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Préface

Cet ouvrage est né d'un ensemble de cours que nous avons donné à l'École
Mohhamadia d'Ingénieurs à Rabat. Il n'est pas conçu comme une première
introduction à la mécanique des solides, mais comme une étude complémentaire
destinée à un public déjà au courant des résultats classiques de la résistance des
matériaux. Nous continuons en e�et de penser qu'une introduction inductive
à cette discipline permet, dans un premier temps, d'acquérir progressivement
une compréhension physique des principaux phénomènes de la mécanique des
solides. Le fait même que cette approche est limitée incite alors à aller plus loin,
ce qui motive un seconde approche, plus déductive et plus fondamentale.

L'élasticité est une science déjà ancienne et par conséquent, ses résultats
sont très nombreux. Il est donc nécessaire, dans le cadre d'un cours, de faire des
choix. Notre but a été d'essayer d'allier un niveau théorique acceptable à un souci
d'applicabilité � nos leçons sont destinées à des élèves ingénieurs mécaniciens.

Dans cet esprit, après un premier chapitre d'introduction mathématique,
nécessaire à la compréhension de la suite, nous abordons successivement la ci-
nématique des milieux déformables, le principe des travaux virtuels et l'étude
des corps hyperélastiques dans le cadre géométriquement non linéaire. Dans une
première lecture, on peut passer les sections relatives aux équations générales
de compatibilité, aux interprétations des contraintes de Kirchho�-Tre�tz, à la
stabilité locale et aux déformations avec variations de température.

Les équations de l'élasticité linéaire sont établies au chapitre 4. En ce qui
concerne la compatibilité, on peut, en première lecture, s'arrêter après les équa-
tions de Beltrami-Michell.

Suivent trois chapitres d'application. Le premier traite de la torsion des
poutres prismatiques, un problème où les insu�sances de la résistance des ma-
tériaux sont criantes. A côté de solutions exactes classiques, nous y introduisons
des méthodes variationnelles conduisant immédiatement à des solutions appro-
chées. Ceci prépare le lecteur à l'étude générale des principes variationnels, qui
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sera donnée plus loin. Les deux chapitres suivants forment un enchaînement :
le problème de Boussinesq est étudié parce qu'il sert de base au problème de
Hertz ; ce dernier trouve de nombreuses applications en mécanique, notamment
en théorie des roulements. Sa résolution est complète.

Nous exposons ensuite les principes variationnels, suivant la démarche de
Fraeijs de Veubeke. L'analyse duale, qui en est une conséquence, est développée
dans toute sa généralité, dans une approche qui nous est propre.

Le chapitre suivant est consacré à l'élasticité plane. Après l'établissement des
équations fondamentales et quelques exemples, nous développons la méthode de
résolution fondée sur l'utilisation de la variable complexe. Celle-ci est appliquée
aux problèmes habituels, ainsi qu'à quelques problèmes de concentration de
contrainte. Nous y avons ajouté une annexe relative aux disques d'épaisseur
variable en rotation, dans laquelle est présentée une méthode de conception des
roues de turbines originale et particulièrement simple.

Nous avons renoncé à développer la théorie rigoureuse des poutres de Barré
de Saint-Venant, qui est complexe et malheureusement, très insu�sante pour
les besoins de la pratique, puisqu'elle suppose les e�orts tranchants et la torsion
uniformes. Au lieu de cela, nous donnons ce que nous appelons une théorie
technique des poutres, fondée sur une approche variationnelle et incluant les
approches de Wagner pour la torsion non uniforme et de Vlassov pour les poutres
à parois minces ouvertes. Pour ces dernières, nous présentons d'ailleurs une
étude de la torsion plus rigoureuse que ce dernier auteur. Le cas des caissons est
également envisagé, avec une approche de type éléments �nis pour la recherche
du gauchissement et des champs de cisaillement de �exion.

La �exion des plaques est également étudiée dans un cadre variationnel.
Dans un premier temps, nous établissons la théorie de Reissner, puis nous envi-
sageons celle de Hencky et surtout, l'hypothèse de Kirchho�. Les résultats de ces
théories sont comparés et reliés entre eux. Nous présentons alors les méthodes
de résolution pour les rectangles (série double et série simple) et les plaques
circulaires.

Les théorèmes énergétiques extérieurs (Castiglano, Menabrea, Clapeyron,
Betti, Maxwell) sont souvent présentés d'une manière formelle et quelque peu
naïve faisant appel à des forces concentrées dont on sait bien, pourtant, qu'elles
mènent à une énergie in�nie en dehors de quelques cas particuliers. Rompant
avec cette tradition, nous les présentons comme des applications particulières
des principes variationnels, ce qui mène à un exposé précis et rigoureux. C'est
du reste l'occasion d'introduire le degré d'hyperstaticité.

Nous avons tenu à présenter la théorie des diagrammes d'in�uence, auxquels
nous continuons d'accorder un intérêt pratique et pédagogique très grand.
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Le dernier chapitre est consacré à la stabilité élastique. Outre la théorie
générale de la stabilité, nous y traitons un certain nombre de cas de bifurcation
courants, �ambage, voilement des plaques, déversement de poutres �échies.

En�n, nous avons consacré une annexe à l'écriture des équations de l'élasti-
cité en coordonnées curvilignes.

De nombreux exercices sont inclus. Parmi ceux-ci, certains sont de simples
applications, mais d'autres constituent des variantes de la théorie, des com-
pléments à celle-ci ou des théories approchées utiles que nous n'avons pas cru
bon d'inclure au texte principal, pour ne pas alourdir celui-ci. Beaucoup sont
entièrement résolus.

A la �n de la rédaction de cet ouvrage, nous avons une pensée particulière
pour nos anciens étudiants de Rabat qui, par leur exigence et leur soif de savoir,
nous ont conduit à un réel approfondissement de ces matières. Qu'ils en soient
remerciés.
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Chapitre 1

Préliminaires mathématiques

1.1 Préambule

Il est utile d'introduire des notations rendant l'établissement des équations
aussi simple que possible. Cet ouvrage fait usage des notations indicielles. Bien
qu'un peu déroutantes au premier abord, ces notations présentent le double
avantage d'être concises et d'abolir la nécessité de retenir un grand nombre
de formules du calcul vectoriel. Nous engageons donc le lecteur à consacrer sa
meilleure attention à ce chapitre introductif et à ne le quitter qu'après s'être
assuré qu'il le domine parfaitement, car de là dépend la compréhension des
chapitres qui suivent.

1.2 Vecteurs

Étant donné une base orthonormée (e1, e2, e3) de l'espace physique, on peut
décomposer tout vecteur u dans cette base, ce qui introduit les composantes ui
de ce vecteur :

u =

3∑
i=1

uiei (1.1)

Le vecteur est totalement déterminé par ses composantes et inversement, de
même qu'une fonction est déterminée par ses valeurs. D'ailleurs, on peut consi-
dérer le vecteur u comme une fonction de la variable i pouvant prendre les
valeurs 1, 2 et 3, fonction, disions-nous, qui à chaque valeur de i associe les

1
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composantes ui, comme l'illustre la �gure 1.1 1. Lorsque l'on manipule des fonc-

Figure 1.1 � Un vecteur considéré comme fonction de i=1,2,3

tions, il est courant de décrire les opérations sur les valeurs et non pas sur les
fonctions elles-mêmes. On écrira par exemple

f(x) = sin 2x+ cos2 x+ arctg x

notation dans laquelle on exprime les opérations à e�ectuer pour un x donné.
Personne n'écrira

f = g + h+ `

avec

g : x 7→ sin 2x

h : x 7→ cos2 x

` : x 7→ arctg x

tout simplement parce que cette notation est trop lourde.
En revanche, on trouve souvent tout normal d'écrire

graddiv u− rotrot u = f

1. Bourbaki [5] s'est servi de ce point de vue pour dé�nir les produits d'ensembles
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quitte à expliciter séparément les opérations � souvent longues � menant au
calcul e�ectif des composantes ! Ce faisant, on court encore le risque de ne pas
s'apercevoir que cette équation équivaut à

∆u = f

et peut être traitée par les méthodes propres aux problèmes harmoniques.
La notation indicielle est au calcul vectoriel ce que la notation f(x) est au

calcul des fonctions : l'écriture la plus élémentaire. En voici les règles. Elles sont
simples et ne nécessitent aucun e�ort de mémoire particulier.

Un vecteur est donc représenté par une composante générique : le vecteur u
se note ui. C'est précisément la présence de l'indice qui nous permettra de voir
qu'il s'agit d'un vecteur : un scalaire ne possède pas d'indice.

