)
€a3 = AT .
379G
Ces derniéres équations entrainent
Taz = 0 (10.21)

On peut unifier la théorie des deux états plans en écrivant la relation (10.19)

sous la forme )

Eaf = —=[(1+4 ﬁ)o‘ag — ﬁawéaﬁ] (10.22)

Pour réaliser ’équivalence, il faut que le module de Young effectif E et le coef-
ficient de Poisson effectif U vérifient les relations

140 1+v
— = 10.2
- (10.23)
“ ) vty (1)
v vil+v v(l+v
- = = - 10.24
5 Z 5 (10.24)
Cette derniére condition implique
v=—2 (10.25)
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ce qui s’inverse en

1%
D= 10.26
b=1— (10.26)
et
. 140 1+ % E
E=FE =F Y = 10.27
1+4+v 1+v 1—02 ( )
La relation inverse est
A 1420
F=F— 10.28
(1+0)? ( )
On notera enfin que la relation (10.23) équivaut a
G=G (10.29)

10.3 Equations générales des états plans

Contrairement a la théorie de I’état plan de contrainte, celle de ’état plan de
déformation est rigoureuse et on peut lui appliquer les équations de Navier et de
Beltrami-Michell. L’équivalence exposée ci-dessus permet d’obtenir les équations
correspondantes pour ’état plan de contrainte par Dartifice suivant :

— dans un premier temps, on particularise les équations générales de 1’élas-

ticité au cas de la déformation plane;

— ensuite, on y fait apparaitre les valeurs effectives E et U,

— il suffit alors de remplacer E par E et © par v pour obtenir les équations

relatives & ’état plan de contrainte.

10.3.1 Equation plane de Navier

Dans I’équation générale

2(1 —
G Mgraddivu —rotrotu| +f=0
1—2v
on calcule
T B A
1+7 1+7
20 1-0

—_
+
>
—_
+
>
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ce qui méne & I’équation

G —graddivu — rotrotu| +f =0 (10.30)
—D
Posant
divu Diuq + Dous
c 1-o 10 (10.31)
2w = D1U2 — D2u1 (1032)
on a
rotu = 2wegs
et

€ € €3
rotrotu = D1 D2 D3 = 2(e1D2w — engw)
0 0 2w

ce qui permet d’écrire 1’équation (10.30) sous la forme

fi
Die — + = =
1€ — Dow °C 0
(10.33)
fa
Doe + Djw + == =
2¢ 1w 2G 0

10.3.2 Equation plane de Beltrami-Michell
L’équation générale s’écrit
1 v
Diwoij + 37 Dijowe + (Difj +Djfi + 1_I/Dkfk5ij) =0

On a d’abord
ok = (14 1)04,

De plus, comme f3 =0,
v

Dy fr. = ﬁD'yf'y

1—v

Il vient donc, comme toutes les dérivées par rapport & xz sont nulles,

Dyy0ij + Dijoryy + (Difj + Djfi + 2Dy f18i5) = 0
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Pour (4,5) = («, 8), on obtient
Doy0ap + DOy + (Dafs + Dpfa+ 2Dy fy0ap) =0 (10.34)
Pour (i,7) = (a, 3), il vient, du fait que 43 =0,
Da30ry + D3fo =0
équation identiquement vérifiée. Enfin, pour (i, j) = (3,3), on obtient
D033 + D33oyy + 0Dy fy =0

et, en exprimant o33 en termes de o,
033 = VO0yy = 7=

il vient
Dyyoaa+(14+0)Dyfy, =0 (10.35)

Or, en contractant (10.34) sur « et §, on obtient précisément
2Dyy0aa + Do fo+ Dafoa +20Dq fo =0

c’est-a-dire (10.35), qui est donc un corollaire de (10.34). Les seules équations
de Beltrami-Michell & prendre en compte sont donc les équations (10.34).

10.4 Fonction d’Airy

Lorsque les forces de volume sont nulles, les équations d’équilibre s’écrivent

Dio11 + Daois 0
Dio12 4+ Doogs = 0

Pour un corps simplement connexe, il existe donc deux fonctions 1, et s telles
que

{011 = Dy, 012 = —Diin (10.36)

o12 = Doips, 092 = —Dip

Pour garantir la symétrie des contraintes, on doit avoir

D11+ Datpa =0 (10.37)
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ce qui entraine, toujours pour un corps simplement connexe, ’existence d’une

fonction ¢ telle que
1 = Dap, 2 =—-Dip (10.38)

C’est la fonction d’Airy. Les contraintes en dérivent par les relations
011 = Dagp, 022 = D11, 012 = —D12p (10.39)

Sur la frontiére du corps (fig. 10.2), les tractions de surface T} et Ty vérifient

F1GURE 10.2 — Normale et tangente au contour

Ty = ni1Dey1 —noDiyhy
T n1 D2ty — na D1ty

et, comme le vecteur unitaire tangent t est lié au vecteur unitaire normal n par
les relations

ny = tg, ng = —t1
on obtient o0 o0
Ty="1 Tp,=22 10.40
=2 =% (10.40)
ou encore
T, = QD 15 = —QD (10.41)
1= ot 2%, 2 = ot 1P .

Lorsque le plan considéré est percé de trous, (fig. 10.3), 'univocité de la fonc-
tion d’Airy est soumise & certaines conditions supplémentaires. Tout d’abord,
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FiGURE 10.3 — Plan percé d’un trou

11 et 19 ne sont univoques que si, sur le contour C de chaque trou,

0:/8wads:/Tads
c Ot c

c’est-a-dire que la résultante des tractions de surface au bord du trou doit étre
nulle. Supposons cette condition satisfaite. Alors, I'univocité de la fonction

d’Airy nécessite que
0
0 = / % s
c Ot

= /(t1D1<P +taDoyp)ds
c

= /C(—tﬂh + ta9)1)ds

- dxl dZL'Q
= /c( det + dt>d5

Intégrant par parties et tenant compte de 'univocité de 1 et 12, on obtient

2, 20)

0 = Saut(w2x1+¢1x2)+/c(z1 ot — X2 ot

/(.’ElTQ — {L‘QTl)dS
C

ce qui exprime la nullité du moment des tractions de surface.

En conclusion, la condition d’univocité de la fonction d’Airy sur un corps
multiplement connezxe est que les forces appliquées sur le bord de chaque trou
forment un torseur nul.
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10.5 Compatibilité en termes de la fonction d’Airy

Appliquant les équations de Beltrami-Michell (10.34) aux contraintes écrites
sous la forme (10.39), on obtient, en posant

V2= D11+ Dos (10.42)

les conditions
V2D22(p + D11V2<p =0
7V2D12g0 + Duvch =0
VQDUQO + DQQVQQO =0

qui se raménent visiblement & une seule équation de compatibilité, & savoir,

Vip=0 (10.43)

10.6 Problémes axisymétriques plans'

Un probléme plan est azisymétrique si sa géométrie est circulaire et la solli-
citation, purement radiale. Dans les coordonnées polaires, on a alors

u = ue, (10.44)

et
1| e eo es
rotu=-| D, 0 0l=0
"lw 0 0

si bien que I’équation plane de Navier se raméne a

E
graddivu = ﬁgraddivu =—f
—v

—v
soit, pour f = fe,,
E d/1d
T—iar (m#’““)) =/
Pour f =0, tout d’abord, on a
E 1d
m;%(ru) = 2A = cte

1. Les sections qui suivent sont systématiquement écrites dans le cadre de ’état plan de
contrainte. Pour convertir ces résultats au cas de I’état plan de déformation, il suffit d’y
remplacer E et v par E et U tels que définis en section 10.2.
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d’ou P
1.2 %(ru) = 2Ar
et B
T2 = A’ + B
soit )
1—v B
= Ar+ — 10.4
g ( re ) (10.45)
Pour le cas f # 0, cherchons une solution particuliére de la forme
D
u=rC(r)+ —(T)
r
On a alors 4 J
_ e — /2 ’
dr(ru) dr(r C+D)=2Cr+C'r*+D
° 1d D'
— =92 ! -
rdr(ru) C’—&-C’r—l—r
Posant
D' =-C'r? (10.46)
on obtient alors )
d (1d 1—v
dr <r dr(ru)> ¢ E f
et )
1—v
D’ (V2 — 2
C'r Vo fr
d’ou
1—12
C ~3g /fdr
1—1? 9
D = 5E /fr dr

La solution générale de I’équation est donc

1—v? B r 1 9
u=— [Ar+r2/fdr+2r/fr dr} (10.47)
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On en déduit aisément les déformations

& = ;hzzl_EVZ[A—i—;/fdr—;/fﬁdr]
€o = %:1—Eu2 [A—&—i—;/fdr—i—;&/frzdr}
auxquelles correspondent les contraintes
op = m(er + vey)
_ (1+V)A—(1—y)g— 1;”/de_ 1;”%/#%
gp = m(se + ve,)
= (I+v)A+(1- u)?2 - 1;” /fdr+ 1;V%/fr2dr(10.48)

10.7 Cylindre épais sous pressions interne et ex-
terne

Ce probléme a été résolu par Lamé et Clapeyron en 1833 [55].

10.7.1 Cas général

Pour traiter le cas d’un cylindre sous pressions interne et externe, il suffit,
dans les équations (10.48, de poser f =0 et

o(R) = (4nA-(-v)my = -
o (Re) = (1+V)A—(1—y)% - —p,

En éliminant alternativement A et B, on obtient

Pi De

"2 T RZ _ piR} — pR?
1 + v A — e i (2 e
R s oy

Pi — Pe (pi - pe)R2R2
1+v)B = = <
Wl = ST E T RoR
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d’ou
piR} —p.R  pi —p. RIRZ
R2-R R-R 2

(o -

(10.49)
sz% - peRg Pi — De R?Rz
R2 - R? R2 - R? r2

g9 =

Les contraintes circonférentielles aux rayons extrémes sont

pilR} — peRZ + (pi — pe) 12
R2 - RZ
R? + R? 2R
Plpe— gz P — g2
pil} — peRE + (pi — pe) R?
R2 - RZ
2R? 2R?
Pre— gz P Re

O’g(Ri) =

(10.50)

(10.51)

Enfin, le déplacement radial est donné par

1—v* [ r piR}—p.RZ 1 pi—p. RIRZ
u =
E l+v R?-R? 1-vR2—R? r

(10.52)

aux rayons extrémes, il vaut

WR) = g PR+ (4R 202

uw(R.) = ﬁ {QPiR? — pe[(1— V)Rg +(1+ V)RzQ]}

(10.53)

10.7.2 Cas du cylindre trés mince
Examinons le cas particulier d’un cylindre trés mince. Posant, dans ce cas,

R.+ R;

t=R.—R;, R= >

(10.54)
la condition de minceur s’écrit

— =<1 (10.55)
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Alors,
r = R+ pn), p € [-1/2,1/2]
R; = R(1-7/2), R. = R(1+7/2)

et, en notant p* 'ordre de grandeur des pressions,

R2—R2 = RY(1+4n+%)—R¥(1—n+1%)=2R%
R} = R[1-n+0(n)
R} = R’[l+n+0(n%)]
2 = R1+2pm+ O(n?)]
RIR: = R'Y[1+0(n?)]

piR} — peR? piR*(1—n) — peR*(1+ 1) + O(p*n?)

= R*[(pi — pe) — n(pi + pe) + O™ n?)]

On en déduit
1

o = Tm [R%(pi — pe) — R (i + pe) — (pi — pe) R*(1 — 20m) + O(n*p")]
1 *
= —5li +pe) = 2p(pi — pe)] + Op")
_ 1 R2 L _ R2 . L R2 _ O 2, %
I [R2(pi — pe) — nR*(pi + pe) + (i — pe) R*(1 = 2pn) + O(1°p*)]
Di — Pe 1 *
= 3 [(pi +pe) = 2p(pi = pe)] + O(np")
La plus grande contrainte est visiblement
R .
05 = (pi —pe) 5 +O(") (10.56)
Comme
o = O(p*) (10.57)
cette contrainte est négligeable devant la premiére. On a d’autre part
1 R*(pi — pe) R*(pi — pe)
u % (1-v) SR +(1+v) 2R + O(p*R)
(pi —pe)R PR
= . —— O _—
En + 0 E )
(pi —pe) R? P'R
_ 10.
o + O( - ) (10.58)

Les formules (10.56) & (10.58) sont connues sous le nom de formules des chau-
diéres.
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10.7.3 Cas du rayon intérieur tendant vers zéro

Dans le cas d’un cylindre creux sous pression externe, on a

2p. R?

Oy =

Or (Rl) = 0
2peRgRi

R (i

wRe) = ——LPelfe 1Ry

E(RZ - ) e ’
Dans ces formules, faisons tendre le rayon intérieur vers zéro. Il vient
I%:I_I}O og(Ri) = —2pe, Rlif_ﬁlo or(R;)) = 0 ( ) (1059)
. ) o . o 7peRe 1-v °
Al = 0 (e = =T

Comparons cette solution & celle d’un cylindre plein. Dans ce dernier cas, le
déplacement devant étre fini en r = 0, on doit avoir B = 0 et

7171/2

U= Ar
ce qui donne
or=014v)A, co=(1+1)A (10.60)
d’ou
Or =09 = —Pe
A — _ pe
1+v
1—v
v o= - DeT (10.61)

E

Le comparaison de ces résultats avec les formules (10.59) montre que les dépla-
cements sont identiques, mais que la contrainte maximale dans le cylindre ayant
un trou infiniment petit est double de celle qui régne dans le cylindre plein. Le
trou infiniment petit provoque donc une concentration de contrainte mesurée
par
lim og(R;
ap=——-—"7-——-=2
og(sans trou)
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10.7.4 Cas du rayon extérieur tendant vers l’infini

Le cas R, — oo correspond & un tunnel profondément enfoncé dans le sol.
On a alors, pour p. = 0 et en posant n = R;/R.,

n? Di R2 R?

=P — S pe 10.62

Or =PiT 2 " 1 _p2 2 pit 5 ( )
ot 2 2 2
R R?

06 = pi—r P psE (10.63)

1—n2  1—n2r2 72

La contrainte maximale vaut donc p;. Le déplacement se calcule par
1 n’ pi R} 1+v R?

— — |l —v)rpi—— + (1 S ;
v E ( V)rpl—nQ—’_( +V)1—n2 r E p r

(10.64)

Sa valeur maximale est

10.8 Frettage

Le frettage consiste a assembler un arbre & un moyeu dont le diamétre est
trés légérement supérieur & celui de ’arbre. Pour réaliser cet assemblage, on
peut

— Utiliser une presse si l'interférence est modérée.

— Chauffer le moyeu de maniére & le dilater, enfiler I’arbre et laisser refroidir.

— Refroidir I’arbre de maniére a le contracter, ’enfiler dans le moyeu et le

laisser reprendre la température ambiante.
La pression régnant a U'interface arbre/moyeu permet alors de transmettre un
couple ou une force axiale par frottement.

Avant ’assemblage, 'arbre a un rayon extérieur R, et le moyeu, un rayon
intérieur R;,,. Aprés assemblage, leur rayon commun sera R, les deux piéces
ayant subi des variations de rayon

Ui, = R — Rim >0 et ey = R — Req <0
La condition d’équilibre est 1’égalité des pressions :

P = —0prim = —Orea
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Par les formules des cylindres épais, on a, en posant Q. = Rin/Rem et Qo =
Ria/Reaa

Rim
vim = g R?m)p[(l —vm)RE, + (14 vm)R2,
pR;
= Wim@%)[(l + V) + (1= vm) Q7]
Rea
Uy = —mp[(l — Vo) R2, 4+ (14 v B2
pRea 2
= —m[(l —Va) + (1 + ) Qg]
ce que nous noterons simplement
Wim = mpRzma Ueaq = — apRea (1065)
avec
1 [1+Q2
Cm E7m |:1 — gg + Vm:|
(10.66)
1 [14Q2
Ca = 7, [1—@3 ~

Comme on doit avoir
[Uim| + [Ueal = Wim — Uea = R — Rimy — R+ Req = Rea — Rim
on obtient la condition
P(ConRim + CaRea) = Rea — Rim (10.67)

En général, on se donne la pression a obtenir, & partir du couple et de la force
axiale & transmettre. Supposant alors que l'on se fixe d’avance le rayonR;,,, on
déduit de la relation précédente

Rea(]- - Ca ) = Rzm(l + Cmp)
soit

B 1+ Cpp
Rea - le 1 _ Cap
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En pratique, la différence de rayons est trés petite, de I’ordre de quelques cen-
tiémes de millimétres pour un diamétre de 50 mm. En d’autres termes,

ReafRim o
—ea Tmmo_ 1
R R <

ce qui permet d’écrire sans grande erreur la formule (10.67) sous la forme

h)
S —(c,+C,
7 (Ca+Cm)p

qui est celle qu’utilisent les ingénieurs.

10.9 Disque en rotation

Considérons & présent un disque tournant a la vitesse angulaire w. Un élé-
ment de volume dV de ce disque subit la force centrifuge

fdV = pdVw?r
ce qui donne
f = pw?r
On a alors
2
T
r = pw’—
/f r pu
4
2 2T
dr = —
/fr r puw”—
En introduisant ces valeurs dans les formules (10.47) et (10.48), on obtient
1—v2 B p?r pwrd
= Ar+ = —
U i) [ r+ . 1 + 3 }
1—v2 B 1
- E” [Ar + - 8pw27“3} (10.68)
et
B pw?r? pw?r?
s = (1+)A-(1-v)= —(1 —(1-
R ) L R L
B 3+
= +A-(1-v)5 - 8” 22 (10.69)
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2,2

pw?r? pwr

(1+I/)A+(1—I/)T§2—(1+I/)

B 1+3v 4,
= (1+1/)A+(1—V)T—2— g T

of +(1-v)

(10.70)

10.9.1 Disque plein de rayon extérieur R,

Dans ce cas, on doit avoir B = 0 pour que la solution soit finie & l'origine.
En r = R,, la condition ¢, = 0 entraine

3
(14+v)A= ks Vpu;QRg
La solution est donc
1—v2 pwr? (3+v , 3
= — 10.71
u 7 3 (1+VRJ 7‘) (10.71)
3
oy = Jg”paﬂ(R’g’ —r?) (10.72)
3+v o o 14+3v ,
— R? — 10.73
o0 = e (-t (10.73
Les deux contraintes atteignent leur maximum au centre du disque, ou
3
o, =09 = —gypo.)QRg

10.9.2 Disque creux de rayons extrémes R; et R,
Les conditions o,(R;) = 0 et o,.(R.) = 0 s’écrivent ici

B 3+v

(11— — 2 p2
(I+v)A—-(1 V)R? g R;
B 3+v 5 o

1+v)A-(1 —1/)R—z = g v R

On en déduit

pw?(R? — R})

1 1 3+v
108 (- ) =5

soit 3
(1-v)B= ;przRng
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et
(140)4 = “T”pWQ(Rg + R?)

ce qui méne & la solution suivante :

1—v2pu? [3+v, , 9 3+ v R’R? 3
= — » —_— - 10.74
" E 3 [1+V(R€+R’)r+1—u o) (0T
3 R2R2
o, = %pr {(Rg + R?) — % - 7"2] (10.75)
3tv o 2 2y, RIR} 1+43v ,
g = pr |:(Re + Rz) + ;2 - 34_7”7' (1076)

La contrainte radiale maximale se produit pour » = v/ R; R, et vaut

3+v
Or max — 3 PW2(R3 - R?)

La contrainte azimutale maximale a lieu pour r = R;. Elle vaut

3+v 1—v
09 max = 1 Pw2 (Rz + R?)

3+v

En particulier, pour R — 0, 09 max tend vers une valeur double de celle du
disque plein. Ici encore,
O¢ maX(Rz‘ — 0)

. = —_— Y =
k 09 max(plein)

10.10 Utilisation de la variable complexe [22, 62,
54, 75, 36]

10.10.1 Généralités

Les variables complexes rendent de grands services dans la résolution de
nombreux problémes plans. Commencons par rappeler qu’un nombre complexe
a+ b peut étre représenté comme un vecteur (a,b) dans I’espace R? (fig. 10.4).
Les changements d’axes orthogonaux sont trés simples en variables complexes :
si n est Pangle avec I’axe des z de la direction de la normale & une courbe (fig.
10.5), un vecteur

ae; + be, = an + Jt
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w@e b
n

FIGURE 10.4 — Représentation d’un nombre complexe dans le plan

s’exprime par

a = «cosn+ Bsinny
b = asinn— Bcosn
ce qui équivaut a .
a+ib=e""a+if) (10.77)

Par ailleurs, on a la relation géométrique utile

ab = (a1 — iag)(bl + Zbg)
= (a1b1 + azbg) + i(albg — agbl)
= a-b+iaxb (10.78)

en notant axb pour la troisiéme composante du produit vectoriel. Deux vecteurs
sont donc orthogonaux si R(ab) = 0 et on aura alors

ab = ila|[b|

10.10.2 Fonctions analytiques et antianalytiques

La différentielle d’une fonction f(z,y) s’écrit en général

_0f 4. o1
& = Gyt + 5,y
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FIGURE 10.5 — Changement d’axes

Notant z = x + 1y, on a

dz + dz dr—dz
Oy = B L ga—az)
5 9 5

dr =

ce qui permet d’écrire

18f

_ 5f _
_ Ljof _.of of 9N,
= (ax ay)d +2(a Ty
_of, O .
= 3, dz + 93 dz
e of _1(0f of\ of 1(0f of
=L L 2L 10.
0z (81 3y) et 9z (81’ o 8y> (10-79)
Cela étant, une fonction est analytique si elle ne dépend pas de z, soit si
of f,.0f
5 = <8x + zay> =0 (10.80)

ce qui, sous forme réelle, s’écrit

ORf OSf  ORf  0Sf
or oy’ Oy  Ox (10.81)
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Une fonction est antianalytique si elle ne dépend pas de z, ce qui s’écrit

of of _of\ _
= - (81; - a;,) -0 (10.82)

ou sous forme réelle :

ORf  OSf  ORf 0Sf
or oy’ Oy O« (10.83)

analytique = antianalytique
antianalytique }’ f { analytique }’
car le passage de f a f se fait en changeant le signe de Sf. De plus, si f est
analytique, on a

Notons que si une fonction est {

i\ _ 1(of of

() = 3(5-13)
_ 1(ORf | OSf a%f o3f
- 2( Ox T Ox y )
1 (mf 8\sf RS 8cf
B 2( 9y >

d

_ ;[ax Rf—iSf)+ (B%f—i%f)}
_ 4
- dz

Il est donc légitime d’écrire cette dérivée f’.

10.10.3 Coordonnées curvilignes orthogonales

Considérons deux nouvelles coordonnées « et § et le changement de variables

T = .’E(Oz,,@), Y= y(a, 6) (1084)

Elles définissent un systéme orthogonal si les nombres 0z/0a et 0z/08 sont
représentés dans R? par des vecteurs orthogonaux, soit si (fig. 10.6)

0z 0z
R <8ac’?6> _0 (10.85)
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4

FI1GURE 10.6 — Coordonnées curvilignes orthogonales

quels que soient « et 3. Dans ce cas, les courbes a = cte et S = cte forment
un réseau orthogonal. En un point («, ) quelconque, la normale unitaire a la
courbe « = cte est donnée par

%
Oa
%
da

Si n est ’angle que fait cette normale avec ’axe de z, on a

%
Oa
%
Oa

= e (10.86)

Le vecteur
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est normal au précédent. Nous le supposerons obtenu en tournant le précédent
de /2 dans le sens trigonométrique 2. Alors,

%
aﬂ __ s oMm
% =ie
a8
Notant
0z 0z
A_‘aa , _’86 (10.87)
on a donc
0z 0z ,
—_— A w —_— B o 1 .
5a e, 95 ie (10.88)
Il en résulte évidemment
dz = a—da + —Bdﬁ =¢ "(Ada + Bdp) (10.89)
et
dz = e "(Ada — iBdp) (10.90)
Ces relations s’inversent en
L, in s
Ada = 5 (e™"dz + €"dz)
Bdf = —(c7"dz—edz) (10.91)
Soit alors une fonction f(z,y). On a
_1o0f 10f
df = AaaAd +§%Bdﬂ
— 1 8f 1 71'7] n 1 af i 77;77 in s
= Aon 2( dz + e dz) 3852( dz —e dz)
B 1Of i 0f\ _i 10f [ i 0f\ 4,0
-3 (Aaa Baﬁ) dz + A0a T Bog )"

2. Si ce n’est pas le cas, il suffit de permuter le role des variables o et 8
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ce qui implique
of L o, (10f idf —in
—_< — T __d _ 4 3 D
2 2¢ (flaa Bap ¢ "'Df (10.92)
g _ Lo l%_,_i% npf '
0z~ 2° \4oa " BB ‘
en introduisant les opérateurs
1/1 0 i 0 _ 1/10 i 0
D=t tZ), D=t 10.
2<A8a B&ﬁ)’ 2(Aaa*‘365) (10.93)

En particulier, la condition d’analyticité de f s’écrit

1 (1af  idf\

Un systéme de coordonnées («, ) définit une transformation conforme si
A=B. Dans ce cas,

1 g .0 _ 1 0 .0
— | =——-i= ), D=—|(—+i—=
2A \ Do ap 2A \ Oa ap
c’est-a-dire que les fonctions analytiques sont, dans ce systéme, également fonc-
tions de v = « + i seulement. On vérifie aisément qu’alors,

dz
A=B=|=
dy
et
()
. d’7
wmn
T
dy

10.10.4 Transformation des vecteurs

Comme le montre la figure 10.7, un vecteur (7,,T,) dont I'image complexe
est T, + i1}, se transforme selon la normale et la tangente & la courbe o = cte
par

g

T,

T, cosn—Tgsinn
T, sinn+Tgcosn

ce qui donne ‘ ‘ ‘

Ty +iT, = The +iTge" = e'(T, + i1p) (10.95)
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Fi1GURE 10.7 — Transformation d’un vecteur

10.10.5 Transformation des tenseurs symétriques

Dans le systéme d’axes (z,y), le tenseur o s’applique & un vecteur n pour
donner un nouveau vecteur T, selon la loi

T, = 0Ny + Tayny

Ty, = Toyng +oyny

On recherche les composantes de ce méme tenseur dans le systéme (a, 8), c’est-
a-dire que ces composantes doivent vérifier

T, = TaNg + Tapns

Tﬁ = TapNa +0pNng
A cette fin, on remarquera d’abord que

Tp+iTy, = (034 iToy)ng + (Tay +ioy)ny
(

Oz + iTgy )Ny + (0y — iTay)iny,

1 ,
5(030 +oy) + E(O‘z —0y) + Ty | Na
1 1 , .
+ i(ox +o0y) — 5(0z — Oy) — (Tgy | iny
ce qui donne 'expression complexe de ’application d’un tenseur sur un vecteur :

Oy + 0y

1
5 (ng +iny) + i(am — 0y + 2iTy) (ngy — iny) (10.96)

T, +1T, =



10.10. UTILISATION DE LA VARIABLE COMPLEXE 287

Cette expression équivaut a

; z ; . 1 . i .
e (Ty +1iTp) = OT—i_Uye”’(na +ing) + 5(% — 0y + 2iTyy)e” " (ng — ing)
soit,
1
Ty +iTs = %T_Fay(na +ing) + 6_2“75(0'1- — 0y + 2i74y) (Na — ing)
c’est-a-dire que
Oqt+0g = 0 + Oy
{ Oa — 08+ 2iTag = 672“7((705 — oy + Qisz) (10.97)

10.10.6 Structure générale d’une fonction harmonique réelle

On peut écrire 'opérateur de Laplace sous la forme
0? 0?
(52 30)

(20N (2 0N,
N ox y ox dy

V2f

g 0
= Yo:0:7
Pour V2f = 0, on a donc
of _
et
f=F(z)+G(2) (10.98)

Si la fonction f est réelle, on a
Sf=SF+3G=0

Comme les fonctions F' et G vérifient les relations

ORF  OSF OSF  ORF
or Oy’ or Oy
ORG  0SG 0SG  ORG

or oy’ or Oy



288 CHAPITRE 10. ELASTICITE PLANE

on a
ORF  OSF _6‘%G _ ORG
or Oy  Ody  Ox
ORF _8%F _0SG ORG
oy or  dxr Oy
ce qui implique
RF = RG + cte

Faisant rentrer la constante dans F, on obtient G = F, d’oi1
f=F+F, avec F analytique (10.99)

C’est la forme générale des solutions réelles de ’équation de Laplace.

10.10.7 Structure générale d’une fonction biharmonique
réelle

L’équation biharmonique V4 = 0 équivaut évidemment &
V?¢ = harmonique

ce qui permet d’écrire -

Vip =4F +4F'
F étant une fonction analytique. Le facteur 4 est introduit pour la commodité.
Cela revient encore a dire

g9 _

Intégrant, on obtient

g—f =zF' + F+G'(2)

Une nouvelle intégration donne
¢ =ZF +2F + G(2) + H(2)

Les deux premiéres fonctions de cette expression ont une somme réelle. Par le
méme raisonnement que ci-dessus, on trouve que la somme ne sera réelle que si

H = G. La solution générale est donc

@0 =ZF +2F + G + G avec F et G analytiques (10.100)
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Cette formule est due & Goursat [41].
Une autre expression peut étre obtenue en posant

Il vient alors

o=z*(H+H)+(G+G)

ou encore,
¢ = (2" +y*)h(z,y) + g(z,y)

ol h et g sont deux fonctions harmoniques.

289

(10.101)

10.11 Forme complexe de la solution des équa-
tions de I’élasticité plane en I’absence de

forces de volume [54, 62]

10.11.1 Déplacements

Les équations de Navier, sous la forme (10.33), avec f1 = fo = 0, sont des

équations de Cauchy-Riemann. On peut donc écrire

4
£+iw= =F'(2)

E
On a alors 5 5
_ “ =/ _ L _
5fE(F+F),w Ez(F F"
Or,
D urivy = S(Ly 20, O
0z 2\ 9x 0 9y Oy
_ 1—v Ly
= g €W
ce qui donne
0 1—v _ 2 _
- y — 7F/ F/ *F/*F/
Sutiv) = EF 4 F) 4 (F - F)
_ S_VF/71+VF'

E E

(10.102)
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Intégrant cette équation, on trouve la forme générale des déplacements :

At iv = %[(3_ W — (14 0)2F — (14 v)K'] (10.103)

10.11.2 Contraintes

Les contraintes se déduisent de ce résultat par dérivation. Notant d’abord
que

_ EptEy 1 _ _ ozt oy
=Ty TEI )T T ) = g
on obtient, en tenant compte de (10.102),
(0p +0y) +iEBw=4F' (10.104)
D’autre part, on a
D iy = L(B O
0z 2\ 0z oz dy Oy
(o i
2\ 0z Oy 9 T2y
La loi de Hooke donne
1 /0u Ov 1
5 %_87’1! = E(O’z—l/gy_oy‘i—l/gx)
14+v
1
= E(UI —oy)
et . .
i i
PR TR
1l vient donc
. 0 .
Op — Oy + 2074y, = 4G£(u + iv)
2E 1 i gl
= 1 +1/E[_(1 +v)zF” — (1 +v)K”]

soit - -
Op — Oy + 2iT,y = —22F" — 2K” (10.105)
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10.11.3 Fonctions de contrainte

Calculons & présent les fonctions de contrainte du premier ordre 17 et 1, et
la fonction d’Airy ¢. On remarquera d’abord que les relations

_ Oy Oy
P = 9y o = o
entrainent
_ o _Op 0o (0p  Op\ _ _ 0p
Y =1 + ihg = i gy = (8:10 + z—ay = 21—82 (10.106)

D’autre part, on a

Op — Oy + 20T,y =

o D (U 00)

dy Or dy ox

Y (L O 002

N Z<8m+26y)+(8x+28y

_ o (O | O

= 21 (62 +262>
soit 9

Op — Oy + 2074y = 721‘8—? (10.107)
Enfin, comme

_ % _ 0¥ S L
UI+Uy_8y oz’ Toy sz_3x+8y =0

on a

0: ~or "oy "o Ty
Ces relations permettent de calculer la fonction . Par (10.107) et (10.105), on
a

OV O O Oy | O (10.108)

a¢ _ s i [
Fri i(—2F" — K7)
d’ou - -
v =i(—2F' — K — L) (10.109)

L étant une nouvelle fonction analytique. Par ailleurs, on déduit de (10.108) et

(10.104)
) : : _
a—f = f%(az to,) = f%4§RF’ = —i(F' + F)



292 CHAPITRE 10. ELASTICITE PLANE
ce qui entraine

Y =—i(F+zF + M) (10.110)
avec M analytique. La comparaison des résultats (10.109) et (10.110) donne

F=1L, M=K’

si bien que

= —i(F+2F' + K (10.111)
On en déduit directement ’expression de la fonction d’Airy : comme

dp i 1 _ _
= (F+2F + K
95 — gV =+ +K)

on obtient par intégration
1 _
©= i(zF—i-zF—l-K—i-N)

N étant analytique. Pour que cette expression soit réelle, il faudra que N=K,
ce qui meéne & la forme définitive

1 _ _
¢:§(2F+zF+K+K) (10.112)

en bon accord avec ’expression de Goursat des fonctions biharmoniques.

10.11.4 Calcul des contraintes en coordonnées curvilignes
orthogonales

Dans le cas de coordonnées curvilignes orthogonales, le calcul des contraintes
se fait simplement & partir des relations suivantes :

O +05 = 0x+0y
= VQQD
0 Jy
4 — 2
0z 0z
= 4e "D (e"""Dyp) (10.113)
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et

Oo — 05+ 2iTap = € 20, — 0y + 2iTsy)
) 8290
= 4 —2in
© oz
= —4e %MD (e”’@cp)

= —4e¢ "D (" Dyp) (10.114)

10.11.5 Expression des tractions de surface

Les tractions de surface sur un bord sont données par

oy )
T, = 2L, T, =22 10.115
ot Yoot ( )
soit o0
T +ily = - (10.116)
En coordonnées curvilignes orthogonales,
. i , —in O
To+ilg=e "Iy +1iTy) =e "1 (10.117)

ot

10.12 Probléme de Kolosoff (1910) [54]

On considére un plaque plane trés large dans laquelle est percé un trou
elliptique de demi-axes a et b, le grand axe étant incliné d’un angle  par rapport
a la direction des tractions a l'infini (fig. 10.8). On peut fonder I’étude de ce
probléme sur la transformation

z=f(0) :c(<+%), 0<m<1, >0 (10.118)

qui, pour un bon choix de ¢ et m, applique 'ellipse du plan des z en un cercle
du plan des ¢. En effet, pour |(| =1, on a

F(Q) = c(e” +me™")
soit

z=c(l4m)cosb, y=c(l—m)sind
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FI1GURE 10.8 — Probléme de Kolosov

si bien que
22 y?
Jr
2(1+m)2 (1 —m)?

On reconnait 1a ’équation d’une ellipse de demi-axes

=1 (10.119)

a=c(1+m), b=c(1—m) (10.120)
Ces demi-axes étant donnés, on calcule ¢ et m par
a+b a—>b
_ — 10.121
¢ 2 7 AT ( )

L’inclinaison d’un angle v du champ de contraintes par rapport a l’ellipse en-
traine

. . -2 .
Opy + 0y, =05 +0y; Oz, — 0Oy, +2iTg .y, =€ (05 — 0y + 2iT4y)
Dés lors, a 'infini, les conditions

Oz = 0, oy, =0, Torys =0
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se transforment en
oy + 0oy =0, Op — Oy + 2074, = 0
ou, en termes des fonctions F' et K,
ARF' = o, —2(2F” + K”) = 0e*" (10.122)
Les conditions sur le bord du trou sont
ip=F+z2F+K =0 (10.123)

En fait, nous exprimerons F' et K en termes de ( :

F(z) = F(f(C) = Fi(Q), K(z) = K (f(¢) = K1(¢)
On calculera donc
/ _ Fl(C) / _ Kl(g)
PO=30 FE=70
et
oo 1 EFT(QO(Q) = FI(Q ()
P8 = 7 P
B Fl” f/ _ Fllf”
= T
W - LA
Tenant compte de ces transformations, on aura
Uy + iU, = % {(3 —v)F, —(1+ I/)JJ;/F{ -1+ V)I;ﬂ
Op+0oy = 4?)%(53/)
Oy — Oy +2iTTy = —2 <fF1”f/f/_3 B + Klwflf/_?) K{f’,)
_ K/
W o= P+ J{C,F{ + 5

(10.124)
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A Tinfini, on aura

fQ)=e¢, f(¢)=c <1 - 2’;) ~e, Q) =2m¢?~0  (10.125)

ce qui permet d’écrire
F/ ) _ I_( 9
o= 4%71, 0'6217 ~ —2 <<F1” + ;) (10126)
c c c

De telles conditions peuvent étre vérifiées par des développements de la forme
Fl =) A", Ky" =Y B.(" (10.127)
n=0 n=0

Les conditions & l'infini donnent immeédiatement

2
RAy = %, Bo = _%e—m (10.128)

Il nous faut & présent intégrer les déplacements pour vérifier leur univocité.
On a

o0 1-n
F = A0§+A1111C+2An1<_n

n=2

el len
/ —
K| = B0§+B11n§+z_:2Bn1_n

Les seuls termes qui n’assurent pas ’univocité sont ceux en In(, qui changent
de définition & chaque tour du trou. Ces termes sont

1 In
|e-mamc-aenm ]
d’ou la condition A1 = By = 0.

Venons-en aux conditions au bord du trou, représenté dans le plan des { par
le cercle |[(| =1. On a

f=c (C + TZ) = c(e" + me ) = ce(1 + me=2")

fl=c <1 - ZZ) = ¢(1 — me=29)
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La condition i1 = 0 équivaut & la suivante :

0=fFi+ fF+ K| =(1-me*)F + (e + me )F| + K|

avec
- > ei1—n)8
Fio= A=) Ay
oon=2
F = Ag+ > A
n=0

> i(1-n)

K| = Boe -3 B,~
! o€ 'nz::Q n—1

En identifiant les coefficients des différentes puissances de €, on obtient les
conditions suivantes :

. B
e — A0+A2m+A0+A2mf—2:O
C

, - 1B
0 s Azm—==2=0
2 c B
3i0 i i Ba
e — —Am+Ay+mAs— — =0
C
, - - B
e’ke, k>3 — A1+ mAkJrl + k1 _ 0
, - A B
6720 > 7A2 —+ Aom —+ 4 —+ 70 =0
&
) A A
—ik0 k+1 k—1
1 — =
e k> — A mk — 0

Cherchons une solution telle que Ay, = 0,k > 3 et By, = 0,k > 5. Tenant compte
des conditions (10.128) et supposant Ay = 0, on obtient

e B3=0
B ;
0 _ (Lc(m — 262%7)

e > Agzmﬁ()#»—
c 4

vy

637'0 — B4 = 3C(A2 — Aom) = — so¢ 62

2
e BQ:C(AOJrAOerAQerAQ):%(1+m272mcos2’y)
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Les fonctions cherchées sont donc

B = Uf + %C(m — 2e*7)( 2
2 ¢ 2 30¢2 ..
Ky = —%e”” + %(1 +m? —2mcosy)( 2 — 29e e?ve4

(10.129)
Au bord du trou, la contrainte normale est évidemment nulle, si bien que

F{\ _ gl (m—2e27)¢
f) B 1—m¢2

, ce qui donne

at:0w+ay:4§RF':4§R<
0

comme [{|=1,0on a ( = ¢

1 —m? + 2mcos 2y — 2 cos(2y — 20)

= 10.130
=0 1+ m?2 — 2mcos 26 ( )

Examinons deux cas particuliers.
1. Pour v = 7, le grand axe du trou est perpendiculaire au champ de

containte principal et

1 —m? —2m+ 2cos 26
1+ m?2 — 2mcos 20

Ot =0
Son maximum se produit pour § = 0 et vaut

3—2m —m? 3+m 1+m a
Ot max = O (1_m)2 :O—l—m:J(1+21—n’},>:0—(1+2b>

le coefficient de concentration de contrainte vaut donc

ap = Jtmax _ g 4 o8 (10.131)
o b

C’est la conclusion fondamentale du probléme de Kolosoff.