La somme de deux vecteurs ui et vi s'obtient en sommant les composantes.
On l'écrira donc tout naturellement

ui + vi (1.2)

et en général, une combinaison linéaire de deux vecteurs s'écrira

λui + µvi (1.3)

Une autre opération courante entre deux vecteurs est leur produit scalaire.
On sait que ce produit vaut

u · v =

3∑
i=1

uivi

On aurait donc pu décider de noter le produit scalaire sous cette forme. Néan-
moins, le signe

∑3
i=1 alourdit considérablement l'écriture de la formule et, à

vrai dire, on peut s'en passer moyennant une convention de notation introduite
par Einstein, qui consiste à dire que chaque fois qu'un indice est répété dans
un monôme, celui-ci représente en fait la somme des trois termes obtenus en
donnant successivement à cet indice les valeurs 1, 2 et 3. En conséquence, nous
écrirons

u · v = uivi (1.4)

L'indice i de cette expression, qui a pris toutes les valeurs possibles, disparaît
du résultat, qui est un scalaire. On dit que c'est un indice muet.

L'avantage de ces notations apparaît déjà lorsque l'on considère la relation

a · (b + c) = a · b + a · c
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qui, en calcul vectoriel classique, demande à être démontrée et retenue, alors
que nous l'écrirons sous la forme évidente

ai(bi + ci) = aibi + aici (1.5)

1.3 Tenseurs

Une grandeur bij à deux indices qui, appliquée à un vecteur cj , donne un
autre vecteur ai selon la loi

ai = bijcj (1.6)

est un tenseur du second ordre. Un vecteur est encore appelé tenseur du premier
ordre et un scalaire, tenseur d'ordre 0. Plus généralement, et par récurrence,
une grandeur bi1...ikj1...j` à (k+ `) indices qui, appliquée à un tenseur d'ordre `,
cj1...j` , donne un tenseur d'ordre k, ai1...ik selon la loi

ai1...ik = bi1...ikj1...j`cj1...j` (1.7)

est un tenseur d'ordre (k + `).
Le plus simple des tenseurs du second ordre est le tenseur de Kronecker,

dé�ni par

δij =

{
1 si i = j
0 si i 6= j

(1.8)

C'est bien un tenseur, car il applique un vecteur ai sur lui-même :

ai = δijaj (1.9)

Nous utiliserons également un tenseur du troisième ordre eijk, appelé alter-
nateur, et dé�ni par

eijk =

 +1 si (i, j, k) est une permutation paire de (1, 2, 3)
−1 si (i, j, k) est une permutation impaire de (1, 2, 3)

0 si (i, j, k) n'est pas une permutation de (1, 2, 3)
(1.10)

Ce tenseur permet d'exprimer le produit vectoriel ai de deux vecteurs bj et ck
par

ai = eijkbjck (1.11)
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comme on le véri�e aisément 2. Pour i = 2, par exemple, eijk ne di�érera de zéro
que si le triplet (i, j, k) vaut (2, 3, 1) (permutation paire) ou (2, 1, 3) (permutation
impaire), ce qui donne

a2 = e231b3c1 + e213b1c3 = b3c1 − b1c3

et l'on retrouve bien la deuxième composante du produit vectoriel.
La plupart des manipulations concernant l'alternateur reposent sur la for-

mule fondamentale
eijkeilm = δjlδkm − δjmδkl (1.12)

Tout d'abord, cette formule est évidente si j = k ou l = m. Il reste donc à
examiner le cas j 6= k, l 6= m. On remarque pour commencer que

eijk = det

 δi1 δi2 δi3
δj1 δj2 δj3
δk1 δk2 δk3

 (1.13)

ce qui entraîne

eijkeilm =

3∑
i=1

det

 δi1 δi2 δi3
δj1 δj2 δj3
δk1 δk2 δk3

 δi1 δl1 δm1

δi2 δl2 δm2

δi3 δl3 δm3


=

3∑
i=1

det

 1 δil δim
δji δjl δjm
δki δkl δkm


De ces déterminants, un seul peut ne pas être nul, celui pour lequel i, j et k
sont tous di�érents. Ce déterminant s'écrit

det

 1 δil δim
0 δjl δjm
0 δkl δkm

 = δjlδkm − δjmδkl

comme annoncé.
L'égalité (1.12) mène simplement à des relations qui, en calcul vectoriel clas-

sique, n'ont aucun caractère d'évidence. Calculons par exemple la valeur du
double produit vectoriel

d = (a× b)× c

2. En toute rigueur, l'alternateur est un pseudo-tenseur, car le produit vectoriel est un
pseudo-vecteur, changeant de sens lors du passage d'un système d'axes droitier à un système
d'axes gaucher.
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On a
di = eijk(a× b)jck = eijk(ejlmalbm)ck

Une permutation paire donne eijk = ejki, d'où

di = ejkiejlmalbmck = (δklδim − δkmδil)albmck

soit
di = albicl − aibkck

ce qui équivaut à la formule classique

d = b(a · c)− a(b · c)

1.4 Transformations d'axes

Étant donné une base orthonormée {ei}, comment passer à une autre base
orthonormée {Ei} ? Le principe est évidemment que les vecteurs doivent rester
le mêmes, ce qui s'écrit

u = uiei = UiEi (1.14)

Chaque vecteur de la base {ei} peut être décomposé dans l'autre base, sous
la forme

ei = TijEj (1.15)

La matrice de transformation T 3 possède d'ailleurs quelques propriétés liées à
l'orthonormalité des deux bases : on a en e�et

δij = ei · ej = TikTj`Ek ·E` = TikTjk (1.16)

ce qui signi�e qu'il s'agit d'unematrice orthonormale. On sait que le déterminant
d'une telle matrice vaut ±1. Dans le cas où il est positif, la transformation est
dite de signe positif et elle conserve le caractère droitier ou gaucher du système
d'axes. Dans le cas contraire, on dit que le transformation est de signe négatif
et elle inverse le caractère gaucher ou droitier du système d'axes.

La transformation inverse est

Ei = Tjiej (1.17)

Revenant au vecteur u, on aura donc

u = uiei = UjEj = UjTijei

3. Ce n'est pas un tenseur !
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soit
ui = TijUj (1.18)

Réciproquement,
Ui = Tjiuj (1.19)

Telle est donc la loi de transformation d'un vecteur. Examinons à présent
le cas d'un tenseur du second ordre. Nous avons dé�ni celui-ci par le fait qu'il
transforme un vecteur en un autre selon la loi

bi = aijcj

On en déduit successivement

bi = aijTj`C`

et
Bk = Tikbi = TikTj`aijC`

soit
Akl = TikTjlaij (1.20)

et, réciproquement,
aij = TikTjlAkl (1.21)

Plus généralement, on tenseur d'ordre n se transforme suivant la loi

ai1...in = Tj1i1 ...TjninAj1...jn (1.22)

1.5 Opérateurs de dérivation

Toujours par souci de concision, nous noterons Di la dérivée partielle ∂/∂xi
par rapport à la ie variable. Ainsi, le gradient d'un scalaire ϕ sera le vecteur de
composantes

Diϕ (1.23)

C'est bien un vecteur, car la di�érentielle de ϕ, qui est un scalaire, s'écrit

dϕ = Diϕdxi

où dxi est un vecteur.
La divergence d'un vecteur ui admettra la représentation simple

divu = Diui (1.24)
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et en rassemblant ces deux formules, on obtient le laplacien :

divgradϕ = Diiϕ = ∆ϕ (1.25)

où l'on a noté Dii pour DiDi.
Le rotationnel se construit à la manière du produit vectoriel : si ui est un

vecteur, son rotationnel ωi est donné par

ωi = eijkDjuk (1.26)

Ici encore, on obtient très aisément des formules utiles. Ainsi, le rotationnel
du rotationnel est donné par

(rot rot u)i = eijkDj(ekrsDrus)

= (δirδjs − δisδjr)Djrus

= Dijuj −Djjui

ce qui équivaut à
rot rot u = grad div u−∆u (1.27)

résultat que nous obtenons avec la plus grande aisance.

1.6 Théorème de Gauss-Ostrogradsky

Considérons un champ de tenseurs F , dont nous omettons ici les indices
éventuels, car ils ne jouent aucun rôle dans ce qui suit. Si V est un volume
su�samment régulier de surface S, et si ni est le vecteur normal à cette surface,
on a la formule générale ∫

V

DiFdV =

∫
S

niFdS (1.28)

Il su�t évidemment de démontrer cette proposition pour une valeur quelconque
de i, soit i = 1. On découpe le corps en prismes élémentaires, limités pour les
grandes valeurs de x1 par une surface dS+ et, de l'autre côté, par une surface
dS− (voir �gure 1.2). Ces prismes ont chacun une surface projetée sur le plan
(Ox2, Ox3) égale à dS0, d'où∫

V

D1FdV =

∫
S0

dS0

∫ x1+

x1−

D1Fdx1

=

∫
S0

(F+ − F−)dS0
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Figure 1.2 � Théorème de Gauss-Ostrogradsky

S0 étant la projection de S+ et S−, on a, en tenant compte des orientations
relatives,

dS0 = n+
1 dS+ = −n−1 dS−

ce qui entraîne∫
S0

(F+ − F−)dS0 =

∫
S+

F+n+
1 dS+ +

∫
S−

F−n−1 dS
−

soit �nalement, comme S = S+ ∪ S− ∪ S∗, où S∗ est l'éventuelle partie de la
surface où n1 = 0, partie dont la contribution est de toute façon nulle, on a bien∫

V

D1FdV =

∫
S

n1FdS

Voici quelques applications de ce théorème :
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Théorème de la divergence∫
V

DiuidV =

∫
S

nidS

soit ∫
V

div u dV =

∫
S

u · n dS

Théorème du gradient ∫
V

DiϕdV =

∫
S

niϕdS

soit ∫
V

gradϕdV =

∫
S

ϕndS

Théorème du rotationnel∫
V

eijkDjukdV =

∫
S

eijknjukdS

soit ∫
V

rot udV =

∫
S

n× udS

Formule d'intégration par parties Il convient encore de noter la formule
suivante, dite d'intégration par parties : si F et G sont deux tenseurs, on a∫

V

FDiGdV =

∫
S

FniGdS −
∫
V

GDiFdV (1.29)

résultat qui se déduit aisément du fait que∫
S

niFGdS =

∫
V

Di(FG)dV =

∫
V

FDiGdV +

∫
V

GDiFdV
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1.7 Éléments propres des tenseurs symétriques

1.7.1 Eléments propres

Un tenseur du second ordre aij est dit symétrique si l'on a toujours

aij = aji , i 6= j

Les composantes de ce tenseur peuvent être représentées dans le tableau a11 a12 a13

a22 a23

SYM a33

 (1.30)

qui montre à l'évidence que seules , six d'entre elles sont indépendantes.
Par application de ce tenseur sur un vecteur bj , on obtient en général un

autre vecteur
cj = aijbj

qui di�ère du vecteur de départ à la fois par sa norme et par son orientation.
Mais ne peut-on trouver des vecteurs bi particuliers dont l'image ne di�ère que
par la norme et, éventuellement, le sens, comme l'illustre la �gure 1.3. Il s'agit

Figure 1.3 � Vecteurs propres et impropres

d'obtenir la relation
aijbj = λbi (1.31)
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ou encore,

(aij − λδij)bj = 0

Matriciellement, cela revient à chercher les éléments propres de la matrice (1.30).
On sait qu'une matrice symétrique à n dimensions possède exactement n vec-
teurs propres orthogonaux entre eux. Soient donc

b(1) , b(2) , b(3)

les trois vecteurs propres orthonormés, correspondant aux trois valeurs propres
λ(1), λ(2) et λ(3). Les trois vecteurs en question sont appelés directions princi-
pales du tenseur, et les valeurs propres, valeurs principales.

1.7.2 Développement spectral du tenseur

Il est équivalent de donner les composantes du tenseur symétrique aij ou de
donner ses valeurs et directions principales 4, comme l'atteste la formule

aij =

3∑
k=1

λ(k)b
(k)
i b

(k)
j (1.32)

Pour démontrer cette formule, remarquons d'abord que tout vecteur ci admet
la décomposition

cj =
∑
k

(c`b
(k)
` )b

(k)
j

On a donc

aijcj =
∑
k

aijb
(k)
j b

(k)
` c`

=
∑
k

λ(k)b
(k)
i b

(k)
` c`

4. On pourrait croire que le nombre de paramètres est di�érent. En fait, il n'en est rien.
Pour dé�nir la première direction principale, il faut deux angles ; pour la seconde, il n'en faut
plus qu'un, car elle est orthogonale à la première, et la troisième direction principale se déduit
directement par orthogonalité aux deux premières. Il faut donc les trois valeurs propres et les
trois paramètres dé�nissant la base, ce qui fait bien 6 paramètres en tout.
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1.7.3 Caractère d'invariance des éléments propres

Lors d'une transformation de coordonnées, que devient l'équation (1.31) ?
Multipliant cette équation par Tik, on obtient

Tikaijbj = λTikbi = λBk

soit encore
TikaijTj`B` = λBk

ce qui équivaut à
Ak`B` = λBk (1.33)

Dès lors, les valeurs principales sont indépendantes du système d'axes choisi.
On dit qu'elles sont invariantes. L'équation caractéristique scalaire∣∣∣∣∣∣

a11 − λ a12 a13

a21 a22 − λ a23

a31 a32 a33 − λ

∣∣∣∣∣∣ = 0

a la forme générale
−λ3 + I1λ

2 − I2λ+ I3 = 0

avec

I1 = a11 + a22 + a33 (trace)

I2 =
1

2
(aiiajj − aijaij) (1.34)

I3 = det(aij)

Ses racines étant λ(1), λ(2) et λ(3), elle ne peut que s'écrire

(λ(1) − λ)(λ(2) − λ)(λ(3) − λ) = 0

ce qui entraîne

I1 = λ(1) + λ(2) + λ(3)

I2 = λ(1)λ(2) + λ(2)λ(3) + λ(3)λ(1) (1.35)

I3 = λ(1)λ(2)λ(3) (1.36)

Il en découle que ces trois grandeurs sont également invariantes, ce qui justi�e
qu'on les nomme les trois invariants d'un tenseur symétrique.
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1.7.4 Décomposition d'un tenseur symétrique en un ten-
seur isotrope et un déviateur

Le tenseur symétrique δij admet n'importe quel vecteur comme vecteur
propre, avec la valeur propre 1. En conséquence, si aij est un tenseur symé-

trique de directions principales b(1)
i , b(2)

i , b(3)
i et de valeurs principales λ(1), λ(2),

λ(3), on aura
(aij − αδij)b(k)

j = (λ(k) − α)b
(k)
i (1.37)

Le second invariant du tenseur du premier membre vaudra donc

I2,α = (λ(1) − α)(λ(2) − α) + (λ(2) − α)(λ(3) − α) + (λ(3) − α)(λ(1) − α)

= I2 − 2αI1 + 3α2

et admet, pour α = I1/3, un minimum égal à

Î2 = I2 −
I2
1

3
(1.38)

Le tenseur ainsi obtenu s'appelle déviateur de aij et on le note âij :

âij = aij −
1

3
a``δij (1.39)

Son premier invariant est nul :

Î1 = aii −
1

3
a``δii = 0

et son second invariant prend la forme

Î2 =
1

2
(âiiâjj − âij âij) = −1

2
âij âij (1.40)

Il est donc toujours négatif et sa nullité entraîne celle du déviateur tout entier,
dont (−Î2) constitue une norme.

On en déduit par ailleurs qu'un tenseur symétrique dont les deux premiers
invariants sont nuls est nul. En e�et,

aij = âij +
I1
3
δij

et par la formule (1.38), Î2 est nul.
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1.8 Structure des tenseurs antisymétriques du se-
cond ordre

Un tenseur ωij est antisymétrique si

ωij = −ωji (1.41)

En particulier, ses termes diagonaux sont nuls. Introduisant le (pseudo-) vecteur

ωk =
1

2
ekijωij (1.42)

on obtient alors

epqkωk =
1

2
epqkekijωij

=
1

2
(δpiδqj − δpjδqi)ωij

=
1

2
(ωpq − ωqp)

= ωpq

ce qui illustre la correspondance biunivoque entre le tenseur ωij et le vecteur
ωk. L'expression

ωij = eijkωk (1.43)

est la forme canonique des tenseurs antisymétriques du second ordre.

1.9 Exercices

Exercice 1 Calculer l'expression (a× b) · (c× d)

Solution - Le résultat fi est donné par

fi = eijkajbkeirscrds

= (δjrδks − δjsδkr)ajbkcrds
= ajcjbkdk − ajdjbkck

ce qui revient à dire que

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c)
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Exercice 2 Montrer que si aij est un tenseur symétrique, on a eijkajk = 0. En
déduire que divrot u = 0.

Solution - On a en e�et, en changeant le nom des indices muets,

eijkajk =
1

2
(eijkajk + eikjakj)

et, en vertu de la symétrie de aij , le second membre s'écrit encore

1

2
(eijk + eikj)ajk = 0

car eijk = −eikj .
La seconde assertion résulte du fait que

divrot u = Di(eijkDjuk) = eijkDijuk

avec Dij = Dji.

Exercice 3 Montrer que rot gradϕ = 0

Exercice 4 Démontrer la formule de Green∫
V

f∆gdV −
∫
V

g∆fdV =

∫
S

f
∂g

∂n
dS −

∫
S

g
∂f

∂n
dS

Exercice 5 ∗ A partir de la formule de Gauss-Ostrogradsky, démontrer la for-
mule de Stokes-Ampère ∫

S

rotu · ndS =

∫
C
u · tds

t étant la tangente au contour C de la surface, orientée suivant la règle du
tire-bouchon autour de la normale. La surface S sera supposée projetable sans
recouvrement sur un plan.