2. Pour v = 0, le petit axe du trou est perpendiculaire au champ de contrainte

principal. On a
1 —m?+2m — 2cos 26

14+ m?2 — 2m cos 20
Le maximum se produit alors en § = 7 et vaut

b
Ot max — 0 (1+2)
a

Ot =0
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On peut exprimer les résultats précédents sous une autre forme : au voisinage
du sommet de ellipse, on peut écrire

xzawl—yj%a—a—yz:a—y—2
b2 202 2R

ou R est le rayon de courbure. On a donc

R=—, -
a a

et, en notant T' le demi-axe a, on a donc

T
o =1+2\/% (10.132)

FIGURE 10.9 — Entaille elliptique

Cette formule, due & Inglis (1913), est fréquemment employée, méme lorsque
le trou n’est pas elliptique. On 1'utilise également pour les entailles elliptiques
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(fig. 10.9). C’est 1a une approximation, car cela suppose que ’on peut couper la
tole du probléme de Kolosoff le long de son axe sans rien changer, ce qui serait
vrai si l'on avait oy = 0 en § = 7. Or, en fait, en ce point,

1—m2—2m—2
= -0
1+ m2+2m

g =

et cette valeur n’est négligeable devant le maximum que pour les trés grandes
valeurs de T'/R.

10.13 Probléme de Kirsch (1898)

Le probléme de Kirsch est le cas particulier du précédent ou ’ellipse est un
cercle, ce qui revient & dire que m = 0. On a alors

a=b=c=R, z = R(, f'=c=R, v=0
et
F o R?
Fr= L="(1-2—
c 4 < 22)
g R? —2i6
K7 c oR? 3 R?
K?? — —_ __ . g
c? 2—*_27“2 27 A
o R? —2i6 R i
99 R2
F = 0’;
d’ou
R2
Oz +0oy = 4§RF/:U(1—2200S29)
r
0y — 0y +2iTry = —2(2F"+K")

R? R*
= fZURQ% +0o (1 - — e 4 3— 64’9)
z r r

R% ,, R? R*
- o <1 o 72627'9 . 2726420 + 34e4u9>
r r r
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et, en composantes polaires,

R2
o,+o09 = o (1 - 2200529)
T
oy — 09 + 2Ty = e 2 (0p — oy + 2iTyy)
) R2 R2 ) R4 )
_ —240 240 2160
= g (6 — ’["72 — 271726 + ?)TTB )
On en déduit
o R? R? R*
2 4
oy = T1(1+ L 1+ BR— cos 20 (10.133)
2 72 rd
o R? R*\ |
Tro = —5 (1“‘2712—37,4) Sln29

Au bord du trou, la contrainte oy vaut
o9 = o(1 —2cos20)

Elle atteint son maximum en 6 = 7/2, ou elle vaut 30. La perturbation de I’état
de contrainte décroit comme 1/72. Son gradient relatif est donné par

7

L dog _ T
- 3R

— 10.134
(ox] dr ( )

X:

au maximum

Les coefficients de concentration de contrainte relatifs a d’autres sollicitations
s’obtiennent par superposition : en superposant un état de contrainte o3° & un
état de contrainte o7, on aura, au bord du trou,

™
og = 0, (1—2cos20)+ 0.7 (1 —2cos2(0 + 5))
= 0, (1 —2cos20) + 0,°(1 + 2cos 20)
= (03 +0,°)+2(0 —0,°)cos20
dont le maximum vaudra
09 max = (05 +0,°) + 207 — 07| (10.135)

Pour un état de traction uniforme o7° = 0,° = o, on obtient ainsi

09 max = 20, ap =2
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oo

Dans le cas d’un cisaillement uniforme,o° = —oy

=7, il vient
0¢ max = 47

Le coefficient de concentration de contrainte sera ici le rapport des diameétres
des cercles de Mohr, soit
47 -0
ap=———=2

00 __ 500
(o O'y

10.14 Fissure sous contrainte uniaxiale

Si, dans le probléme de Kolosoff, on pose m = 1, on obtient une fissure
rectiligne, de longueur 2a = 4c, perpendiculaire au champ principal de contrainte
pour v = /2. 1l vient alors

F o= ZEa+3c?
K, = %62(1 +4¢C2+3¢7Y
d’ou
Ro= T8¢
K, = %CQ (C; —2In¢ — ;g2> (10.136)

On simplifie ces expressions en posant
(=
soit

ZC(C+2> =2cché =ach§
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ce qui revient & utiliser les coordonnées elliptiques. On a alors, comme dz/d¢ =
ashé,

F = %G(ZShf—chf)
h§
o= 2 (29 4
4<sh£ )
F” _ o
B 2ash® ¢
, _ oa 1
=5 (Chg Shf)
h
K = ”(Hcf) (10.137)
2 sh” £
On en déduit aisément les contraintes :
ché  ché
- ARF - B S |
Tet oy R U(sh§+sh§ i
) _ _ ch¢ ch{)
e — Oy +2iTy, = —20F" +K?) = —of-— 1+ =5
o oy iToy (z ) O‘( sh?’f sh3§

(10.138)
La zone intéressante est évidemment le voisinage de la fissure. Dans cette région,
on peut poser

z=uaché=a+re? =a(l + e'?), ex1

Il vient alors

e = \/a? € 1= /14 260 £ O() 1 = VEe/2(1+ O(0))
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Introduisant ces valeurs dans les expressions (10.138) des contraintes, on obtient

1 i0 ) 1 —if0
0w+0y = o ( + €e 6_10/24—&619/2 _1>
V2e V2e

2
= —Ocosg + O(0)

V2

1 i0)p3i0/2
o — Oy + 2iTy, = _U[_( +ee'¥)e

(26)3/2
= 0 {2_3/26_1/263i9/22i sin 6 + (’)(1)}

+1+

(1 + Ge—ie)eSz‘Q/z
(26)3/2

360 36 0 0
= g <cos + isin ) 4isinfcos§ + O(o)

2v/2¢ 2 2 2
= 2—osingcosg —sin%—&—icosgfe + O(0)
V2 2 2 2 2

On en déduit les expressions asymptotiques suivantes des contraintes :

0 0 . 30
0y, = écosi 1 —sinisin? + O(o)
o 0 0 30
= ——=cos—= (1+sin—sin — @) 10.139
oy Nor cos 5 (14 singsin o ) + (o) ( )

Tey = Lcosgsingcos%—i—(’)(a)

V2e 27727772

En mécanique de la rupture, on introduit le facteur d’intensité de contrainte
K défini par

Ky =oyma (10.140)

en fonction duquel les expressions asymptotiques (10.139) s’écrivent encore

I . .3
. = —(1—sin—sin— o
o oo cos sin 5 sin - + O(o)
K 0 6 . 30
oy = \/ﬁ cos 5 1+ sin 3 sin 5 )t O(o) (10.141)
K
Toy = L cos = sin = cos — + O(o)

27r 2 2 2

Il est & noter que, bien que ces contraintes tendent vers I'infini pour » — 0,
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leur énergie élastique dans une zone de rayon R reste finie. En effet,

W= Ui-ﬁ-Uz—QllO’wO'y n Tay
2F 2G
_ 03+ 0) = 2wo.0y+2(14v)72,
2F

K2 w2 P U (1 in im0 2+ s 0. 30 2
= ——=cos” = — Sin — sin — SIn — Sin —
arrE % 2 2% St STy
0
—2v 1fsinfsin3—€ 1+sin€sin%
277 2 27 2

+2(1 + v) sin? g cos? 320}

K? 0 0 0
— 747TTIE cos? B {2 -2+ (24 2v) sin? 3 sin? 33
0 30
+2(1 + v) sin® 3 cos? 2}

K 0 0
= —L_cos® = [(1 —v) + (14 v)sin? 32]

_ K} (1 + cos ) [(ly)Jrl;V(lCOSSG)}

AdnrE

K% 14+v
= ImE [(1 —v)(1+ cosf) + T(l + cos 0 — cos 30 — cos 0 cos 30)

Intégrant sur un cercle de rayon R, on obtient

2

™ R R K
/ d0/ Wrdr = / L_rdr[(1 —v)27 + (14 v)7]
—r 0 o 4mrE

mr
3 —
- 4E”K?R (10.142)

Ur

De la méme facon, la contrainte équivalente de Tresca est donnée par

Ky

\V27r

Elle tend vers l'infini pour » — 0, mais sa moyenne quadratique sur une zone

| sin 6] (10.143)

or = |0y — 0y + 2074y | =
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de rayon R est donnée par

1 /R ™ 1 K2 [(Bypar [T K2
~2 I 2 I
or 277R/0 r/_,r orrarY = 9rR 2 /0 r /_ s s

. Ky
op = NG (10.144)
On admet, en mécanique de la rupture, que dans un matériau fragile, la
fissure progresse de maniére instable, sans augmentation de charge, dés que le
facteur d’intensité des contraintes admet une valeur critique Ky.. Le facteur Ky
est également considéré comme la grandeur & prendre en compte pour expliquer
la propagation des fissures en fatigue.
La plasticité du matériau a pour effet de perturber la distributions des
contraintes ci-dessus. Si I'on adopte le critére de Tresca, on a o > o, (limite
élastique) si

soit,

K| siné)
V2mo,

ce qui signifie que la zone plastique est contenue dans la boule de rayon

Vr <

K7
= 10.14
"p 2ro? (10.145)
soit encore )
Tp 1 /o
- =—— 10.146
a 2 (ae) ( )

On admet généralement que les résultats de la mécanique de la rupture repré-
sentent bien la réalité tant que la zone plastique reste relativement petite.

10.15 Coin soumis & une force et & un moment
(Probléme de Michell, 1900)

Dans ce probléme, illustré par la figure 10.10, il est clair que les contraintes
doivent s’évanouir a l'infini, puisque la section ne fait qu’augmenter quand =z
croit. On a donc a U'infini,

43%F’_—> 0
—2(zF” + K”) = 0
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Y

=X
F1GURE 10.10 — Probléme de Michell
En conséquence, on cherchera une solution de la forme
F' = i Apz™", K = i B,z"" (10.147)
n=1 n=1
Sur les bords 8 = 46, on doit avoir
Y= —i(F + 2F + K') = cte (bords libres) (10.148)

On calcule aisément

> 1-n
z
F(z) = Allnz—&—;Anf
_ B oo 21—71
K'(z) = Bllnz—l—;Bnlin
zF' = A,zz7"
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soit, en termes de r et 6,

. - An 1-n _i(1—n)0
F = Al(hlr‘i’le)‘i’n;m?ﬁ e
K' = Bi(lnr—if)+ i 7Bn plnein—1)0
= 1—n
- =
ZF/ _ AleQiQ + Zgnrl—nez(n—i-l)e

n=2

ce qui permet d’écrire
f“p = (Al —+ Bl) Inr + (A1 — Bl)lg + A1€2i9

= A, _ B,
1-n | 1 i(1-n)6 A i(n+1)0 _Pni(n—1)0 10.14
+nE_2r L_ne + Aye +1_ne (10.149)

La condition(10.148) revient & dire qu’en 6 = +6,, la fonction % ne dépend pas
de r. En annulant les coefficients des différentes puissances de r, on obtient les
relations

Bl = _Al
B, = —Ape2(=D% 4 (n_1)A,e*%  (calculé en 6;)
B, = —A,et?=D0% 1 (n _1)A,e 2% (calculé en (—6))
(10.150)
En soustrayant les deux derniéres conditions, on obtient
- sin 2(n — 1)6
Ap+Ap————F77—7=0
* (n —1)sin 26,
ce qui équivaut a
sin2(n — 1)6y ) sin2(n — 1)6y
RA, |1+ ——————— S4, |-1+ ———————| =0
{ + (n —1)sin 26, L + (n —1)sin 26,

Il est clair qu’en dehors des cas particuliers ot I’'un des coefficients est nul, on
aura A, = $A4,, = 0. La nullité en question suppose vérifiée I’'une des relations

sin2(n—1)8y = —(n—1)sin26
sin2(n — 1)6y (n —1)sin 26,
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ce qui n’a lieu que pour n = 2, valeur pour laquelle on trouve
KA, =0, & Ao arbitraire

On obtient alors, en additionnant les deux derniéres équations du systéme
(10.150),

By = —2A5 cos 200 = —2iSAs cos 26,

Les seules constantes qui subsistent sont donc

Ch = RA,, Cy =S4, C5 = A,
en fonction desquelles on peut écrire
By = —(Cy +1iCy), By = —2iC5 cos 26,
11 vient donc
F = (Ci1+iCy)Inz— %
K = —(Ch—iCy)ns— 230520 (;OS 2% A
et
z z
= w&osﬁ —isinf) + %(COS 260 — isin 26)
d’ou

0y + 0y =ARF' = 4r~1(Cy cos 0 + Cy sin 0)
+4C37 %sin20 = 0, + 05 (10.152)
Les dérivées secondes sont données par
F? = —(C) —iCy)z7 2 + 2057273, K7 = —(C1 4 iCy)z ™! — 2iC3 cos 20072

ce qui donne

Op — Oy + 20Ty

=2(Cy —iCy)2z % — 4iC322 73 + 2(Cy +iCo)z ™ + 4iC3 cos 20972
=2(Cy —iCa)r~'e*? — 4iCyr~2e* 4 2(Cy +iCy)r e

+ 4iC cos 202"
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On passe aux coordonnées polaires par la transformation
0y — 09 + 2iT9 = e 2

=2(Cy — z'Cg)r*le“9 — 4iCyr— 2% 4 2(Ch + iCQ)T71€7i9
+ 4iC'5 cos 2072

Oy — Oy + 2iT,y)

On en déduit directement

4 4
or—0g = —(Crcosf+ Cosinf) + % sin 26
T T
4C!
270 = 74—23(cos 26y — cos 20)

d’oul, par comparaison avec (10.152)

4 4C'

o ;(Cl cosf + Cysinf) + 723 sin 26

o9 = 0 (10.153)
2

Trg = &(cos 260 — cos 20)

2
r
11 reste & déterminer les constantes. Comme, par (10.149),

26

1 =2(Cy +1iC2)0 + (Cy — iCy)

on a
P+iQ = ’(/J(H()) - 1/1(—90) = 4(01 + ng)eo + 2(01 - ’LCQ) sin 26,
si bien que
P
4Cy 405y @ (10.154)

:90+%sin290’ :90—%8111290

Pour la détermination de Cj, le plus simple est de calculer directement le mo-
ment M sur un cercle de rayon R : on a en effet (fig .10.11)

fo
M = / TR - RdO
—6,

fo
2Cs / (cos 20 — cos 26)db
—6o

2C'3(26, cos 20 — sin 26,)
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F1GURE 10.11 — Calcul du moment

soit
M

- 20 cos 20y — sin 26

Rassemblant les résultats (10.153), (10.154) et (10.155), on obtient comme ex-
pression finale des contraintes

2Cs

(10.155)

P cosf Q sin 6

Oor = X A

0o + %sm 200 T 0y — % sin26y 7

n M sin 26

200 cos 20p — sin 20, 12
gg = 0
M cos 26y — cos 26
Tr = .
o 20, cos 20 — sin 260, 72
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10.16 Probléme de Flamant (1892)

o0

0

©
7/

L0

FIGURE 10.12 — Probléme de Flamant

Pour 6y = 7/2, le probléme précédent correspond a un demi-plan indéfini :
c’est le probléme de Flamant. On a alors

sin 20y = sinw = 0, cos 20y = cosm = —1

et, en se limitant a la seule charge (P, @), il vient

Pcosf+ Qsind
o 22—
r
g9 = O
e = 0

En notant que selon la figure 10.12,

P = Scos~, Q = Ssin~y
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on peut encore écrire

9 _
o, =250 =) op =0, — (10.156)
wr

les composantes cartésiennes des contraintes sont liées aux précédentes par

0
Oz +0y = 0r+0y :25%
. } .
Ox — Oy + QZTxy — GQZQ(UT — g+ 21‘7}9) _ 62102SM
wr
ce qui donne
0— 2 0 —
Iz = m(1 +cos26) = 25 cos(6 —v) cos? 0
wr o
oy = SO0 (1 hengy = 25l020) Gy (10.157)
mr o
0 — 2 6 —
Toy = Seos0—7) &iog = 2900807 o ioen
wr r

On utilise aussi parfois le systéme Ox1y; de la charge, représenté en figure
10.13. Alors, comme ’angle A compté a partir de 'axe des x; est donné par

A=0—vy
on a
0 — A
Opy + 0y = 0p+o0g= QSCOS( 7) = QS’COS
: r wr
. , A
Oy — Oy, = o, — og + 2iTr9) = 2irgg A
: r
soit
S cos \ 25 cos® A 25 cos* A
S cos (14cos2)) — cos _ cos
wr wr Ty \
S cos \ 25 cos A 25 si ]
oy = cos (1—cos2\) — cos i) — sin“ cos
wr wr T,
2S5 cos A . 25 sin A cos® A
Teryn = ————sindcosA = ————
r T

(10.158)
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fea)
T
2

ARG

FIGURE 10.13 — Systéme d’axes de la charge

Fait remarquable, ces derniéres expressions ne font pas intervenir l’angle v de

la charge.
Intégrons les déplacements. Avec
p Q
Ch=— Cy=—
Yo *Ton

les formules (10.151) donnent

_ P+iQ

P—iQi e P—iQ
2

F
oz 2m

In z, F' =

1 AP TiQ P—iQ:z P—iQ

—+(1 Inz
2+( +v) 5 lnZ

Inz—(1+v)
77

(3 —v)(P+iQ)(Inr + i) — (1 + v)(P — iQ)e*”
+(1 4 v)(P —iQ)(Inr —i0)]
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Il vient donc
1

u= o[~ ) (Plr—Q8) — (14 v)(Peos 26 + Qsin29)
+ (14 v)(Plar - Q6))
= (Pl — (14 v) cos26)] — Q4+ (1+v)sin20]}  (10.159)
et
v:ﬁ[@—u)(P@—l—anr)—(1+1/)(Psin29—Q00529)
C (14 1) (PO+ QInr)]
27rE{P[ 1-v)0—(1+v)sin20]+Q2(1 —v)Ilnr + (1 + v) cos20]}

(10.160)

Ces déplacements sont évidemment définis & un mouvement de corps rigide prés.
On ne peut lever I'indétermination en exigeant la nullité a 'infini, du fait de
leur structure. Mais on peut imposer qu’en un point de coordonnées (R,0), R
étant fixé, u = v = w = 0. Comme

u(RO) = 5 {PUIR—(1+)]-4Q} = uo
o(R0) = M{Q[( DR+ (14 )]} =
w(R,0) = E F(R,0) = 2 [P;:QH 271E4J?*w°

le déplacement & soustraire a pour composantes

U = Uy — WY = Ug — wor sin @
v = vo+wo(zr—R)=wvg—woR + worcosf
Il vient alors
G=u—u = zz{PAIn%+(1+v)(1—cos20)
—Q[—F sinf + (1 + v) sin 20}
b=v—-0 = FZ={P[2(1-v)0— (1+v)sin26]
+Q2(1 —v)In 5 — (14 v)(1 — cos 20) 4 4(1 — £ sin 6]}

(10.161)
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10.17 Disque circulaire soumis a deux forces P

opposées
y
P
A
' o
4 4
% : ¢
| A
s
- - - - -—X
¥ ] 1 9

F1GURE 10.14 — Disque soumis & deux forces opposées

Ce probléme se résout par superposition. La charge P située en A (fig. 10.14)
provoquerait, dans le demi-plan situé sous la tangente en A, des contraintes
données par

2P cos«
Ory +0'9A = T
A

. 2P cos «

Ory, — 09, +2iTr,0, = 771_“1
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De méme, la charge située en B provoquerait, dans le demi-plan situé au-dessus

de la tangente en B, des contraintes données par

UTB + 0—03

Orp — Ogp + 20Ty 50,

En superposant ces deux états, on obtient, en un
rence, et dans les coordonnées polaires du cercle,

o, + 0y
— Contraintes dues a Py :
Or — 09 + 2iTrg

en notant d le diamétre du cercle,

2P cos 8

B
2P cos 3

Trp
point C' situé sur la circonfé-

2P cos «

A PR
2Pcosa _,; , dot,
e 2’LB1

A

Pcosa 2P cos 2P
oy = (1+cos28,) = " cos? B = —— cosacos B
Ly Ty wd
Pcosa 2P cos a 2P
op = (1 —cos2B;) = ———sin? f; = —— cosartg By sin By
Ty A wd
P 2P 2P
Trg = — cosa sin28; = _Lrcosa sin 81 cos 31 = —— cos acsin By
A wd
2P cos
or+o09g = 7777‘ s
— Contraintes dues & Pgp : B d’ou
2P ) )
Op — 09+ 2iT9 = ﬂemo‘l
T™rpB

Additionnant, et tenant compte des relations a; =

2 .
— cos ftg ay sinag

2P
o, = —cosfcosay
wd
gy =
wd
2P .
Trg = —— cosfsinag
wd

T _

2

aet By =5 — B (voir
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figure 10.14), on obtient, toujours sur la circonférence,

P 2P
o, = —(sinfBcosa+sinacosf)=— sin(a+ )
wd wd
2P
o = (cos awcotg 3 cos B + cos B cotg ar cos )
T

2P
- — cotg acotg Bsin(a + )
7r

2
Trg = —d(cosozcosﬁ —cosacosf3) =0
™

Cette distribution de contraintes permet d’équilibrer les deux charges, mais elle
ne vérifie pas ’équilibre & la frontiére du cercle, ou

2P
op = ﬁsin(a—&—ﬁ) =p =cte

puisque (voit figure 10.14)

_ larc(ACB)
ath=s—gm =7

En additionnant un état de contrainte hydrostatique
Oy =0y = —P

évidemment en équilibre & l'intérieur, puisqu’il s’agit d’un champ de contraintes
constantes, on rétablit ’équilibre & la frontiére, sans déséquilibrer les charges
qui produisent un état de contrainte infini dans leur voisinage. C’est le résultat
obtenu par Michell en 1900 : I’état de contrainte dans un cylindre soumis ¢ deux
charges opposées s’obtient en superposant les contraintes de Flamant relatives a
ces deux charges et un état hydrostatique

2P
—p=—_osiny
Les composantes cartésiennes du champ de contrainte résultant sont données
par (fig. 10.15)

2Pcosa 2Pcosf 2P .
Oy +0y = + — — sy
‘ A rp wd

2P cos «

.7
Oy — Oy + 207y = p— 2o v
A B
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P

F1GURE 10.15 — Calcul des contraintes en un point du disque

ce qui donne

Og

P 2si
= — [cosa(l + cos 2a’) + M(1 +cos28') — qu
s A B d
2P cos asin? o n cosBsin? 3 sin~y
" TA B d
P 2si
= = [cosoz(l —cos2a’) + COsﬂ(l —cos2f’) — Sy
™ A B d

(10.162)

2P {cos?’ a  cos®p sin*y]
_l’_ —
n B d

3|

Al

cos asin 2a/ N cos Bsin 25’
TA B

[ sin a cos? o N sin 3 cos? B]

3|

rA B
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10.18 Poutre circulaire soumise & un moment cons-
tant (Golovin, 1881) [40]

‘

- - - - - ) ¢

F1GURE 10.16 — Poutre circulaire en flexion pure

Dans ce probléme illustré par la figure 10.16, il est clair que les contraintes
doivent étre indépendantes de 6. Il doit donc en étre de méme de la fonction
d’Airy. Dans 'expression générale

1 _ _
p= 5(2F+2F—|—K—|—K)
posons F' = zH. Il vient alors
1 _ _
v=3 (|2*(H+ H) + K + K)

Il suffira donc de trouver des fonctions analytiques H et K dont les parties
réelles ne dépendent pas de 6. Les seules fonctions de ce type sont
H=Alnz+ B, K=Clnz+D

La constante D est improductive et peut donc, sans perte de généralité, étre
posée nulle. On a alors

F=Azlnz+ Bz, K=Clnz
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et
¢ =Ar’lnr + Br* + Clnr (10.163)

Sur le contour, les cercles de rayon a et b sont libres de toute charge; en outre,
sur le segment AB, la résultante des charges est nulle. On peut donc poser

w=0enr=aetr=>

soit explicitement

0:F—|—ZF"—|—K":A(zlnz—i—zlné—i—z)—i—QBz—f—g
z

. C
= |A@2rinr +7)4+2Br+ —| enr=aetr=»0
r

Il en résulte les conditions

A(2blnb+b) +2Bb+

=|Q
|
o

(10.164)
A(2alna+ a) + 2Ba +

elQ

Par ailleurs, sur le segment AB, on a

B
M = /A (T — yT,)ds
B o, Oy
- /A (”“" T )ds
B B
= fovy— v~ [ (yde vy
A

B rop dp
= /A <8J;dx+6ydy)

= [}

soit

M = ¢(b) — ¢(a) = A(b*Inb — a*Ina) + B(b*> —a?) + Cln b (10.165)
a



322 CHAPITRE 10. ELASTICITE PLANE

Cette condition, jointe aux deux équations (10.164), permet de calculer

= w9
= %[(bQ—a2+2(b21nb—azlna)] (10.166)
—ﬂa%z b

In —
N n
avec

b
N = (b* —a?)® - 4025 In? - (10.167)

Nous sommes & présent en mesure de calculer les contraintes :

or+09g = 0op+oy=4ARF' =4A(lnr+1)+4B
. _ _ , C
op —0g+2iT9 = e 2 (=22F" —2K7) =2 (—2A’f + 2_2>
z z
2
X
r
d’ou
or = AClr+1)+2B+ %
o = A(2lr+3)+2B-%
Tro = 0
soit, explicitement,
4M [a?b* . b, 9
Or = _W 711’15 bl ;_a lna:|
4M 2p?In L b .
op = —— b2—a2—w—bzlnf—a21nt (10.168)
N r2 r a
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Calculons a présent les déplacements. On a

ut+iv = %[(3—V)F—(1+V)ZF'/_(1+V)R/]
= ;{(3—V)(Azlnz+Bz)_(1+V)Z[A(ln2+1)+B]_(1+V)S}
= %{(3_V)[A7"ei0(ln7’+i9)+Brei9]
(1+V)r@i9[A(ln7’i9+1)+B](1+V)Sei9}
et

uy +iug = e~ (u + iv)

= % {B3—=v)[Ar(lnr +i0) + Br] — (1 + v)r[A(lnr — i§ + 1) + B]

C
(1 =
a+n<}
ce qui donne (& un déplacement de corps rigide prés)
ur = +{2(1-v)(Arlnr+ Br) — (14 v)(Ar + %)}
(10.169)
ug = %Ar@

On remarquera que ug varie linéairement en fonction du rayon, c’est-a-dire que
I’hypothése de Bernoulli (conservation de la planéité des sections droites) est
vérifiée. Par ailleurs, la théorie de Winkler [97, 98], dans laquelle oy varie selon
un loi hyperbolique, donne pour cette contrainte des valeurs trés voisines de la
présente solution.

Lorsque la poutre est trés mince, c’est-a-dire pour b{—; < 1, on a, en posant
t = (b—a)=2Re, ex1

r = R+y=R(1+e¢p)
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les relations asymptotiques suivantes :

b —a® = 4eR?
azb:n‘? = 2R%(1 —2¢p) (1+ O(c))
b? 1n§ = R*[e(1-p)+0()]
a? 1n2 — R2[e(1+p) +0O(?)]
N = %3464 (14 0(e%)
ce qui donne
3M
00 = —{opid [4R%e — 2R%¢(1 — 2ep) — R*e(1 — p) — R*¢(1+ p)] (1+ O(e))
= 2P+ 0)
= 2L a o)

c’est-a-dire que la formule de la flexion des poutres droites s’applique avec une
erreur de 'ordre de ¢/R.

10.19 Probléme de Neuber [64, 65]

On considére une portion de plan limitée par des hyperboles et soumise & une
extension sous une charge P. On désire connaitre la contrainte a fond d’entaille
(point A sur la figure 10.17).

La solution de ce probléme repose sur la transformation conforme

z=ash§ (10.170)
soit, en termes réels, pour £ = a + if,
x = ashacos 3, y =achasinfj
Dans cette transformation, les courbes o = cte ont pour équation

(E2 y2

a2sh’a  a2ch’a

=1 (10.171)



10.19. PROBLEME DE NEUBER 325

FIGURE 10.17 — Probléme de Neuber

Ce sont donc des ellipse de demi-axes ash a et acha. Les courbes 8 = cte ont
pour équation
Y 22
a?sin? 8 a?cos?
Il s’agit d’hyperboles, d’axe réel selon y et égal & 2asin 8 et d’axe imaginaire
2a cos 3 sur 'axe des x. Ces hyperboles admettent les asymptotes

=1 (10.172)

y=ztxtgp

faisant un angle £ avec 'axe des z. Pour « suffisamment grand, les ellipses
(10.171) tendent & devenir circulaires, avec un rayon

ea
r~asha~acha ma7

A ces grandes distances de l'origine, on a donc

T & 7T Cos [, Yy~ rsinf
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c’est-a-dire que (3 représente asymptotiquement l’angle 6 de la trigonométrie.
Nous écrirons les fonctions F' et K en termes de € :

F(2) = F(ash€) = Fa(€), K(z) = K(ash€) = K (&)
Les dérivées se calculent alors par la relation
Fi(§)
F/ _ 1
(2) = Cehe

et de méme pour K’.
A Tlinfini, la distribution des contraintes doit approcher celle du coin de
Michell,
F(z)=Clnz

Comme, pour « suffisamment grand,
Inz =In(ash§) ~ ln(%eg) = lng +¢
nous chercherons une solution pour laquelle
F(§ =C¢ (10.173)

Pour déterminer la fonction K7, nous partirons du fait que sur les frontiéres
8 = 15y du domaine, la fonction 1) doit étre constante, puisque ces bords sont
libres de toute charge. Considérons le bord 5 = 3y. On a

iy = F+zF'+K
Cash¢ + K
— e 22 S T
&+ ach§
B . Cash(a+1iB) + K} (a, o)
= Cla+ibo)+ ach(a —ifo)
Sa constance s’exprime par la condition
0= i(zw) = ;[Caz ch?(a — ify) + Ca® cos 2,
da a2 ch?(ar — ifo)

+ ach(a —ifo) K1” (e, Bo) — ash(a — ifo) K1 (e, Bo)]
Ceci sera réalisé si

ch(a —iBo)K1” (o, Bo) — sh(a — iBo) K (v, Bo)
= —Cacos2fy — Cach®(a—ify) (10.174)
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En l'absence de second membre, cette équation peut s’écrire

K17 (o, Bo)  sh(a—ifp)

K (o, Bo) ch(a —ifo)

et admet visiblement la solution

K (a, By) = Ach(a —ifp)

On trouve aisément une solution particuliére pour le premier terme du second
membre, sous la forme

Kiy(e, Bo) = Bsh(a —ifo)]
qui méne & la condition
Blch*(ar — i) — sh*(a — ify)] = —Clacos 23,

On a donc
K} (o, Bo) = —Cacos 2By sh(a — iBy) (10.175)

Pour le second terme du second membre, on utilisera la méthode de variation
des constantes : en posant

Kip = Ale, By) ch(o — ifo)

on obtient
A'(a, Bo) ch*(a — ifg) = —Cach®(a — if3)

d’ou A(a, By) = —Cala —ifo) et
K{;;(a, fo) = —Cala — ifo) ch(o — i) (10.176)

Au total, la constance de 1 est assurée sur le bord 8 = By si K; y est de la
forme

Ki(a, By) = —Cacos 2By sh(a —ify) — Ca(a —ifg) ch(a —iBy)  (10.177)

La condition sur le bord 8 = —fj s’obtient en remplacant dans la condition
(10.174) Bo par (—fp). On vérifie sans peine qu’elle sera réalisée si

Ki(a,—Bo) = —Cacos2Bysh(a +ify) — Ca(a +iBp) ch(a +1iBs)  (10.178)
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On constate donc que la fonction
K1(§) = —Cacos2fysh& — Cagch§ (10.179)

permet de vérifier 1’équilibre sur le contour. Avec cette fonction, on obtient, en

ﬁ = :tﬂ()a

—— %_cosQﬂoshg_gchf_
W= C(£+ch§_ ché& chf)

= C(£2iBy £ isin2p5)
La charge P vaut donc
P =1(Bo) — ¥(—Bo) = C(4B0 + 2sin fo)
ce qui détermine la constante C' :

_ P
4By + 2sin By

Au fond de lentaille, la contrainte normale est nulle, donc la contrainte
tangentielle vaut

C (10.180)

/
atax+ay43?F’4§R( o >§R 1¢

ach& ach&
Au point A a pour coordonnées o = 0, 8 = 3y, cela donne
4C 4C

g+ = §R = = O
¢ acosfBy  acosfy max

La contrainte nominale dans la section est naturellement
P P o C(zﬁo +sin50)

ok = — = =
nom g T 2g.8in Bo asin fy

ce qui donne la valeur suivante du coefficient de concentration de contrainte :

4
oy = Jmax _ 418/ (10.181)

Onom o 250 + sin 260
1l est de coutume d’employer le rayon de courbure & fond d’entaille pour décrire
celle-ci. Pour déterminer ce rayon, notons que le bord est une hyperbole dont
Péquation (10.172) peut étre écrite, pour les petites valeurs de z,

2

in Boy 1+ —— in o (14— Lz
= asin ———  ~asin — | = —
Y 0 a? cos? By 0 2a? cos? f3 T oR
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ce qui donne
1 sin Ay

R acos?fy

et, puisque d/2 = asin fy,
d

— — tp2
R g” Bo
Tenant compte de la formule classique
2t
sin28, — 85
1+ tg® B
on obtient
92,/-4
ay = el (10.182)

d

d ﬁ
arctg | \/ 35 +1+i
2R

Pour d/R — 0, on a a, — 1; pour d/R — o0,

92,/-4 \/7
2R d
ap = ——— =1/0,8106—
3 R

La formule (10.182) étant compliquée, Neuber a proposé de ’approcher par une

expression de la forme
/ d
ap =1+ ( A+BR—\/A> (10.183)

Pour étre correct & 'infini, il faudra évidemment que B = 0,8106. Par ailleurs,
les valeurs de d/R les plus courantes en pratique sont de l'ordre de d/R = 30.
Pour cette valeur, le calcul donne o = 4,963. On détermine alors A en résolvant
la relation (10.183) comme suit :

d
(g —1)?+2VA(ap — 1)+ A=A+ B—

R
d’ou
Vi = ! s (a —1)
T 2 (a1
1 [0,8106 - 30
= |2 -1
2[ 3963 3,963} , 087
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soit A = 1,181. La formule approchée est donc 3

d
o = \/1, 181 40, 8106§ — 0,087 (10.184)

Le tableau suivant compare les valeurs obtenues par ces deux formules :

d/R | oy exact | ay approché | erreur %
0 1 0,9997 -0.03
1| 1,301 1,324 11,8
2| 1,556 1,587 +2
5| 2,168 2,201 15
10 | 2,937 2,960 0.8
20 4,075 4,083 +0,2
50 | 6,387 6,371 0,3
100 | 9,014 8,982 0,4
200 | 12,74 12,69 0,4
500 | 20,13 20,07 0,3
1000 | 28,47 28,40 20,2

Comme on peut le constater, la correspondance est excellente (moins de 2 %
d’erreur).