Solution - Soit V le volume du cylindre limité par la surface S et sa projection
S0, et soit S` sa surface latérale (�g. 1.4). Pour un vecteur vi quelconque, on a
alors

0 =

∫
V

eijkDijvkdV

=

∫
S

nieijkDjvkdS +

∫
S0

nieijkDjvkdS +

∫
S`

nieijkDjvkdS



1.9. EXERCICES 17

Figure 1.4 � Stokes-Ampère

Étant donné un vecteur ui sur la surface S de hauteur h(x, y), nous choisissons
arbitrairement l'interpolation

vi(x, y, z) =
z

h(x, y)
ui(x, y)

Dès lors, la contribution sur S0 est nulle. Sur la surface latérale, l'intégrand
vaut, dans le système d'axes (β, z, n),

(Dβvz −Dzvβ) =
z

h
(Dβuz −Dzuβ)− z

h2
uzDβh−

1

h
uβ

d'où, en notant C0 la projection de C sur le plan de base,∫
S`

(Dβuz −Dzuβ)dS =

∫
C0
dβ

∫ h

0

[
z

h
Dβuz −

z

h2
uzDβh−

uβ
h

]dz

=

∫
C0

[
h

2
Dβuz −

1

2
uzDβh− uβ ]dβ

=

∫
C0
Dβ(

h

2
uz)dβ −

∫
C0

(uβ + uzDβh)dβ

= −
∫
C0

(uβ + uzDβh)dβ

Or, sur C, on a (�g. 1.5)
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Figure 1.5 � Tangente à C

ds = bβeβ +Dβhdβez

si bien que cette intégrale de contour n'est autre que

−
∫
C
u · ds

Au total, on obtient bien∫
S

rotu · ndS −
∫
C
u · ds = 0

Exercice 6 Montrer les relations

1.
∫
S
xjnjdS = (mesV )δij

2.
∫
S
nidS = 0

3.
∫
S
eijknjxkdS = 0

où S est la surface frontière d'un volume V .



Chapitre 2

Cinématique des corps
continus déformables

2.1 Description du mouvement

Considérons un corps continu occupant, dans un état de référence arbitraire,
un volume V . Un point quelconque de ce corps peut être repéré, dans cet état
de référence, par ses coordonnées xi dans un repère cartésien.

Imaginons que ce corps se déforme en fonction d'un paramètre d'évolution
t, qui pourra être le temps (bien que cette identi�cation ne soit pas nécessaire
en statique). Il prendra donc, à l'instant t, une autre con�guration, occupant un
volume V (t). Un point situé en xi dans la con�guration de référence, prendra
alors une nouvelle position, de coordonnées ξi dans le même repère cartésien
(�g.2.1). On appelle déplacement de ce point le vecteur

ui = ξi − xi (2.1)

Il est clair que l'on peut considérer ce déplacement aussi bien comme une fonc-
tion des coordonnées de départ xi que comme une fonction des coordonnées
d'arrivée ξi. Les premières sont appelées coordonnées matérielles pour la rai-
son que dé�nir un corps dans une con�guration de référence, convenue une fois
pour toutes, revient en quelque sorte à � donner un nom �à chaque particule.
D'ailleurs, en supposant que l'on ait pu graver un réseau de coordonnées sur
le corps dans cette position, ce réseau se retrouvera, déformé bien sûr, dans la
position au temps t, où il dé�nira un système de coordonnées curvilignes que

19
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Figure 2.1 � Déplacement

l'on appelle les coordonnées convectées. Ces coordonnées ont toujours, pour un
point matériel donné, la même valeur que les coordonnées matérielles (�g. 2.2).

Figure 2.2 � Coordonnées convectées

Utiliser les coordonnées matérielles pour décrire le déplacement, c'est donc
parler du déplacement du point qui, en t = 0, occupait la position xi : il s'agit
d'une description lagrangienne.

A l'inverse, les coordonnées ξi donnent la position spatiale du corps au temps
t, ce qui leur vaut le nom de coordonnées spatiales. Décrire le mouvement à
l'aide des coordonnées spatiales, c'est donc parler du déplacement du point qui,
à l'instant t, occupe la position ξi : il s'agit d'une description eulérienne.

2.2 Choix de la description

En mécanique des �uides, la plupart des problèmes consistent à étudier des
écoulements perpétuels, bien qu'éventuellement variables, et on s'intéresse gé-
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néralement aux champs de vitesses et de pressions dans une portion détermi-
née de l'espace, sans se soucier des positions préalables des particules. Dans
ces circonstances, la description eulérienne s'impose. Seuls, quelques problèmes
d'oscillations admettent une formulation lagrangienne plus élégante [14].

Au contraire, en calcul des structures, les corps considérés sont fréquemment
anisotropes ou même inhomogènes et, presque toujours, de forme compliquée.
La seule con�guration où les directions d'anisotropie, les frontières de matériaux
di�érents et, plus simplement, la forme des corps, sont connues, est la position
de référence. C'est pourquoi la description lagrangienne est de règle dans le cal-
cul des structures, et nous l'adopterons toujours dans ce qui suit. Remarquons
qu'en conséquence, les volumes et les surfaces considérés dans les diverses inté-
grations sont toujours des volumes et des surfaces de référence, indépendantes
des déplacements.

2.3 Tenseur des déformations de Green

Nous dirons qu'un corps se déforme si la distance entre deux au moins de
ses points varie. Comment mesurer cette déformation ? Comme la distance est
une notion cumulative le long d'un segment de droite, il su�t en fait de mesurer
la variation de distance dans le voisinage de chaque point. Soit donc P (xi) un
point quelconque du corps, et Q(xi + dxi) un point voisin. La déformation les
amène respectivement en P ′(ξi) et Q′(ξi + dξ), avec (�g.2.3)

Figure 2.3 � Dé�nition de la déformation

{
ξi = xi + ui

ξi + dξi = (xi + dxi) + (ui + dui)
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Dans la con�guration de référence, la distance entre ces deux points est donnée
par

ds2 = dxidxi

La déformation transforme cette distance en

ds′2 = dξidξi = (dxi + dui)(dxi + dui)

Exprimant dui comme la di�érentielle du déplacement :

dui = Djuidxj

on obtient

ds′2 = (dxi +Djuidxj)(dxi +Dkuidxk)

= (δij +Djui)dxj(δik +Dkui)dxk

= (δjk +Djuk +Dkuj +DjuiDkui)dxjdxk

Pour savoir si cette distance di�ère de la distance de référence, il su�t d'en faire
la di�érence. L'usage veut que l'on en calcule plutôt la demi-di�érence :

1

2
(ds′2 − ds2) =

1

2
(Djuk +Dkuj +DjuiDkui)dxjdxk = γjkdxjdxk (2.2)

où apparaît le tenseur symétrique

γjk =
1

2
(Djuk +Dkuj +DjuiDkui) (2.3)

appelé tenseur des déformations de Green. fait remarquable, à partir des six
composantes indépendantes de ce tenseur en un point, il est possible de calculer
la variation des longueurs in�nitésimales dans toutes les directions autour du
point considéré : il su�t en e�et, à partir du vecteur dxi, de calculer γjkdxjdxk.

* Remarque La description ci-dessus considère que la déformation se mesure
uniquement par des variations de longueur. En se rappelant la structure micro-
scopique de la matière, on conçoit sans peine que l'orientation relative de deux
particules voisines puisse jouer un rôle, menant à des con�gurations physique-
ment di�érentes, bien que γij = 0 partout (�g.2.4). (Ce serait le cas à cause
d'e�ets magnétiques, par exemple). Dans ce cas, il faudrait encore pouvoir me-
surer les variations d'orientation. De tels e�ets sont ignorés dans le cadre de
la théorie classique des milieux continus. Il existe cependant des théories dites
asymétriques où des e�ets de ce genre sont pris en compte à l'aide de couples
de contrainte (stress couples) [58, 10].
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Figure 2.4 � E�et de l'orientation des particules

2.4 Interprétation du tenseur de Green

Pour interpréter les composantes du tenseur des déformations, il est utile de
faire appel aux coordonnées convectées. La base (ei, i = 1, 2, 3) des coordonnée
matérielles véri�e évidemment la relation

ei = DiP (2.4)

Son image après déformation est donnée par les vecteurs

gi = DiP
′ (2.5)

formant la base (covariante) locale des coordonnées convectées. Insistons sur le
fait qu'en chaque point, la base (gi) peut avoir une orientation di�érente et que
le plus souvent, |gi| 6= 1.

La distance entre deux points voisins P et P + dP est donnée, dans la
con�guration de référence par

ds2 = dP · dP = dxidxi

Dans la con�guration déformée, on a

dP′ = gidxi

si bien que
ds′2 = dP′ · dP′ = gidxi · gjdxj = gijdxidxj (2.6)
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où s'introduit le tenseur métrique de la con�guration déformée

gij = gi · gj (2.7)

qui est visiblement symétrique. La comparaison des équations (2.6) et (2.2)
donne visiblement

γij =
1

2
(gij − δij) (2.8)

Examinons d'abord une composante diagonale de γij , γ11 pour �xer les idées.
Le vecteur e1 prend, au cours de la déformation, une longueur

|g1| = |e1|(1 + ε) = 1 + ε (2.9)

ε étant son allongement proportionnel, au sens de la résistance des matériaux.
On a

g11 = |g1|2 = 1 + 2ε+ ε2

d'où

γ11 =
1

2
(g11 − δ11) =

1

2
(1 + 2ε+ ε2 − 1) = ε+

ε2

2
(2.10)

Lorsque l'allongement proportionnel est petit, il vient simplement

γ11 ≈ ε (2.11)

Pourquoi, se demandera-t-on, n'avoir pas essayé de généraliser les allonge-
ments proportionnels de l'ingénieur, plutôt que d'introduire une autre mesure
de déformation ? La réponse est qu'une telle approche, bien que possible, mène
à un tenseur n'ayant pas de forme analytique simple avec les déplacements (dé-
formation de Jaumann, [34, 36]. (Voir aussi exercice 10).

L'interprétation des termes croisés est aussi simple. Nous examinerons le
terme γ12. Dans la con�guration de référence, les vecteurs de base e1 et e2 sont
orthogonaux,

e1 · e2 = 0

Dans la con�guration déformée, les vecteurs g1 et g2 véri�ent, en vertu de (2.8)

|g1| =
√

1 + 2γ11 , |g2| =
√

1 + 2γ22

et
g1 · g2 = e1 · e2 + 2γ12 = 2γ12
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Le cosinus de l'angle θ12 entre g1 et et g2 est donc donné par

cos θ12 =
g1 · g2

|g1||g2|
=

2γ12√
1 + 2γ11

√
1 + 2γ22

(2.12)

Pour de petites déformations, on a

cos θ12 = sin(
π

2
− θ12) ≈ π

2
− θ12

et √
1 + 2γ11 ≈ 1 ,

√
1 + 2γ22 ≈ 1

si bien que
π

2
− θ12 ≈ 2γ12 (2.13)

ce qui signi�e que les termes croisés du tenseur de Green mesurent la variation
des angles droits.

2.5 Équations de compatibilité

Nous avons vu comment calculer le tenseur des déformations à partir des
déplacements. Posons-nous à présent le problème inverse [81, 53] : on donne
en chaque point le tenseur de Green γij ou, ce qui est équivalent, la métrique
déformée gij , et on désire retrouver les coordonnées ξi ou les déplacements ui.
Ce problème admet-il une solution ? Si oui, est-elle unique ?

Nous ne discuterons ici que le cas de corps simplement connexes. Supposons
connue la position P′ d'un point matériel P. Pour en déduire la position de ses
voisins, il faut intégrer les équations

DiP
′ = gi

Mais les gi eux-mêmes ne sont pas encore connus, et il faudra aussi que nous
les intégrions. Sur ce point, notons d'abord la condition d'intégrabilité

Digj = DijP
′ = Djgi (2.14)

Comme préliminaire à l'intégration de la base {gi}, remarquons que le ten-
seur métrique gij admet toujours un inverse gij dé�ni par la relation

gimgmj = δij
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car la matrice {gij} est dé�nie positive. On peut, à partir de cette inverse, dé�nir
une seconde base

gi = gijgj

qui véri�e visiblement

gi · gj = gikgk · gj = gikgkj = δij

Pour distinguer les deux bases, on appelle {gi} base covariante et {gi} base
contravariante. Selon la base choisie, on écrira

a = aigi ou a = aig
i

distinguant soigneusement les composantes contravariantes (indice supérieur)
des composantes covariantes (indice inférieur). Ceci étant, si l'on pose

a = aig
i

on a
a · gj = aig

i · gj = aiδ
i
j = aj

et, de même,
a · gi = ai

Nous pouvons à présent examiner l'intégration de la base covariante {gi}.
Si cette base est connue en un point, il faut intégrer à partir de ce point les
équations

Dkgi = (Dkgi · gj)gj = Γkjig
j (2.15)

où les Γkji, dits symboles de Christo�el, doivent véri�er, en vertu de (2.14)

Γkij = Dkgi · gj = Digk · gj = Γijk (2.16)

c'est-à-dire être symétrique par rapport à leurs indices extrêmes. Nous allons
montrer que ces symboles peuvent être déduits du tenseur des déformations. On
a en e�et

Dkgij = Dk(gi · gj) = Dkgi · gj + gi ·Dkgj = Γkji + Γkji (2.17)

(lemme de Ricci). Écrivant cette relation en permutant les indices, on obtient
les trois relations

Dkgij = Γkij + Γkji

Djgki = Γjki + Γjik

Digjk = Γijk + Γikj
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dont on tire, en vertu de (2.16)

Γkij =
1

2
(Dkgij +Djgki −Digjk) (2.18)

De plus, comme
Dkgij = Dk(δij + 2γij) = 2Dkγij

on obtient
Γkij = Dkγij +Djγki −Diγjk (2.19)

Cette relation permet de calculer, à partir des déformations, les symboles de
Christo�el dont on a besoin pour intégrer la base covariante à partir des équa-
tions (2.15). Il reste encore à se poser la question de la compatibilité de ces
équations, qui ne sera réalisée que si les dérivées croisées sont égales, ce qui
s'écrit

Dp(Dqgi) = Dq(Dpgi) (2.20)

Calculons donc

Dp(Dqgi) = Dp(Γqjig
j) = gjDpΓqji + ΓqjiDpg

j

Pour obtenir les dérivées de la base contravariante (gj), notons que

0 = Dpδ
j
m = Dp(g

j · gm) = gm ·Dpg
j + gj ·Dpgm

ce qui entraîne

Dpg
j = (gm ·Dpg

j)gm

= −(gj ·Dpg
m)gm

= −gj`(g` ·Dpgm)gm

= −gj`Γp`mgm

et
Dp(Dqgi) = gm(DpΓqmi − gj`Γp`mΓqji)

La condition de compatibilité s'écrit donc

Rmipq = DpΓqmi −DqΓpmi − gj`(Γp`mΓqji − Γq`mΓpji) = 0

On notera que le tenseur Rmipq est connu sous le nom de tenseur de courbure.
Il nous reste à l'expliciter en termes des déformations. On a

DpΓqmi = Dp(Dqγmi +Diγmq −Dmγiq)

= Dpqγmi +Dpiγmq −Dpmγiq
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et, en permutant les indices p et q,

DqΓpmi = Dpqγmi +Dqiγmp −Dqmγpi

ce qui mène à la forme �nale des équations de compatibilité,

Dpiγmq +Dqmγpi −Dpmγiq −Dqiγmp
−gj`{(Dpγ`m +Dmγp` −D`γpm)(Dqγji +Diγjq −Djγiq)
−(Dqγ`m +Dmγq` −D`γqm)(Dpγji +Diγpj −Djγpi)} = 0

(2.21)

A priori, le tenseur de courbure possède 34 = 81 composantes. Cependant,
elles ne sont pas toutes indépendantes En e�et, on peut véri�er que Rimpq = −Rmipq (a)

Rmiqp = −Rmipq (b)
Rpqmi = Rmipq (c)

La relation (a) réduit à trois le nombre de valeurs du couple (i,m) pour lesquelles
les Rimpq sont indépendants et non nuls, à savoir,

(i,m) = (1, 2), (2, 3) et (3, 1)

De même, la relation (b) permet de ne considérer que les couples

(p, q) = (1, 2), (2, 3) et (3, 1)

En�n, en vertu de la relation (c), la matrice R1212 R1223 R1231

R2312 R2323 R2331

R3112 R3123 R3131


est symétrique, donc compte six composantes indépendantes, à savoir,

R1212, R1223, R1231, R2323, R2331, R3131

Les équations de compatibilité sont donc au nombre de six.
Récapitulons. Supposant les équations de compatibilité (2.21) véri�ées, on

peut intégrer les équations (2.15). Il reste à se donner la base {gi} en un point
P0 arbitraire. Le choix des gi(P0) devra véri�er les conditions

|g1(P0)|2 = 1 + 2γ11(P0)
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et de même pour les deux autres vecteurs de base, ce qui �xe leurs normes. Les
angles entre les vecteurs de base sont �xés par les conditions

gi(P0) · gj(P0) = 2γij(P0), i 6= j

L'orientation de cette base locale est cependant arbitraire : les bases convectées
sont dé�nies à une rotation près.

Les gi étant déterminés, on peut calculer les coordonnées de tous les points
en intégrant les relations

DiP
′ = gi

mais il faut encore se donner les coordonnées ξi(P0) du point où démarre le
processus d'intégration, ce qui donne encore la liberté d'une translation du corps.

En conclusion, un champ de tenseurs symétriques γij ne peut être un champ
de déformation de Green, c'est-à-dire avoir la forme

γij =
1

2
(Diuj +Djui +DiumDjum)

que s'il véri�e les six équations de compatibilité (2.21). Dans ce cas, le champ
de déplacement ui est déterminé à une translation et une rotation près.

2.6 Hypothèses simpli�catrices

Les équations de compatibilité (2.21) s'appliquent dans le cas général des
grandes déformations. Malheureusement, elles sont compliquées, d'une part par
leur non-linéarité (équations presque linéaires) et par le fait que le tenseur de
déformation apparaît implicitement dans gij . En restreignant le champ de l'ana-
lyse, on peut les simpli�er quelque peu.