10.20 Probléme de Neuber en flexion

Pour la méme géométrie, considérons a présent une flexion pure. Dans le cas
du coin, on a, pour cette sollicitation,
iA .
F=—, K =iBlnz
z

Cet état devra se retrouver au voisinage de 'infini. Or, pour £ — oo, on a
a a
ash§%§eg, ln(ashﬁ)%ln§ +&
Ceci suggére de chercher une solution de la forme

F =ide™ ¢, K =iB¢ (10.185)

3. La formule proposée par Neuber est o, = /0,8d/R+ 1,2 —0,1.



10.20. PROBLEME DE NEUBER EN FLEXION 331

ce qui entraine

—iAe¢ , iB
ach¢ ach&

/

et
iy = F+ashéF +K'
shée® B
ché aché
Z,fle*ﬁchg—i—Ashfe*E—B/a
ché
4 (e—£+5+e—§—é+ef—é _ e—f—é) — BJa
ch&

Ae ¢+ A

= 1

= 1

Z_Acos 28— B/a
N ch&
Cette fonction sera nulle en § = 4[5, si I’on pose
B = Aacos2y (10.186)

On détermine alors A par la relation entre le moment et la fonction d’Airy (voir
section 10.18) :

M = [%0]7050
Dans notre cas,
1 _ _
p = (EF+2F+K+K)
1 . 5 —£& . ,5 . P E
= 3 (zAa shée™ —iAashée > =iB{ — zB{)
1Aa [ ¢ 3 3 3 iB -
— (68 68 6¢ —£—¢ (€ —
1 (e e e S +e )+ 5 &=¢)
i A
- %QSh(fQiﬂ) 1iB-2ip
Aa

= 7sin2ﬁ— Aacos28y - 8

= %(sin 23 — 23 cos 23p)
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d’ou
M = Aa(sin 25y — 20, cos 25y)

ce qui donne

B M
~ a(sin283y — 2y cos 28p)
On a alors Aot
—41Ae”
_ r_
oy + 0y =ARF §R< ache )

A fond d’entaille, pour a« = 0, 8 = —fy, cela donne

—4iAeibo 4A
A5 = tg /80 = Umax
acos By a

0’$+O'y§R<

La contrainte nominale dans la section est définie par la loi d’équarrissage clas-
sique,
6M  6Aa(sin28y — 23y cos2f3)

Onom = —55 — :
d? 4a2 sin? By

ce qui conduit & la valeur suivante du coefficient de concentration de contrainte :

sin?py
sin 28y — 280 cos 23

Omax

8
ap = = gtgﬁo (10.187)

Onom

On vérifie que pour By — 0, on a

833 8p3 8433

sin2Bg — 26y cos 2Py ~ 26y — % — 2080 + % ~ %

si bien que ap — 1, comme on pouvait s’y attendre. Exprimons & présent oy en
termes de d/(2R). Tenant compte des relations

[ d

tgBy = R
d
tg Bo V2R

Sil’lﬁo = = '
V1+tg? Bo \/1+%
d
n2g, - _2t®h_ 2Ven
T I+wth 1+
1 —tg? 1— %
cos2By = g bo _ 2R

1+tg? B0 1+ 5%
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3/2
<;]l%> (10.188)

i— 1-— d rct i
V2R or ) M8\ 3R

De la méme fagon qu’en extension, on peut approcher cette formule par une
expression de la forme

on obtient

Q| >~

o =

A Tinfini, on a

d’ou B = 0,3603. Pour d/R = 30, le calcul donne ay = 3,469, ce qui donne

1 /0,3603- 30
VA= (22229469 ) = 0,9544
2( 5169 : 69> 0,95

soit A = 9110. On obtient ainsi la formule*

d
o~ \/o, 9110 +0, 3663 +0,0456 (10.189)

Les résultats donnés par la formule exacte et par la formule approchée sont
comparés dans le tableau suivant :

d/R | oy exact | oy approché | erreur %
0 1 1 0
1 1,180 1,173 -0,6
2 1,333 1,323 -0,8
5 1,705 1,693 -0,7
10 2,180 2,170 -0,5
20 2,899 2,895 -0,1
50 4,390 4,396 +0,1
100 6,110 6,124 +0,2
200 8,567 8,588 +0,2
500 13,47 13,50 +0,2
1000 19,02 19,05 +0,2

4. La formule originale de Neuber est oy, ~ 1/0,355d/R + 0,85 + 0,08
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Ici encore, la correspondance est excellente (moins de 0,8 % d’erreur).

10.21 Annexe : disques d’épaisseur variable en
rotation

10.21.1 Equations générales

Les disques de turbines sont d’épaisseur ¢ variable en fonction du rayon.
Une étude approchée de ces disques peut étre faite en admettant les hypothéses
suivantes :

up = u(r) 0, =Tp, =0

1l vient alors, par les travaux virtuels, en considérant une variation du nulle aux
rayons d’extrémité Ry et Ro,

Ra
0= 277/ <rta,.65u + togdy, — pw27“2t6u) dr
R 87"

Ro d
= 27r/ {(rtor) + tog — pw?r’t| Sudr
R d'r

ce qui conduit & I’équation d’équilibre

d
—(rta,) — tog = pw?r’t (10.190)
dr
Les relations entre les déformations et les contraintes sont
du 1
% = E(O'r — VO'Q)
u 1
z - = —u
T E (o0 or)
Pour que ces deux relations soient compatibles, il faut que
d

a[r(ag —vo,)| =0, —voy

ce qui s’écrit encore

7’%(0’9 —vo,) = (1+v)(o, — 0s) (10.191)
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10.21.2 Disque d’égale résistance

Il est possible d’obtenir
do.  dog
dr — dr
dans certaines conditions. A partir de la relation (10.191), on déduit immédia-
tement

o, =09 =0 = cte
La relation (10.190) fournit alors une expression de ’épaisseur : elle devient en
effet

d
o—(rt) —to + pw?r?t =0
dr

soit J
t
o (r +1- 1) = —pw?rit
dr
ce qui entraine

at pwlrdr 1 t puw?r?

t o to 20

pw?r?
t=toexp | — 5
o

Cette expression suppose que le disque va de r = 0 & r = co. Les déplacements
dans le disque sont alors donnés par

et

(1-v)or

10.21.3 Jante

En pratique, le disque se termine par une jante & laquelle sont accrochés les
aubages. On peut admettre que la jante se comporte comme une barre courbe
en extension, avec

= cte

u
g =—
r

L’effort circonférentiel dans la jante est donc donné par
u
N, = EQ ( 7)
T/

Les forces agissant sur la jante sont (fig. 10.18)
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FiGure 10.18 — Equilibre de la jante

— La force centrifuge de la jante, dont la résultante sur une demi-circonférence
est

pQw27"j S2rj = 2pQw2r?

— La force centrifuge des aubes. Si la masse des aubes par unité de longueur
est de p au rayon r,, cette force vaut, pour une demi-circonférence,

,uw2ra <21, = 2uw2r2
— Les forces de rappel du disque, résultantes des o, en r = ry, rayon

de la jonction du disque et de la jante. Leur résultante sur une demi-
circonférence est

0',-(7“2)752 . 27“2
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Au total, on a donc

2N; = <pQ + 1 > wzr? — 20, (ro)tar,
—_———

*

I

bw‘@w

soit u u
EQ (7) = EQ-2 = ,u*wQTJQ» — 0y (r2)tars
J T2

ce qui donne
T

Uy = EQQ [w* w2r2 — o (ra)tars] (10.192)

10.21.4 Moyeu

On munit également les disques d’un moyeu, allant de ’arbre (rayon rg) & un
rayon ;1 = 1,8 & 2ry. Ce moyeu, d’épaisseur t,, constante, vérifie les équations
clasiques des disques d’épaisseur constante en rotation :

1—-v? B 1
- Ar + 2 — 2 w23
u 1) 7"+T 8pwr
B
Or = (1 + Z/)A - (1 — I/)f2 — 3 ; pr2r2 (10193)
T
B 1
op = (1+v)A+(1—-v)5 — —’—83pr27”2
T

10.21.5 Renforcement neutre

Nous dirons qu’une jante et un moyeu constituent un renforcement neutre
d’un disque d’égale résistance si leur comportement est identique & celui de la
portion de disque qu’ils remplacent, c’est-a-dire s’ils donnent le méme u et le
méme (to,). Cette notion permet le dimensionnement complet du disque.

1. Condition de jante - La jante et les aubages étant donnés, la relation
entre le déplacement et Peffort est fournie par ’équation (10.192). Si o est
la contrainte dans le disque, on doit avoir

ora(l —v)

o(ry) = o, u(re) = iz
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d’ou la condition

ors(l —v) 79 9

iz = m( 7“J2» — otara)

Ww
ce qui donne

EQory(1—v) N wrw?r?

ty = :
O"I“% E ory
*, 2.2
_ ey (=) (10.194)
arg T2 '

On en déduit les épaisseurs du disque en r # ry & partir des relations

2,2
to = tpexp (_pw 7“2)
20
2,.2
t = toexp (_pw " )
20
qui se combinent en
" 20,2 _ .2
£ = (22220 (10.195)
En particulier, pour » = 71, on a
20,2 _ .2
= tzoxp (2221 (10.196)
o

2. Condition de moyeu - Le moyeu doit d’abord vérifier

B 3
or(ro) = (14 1) A= (1= )75 = ;”pw%g — (10.197)
0

ou p est I’éventuelle pression de frettage sur I’arbre. Une second relation
est donnée par 1’égalité des déplacements du dsque et du moyeuen r = ry :

1—v? B 1 (1-v)or
u(ry) = Ary + o gPW%’% s —
soit B .
Ad =T 4~ pu? (10.198)

rt 1+v 8
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Les deux équations (10.197) et (10.198) définissent A et B. On en déduit

B 3+v
or(r)=014+v)A—-(1- V)T—Q -3 pw?ri
1

ce qui permet de fixer I’épaisseur du moyeu par la condition d’équilibre
0r (1) tm = oty

soit

(10.199)

3. Raccordement du moyeu - 1l est évidemment nécessaire de réaliser un congé
pour le raccordement du moyeu au disque, de maniére a limiter les concen-
trations de contrainte. Une idée raisonnable de cette concentration est
donnée par la formule suivante, relative aux changements de section des
barres [19] :

t
ar = max(1, af) avec «f =0,9616 + B\/E}

ot B dépend du rapport ¢ /t,,, selon le tableau suivant :

t/tm | B

1 0,075
11 0,2
1,2 0,285
1,3 | 034
14 |037
1,5 0,395
16 | 0415
1,7 | 043
18 | 044
1,9 | 0455
2 0,46
=2 0,27 + 0,095t /t,,
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10.21.6 Exemple

w = 3l4rad/s § = 2480mm?
ro = 90mm w=8kg/m

r; =579mm  p = 7800kg/m?
ro = 545mm  E = 210G Pa
re =615mm v =20,3

r1 = 180mm o = 100M Pa

p=0
On calcule successivement
Jante et voile
r2 615\ >
pEo= Q4 p—t =7800-2,480- 107 + 8 () = 28,37kg/m
T 579
. 28,37-314°-0,579°  0,7-2,480-10°3
2T 108 - 0,545 0,545
= 17,21-1072 —3,185-107% = 14,02 - 10 3m
b (7800 314°(0,545° — 1?)
t, P 2108
— exp (3, 845(0, 545" — r2))
f = 14,02-107%-exp (3 845(0,545° — 0, 1802)) — 38,7810 3m
Moyeu
— Condition d’équilibre a l’arbre
B 3,3 —
1,34 — 0,7——— = =780 - 314" - 0,09
0,00
soit

1,34 — 86,42B = 2,570 - 107 ° & A — 66,488 = 1,997 - 10~°
— Compatibilité a la jonction moyeu-voile
B 108

1 e
A+ S = —+-7800-314°-0, 180" = 76,92-10°+3, 115-10° = 80, 04-10°
0,180 1,3 8
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soit
A+ 30,868 = 80,04 - 10°

— On déduit de ces deux conditions

A =55,29-10°%Pq, B =2802,0-103N
On a donc
B 3,3 . 561,4 - 103
op =1,34-0,7— —227800-314° 72 = 71,88.106 - 22—~ 317,2.1052
r2 8 r2
En r = 0,180m, il vient
o, = 44,27 -10°Pa
si bien que
100
tm =t ——— = 87,59
m =Ny 97 ) OFIIm

Contrainte circonférentielle en r = rg
14 3v
< PTG
= 71,88-10%°+69,31-10° — 1,479 -10° = 139, 7 - 10¢ Pa

B
og(ro) = 1,3A+0, 772 -
0

Congé - Le plus grand rayon possible, en se racordant & 90° sur le moyeu,
est approximativement égal &

lyy — 11 87,59 — 38,78

R=— 2

=24, 41mm

En adoptant cette valeur, on obtient ¢; /R = 1, 589. Il en découle, dans la formule
relative & ay, B = 0,485, ce qui donne

ai = 0,9616 + 0,4854/1,589 = 1,573
La contrainte maximale est donc
0 max = 1,573 - 100 = 157, 3MPa

Le profil obtenu est représenté en figure 10.19.
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gﬁﬁfgﬁgfﬁ .

S

FIGURE 10.19 — Profil calculé

10.22 Exercices
Exercice 37 Trouver directement [’état de contrainte le long du trou dans le

probléeme de Kirsch sans passer par la formulation compleze.

Solution - A Dinfini, on doit avoir
2
Poo ~ 0'3

9 (09 _ 0 (9¢) _
ot \ox) ot\oy)

ce qui permet de poser ¢ = dp/Ir = 0. L’expression asymptotique de ¢ a I'infini
peut encore s’écrire

Au bord du trou, on a

2

2
Voo = a% sin? f = %(1 — cos 26)

Ceci suggére de chercher une fonction d’Airy qui soit la somme d’une fonction
de périodicité 0 et d’une fonction de périodicité 2. On écrira donc

o=r"f1+ f2
en donnant aux fonctions harmoniques f; et fo les expressions suivantes :
fi = RAmz+B+C2*+Dz"?)=Alnr + B+ Cr?cos20 + Dr=2cos 20

fo = %(Elnz+F+Gz2 +H2_2) =FElnr+ F+ Gr?cos20 + Hr~2cos 20
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Il vient ainsi

343

@ = Ar?Inr+4 Br?4+Cr* cos 20+ D cos 20+ E Inr + F +Gr? cos 20+ Hr 2 cos 20

Au voisinage de l'infini, cette expression devient
© = Ar?Inr + Cr* cos 20 + (B + G cos 20)r* + o(r?)
On doit donc avoir

A=C=0, B=", G=-

Il reste

2
Y= %(1 —c0s20) + Dcos20 + Elnr + F + Hr ™2 cos 20

Au rayon a du trou, on doit avoir

2 2
o = fz+Ema+F+<—ﬁ’+D+Haﬂamwzo
de ca FE oa _3
L Y LY ) 20 =0
o 5 + p + ( 5 a”" ) cos

ce qui méne aux conditions

oa
EFE = ——
2
2
oa
H = ——
4
2 2 2
F = f%—Elnazﬁ—%lna
2 2 2 2
_ 0@ _ g2 _od o od
b = = -Haem ==t 2
Il vient donc
2
fi = %+72—2cos29
2 2 2 4

fo = f%lnr+%f%lna7 %rzcos%f%cos%)
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Les contraintes au bord du trou vérifient 0, = 7, = 0, 09 = 04, + 0y = VQQD.
Or, fo est harmonique, donc

Vi = V2[(2® +y*) fi]

On calcule aisément

0
%[(952 +y) ) = 2zfi+ (@7 +y°) afl
0? H?
@[(952 +y2) A = 2h+ 433i + (2® +97) 3521
et, de méme,
0? af 0%f
aiyg[(ﬁ*'yz)f 1] =2f +4y871+( ) 6y21

ce qui donne

0 0 0
V2 <f1 rallyy a";) —4(fy +r-gradfy) = <f1 +af§)
soit, au bord du trou,
o oa® o_a®
g [4 + 52 cos 20 r523 COS29:| .
o o
= 4 (Z — §c0529)

= o(l—2cos20)
Le maximum a lieu pour § = +7/2 et vaut 3o.

Exercice 38 Soit un arbre de rayon R; sur lequel est fretté un moyeu de rayon
extérieur Re. Les deux piéces sont en acier (E = 210GPa, v = 0,3, p =
7800kg/m3). Avant pose, le rayon de larbre surpasse le rayon intérieur du
moyeu. On donne

R; = 40mm, R, = 150mm, 0 = 100pm

On demande
1. La pression de contact de l’arbre sur le moyeu lors de la pose.

2. Comment évolue cette pression lorsque ’ensemble tourne ?
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3. A quelle vitesse la pression de U'arbre sur le moyeu s’annule-t-elle ?

Solution
1.
40
m = — =0,2267
@ 150
1
C, = —— (1,340,7-0,711) =6,919- 10~ (M Pa)~!
210000-0,9289(’ +0,7-0,711) =6, (M Pa)
1
c, = 0,7+1,3-0)=3,333-10"%(MPa)~!
510000 7 T 13- 0) =3, (MPa)
) 0,1
— = —=25-10"
R 40 ’
2 2.500-103
p = E___ ’ =243,9M Pa

Co+Cpn  (6,919+3,333) 106

2. Le frettage conduit & une distribution de contraintes de la forme représen-
tée en figure 10.20. Il s’y superpose le champ de contraintes d’un disque

1%

FI1GURE 10.20 — Distribution des contraintes de frettage

en rotation de rayon R., du moins tant que le décollement n’a pas lieu.
La contrainte radiale de ce champ est donnée, en r = R;, par

pw?R2(1 - Q%)

Or

3+
8
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Superposant, on obtient
6 3,3 ATED 2
—o, = (243,9-10° — ?7800 0,15 - 0,9289w
soit
—0o, = (243,9 - 10° — 67, 25w?)
3. 0, =0 pour

243,9- 106
2 ) 6 2
= ——— =3,627-10 d
w 67,25 , (rad/s)

w = 1904rad/s = 18190tr/min



Chapitre 11

Théorie technique des poutres

11.1 Introduction

La théorie des poutres de Barré de Saint-Venant, bien qu’exacte, n’est pas
entiérement satisfaisante pour les besoins de la pratique. Tout d’abord, elle est
compliquée. Ensuite, elle ne permet pas de prendre en compte la torsion non
uniforme de maniére correcte. Par ailleurs, pour toutes les poutres longues,
on peut négliger les déformations dues a l'effort tranchant. Nous présentons
ici une théorie approchée d’application plus générale, fondée sur une approche
variationnelle et une étude approfondie des ordres de grandeur.

11.2 Ordres de grandeur des contraintes

Soit p une dimension caractéristique des sections. Une valeur raisonnable est
par exemple

~

p= ﬁp, avec () = section, Ip:/ﬂ(xz-i-yz)dﬂ (11.1)

Soit encore ¢ une dimension caractérisant la longueur de la poutre. Nous nous
intéressons ici aux phénoménes & grande longueur d’onde, c’est-a-dire que nous
admettrons que les contraintes varient significativement, le long de 1’axe longitu-
dinal z de la poutre, sur une longueur de 'ordre de ¢. Les équations d’équilibre

347
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intérieur, qui s’écrivent

D50a5+D30'a3 = 0
D,oo3+ D3oszs = 0 (11.2)

ol « et [ peuvent prendre les valeurs 1 et 2, impliquent alors les relations
suivantes, si o est 'ordre de grandeur de o33 :

o = 0(c1)

2

Gap = 0(02’2) (11.3)

Supposant p?/(? trés petit devant 'unité, on peut donc écrire le principe de
Hellinger-Reissner sous la forme

2
[/ (033D3’LL3 + Jag(DaU3 + Dgua) — % — Jasga?;) dV + P(ua,U3) stat

ce qui donne, par variation des contraintes,
o33 = EDsug, 0,3 = G(Da’u:g + D3ua) (11.4)

On peut, en réintroduisant ces valeurs dans le principe, se ramener & un principe
de variation des déplacements :

F G G
/ {2(D3U3)2 + §(D1U3 + D3uq)? + §(D2U3 + D3ug)?| dV
%

+ P(uy,ug,us) stat  (11.5)

11.3 Ordres de grandeur des déplacements

Commencons par examiner les restrictions nécessaires a la validité de la
linéarisation géométrique. On peut s’attendre & observer des déplacements ug
d’un ordre de grandeur différent de celui des deux autres. C’est pourquoi nous
écrirons

uz = OW), ua = OU)

La déformation de Green 33 s’écrit

1 1 1
v33 = D3uz + §(D3U1)2 + §(D3U2)2 + §(D3U3)2



11.3. ORDRES DE GRANDEUR DES DEPLACEMENTS 349

et ses termes successifs ont les ordres de grandeur suivants :
w o U? Ur w2
e’z 27 g2
Pour que la linéarisation géométrique soit valable, il faut donc que

2B R

soit encore

w
- <1 (11.6)
. Uz w2
<= 11.
< (11.7)

Par ailleurs, les déformations vy,g ont pour expression
2%ap = Daug + Dgua + Dauy Dty + DousDgus
et leurs différents termes ont pour ordre de grandeur

vou oo

) )

p’p P PP

ce qui méne aux conditions

Vet (11.8)
p
° w2 U
MR 11.
77 < (11.9)

Les conditions (11.6) et (11.8) signifient que le déplacement azial est trés pe-
tit devant la longueur de la poutre et que les déplacements transversauzr sont
trés petits devant les dimensions de la section. Les relations (11.7) et (11.9) se
combinent pour donner

v £ U
Wi S 2 S

(11.10)

En écrivant
_Ulp

X =
W/t
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cela donne
X v < ﬁ < 7X
W/p
Une valeur raisonnable de X est donc
Ulp 12
X=—"=~— 11.11
ce qui implique
¢
U~W-= (11.12)
P

c’est-a-dire que les déplacements transversaux sont aux déplacements axiaux
comme la longueur est & la dimension p. Dans ces conditions, les déformations
Y3, données par

29a3 = Dous + D3ug + DouyDsuy + DouzD3us
ont leurs termes d’ordres de grandeur respectifs
w U U* w?
p’ L7 pt’  pl
On constate que le troisiéme terme est au second comme U/p et que le quatriéme
est au premier comme W/, ce qui justifie 'emploi de la théorie linéaire.

11.4 Structure des déplacements u; et us

En régime élastique, les déformations restent petites, du moins pour les corps
suffisamment raides. Soit donc € < 1 'ordre de grandeur attendu des déforma-
tions. Commencons par examiner £33. On a

£33 = Dyuz = O(W/()

ce qui mene & poser
2

Weel, U=c (11.13)
p

Examinons a partir de 1a les trois déformations dans le plan d’une section. La
physique du probléme suppose

1
Eaf = i(Dauﬁ + Dgua) = O(E)
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22 2
Doug =0 <€p2) , Dgue=0 (6,02)

Par conséquent, on peut écrire que les déplacements u,, vérifient

alors qu’a priori,

2
Dyug = —Dpu, A O(%) prés

soit
Dyuy =0 dou uy ~u(z)+601(2)y
Dous =0 dot wug = v(z)+ 6a(2)x
Dyus =~ —Dou; dou 6 = —6, = —9(2)

On obtient ainsi la structure suivante du champ de déplacement :

us = ’U,3(£L’, Y, Z)
up = u(z) —yb(z)
uy = v(z)+z0(z)

Il en découle directement, dans les notations classiques de l'ingénieur,

€33 = Dsug
73 = Diyug+u' -0y
’)/23 = D2U3 —+ U/ —+ 0/1'

en marquant d’un prime les dérivées des fonctions de z.

351

(11.14)

(11.15)

(11.16)

11.5 Gauchissement de torsion et structure de

I’énergie de déformation

L’énergie de déformation par unité de longueur de la poutre s’écrit

U = E/ (D3u3)?dS + G/ [(Dyus +u' — 0'y)? + (Daug +v' + 9’95)2] dQ
Q Q

On vérifie aisément que la premiére intégrale est d’ordre Ee?, tandis que la
seconde est d’ordre EQEQ%. Dans le processus de minimisation, on pourra donc,
avec une bonne approximation, varier us séparément dans la seconde, car les
termes apportés par la premiére seront p?/¢? fois plus petits. Cette minimisation
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ne faisant intervenir que les dérivées selon x et y, elle pourra étre effectuée section
par section, ce qui méne au principe variationnel

/ [(Dyus +u' — 0'y)*1 + (Dauz + v' + 0'2)*] dQ = min
Q u3
La solution de ce probléme est visiblement de la forme suivante ' :

ug = w(z) —v'x —v'y + 0P(x,y) (11.17)

ot la fonction 1 minimise I'intégrale
/ [(D1¢ — y)? + (D2t + x)?] d (11.18)
Q

Ceci ne définit b qu’a une constante prés. On fixe cette derniére en imposant la
condition

/ PYdQ =0 (11.19)
Q

Cette fonction est appelée gauchissement de torsion. En notant J la valeur
minimale obtenue,

7 =min [ [(Dyd =) + (Da +a)?] d0 (11.20)

on constate que 1’énergie de cisaillement par unité de longueur de la poutre se
ramene a

U, = GJO* (11.21)

A propos de la constante J, notons que, pour toute variation d¢ de 1, on a
/ (D1 — y)D16Y + (Dath + 2) Dabip]dQ = 0 (11.22)
Q

Pour le choix particulier 61 = 1), on obtient

/ (D)2 + (Dath)?] d22 = / (yDrib — £ D)
Q Q

1. Cette formule a été introduite pour la premiére fois par Timoshenko [84], sous une forme
restreinte a la torsion. Elle a été généralisée par Wagner [92] et, surtout, par Vlassov [90]. C’est
pourquoi on parle souvent de théorie de Viassov.



11.6. DEFINITION DU CENTRE DE TORSION 353

Il en découle que

J= / [(D19)? + (D29)?] d2 — 2 /(yplw — 2Dyp)dQ + I,
Q

avec
I, = / (2 +y*)dQ
Q

soit

J =1~ /Q [(Dlw)Q + (D21/’)2] dQ <1,

I’égalité n’ayant lieu que si la gauchissement est nul.
A partir de 'expression (11.17), on déduit aisément

Dsus =w —uw'z — vy + 607

ce qui permet de donner & I’énergie de déformation par unité de longueur de la
poutre la forme suivante :

U = EQu'? + EI.u"? + EI,v"? + EK0"? + 2EL,0"u" + 2EL,0"v" + G.J§"
en posant

(11.23)
Q:/dQ, Igc:/xde, I :/deQ
Q Q

Y
Q
K=/w2d9, L, = —/ badQ, L, = —/ YydQ  (11.24)
Q Q Q

Nous supposons ici implicitement vérifiées les conditions

Iy = / zydQ =0, / zdSQ, / ydQ2 =0 (11.25)
Q Q Q

qui signifient que I’on travaille dans les axes principaux d’inertie de la section.

11.6 Définition du centre de torsion

Considérons le changement de variables & deux paramétres xp et yr défini
par
uw=ur+0yr, v=uvpr—_~0xp (11.26)
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revenant a écrire
up =ur —0(y —yr), uz=vr+0(x—x7)

Le point (z7,yr) se présente alors comme le point ou l’on mesure les dépla-
cements ur et vp. En choisissant bien ce point, il est possible de découpler la
flexion et la torsion. On a en effet

U = EQu?+ EL(ur” +0yr)? + El,(vy” — 0" 27)? + EK0?
+EL,0" (ur” + 0 yr) + 2EL,0” (vp” — 0 x7) + GJO"
= EW?+ ELur"® + Elyur™® + 2E(Ly + yrl )0 ur”
+2E(Ly — o71,)0"vr” + E(K + y31, + 231, + 2L,yr — 2L,o7)0"?
+GJo"

11 suffit donc de poser

L, 1
rr = —— = —— Y
1y Iy Ja
pour obtenir ’expression découplée suivante de ’énergie :
U = EQuw” + ElLyur"? + Elvr"? + EK70"% + G.J0"” (11.28)
avec
Kr =K —y31, — 231, (11.29)

Le point défini par les coordonnées x7, yr est le centre de torsion de Kappus-
Weinstein [36, 45].
Remarquons que I’on a encore

ug = w(z) — upr — vy + 0'Yr (11.30)

avec
Yr =9 —yrx + o1y (11.31)

et que

J= /Q [(D1vr —y+yr)® + (Dotor +x — 27)?] d (11.32)
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11.7 Fonction de Prandtl

Les équations régissant le gauchissement de torsion s’obtiennent aisément &
partir de (11.18) :

Dl(Dlw - y) + DQ(DQ'L/) + IE) = 0 dans Q
nl(Dl'l/J - y) + nQ(DQ/lZ) + .’E) = 0 sur 90

On satisfait & ces conditions en posant
D1 —y=Dap, Dap+x=—-Dip (11.33)
avec la condition de contour
n1Dap —naD1p =0
soit, comme (fig. 11.1) ny = t5 et ny = —t1,
t1D1p+taDop = Dyp =0 (11.34)

La fonction ¢ ainsi définie porte le nom de fonction de Prandtl [70].

FIGURE 11.1 — Normale et tangente au contour

L’exploitation de la condition de contour (11.34) appelle quelques commen-
taires. En effet, il ne faut pas perdre de vue que les sections creuses ne sont pas
rares. Pour celles-ci,

0N =CyUCLU...Cg

ou Cp est le contour extérieur et C;, ¢ = 1,...,k , les contours intérieurs (fig.
11.2). Comme la fonction de Prandtl n’est définie qu’a une constante additive
prés, on pose généralement

eloy =0 (11.35)
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Section 12

FIGURE 11.2 — Poutre & section creuse

Pour les autres contours, on a alors

©le, = @i (cte sur C;) (11.36)

Cependant, il est clair que toutes les fonctions ¢ vérifiant ces conditions ne
peuvent pas convenir, car il faut encore assurer ’existence du gauchissement de
torsion, solution de (11.33). L’intégrabilité locale de 1) sera assurée si

Dy(D1%)) = Dagp+ 1= Dy(Datp) = —Dy10 — 1

soit si

Vip+2=0 (11.37)

Sur chaque C;, i = 1,...,k, on devra en outre assurer I'unicité de la fonction 1,
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c’est-a-dire la condition

0 = / Dypds
Ci

_ / (t D1t + b5 Dat))ds
= /C (—n2 D19 + n1Datp)ds
- /C [—n2(Dag + y) — n1 (D1 + x)]ds

soit

Cette derniére intégrale de contour peut étre transformée comme suit : appelant

F1GURE 11.3 — Définition de la normale n~

; laire du trou n°i, la normale extérieure a Q; est n~ = —n (fig. 11.3) et on a

—/ (n1z + noy)ds = / (nyx+nyy)ds = / (D12 + Doy)d2 = 2Q;
Ci Ci Q;
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ce qui rameéne les conditions de contour a
/ %ds =20, (11.38)
C; on

On remarquera que le probléme (11.37), assorti des conditions aux limites
(11.35), (11.36) et (11.38) n’est pas d’un type classique, puisque ’on impose en
fait deux conditions sur les C;. On pourrait donc se poser des questions quant
a lexistence de la solution. Pour dissiper ces doutes, définissons la fonction
prolongée @ sur Q5 =QUQ U...UQ par

p = ¢ dans Q
{ $ = ; dans les (11.39)
et considérons le probléme de minimisation de la fonctionnelle
1= / [(D1£)? + (D2p)? — 2¢] dQ2 (11.40)
Qo

Ce probléme admet visiblement une solution, et celle-ci vérifie les relations sui-
vantes pour tout d¢ nul sur Cy :

0 = / (D1¢D15¢ + DQ@DQ(S@ - 25(,0)dQ
Qo
= / (D1$D16@ + DapDad — 264)dY — Y bk
Q i

dp 2
21:5@ /C 5-ds /Q&p(v © +2)dQ 22}915%

soit précisément

Vip+2 = 0 dans €
Jo g—ids = 2Q; surles C;

Le principe variationnel (11.40) sert de base & de nombreuses solutions appro-
chées. La variation particuliére d¢ = ¢ fournit la relation importante

/Q [0 + (Do) dey =2 R

Qo
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qui entraine

[
S— —

S

©

e

+

-

[ V]

S

o

ISH

o)

Qo

= 2/ pdS) (11.41)
Qo

11.8 Reésultantes et équations d’équilibre

Considérons un systéme de forces de volume f1, fa, f3 et calculons leur éner-
gie potentielle sur une section donnée :

P =— / (fiur + foug + fausz)dQ
Q
On a tout d’abord

- / (frun + fou)d = — / {filur — 60y — y2)] + folvr + 0(x — 27)]}d9
Q Q

= —q.ur — qyur —mypl

en définissant les résultantes

Gz = [qf1dQ (résultante des forces selon Ox)
a = Jo f2dQ (résultante des forces selon Oy)
my = [oll@—xr)fo— (y—yr)1]ldQ (moment autour de Oz)

(11.42)
D’autre part,

7/ fausdQ) = f/ f3(w — zulp — yvly + Pr8’)dQ
Q Q

= —nw+ myup + myvp — b’
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en posant
no = [ fdQ (résultante des forces selon Oz)
my = [o fszdQ  (moment des forces fs3 dans le plan zOz)
(11.43)
my = [o fsydQ  (moment des forces f3 dans le plan yOz)
b = [, fstbrdQ (bimoment des forces f3)

La variation de I’énergie de déformation par unité de longueur vaut, a partir
de (11.28)

U = EQw'sw + Elyup”Sur” + Elyup”dvp” + EKp0” 807 + G656/
= Now' — Mup” — Mydvr” + B0 + M50’

& condition de définir les résultantes suivantes :

N =  EW = [,033dQ (effort normal)
M, = —ELup” = [,0332dQ (moment de flexion
dans le plan zOz)
M, = —ELvp" = [,033ydQ (moment de flexion
dans le plan yOz)
B = EKO = [,03307dQ (bimoment de Vlassov)
M, = GJY = fQ[Uﬁ(Dﬂ/} —Y)
+0b3(Datp + x)]dQ)  (moment de torsion)

(11.44)
ol o}y et obs représentent les contraintes de torsion. Comme celles-ci sont de la
forme
ol =GO Dyyp, oby=—-GO Dy

ol ¢ est la fonction de Prandtl, on a 1’égalité

/(O’ingw + UéBDQ'l)/J)dQ = GQ/ / (DQ(le’lp — Dl(pDQ'I/J)dQ
Q Q

=Go' 2/

w(nnggo — TL2D1(p)dS — / ¢(D12(p — Dlg(p)dQ =0
i#0 7 Ci &
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qui raméne M; & sa définition classique

M, = / (woby — yols)dQ (11.45)
Q

Le probléme de 1’équilibre intérieur se traite en minimisant l’énergie totale
par rapport & toute variation de déplacements nulle avec toutes ses dérivées aux
extrémités. On a

¢
o0& = / (Now' — My oup” — Mydvr” + BéO” + M50
0
— ndw + myoup + mydvy — bd0" — qudur — g, dv, — mydh)dz = 0

ce qui méne aux équations suivantes :

N 4+n=0 (11.46)
et
M, —ml+q¢. = 0
M, —mj, +q, = 0 (11.47)
—B 4V 4m; = 0
Introduisant les grandeurs
Q: = M;/t — My
Qy = M, —m, (11.48)
R B —b
on peut mettre les équations (11.47) sous la forme suivante :
Qy,+tq = 0 (11.49)
R/ = my

Il se trouve que les trois nouvelles grandeurs définies en (11.48) peuvent étre
interprétées comme des résultantes simples. En effet, si 'on admet 1’équilibre
local,

Qm X x
Qy = / (D30'33 + f3) Y d$) = 7/ D,oas Y dQ2
R Q pr @ Yy
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d’ou, en intégrant par parties,

Qr = [o013dQ (effort tranchant selon xOz)
Qy = [o023dQ (effort tranchant selon yOz)
R = [y(013D1¢7 + 093Datpr)dQY  (bi-effort tranchant)
(11.50)

11.9 Conditions aux limites

Considérant & présent des variations quelconques des déplacements, on ob-
tient les termes aux limites suivants :

[Néw]f — [MySur]y — [M,dvr]g + [B6'] + [M,56];
+ [M]Sur]§ + [M,dvr]s — [B'66]§ (11.51)

Supposons, pour fixer les idées, qu’il s’agit d’une poutre console. A 'extrémité
libre, les tractions de surface £, et t3 induiront une énergie potentielle

P — / [Frus (6) + Fauz(€) + Eyus(£))dO

- / (B [ur(0) — (v — yr)6(0)] + Eafor () + (& — 21)8(0)

Fsw(l) — e (£~ yoip(€) + et (D]}
= Nuw(t) +2ur(t) + Quor(t) — Maup() — Myvip(1)

+M0(¢) + BO'(¢) (11.52)
avec
V= 532 Qp= [ 0dQ Q= [, F2dQ
= [ots2dQ, M, = [tsydQ, M, = [[t2(x —xr)—t1(y — yr)]dQ
B = [, txord®

(11.53)
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Les conditions d’extrémité sont alors

N(E) = N, Qx(g) = Qma Qy(g) = Qy
M, (€)= M,, My({)=DM,, M/{)—B'({)=DM, (11.54)
B({) =B
Les conditions d’encastrement varient avec la perfection de celui-ci. Au mi-
nimum, on aura, en z = 0, up = vy = wr = up = vy = 6 = 0. Si, de plus,
Pencastrement assure la nullité du gauchissement, on aura en outre §° = 0.
Nous appellerons le premier cas encastrement imparfait et le second, encastre-
ment parfait.