2.6.1 Petites déformations

L'hypothèse des petites déformations consiste à poser

sup
a6=0

|γijaiaj |
aiai

≤ Γ� 1 pp dans V (2.22)

c'est-à-dire que les déformations principales sont inférieures en valeur absolue à
Γ. Cette hypothèse, très généralement applicable aux métaux dans le domaine
élastique, permet d'écrire

gij = δij +O(Γ), gij = δij +O(Γ)
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et ramène les équations de compatibilité à la forme approchée plus simple [53]

Dpiγmq +Dqmγpi −Dpmγiq −Dqiγmp
−(Dpγjm +Dmγpj −Djγpm)(Dqγji +Diγjq −Djγiq)
−(Dqγjm +Dmγqj −Dj lγqm)(Dpγji +Diγpj −Djγpi)} = 0

(2.23)

où les γij n'apparaissent plus que sous forme explicite.

2.6.2 Petits déplacements

L'hypothèse dite des petits déplacements � il serait plus correct de dire des
petits gradients de déplacement � consiste à poser

sup
i,j
|Djui| ≤ Γ� 1 pp dans V (2.24)

Cette hypothèse, plus forte que la précédente, entraîne

γij = 1
2 ( Diuj+ Djui+ DiumDjum) ≈ 1

2 (Diuj +Djum) = εij
O Γ Γ Γ2

(2.25)
Nous démontrerons indépendamment au chapitre 5 que les équations de com-
patibilité pour les déformations linéaires εij sont

Dpiεmq +Dqmεpi −Dpmεiq −Dqiεmq = 0

soit les relations (2.23) où les produits de γij sont négligés devant leurs dérivées.

2.6.3 Gradients de déplacements modérés

Il s'agit d'un hypothèse intermédiaire entre les deux précédentes, bien utile
en théorie de la stabilité (bifurcation de l'équilibre). Elle suppose de toute façon
que les déformations sont petites (O(Γ)), mais ajoute une hypothèse que l'on
peut présenter de deux façons équivalentes :

Première dé�nition : on admet que, quels que soient i et j, on a

|Diuj | ≤ O(Γ1/2) (2.26)

Dans ce cadre, on a

2γ11 = 2D1u1+ (D1u1)2+ (D1u2)2+ (D1u3)2

O Γ Γ Γ Γ
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ce qui entraîne visiblement
D1u1 = O(Γ)

L'examen de γ22 et de γ33 donne de même

D2u2 = O(Γ) et D3u3 = O(Γ)

Deuxième dé�nition : on admet que

D1u1 = O(γ), D2u2 = O(Γ) et D3u3 = O(Γ) (2.27)

Moyennant cette hypothèse, on a

2(γ11 −D1u1) = O(Γ) = (D1u2)2 + (D1u3)2

ce qui n'est possible que si

D1u2 = O(Γ1/2) et D1u3 = O(Γ1/2)

De la même façon, l'examen de γ22 conduit aux conditions

D2u1 = O(Γ1/2) et D2u3 = O(Γ1/2)

et celui de γ33, aux conditions

D3u1 = O(Γ1/2) et D3u2 = O(Γ1/2)

de sorte que les conditions (2.26) sont également véri�ées. Les deux présentations
sont donc équivalentes.

Dans ce cadre, on peut simpli�er l'expression des déformations de Green à
condition d'admettre une erreur O(Γ2) sur les déformations directes et O(Γ3/2)
sur les déformations croisées. En e�et, considérons d'abord γ11. Le terme 1

2 (D1u1)2

est O(Γ2), donc on peut écrire

γ11 = D1u1 +
1

2
(D1u2)2 +

1

2
(D1u3)2 +O(Γ2) (2.28)

Par le même raisonnement,

γ22 = D2u2 +
1

2
(D2u1)2 +

1

2
(D2u3)2 +O(Γ2) (2.29)

γ33 = D3u3 +
1

2
(D3u1)2 +

1

2
(D3u2)2 +O(Γ2) (2.30)
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Passons aux déformations croisées. On a

2γ12 = D1u2 +D2u1+ D1u1D2u1+ D1u2D2u2+ D1u3D2u3

O Γ Γ3/2 Γ3/2 Γ

ce qui permet d'écrire

2γ12 = D1u2 +D2u1 +D1u3D2u3 +O(Γ3/2) (2.31)

et, de la même façon, on obtient aisément

2γ23 = D2u3 +D3u2 +D2u1D3u1 +O(Γ3/2) (2.32)

2γ31 = D3u1 +D1u3 +D3u2D1u2 +O(Γ3/2) (2.33)

2.7 Exercices

Exercice 7 Déterminer, à partir de l'expression générale des déformations de
Green, un champs de déplacement conduisant à

γ11 = γ22 = γ33 = 0

2γ12 = α

γ13 = γ23 = 0

Solution - On cherchera un déplacement de la forme suivante :

u1 = A(y), u2 = B(y), u3 = 0

Il vient alors

γ11 = 0

γ22 = B′ +
1

2
A′2 +

1

2
B′2 = 0

γ33 = 0

2γ12 = A′ = α

2γ13 = 0

2γ23 = 0

On en déduit
0 = B′2 + 2B′ +A′2 = B′2 + 2B′ + α2
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soit
B′ = −1±

√
1− α2

Cette solution n'a de sens que si |α| < 1, ce qui est bien normal si l'on veut bien
se référer à l'interprétation (6.12) des déformations croisées. Pour α = 0, on doit
avoir B′ = 0, ce qui mène à choisir le signe + pour le radical. Une solution est
donc 

u1 = αy

u2 = (−1 +
√

1− α2)y
u3 = 0

Exercice 8 Déterminer de la même manière un champ de déplacement donnant
γ11 = α, les autres déformations étant nulles.

Exercice 9 Montrer que les déformations doivent véri�er les conditions sui-
vantes :

a) 1 + 2γ11 > 0, 1 + γ22 > 0, 1 + γ33 > 0

b) 2|γ12| ≤
√

(1 + 2γ11)(1 + 2γ22)

c) Dans le cas d'un cisaillement pur, (γ11 = γ22 = γ33 = 0), on doit avoir√
γ2

12 + γ2
13 + γ2

23 − 4γ12γ23γ31 ≤
1

2

Solution - L'élément de longueur après déformation, qui s'écrit

dξidξi = (δkl + 2γk`)dxkdx`

doit être positif quels que soient dxk et dx`, ce qui signi�e que la matrice 1 + 2γ11 2γ12 2γ13

2γ21 1 + 2γ22 2γ23

2γ31 2γ32 1 + 2γ33


doit être dé�nie positive. En particulier, ses éléments diagonaux doivent être
positifs, d'où a). Les déterminants emboîtés,

∆1 = 1 + 2γ11

∆2 = (1 + 2γ11)(1 + 2γ22)− 4γ2
12

∆3 = (1 + 2γ11)(1 + 2γ22)(1 + 2γ33) + 16γ13γ21γ32

−4γ2
12(1 + γ33)− 4γ2

13(1 + 2γ22)− 4γ2
23(1 + 2γ11)

doivent être positifs. Cela étant,
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b) équivaut à ∆2 > 0

c) découle directement de ∆3 > 0

Exercice 10 ∗ Montrer qu'il est possible de trouver un tenseur symétrique hij
tel que

gij = δij + 2hij + himhjm

Solution - La relation ci-dessus s'écrit encore

gij = δimδjm + himδjm + δimhjm + himhjm

= δim(δjm + hjm) + him(δjm + hjm)

= (δim + him)(δjm + hjm)

Passons aux axes principaux du tenseur gij par la transformation

g∗pq = TpiTqjgij , TpiTqi = δpq (orthogonalité)

On obtient
{g∗pq} = diag(g∗11, g

∗
22, g

∗
33)

tous ces éléments étant strictement positifs. La transformation inverse est visi-
blement

grs = TprTqsg
∗
pq

Dé�nissons alors, dans les axes principaux du tenseur métrique, le tenseur � ra-
cine carrée �

{a∗pq} = diag(
√
g∗11,

√
g∗22,

√
g∗33)

Il est clair que
a∗pqa

∗
rq = g∗pr

Les composantes du tenseur racine carrée dans le système de départ sont données
par

ars = TprTqsa
∗
pq

On a donc

aimajm = TpiTqma
∗
pqTrjTsma

∗
rs

= TpiTrjδqsa
∗
pqa
∗
rs

= TpiTrja
∗
pqa
∗
rq

= TpiTrjg
∗
pr

= gij
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Il su�t alors de poser
hij = aij − δij

On remarquera que dans les axes principaux de déformation, on a

h∗11 =
√
g∗11 − 1, h∗22 =

√
g∗22 − 1, h∗33 =

√
g∗33 − 1

c'est-à-dire que dans les axes principaux, ce tenseur représente les allongements
proportionnels, ce qui le rend séduisant. En contrepartie, il ne contient les dépla-
cements que de manière implicite. Ce tenseur est connu sous le nom de tenseur
de déformation de Jaumann.
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Chapitre 3

Principe des travaux virtuels

3.1 Déplacements virtuels

A partir d'une certaine con�guration du corps V , décrite par des dépla-
cements ui, considérons une con�guration très voisine, correspondant aux dé-
placements ûi. On appelle variation du déplacement ou déplacement virtuel le
champ

δui = ûi − ui (3.1)

A cette variation correspond une modi�cation des déformations de Green

γ̂ij − γij =
1

2
(Diûj +Dj ûi +DiûmDj ûm)− 1

2
(Diuj +Djui +DiumDjum)

Tenant compte de le dé�nition des déplacements virtuels, on obtient

γ̂ij − γij =
1

2
(Diδuj +Djδui +DiumDjδum +DjumDiδum)

+
1

2
DiδumDjδum

= δγij = +
1

2
δ2γij (3.2)

avec

δγij =
1

2
(Diδuj +Djδui +DiumDjδum +DjumDiδum) (3.3)

et
δ2γij = DiδumDjδum (3.4)

37
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Le terme δγij , linéaire en la variation du déplacement, est appelé variation
première ou, simplement, variation de la déformation. Il constitue une espèce
de di�érentielle de la déformation par rapport à la variation de déplacement. Le
deuxième terme, δ2γij , est la variation seconde. Il est du second ordre et donc
négligeable pour de très petites variations de déplacement.

Plus généralement, une fonction f(ui) admet la modi�cation

f(ui + δui) = δf +
1

2
δ2f +

1

3!
δ3f + ...

où l'on regroupe les termes homogènes d'ordre 1,2,3, ... en les δui. Le terme δf
est appelé variation (première) de f.

3.2 Travail virtuel de déformation

Nous admettrons comme axiome fondamental qu'une déformation virtuelle
δγij d'un élément de volume dV d'un corps continu quelconque nécessite un
travail de déformation virtuel δWdV . Pour déformer le corps entier, il faudra
donc produire un travail virtuel

δU =

∫
V

δWdV (3.5)

Il est naturel d'admettre que la densité de travail virtuel δW dépend directement
de la déformation virtuelle, et d'exprimer en conséquence δW sous la forme

δW = s11δγ11 + s22δγ22 + s33δγ33 + 2s12δγ12 + 2s13δγ13 + 2s23δγ23 (3.6)

ce qui fait apparaître six nouvelles grandeurs s11, s22, s33, s12, s13 et s23 dont
la dimension est celle d'une pression :

[sij ] =
[δW ]

[δγij ]
=

FL
L3

1
=

F

L2

Nous appellerons ces six grandeurs contraintes de Kirchho�-Tre�tz. Elles appa-
raissent en e�et sous cette forme dans les travaux de Kirchho� [51], mais c'est
à Tre�tz [89] que revient l'interprétation que nous en donnerons en section 3.5.

Les coe�cients 2 introduits pour les termes croisés dans l'expression (3.6)
permettent d'écrire la densité du travail virtuel de déformation d'une manière
plus compacte en introduisant les termes �ctifs

s21 = s12, s31 = s13, s32 = s23
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qui complètent le tenseur des contraintes : on a alors

δW = s11δγ11 + s22δγ22 + s33δγ33 + s12δγ12 + s13δγ13

+s23δγ23 + s21δγ21 + s31δγ31 + s32δγ32

= sijδγij (3.7)

Il convient cependant d'être attentif au fait suivant : si l'on utilise la relation
(3.6), tenant explicitement compte de la symétrie des contraintes et des défor-
mations, on obtient

s11 =
δW

δγ11
, s22 =

δW

δγ22
, s33 =

δW

δγ33

2s12 =
δW

δγ12
, 2s13 =

δW

δγ13
, 2s23 =

δW

δγ23
(3.8)

tandis que si l'on utilise la relation (3.7) en faisant volontairement abstraction
des relations de symétrie, il vient uniformément

sij =
δW

δγij
(3.9)

Insistons �nalement sur le fait que nous ne postulons nullement que δW soit une
di�érentielle totale. Les considérations qui précèdent sont donc valables pour des
déformations irréversibles.

3.3 Notion d'équilibre

Nous supposerons que le corps V est soumis à un système de charges, dont
nous ne préciserons par pour le moment la distribution. Lors d'un déplacement
virtuel δui, ces charges produisent un travail virtuel δT ayant la forme générale

δT =
∑
V̄

Fiδui (3.10)

Nous dirons que le corps V est en équilibre dans une con�guration donnée si,
pour tout déplacement δui, le travail virtuel de déformation δU est exactement
égal au travail virtuel des charges δT :

δU = δT ∀δui (3.11)
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C'est le principe des travaux virtuels, qui constitue donc un dé�nition énergétique
de l'équilibre.

Cette dé�nition admet un cas particulier important. Pour un déplacement
virtuel de corps rigide (translation ou rotation sans déformation), on a δγij =
0 dans tout le corps et, par conséquent, δU = 0. Il en résulte la condition
d'équilibre

δT = 0 pour un déplacement de corps rigide (3.12)

en bon accord avec une propriété connue de la statique des corps parfaitement
rigides.

3.4 Équations locales d'équilibre

En admettant au départ que la déformation peut être mesurée par le tenseur
de Green, on restreint automatiquement la classe des charges que la structure
peut admettre. Pour mettre ce fait en évidence, calculons explicitement δU . On
a

δγij =
1

2
(Diδuj +Djδui +DiδumDjδum +DjumDiδum)

=
1

2
(δjm +Djum)Diδum +

1

2
(δim +Dium)Djδum

ce qui entraîne

δW =
1

2
sij(δjm +Djum)Diδum +

1

2
sij(δim +Dium)Djδum (3.13)

Il se trouve que les deux termes de cette somme sont identiques. En e�et, la
symétrie des contraintes permet d'écrire le premier sous la forme équivalente

1

2
sji(δim +Dium)Djδum

Les indices i et j étant muets, on peut donner à i et j les noms respectifs j et
i, ce qui donne

1

2
sij(δjm +Djum)Diδum

soit précisément le second terme. Cette propriété permet de donner au travail
virtuel de déformation la forme plus simple

δU =

∫
V

sij(δim +Dium)DjδumdV =

∫
V

tjmDjδumdV (3.14)
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en introduisant les grandeurs

tjm = sji(δim +Dium) (3.15)

connues sous le nom de contraintes de Piola. Ces contraintes non symétriques ne
seront utilisées ici que pour abréger les écritures et nous nous ramènerons �na-
lement aux contraintes de Kirchho�-Tre�tz. Une simple intégration par parties
donne alors

δU =

∫
S

tjmnjδumdS −
∫
V

(Djtjm)δumdS (3.16)

Les deux intégrales qui composent cette expression peuvent être identi�ées, la
première à un travail virtuel à la surface et la seconde, à un travail virtuel dans
le volume. On en déduit que le travail virtuel des charges pourra avoir la forme

δT =

∫
S

tmδumdS +

∫
V

fmδumdV (3.17)

où apparaissent les tractions de surface tm et le forces de volume fm, liées aux
contraintes par les équations locales d'équilibre{

njtjm = tm sur S
Djtjm + fm = 0 dans V

(3.18)

soit, en termes des contraintes de Kirchho�-Tre�tz,{
Dj [s

ji(δim +Dium)] + fm = 0 dans V
nj [s

ji(δim +Dium)] = tm sur S
(3.19)

Les équations (3.19) sont connues sous le nom d'équations de Signorini [34].
Elles sont non linéaires par le fait qu'elles font intervenir les déplacements.
Les équations d'équilibre en termes des contraintes de Piola sont plus simples,
puisque linéaires. Mais il faut leur adjoindre des équations supplémentaires pour
restituer leur dé�nition en termes des contraintes de Kirchho�-Tre�tz, qui �xe
leur dissymétrie. Ces équations sont [34, 36]

tjm(δjp +Djup) = sji(δim +Dium)(δjp +Djup)︸ ︷︷ ︸
symétrique

= tip(δim +Dium) (3.20)

Nous avons donc montré que le principe des travaux virtuels ne peut être
véri�é que si le travail virtuel des charges a la forme (3.16), les e�orts fm et tm
étant alors dé�nis par (3.19) . Montrons à présent que si le travail virtuel des
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charges a la forme (3.16), le principe des travaux virtuels impliquera les relations
d'équilibre local (3.19). On aura en e�et

0 = δU − δT =

∫
V

(timDiδum − fmδum)dV −
∫
S

tmδumdS

=

∫
S

(nitim − tm)δumdS −
∫
V

(Ditim + fm)δumdV (3.21)

A ce stade, le raisonnement repose sur un théorème du calcul des variations :

Théorème 1 Soit V un ouvert de frontière S , et soient f une fonction conti-
nue sur V et g une fonction continue sur S. Si l'égalité∫

V

fδudV +

∫
S

gδudS = 0

est véri�ée pour toute fonction δu continûment dérivable dans V et prolongeable
sur S, alors on a f = 0 dans V et g = 0 sur S.