11.10 Calcul des contraintes

A partir des résultantes, il est aisé de calculer les contraintes normales

o33 = EWw —xuf —yvp” +r0”)
N M, M, B
- = 2, 7Y — 11.55
ot T TR, (11.55)
De méme, les contraintes de torsion s’obtiennent par
oy = GO (D1 —y) =GO Dy
oty = GO (Do +x) = —GO' Dy
ou encore, par
M M,
t t t
013 7 (D1¢ —y) 7 2
M M
oy = S (Dapta)=——Dip (11.56)

Par contre, le calcul des contraintes de cisaillement de flexion est plus déli-
cat, car du fait de nos hypothéses, ces contraintes ne travaillent pas. Au sens
variationnel, on n’a accés qu’aux résultantes (11.50), ce qui signifie que le calcul
local de ces contraintes revét une part inévitable de convention dans le cas d’une
distribution arbitraire des forces f1, fa, f3. On méne généralement le calcul en
admettant que f3 a la méme forme que o33, soit

Q" I

n m m b
fs=qto +y +vr—
y K
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Il vient alors

fooo g% Qy B
Dyolg = xlw w dans 2 (11.57)

naaé?) = 0 sur 02

Mais la solution de ce probléme n’est pas unique : & toute solution particuliére
de (11.57), on peut ajouter une solution de I’équation homogéne, qui est de la
forme

g13 = DQ(I), 093 — —qu), q:>|c0 = 07

qui s’interpréte comme un champ de torsion. Comme le moment de torsion des
contraintes de flexion doit étre nul, le plus simple est d’imposer la condition
d’orthogonalité & tout champ de torsion :

0 = / (ofs D20 — o, D1@) a2
Q

Z (0¥ / (n20{3 n1023> ds — / P (Dzofg — Dla£3) ds?
Q

i#£0 Ci

ce qui équivaut a

Daoly = Dyol, dans Q
(11.58)
fCi (tla{B + tQO'gg) ds =0 sur les C;
Ces relations assurent I'existence d’un potentiel g tel que
f =D f.=D 11.59
013 19, 023 29 ( . )
et raménent le probléme (11.57) &
B
Vzg+xQ +y%+z/}:r =0 dans
5 I "I Kr (11.60)
99— sur 0f)
on

La solution de ce probléme a la forme

Qq Qy B
t 11.61
9= [g$+1ng+KTg¢ (11.61)
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les fonctions g, g, et g, étant définies comme les solutions des problémes par-
tiels

9o | x
Vil g, |+ |y =0 dans
9y Yr
(11.62)
5 9z
371 9y | =0 sur 0f2
9y |
ou, ce qui revient au méme, comme les fonctions qui minimisent les fonctionnelles
I, = / (|gradgm|2 - xgx) ds)
Q
I, = / (lgradg,|* — ygy,) dQ (11.63)
Q
Zy = / (Igradgy|* — vrgy) d
Q

Le champ de cisaillement de flexion défini par les relations (11.59) a (11.63) est
appelé champ principal de flexion [36].

11.11 Torsion non uniforme
Attardons-nous un peu sur le cas particulier de la torsion, c’est—dire d’une

sollicitation n’excitant que la rotation 6. Nous considérerons le cas d’une poutre
console, parfaitement encastrée en z = 0. On a donc

¢
0€ = / (EK70780” + G.J0'50"Ydz — M50(¢) — B66' (£) =0 (11.64)
0
On observera tout d’abord la possibilité d’exciter la torsion par un bimoment

d’extrémité, qui consiste en un systéme de charges aziales (de résultante et de
moments nuls). Il est aisé de déduire de (11.64) I’équation différentielle

EKp0"Y —GJ0” =0 dans 0, /] (11.65)
et les conditions d’extrémité
6(0)=6(0) = 0 (11.66)
EKp0°(0) = B (11.67)
GJO'(0) — EKp0™ (0) M, (11.68)
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Des conditions (11.65) et (11.68), on déduit aisément 1’équation

GJ M,
"o A
0 EKTG Bk, dans ]0, /]
dont la solution générale a la forme
0= & +Ci+C h — —I— Cysh =
GJZ 1 2C 38 %
avec EK
2 T
= 11.69
Des conditions d’appui, on déduit
M, Cj
Ci1+Cy=0, —+—=0
1+ G2 ey + -
d’ou i
N z _h 2
eiGJ <z zoshzo>+Cl<1 ChZO)
A Textrémité z = £, on a par (11.67)
My sh(f/z) 1 B
————% — —(Cych(¢ =
GJ 22 1h(€/) EKr
d’ou _
M, 9 B
C1 = ———=2zyth(¢ — 2=
1= gyt 20) = B g )
La solution est donc
M, ‘ ¢ B ,chZ
0= 2L zysh = — th — h = th
aJ {z 208 P 20 +zoc P z} EKT sh%
soit )
Mt e h =£ B Ch
0= —=1|z—20th— = 11.70
GJ |7ty R ch £ EKp © sh% (11.70)

Dans le cas ou la poutre est suffisamment longue (¢/z9 > 3), on peut écrire
4 5°/o0 prés th(¢/zg) ~ 1, ce qui entraine

sh == shfch=2 —sh2cht
20 20 20 20 20

ch £ ch £
zZ0
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et
z L (L= _
az-1 Lo (5)]-t
sh £ sh £
) Z0
chtchéz —ghLghéz_q
_ z0 20 z0 20
sh £
20
l— 0 — 0/ —
~ ch ® _sh Z—l:exp(— Z)—l
20 20 20
d’ou

Mt z B 2 {—z
~ _ _Z2) | - 1 - 11.71
0 el [z zo—i—zoexp( Zo)] EKTzO [ exp( = )] (11.71)

La solution se présente donc comme la superposition d’une torsion uniforme

0, = —(z — 20) (11.72)

et de termes d’extrémité, dont la profondeur de pénétration est 2o (c’est-a-
dire qu’ils décroissent d’un facteur e tous les zp). Le terme de torsion uniforme
correspond & un encastrement imparfait fictif & une distance zg, comme le montre
la figure 11.4. Le comportement de la solution dépend évidemment de la longueur

8
effet du bimoment
dextrémité
solution uniforme
(encastrée en z,
effet de 5
l'encastren 4
. i I
0 % /

FIGURE 11.4 — Torsion non uniforme
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[EK,
zZ0 =
0 GJ
Cette affirmation est générale. En effet, la torsion sera non uniforme si les termes
EK7072 et GJO"? de I'énergie de déformation sont du méme ordre de grandeur.

Or, si A est la longueur d’onde de 'angle de torsion 6, lui-méme d’ordre de
grandeur O, on a

e? e?
92 __ 2 _
EKp0"* =0 (EKT)\4) , GJ9*=0 (GJ 2 >

et I'interaction n’aura lieu que si

EKp
A2 = )
1) ( a7 > (11.73)

ce qui détermine la profondeur de pénétration. Il est donc utile de chiffrer ce
rapport dans les cas courants.

11.12 Etude approchée des sections massives

Pour les sections massives, on peut, en premiére approximation, utiliser la
méthode de Rayleigh, avec un gauchissement de la forme [90]

Pla,y) = Ay (11.74)
qui vérifie visiblement la condition
[ vty =0
Q
On a alors
/Q [(D1¢ —y)? + (Dotp + )] d2 = (A — 1)L, + (A+ 1)*],
et cette expression est minimale pour
20A-1)I, +2(A+ 1)1, =0

soit

(11.75)
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On en déduit les coordonnées approchées du centre de torsion par

1 1171,—1
= —— aQ = — z/ 2dQ
o I, /QW LI, +1, Jo""
(11.76)
1 11,1
vr Ix/(lxqp lex"'Iy Qxy
et la constante K est donnée par
(Io —1y)* [ 55
K = / P2 = 22 [ 2?y?d0 (11.77)
Q (Lo +1y)* Jo
On a alors
Kr =K —y3I, — 271, (11.78)
Quant & la constante de torsion, elle est donnée par
IL—1 2 L —1 2 AL
J=("—*2-1) I =2 41) I, =—"L 11.79
@rwy >”+<&+@+> "L (79

Pour une section symétrique ayant les deux moments d’inertie égaux, comme le
cercle ou le carré, on obtient donc

conformément a la théorie élémentaire de Coulomb. Dans le cas d’une section
dont un des moments d’inertie est trés inférieur & l'autre (I, < I,), comme
une ellipse trés allongée ou un rectangle trés mince, on obtient, si la section est
symétrique,

u (-t
I
J = -, K= 5 / z2y?d
Ainsi, pour un rectangle trés mince, de largeur a et d’épaisseur t < a,
2
t2
1 at (1 - *2) 1
J:gia N2 K:7a2 2ma3t3
@ T 0
ce qui donne
(1-5)
1 T az
2=t )
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soit, dans le cas extréme ou t/a — 0,

Q

~|

(11.80)

20 ~

5
o

C’est donc la plus grande dimension de la section qui importe. Ce phénoméne
est encore renforcé dans le cas des poutres & parois minces comme nous allons
le voir.

11.13 Théorie des poutres & parois minces ou-
vertes

11.13.1 Considérations géométriques

ligne_moyenne

e i —

v[__._.__jb__-___._._;!

F1GURE 11.5 — Poutre & parois minces ouverte

Une poutre & parois minces a sa section constituée de corps trés minces
reliés en des nceuds. On dit qu’elle est ouverte si son profil est simplement
connexe. En admettant une certaine approximation géomeétrique aux nceuds, on
décrit la section a I’aide de sa ligne moyenne, repérée par une coordonnée s, et
une coordonnée n selon ’épaisseur (fig. 11.5). La longueur totale a de la ligne
moyenne est supposée trés grande devant l’épaisseur du profil. Par ailleurs, la
ligne moyenne peut étre courbe, pourvu que son rayon de courbure R vérifie la
condition t/R < 1. Enfin, on suppose toujours que la poutre est longue, ce qui
g’écrit ici a/¢ < 1. En un point quelconque de la ligne moyenne, de coordonnées
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FIGURE 11.6 — Normale et tangente unitaires

(Z(s),5(s)), on définit le vecteur unitaire tangent

dz dy
= —,—= 11.81
& (ds,ds) (11.81)

et le vecteur normal (& gauche, dans le sens de parcours)

dy dz
n=|—7,— 11.82
© ( ds ds) (11.82)

comme le montre la construction vectorielle de la figure 11.6. La courbure de la

FIGURE 11.7 — Courbure de la ligne moyenne
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ligne moyenne, 1/R(s), peut étre définie comme le taux de variation de 1’orien-
tation de la tangente lors d’une progression le long du feuillet moyen (fig. 11.7) :

1 da

- =—— 11.83

R ds ( )
Le signe négatif provient de la convention définissant o comme l’angle entre
I’axe des z et la tangente orientée positivement. Notant que

dy
cosa = sina = —
’ ds
on obtient aisément
d’z . da 1 dy
— = —sina— = —=-—-">
ds? ds R ds
(11.84)
d?j da 1dz
— = cosa— = ———
ds? ds R ds
Un point quelconque de la section a ses coordonnées égales &
(xﬂ y) = (:f? g) + nen
soit explicitement
di
z(s,mn) = Z(s)— n<Y
s (11.85)
(s,) = )+
Yis, ds

En conséquence, le jacobien de la transformation (s,n) — (z,y) s’écrit

dz _ &% _dy
(z,y) ds ds? ds

O(s,n) dy d*z dz
as T"asr ds

n
= =14+ —= (11.86
=142 (Lso)
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da\*  (de\"_
ds ds N

L’élément de surface vaut donc

car on a toujours

dxdy = (1 + %) dsdn =~ dsdn (11.87)

puisque t/R < 1.

11.13.2 Une formule d’intégration par parties [31]

B
noeud

FI1GURE 11.8 — Description d’un profil ramifié
Dans le cas d’un profil ramifié, on définit arbitrairement un sens de parcours

sur chaque branche C; de la ligne moyenne, comme le montre la figure 11.8. On
a alors, pour une fonction quelconque de s,

/CdeZZ/Cifds

L’intégration par parties demande alors une certaine attention. En effet, si f est
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une fonction continue aux nceuds, g ne I’étant pas nécessairement, on aura

/C gD, fds Z / gD fds
Z / I Dsgds

Z INTN(g / fD.gds (11.88)

noeuds N

en posant en chaque noeud

Tn(g) = Z Jconvergents — Z 9divergents

un g étant convergent s’il appartient & une branche convergeant vers N, di-
vergent sinon.

11.13.3 Torsion

Le probléme fondamental en torsion est de minimiser I'intégrale

/ [(D1¢ — y)? + (D2t + 2)*] d2 = / |f|2dS
Q Q

avec pu pu
f= (Dﬂ/)—y—nm> e; + (D2¢+a:—ny> €9 (1189)
ds ds
Notant que

e, -e dz e, -e @

1 s — dS’ 1 n — dS

dy dzx

€2 €5 = ds’ €z en = s

on a encore

fs = <D1w —y—ndm> Zf <D2w+x —nj) Z—Z Dy —r —n (11.90)

avec d d
xz ay
=gJ— — 11.91
"= ds ds ( )
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et
_ dx \ dy dy\ dx
fo = —(Dlw—y— ds) = (Dgt/i—i-:r—nd )ds
dx dy
- D, 11.92
R i ( )

La grandeur r définie ci-dessus a une interprétation géométrique utile : c’est,

FIGURE 11.9 - Interprétation géométrique de r

comme l'illustre la figure 11.9, la projection sur la normale au profil de la distance
au centre de gravité de la section.

On est donc amené & minimiser I’expression

/Q[(Dszb—r—n)Q ( nz/H—xZ— +y‘;y> 1dQ (11.93)

On remarquera que le premier terme entre parenthéses de l'intégrale est d’ordre
O(% +p) et le second, d’ordre (’)(% +p). Le second est donc beaucoup plus grand
et, moyennant une erreur d’ordre t?/a?, on peut le minimiser séparément, ce qui
meéne a la condition

dzx dy

DpyYp == E_y£

ce qui méne a

W(s,n) = $(s) —n <xfi + Zg) (11.94)
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Introduisant cette valeur dans la premier terme, on trouve

- d*z d*y
Dgp—r—n = Dsw—n—n(a@d;—i—ydsg)—r—n

- n dy dx
= Dap—n—— (72 —g—) —r—
von R (xds yds) e
n
— Dy —2n— (1 7)
P n—r|l+ -
soit, en négligeant n/R devant l'unité,
Dap—r—n~Dgp—r—2n
Il reste donc & minimiser I’expression
_ _ 3
/ (Dgth — 1 — 2n)%dQ = /t(st,ZJ —7)%ds + / 3 ds (11.95)
Q c c

Variant 1), on obtient

0 /C t(Dyt) — r)Dydtbds

SO TN (DL — )6ty - / SOD,[H(Dh — r))ds
N C

ce qui méne aux conditions

Dy[t(Dgip —7)] = 0 dans les C;

Tn[t(Dsyp —7)] = 0 aux nceuds

La solution de ce probléme est aisée a construire (fig. 11.10) : aux nceuds d’ex-

trémité, la condition est simplement Dyt = r, et en maintenant cette propriété
sur tout l'arc adjacent, on satisfait a 1’équation différentielle sur cet arc. Par
conséquent, de proche en proche, on obtient en tout nceud Dyt = r sur tous les
arcs adjacents. Il suffit donc de construire la fonction

w=uwy+ /rds (11.96)

obtenue en partant d’un noeud quelconque, et continue aux nceuds. On détermine
finalement wq par la condition

YdQ = | Ptds = | wtds =0 (11.97)
o= [ |
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F1GURE 11.10 — Construction de la solution

FIGURE 11.11 — Aire sectorielle

La fonction w ainsi définie porte le nom d’aire sectorielle, car la grandeur
dw = rds

vaut deux fois ’aire balayée par le vecteur joignant le point courant sur la courbe
moyenne au centre de gravité, comme l'illustre la figure 11.10. On a évidemment

D) —r=Dyw—r=0
ce qui entraine que
t3
J = / —ds (11.98)
c 3

C’est la formule classique de la raideur de torsion des sections minces 2.

2. Vlassov [90] néglige dans ses développements la variation sur I’épaisseur des glissements,
ce qui revient a négliger dans (11.95) le terme (2n) devant r, alors que ce dernier peut étre
petit. Cette hyperidéalisation conduit a J = 0 et oblige a réintroduire la valeur correcte (11.98)
... comme un fait d’expérience.
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Les coordonnées du centre de torsion sont données par

1
- f/a:wdﬂ
I, Jo

1 _ dy . dx  _dy
L

1 3 | _dzdy g\ 2
Ix{/c Tw 8—|—/ [dsd8+y<d$) ds

Q

1
—/t:ﬁwds
I Je

avec une erreur relative O(t?/a?) et, de méme,

1
xTz——/tgjwds
Iy Je

Calculons & présent la constante K. On a

K = j/'¢2d(2
Q
3 dx _dy
= tw3d d
/Cw S+/ ( ds ds> s
/thds
]

avec une erreur relative O(t?/a?). On en déduit directement

Q

Kr =K -2}, — y71,
11 est intéressant d’évaluer la grandeur du rapport K/J. On a
w = O(ra) = O(a?)

d’ou
K = O(ta®)

et, par ailleurs

ce qui donne

(11.99)

(11.101)

(11.102)



11.13. THEORIE DES POUTRES A PAROIS MINCES OUVERTES 379

si bien que la longueur fictive d’encastrement vérifie

=0 (a- %) (11.103)

Ainsi, dans une poutre a section mince, les effets de torsion non uniforme ont
une profondeur de pénétration nettement plus grande que la plus grande dimen-
sion du profil, ce qui a d’ailleurs fait dire & certains auteurs que le principe de
Saint-Venant ne s’applique pas & ce genre de poutres. La section rectangulaire
mince fait exception & cette régle parce que, dans ce cas, r est toujours nul, de
méme que w, si bien que c’est le terme négligé dans (11.102) qui subsiste seul.
Il est d’ailleurs habituel de dire que K = 0 pour ce profil.

11.13.4 Cisaillement de flexion

Tout revient & minimiser les trois intégrales définies en (11.63), qui s’écrivent

ici
Q
7, = /
QL

T, = [ [(D00) + (a0’ = wray] a0

(Dsg2)® + (Dngs)? — (:z - n> gx} a0

B dx
(Dsgy)2 + (Dngy)2 - (y + nds) gy} Q2

Dans les trois cas, le terme (D,,gx)?, a®/t? fois plus grand que le terme (D4g*)?,
peut étre minimisé séparément , ce qui conduit &

Gz = ?]I(S), gy = gy(s)a gy = gw(s)
et ramene les intégrales & minimiser a
7, = / [(Dsgm)2 ;fgm} ds

sy)° ygy} ds

oG0)° = (w = yr + 279)gy | ds (11.104)

frle
I, = /Ct[ 5Jv)’ dmw}ds
[l
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Les solutions de ces trois problémes vérifient les équations

Dy(tDsg.)+Z = 0
Dy(tDsgy) +y = 0 pdansles(; (11.105)
Dy(tDsgy) +w —yrZT + a7y = 0
et les conditions
TN(tDsgx) =0
Tn(tDsgy) = 0 » aux noeuds (11.106)
TN(tDSg¢) = 0
L’introduction des fluz de cisaillement
Sp =tDsg, = trl, (11.107)
Sy =1tD,g, = trf, (11.108)
Sy =tDygy = 7l (11.109)
permet de réécrire ces relations comme suit :
DS+ = 0
DS, +y = 0 dans les C;,
DSSw +w—yrz+zry = 0
Tn(S:) = 0
Tn(Sy) = 0  auxnceuds (11.110)
Tn(Sy) = 0

1l s’agit donc, dans les trois cas, de résoudre un probléme de la forme
D,S =T dans les C;, Tn(S) =0 aux noeuds (11.111)

Un tel probléme n’admet de solution que si

/\Ifds:O
c

/DsSds = Tn(S)=0
¢ N

Si cette condition est vérifiée, on obtient la fonction S comme suit (fig. 11.12) :

car
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FIGURE 11.12 — Construction de la fonction S

on part d’un noeud d’extrémité et on détermine

5= [ w0

jusqu’a atteindre un nouveau nceud. On procéde de méme pour toutes les
branches possédant un noeud d’extrémité. Il est alors possible de progresser
de nceud en neceud, grace aux relations

> Sconv = > Sdiv =0
en partant d’abord des noeuds ot une seule branche reste inconnue.
Dans le cas présent, on a
/ zd) =0
Q

/ids
c
/ ydQ =0
Q

/yds

c

/wds / Pd) =0
c Q

ce qui garantit I’existence des trois solutions.On notera que S, et Sy ne sont
autres que les moments statiques, en conformité avec les cours élémentaires de
résistance des matériaux (formules du type 7 = %)
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11.14 Caissons

Dans le cas des caissons mono- ou multicellulaires, la méthode la plus simple
de calcul de la torsion uniforme est la théorie de Bredt, déja exposée en sections
6.13.1 et 6.13.2 et sur laquelle nous ne reviendrons pas. Nous nous intéresserons
cependant & la détermination du gauchissement et des flux de contrainte de
cisaillement de flexion.

11.14.1 Deétermination du gauchissement

On peut déduire le gauchissement par une voie analogue a celle que nous
avons suivie pour les poutres a parois minces ouvertes. Mais ici, on peut écrire

/ (Dgtp —r —2n%)dQ ~ / (Dgtp — r)2dQ2 = /t(DSL/_J —r)ids  (11.112)
Q Q c
car la raideur de torsion est beaucoup plus grande que
3
—ds
c 3

du fait que I’on ne peut obtenir D, = r partout. En effet, la fonction r n’est
pas intégrable sur un contour fermé, du fait que

/ rds = 2 - (aire du contour)
c

fermé

Au probléme de la recherche de 1) vérifiant les conditions

FI1GURE 11.13 — Maillage du contour

0 dans les C;
0 aux nceuds

(11.113)

{ D, (tDst))
TN<tDsz/J)
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on peut donner une solution approchée par la méthode suivante (fig. 11.13) :
on décompose le contour en un certain nombre de segments approximativement
rectilignes, appelés éléments, et limités par des neuds de maillage . Sur chaque
élément, r est une constante. On y approche 1 par une fonction affine, entiére-
ment définie par ses valeurs aux noeuds de maillage. Ainsi, sur I’élément 1 — 2
de la figure 11.13, on écrira

L s s
Y =1 (1612)+¢2€12

en notant s la coordonnée allant de 1 ver 2, et /15 la longueur de cet élément.
On a alors _ _
Yo =1

412

en notant rq5 la valeur unique de r sur ’élément 1 — 2. On en déduit

T e SR
/1_2 t(Dstp —r)?ds = (612 r12> /1_2 tds

o, L
tialis l(T/fz—wl) —2r12w2_1/}1+rf2

D51/_1 —r= 12

Lo

ou t12 est ’épaisseur moyenne de 1’élément 1 — 2. Procédant de méme pour tous
les éléments, on obtient une expression de la forme

/t(DSzZJ —r)2ds = Z Kijih; — 2 Zg”j]l + terme indépendant des v;
I — -
iJ 7
dont le minimum est atteint pour
Z Kij; = gi
J
soit

Kq=g

en notant ¢ le vecteur dont les éléments sont les ;. Le probléme se raméne
ainsi a inversion d’une matrice. Cependant, sa résolution se heurte & une petite
difficulté technique, car la matrice K est singuliére. En effet,

' Kq= / t(Dstp)%ds =0
c
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pour ¢ = vecteur constant, soit pour ¥ = ... = 1,,. Pour s’en sortir, il suffit de
poser arbitrairement ¢) = 0 en un nceud de maillage quelconque, ce qui diminue
d’une unité la dimension du systéme matriciel et fait disparaitre la singularité
puisque dans ce cas

Dyp =0 = 1 = 0 partout

A la solution ¢* ainsi obtenue, on ajoute uniformément 1y choisi de telle facon
que

/Ct(1/_10+1/_1*)d5:0

soit
Py = fl/td_z*tds
o = Q.
1 — s . S
= -5 Z / [qp (1—&>+wj&}tds
élts i—; " ! 7
1 Ui+
~ _ﬁ Tjei]’tij
élts i—j

I’égalité étant exacte si les éléments sont d’épaisseur constante. Il est alors aisé
de calculer les coordonnées du centre de torsion, ainsi que toutes les grandeurs
dépendant de . On notera en particulier que

- 2
Yi =y
J:,Z (&j]_rij Cijtis
élts i—j

Cette procédure n’est d’ailleurs rien d’autre qu’une méthode d’éléments finis.

11.14.2 Recherche des champs de cisaillement de flexion

La méme méthode peut étre appliquée pour la recherche des champs de
cisaillement de flexion, en minimisant les fonctionnelle Z,, Z, et Z,, apres dis-
crétisation des fonctions g,, g, et g,. Celles-ci obtenues, on obtient aisément les
flux de cisaillement, par des formules du type

Sy = tij

(Les flux sont constants dans chaque élément.)
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11.15 Exercices

Exercice 39 Calculer la raideur de torsion d’une poutre en I 4 ailes en dé-
pouille (fig. 11.14).

b,

=
|

G

' b
a
3 LY
_ e ——

FIGURE 11.14 — Poutre en I & ailes en dépouille

Solution - On a
J = Jame + 2Jsemelle
avec
Jame = 1b e
ame 3 1¢1
Pour la semelle supérieure, on a

dg

o
COs 5

t62(1%)+632<
by

ds =

et
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P t
osan g_% dc_bidg
by’ 2
on a
1 2 (b2 2 20 1°
Jamate = g [ [ (1-5) redy]
1 by [! 3
= — 1—
Soz | 21—+ st
S 03/1(15)3d€+3026 /1<15>2£ds
3 cos § 2 0 278 0

1 1
+3czc§/0 (1 —&)E%de + cg/o £3d§}

Tenant compte du fait que

Fm+ 1I'(n+1) m!n!

1
/Ogm(l—f)”dng(m+l,n+1): Im+n+2)  (m+n+1)!

on obtient

! . 300 1
3 _ 3 _ —
/0(1—§)d€ = /Oédf— TR
! 1 211 1
2 _ 2 _ _ _
/0(1—5) §d§ = /05(1 é)df—fl =13

Il en résulte

1 b 3 2 2, 3
Jsemelle 2 7 (e + +cye3 + cacs + c3)
m 34cos §
1 by
= Sleeszlet c3)(c3 + ¢3)
2
si bien que
1 2 b 1
J = gblc‘;’ + §c0522 . Z(CQ +c3)(c2 + cg)

2
Dans la plupart des cas, on peut confondre cos § avec I'unité, ce qui donne

1 2 1
J =~ gblcf + gbg . E(CQ + ¢3)(c3 + c%)
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-.4\<

G Xr

FI1GURE 11.15 — Résultante des contraintes de cisaillement

Exercice 40 Montrer que la résultante (Q., Q) des contraintes de cisaillement
de flexion passe par le centre de torsion.

Solution - 11 suffit de montrer (fig. 11.15) que

Mt(Tf) = _szT + nyT
Or,

My(r7) = /Q [xDz (%’gz + %’%) —yDy (%"gz + %’gyﬂ dQ
x Yy x

Notant que

/ [(Dﬂ/) —y)D1 <%gx + ?ygy> + (D2t + x) Do (%gm + ?ygyﬂ dQ =0
Q z y @ v

on a encore

Mt (Tf)

—/Q [Dld)Dl <%9x + %gy) + Do Do <%9w + %gy>:| ds)
0 (Qq Q 2 [ Qu Qy
- /BQ ¢% (ng$ + Iyygy> ds + /Q (AY (ngz + 1, gy) Q2

B Qx Q,
= —/S)w(hx—i—fzy)dQ

_QxyT + nyT
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Exercice 41 A partir de l’exercice précédent, montrer que le centre de torsion
d’une section composée de parois minces rectilignes convergeant en un point se
trouve en ce point de concours (fig. 11.16).

FIGURE 11.16 — Poutre & parois minces convergeant en un point

Solution - Les efforts tranchants partiels des parois rectilignes ont la direction
de ces parois, donc leur résultante passe par leur intersection.

Exercice 42 Définissant, & partir d’un point quelconque de la section d’une
poutre, la fonction
Ya =9 —yar + 4y

ou 1 est le gauchissement de torsion, on considére la grandeur
K(A) = / Y34 dQ
Q

1. Quelle fonctionnelle est minimisée par 14 ?

2. Montrer que K(A) admet un minimum lorsque A est le centre de torsion
et que ce minimum est précisément K.

3. En déduire que le centre de torsion d’un profil composé de segments recti-
lignes concurrents est le point d’intersection de ces segments.

Solution

1. On a
Y =1a+yar —zay
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d’ou
Dy = D1pa+ya, Doth = Dotpg — x4, Y =014

et, par conséquent,
J = ilqu/ [(ha—y+ya)® + (Wa+z—x4)%] dQ
Q

2. On a évidemment

K(A)

/9(1/) — yar + 24Yy)?dQ

K+ y3L + 241, — 2ya /Q hdQ + 27 4 /Q yd©
= K+ yi[x + :C%Iy —2yalyr — 2xalyxT

et cette expression est minimale pour

YA =Yr, TA=2TT

Elle vaut alors
K(T)=K —y3lz — 231, = Kr

3. Lorsque A est le point de concours (fig. 11.17), on a sur chaque segment

A

FIGURE 11.17 — A est le point de concours des parois
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d’ou
U.)A:O7 Kis=0

Pour tout autre point B, wg # 0, Kp > 0. Donc A est le centre de torsion.

Exercice 43 Calculant, a partir d’un point quelconque (xa,ya), la fonction 14
minimisant

/Q (W4 —y+ya)® + (Wa+z—x4)%] dO,

montrer que
1 1
Yyr —ya = */ zpad), T —Ts = —*/ Y adQd
I, Jq I, Jq

En déduire la position du centre de torsion d’une poutre en U.

Solution - On a en effet
Y =1%a+yar —zaY

d’ou

1 1
v = =1 [t uar—sana@ = L [ wpadn+
z JQ Q

Iy

1 1
xp = :f*/y(Z/JAerAI*IAy)dQ:**/y¢AdQ+xA
Iy QO I:E Q

Pour la poutre en U (fig. 11.18), en partant du point O, centre de ’ame, on a
visiblement

h h
TA, = 5) TAsy = _57 TAss = 0
d’ou
wy=w3 =0, w ——% w —%
2 — w3 — Y, 1 — 2 ) 4 — 9
et
L PRt DRt DRt
T, 8 8 ) 4l

Quant & yr, il est nul par symétrie.

Exercice 44 Est-il possible de provoquer la torsion d’un poutre en sollicitant
sa section finale par des contraintes o33 ¢
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b
1 2
h O.____QXT
¢
— g
t

FIGURE 11.18 — Poutre en U

Réponse - 11 suffit pour cela d’appliquer des contraintes o33 telles que

N = / O’33dQ =0
Q

Mz = / 0'33$dQ =0
Q

My = / Uggde =0
Q

BT = /Ugg\I/TdQ 7&0
Q

La figure 11.19 illustre un tel systéme de charges pour une poutre en I.

Exercice 45 Comparer la raideur de torsion d’un tube de rayon R et d’épais-
seur t a4 celle du méme tube fendu longitudinalement, pour R = 25mm, t =
1mm.
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FIGURE 11.19 — Systéme de contraintes normales provoquant la torsion

Solution -
Jnon fendu = 277R3i
Jendu = QWR%
Jnon fendu  _ 3<R)23-6251875
Jtendu t

On notera que ce rapport est considérable!



Chapitre 12

Flexion des plaques

12.1 Introduction

La théorie des plaques traite de la flexion des corps plans dont 1’épaisseur
est faible devant les deux autres dimensions.

12.2 Description de la plaque et évaluation des
ordres de grandeur

FIGURE 12.1 — Plaque

Pour décrire la géométrie de la plaque, on repére les points du feuillet moyen

393
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par deux coordonnées x; et za, parcourant une surface S. Un point quelconque
de la plaque a la forme (z1,29,2), z variant de —t/2 & t/2 (fig. 12.1). Par
convention, nous écrirons x, 1'une quelconque des coordonnées z; ou zs. La
coordonnée x3 = z est toujours soigneusement distinguée des deux autres.

e

P

FIGURE 12.2 — Sollicitation par pression

Un cas typique de sollicitation de plaque est celui ol une pression p agit sur
une des deux faces de la plaque (fig. 12.2). Dans ce cas, la contrainte o33 prend
la valeur —p sur la face comprimée et s’annule sur ’autre face. Notant S3 'ordre
de grandeur de o33 et P celui de la pression, on aura donc

P
53 = P, D30’33 = O(?) (12.1)

A partir de ’équation d’équilibre
Dyoaz + D3o33 =0

on tire, en notant 7' ’ordre de grandeur des contraintes o,3 et A leur longueur
d’onde définie par

T
DaO'a3 = O(X)
la relation
T Sg
Xt
c’est-a-dire
T= Sg% = P% (12.2)

On peut s’attendre a ce que les contraintes o, varient de leur ordre de grandeur
sur une distance du méme ordre de grandeur \; d’autre part, les contraintes
tangentielles sont nulles sur les deux faces de la plaque, ce qui implique

T
D3on3 = O(?)



12.2. DESCRIPTION ET ORDRES DE GRANDEUR 395

De I’'équation d’équilibre

Dgoga + D3ogs =0 (12.3)
on déduit donc, en notant S, 'ordre de grandeur des contraintes o,g,
Sa _ T
A t
soit
soordes(2) = (2) 12
t t t
t —_hq“_;-
777 7T
%

FIGURE 12.3 — Sollicitation par efforts tangentiels

Un autre type de mise en charge en flexion consiste a imposer des efforts
tangentiels opposés sur les deux faces (fig. 12.3). Dans ce cas, on a

7as(E3) = 4o = O(Q)

et on s’attend & ce que les 0,3 soient des fonctions paires de z. Alors, comme
D3o33 = —Da0as

o33 sera impaire de z. Or, cette contrainte doit s’annuler en £¢/2. Il en résulte
que
D30’33 = O(Sg/t)

On en déduit

T S3
Dpopa = O(x) = O(T)
d’ot
Sy =T
A
Enfin, on déduit a nouveau de ’équation (12.3) que
A

So =T—
t
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On constate que dans les deux cas,

{ T = S,

2
S = 5.(5)
Dés lors, si 'on restreint I’analyse aux effets & une distance grande devant 1’é-
paisseur, ce qui revient & admettre que A est grand devant ¢, on obtient que les
contraintes de cisaillement o,3 sont ¢/ plus petites que les contraintes d’exten-
sion 0,4 et la contrainte o33, (t/\)? fois plus petite que les 0,5. En admettant

une erreur de lordre de (¢/)\)? sur les contraintes, on peut donc poser o33 ~ 0,
ce qui rameéne & un état plan de contrainte.

(12.5)

— >

12.3 Structure des contraintes 0,3

La symétrie gauche en z des problémes de flexion méne & écrire les contraintes
o.p comme des fonctions impaires de z, que nous développerons en série de

Taylor :
3

z
Oap = zAap(x1,22) + EB%@(xl,xz) + ... (12.6)
Il en découle en particulier
Dggo'aﬁ = ZBaﬁ + ... (12.7)

Nous allons montrer que ces derniers termes doivent étre négligeables. En effet,
une des équations de compatibilité de Beltrami-Michell s’écrit

1 1
D’y’yaaﬁ + D330’a@ + mDa5077 + mDaBUSB =0

Eu égard aux ordres de grandeur obtenus ci-dessus, on a & priori
1 S,
Dyy0ap + mDaBUW = 0 ()\;>

S3 Sy t?
Durs = 0(3)=0(3%%)

Sa
D33003 = O ()\2)

ce qui donne, a t?/\? pres,
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L’introduction de ce résultat dans (12.6) et(12.7) donne

t2
Oap — ZAaﬁ =0 (Sa)\2>

Ainsi, I'erreur commise en limitant ’expression des contrainte o,g au seul terme
linéaire en z est du méme ordre que celle qui provient de ’hypothése d’un état
plan de contrainte. Nous écrirons donc a juste titre

Oap = 2Aap (12.8)

Il est d’usage d’utiliser d’autres grandeurs que les variable A,g, & savoir les
moments

t/2 t/2 t3
M, = / 200pdz = Anp 22dz = Aup— (12.9)
—t/2 —t/2 12

En fonctions de ceux-ci, on a donc

12
222 Map (12.10)

Uaﬁ = t?’

Traditionnellement, on appelle M1, et Mas moments de flexion et Mo, moment
de torsion. Ils sont représentés en figure 12.4.

XB:Z

7 L
M
My, %

FIGURE 12.4 — Représentation des moments
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12.4 Application du principe de Hellinger-Reissner

Tenant compte de ’hypothése d’état plan de contrainte, le principe de Hellinger-
Reissner d’écrit

t/2 1
/ {/ |:0'a52(Da’U5 + Dgugy) + 0a3(Daus + Dsug) — @(0)} dz} dsS
s

—t/2
+ P(u) stationnaire (12.11)

en notant P(u) ’énergie potentielle des charges. Dans le cas d’un corps isotrope,

on a 1+
v v
(o) = —50a8008 — =5
(0) = 3 Oa8%s ~ 35
Pour les contraintes 0,3, nous appliquerons le résultat de structure linéaire en
z; par contre, nous ne ferons pas d’hypothéses particuliéres sur les contraintes

043, ni sur les déplacements. On a d’abord

1
Oaa088 + ﬁaagaag (12.12)

t/2 1 1 t/2 12
/ aagi(Dau[; + Dgug)dz = §Ma5 / t—?’z(DauB + Dgug)dz
—t/2 —t/2

1 M2 19 2 19
= —-M,3% D, / —szu/gdz + Dg / Tzuadz
2 —ty2 t —ty2 t
ce qui suggére d’introduire les rotations moyennes

Pa = / g dz (12.13)
—t/2 t

Pour justifier cette appellation, notons d’abord que si les déplacements étaient
linéaires en z, c’est-a-dire de la forme u, = zv,, on aurait bien

t/2 12
Pa = / *ZQlﬂadZ = '(/Ja

_eyo B

t2 2
- op, (B2
8 2

une simple intégration par parties fournit

12 t2 2 t/2 12 t/2 t2 2
o = {3 ( _ 2) ua] +73/ ( - Z) Dauadz  (12.14)
t 8 2 —t2 U2\ 8 2

De plus, comme
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ce qui fait effectivement apparaitre ¢, comme une moyenne pondérée de la
pente Dsu, puisque

12 (12 (42 2 12 (3 3
e Vo2 V=2 ()Y 12.15
w5 5)e=5 (5 m) 1219

A Taide de ces rotations moyennes, on peut donc écrire

t/2 1 1
/t/2 O'aﬂi(Dauﬂ + Dgua)dz = Maﬁ?(Da@ﬂ + Dg(pa) (1216)

Par ailleurs, on calcule aisément

2 14w v 12 (1+v v
/_t/2 (;_ang(fag - 2EJaa055> dz = t73 {;_EMagMaﬁ - wMaaMﬁﬁ}
(12.17)
Pour pouvoir traiter d’'une maniére analogue les autres termes de la fonc-
tionnelle (12.11), il nous faut recourir aux équations d’équilibre qui résultent,
comme on sait, de la variation des déplacements u,. On obtient, pour autant
que P(duy) = 0, les équations d’équilibre intérieur

Dﬁgaﬁ + D30a3 = 0

Les conditions de contour seront traitées plus loin. On déduit de la structure de
oo 12
z
DgO'(XB = 7t73D5Maﬁ

et, tenant compte de la nullité des contraintes de cisaillement sur les deux faces
de la plaque,

12 (42 22
a3 = 2|\ 5 T &5 D Ma
03 = 13 (8 2 ) Aap
L’intégration de ces relations sur 1’épaisseur fournit les efforts tranchants
t/2
Qo = / 0a3dz = DgMap (12.18)

—t/2

en vertu de (12.15). La relation inverse s’écrit

12 /12 22
= (= =) Qa 12.1
T3 t3<8 2>Q (12.19)
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A partir de ce résultat, on peut calculer

bz 12 (12 (2 22
/ Gag(DaU:g + Dgua)dz = Qoé*g/ < - > (DaUS + D3ua)dz
—t/2 t —t/2 8 2

12 (72 2 22 12 (Y2 (2 22
= Dy | — — — — | usdz +—/ — — — | Dsuqdz
Q”{ “lﬁLKWQ(S 2) TE e \s T )
On retrouve dans le second terme la rotation moyenne ¢, ; quant au premier,
il s’interpréte comme la dérivée par rapport & x, d’'un déplacement transversal

moyen
12 (12 (2 22
_ =2 2 ) uad 12.20
v t3/—t/2(8 2)u32 ( )

ce qui permet d’écrire finalement

t/2
/ 0a3(Daus + Dsug)dz = Qu(pa + Daw) (12.21)
—t/2

Il reste & calculer le terme

/ 0a30a3 dz = 77662@@(1/ < — 72 + Z> dz
e 26 2G 1 2 \61 8 1

1 144 1o

- %?Qa@am
1 QuaQa

= — 12.22
2G 5t/6 ( )

Ayant pris pour point de départ une structure particuliére des contraintes,
nous avons par le fait méme restreint les charges qu’il est possible de prendre en
compte. Pour préciser celles-ci, il faut examiner les conditions d’équilibre. Ainsi,
par exemple, en posant a priori 0,3 = 0 en z = £¢/2, nous avons implicitement
éliminé la cas d’'une mise en charge par des efforts tangentiels opposés sur les
deux faces, du reste moins important en pratique. Les seules charges possibles
découlent de ’équation d’équilibre selon z, qui s’écrit

DaUQB +f3 =0

f3 étant une charge de volume verticale. Cette charge a d’ailleurs une structure

en z déterminée : ) )
12 [t z
= (%5 ) DaQa
fo=—% <8 2 ) @
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Sa résultante
t/2

p= fadz = —=D,Q4 (12.23)
—t/2
doit étre considérée comme une représentation « équivalente »d’une éventuelle
charge de pression. Cette approximation est nécessitée par I’hypothése d’état
plan de contrainte. On notera que l'on a exactement
t/2
fauzdz = pw (12.24)
—t/2

Examinons enfin les conditions qu’il est possible d’imposer sur la partie 9.5
du contour ou I’on impose les efforts. Si n, sont les composantes de la normale
au contour, les tractions de surface imposées T,, doivent avoir la méme structure
que les contraintes pour vérifier la condition d’équilibre local :

— 12z

To = 15050 = —5-nsMpsa

Aprés multiplication par z et intégration, cela donne

t/2 _
ngMag = /t/2 2T odz = My,

Pour les tractions de surface T3, on devra avoir

_ 12 [t2 22
Tg = nﬁaﬁg = tis (8 — 2) ’ngQﬁ

Intégrant sur z, on obtient

t/2 _ B
nﬁQg = / 2T3dZ = Qn

,t/

On vérifie sans peine qu’a 'aide de ces résultantes et moments, le travail virtuel
des tractions de surface s’écrit

/ (Mpodpa + Qnow)ds
9852

Adoptant sur 055 le systéme d’axes curvilignes défini par la normale et la
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05,

FI1GURE 12.5 — Normale et tangente sur le contour
tangente au contour parcouru dans le sens laissant laire & gauche (fig. 12.5), on
peut écrire
0pa = (0ppng)na + (0pptp)ta = 0pnna + 0pita
ol d¢p, est la rotation normale et d¢;, la rotation tangentielle. Il en découle que
Mpobpa = naMpadpn + taMpodp: = M50, + Mpidp;

ou s’introduisent le moment de flexion de contour

M, = noM,, (12.25)
pour lequel 1’équilibre s’écrit,

Mygnang = M, (12.26)

et le moment de torsion de contour

My = to Mo (12.27)
pour lequel la condition d’équilibre est

Mapgnats = Mnt (12.28)

Ils permettent d’écrire le travail virtuel des tractions de surface sous la forme
/ (M5 + Myi60¢ + Q0w)ds (12.29)
85,

Ces effort et moments sont représentés en figure 12.6.
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FIGURE 12.6 — Moment normal et moment de torsion sur le bord

12.5 Equations générales des plaques

En rassemblant les résultats acquis jusqu’ici, on peut donner au principe de
Hellinger-Reissner la forme bidimensionnelle

1
0 {/S |:Ma,62(Da<PB + Dﬂ‘ﬁa) + Qa(%pa + Daw)

12

B

1
((1 + V)Ma,BMaB - VMaaMgﬁ) - mQaQa - p’w:| dsS

—/ (Mpspn + Mpsps + an)ds} =0 (12.30)
95

ol nous avons écrit n a la place de 5/6 pour des raisons qui apparaitront dans
la suite.

La variation des ¢, dans ce principe conduit aux équations d’équilibre des
moments

DgMpg, = Qq dans S (12.31)

Magnaeng = M, et Magnatg = My, sur 052 (12.32)
La variation de w fournit

D,Qn.+p = O0dans S (12.33)
NaQa = Q sur 05, (12.34)

Variant les moments, on obtient les relations moments-courbures :

1 12
5 (Daps + Dppa) = E—t:,)[(l +v)Map — VMyy0ag]
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Il est d’usage de noter g les courbures

1
Xap = i(DaQDﬁ + Dﬁ(pa) (12'35)

En particulier, on appelle torsion la grandeur (2x12). La résolution de ces équa-
tions, de maniére & expliciter les moments, fournit

Mag = D[(1 = v)Xap + VXy~y0as) (12.36)
ou l'on a introduit la raideur de plaque

Et3
D=—"__ 12.
12(1 — v?) (12.37)

Enfin, la variation des efforts tranchants méne & I’équation

Qo = nGt(pq + Dyw) = nGtry, (12.38)
en notant
Ya = Pa + Daw (1239)
L’énergie complémentaire de déformation s’écrit
¥ / L 1 ) Moy Moy — Moo Mis] + ——QuQ (12.40)
= v «a af — ViVlga alWa -
E? pilab P o Gt

L’énergie de déformation s’en déduit en y remplagant les valeurs de M,z et de
Q. obtenues en (12.36) et (12.38). Il vient

nGt
U= / { (1 = v)XapXas + VXaaXss] + 2%7&} ds

soit explicitement,

U= / { YOG + X532 + 2x32) + V(X1 + X32 + 2X11X22)]
nGt

JFT(Wf +722)}d5

= /S {Z[Xi + X52 + 2x11x22 + 2(1 — ) (X32 — xa1x22)] + 7(712 + 73)} ds
(12.41)
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12.6 Autres types d’hypothéses

La théorie ci-dessus est due & Reissner [72, 73]. Une autre approche, dévelop-
pée par Hencky [43], consiste & poser o33 = 0 comme ci-dessus, puis & profiter
du relachement de la compatibilité en z que cette hypothése entraine dans un
cadre variationnel, pour poser uz = w(x,y); on y ajoute une structure linéaire
des déplacements u,, :

Uy = 2P0 (12.42)

Le développement de cette théorie méne & des expressions semblables aux pré-
cédentes, sauf a donner & n la valeur 1 au lieu de 5/6, ce qui manifeste le
supplément de raideur d’une théorie cinématiquement admissible (dans le cadre
o33 = 0) par rapport & la théorie de Reissner, qui est statiquement admissible.
Par ailleurs, il n’y a pas, dans cette théorie, de restrictions sur la forme de la
mise en charge.

12.7 L’hypothése de Kirchhoff

Une simplification supplémentaire, introduite pour la premiére fois par Kirch-
hoff [48, 52|, consiste & négliger la déformation due a l’effort tranchant. On notera
en effet que ’équation d’équilibre

Qo = DgMp,

entraine la relation o

Q= Y (12.43)
entre lordre de grandeur @) des efforts tranchants et lordre de grandeur M
des moments. Les courbures sont de l'ordre de ¢/, en appelant ¢ l'ordre de
grandeur des rotations, si bien que, par les équations moments-courbures,

Et? o

M= 12(1—2) A

(12.44)
Par ailleurs, ’ordre de grandeur () des efforts tranchants est lié & l'ordre de
grandeur « des glissements 7,3 par la relation

Q = nGty (12.45)

On obtient donc 0 . an
n 0l

< == 91—t

Mo me g



406 CHAPITRE 12. FLEXION DES PLAQUES

ce qui entraine

1o B (Y
o 12(1 —v2)nG \ A

W (;)24 (12.46)

Pour une plaque homogéne en z, de coefficient de Poisson égal & 0,3, on a

c’est-a-dire

Pa = —Dyw+ O

E 1
= =0,29 12.47
12(1 = v2)nG  6n(1 —v) ( )
en supposant n = 5/6. Dés lors, en posant a priori
Po = —Daw (12.48)

on ne commet qu'une erreur du méme ordre de grandeur que celles que nous
avons déja consenties jusqu’ici. Ce n’est que dans le cas de matériaux équiva-
lents, destinés a représenter, par exemple, des sandwiches (fig. 12.7) (souvent
anisotropes d’ailleurs), que 'on peut observer des valeurs relativement grandes
du rapport (12.47). La simplification (12.48) est connue sous le nom d’hypothése
de Kirchhoff. On peut également donner & cette hypothése une présentation

feudlles de métal

matériau ou entassement refativement souple

FIGURE 12.7 — Sandwich

énergétique. En effet, les relations (12.43) impliquent que ’énergie de flexion a
pour ordre de grandeur

1 12
Fi

112,



12.8. LE PARADOXE DE KIRCHHOFF 407

tandis que ’ordre de grandeur de 1’énergie de cisaillement est

1 11 M?
EC = — = -
© 2nGt @aQa =0 (2 nGt \? )
si bien que leur rapport est de 'ordre de
EC. E

E.F.~ 12nG \2 (12.49)

2 .
En admettant une erreur en %f\—z sur le calcul de I’énergie, on peut donc
écrire le principe de Hellinger-Reissner simplifié

1
4 {/ |:2M06ﬁ(Da<p[3 + Dﬁ‘ﬂa) + Qa(@a + Daw)
S
12
— 5 (4 v)MagMap — vMaaMpp)
_ / pwdS — / (Mppn + Mpsips + an)ds} =0 (12.50)
S 0Ss

ou les efforts tranchants @, jouent le role de multiplicateurs de Lagrange as-
sociés a la condition de Kirchhoff. Pour le reste, ils perdent toute signification
énergétique (ils ne travaillent pas) et si I'on exprime les conditions de Kirchhoff
a priori, ils disparaissent du principe. C’est du reste de cette maniére que 1’on
procéde le plus souvent : & partir des conditions (12.48), on calcule les courbures

1
Xag = _§(Daﬁw + Dgqw) = —Dypw (12.51)

Sur le contour, on a
on = —Dpw, pr=—Dyw (12.52)

ce qui méne a la forme suivante du principe de Hellinger-Reissner :

12
1) {A l:_MaBDaﬁw — t73 ((1 + V)MQBMQB — VMaaMgﬁ) — p’w:| dsS

053
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seconde réalisation

de Ow

F1GURE 12.8 — Indépendance de la pente normale sur le bord

12.8 Le paradoxe de Kirchhoff

Il se trouve que les conditions de Kirchhoff modifient profondément la struc-
ture des conditions aux limites. Tout d’abord, sur 057, on remarquera que s’il
est possible, étant donné une fonction w, de se donner D,,w arbitrairement (fig.
12.8), il n’en est pas de méme de D;w, puisque

’lI)(S) = @(Sl) +/ thds*

Au lieu des trois conditions w = w, ¢,, = @, et p; = @y, on se trouve donc réduit
aw=wet Dyw = D,w. De la méme maniére, sur 955, on sera ramené & deux
conditions seulement. Pour le montrer, nous supposerons 0.5 formé d’un nombre
fini d’arcs réguliers C; joignant un point P;_; & un point P;, comme représenté
en figure 12.9. En ces points, le contour peut posséder des angles. Notant que
Diw dépend de w, on peut faire apparaitre ce dernier par une intégration par
parties :

_ /(;52(_Mntth)ds = — Z:/Cl(_Mntth)dS
v (Pi)- _
= Z I:Mntw} (Pi—1)+ - Z/C(DtMnt)wdS
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F1GURE 12.9 — Contour typique

et, en réarrangeant les termes, on obtient

- Z [ My (Pi,) — My (Pi_)] wi — Z/ (D¢ My )wds
i i /G
ce qui permet de donner au travail des forces imposées sur 0S5 la forme finale
—/ (Kynw — M, Dyw)ds — Z Ziw; (12.54)
dSs p

en définissant les forces de coin

Zi = My (Pi,) — My (Pi_) (12.55)

et Ueffort tranchant de Kirchhoff
K, = Qn + DMy (12.56)

I n’est donc plus possible de spécifier séparément Q,,, M, et M., le premier et
le troisiéme se combinant pour donner 'effort K, et les forces de coin. Ce fait
paradoxal, démontré par Kirchhoff par la présente méthode, a suscité au X1X¢
siécle de nombreuses controverses, jusqu’a ce que Thomson (Lord Kelvin) et Tait
[83] en donnent une interprétation physique trés claire. Du fait de I'hypothése
de Kirchhoff, un moment de torsion élémentaire M,,;ds est indiscernable par son
travail d’un couple de forces M, situées & une distance ds. Les différents couples
équivalents de forces M, relatifs a des éléments voisins s’équilibrent & Dy M,,;



410 CHAPITRE 12. FLEXION DES PLAQUES

Mpds

_— ] . ______.__.T

Myt :A!m dJ
AN
L9s |
|
]
Mo

L
oMnt

e —— ——— s e e e

FIGURE 12.10 — Paradoxe de Kirchhoff

pres, si bien que sur 'arc régulier considéré, on applique en fait une densité
d’efforts tranchants Dy M,,; (fig. 12.10). Ainsi, les couples M,,;ds s’équilibrent &

Dy M;,ds pres, sauf aux extrémités de I’arc ou, ne trouvant pas d’équivalent, les
efforts M,,; forment une charge de coin.

12.9 Equation de Sophie Germain

L’élimination des moments au profit des déplacements dans le principe (12.53)
meéne au principe variationnel

/S g{(vQW)Q + 2(1 — V)[(Dmﬂ])g — anDQQ’w]}dS

- / pwdS — (Knw — M, Dyw)ds — Z Z;w; minimum  (12.57)
S 85, 7
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Lors d’une variation de w, le terme multiplié par (1 — v) ne produit que des
termes aux limites. Il peut donc étre omis dans le cas d’une plaque encastrée
sur tout son contour. L’équation d’équilibre intérieur s’écrit

4 p
= = 12.
Viw D (12.58)

et a été obtenue pour la premiére fois par Sophie Germain en 1816. La théorie
de Sophie Germain péchait cependant par ses conditions aux limites.

12.10 Expression des résultantes de bord en termes
des déplacements

Partant de l'expression générale des moments
Mag = —D[(1 = v)Dapw + vDyywiag]
on obtient directement
M,, = —D[(1 — v)nangDasw + vV?w] (12.59)

On notera que V2w est la trace de la matrice hessienne de composantes D, gw.
Comme cette matrice a, dans le systéme de base (n,t), les composantes

NaNgDagw NatgDagw
NatgDopw  tatgDagw

on a donc également
V2w = nangDasw + tatg Dopsw

si bien que
M, = —DV?w + D(1 — v)tatgDopw

Or, on peut écrire

tatgDopw = tBDt(Dgw)
= Dt(thgw) — DgwD;tg
= Dttw — Dﬁthtg

Notant que
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ST
)

0@

FIGURE 12.11 — Dérivée du vecteur normal

tgt 1

ngDitg = Dt(ngtﬁ) —tgDing = —tgDing = — D0

et que

0 étant ’angle que fait la normale avec une direction fixe (fig. 12.11), on obtient
Dytg = —ng(D0)
ce qui entraine finalement
M,, = —DV*w + D(1 — v)[Dyw + D, w(D;0)] (12.60)
On peut procéder de méme pour le calcul de K,,. Tout d’abord,
Qo = DgMgs, = —D[(1 — v)Dyppw + vDrqw] = —DD, V2w

d’ou
Qn = naQa = —DDnVQw

On a par ailleurs

M, = —-D(1—-v)natgDasw
= —D(1 —v)[D¢(Dypw) — DywDiny]
—D(l — V)[me — (DtH)th]

Rassemblant ces deux résultats, on obtient

K, = Q.+ DiM,; = —DD,V*w — D(1 — v)D[Dsn,w — (D;0)Dyw] (12.61)
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12.11 Comparaison des théories avec et sans effet
des efforts tranchants

La caractéristique essentielle de la théorie de Kirchhoff est que le champ de
rotations ¢, est intégrable, ce qui revient a dire que

Q = D1<p2 — D2Q01 = 0
Au contraire, dans les théories de Hencky et de Reissner, on a

Q = e3a8Daps

1

= _e3a,8Dan + TmeSaﬁDaQﬂ
1

= TGt%aﬁDavaB

D
= @e&lﬁDaw[(l — V)X~ — VXan0y8]
D(1-v)
= WeSaBDa'yX’yﬂ - DVeSaBDaBX)\)\
D(1-v)
= —gnap @apDay(Dyps + Dsoy)
D(1-v)
- T a . « Da
2nGt €3 B 'Y’Ysoﬁ
D(1-v)_,
= ——=V°Q
2nGt
solt 2nGt 12
n n
Vil=—""—"0=—"2-0 12.62
D(1-v) t2 ( )
dans le cas d’une plaque homogéne sur son épaisseur. Avant d’examiner les
propriétés de cette équation, notons que cette grandeur 2 admet, dans la théorie

de Reissner, la représentation

12 [4/2 12 (2 2 22
0= = 2(Diug — Douy)dz = ?3/ (8 - 2) D3(D1us — Douq)dz
—t/2 —t/2

qui la donne comme une moyenne pondérée de la torsion normale de la plaque
[29], ainsi que lillustre la figure 12.12. L’équation (12.62), écrite sous la forme

2,
Q=—V-Q
12nV
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FI1GURE 12.12 — Torsion normale

se présente comme une perturbation singuliére de 1’équation de Kirchhoff. Elle
admet des solutions & variation trés rapide : ainsi, en cherchant une solution de

la, forme
O = Aexp(—ax; — fxs)

on obtient )
3 2 2
- -1
T3, (@ +5%)
soit, lorsque n = 5/6,
3
/012 + ﬁQ ~ ;

c’est-a-dire que la profondeur de pénétration (distance a laquelle la solution
est divisée par e) est de l'ordre de t/3. Par conséquent, les zones de violation
de la condition de Kirchhoff sont trés localisées, prés des bords ou des points
d’application de la charge.

La recherche du champ de déplacements w se fait, en théorie de Kirchhoff, a
partir de I’équation de Sophie Germain. Dans le cadre des théories prenant en
compte l'effet de ’effort tranchant, il faut partir de la relation

D
Mo = 5(1 —v)(Daws + Dppa) + VDD prbap

ce qui donne

p = _Da[ﬁMaﬁ
D
= —5 (1 =)(Dapavs + Dapppa) = VDDaay ey
= —DV?D,p, =—DV? (me + DQQ"“>
nGt
2
— DVwiD P

nGt
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soit, finalement,

2
Viw = % - % (12.63)

La solution de cette équation peut étre mise sous la forme

w=wg +ws

ol wy est la solution de Kirchhoff et wg, une solution de ’équation

V2p
Viwg = ——+
s nGt
Cette derniére, qui vérifie
p
v (Vius+ 25)
ws + nGt

a la forme générale
wg = ’lU* + w**

avec
p

2, % 4 k%
Vw* = pyerl Viw™ =0
La solution partielle w** est toujours réguliére ; en revanche, la régularité de w*
dépend de celle de p. Si la charge de pression p est relativement réguliére, il en
sera de méme de w* et, du fait du coefficient 1/(nGt) qui est petit devant 1/D,
w* sera négligeable devant wy . Par contre, pour les charges trés irréguliéres, la
situation change radicalement. Ainsi, dans le cas d’une charge concentrée en un
point a, la solution w* est
P 1

w ==~ o In(fe — al)
et admet donc une singularité logarithmique. Au contraire, la solution de Kir-
chhoff conduit & un déplacement fini (mais & une singularité logarithmique des
moments).

12.12 Torsion d’une plaque rectangulaire encas-
trée sur un bord

La comparaison des deux types de théories de plaques se fait aisément dans le
cas de la torsion d’une plaque rectangulaire (fig. 12.13). En théorie de Kirchhoff,
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. /y_____//////;;
/ ya

FIGURE 12.13 — Torsion d’une plaque

on cherche une solution de la forme

w(z,y) = yA(r) (12.64)
ce qui donne
9w
T Y = —yA”
X 52 yA” (z)
9w
7
0%w
T fr— _ = —A/
On aura donc
M, = D(Xex+VXyy) = —DyA”
M, = D(xyy+VXsz) = —vDyA”
Mgy = DA-v)Xey = —-D(A—-v)A

La torsion pure est caractérisée par M, = M, = 0, ce qui implique A” = 0, soit
A" =0 = cte, d’ou

w(z,y) = Ozy
On a alors
B _ OMg,  OMy,
Myy=-D(1-v)0, Q,= By =0, Qy= o =0
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. S ok S

FIGURE 12.14 — Conditions aux limites

Examinons a présent les conditions aux limites, a ’aide de la figure 12.14.
1. En y = b/2, on doit avoir M, = 0, ce qui est identiqument vérifié; on a
d’autre part My, = —M,, ds= —dz, d’o la condition
OMyy
or

également vérifiée. Mais il convient de noter que 'on n’a pas M,, = 0.
D’ailleurs, au coin 2, il existe une force de coin

Zy = (]\/[nt)z+ = (Mne)y = — (Mary)2+ — (Mzy), =2D(1—-v)0
2. En y = —b/2, on a également M, =0 et M,; = —M,,, ds=dz,dotla
condition OM
K,=-Q,— =0
@ Oz
également vérifiée sans mener & M,, = 0. Au coin 1, il existe une force de
coin
Zy = (jwnt)1+ — (Mye), = (Mwy)1+ + (Mzy), = —2D(1-v)0

3. Sur le bord x = ¢, le moment M,, = M, est nul; on a par ailleurs M,,; =
M, et ds = dy, d’ou la valeur suivante de I'effort tranchant de Kirchhoff :

Kn:x
Q+8y

=0
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Le moment de torsion appliqué a 'extrémité de la plaque vaut

b b Et3b

M, = -7 —— 1 Z1=2D(1 — )b = 2———
t 22+<2> L (1-v) 12(1 + )
On retrouve donc la formule classique des poutres a section mince. Il est inté-
ressant de noter la chose suivante : si I’on calcule en z = a

b/2

Myydy = D(1 —v)6b
—b/2

9:%Gﬁw (12.65)

on n’obtient que la moitié du moment, ’autre provenant des moments de torsion
résiduels aux coins (voir linterprétation de Thomson-Tait), assimilables aux
contraintes de cisaillement nécessaires pour refermer les lignes de cisaillement
que ’on obtiendrait en théorie des poutres (fig. 12.15). Du reste, en ne comptant
que les My, on ne retient dans le calcul du moment que les contraintes 7, ,
et la théorie des poutres enseigne effectivement que les contraintes 7., et 7.
contribuent chacune pour moitié au moment.

!

t— g e e e e o

Txy

—— e B P P D

!

FIGURE 12.15 — Les contraintes tangentielles dans les deux directions ont une
contribution identique au moment

Voyons & présent comment étudier le méme probléme en prenant en compte
l'effet des efforts tranchants. Tout d’abord, il faudra modifier la structure du
moment Mg, pour lui permettre de s’annuler sur les bords libres. D’autre part,
pour sauvegarder la nullité des moments M, et M,, il faudra que les rotations
Yz et @, vérifient

0Py 12
Oy 12
T = My v =0

La nullité de @, nécessitera la relation

ow
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tandis que
ow Qs
%= "or T naT

implique, par dérivation,

an o 89095 8211)
or nait < Ox * x?

Si 'on admet un déplacement w de la méme forme qu’en théorie de Kirchhoff,
a savoir,

x = Oxy (12.68)
on obtient donc par (12.66) 0Q./0x = 0, soit
ce qui implique
ow
o= 12.
¢ 5 T W) (12.69)
Il vient alors
1—v (Op, Opy
M,, = D Py
Y 2 ( dy T oz
1—v 0%w 0*w
e Di — / -
2 ( 0x0y A 6m8y>
1—v
=D (=20 + f'(y))
° oM, oM, 1
_ z ry — V. _
Qo =5~ + o P [ (y) = nGtf(y)
ce qui donne I’équation
P y) +wfly) =0 (12.70)
avec onl .
W2 onGt _ 12n (12.71)

D(1—-v)

La solution générale de cette équation s’écrit

fly) = Achwy + Bshwy
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les constantes A et B étant & choisir de maniére que M, s’annule en y = £b/2,
ce qui fournit les conditions

—29:|:wAshwg —&—chhwg =0

dont on déduit
A = 0
20

b
wchw§

1l vient donc
_ 20shwy

fly) = wehw?
et

260 shwy
wchw%

M,, = —D(1-v)f (1 - Chw%)
chws

P = _9y+

shwy

Q. = 2nGto
wchwsg
On remarquera que leffort tranchant @, est strictement confiné aux bords,
décroissant & partir de ceux-ci en étant approximativement divisé par e sur une
distance égale a t/(nv/12). Quant aux contraintes, elles valent

12 /2 2 1 2\ sh+v/12n¥%
Ty = = ( - Z) Q. = 2V12nGY ( - 22> 2V
t 8 2 8 2t ch \/12n§
12 chv12n%
Tyo = My, =260z (1 - ——L (12.72)
’ t ’ ch v12n5;
Le moment de torsion & 'extrémité est donné par
b/2 1 . thw?
M, = 7/ (May — yQa)dy = ZGbt* [ 1 — —2 | 6 (12.73)
—b/2 3 w§

Il est plus petit que celui que fournit la théorie de Kirchhoff, ce qui est normal,
puisque celle-ci surestime les raideurs. La présente solution coincide avec la so-
lution approchée développée en section 6.13.4, ot elle est comparée & la solution

exacte.



12.13. PLAQUE RECTANGULAIRE - SERIE DOUBLE 421

12.13 Flexion des plaques rectangulaires simple-
ment appuyées (théorie de Kirchhoff) : mé-
thode des séries doubles de Navier

FIGURE 12.16 — Plaque simplement appuyée

Les plaques rectangulaires simplement appuyées s’étudient aisément & ’aide
des séries doubles de Navier :
o0
krx U
wz,y) = Y wyesin L sin Ty (12.74)
a
k=1

ou les wyy sont des inconnues, en double infinité. On déduit immédiatement de
cette expression

0%w k27?2 . krx | Imy
Xexz = _73$2 = kéz o2 Wgyp S 70, S 7[)
0w 0227 . kmx | Iny
= —— = ——— Wy Sin —— sin —=
Xyy Oy? p2 a b

ke

_ Pw _ gokmim AL
Xzy = Bxay_ g bwkgcos a cos b
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et
2 . kmx | UImy
Mzz = D(Xaz + VXyy) ) = 72 g ( —‘rl/b ) Wi Sin — = sin —=
M Y n ZZ €2+ k2 krx | lmy
vy = Xyy me =T 1/ Wpp SIN “ Sin o
k¢ k 14
My, = D1 —v)xey =-72(1-v) kgé g Wkt €os %x cos %y

Pour calculer I’énergie de déformation

1 a b
= 5 / dl’/ [M:chmc + Myyny + 2szxxy]dy
0 0

on notera les relations

A
/ sin mTXdX / cos meX = éémn
dont on déduit

wtab kA k2 02 k2027

WU = D— %:{(144%44@ s 21— v) s | Wi
wtab k2 2\?

= D~ > (a2+b2> w}, (12.75)
ki

Etant donné une charge p répartie, on peut calculer son énergie potentielle

a b
- / dx / pwdy
0 0

Cette énergie potentielle est une fonctionnelle linéaire du déplacement w, as-
sociant donc un nombre & chaque champ de déplacements particulier. Dans le
cas de charges concentrées sur une courbe ou sur un point, ’énergie potentielle
reste définie, mais son expression est différente : pour une charge ¢ répartie sur

une courbe C, on aura
P=- / quds
c



12.13. PLAQUE RECTANGULAIRE - SERIE DOUBLE 423

et pour une charge P concentrée en un point B, il faudra écrire
P = —Pw(B)
Quoi qu'il en soit, la linéarité (et la continuité) de la fonctionnelle permet d’écrire

. kmx X
P(w) =P (Z Wiy SIn % sin 7;y> = — %PMU}M

ke

ce qui fait apparaitre la composante (k, £) de la charge, définie par

Py =P <sin fmz sin T) (12.76)
a

Ce point de vue, bien qu’un peu abstrait, permet de traiter avec la méme aisance
tous les problémes menant & une énergie finie, ce qui constitue le cadre naturel
du probléme. En particulier, les charges concentrées se traitent aussi simplement
que les autres. La solution résulte en effet de la minimisation de I’énergie totale

1 _7tab K22\’
Y Y

par rapport aux inconnues wy;, ce qui fournit, par simple dérivation, la solution

4 P

Comab fp2 0 g2\ 2
(5 7)

Il suffit alors de recombiner ces valeurs pour obtenir les déplacements et les

moments.
Traitons a titre d’exemple le cas d’une charge P concentrée au centre de la

plaque. On a, dans ce cas,
a b
= —P —_—, =
P(w) w (2, 2)

W (12.77)

Or,



424 CHAPITRE 12. FLEXION DES PLAQUES

et on sait qu’en général, sin g% = 0 si m est pair, si bien que seules inter-

viendront les valeurs impaires de k et . Nous tiendrons compte de ce fait en
écrivant

k=2m+1, £=2n+1, Wyn=weamnmt1,2n+1)

Notant encore que

on obtient
w (; g) =3 W (—1)™*" (12.78)
Par conséquent,
P, = (-1)™t"p
et

4P —1)mtn
Wn = (=1 . (12.79)

7T4D“”K2WHL1)2 <2n+1>2
_l’_
a b

Le déplacement au droit de la charge se calcule alors par (12.78).

La sommation des séries obtenues se fait d’ordinaire par voie numérique.
Pour effectuer une somme double de ce genre, il convient de progresser simul-
tanément en m et n, ce qui se fait de la maniére suivante : on progresse en fait
en incrémentant d’une unité le nombre r = (m +n). A r = 2 correspond m =
1, n = 1. Pour r = 3, il existe deux termes, (m =2, n=1) et (m=1, n=2).
Pour r = 4,les termessont (m =3, n=1); (m=2,n=2); (m=1,n=23)
et ainsi de suite, c’est-a-dire que ’on calcule en fait

co r—1

Z (I)mn = Z Z q)r—n,n

r=2n=1

Il convient de noter que la vitesse de convergence de la série est tributaire de
la régularité de la mise en charge. Pour une précision donnée, il faut sommer
plus de termes dans le cas d’une charge concentrée que dans le cas d’une charge
répartie.
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12.14 Flexion d’une plaque rectangulaire appuyée
sur deux bords opposés (théorie de Kirch-
hoff) : méthode des séries simples de Lévy

0
0

w.
o

FI1GURE 12.17 — Plaque appuyée a ses deux extrémités

Dans le cas d’une plaque rectangulaire appuyée sur deux bords opposeés (fig.
12.17), il est plus simple d’utiliser les séries simples de Lévy, de la forme

w(z,y) =Y An(y) sin — (12.80)

ou apparaissent des fonctions inconnues A, (y), en simple infinité. On obtient
aisément,

O%w n27r2A . nx
Xew = —a5 =2 —5 Apsin—o

02 a? a

9w A7 nmwx
Xy = _—— = — n Sl
yy ayz § : a

n

0%w T nwx

Xy = - — A}, cos
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et
n?n? L\ . nmx
My = D(Xaz +VXyy) = DZ aTAn —vA,” | sin —
. nim? . nux
My, = D(xyy+VXaz) = — Z A — e A, sin ——
My, = D1 —v)xsy)=-D(1-v) Z Al cos @

L’énergie de déformation se calcule alors par

b/2
/ / My Xoz + Myyny + 2MxyXxy)dy
b/2

ce qui donne

1 Da b/2 nirt 2 n’r? » ”2 n’n” 12
“:Z/_b/z [&An—”aw‘ln/‘n A2 )5 A”}dy

et, aprés réarrangement des termes,

1Daz/b/2

b/2

.  nim? 2 n2m?
(An -~ An> +2(1-v) e

(A2 4+ A,A,7) | dy

(12.81)
L’énergie potentielle des charges s’écrit, quant & elle,

P="P (Z A (y) sin m) ZP (12.82)

P, étant l’harmonique d’ordre n de l’énergie potentielle. La minimisation de
Pénergie potentielle totale (4 + P) méne & une simple infinité de problémes
variationnels & une dimension.

Illustrons cette méthode par un exemple. Il s’agit d’une plaque supportant
une charge uniformément répartie sur sa ligne médiane (fig. 12.18).

L’énergie potentielle vaut

b/2
P = —q/ 3" Aysin %dy (12.83)
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/ bord libre
Q
X
/ / y
bord libre 3

a’/2 a/le

FIGURE 12.18 — Plaque sous une charge uniformément répartie sur sa ligne
médiane

si bien que la variation des A,, méne aux conditions suivantes, o les harmoniques
sont découplés :

b/2 2,2 2,2
&/ |:<An”—n72TAn> <5An”—n72T 5An)
2 Jop a a

n?n?

+2(1 —v)

1 1
- (A;l(SA;l + 5 AnbAL" + 2A,;’5Anﬂ dy

Intégrant deux fois par parties de maniére & faire disparaitre les dérivées des
0A,, dans les intégrales, on obtient (aprés multiplication par 2/(Da))

2,_2 2 _2 1 b/2
Ay =T A ) A 200 — )T (A5 A, + ZALAL
a? a? 2 s
2,2 2, 2 b/2
A - A} 54, + (1 - ) A5 A,
n a2 n a2 n o2

b/2 2,2 4,4 2 b/2
n / (A;V —2n A+ "ZAH) §Andy— =L gin "8 §Andy = 0
—b/2 a a Da 2 J

ce qui permet de déduire I’équation d’Euler

nirt 2q

.onm
7‘4” = ng] S11 ? dans } - b/Q, b/2[ (1284)

n

2, 2
7r
5 A+

AV _ 9
a
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et les conditions aux limites suivantes (§A4,, et §A] sont libres aux extrémités
y==1b/2):

n?m?

(nullité de leffort tranchant de Kirchhoff) (12.85)

et

n?n?

A — V7An =0eny==+b/2 (nullité du moment normal)  (12.86)

La solution générale de I'équation différentielle (12.84) est

2¢a3 sin 2
Ap = (Bn + Coy)ch Y 4 (B, + Fyy)sh 7Y 4 209 50 5
a a

DnArd
La symétrie du probléme par rapport & y exige C,, = E, = 0. On a alors
successivement
nmw nmw 2¢ga® sin X
Ay = Bych ™4 pysn MY T8
a a Dnin
Al = (niBn+Fn) Shw+annyChw
a a a a
n2n? nmw nry  nlw? nwy
A = —Bn+2—F,)ch— + ——F,ysh—
a a a a a
3.3 2,2 3.3
A n°mw Bn+3n7r F, Shnwy+n7r Fnychmry
a3 a? a a3 a

Ces résultats permettent d’écrire les conditions aux limites. La condition (12.85)
donne

n3m3 nrb  n2n? nmb nwb | nwb
— 1—v)B,sh—+ —F, |(1 h——-(1-v)—ch—| =
a’ (1=v)Bys 2a+ a? {( tv)s 2a (1=v) % °© 2a} 0
ce qui équivaut a
a 1+v nnwd )
B,=—F, — — coth — 12.
nmw L -V 2a «© 2a } (12:87)
Quant & la condition relative au moment normal, elle s’écrit
n?m? nwb nt . nab  nla?b nmb
1-—v)—B,ch— + F,, |[2— ch — —(1—v)sh—
(1-v) a? ¢ 2a+ [ac 2a+a2 2( v)s 2a]
_ 2vqasin °F

Dn2n2
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soit, en éliminant B, a l’aide de (12.87),

MY sh

nmb nmb o 2vqa sin &*
3 h— — (1 - 2a —F, = ———2%
(B3+v)c 5a ( V)sh’gb] a DnZn?
ce qui donne
o nm 2vga’ sin o 1
" a Dn47r4 nmb 71277;1)
(3+V)Chﬁ —(1—l/>m
sh 52
et
2uqa® sin & v 1+v nwd nmb nmy
A, =" "2 11 — — coth — ) ch —=
Dnirt { +Nn {(1—1/ 20 " 2q )N *
avec
nmb
b i
Ny =B+v)ch 22 —(1-v)—2a_
a nmb
sh —
2a

429

nmy

a

)

Il s’agit d’une série & convergence assez rapide (terme général O(1/n*)). En
premiére approximation, on peut ne conserver que le premier terme, car le second
est nul, et pour le troisiéme, la valeur de n* est 81. On obtient ainsi

D N |[\1—-v 2a

2qa’® 1 b b
w R il {1—1— Y {( +V—7Tcoth7r>ch7ry+7ryshﬂy]}sin
2a a a a

T™r

(fz.ss)

Le premier terme de ’accolade représente la flexion cylindrique. Le second, di
A Deffet de Poisson, s’appelle déformation anticlastique. Lorsque la plaque est
large (a petit devant b), cette déformation reste confinée aux bords de la plaque,
avec une profondeur de pénétration de l'ordre de a/w. Lorsque, au contraire, la
plaque est étroite, on s’attend & retrouver des résultats comparables & ceux

d’une poutre. Pour b < a, on a en effet

N = 34+v—-—(1-v)=2(1+v)

—coth— =~ 1
2a 2a
b w2y?
h— =~ 1
¢ 2a + 2a2
2,2
o™ oL Y
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d’ou

2qa’ v [ 2v w2y? w2y? T
~ 1 1 in —
v D7r4{ +2(1+1/) _11/( Toe )t e —
2qa® 1 w2y? . T
D7r4{1u2 [1+V2a2 —
2Pa? [ w22 | 7z
+

— 3 v
T Eb L 202 |

Q

Q

ol P est la charge totale gb. Notant que g, = Z—;Al sin %%, on obtient

2Pa® | 7z n y?
W R~ SN —— + UXap =
e e Xy

ce qui correspond bien 4 la structure en y du déplacement que donne la théorie
des poutres . La solution des poutres aurait donné une fleche au centre égale &
Pa4/(48Eb%). Nous obtenons ici 74/2 = 48,70 au lieu de 48, mais ceci est di
a la troncature du développement.

12.15 Flexion des plaques circulaires

Les plaques circulaires s’étudient naturellement en coordonnées cylindriques
(r,0,2). Les courbures s’obtiennent aisément en remarquant qu’elles sont aux
rotations comme les déformations sont aux déplacements : partant des rotations
©r €t g, on obtient

9,
-k
o e ) e
1. Dans le cas dune poutre, oyy = 0, donc £y = —vene, 501t o = —xyy = VXon-

oy?
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Les glissements sont les sommes des rotations et des composantes du gradient
du déplacement :

_ o,y
Yrz Or 87"
1 0w
. = - 12.
Yo 0o + 20 (12.90)
S
of
R Ry

FIGURE 12.19 — Secteur de plaque
Pour obtenir les équations d’équilibre & l'intérieur et sur le contour, le plus

simple est de considérer 1’équilibre d’un secteur de plaque d’angle « et de rayon
allant de Ry & Ry (fig. 12.19), a l'aide du principe des travaux virtuels

dpr 10ps | r 1 0pyr 9 (o
// { ( >+M5< ae+r>+M”’5{ o0 o ()

ow 10w
+Q,0 ((pr + 8) + Qg6 ((,09 + 60) — péw} rdrdf = 0

A la variation de ¢, correspondent I’équation

0 OM,
——(rM My — = 12.91
8r(r ) + My 20 +7rQ,=0 dans S (12.91)
et les conditions aux limites
rM,6p, = 0 enr=R;etr=Ry
Mo, = 0 enf=0etf=a

La variation de g donne ’équation

10

3 ( 2MT9) + 4 — My =rQp dans S (12.92)

00



432 CHAPITRE 12. FLEXION DES PLAQUES

et les conditions aux limites

rM,gdpg = 0 en R=Ryetr=Ry
Modpg = 0 enf=0etfl=a
Enfin, en variant w, on obtient
0] 0Q0 B
E(TQT) + 5 TPr= 0 dans S (12.93)

et, aux limites,

rQ0w = 0 enr=R;etr=Ry
Qobw = 0 enf=0etf=a

Dans le cadre de 'hypothése de Kirchhoff, il convient d’introduire aux fron-
tiéres les efforts tranchants de Kirchhoff et les charges de coin. Pour les obtenir,
notons que sur les bords r = cte, le travail virtuel de bord

/ (rM,. 8¢, + rM,gdpg + rQ,ow)dl
0

se transforme, en tenant compte des conditions de Kirchhoff

ow 190¢

=_—— =22 12.94
Pr or’ ®o r 00 ( 9 )
en
@ ow ow
— M. 0— — M,p0—
/o (r -0 o 00 20 +rQT5w) df
a « ow @ 1 8MT9
= [M, — M,.6— -
[Medw];, /0 r réardé’—l—/o r <Qr+ T >6wd9
ce qui donne 'effort tranchant de Kirchhoff
10M,¢
K, =Q, + - 12.
r=Qr+ T (12.95)
Sur les bords 6 = cte, on obtient de méme
OM,.¢
Ky = 12.
0=Qo+ o (12.96)

Quant aux charges de coin, elles gardent leur signification classique AM,;.
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12.16 Déformations axisymétriques

Un probléme est dit azisymétrique si sa géométrie, ses charges et ses fixations
sont indépendantes de 6. La symétrie impose alors que les lignes verticales avant
déformation restent dans le méme plan méridien, c’est-a-dire que @y soit nul. De
plus, toute dérivée par rapport & 6 doit s’annuler. On obtient ainsi les conditions

Mre = 07 Xro = 0, Y0z = 0, Qe =0 (12.97)
Les problémes axisymétriques peuvent se traiter soit par la méthode énergétique,
soit par résolution directe des équations d’équilibre. Examinons & titre d’exemple

le cas d’une charge concentrée au centre de la plaque. Comme le montre la figure

P

e
FIGURE 12.20 — Equilibre sous une charge concentrée

12.20, ’équilibre des efforts tranchants implique, en un rayon r quelconque,

P = -27rQ,
soit p
= —— 12.98
Q 2rr ( )

L’effort tranchant admet donc au centre une singularité en 1/r. L’équilibre des
moments s’écrit alors

d P
M) — My =7rQ, = —— 12.
dr (rMy) 0 =rQ 27 (12.99)
Dans le cadre des hypothéses de Kirchhoff, les courbures valent
doy d*w O 1 dw
rr — = T 19> = =TT TZO
X dr a2’ X0 T rdr X

d’ou

dPw  vdw 1 dw 2w
M,—-p (L2 Y2y, — _p (220 2Y 12.1
<dr2+rdr> 0 (rerrVer) ( 00)
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ce qui meéne a I’équation

d dPw 1 dw P
S (e e o 12.101
dr (r d7’2> + r dr 27D ( 01)

Il est commode de poser g = %f, ce qui raméne ’équation ci-dessus a

A () q_ P
dr \ dr r 2rD

Cherchons d’abord des solutions de 1’équation homogéne sous la forme

q=r"

Il vient
(1-)r"t=0

soit £ = +1, ce qui permet d’écrire la solution générale sous la forme
B
qn = Ar + —
r

Une solution particuliére de I’équation compléte peut étre cherchée sous la forme

ap =1f(r)

ce qui donne
f+37,f/+7,2fn7f: P
2D

Essayant une solution de la forme f’ = C/r, on obtient la condition

P
20 = —
¢ 2w D

soit P
C=—

47D

Il vient ainsi
fir)y= —P Inr
~ 4xD

et




12.16. DEFORMATIONS AXISYMETRIQUES 435

Finalement, la solution générale de I’équation compléte est

B
q=qp+qn= rlnr—ﬁ—Ar—i—?

47D

On en déduit par intégration

P r? r2 r? .

Au centre de la plaque, on doit avoir dw/dr = ¢ = 0, ce qui implique B = 0.
Supposant la plaque appuyée sur son contour, on aura w(R) = 0, ce qui donne

2 2 2
C*:_i (RlnR_R> _A]i

47D \ 2 4 2
et

P r? R? r?2 — R? r?2 — R?

= —(—=Inr——1 — A

v 47TD<2 nr- 5k 1 >+ 2

P 2 r r2-R? r? — R? 72 — R?
P r21 T+R2—7“2 +FT2—R2

= —_— — 1N —
47D\ 2 R 4 2

et

_ dp, ery P T
MT_D<dT+uT>_ E{(l—ku)lnﬁ—i—l} DF(1 +v)

La nullité de ce moment & ’appui donne donc

B P
~ 4nD(1+v)
d’ot I’expression finale du déplacement :
3+v

2lniJr

_ 2 _ 2
w=o 5 |ring 20 +0) (R* —r?) (12.103)
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On notera que la fleche au centre est finie et vaut

3+v PR?
v =17 16D (12.104)
On peut en déduire la rotation
dw P or 1yt 1-—v
= ——- = —= n———m—m—m—m——
4 dar 8D | "R 20 +v)
ainsi que les courbures
P 3+ 5v r
rr — 5 |51 N 2In —
X 87D [2(1+1/) + HR]
S I L T
Xeo = D [ 21+ R
et les moments
P [3+v r
M, = — 2(1 In —
8t [ +21+y) nR}
P |5v—1 r
My = 3r { +2(14+v)In R} (12.105)

On constate donc que les moments présentent une singularité logarithmique,
mais que le déplacement est fini. La raison en est que

12
Pw(0) =2(U) = ﬁ(MT2 + MZ — 2uM, My)dS
S

et que la singularité logarithmique est de carré intégrable :

R N
27r/ r(ln—) dr < oo
0 R

donc w(0) < oco. Ceci est propre a la théorie de Kirchhoff. Au contraire, si I’'on
tient compte de la déformation due & ’effort tranchant, il apparait dans I’énergie
le terme supplémentaire

2 R 2
@ ds = 2m / L rdr = 00
g 2nGt 2nGt Jo \27r
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ce qui signifie que la fléche est infinie. Calculons la différence wg entre ces deux
solutions. Elle est, comme on a vu, de la forme

U}S:’U}*—f—w**

ou w* vérifie
__pb
nGt

tandis que w**, biharmonique, est une correction éventuelle permettant de tenir
compte des conditions aux limites. La solution compléte w = wx + wg devra,
sur le contour de rayon R, vérifier les conditions aux limites suivantes :

Viw* =

1. w(R) = 0. Comme c’est déja le cas de wg, il faudra que
’ws(R) =0
2. M,(R) = 0. Pour vérifier cette condition, il faut d’abord établir I'expres-

sion du moment. On a

dw | Q dw P

Yr=" dr + nGt  dr 27mrnGt

ce qui entraine

der d*w P

Xro = dr — dr? ' 2anGtr2
e ldw P

Xoo = r rdr 2mnGtr?

dPw  vdw DP
M, = D(x» =-D|—+-—— 1—p)——
(er +vx0) {er + r dr} +( V) 2mnGtr?
En r = R, la grandeur entre crochets s’annule pour wg, si bien qu’il reste
la condition

(12.106)

d>w v dw 1—-v)DP
D s + 2 S _ ( )
dr? r dr 2 R2nGt
Commencons par calculer w*. On notera que si p était une charge répartie,
on aurait, sur tout disque de rayon r,

*

P 9 dw
— S = V =2
/ST nthS /ST w*dS r o
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11 suffit, dans notre cas, de remplacer p par la mesure de Dirac P§, ce qui entraine
la relation

_P e
nGt dr
soit
dw* P 1
dr — 2mnGtr

Cette équation admet la solution

P r

- 1
2mnGt " R

en tenant compte de la condition de nullité de w* sur le bord. Calculons la
contribution de ce w* au premier membre de (12.106). On a

w* =

(12.107)

d*>w* P 1dw P

dr2  2nr2nGt’  rdr | 2nr2nGt

D dPw*  vdw*] (1-v)DP
drz v dr | 2mr2nGt
On constate donc que la condition (12.106) est vérifiée sans qu'’il soit nécessaire

de faire appel & une fonction correctrice w**.
Le déplacement total est donc donné par

w = wg+wsg=wg+w"
P 9, T 3+v 9 9 P r
o+ 2TY (g2 2| - In —
87D [T Tl ”] oGt R

PR? r? A2 r 3+v r2
= (= -S ) metr -7 (1=
8D |\ R? R? R 2(1+v) R?

2 2
fr— %t

nl—-v
Voisi .. .
Au voisinage de l'origine, on peut écrire

avec

8mD 3+v A

~ —

71'R2w~2(1+1/) ﬁlnﬁ

et le second terme égale le premier pour

T 3+v R?
In - =

R~ 2(1+uv) A2
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soit

r 3+v R?

RSP <_2(1 ) )\2)
ou encore

r R 3+v R?

3TN (‘2<1+m2
Posant

v 3+v T ¥ _ 3+v E

\/2(1+u>\’ \/2(1—&-z/>\

on obtient
T = XFfX2

Le maximum du second membre a lieu pour

0= % (Xe_X2> =(1-2x%)e X

soit pour X = 1/4/2. 1l vaut 0,4289. Ainsi, le rayon r( ot la correction due 2
Peffort tranchant égale la solution de Kirchhoff vérifie

201
ro §0,4289\/M ~ 0,4
A 3+v

c’est-a-dire que les différences par rapport & la solution de Kirchhoff ne sont
significatives qu’a une distance de la charge de ’ordre de grandeur de 1’épaisseur
de la plaque.

12.17 Exercices

Exercice 46 Etudier une plaque circulaire soumise a une charge uniformément
répartie, et simplement appuyée sur son contour (théorie de Kirchhoff).

Exercice 47 Méme probléme dans le cas d’un contour encastré.

Exercice 48 Etudier, dans le cadre de la théorie de Kirchhoff, le cas d’une
plaque circulaire encastrée a son contour et soumise a une charge concentrée.
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Chapitre 13

Théorémes énergétiques
extérieurs

13.1 Préambule

Les théorémes énergétiques extérieurs sont ici considérés comme des appli-
cations particuliéres des principes variationnels. Les énoncés ainsi obtenus sont
trés généraux et trés précis, excluant en particulier les nombreuses équivoques
qui peuvent naitre d’une approche par trop simplifiée.

13.2 Théoréme de Castigliano

Nous considérerons dans ce qui suit des variations de contraintes gouver-
nées par un ensemble discret de paramétres g, que nous appellerons charges
généralisées. Ces variations auront donc la forme

Soij = 070, (13.1)

Nous ne ferons aucune hypothése a priori sur ’admissibilité statique des modes
de contrainte o;;. Nous utiliserons la fonctionnelle de Hellinger-Reissner

1 . _
/ |:O'ij(Diu7‘ + D]‘ui) — ‘P(U) — fiuz} dV — / tiu;dS — ti(ui — ﬁ,)dS
1% 2 ’ Sz 5

441
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Les variations de contraintes considérées conduisent & une variation du premier
terme que 'on peut mettre sous la forme

Z(SgT/ 132 (Diju; + Dju;)dV = Z(Sgrqr (13.2)

ou apparaissent les déplacements généralisés q, conjugués aux charges g, , donnés
par

%:/‘”%D%+Dumw (13.3)

Cette définition, qui peut paraitre quelque peu artificielle, se simplifie par une
intégration par parties : on a en effet

qT:/njafjuide/ ’U,iDjO'iTjdV
S 14

et, en faisant apparaitre les charges liées au champ de contrainte o7,

=  mnjo ” sur S
{ fi = —Djoj; dansV (13.4)
on obtient
s v

c’est-a-dire que g, s’identifie au travail d’une variation dg, = 1.
Appliquant & présent une variation de contrainte de la forme (13.1) dans le
principe de Hellinger-Reissner, on obtient les équations ce compatibilité globales

0P
o = / or dV (13.6)
v 80’1']' J
qui constituent le théoréme de Castigliano. On écrit souvent [59, 12, 26, 68, 67|

les relations (13.6) sous la forme condensée mais beaucoup moins précise

_ov
qr = g,

(13.7)

ot ¥ est ’énergie complémentaire. Le théoréme de Castigliano est largement ap-
pliqué pour le calcul des déplacements généralisés, comme nous allons l’illustrer
sur un certain nombre d’exemples simples relatifs aux poutres.
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=1

=T ] MP\ Trﬂ

F1GURE 13.1 — Calcul du déplacement du point A.

13.2.1 Déplacement d’un point d’une poutre

Soit (fig. 13.1) une poutre arbitrairement chargée, dont on désire connaitre
le déplacement g4 en un point. Connaissant le diagramme des moments M que
subit la poutre, il suffit de déterminer en outre le diagramme des moments M 4
correspondant & une charge g4 = 1 au point A. Alors, comme

4 2
M
U= [ 4
/0 281"
on aura

£
M
= —Mad

13.2.2 Meéme probléme pour une poutre hyperstatique

Lorsque la poutre est hyperstatique, il existe plusieurs variations du moment
M 4 capables d’équilibrer la charge unitaire en A et dont les déplacements géné-
ralisés se limitent & g4 du fait des fixations. Dans la figure 13.2, M4, est obtenu
en posant que le moment est nul sur 'appui central. Le déplacement généralisé
correspondant & cet état est

c b
+c QDb+c

QA—QCb =4qa
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T

V7

Az

T

FIGURE 13.2 — Dans le cas d’une poutre hyperstatiques, plusieurs diagrammes
de moments M, sont possibles.

De méme, le déplacement généralisé correspondant & M4, est

c a+b B
a+b+c 4 A

44— 45 Datbte

Enfin, le déplacement généralisé correspondant & M4, est de la forme
qa —aqB — Bgc — V4D = qa

On a donc

M M M
= [t Made = | 6= Mayde | 6 Ma,d
qA/OEI Alx/OEI Azx/oEI A 4T
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Cette observation permet, dans bien des cas, d’obtenir de notables simplifica-
tions. Dans le cas présent, les deux premiers champs de moments sont nettement
plus simples que le troisiéme.

13.2.3 Déplacements pondérés
m
[

g=!

Wil

FIGURE 13.3 — Déplacement pondéré.

Soit (fig. 13.3) une poutre soumise & une sollicitation quelconque. En consi-
dérant une charge répartie entre deux points a et b de la poutre, on obtiendra

le déplacement généralisé
b
q= / v(x)dx

14

M
= —Mid
q OEIIx

dont la valeur sera

ou M; est un champ de moments équilibrant la charge répartie considérée. On
peut obtenir de la sorte de nombreuses espéces de déplacements pondérés.

13.2.4 Rapprochement de deux points A et B.

Supposons que ’on veuille connaitre le rapprochement de deux points A et
B du portique représenté en figure 13.4. Ce déplacement gap est conjugué au
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| /
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Fi1GURE 13.4 — Rapprochement de deux points A et B de la structure

couple de charges §g; représentées dans la méme figure et

ov

gAB = 75—
on

Ici encore, on peut, pour le calcul des O’Z»lj, rendre au préalable le systéme iso-
statique, par exemple en remplacant ’articulation en D par un appui simple.

13.2.5 Formules de Navier-Bresse [12, 60, 67]

Considérons une poutre a faible courbure, soumise & une sollicitation plane.
L’énergie complémentaire de déformation s’écrit

v e + T2 + M d
= s
o \2EQ  2GQ*  2FEI
ot ds est ’élément d’abscisse curviligne le long de la fibre moyenne, €, la section,
Q* la section réduite de cisaillement et I, 'inertie. Dans tout ceci, nous ferons
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b
%/

NMT

FI1GURE 13.5 — Conventions relatives aux signes des efforts et moments.

les conventions de signe indiquées en figure 13.5. Les déplacements wug, v, wq
sont imposés & l'origine et on désire connaitre les déplacements en A. Pour les
déterminer, on considére les états de contrainte correspondants a §F ,, 0F,, et
OMy.

Etat da a §g; = 6F,,

La figure 13.6 montre que

(SFQCO = (Sgl
JFyO =0
oMy = —ydg:

Le déplacement conjugué est donc donné par
0T = —0F,up — 0Fy v9 — dMowo + 0F, ,ua = 691 (tq — uo + ywo)

c’est-a-dire

q1 = ua — ug + Ywo
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9
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FIGURE 13.6 — Etat dt a §g; = 0F,,.

Par ailleurs, le champ de contrainte est facile & calculer :

ON = dgicosb
0T = —dgisinf
M = —d0g1(y —n)
ce qui donne la premiére formule de Navier-Bresse
¢ £ ¢
B N cost T'sin 6 M(y —n)
ua =0 eyt g A ) st‘/o T B

Etat dt & dgo = 0F),
On voit sur la figure 13.7 que
6Fw0 = O, 5Fy0 = (Sgg, 5M0 = 56592

d’ou

0T = —0F,,ug — 0Fyyvg — dMowo + 0Fy,va = 0g2(va — vo — 2wp)

ds

(13.8)
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FIGURE 13.7 — Etat di & §go = 6F,,.

soit
g2 = VA — Vo — TWo

Le champ de contrainte correspondant sera

ON = dgosinf
6T = {dgocosb
oM = (z—¢)dge

ce qui donne la deuxiéme formule de Navier-Bresse

AT o ¢ ¢
Nsin6 T cosd Mz —¢§)
- i T - | TS (18,
VA= Vot wor | Teg H/O aor /0 gr s (139)

Etat da a 6g3 = 0M 4
On voit sur la figure 13.8 que

§F,, =0, 6F, =0, 0My=0M4



450 CHAPITRE 13. THEOREMES ENERGETIQUES EXTERIEURS

8N 5T

FIGURE 13.8 — Etat di & 6M 4

d’ou
g3 = wWa — Wo

D’autre part, le champ de contrainte correspondant est
oM =6My, 6N=0, T'=0

ce qui meéne & la troisiéme formule de Navier-Bresse

14

M
= —d 13.1
wa = wp + Bl s (13.10)

Ces formules sont souvent utilisées pour le calcul des déformations des poutres.
Lorsque celles-ci sont suffisamment élancées, si F' est I’ordre de grandeur des ef-
forts N et T, M est de 'ordre de F'¢; on a par ailleurs, si p est le rayon de
giration de la section de la poutre,

Q=0(?), Q= 0(p?), I=0(p")

o) Eo) il

p?
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ce qui montre que les déformations dues au moment sont prépondérantes. On
obtient alors, en faisant formellement tendre 2 et Q* vers l'infini dans les for-
mules précédentes, les expressions simplifiées dites de Navier :

¢
M(y —mn)
uo—woy—|—/ ——=ds
o EI
¢
Mz —1)
v v0+w0x+/ ——2ds
o EI
¢

—ds
o EI

S
Q

(13.11)

&
Q

wo +

13.3 Systémes hyperstatiques - Théoréme de Me-
nabrea

On appelle état d’autocontrainte un état de contrainte auquel correspond un
déplacement généralisé confiné a la partie S; de la surface ot sont établies les
fixations. Dans le cas fréquent ou les déplacements imposés sont nuls (absence
de tassement d’appuis), le déplacement généralisé est d’ailleurs nul pour la so-
lution cherchée. Ainsi, pour une poutre sur trois appuis, le champ de moment

ab
A 7 W.C
A R B A
/
’ o
b
97 9T

FIGURE 13.9 — Etat d’autocontrainte de la poutre sur trois appuis.

représenté en figure 13.9 est un état d’autocontrainte, puisqu’il correspond au
systéme de charges composé d’une charge g vers le bas en B, d’une charge gb/¢
en A et d’une charge ga/l¢ en C, ces derniéres vers le haut. Le déplacement
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généralisé correspondant, donné par

b a
q= ZUA—UB-FZUC
est en effet un pur déplacement d’appuis.

L’existence d’états d’autocontrainte est caractéristique de I’hyperstaticité du
systéme. Il est intéressant de noter qu’il est possible de les interpréter en termes
de coupures. Ainsi, I’état considéré ci-dessus est le diagramme des moments de
la poutre dont on aurait coupé ’appui central, celui-ci étant remplacé par sa
réaction. Par cette coupure, on a défini un systéme isostatique de référence Sy
— ici, la poutre sur deux appuis d’extrémité. C’est ainsi que ’on aurait pu, par
exemple, mettre une rotule en un point D de la travée BC, comme l'illustre
la figure 13.10. L’état d’autocontrainte correspondant ett alors correspondu &

A B c A B LD ¢
& K A — £ Y A
systéme réel un nouveau S,

FIGURE 13.10 — Un autre systéme isostatique de référence.

un couple de moments appliqué a la rotule, voir figure 13.11. C’est exactement

MD
Mo 7
UadY | | | I
i a 8 A B D ¢

FIGURE 13.11 — Le nouveau systéme isostatique de référence conduit au méme
état d’autocontrainte.

le méme état d’autocontrainte que ci-dessus, & un facteur éventuel prés. Nous
laissons au lecteur le soin de vérifier que 1’on retrouverait un état de contrainte
identique en coupant ’appui A ou 'appui C ou encore, en faisant une quel-
conque coupure des moments : le systéme considéré n’admet qu’un seul état
d’autocontrainte indépendant.

Considérons & présent une poutre continue sur quatre appuis A, B, C, D (fig.
13.12). Une maniére de le rendre isostatique consiste a supprimer les deux appuis
C et D. En appliquant une charge unitaire en C' et en D, on obtient deux
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, S

premyer &tat
dautocontrainte (1)

| second état
_ld’auz‘ocom‘/'a/hfe (2

FiGURE 13.12 — Poutre sur quatre appuis. Une premére facon de la rendre

isostatique.

états d’autocontrainte indépendants. Un autre systéme isostatique s’obtient en
plagant des rotules au droit des appuis B et C, comme l'illustre la figure 13.13.

4 B ¢ p
b 8 A .\
MB
AW rEL
o )

FiGURE 13.13 — Poutre sur quatre appuis. Un autre systéme isostatique de

référence.

En appliquant de couples de moments & ces deux rotules, on obtient appa-
remment deux autres états d’autocontrainte. Mais ces deux nouveaux états sont
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des combinaisons des précédents, comme le montre clairement la figure 13.14. 11

3 41

FIGURE 13.14 — L’état d’autocontrainte 2 est une combinaison des états 3 et 4.

n’y a, en fait, que deuz états d’autocontrainte indépendants pour ce systéme.

Ces exemple montrent le bien-fondé de la définition suivante : on appelle de-
gré d’hyperstaticité h d’un systéme élastique le nombre d’états d’autocontrainte
linéairement indépendants de ce systéeme. Cette définition, tout-a-fait générale,
inclut aussi bien ’hyperstaticité intérieure que ’hyperstaticité extérieure. Ainsi,
le cadre de la figure 13.15 est trois fois intérieurement hyperstatique (il s’agit
d’hyperstaticité cinématique : le corps est doublement connexe).

Un systéme isostatique de référence s’obtient en placant des rotules en B, C
et D et on en déduit aisément les trois modes d’autocontrainte représentés. La
caractéristique de modes d’autocontrainte purement intérieurs comme ceux-ci
est que les déplacements généralisés correspondants sont toujours nuls.

La notion de mode d’autocontrainte sert de fondement & une méthode de
résolution des systémes hyperstatiques que ’on appelle méthode des forces. Son
principe est le suivant. Les équations d’équilibre, sous les charges de volume et
les tractions de surface sur S5, admettent la solution générale

h
iy = o+ > 6t (13.12)
k=1

ol a?j représente une solution particuliére des équations d’équilibre sous les
charges données, tandis que les &fj sont les états d’autocontrainte, gouvernés
par les charges généralisées g ! que I'on appelle, en la circonstance, inconnues
hyperstatiques. La solution particuliére s’obtient dans un systéme isostatique de
référence quelconque, éventuellement méme différent du systéme ayant présidé
a la détermination des états d’autocontrainte. Il est clair que les coupures ayant
mené & la solution particuliére ont rompu la compatibilité, mais celle-ci pourra
étre rétablie en faisant usage du principe de Hellinger-Reissner, ot la variation

des contraintes a précisément pour objet de ’obtenir. Le champ U% étant choisi

1. Les accents circonflexes sont destinés a marquer qu’il s’agit d’états d’autocontrainte.
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Fi1GURE 13.15 — Cadre.

une fois pour toutes, on aura
h
Soij = 6500 (13.13)
k=1

Par définition, les déplacements généralisés conjugués aux états d’autocontrainte
sont toujours imposés — le plus souvent nuls, d’ailleurs. Nous les noterons donc
Gk, conformément & nos conventions générales. L’application particuliére du
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principe de Hellinger-Reissner a ce probléme méne & la condition
h h
. 0d . e
> i [ el = S ansi
k=1 v 90ij k=1

qui entraine, vu arbitraire des dgi, les équations

99

AV = G (13.14)

v 00ij
constituant le théoréme de Menabrea sous sa forme la plus générale. Le méme
résultat aurait d’ailleurs pu étre déduit du principe du minimum de l’énergie
complémentaire totale, car les variations de contrainte considérées sont stati-
quement admissibles.

13.4 Exemples d’application des deux théorémes
précédents

13.4.1 Arc a deux articulations

A titre d’illustration, proposons-nous de calculer le déplacement de la clef
d’un arc & deux articulations soumis & une charge verticale appliquée sur ladite
clef (fig. 13.16). On commence par chercher une solution particuliére, qui s’ob-
tient le plus simplement en placant une rotule sous la charge. Il est aisé de se
rendre compte que cette solution sera

P
T 2cosa

M Yy

y étant représenté sur la figure. Quant & l'état d’autocontrainte, on I’obtient
aisément en remplacant ’appui C' par un appui a rouleaux. Nous noterons M
le champ de moment correspondant. Le déplacement conjugué est

d=uc —uzg
nul dans la solution. Cette derniére est de la forme
M = My + gM
g étant déterminé par la condition
MM p ¢ MM [t a2

—ds = ds+g | —=ds=0
o EI o FEI o EI
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]

g:l

FIGURE 13.16 — Arc & deux articulations.

soit

£ Mo M
fo B ds
£ N2
o ETY

g=-

L’état de contrainte étant déterminé, on calcule le déplacement par le théo-
réme de Castigliano. A cet effet, il suffit de connaitre une distribution de moment
équilibrant une charge unitaire a la clef. Une telle distribution est donnée par

ls) = 5



458 CHAPITRE 13. THEOREMES ENERGETIQUES EXTERIEURS

Par le théoréme de Castigliano, on a donc

¢ ¢

M MM

w = st:l 0
oy EI PJ, EI

ds

13.4.2 Coupures généralisées

Pour illustrer le fait que la notion de coupure peut étre parfois inattendue,
considérons le systéme & trois barres de la figure 13.17, soumis & une chrge P.
Les équations d’équilibre des trois barres s’écrivent

FIGURE 13.17 — Systéme & trois barres.

Njcosbt; + Nocosly + N3cosfs +P = 0
{ lein01—|—Ngsin92+Ngsin93 0
Pour obtenir des solutions particuliéres & ces équations, on peut poser N; = 0,
Ny = 0 ou encore N3 = (, ce qui revient a couper la barre correspondante.
Mais on peut aussi bien écrire par exemple N; = kNs, avec k quelconque.
C’est ce que 'on appelle une coupure généralisée, pour la simple raison que
sa réalisation technique ne saute pas aux yeux. Elle est cependant possible &
l’aide d’un systéme hydraulique composé de deux vérins dont les pistons ont
des surfaces kS pour la barre 1 et S pour la barre 2 (fig. 13.18). Une connexion
hydraulique garantit 1’égalité des pressions, d’ou

Ny =kSp, N> =_S5p
ce qui implique N1 = kN>. Dans ces conditions, la solution particuliére vérifie

Ny, (kcosby + cosbs) + N3, cosls = —P
N, (ksinfy +sinfy) + N3, sinf; = 0
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kS

FI1GURE 13.18 — Coupure généralisée obtenue a l’aide de vérins.

ce qui donne successivement

B Ngo(k' sin #; + sin 92)

N =
3 sin 03

0

et
Ny, [k cos By + cosy — (ksinfy + sinbs) cotg 03] = —P

ce qui permet de calculer Ny,, N3, et enfin N;,. Bien entendu, cette solution
particuliére n’est pas la plus simple. Aussi allons-nous en chercher une qui, elle,
I’est particuliérement. Elle consiste & imposer la condition

cos 05
Ny, = —Ngy——=
cos 01
ce qui donne directement
P
N3, = —
cos 03

et
Ngo(sin92 — tg 91 COS 92) = —Ngo sin 93 = Ptg 93

Quant & I’état d’autocontrainte, il doit vérifier la double condition

Nl cos 6y + ]\72 cos By + Ng cos 03 0
Nysinf; + Nosinfls + N3sinfls = 0

On peut poser, par exemple, Ny = 1, ce qui donne

]\71 cos 1 + Ng cos 05 —cos b3
N1 sin91 +N2 sin92 = —sin93
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Il est aisé de voir que la solution est unique : le systéme est une fois hypersta-
tique. La solution a donc la forme

Ny = Ny, +gNy, Ny = Na, + Ny, N3 = N3, + N3
avec la condition

/El (N1, JrgNl)Nl /ZZ (N3, Jrlez)Nz /ZS (N3, + ?]NS)N3
0 0 0

=0
By By E5Q)3
soit
/fl NlONldx_’_/éz NQONde_’_/ZS NSONSdm
§= o Ei o E2Q o 383
- lq NZ Lo NQ L3 N?
i 3 3
dr + dr + dx
o Eifh o 2l o E3Q3

13.5 Théoréme de Clapeyron extérieur

Na

9,
4
F1GURE 13.19 — Théoréme de Clapeyron extérieur.

Proposons-nous de calculer 1’énergie complémentaire en termes des charges
et déplacements généralisés (fig. 13.19). Les forces appliquées, gouvernées par

des charges généralisées d’intensité g1,..., gn, peuvent étre équilibrées par des
champs ce contrainte particuliers crz-lj, O (non nécessairement compatibles),
auxquels il convient d’ajouter une combinaison des h états d’autocontrainte
~1 ~h .

Gijs---»07;. On a donc en général

n h
o= ohgk+ Y 000 (13.15)
k=1 =1
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Lorsque le matériau a des propriétés homogénes de degré 1, on a

1 09

P(o
(o) = 2 80”
d’ot, par intégration,

1 0P
V(o) = = | z=—0dV
v 00y; J

- 72%/70— AV + - Zgz a@ 65V
Oij

soit, en faisant appel aux théorémes de Castigliano et de Menabrea,

n h
1 1
= — qQr + — Geq 13.16
(o) 2};%%4-2;94@4 ( )

C’est le théoréme de Clapeyron extérieur.

13.6 Théoréme de réciprocité de Betti

Considérons (fig. 13.20) un corps élastique soumis a deux systémes de charges

différents, caractérisés par les charges généralisées gﬁl) pour le premier et gg)

pour le second. Chacun peut en outre avoir des déplacements imposés, cjél) pour

le premier et qf) pour le second. Calculons la valeur du travail croisé

ng qk)+ZA(1 (2)

On a

(2) (2)
k(l) (1)
z () dv+z () stay
k=
(2)
@
aO'ij J

Ti2

op 1)0'(2)dV

ZJP‘I
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g2(4)

)

F1GURE 13.20 — Théoréme de réciprocité de Betti.
en supposant le corps linéairement élastique. On obtiendrait de la méme fagon

¢! N 2 (2
21 = Zg q;, (1) + Z (2) / C’ijqa )aé}z)dV
k=1

Vu la symétrie des relations de Hooke, on en déduit 712 = 721, soit explicitement

ZQ(I)QkQ) + Zg(l ng qkl) + ZQ(Q qe (13.17)

C’est le théoréme de réciprocité de Betti. On ’énonce souvent en supposant les
déplacements imposés nuls, ce qui donne

Z g,C Z ng) (1) (13.18)
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13.7 Théoréme de réciprocité de Maxwell

F1GURE 13.21 — Théoréme de réciprocité de Maxwell.

Considérons (fig. 13.21) le cas de deux charges généralisées g1 et g2, sans
tassement d’appui, et supposons que

FONEESInC 0
A = 0 g -

On a alors, par le théoréme de Betti,

)
)
|

qél) _ qf)

C’est le théoreme de réciprocité de Mazwell : le déplacement généralisé gz sous
la charge g1 = 1 est égal au déplacement généralisé q1 sous la charge go = 1.
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Chapitre 14

Diagrammes d’influence

14.1 Notion de diagramme d’influence

Dans un certain nombre d’applications pratiques, on s’intéresse & un effet
particulier : déplacement généralisé, force généralisée, pour un grand nombre de
cas de charge. L’exemple le plus typique est celui du pont ot en défilant, un
train prend toutes les positions possibles sur le tablier, chacune correspondant
a une sollicitation particuliére. Le diagramme d’influence est précisément la
représentation de la grandeur de ’effet considéré pour une charge unitaire placée
en un point quelconque. Dans le cas d’une charge composée, il suffit alors de
sommer les effets.

14.2 Diagramme d’influence d’un déplacement gé-
néralisé

Soit & chercher le diagramme d’influence d’un déplacement généralisé qq (fig.
14.1). Tragons la déformée de la structure sous une charge conjuguée go = 1.
On notera que, par le théoréme de Betti, le travail d’une charge quelconque g;
sur cette déformeée, soit glqgo), est égal au travail de gg pour la déformée due a
la charge g1, ce qui s’écrit

Tio = gqu)) =To1 = goQél) = q(()1)

465
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FIGURE 14.1 — Ligne d’influence d’un déplacement généralisé.

Ainsi, le déplacement considéré q(()l) di & une charge quelconque g; est égal au

travail de cette charge pour la déformée due & le charge unitaire go = 1. Cette
déformée constitue donc le diagramme d’influence du déplacement qq.

14.3 Diagramme d’influence d’un effet de type
effort

Pour ce probléme, les exposés classiques [12, 67] distinguent le cas des struc-
tures isostatiques, ou il est d’usage d’invoquer le principe des travaux virtuels,
du cas des structures hyperstatiques, pour lesquelles on fait appel au principe
de réciprocité. Voici un exposé unifié fondé sur le principe de variation des dé-
placements.

Soit F' Deffort généralisé (contrainte, réaction, etc.) dont on cherche le dia-
gramme d’influence et soit d(u) le déplacement conjugué a F' pour un champ
de déplacement u. F' sera par exemple (fig. 14.2) la réaction au point A d’une
poutre, le moment en un point D de cette poutre, etc. Une régle essentielle
est que le déplacement d(u) doit étre nul pour toute variation de déplacement
cinématiquement admissible. C’est le cas pour les deux exemples considérés ci-
dessus, car a la réaction est conjuguée la violation de la condition d’appui et au
moment en D, un saut de rotation en ce point.

Pour faire apparaitre d(u) dans le principe de variation des déplacements, on
relache la condition d(u) = 0 en faisant la coupure voulue : on coupera ’appui
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1D
TB T'c:

FIGURE 14.2 — Poutre sur trois appuis.

en A, ou ’on installera une rotule en D. On utilise alors la fonctionnelle énergie

totale augmentée
U+ P — Fd(u) (14.1)

ou F est le multiplicateur de Lagrange associé & la condition d(u) = 0. La
notation U* rappelle que le systéme a subi une coupure, ce dont il faut tenir
compte dans le calcul de ’énergie, en faisant une coupure dans les intégrations.
Pour la commodité, nous utiliserons la notation

1 *
U () = a*(ww), 0" = a*(u,00) = /V Come(Wen@GudV  (14.2)

qui fait bien apparaitre le caractére de forme bilinéaire de 1’énergie. Soit alors v
le champ de déplacement tel que

dv) = -1
{ a*(v,0u) =0 Vou tel que d(du) =0 } (14.3)

Ces conditions signifient que ’on cherche le champ de déplacement v tel que
d(v) = —1 et qu’en outre, I’équilibre soit satisfait en ’absence de charges ex-
térieures. Pour la poutre de la figure 14.12; ce sera le champ de déplacement
représenté en figure 14.3. Pour une poutre sur deux appuis A et B, dont on

FIGURE 14.3 — Déplacement v lié & la réaction en A.

recherche la réaction R4, il s’agira du déplacement de corps rigide indiqué en
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A —— e — ,
-] | B

FIGURE 14.4 — Cas d’une poutre sur deux appuis.

figure 14.4. Le champ de déplacement réel de la structure sous les charges rend
la fonctionnelle (14.1) stationnaire, ce qui s’écrit

a*(u,du) + P(du) — Fd(du) =0
pour tout du. Le choix particulier du = v donne
a*(u,v) +P(v) — Fd(v) =0

Mais on a d’une part d(v) = —1 et d’autre part, comme d(u) = 0, on a également
a*(u,v) =0, ce qui implique

F=-P)="T() (14.4)
On obtient ainsi le théoréme de Land :

Théoréme 11 Pour obtenir le diagramme d’influence d’un effort F', on fait une
coupure relative a cet effort. On cherche alors le déplacement du systéme coupé
tel que, d’une part, la valeur du déplacement conjugué a l’effort considéré soit
égal a (—1) et que, d’autre part, I’équilibre soit vérifié en l’absence de charges.
La valeur de F' pour une mise en charge quelconque est alors égale au travail de
cette mise en charge pour le déplacement en question.

14.3.1 Remarque

Dans le cas d’une structure isostatique, le déplacement en question est le
seul déplacement sans déformation de la structure coupée.

14.4 Exemples

14.4.1 Réaction d’une poutre sur deux appuis

Soit & déterminer la réaction en B de la poutre de la figure 14.5 posée sur
deux appuis A et B et soumise a trois charges Py, P; et P3. On coupe 'appui
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1 3
A | By
A —A

B |E
I

D
q, q,

9
FIGURE 14.5 — Réaction d’une poutre sur deux appuis.

en B et on donne & la poutre un déplacement unitaire en ce point, dans le sens
inverse & Rg. On a alors

_Ac _AD - AE
QC—AB7 QD—AB, qE—AB

d’ou
AD AFE

AC
RB_P1E+P2E+P3@

14.4.2 Effort tranchant d’une poutre sur deux appuis

On considére la poutre sur deux appuis avec encorbellements de la figure
14.6, soumise & un systéme de charges P;, P5, P3, Py. On désire connaitre 1’effort
tranchant au point C. Pour obtenir la ligne d’influence, on effectue une coupure
simple relative a leffort tranchant (coupure de cet effort uniquement). Cette
coupure peut étre congue comme réalisée & ’aide de deux plateaux permettant
de passer le moment mais non l'effort tranchant. Ces plateaux, étant infiniment
rigides, ne permettent que les déformations ot les lévres de la coupure restent
paralléles entre elles. la ligne d’influence est représentée sur la figure. On en
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R N
deo T

>0
FI1GURE 14.6 — Effort tranchant d’une poutre sur deux appuis.

déduit, pour la mise en charge donnée,

Te = Pi1-q1+P2-q2+Ps-q3+Ps-qq
AD BE BF BG
= Pac PeethBetBe

14.4.3 Moment d’une poutre cantilever

Une poutre cantilever est une poutre sur appuis multiples rendue isostatique
a l’aide de rotules. Soit par exemple & déterminer la ligne d’influence du moment
en I de la poutre cantilever de la figure 14.7. On pratique la coupure simple
relative aux moments en F, qui consiste en une rotule en ce point, comme
le montre la figure 14.8. La seule difficulté réside dans la détermination de
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s &
(v

FIGURE 14.7 — Moment d’une poutre cantilever.

~ i LiM,)

A v LitM,
\Q : 1My

F1GURE 14.8 — Ligens d’influence des moments en E et F.

I’unité : I’angle est en principe unitaire, mais comme il s’agit d’un déplacement
infinitésimal, c¢’est un segment rectiligne situé a une distance horizontale unitaire
de C' qui doit avoir une longueur égale & 1. On a également représenté sur la
figure la ligne d’influence du moment en F.

14.4.4 Moment dans un arc a trois articulations avec mise
en charge indirecte
Pour tracer la déformée de l'arc de la figure 14.9 ou l'on aura préalablement

inséré une rotule en B, on peut chercher le centre instantané de rotation R
de la section BC comme indiqué en figure 14.10. La déformation de I’arc est
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P P
I u/k o LN wow

FIGURE 14.9 — Arc & trois articulations & mise en chatge indirecte.

alors simple & obtenir, et les poteaux et passerelles suivent en gardant leur
longueur, ce qui permet de faire la construction au compas. La seule difficulté
est de définir 'unité. Avant déformation, les points A, B, R sont en ligne droite
et le déplacement BB’ du point B mesure la rotation des deux parties. C’est
dans cette direction que doit étre mesurée la rotation : & une distance égale & 1
(dans la direction RA), I'unité u est paralléle & BB’. Pour une mise en charge
(Py, P, P3), on aura donc

1
MB:a(Pl'Q1+P2'QZ+P3'CI3)

F1GURE 14.10 — Diagramme d’influence du moment en B.
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14.4.5 Reéaction de ’appui intermédiaire d’une poutre sur
trois appuis

La figure 14.11 est suffisamment explicite pour se passer de commentaires.

% Y W—

F1GURE 14.11 — Ligne d’influence de la réaction de ’appui intermédiaire d’une
poutre sur trois appuis.

14.4.6 Effort dans une barre quelconque d’un treillis iso-
statique

FIGURE 14.12 — Treillis.

Sur le treillis de la figure 14.12, soit & déterminer I'influence d’une charge sur
Peffort de traction dans la barre GH. Le déplacement conjugué a cet effort (la
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barre GH étant coupée) est le rapprochement des deux points G et H dans la
direction GH. On donne & ce déplacement la valeur (—1). On détermine alors la
déformée du treillis, par les méthodes classiques de la cinématique des travaux
virtuels (fig. 14.13). La valeur de l'effort de la barre GH pour une charge P; est

F1GURE 14.13 — Diagramme d’influence de ’effort dans la barre GH.

donc )
Neg = -P1-ax
u



Chapitre 15

Stabilité des systémes
élastiques

15.1 Introduction

Le probléme de la stabilité d’un équilibre élastique se pose notamment dans
le cas d’une colonne comprimée par une charge P (fig. 15.1). Si la colonne est

£P
WA

VA
\

\

\\ 4

\\\
|

f
\

¥
N/

FiGURE 15.1 — Flambage.

suffisamment longue, on observe qu’a partir d’'une charge donnée, elle fléchit,

475
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prenant ainsi une nouvelle position d’équilibre assez éloignée de la précédente. !
1l s’agit évidemment d’une instabilité. Dans le cas considéré, elle porte le nom de
flambage et méne le plus souvent & la ruine de I’édifice que soutient la colonne.
C’est dire I'importance pratique du phénoméne.

Nous avons vu, lors de I’étude de I’élasticité géométriquement linéarisée, que
tout état d’équilibre était stable dans le cadre de cette théorie. En conséquence,
la théorie de la stabilité reléve a priori de l’élasticité non linéaire (grands dépla-
cements).

15.2 Principe du minimum de ’énergie

Soit une structure en équilibre sous un systéme de charges, et soit £ ’énergie
totale correspondant & cet état d’équilibre. De nombreuses causes fortuites, au
nombre desquelles il faut compter les vibrations de la fondation, I'effet du vent,
etc., peuvent donner & la structure une certaine énergie cinétique 7. Il s’agit en
I’occurrence de vitesses tendant a déplacer la structure de son état d’équilibre.
Pour que ce déplacement ne croisse pas indéfiniment, il faudra que la variation
d’énergie totale £ tende a diminuer I’énergie cinétique. Or, la conservation de
I’énergie implique

AE+AT =0 (15.1)

si bien que pour obtenir AT < 0 en s’écartant de I’équilibre, il faudra que
A& > 0. Dans ce cas, la structure se mettra & osciller, jusqu’a ce que I’amortisse-
ment inévitable, bien que souvent faible, anihile la vibration. Ainsi, la condition
de stabilité de I’équilibre est que, lors d’un déplacement a partir de la position
d’équilibre, l’énergie totale augmente. C’est la condition de Lejeune-Dirichlet
Dirichlet1847. 11 est équivalent de dire qu’un équilibre stable correspond a un
minimum d’énergie totale.

Il convient de noter que ce principe ne permet que de garantir la stabilité
infinitésimale, c’est-a-dire que la stabilité n’est garantie que pour des perturba-
tions suffisamment petites. Il est trés possible qu’une perturbation assez grande
entraine le passage par un autre point ol l’énergie est maximale, entrainant
ainsi la structure vers un autre minimum qui constituera une nouvelle position
d’équilibre stable. Une comparaison utile et classique consiste & raisonner sur
le probléme d’une bille dans une chaine de montagnes. Dans le cas représenté
en figure 15.2, les points A et B sont deux positions d’équilibre stable. Mais en

1. Pour pouvoir observer ce phénoméne & I’état pur, il convient d’utiliser une colonne faite
d’un matériau a haute limite élastique, car dans le cas contraire, la flexion risque de produire
une déformation plastique menant & la ruine.
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A

FIGURE 15.2 — Analogie de la bille.

donnant une énergie suffisant & la bille, il est possible de passer d’une position
a lautre. Observons que ce probléme est moins académique qu’il ne pourrait
sembler. Ainsi [26], si 'on place un crayon sur sa face extréme plane, comme
Iillustre la figure 15.3, il est stable au sens infinitésimal, car tout petit mouve-
ment autour de sa position d’équilibre reléve son centre de gravité. Néanmoins,

A

I

T,

F1GURE 15.3 — Ce crayon est stable au sens infinitésimal, mais il s’agit d’une
stabilité est précaire.

il s’agit d’un équilibre précaire, car il existe un seuil, fort proche de la verticale,
ol le centre de gravité passe par une hauteur maximale, suite & quoi il redes-
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cend. Un exemple similaire est celui de la bille maintenue en un sommet par
une fraisure (fig. 15.4). On peut donc dire que, dans un certain sens, 1’é¢tude

FIGURE 15.4 — Bille maintenue en équilibre par une fraisure.

de F/ar:ement

FIGURE 15.5 — La stabilité devrait étre mesurée par 1’énergie & apporter pour
la détruire.

de la stabilité infinitésimale est incompléte et que la stabilité d’un équilibre
donné devrait en fait étre mesurée par la plus petite différence d’énergie entre
I’état considéré et une instabilité voisine, comme l'illustre la figure 15.5. Ainsi,
dans le cas du crayon, on observerait que le saut d’énergie correspondant est
trés faible. Malheureusement, dans nombre de cas pratiques, une telle démarche
nécessiterait un nombre d’analyses que ’on ne peut raisonnablement prescrire.

15.3 Variations successives de I’énergie totale

Etant donné un état d’équilibre caractérisé par un champ de déplacement
uY, considérons une petite perturbation 6w du champ de déplacement, ot w
représente une variation cinématiquement admissible de déplacement, de norme
unitaire, et 6, un parameétre réel. Supposant w fixé, ’énergie se présente comme

une fonction de 6. Nous admettrons qu’il est possible de la développer en série
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de Taylor jusqu’au second ordre, c’est-a-dire que
0 0 0 0> 2
EW’ + 0w) = E(u’) + 06E(u ;w)—l—?(s E(ug; w) + 0(6%) (15.2)

ol apparaissent la variation premiére 5€ et la variation seconde 6°E. Le champ
de déplacement u°, comme tout état d’équilibre, vérifie la condition de station-
narité de 'énergie totale

6E(ul;w) =0 (15.3)
si bien que ’on peut écrire

92

AE (W = u® + Ow) = E(u’ + w) — EW°) = 5

52 (uw) + 0(6?)  (15.4)

Pour 6 suffisamment petit, le signe de la variation d’énergie sera celui de la
variation seconde, ce qui permet de dire que si la variation seconde est négative
pour une variation de déplacement donnée de norme unitaire, la structure est
instable. A l'inverse, la structure sera stable si, pour toute variation de déplace-
ment w de norme unitaire, la variation seconde est positive.

Il peut se faire que la variation seconde soit nulle. Dans ce cas, il faut pousser
le développement en série plus loin

94
41

0 0 02 n. 07
E(u” +0w) =E(u’) + 00 + —6°E +

0" o3
5 3!654-

SE+ ... (15.5)

ce qui définit la variation troisiéme, la variation quatriéme, etc. Si la variation
troisiéme est différente de zéro pour un certain w, positive pour fixer les idées,
il suffit de changer le signe de 0 (ce qui équivaut & remplacer w par —w) pour
changer le signe de l’accroissement d’énergie : la structure est donc instable.
Si la variation troisiéme est nulle, on reproduit sur la variation quatriéme le
raisonnement relatif & la variation seconde : elle doit étre positive pour qu’il y
ait stabilité. Plus généralement, si la premiére variation non nulle est d’ordre
impair, I’équilibre est instable. Si cette variation est d’ordre pair, I’équilibre est
stable si elle est toujours positive. Ces résultats s’interprétent aisément a ’aide
de I’analogie de la bille. Le fait que la premiére variation non nulle soit d’ordre
impair signifie que ’on se trouve sur un palier, comme l'illustre la figure 15.6.
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FIGURE 15.6 — Cas ou la premiére variation non nulle est d’ordre impair.

15.4 Analyse générale de la stabilité des corps
élastiques

Nous nous limiterons au cas habituel d’un matériau linéaire. Notant tou-
jours u® le déplacement & ’équilibre et fw la perturbation, on peut écrire les
déformations de Green sous la forme

1
Vi = i[Di(u(; + 0w;) + Dj(uf + 0w;) + Di(ul, + Ow,,)Dj(ul), + Ow,,)]
_ 0 0 1 92 2 15.6
= v+ %‘j"‘g%j (15.6)
avec

’yloj = %(Dlu(j) + Dju(i) + Diu?nDjugn)

vy = 3(Diwj + Djw; + Diupy, Djwe, + Djug, Diwn) (15.7)
’71'2_7' = Dimejwm

L’énergie de déformation s’écrit donc (en supposant I'existence de contraintes
initiales s7; & I'état de référence)
« [0 A
U= [ sl +07;+ o Vi av
v
1 0 A 0 Y
+3 ) Cijrr { 75 + 0735 + 2% ) \ Tkt 07 + PR av

62 62 04
= Uy + 06U + ?521/{ + 5531/1 + Ea‘*u (15.8)
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avec

Uy = [y (si0 + 3Cimiyn) dV
U = [y (siyv; + Ciguiyvi) AV
U = [y (si78 + Cigurdvi + Comnvigvig) AV (15.9)
U =3 [, CijviradV
MU = 3 fv Cijkl’yfj%%ldV
Dans le cas usuel de charges mortes, I’énergie potentielle s’écrit
P =P’)+ 6P (15.10)

On a d’abord U + §P = 0, ce qui signifie que le champ de déplacement u°
correspond a un état d’équilibre. Examinons & présent la variation seconde. En
notant 8% les contraintes totales a l’équilibre,

s = st + Cijruviy (15.11)

on peut la mettre sous la forme
52U = / (s?j'y?j + Cijkﬂilﬂlil) av (15.12)
1%

Quel est son signe? Examinons d’abord le second terme. Le tenseur Cjjx; étant

défini positif, ce terme sera toujours positif ou nul, et ne s’annulera que si %-1]- =0.
On a

1
Vilj = 7(Diwj + Djw; + Diuo Djw,y, + Djuo Dywy,)

2 m m

= 5[0yt D) Ditv + (i + D) Dy
et, en introduisant les coordonnées spatiales & 1’équilibre &; = (z; + u),
1 = 5 (D3 Dt + ik D)
Nous noterons 0; les dérivées par rapport aux &;. On a, si 'yilj =0,

1
0= 3pxi8qzj7}j = 5(6qijj§m6pxiDiwm + priDifmaqijjwm)

1
= 5(5qm8pwm + OpmOgWim,)
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soit ]
5(8pwq + 0qwp) =0 (15.13)

La solution de cette équation est
Wy = Ap + €pgrwgésr (15.14)

c’est-a-dire un déplacement de corps rigide & partir de la configuration déformée.
En supposant les déplacements rigides bloqués, on aura donc %-1j # 0, et le second
terme de la variation seconde est toujours positif.

Venons-en au premier terme de cette variation, qui s’écrit

/ $0; D DjwndV
v
Il ne peut jamais étre négatif si le tenseur sgj est défini positif, c’est-a-dire si,
pour tout vecteur g;, on a

533045 > 0
Par conséquent, il ne peut y avoir d’instabilité si le tenseur des contraintes
totales a ’équilibre est défini positif en tout point du corps.

Mis a part cette conclusion qualitative importante, le test de la variation
seconde semble & priori assez délicat & mener, puisqu’il suppose en principe
I’exploration de la totalité de la sphére unité, pour une norme qu’il nous reste &
préciser. Le choix de celle-ci est relativement arbitraire, & ceci prés qu’il convient
au moins qu’il assure la bornation de la variation seconde. La plus simple des
normes assurant cette condition est

ol = | Cprliav (15.15)

Ce choix fait, on évite I’exploration de la sphére unité par la méthode sui-
vante, proposée par Jacobi : appelons p la grandeur
0 A2
[ = sup — fV 515754V
c fV Oz’jkl'}/}j%ildv
C étantl’ensemble des perturbations admissibles de déplacements. Selon la valeur
de u, trois cas peuvent se présenter :

(15.16)

1. 4> 1 - Dans ce cas, pour tout € > 0, il existe un déplacement w € C tel
que

—/VS?ﬂ?jdV > (u—a)/vcijm}ﬂizd‘/
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Il en découle
U = / 02 4 / CopvihdV < (1— i+ ¢) / CiiurikdV < 0
v v v

pour € < u — 1, ce qui implique que 1’équilibre est instable.
2. p <1 - Alors, tout déplacement w € C vérifie

—/‘/Sgﬂfjdv SM/V Cijkl’}/ilj'}/]%ldv < /‘/Cijmilﬂlildv

ce qui signifie que I'on a toujours 2 > 0. L’équilibre est donc stable.
3. u =1 - Dans ce cas, on ne peut pas conclure.

La plupart des auteurs admettent implicitement que la meilleure borne su-
périeure (15.16) est réalisée par un champ de déplacement donné. Or, cette
propriété n’a rien d’évident, et la question reste ouverte dans le cas général 2.
Signalons cependant qu’elle est garantie lorsque les dérivées intervenant dans
le numérateur sont au moins d’un ordre inférieur a celles qui apparaissent dans
le dénominateur, auquel cas il y a compléte continuité (voir par exemple Ne-
cas [63], Riesz et Nagy [76]). Cette condition est vérifiée pour les poutres sans
déformation a ’effort tranchant, les plaques de Kirchhoff et quelques autres cas.

Supposant, cette réalisation effective, la recherche de p peut étre considé-
rée comme le probléme de maximisation du numérateur, moyennant la condi-
tion |Jw||?> = 1, qui peut étre reprise & I’aide d’un multiplicateur lagrangien \.
L’équation variationnelle de ce probléme est alors

J {_/ S?ﬂfj - )\/ Cijkl%'lj’ylildv} =0 (15.17)
v v

et se présente comme un probléme aux valeurs propres A. La plus grande de
celles-ci est précisément p. Le déplacement correspondant est appelé la forme
critique.

15.5 Bifurcation de I’équilibre
On dit qu’il y a instabilité par bifurcation de I’équilibre lorsque I’état d’équi-
libre initial vérifie
Sim + Diul & Sim (15.18)

2. Dans le cas d’une structure discrétisée, cette propriété est évidente, car la sphére unité
dans R™ est compacte, et toute fonction continue y atteint ses bornes.
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c’est-a-dire qu’il est caractérisé par des rotations infinitésimales. Dans ce cas,
on a L
i(Diwi + Diwj) = €5 (w)

et le critére de la variation second se raméne & tester que

1 o
Yij ~

526 = /VsZQjDimejwde-F/vCijkz&j(w)ﬁkl(w)dv >0

Seul, le premier terme subit 'influence de 1’équilibre initial, et il varie linéai-
rement avec les contraintes. C’est pourquoi on parle, dans ce cas, de stabilité
linéaire. On profite de cette propriété pour choisir au départ la forme du champ
de contrainte, et définir son amplitude & part : on choisit donc un champ unitaire

s4; = —Sij (15.19)
et le champ menant & I'instabilité sera —0S;;, oll o est le facteur multiplicatif.
Tout revient & chercher la facteur critique (encore appelé, par abus de langage,
charge critique), défini comme la plus petite valeur de o pour laquelle

526 = —a/ Sij Diwm Djw,dV +/ Cijrgij(w)er(w)dV =0
1% 14
et qui vérifie

o — ing dv Cismci(wep (w)dVv
o weCl fV SijDimejwde

(15.20)

Si cette valeur est réalisée, il est équivalent de chercher les solutions du probléme
aux valeurs propres

1) {/ C’ijkleij(w)akl(w)dv - CT/ SijDikajwde} =0 (15.21)
1% 1%
les formes critique vérifient alors I’équation
Dg(ckhj{:‘ij (w) — JDj (SﬂDlwk) =0 dansV (1522)
et les conditions aux limites
ng(C;ggijsij(w)) —on; (Sngzwk) =0 sur Sy (15.23)

So étant la portion de la surface ou les efforts sont imposés nuls.
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15.6 La colonne d’Euler

le plus classique des problémes de bifurcation est celui d’une colonne encas-
trée en son pied et soumis & une charge P en son sommet (fig. 15.7). Sous une

iP

X

L

FI1GURE 15.7 — Colonne d’Euler.

faible charge, la colonne reste droite; mais & partir d’'une charge donnée, elle
fléchit. C’est ce que 'on appelle le flambage. Appelant z la coordonnée prise
le long de la colonne et x ’axe tel que I, soit le plus petit des deux moments
d’inertie, on écrira

uz = w(z)+za(z)
up = u(z) (15.24)

En admettant 'approximation des gradients de déplacements modérés, on écrira,
en notant d’un prime la dérivation par rapport a z,

1 1
Y33 = Dsuz+ §(D3u1)2 =w +xa’ + §u’2

Diuz +Dsu; =a+u (15.25)

Y13
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Le déplacement & I’équilibre est wgy. La perturbation est caractérisée par w, u
et a. Nous ferons ’hypothése d’absence de déformation due & ’effort tranchant,
ce qui s’écrit

a=—u' (15.26)
et donne
/ 9 1 12
Y3z =w —zTu + 5”
soit
€33 = w —axu”
2 2
Y33 = u'
L’état de contrainte initial normalisé est S33 = —1/£2, ce qui donne directement

la charge critique P comme facteur d’amplitude. Le principe variationnel s’écrit
alors

£
/ (EQuw™ + EI1,”% — Pu'?)dz stationnaire (15.27)
0

Les formes critiques vérifient donc les équations suivantes

—EQuw” = 0 dans]0,/]
EQu'(f) = 0 (15.28)
w(@0) = 0
et
Elu'V + Py’ = 0 dans]0,/]
—EIu"(¢) — Pu'(¢) = 0

W0 = o (15.29)
u(0) = 0

Des équations (15.28), on déduit w = 0. A partir des deux premiéres équations
du systéme (15.29), on déduit

ce qui donne la solution générale

P . P
U(Z>ZACOS\/EZ+BSIDHEZ+C
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Des conditions aux limites en z = 0, on déduit B = 0 et C' = —A. La condition

d’extrémité donne alors
P
76 =
o8 \/; 0
P

1
Eﬁzg—&-(n—lﬁr: (n—2>7r, n entier > 0

1\? 72EI
P_(”z) Iz

Ce sont les charges d’Euler. La plus petite d’entre elles, qui marque la limite de
stabilité, est

soit

ou encore

2Bl
402

P.. = (15.30)

15.7 Autres cas d’appuis

Lorsque les appuis sont différents du cas envisagé ci-dessus, les équations
d’équilibre intérieur restent inchangées, mais les conditions aux limites varient.
Voici quelques cas courants.

15.7.1 Poutre bi-appuyée
Ce cas est illustré par la figure 15.8. Les conditions d’extrémité sont ici
u(0)=0, u{)=0, v (0)=0, uw'¥)=0
L’équation d’équilibre

P
w4+ —u' =0

Bl
admet la solution générale
u(z) = Acoswz + Bsinwz 4+ Cz+ D (15.31)
avec
ol P
~ EI

Les conditions en z = 0 donnent

A+D=0
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FiGURE 15.8 — Flambage d’une poutre sur deux appuis.

et
—Aw? =0

ce qui implique A = D = 0, en excluant le cas w = 0 pour lequel la solution est
identiquement nulle. Ensuite, on déduit des conditions en z = /¢

Bsinwl+Cl =0
et
—B?w?sinwl =0
d’ou C' = 0 et, pour que la solution ne soit pas identiquement nulle,
sinwl =0
ce qui donne
wl =nm, nentier >0
On obtient donc
9 m2El m2ET
=n

=—= (15.32)

P 62 ’ PC'!‘ - [2
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15.7.2 Poutre encastrée-appuyée

P

FIGURE 15.9 - Flambage d’une poutre encastrée-appuyée.

Clest le cas illustré en figure 15.9. Portant dans la solution générale (15.31)
les conditions aux limites

on obtient d’abord
A+D=0, wB+C=0

puis
A(coswl — 1)+ B(sinwl —wl) = 0
—Aw? coswl — Bw?sinwl = 0

Ce systéme homogéne de deux équations aux inconnues A et B n’admet de
solution non nulle que si son déterminant est nul,

—w? sinwl(coswl — 1) 4+ w?(sinwl — wl) =0

soit, en excluant la solution triviale w = 0,

tgwl = wl (15.33)
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FI1GURE 15.10 — Représentation des solutions de tgwl = w.

Pour résoudre cette équation, il est utile de tracer les graphes y = tgw/ et
y = wl, voir figure 15.10. Les solutions cherchées sont leurs intersections. Pour
wl grand, on peut résoudre approximativement 1’équation tgwf = oo, ce qui
meéne aux solutions asymptotiques

™
(wl),, ~= 5 +nm
Pour obtenir avec précision la premiére solution, on peut utiliser I'itération
(W41 = arctg(wl)y + 7

en partant de w. Aprés quatre itérations, 4 chiffres sont stabilisés :

P
0 =4,493 =/ —
v Bl
ce qui donne
4,493)2E1 ET 2ET ’EI
p, = \LA93)°BL 20,19—> = —~ ~ (15.34)

Iz 2~ (0,69920)2  (0,70)2
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La solution asymptotique wf = 37” elit donné la valeur par excés
m2EI EI
P,~—— =2221—
(0,6667¢)2 02

15.7.3 Poutre bi-encastrée

p

Av

FIGURE 15.11 — Flambage d’une poutre bi-encastrée.

Les conditions aux appuis de ce cas représenté en figure 15.11 sont
w(0) =0, «'(0)=0, u()=0, u'()=0
En les portant dans la solution générale (15.31), on obtient d’abord
A+D=0, wB+C=0

puis

|
o

A(coswl — 1) + B(sinwl — wf)
—Awsinwl + B(coswl — 1)

|
o

491



492 CHAPITRE 15. STABILITE DES SYSTEMES ELASTIQUES

Ce systéme homogeéne en A et B n’admet de solution non nulle que si

w(coswl — 1) 4+ w(sinwl — wl) sinwl = 0

ce qui implique, pour w # 0

cos?wl — 2coswl + 1 + sin wl — wlsinwl = 0

soit
2(1 — coswl) = wlsinwl

Ceci peut encore s’écrire

14 14 14
4 sin? % = w€~2sin%cos%
soit ’ ’ ’
4sin — (sin % % cos %) =0
Cette équation est résolue chaque fois que
wl
9
sin =
ou
ot wt
89 72
Les solutions de (15.36) sont
wl .
5 = nm, n entier > 0
soit
an’m2El Am2EI
P= /2 y cr = /2

(15.35)

(15.36)

(15.37)

(15.38)

Quant a Péquation (15.37), elle se résout comme dans le cas de la poutre
encastrée-appuyée. La plus petite valeur de “’7[ est alors 4,493, ce qui donne

o 4m2ET
0 (0,6992¢)2

(15.39)

valeur plus grande que la précédente. L’existence de ces deux familles de modes
critiques s’explique aisément : le premier mode critique présente deux points
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Yy

YISl s
a b

F1GURE 15.12 — Les deux familles de modes critiques d’une poutre bi-encastrée.

d’inflexion ot M = 0, voir figure 15.12a. La partie centrale, de longueur ¢/2,
peut donc étre identifiée & une poutre sur deux appuis, d’oul la solution

P, = m2EI
(¢/2)?

Le deuxiéme présente un point d’inflexion au centre et la poutre peut donc étre
assimilée & ’assemblage bout a bout de deux poutres encastrées-appuyées de
longueur ¢/2, voir figure 15.12b. 1l vient donc

, m?El

 (0,6992%)°

cr
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15.8 Colonne flambant sous son propre poids ou
sous une charge longitudinale uniformément
répartie

15.8.1 Colonne encastrée a sa base et flambant sous son
propre poids

{

i

¥

* )

¥9

;i
|

{

\
171,

FIGURE 15.13 — Colonne sous une charge uniformément répartie.

Dans ce cas illustré en figure 15.13, soit ¢ la densité linéique de charge. La
solution statique est donc

NY = —q(f—2) (15.40)

ce qui méne au probléme de stationnarisation de la fonctionnelle

¢ ¢
/ ElIu?dz — q/ (6 — 2)u?dz (15.41)
0 0
L’équation de la forme critique est donc

—[(t = 2] =0 (15.42)
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avec les conditions aux limites

—EI"(0) — q(¢ — O

)
g - (15.43)
)

o O OO

La solution exacte de ce probléme a été développée par Greenhill [42, 86]. Elle
fait appel aux fonctions de Bessel d’ordre 1/3 et son exposé est assez lourd. Nous
nous contenterons ici de développer une solution approchée par la méthode de
Rayleigh-Ritz. Posant

u = az’ + B2* (15.44)

on satisfait aux conditions aux limites en z = 0. On calcule sans difficulté
/Z(e — 2)udz =04 <1A2 + 3By 6AB€>
0 3 10 10
et ;
/0 w?dz = € (44 + 12ABL + 12B(?)

Il suffit donc de trouver les points stationnaires de la forme quadratique
s 36 2,2 38
A2 (4—-C ) +2ABL(6 - "= ) + B** (12 - &

( 3 + 6 10 + 10

en posant
_af

B_EI

Il en découle les équations

(1-8)a+(6-%)B = 0
(—%)A+(12—% B =0

compatibles en dehors de la solution nulle moyennant la condition

(-5) (- 8)- -3 -

5% — 1603 4+ 1200 = 0

soit
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La plus petite racine de cette équation est

ce qui donne

EI
(g0)er = 7,889 (15.46)

La solution exacte est S.. = 7,837, inférieure & la valeur approchée de 7°/
seulement.

15.8.2 Colonne bi-appuyée, soumise a la fois & une charge
en bout et 4 une charge répartie

-0

- W B A o e O W T

!

FIGURE 15.14 — Colonne bi-appuyée, soumise & la fois & une charge en bout et
a une charge répartie.

En comptant, comme 'indique la figure 15.14, la coordonnée z & partir du
point le plus haut de la poutre, on a ici

N°z)=—-P—qz (15.47)
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ce qui méne & rendre stationnaire ’expression

¢ ¢ ¢
/ Elu%dz — P/ uw?dz — q/ 2u'?dz
0 0 0

On résout ce probléme de maniére approchée en posant [86]

u(z) = Asm% (15.48)
ce qui rameéne la variation seconde a
2A2 7T2A2 62
o) AQ— —P—— —q——
Iz e 2 ey
Le point stationnaire correspond donc & la condition
g¢ mEI
P+ == =P 15.49
3 2 " (15.49)

On constate que cette solution équivaut & admettre que la moitié de la charge
répartie est appliquée & chacune des extrémités de la poutre.

15.9 Effet de la déformation due a l’effort tran-
chant

Pour évaluer leffet de la déformation due & D'effort tranchant, nous repar-
tirons des expressions (15.24) et (15.25), mais nous abandonnerons ’hypothése
(15.26). La variation seconde s’écrit alors

¢ ¢
52U = / {EQw’2 + EId? + G (a + u'2)} dz + / Nou'?dz (15.50)
0 0

Traitons par exemple le cas d’une poutre bi-appuyée chargée en bout. Nous
noterons encore Ny = —P. Les équations relatives & w sont les mémes qu’en
I’absence de déformation a l’effort tranchant et ménent encore & w = 0. Les
équations relatives & a et u sont

—(EIdY + G*(a+u') = 0 dans]0,/]
—(GO*(a+u)) + (Pu') = 0 dans]0,/{]
EId(0) = 0
EI/(f) = 0 (15.51)
u(@) = 0
ull) = 0
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De la deuxiéme, on tire

P
"= (1- ! 15.52
@ ( GQ*) u (15.52)
soit
P
avec A—cte et P
(a+u')= e u +GFA
Introduisant ces résultats dans la premiére équation de (15.51), on obtient
P " ! *
EI liGQ* "+ Pu' +GUTA=0
ce qui équivaut a
u'V Wi’ =0 (15.53)
avec P
w? = — (15.54)
EIl1-
(1~ am)

Les conditions aux limites sont, compte tenu de (15.52)

On retrouve donc le méme probléme que sans effort tranchant, mais avec une
autre définition de w. La solution est donc encore

nm

soit

1

GOF

en notant Pg la charge d’Euler. On en déduit, pour m =1,

P
P, =P j ——
E( GQ*)
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soit

P, = (15.55)

Pg
1
oo

Ce résultat a été obtenu par Engesser [23]. La correction relative par rapport a
la charge d’Euler est

2
T EL (15.56)
GQ* 02

Pour les poutres courantes, ce rapport est petit, et la correction est négligeable.
En revanche, pour les poutres composées de plusieurs matériaux et pour les
structures en treillis étudiées comme des poutres & titre d’approximation, la
section de cisaillement Q2* peut étre relativement petite, de sorte que le rapport
(15.56) ne soit plus négligeable devant I'unité. La formule d’Engesser a d’ailleurs
été mise & I’honneur suite a la ruine, au début du X X ¢ siécle, du Pont du Québec
qui était formé de poutres en treillis [24, 25].

15.10 Stabilité des plaques

Nous considérerons, dans cette section, des plaques de Kirchhoff soumises &
des efforts membranaires

0 0
Noz,B = taaﬁ

Dans certaines circonstances, ces efforts peuvent mener au voilement, qui consiste
en une flexion de la plaque. Le champ de déplacements correspondant est de la
forme

up = —zDjw(x,y)
uy = —zDyw(z,y) (15.57)
us = w(m, y)
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Les déformations de Green correspondant a la sollicitation initiale s’écrivent
alors, dans le cadre des gradients de déplacements modérés,

1 1
m1 = Diui+ §(D1U2)2 + §(D1u3)2

1 1
= Dyuy + §ZQ(D121U)2 + §(D1w)2
1 1
Yoo = Doug+ §(D2u1)2 + §(D2U3)2
1 1
= Doug + 522(D21w)2 + §(D2w)2
1
Y2 = §(D1U2 + Douy + DyuzDaug)
1
5(D1U2 + Douy + DleQU}) (1558)
si bien que
7 = 2(Diw)’ 4 (Diw)?
V32 2*(D1ow)* + (Dyw)?
v, = DiwDyw (15.59)

La variation seconde de I’énergie s’écrit donc

52U = / D{(V?w)? +2(1 — v) [(D12w)?® — D1ywDasw] } ds
s

t3
—l—/s(ogl —|—032)E(D12w)2d5+/SNQOBDalegwdS

On notera que comme les contraintes initiales sont nécessairement beaucoup plus
petites que les modules élastiques, la deuxiéme intégrale de cette expression est
négligeable devant la premiére. Dés lors, en posant

N2g=—PNus (15.60)

«

on obtient I’expression simplifiée suivante
82U = / D {(V?w)? +2(1 — v) [(D12w)* — DyywDapw] } ds
s
— P/ NagDangwdS (15.61)
s

qui est due & Bryan [8].
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15.11 Voilement d’une plaque rectangulaire sim-
plement appuyée et comprimée dans une

direction
by
— ——
— -
NX ] et b4
R— i e
] D
S (e
X
a

FIGURE 15.15 — Plaque comprimée dans une direction.

La figure 15.15 représente le probléme. Développant le déplacement w en
série double de Navier

b

w = Z Wiy, SID Y i Y (15.62)
a

on obtient aisément & partir de (15.61), en posant N, = 1,

4 2 2\ 2 2 2
9, T ab 9 m n m* o 7 ab
Fu=pTE S vk, ( ; b2> Py T
La variation de w,,, fournit la charge
Dr2a? (m? n2\? Dn? n2 a2\ >
Prn = =5 (az+bz> Sl <m+mbz> (15.63)

Pour m fixé, c’est toujours P,,1 qui a la plus petite valeur,

Dr? 1a2\?
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La valeur critique de m dépend du rapport a/b. On a

0P,  Dn? 1 a? 1 a?
om a? mt m b2 m?2 b2

et cette dérivée s’annule pour

m=3 (15.65)

C’est donc la valeur entiére de m la plus proche de a/b qui donne le minimum.
La valeur de celui-ci est toujours supérieure &

b T

D% sa  a\2 Dr?
a? ( ) :462

On a donc toujours en pratique

Dr?
P, = 4ka’ k>1, k=1 (15.66)

Pour trouver la valeur de k, voyons comment évoluent les charges P,,; en fonc-
tion du rapport a/b. On a

Dn? 1a2\?

P = 0 (””w)
D2 1 a? 2
B = = <(m+1)+(m+1)b2)

donc Py = P11 lorsque

+ Lo (m+1)+ Lo
m+ ——==(m —_—
m b2 m+ 1 b2
soit pour
1 a? _

m(m+1) b2
c’est-a-dire “

3 (m+1)

Dr Dr? Dr? [ 4m? + dm + 1
Pot = 2 [+ (m+ 1)) = a” (2m+1)? = b;r (m +Am )

m2+m
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soit

Ainsi, & partir de a/b =1, on a toujours

l<k<1l+ = ~14+ ! =1+ s
am(m+1) 4%; B 4a?

c’est-a-dire que k ne s’écarte guére de 'unité. En particulier, la transition entre
P11 et Py; a lieu pour

a

29

b V2
valeur pour laquelle

1
k=1+35=112

C’est la plus grande valeur pour a/b > 1. Pour a/b < 1, on a

Dr? a2\> D (b a\®
Py =2 (1% 27 (0 a
1= <+b2> 52 (a+b>

1/b a\’
k=—-|-+-
4 (a + b)
Pour les besoins de la pratique, on se place du coté de la sécurité en admet-
tant la valeur unique

soit

4D7?

Pcr% b2

toujours approchée par défaut, et d’autant plus correcte que le rapport a/b est
plus grand. Tout ce qui précéde est bien illustré par la figure 15.16 qui représente
les valeurs de k en fonction du rapport a/b.

Il est intéressant, quant a la physique du probléme, de noter que la condi-
tion (15.65) signifie que la plaque tend a voiler selon des cellules de voilement
sensiblement carrées. C’est 'impossibilité de ce mode de déformation pour a/b
non entier qui reléve la charge critique.
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1125 104 102

1VvZz 2 Ve 3 Viz o 4 an
FIGURE 15.16 — Diagramme du coeflicient & en fonction du rapport a/b.

15.12 Flambage par flexion et torsion

Dans I’étude du flambage, nous n’avons jusqu’ici considéré que l'instabilité
en flexion. Mais il peut se faire, lorsque la poutre a une faible raideur de torsion,
que des formes critiques plus complexes ménent & une charge critique plus faible.
Ce genre d’instabilité est fréquent dans le cas des poutres & parois minces. Nous
considérerons donc des déplacements transversaux incluant de la torsion, soit

u = u(z) —yb(2)
us = v(z)+x0(z) (15.67)

1l vient alors, dans le cadre des gradients de déplacements modérés,

1 1
Y33 = Dsug+ §(D3U1)2 + §(D3u2)2
_ 1 12 1 12 In! In! 1 7.2 2
= —u"4+ 0" —u0y+00x+ =0 (2" +y*)
2 2 2
soit
Yoy = u? v =20y + 200 + 0 (2% + ) (15.68)

Dans le cas d’un champ de contrainte initial de compression pure

P
0y = o) (15.69)
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on a donc

¢
I
/ 093Y33dV = —P/ (u’2 +v? + ;2’0'2> dz (15.70)
v 0

Reprenant alors le terme linéaire de ’énergie d’une poutre en flexion et torsion,
on obtient

£
52U = / (ELw? 4 ELyw’? + EKO"? + 2ELv" 0" + 2EL,u"0") dz

0
0 4 I
+/ GJO"?dz — P/ <u’2 + 0"+ 5’9’2> dz (15.71)
0 0

ou, rappelons-le, les intégrales L, et L, sont liées au coordonnées du centre de
torsion par les relations

Ly =—Iyr, Ly=I,z7 (15.72)

Les équations régissant les formes critiques se déduisent aisément de l’ex-
pression (15.71). Dans le cas d’une colonne encastrée a sa base et libre & son
extrémité, elles s’écrivent

— Pour u

ELu" + EL6"Y + Puw =
u(0) =

Il
coococo

u'(0)
ELaw’ (0) + EL,0” (¢)
ELu" () + EL,0"(¢) + Pu'(f)

— Pour v

Elo"Y + EL6"Y + Py’ =
v(0)

dans |0, ¢]

I
coococo

v'(0)
ELw () + EL0" () =
ELu"(¢) + EL,0" (0) + Pv' ({)
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— Pour 0
I
EK#YV + EL o'V + ELvaV - GJO + PEPG”
6(0)

nullité du gauchissement : 6’(0)
EKO’({) + +ELyu”(¢) + EL,v” (0)

PI
EKO0"(¢)++EL!"” (£)+ EL" () — GJO'(¢) + ?”9’(6)
En posant

u:U(lfcos¥), V= (lfcos%), 9:@(1fcos%)

on satisfait aux trois premiéres conditions aux limites pour chaque
reste alors & vérifier les conditions

3 3
(E] 7T—P7T)U+EL AN

AT S
m  Pr w3
o A V) -
( 50 2z)V+ v5E®
3 3 I T
EL L EK T _prlle
gl y8£3v+( 8€3+GJ2€ 9213)@

En introduisant les notations

2 2 2

on obtient la condition suivante :
P, —P 0 —yrby
0 P,—P vrPy | _ g
—yrPr arP, 2(p,—P)

Q

= 0 dans]0,/|

I
o

(15.73)

champ. 1l

0(15.74)

(15.75)

(15.76)

dont les trois solutions sont les charges critiques relatives aux trois formes fon-
damentales de flambage. Les formes critiques s’obtiennent alors en combinant
(15.73) et (15.74). Il est intéressant de considérer deux cas particuliers.
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15.12.1 Le centre de torsion coincide avec le centre de
gravité
Dans ce cas, L, = L, = 0 et le systéme (15.74) est découplé. Les trois charges

critiques sont P, P,, Py. Si y est la plus petite des deux inerties de flexion, le
flambage par torsion sera déterminant si

Q m2EK m2EI
— < Y
I <GJ+ 102 )— 102

soit si
J ET?EK 7T2Ely

I, T GaLeE < I
Or, le gauchissement de torsion v a les coordonnées pour gradient, ce qui im-

plique ¢ = O(p?) o p est le rayon de giration de la section. Il en découle
que

K= 24V = O(p*Q
/Vw (P*Q2)

Comme
I, = p*Q

ce qui signifie que ’on doit avoir

< mEIl, Em’EK (p2>

J
I, = 42 G aLe T \e2

Cette condition d’extréme petitesse du rapport J/I, n’est vérifiée en pratique

que pour les sections minces, pour lesquelles

J = 0 (pt3) , t = épaisseur du profil
I, = O (P4)

J 3
fp—@(ps)

si bien que le lambement par torsion ne pourra étre déterminant que si

ce qui donne

% <0 (%)2/3 (15.77)
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15.12.2 La section posséde un axe de symétrie

Dans ce cas, une des coordonnées du centre de torsion, soit yr, est nulle et
une des charges critiques est P,. Les deux autres vérifient I’équation

~

(P,—P)2(Py—P)—27P,=0

Q
soit

2 Qx%
P°— (Py+ Pp)P+ | PyPy — I—Py =0
p

Les solutions de cette équation sont données par

Qa2
(Py+P0)i\/(Py_P9)2+4 IT
P

1
P=3 P, (15.78)

La plus petite de ces valeurs est inférieure a P, et & P, et la plus grande leur
est supérieure. Cependant, pour que cet écart se fasse sentir, il faut que

2
Qa7

4
I

Py

soit du méme ordre de grandeur que | Py — Py|.

15.13 Déversement des poutres fléchies

Le déversement est une instabilité particuliére des poutres possédant un
moment d’inertie I, beaucoup plus grand que 'autre et chargées en flexion
dans le plan de forte inertie (c’est notamment le cas des poutres en I ayant une
ame trés haute et des semelles de faible largeur). On observe qu’a partir d’une
certaine valeur du moment, le plan de forte inertie de la poutre se voile, dans un
mouvement comprenant a la fois de la translation et de la torsion. Nous nous
limiterons au cas des poutres ayant deux axes de symétrie. On a donc

I.>1,, I,>»J, xr=yr=0 (15.79)

La sollicitation initiale est un moment z°, pouvant dépendre de z. Il y est associé
une contrainte d’extension

M?
0 _ z
z I;C

(2

(15.80)
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et des contraintes de cisaillement 70, et 70, vérifiant les équations

yz
0/
D7), + Dy1)), + Iw r = 0 dans
M Ter +N2Ty, = 0 sur 09 (15.81)
JoTe-d = TO= MY
fQ Tyzd) = 0
La perturbation de déplacement sera de la forme
up = u(z) —yb(z)
{ uy = v(z)+z0(z) (15.82)
ce qui donne, dans le cadre des gradients de déplacements modérés,
V3 = (Diu1)? + (Dyu2)? = u'? + 0% — 2y0'u’ + 22600 + 0" (2? + y?)
V2 = DiugDsus = 0(v' + 0'z)
V33 = DouyDsuy = —0(u' —0'y)
(15.83)
On a donc

/Q(USV:?B + 279?2’713 + 27 2723)d9
= 2M20"V + 200" T + 206’ / (@Tps + y7y2)dQ)  (15.84)
Q

Examinons la derniére intégrale du second membre. On a

2 2 2 2
/(.ISTIZ-FyTyz)dQ:/ {Tszl (33 —2i-y )+TyzD2 (m —;—y )} dQ
Q Q

2 2
:/ (55 —;y )(anMﬁ—ngTyZ )dQ — / (a: + 32 > (D173 + Doty )dQ2
(o9} w
— Ti (ereryQ> dQ =0
Q

I, 2

en vertu des symétries de la section. En conséquence,

/ (027935 + 279715 + 279, 733)dQ2 = 2MJ0'v' + 200'T,) = 20/ (MJ9)"  (15.85)
Q
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compte tenu du fait que TO = Mg/.
La variation seconde de l’énergie de déformation s’écrit donc, en posant
My = Au(2),

14 4
52U = / (ELv"? + EK0"? + GJ0?)dz + 2\ / o' (uf)' dz (15.86)
0 0

15.13.1 Déversement d’une poutre soumise & un moment
quelconque et appuyée a ses extrémités de telle
facon que v=0et 6 =0

Ce genre d’appui correspond rigoureusement a une fourche articulée a ses
extrémités, voir figure 15.17. La variation de v dans (15.86) fournit les conditions

1%

FI1GURE 15.17 — Appui sur fourche.

ELo™ —Aub)” = 0 dans]0,/] (15.87)
v(0)=v({) = 0
ELw"(0) = ELw(0) = 0

De ’équation (15.87), on déduit

o
” = Ai
v Ely +ClZ+CQ

et, comme v” et 0 s’annulent aux extrémités, cela se raméne a

no
V= A—— 15.
v ¥, (15.88)
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Réintroduisons ce résultat dans (15.86). On a d’une part

£ 0 292
/ ELp %dz = \2 / P2 dz
0 0 EIy

et d’autre part, comme 6 = 0 aux extrémités,

‘ ‘ £ 202
0 wo
9 ’ "dy = 2y [_2/ » M — _9 2/
)\/0 v’ (uh)'dz = 2[v' b, ; T dz A . EI, dz

Y

Ceci raméne la variation seconde & l’expression suivante qui ne contient que le
champ 6 :

¢ L M292
§*U = / (EKO"? + GJ0"%)dz — \? / dz (15.89)
o o EI,

Il en découle la formule générale

¢ 1/2
0/2 EKG”2 d

I u202d>

Aer = /EIL, - GJ (ir;f

Traitons le cas particulier d’'un moment constant (x = 1). La variation de 6
dans (15.89) conduit alors a I’équation

EK0"Y —GJe — AQi =0
EI,

La solution générale de cette équation est
0 = Cicosaz + Cysinaz + Czch Bz 4+ Cysh Bz

avec

VG2 HANE — G
‘= 2EK » P=

JG2J? + 4)\2% +GJ

2EK

Les conditions en z = 0 sont

0 = 0 dou Ci+C5=0
7 = 0 dou alCi+pBC3=0
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ce qui implique C; = C5=0. En z = ¢,
0 = 0 dou Chsinal+ CyshpBl =0
07 = 0 dou —a?Cysinal+ 2Cyshfl =0
La compatibilité de ce systéme en Cy et Cy exige
sin alsh Bl(a® 4 ) =0

et, comme « et 3 sont positifs, cela implique

sinal =0
et, donc, C4 = 0. On obtient finalement

0 = Cysinaz

K 2,2
G2J2 +4X2— — GJ =2EK T
I, Iz

avec af = nm, soit

c’est-a-dire
K 2,2\ 2 2,2
GPJ? + 4= = (2BEK ) + @GP +4EK G
1 02 02
ou encore,
EI,GJ n?m? EK
2 y 2.2
= —- 1 _—
A e T ( 2 GJ)
La charge critique est donc
VEIL,GJ \/ 72 EK
Aer = ———m\/ 1+ —— 15.91
7 m/1+ IENeN; (15.91)

15.13.2 Remarque sur la répartition des charges [58]

Dans le probléme du déversement, si les charges ne sont pas appliquées sur
I’axe neutre, mais & une hauteur a par rapport a celui-ci, leur énergie potentielle
s’écrit (voir fig. 15.18)

P =—Plu+ a(l — cosb)]
si bien que
5P = —Pah?
et ce terme doit étre ajouté & la variation seconde :

82€ = 5°U — Pab? (15.92)
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FIGURE 15.18 — Effet déstabilisant de la hauteur du point d’application de la
charge.

15.13.3 Déversement d’une poutre appuyée sur des fourches
en ses deux extrémités, sous 1’effet d’une charge
centrale appliquée & une hauteur a par rapport a
Paxe neutre

On peut chercher une solution approchée de ce probléme par une technique
de Rayleigh-Ritz, en posant

0(z) = Osin % (15.93)
Le moment d’équilibre vaut
z
P§ dans ]0,¢/2|

P%’Z dans  10/2, (]



514 CHAPITRE 15. STABILITE DES SYSTEMES ELASTIQUES

Il vient alors, en tenant compte de la symétrie du probléme par rapport au point
d’application de la charge,

2 ‘ 2 ” 2P2 (12, NT?
& /O(EK9 +GK0 >dz_4EIx/0 2°0°dz — Pa {0 (2)]

pP2e2 [? Tz
_ 2 2 2.2 _ 2
= EK%S@ +GJ 9 24 I /0 z° sin i dz — Pa®

Pour le calcul de l'intégrale qui reste encore, on note que

£/2 2/2
/ 2% sin? dez = 1 / 1 —cos 2z dz
0 14 2 Jo L

B 2 2
= —77/ 22 cos 22 dz
8 2, ‘

&

VT 167r3/ ¢ cosgd

48 1673

1 1 246
= /3 — ) =
(48 + 87r2> 4872

= 63{1 L (26 cos € + (&2 2)sin§]g}

L’annulation de la variation seconde donne alors une équation du second degré
en P,

P24 Pa— —
2 GJ

(2 +6)¢3 2 1+ 2 EK
96m2ET, 20

o) o=

soit

5 96m%El.a 7 487* EI,GJ ﬁ% B
(72 4 6)¢3 m2+6 04 2 GJ)
La racine positive de cette équation de la forme

P24+ bP—c=0

est
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soit, explicitement,

2 EK
\/ELEGJ <1 + €2G<]>

P, = 17,16 e K (15.94)
avec
K = — ! : — (15.95)
\/1+12, 108—2W%2ECTIJ()+3,478z ST T

Pour les faibles valeurs du rapport a/¢, on peut écrire sans grande erreur

2
prGr(1+ T EE
2 GJ a EI,
¢ LV GI(1+=E5)

(15.96)
La formule (15.94) estime la charge critique avec un excés d’environ 3%. Les va-
leurs exactes ont été calculées par Timoshenko [85] & partir d’'un développement
en série.

P., =17,16
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Annexe A

Equations de ’élasticité en
coordonnées curvilignes
orthogonales

A.1 Introduction

Il n’est pas rare de devoir écrire les équations de 1’élasticité en coordonnées
curvilignes. Le plus souvent, il est vrai, il s’agit de coordonnées curvilignes or-
thogonales. Mais aprés un certain nombre de travaux dans ce cadre restreint
[14], nous sommes finalement arrivé & la conclusion que le chemin le plus simple
est encore d’examiner au départ le cas de coordonnées curvilignes quelconques,
puis de particulariser les résultats aux coordonnées curvilignes orthogonales. On
peut ainsi obtenir sans grand effort la forme générale des opérateurs courants —
gradient, divergence, rotationnel, laplacien — ainsi que ’expression générale des
déformations et des équations d’équilibre pour tout systéme orthogonal.

A.2 Coordonnées curvilignes

A.2.1 Base covariante

Soit P un point de I’espace euclidien & trois dimensions, dépendant de trois

coordonnées z!, 2% 23, de telle facon que P(x!, 22 2%) € C2%. On appelle base

o17
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covariante I’ensemble des trois vecteurs
gi = D;P (A1)

pour autant qu’ils soient linéairement indépendants. Tout vecteur a peut alors
étre mis sous la forme 4
a=a'g; (A.2)

Les nombres a’ sont appelés composantes contravariantes du vecteur a.

A.2.2 Tenseur métrique

Pour une variation infinitésimale dz? des coordonnées, le point P se déplace
d’un vecteur dP = g;dz*. [’élément de longueur correspondant est donné par

ds? = dP - dP = g;dz" - g;da’ = g;jda’dx’ (A.3)
ce qui fait apparaitre le tenseur métrique
9ij = &i " 8j (A4)

qui, par définition, est symétrique et défini positif. Son inverse est noté g*,
c’est-a-dire que _ _
glkgkj =J; (A.5)

A.2.3 Base contravariante

Appliquant le tenseur métrique inverse ¢*/ a la base covariante, on obtient
les vecteurs

g' =g"g; (A.6)
qui jouissent de la propriété suivante :
g g =9%gk g =9"g =0 (A7)

Ces vecteurs g’ forment la base contravariante. La propriété (A.7) exprime que
les deux bases sont biorthogonales. Tout vecteur a peut étre mis sous la forme

a=a;g' (A.8)

Les nombres a; sont appelés composantes covariantes du vecteur a. On notera
que

a-g; = ajgj c8i = aj(;g = a; (Ag)
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A.2.4 Produit scalaire de deux vecteurs

Etant donné deux vecteurs a et b, on a les quatre expressions suivantes de
leur produit scalaire :

a;gl - brgr = aibsp = alb’
4 alg; - bkg"”' = aibkéf = a';
a-b= ag-bg = gyaib (A.11)
aigl . bjgj = g”aibj

A.2.5 Produit mixte et produit vectoriel
Produit mixte de trois vecteurs

Le produit mizte (a,b,c) de trois vecteurs a, b et ¢ est un nombre défini

comme suit :

— Sa grandeur est égale au volume du parallélipipéde construit sur les trois
vecteurs en question.

— Son signe est positif si le triedre {a,b,c} a la méme orientation (dex-
trorsum ou sinistrorsum) que le triedre {g, g2, g3}, négatif dans le cas
contraire.

Il va de soi que cette définition n’est pas totalement indépendante de la base
choisie, puisque le produit mixte change de signe si I’on change ’orientation
d’un des vecteurs de base ou si 'on permute deux éléments de la base. C’est
pourquoi on dit que le produit mixte est un pseudo-scalaire.

Le produit mixte jouit de la propriété suivante :

(a7b7c)(d’evf) = (A].Q)

o oW
S oAy
o T
® 0o 0
6o T
= h

qu'il est facile de vérifier dans un systéme d’axes cartésiens rectangulaires, o

ar b
(37 b7 C) = ag b2 C2
az by c3

Introduisant alors le pseudo-tenseur de Lévy-Civitta

Eijk = (gi7 g5, gk) (A-13)
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on remarquera qu’il est totalement antisymétrique et ne posséde de ce fait qu’une
seule composante indépendante, & savoir

€123 = (81,82,83) >0

La propriété (A.12) entraine alors

2181 8182 8183
(6123)2 =| 8281 828 82:'83 | =49
2381 8382 8383

en notant g le déterminant du tenseur métrique. Il vient donc

€123 = \/g (A14)

Produit vectoriel

On définit alors le produit vectoriel a x b de deux vecteurs a et b par
axb=(a,b,gg"
Développant a et b dans la base covariante, on obtient alors
axb=ab (g, g 88" = cnija't/g"

soit, pour c = a x b,

L = e;ﬂ-jaibj (A.15)
De la méme facon, en posant
et = (g',¢7,8") = """ etmn (A.16)
on trouve )
123
e = % (A.17)

et, pour ¢ = a x b, il vient

¢t = e*a;by, (A.18)
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Produits de pseudo-tenseurs de Lévy-Civitta

La propriété (A.12) implique

62 st 6
€% pn = (&', 87, 8") (80, 8m &) = | 6] &1, &)
ot o ok

= 5309, 6F 4 570k 68 + 61 5168 — 6160 08 — 5163 5k — 5t 510k (A.19)
En particulier,

€9F e inn = 369 6% -5 6% 6% 63 — k5T 361 6% — 5 5% = 57 6k — 5% 63 (A.20)

m-n n-m m-n n-m m-n m-n m-n
il = 36% — §F = 25k (A.21)
et
Emké'ijk =6 (A.22)

A.3 Dérivation des vecteurs de base

A.3.1 Dérivées de la base covariante

Dans maintes applications, il est nécessaire de dériver les vecteurs de base.
A cette fin, on pose
Dygi - 8¢ =Tkei (A.23)

On donne aux I'gy; le nom de symboles de Christoffel de premiére espéce. Ils sont
symétriques par rapport a leurs indices extrémes, puisque

Irei = DiiP - gy

En projetant les dérivées de la base covariante sur la base contravariante, on
obtient
Dygi-g" = 9" Digi - &m = ¢""Thmi = T}/, (A.24)

Les F,fi sont appelés symboles de Christoffel de second espéce.

A.3.2 Dérivées de la base contravariante

Pour obtenir les dérivées de la base contravariante, notons que

Dyg'-g' = Di(g' -g0) — g Drge = -1}y (A.25)
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A.3.3 Relations entre les symboles de Christoffel et le ten-
seur métrique

On a immeédiatement
Digjr = Di(g; - gr) = Digj - gk + &5 - Digr = Tirg + T (A.26)

Ecrivons trois fois cette relation, en permutant les indices de maniére cyclique :

Digje = Tijk+Lik;
Djgri = Tjki+Ljik
Drgi; = Tkij + T

et soustrayons la deuxiéme relation de la somme des deux autres, puis divisons
par deux. On obtient, en tenant compte de la symétrie des symboles de Chris-
toffel par rapport & leurs indices extrémes, la relation fondamentale suivante :

1
Cijr = i(Digjk + Drgij — Djgi) (A.27)
Cette relation est trés utile, car elle permet de calculer les symboles de Christoffel
a partir du tenseur métrique.

A.4 Dérivation covariante d’un vecteur

La dérivation d’un vecteur nécessite a la fois la dérivation de ses composantes
et celle de la base. Pour u = u'g;, on a

Dyu = Dyu'g; + u'Dygi = Dyu'g; + u'T,ge = (Dpu’ +u'Ty g
La quantité entre parenthéses est appelée dérivée covariante et notée u'|y. Ainsi,
Dpu =u'lpg; avec u'lp = Dyu' + sz'éue (A.28)
Passons au cas u = u;g’. On a
Dyu = Dyu;g’ + u;Dyg’ = Dyuig’ — w, T} 8" = (Dyu; — T jue)g’
ce qui meéne a écrire

Dpu = u;|pg’  avec wug|p = Dyu; — F,fiue (A.29)
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A.5 Tenseurs du second ordre et leurs dérivées
covariantes

Un tenseur du second ordre est une grandeur & deux indices qui, appliquée
4 un vecteur, donne un nouveau vecteur. Plusieurs cas sont possibles :

1. a;;’ = ¢; (tenseur deux fois covariant)

2. a“b; = ¢’ (tenseur deux fois contravariant)
3. all! = ¢ (tenseur mixte)

4. albj = ¢;(tenseur mixte)

La dérivation covariante des tenseurs est définie par les relations

(@bl = aijlel +ayt|

(@9b)le = a"lub; + a'bjl

(a;-bj)\k = a;-|kb7 + a;-bj|k

(a7b;)

Examinons le cas d’un tenseur deux fois contravariant. Posant ¢ = a% bj, on
doit donc avoir

e = allkb; + albjl

x = D¢ + T yc* = a¥[ib; + a Dibj — a"T,f ;b

soit
Dyab; + a” Dyb; + T a7 b; = a7 |kbj + a’ Dyb; — a™' T ;b

ce qui équivaut a
a|kbj = (Dyai; + Ty pa +T,7 ,a")bg
Ceci devant étre vrai pour tout vecteur b;, on obtient
a|y = Dyay; + T} a + T/ ,a' (A.30)
On montrerait de méme que

aijlk = Draij — Flfiaéj - F;fjaie (A.31)

a;-\k = Dkaé- + Fkieag - I‘,fjaé (A.32)
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A.6 Lemme de Ricci

Calculons les dérivées covariantes du tenseur métrique. On a
9ijlk = Digij — T4l igej — szjgiz = Drgij — Ukji = Tkij =0

en vertu de (A.26). C’est le lemme de Ricci : les dérivées covariantes du tenseur
métrique sont nulles.
Le tenseur métrique inverse posséde la méme propriété. En effet, en dérivant
Iidentité
gijgj m=4"

1
on obtient . 4
Dgijg”™ + 9i;Drg’™ = 0
Contractons avec gP*. On obtient

9"'g"" Drg" + 8] Drg’™ =0

soit
Dkgpm — _gpigjnLDkgij
—9"" """ (Caj + Trji)
= *gjmrkpj - gplfk”?
Dés lors,

9"k = Drg™™ +Tf ;9" +Tyig" =0
Enfin, on a encore

S|k = Do +T7 67 —T,\m65, =0+T7, —T7, =0

k m71 %
Une conséquence importante de ce lemme est
aile = (9:50")|k = gi;0”[&

a'ly = (gYa)lk = 9" ajlx (A.33)

A.7 Propriétés de /g

Remarquons d’abord que ’élément de volume élémentaire se construit sur le
parallélipipéde formé par les trois vecteurs gidx’, godz? et gsda?, ce qui donne

dV = (gida’, goda?, gada®) = /g da'da’dx® (A.34)
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Les dérivées de /g sont tout-a-fait remarquables. En effet,

D;i(y/9) = Dici2s = (Dig1,82,83) + (g1, Dig2,83) + (81,82, Dig3)
.5 (g, g2, 3) + 15 (81, 26, 23) + 0% (21, 82, 8x)

En vertu des propriétés du produit mixte, cela donne
Di(v/g) =T e103 + T %e103 + T%e103 = V9T, (A.35)
Enfin, il y a lieu de signaler une identité utile :
Di(vgg') = (Divg)g' + VaDig' = g(Iihig' ~Ti'g") =0 (A.36)

que nous appellerons dans la suite identité de Jacobi®.

A.8 Opérateurs différentiels courants

A.8.1 Gradient

Etant donné une fonction scalaire ¢, on définit son gradient par la relation
dy = grady - dP
ce qui peut encore s’écrire
dy = grady - g;dz’

Or, on sait que
dy = D;pdz’

Par comparaison, on déduit que
grady - g; = Dy (A.37)

ce qui revient & dire que les dérivées courantes sont les composantes covariantes
du gradient.

1. Dans le cadre d’une présentation des coordonnées curvilignes par transformation des co-
ordonnées cartésiennes [14], le méme résultat se retrouve comme une propriété du déterminant
jacobien et est connu sous le nom d’identité de Jacobi [39]. 11 est donc légitime de conserver
cette appellation pour I’identité (A.36) ci-dessus qui est son strict équivalent géométrique.
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A.8.2 Elément de surface orienté

Considérons une fonction arbitraire ¢. On connait la relation d’Ostrogradski

/gradgpdV:/g&ndS (A.38)
v S

Le groupement ndS qui apparait dans 1’élément de surface est ce que nous
appellerons I’élément de surface orienté. Transposons la premiére intégrale de
la relation ci-dessus dans I’espace des coordonnées z*. Au volume V de I’espace
physique correspond le volume V'’ de ’espace des coordonnées. L’élément de
volume physique étant dV = ,/gdV’, on a

/gradgodV:/ VgDipg'dV’
v v

Notons S’ la frontiére de V' et soit v; le vecteur normal & cette surface. L’ap-
plication du théoréme d’Ostrogradski donne ici

/V / VaDipg'dV' = /S / Vavieg'dS' — /V / ©D;(y/9g")dV’ (A.39)

et le dernier terme du second membre est nul en vertu de I'identité de Jacobi.
L’identification des termes de surface de (A.38) et (A.39) pour toute fonction ¢
conduit alors & la relation

ndS = /gv;g'dS’

soit encore
n;dS =n-g;dS = \/§ude’ (A.40)

A.8.3 Divergence

La formule classique
/divudV:/u-ndS (A.41)
1% s
se transforme en
/ \/§divudV’:/ \/gu-giuids’z/ \/guiyids'z/ D;(/gu")av’
Vl S/ Sl V/

ce qui donne
1 A
diva = —D;(y/gu' A.42
NG (Vgu') (A.42)
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Tenant compte de I'expression (A.35) des dérivées de /g, on peut encore écrire
1 _ . . . _

divu = %(\/gDiu’ +uty/glm) = Dyt + T, 0k =l (A.43)

On déduit alors de (A.41) la relation fondamentale

/ u';dV = / u'n;dS (A.44)
Vv S

A.8.4 Laplacien

Le laplacien est défini par la relation
Ay = divgrady
ce qui, en vertu de (A.42) et de (A.37) traduit sous la forme
(grady)’ = g Dj¢p

entraine
1 .
Ap=—D;(\/99"” D, A45
=7 (V997 Djp) (A.45)

A.8.5 Rotationnel

Nous introduirons le rotationnel par la relation

/ rotudV = / n x udS
1% s

qui se transforme dans ’espace des coordonnées comme suit

// VgrotudV' = /S/ Vavig' x udS’ = /V/ D;(/9g" x u)dV’

En vertu de l’identité de Jacobi, la derniére intégrale se réduit a

/ /98" x DiudV’
V/
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On en déduit
rotu = g'x D;u
= g’ (g - g )urli
= g oL,
= gl (A.46)

On notera que
r _ T P m _ r
Py, |q = ePI" Dyu, + P4 L = P Dyu,

en vertu de la symétrie des symboles de Christoffel par rapport a leurs indices
extrémes. On obtient ainsi I’expression plus simple

rotu - g? =P Du, (A.47)

A.9 Tenseur des déformations de Green

Au cours de la déformation, un point P se transporte en P + u. On a alors
d(P 4+ u) = (DyP + Dyu)dz® = (gi + Dyu)dz®
et I’élément de longueur aprés déformation est donc donné par
AP +u)]®> = (gr+ Dru)dz” - (g¢ + Dyu)da’

= (gre+8r-Dia+gr Dyu+ Diu- D@U)d.’bkdl’z
= (9m+ 27;11 + ’yil)dxkdze

avec
1 1

e = g (ule +uelk) (A.48)

Yo = ulkgiugleg’ = ulruale (A.49)

A.10 Equations d’équilibre

Nous nous limitons ici au cas géométriquement linéaire. On écrit alors ey =
7j;- Pour un déplacement virtuel du, le théoréme des déplacements virtuels
L
s’écrit

/ (Jijéﬁij — fiou;)dV = / t'6u;dS =0 (A.50)
Vv S
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Or,
g 1 g g
/ 0'”5€Z‘jdv = */ a”(éuib + 5U]|1)dv = / a”éui|jdV
v 2 Jv v
Notons que le théoreme de la divergence entraine

/(aijéui)de:/Uij(Suinde
14 S

ce qui se développe en

/Uij‘j&lidv"‘/ Uij5ui|jdV:/Jij5umde
\4 \%4 S

/U”5u1|]dV:/cr”5umde—/ Jij|j5ul-dV
14 S v

Dés lors, (A.50) se raméne a

soit

7/ (O’ij |j + fl)éude + / (njaij — tz)dS = 0
v s
ce qui donne les équations d’équilibre

c;+f" = 0 dansV
n;o = t' sur S (A.51)

A.11 Coordonnées curvilignes orthogonales

Des coordonnées curvilignes sont dites orthogonales si leur tenseur métrique
est diagonal. Dans tout ce qui concerne ce type de coordonnées, nous ne suivrons
pas la convention de sommation d’Finstein et les sommes a4 effectuer seront
notées explicitement. Par définition, on a ici

i = hidi; (A.52)
avec h; = |g;|. On a immédiatement
V9 = hihahs (A.53)

Les symboles de Christoffel se calculent alors par la formule classique (A.29), ce
qui donne

1
Crie = i[Dk(h?(sié) + D(h20k;) — D;i(h36xe)]
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L’examen de ce résultat méne & la conclusion que deux indices au moins doivent
étre confondus pour trouver une valeur non nulle et que

Trre
Crik

Drik

On en déduit aisément

1
iDz(hi) = hxDehy,

1
—§Di(hi) = —hiD;hy,

1
§[Dk(hi) + Dy (hi) — Di(h3)] = hyiDihy, (A.54)
Dyhy,
Lt =
k¢ o
i krD;hy
Fk k = - h2
Dih
rk, = —2* (A.55)
hi;

et les dérivées covariantes se calculent comme suit

1. Pour i # k,

m
Uil = Dkui—g | T
m

Uil4

Dy.h; D;hy,
—  Dpu; — —Fy, —
kU hi u hk

Uy Uk
= hDp|—|—--—D;h A.
(h) - Di (A.56)

Uk

§ m
= Dz“i - Fz‘ iUm
m

m 7
= Dju; — E I — 1,

hi Dby D;h;
= Dju; + Z Uy — U

2
m#i m

3 (A.57)
=
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3. Pour i # k,
ully, = Dpu'+ ZI‘,} mu™

hxD;h Dyph; ;
- kh? kukJr ;; U

1 i oy Dihi

= Dkui

(A.58)

u'l; = Diul—FE Filmum
m

= D'+ Z L' + D
m#i

; D, h; ; Dih;
— DZ 7 m m'vr I3 (22
u —|—Zu —— Tu I

, h;
m#i
- hiDi(hiu)—kg(hmu Vo

(A.59)

A.12 Utilisation des composantes physiques

Il est d’usage, dans le cas des coordonnées curvilignes orthogonales, d’utiliser

la base dite physique,

e = % = g (A.60)

qui est orthonormée. Un vecteur s’écrit alors
a = E die,-
i
les a; étant ses composantes physiques. Comme
~ ~ 8i A i
ay de;=Y» a7 =Y ahg
, — " h; ,
K3 3 1

il est clair que
CLi =, a; = hldz (A61)
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Pour les tenseurs, on utilisera la condition d’invariance du scalaire

; bi¢; s
0 =a;b'd =a;j—-L =abé
J J hi h] J J
ce qui donne
aij = hihja;; (A.62)
et de méme,
ij 1 h;

ai = Lay (A.63)

Reprenons dans ce cadre les opérateurs usuels

A.12.1 Gradient
1
A.12.2 Divergence

divu = ;g Z D; (ygu') = \jg Z D; (f”) (A.65)
A.12.3 Rotationnel

1 N
rotu=— Y grepp Diug = — > eiwhserDi(hyi)

1
VI i VI
ce que ’on peut encore écrire

hiei hges hges
rotu = — D1 D2 D3 (A66)
hytty, hoiy  hails

A.12.4 Laplacien

1 .
Ap = ﬁ ;DZ (\/ﬁg”ngo) =— Z <\h/2§Di90> (A.67)

Q-
-
k
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A.12.5 Dérivées covariantes
Pour i # k, on tire de (A.56)
Uik = hy Dty — U Dihy,

et, par (A.57),

wil; = hyDit; + Z T
m#i

A.12.6 Déformations

Des formules précédentes, on déduit, pour i # k

25ik = thfLZ — ’LAl,lehk + thiﬁk — ﬁszhz

_ 2 1 hZD ﬁk
th(hz>+ (hk

En conséquence,

De méme,

éii uz|7. - D uz + E um

mi zm

:h2

A.12.7 Equations d’équilibre

933

(A.68)

(A.69)

(A.70)

(A.71)

La démarche la plus simple pour obtenir les équations d’équilibre consiste &
utiliser le principe des travaux virtuels. Pour une variation de déplacement &y,

on a, en vertu de (A.70) et (A.71)

651@1@ = ka(Suk
B
Pour i # k 0y = hikh;: Ot

5i
Pour £ £k 266, @Dz (Uk)
e R
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Le principe des travaux virtuels s’écrit donc, pour dty,

~ 1 ~ kh hk 5uk
—D D
/V/\/g O'kkhk k5uk+i§£k0uhhk5 k+ g O'ké e(hk
ffk&lk} AV’ =0

ce qui conduit a la condition d’équilibre intérieur

(o) 5

ko

Uke)-l-z\fan—ffk—o

i#£k
soit encore

00 (Yoo )+ S0 (Vo) ~ a4 =0 (A2

k ozk itk

A.13 Exercices

Exercice 49 Ecrire lexpression du gradient, de la divergence, du rotationnel,
du laplacien, des déformations et des équations d’équilibre en coordonnées cy-
lindriques.

Indication
rcos
P= rsin 6
z
cos 0 —rsind 0
g-=| sinf |, gyp= rcos 6 , 8=10
0 0 1

On vérifie aisément leur orthogonalité.

ds® = dr? + r2df? + dz>
Vi=r
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Exercice 50 Idem pour les coordonnées sphériques caractérisées par

7 sin 6 cos ¢
P=| rsinfcosyp
rcos 6

Indication
hr=1, hg=r, h,=rsind

Exercice 51 Idem pour les coordonnées elliptiques cylindriques, données par

les relations
ach&cosn

P=| ashé&sing
z

he = h, = a\/ch®€ —cos?n, h, =1

Indication
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