Démonstration - Montrons d'abord que f = 0. En supposant le contraire, soit
y ∈ V un point où f 6= 0, par exemple, f > 0. Il existe une boule BR(y) de
centre y et de rayon R où f > 0 ; comme V est ouvert, on peut supposer que
cette boule est entièrement contenue dans V . Considérons alors la fonction

δu(x) =

{
(R2 − |x− y|2)2 dans BR(y)

0 hors de BR(y)

Cette fonction est continûment dérivable. On a∫
V

fδudV +

∫
S

gδudS =

∫
V

fδudV > 0

en contradiction avec l'hypothèse. Donc f = 0 dans V .
Au vu de cette première conclusion, on a pour tout δu∫

V

fδudV +

∫
S

gδudS =

∫
V

0 · δudV +

∫
S

gδudS =

∫
S

gδudS

Montrons à présent que g = 0 . En supposant le contraire, soit z ∈ S un point
où g 6= 0, par exemple, g > 0. Il existe une boule BR(z) telle que g > 0 dans
BR(z) ∩ S. Alors, la fonction

δu(x) =

{
(R2 − |x− z|2)2 dans BR(z) ∩ V

0 hors de BR(z) ∩ V
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est continûment dérivable dans V et continûment prolongeable à S. On a∫
S

gδudS > 0

ce qui contredit l'hypothèse, donc g = 0 sur S, CQFD.
L'application de ce théorème à notre problème conduit aux conclusions{

Ditim + fm = 0 dans V
nitim = tm sur S

Remarquons cependant que les équations locales d'équilibre ne sont obte-
nues que moyennant une régularité su�sante du problème. Dans le cas où cette
régularité n'est pas acquise, c'est au principe des travaux virtuels qu'il faut faire
appel pour obtenir les équations dont on a besoin. Au sens du mathématicien, les
solutions au sens classique (local) des équations de Signorini sont des solutions
fortes. Les solutions de l'équilibre au sens des travaux virtuels sont des solutions
faibles[63]. Il est peut être utile de préciser que l'univers de l'ingénieur est peuplé
de solutions faibles, bien plus que de solutions fortes. Les discontinuités de ma-
tériau, les charges peu régulières mènent invariablement à des solutions faibles.
Ceci justi�e le parti pris dans cet exposé de présenter directement l'équilibre
sous la forme des travaux virtuels.

3.5 Interprétation de Tre�tz

Tre�tz [89] a donné l'interprétation suivante des contraintes de Kirchho�-
Tre�tz. Considérons les équations d'équilibre à la surface, qui s'écrivent

ni[s
ij(δij +Djum)] = tm

Observons d'abord que le second membre représente, localement, la charge de
surface divisée par la surface de référence (et non pas la surface déformée !). Par
ailleurs, on peut écrire cette équation sous la forme

nis
ijDjξm = tm

d'où

t = tmem = (nis
ij)Djξmem

= (nis
ij)gj (3.22)
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où apparaît la base convectée. Cette relation signi�e que si l'on décompose le
vecteur traction de surface dans la base convectée,

t = T jgj (3.23)

(ce qui équivaut à T j = t · gj), le reste du calcul revient à dé�nir T j comme la
projection de sij sur la normale de référence :

nis
ij = T j (3.24)

A titre d'exemple, dans une poutre qui �échirait à la Navier sous une traction
de surface t 3.1, on aurait

T 1 =
|t| sin θ
|g1|

, T 2 = −|t| cos θ

|g2|

et comme n1 = 1 et n2 = 0,

Figure 3.1 � Interprétation de Tre�tz

T 1 = 1 · s11 + 0 · s12 = s11, T2 = 1 · s12 + 0 · s22
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ce qui donne

s11 =
|t| sin θ
√
g11

, s12 = −|t| cos θ
√
g22

3.6 Relation avec les contraintes eulériennes

3.6.1 Contraintes eulériennes

Une autre interprétation, beaucoup plus profonde, peut être obtenue en re-
lation avec la description eulérienne. Nous noterons V ′ le volume déformé, S′ sa
surface et n′ la normale unitaire à cette surface. Nous écrirons en outre ∂i pour
∂/∂ξi. En�n, nous utiliserons la matrice jacobienne

Jij = Djξi (3.25)

qui a pour inverse

J−1
ij = ∂jxi (3.26)

et pour déterminant

J = det(J) (3.27)

Le travail virtuel de déformation peut être transformé comme suit

δU =

∫
V

sijDjξmDiδumdV

=

∫
V ′
sijDjξmDiδum

1

J
dV ′

=

∫
V ′

1

J
sijDjξmDiξp∂pδumdV

′

=

∫
V ′
σmp∂pδumdV

′ (3.28)

où apparaissent les contraintes eulériennes

σmp =
1

J
sijDjξmDiξp (3.29)

qui sont visiblement symétriques. On peut écrire, en adoptant les notations
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dyadiques,

σ = σmpem ⊗ ep

=
1

J
sij(Djξmem)⊗ (Diξpep)

=
1

J
sijgi ⊗ gj (3.30)

Ce qui signi�e que les contraintes de Kirchho�-Tre�tz s'identi�ent, au facteur
J près, aux composantes contravariantes du tenseur σ dans la base convectée.
Cette conclusion est très importante, comme nous le verrons sur un exemple plus
loin. Mais auparavant, il est utile de préciser certains faits relatifs aux charges.

3.6.2 Relation entre les charges dans les deux descriptions

Le travail virtuel des charges appliquées s'écrit, dans la description lagran-
gienne,

δT =

∫
V

fiδuidV +

∫
S

tiδuidS (3.31)

Dans la description eulérienne, on écrira naturellement

δT =

∫
V ′
f ′iδuidV

′ +

∫
S′
t′iδuidS

′ (3.32)

ce qui mènera aux équations d'équilibre{
∂jσji + f ′i = 0 dans V ′

n′jσji = t′i sur S′
(3.33)

Mais les deux expressions (3.31) et (3.32) du travail virtuel des charges ne seront
équivalentes que si sont véri�ées les relations

fidV = f ′idV
′ (3.34)

et
tidS = t′idS

′ (3.35)

Pour la première, cela implique, comme dV ′ = J dV ,

fi = J f ′i (3.36)
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La condition (3.35) est un peu plus di�cile à exploiter. Il nous faut pour cela
déterminer le rapport entre dS et dS′. A cette �n, considérons une fonction ϕ
quelconque. On a∫

S′
n′iϕdS

′ =

∫
V ′
∂iϕdV

′ =

∫
V

J J−1
ji DjϕdV =

∫
S

J njJ−1
ji ϕdS

ce qui implique
n′idS

′ = J njJ−1
ji dS (3.37)

On en déduit

dS′2 = n′idS
′n′idS

′ = J 2njJ
−1
ji nkJ

−1
ki dS

2 = J 2gkjnknjdS
2

soit
dS′ = J

√
gkjnknjdS (3.38)

C'est la relation cherchée. On a donc

t′i = ti
dS

dS′
=

ti

J
√
gk`nkn`

(3.39)

Du reste, on peut encore déduire de (3.37) les composantes de la normale spa-
tiale :

n′i = J njJ−1
ji

dS

dS′
= J njJ−1

ji

1

J
√
gk`nkn`

=
njJ

−1
ji√

gk`nkn`
(3.40)

3.6.3 Cas des petites déformations

Lorsque les déformations sont petites, on peut écrire

J ≈ 1, gijninj ≈ 1

ce qui permet de confondre sans grande erreur les charges dé�nies dans la struc-
ture de référence et celles de la structure déformée. En outre, les angles entre les
vecteurs de la base déformée di�èrent peu d'un angle droit. Les contraintes de
Kirchho�-Tre�tz s'assimilent alors à des contraintes eulériennes, calculées dans
un système d'axes particulier. Il se trouve d'ailleurs que ce système d'axes est le
plus pratique que l'on puisse trouver. Imaginons par exemple un corps composé
de deux pièces collées (�g. 3.2). Les colles résistent d'une façon très limitée en
extension (contrainte σ sur la �gure 3.3) et d'une façon bien meilleure en cisaille-
ment (contrainte τ sur la la �gure 3.3) Sur la �gure 2, la contrainte normale sur
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Figure 3.2 � Pièce collée

la colle est à peu de chose près s22 et celle de cisaillement, approximativement
s12 et ce, quelle que soit la forme prise par le joint collé. En supposant que le
critère de mise hors service soit de la forme

F

(
σ

σlim
,
τ

τlim

)
on pourra l'écrire simplement

F

(
s22

σlim
,
s12

τlim

)
quel que soit le déplacement, tant que les déformations restent faibles.

3.7 Exercices

Exercice 11 Interpréter les contraintes de Piola dans le cas d'une poutre �é-
chissant à la Navier (�g. 3.1)
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Figure 3.3 � Résistance de la colle

Solution - On a tout simplement

0 = n1t11 + n2t12 = t11

−t = n1t12 + n2t22 = t12

On notera le caractère arti�ciel de ces contraintes, qui ne tiennent aucun compte
de la déformation.

Exercice 12 ∗ Déduire l'expression générale des déplacements virtuels de corps
rigide à partir de la condition δγij = 0

Solution - On a

δγij =
1

2
(DiξmDjδum +DjξmDiδum)

=
1

2
(JmiDjδum + JmjDiδum) = 0

en faisant usage de la matrice jacobienne dé�nie en section 3.6.1. Multipliant
cette équation par 2J−1

ip J
−1
jq et contractant, on obtient

0 = J−1
ip J

−1
jq JmiDjδum + J−1

ip J
−1
jq JmjDiδum

= δmpJ
−1
jq Djδum + δmqJ

−1
ip Diδum

= ∂pδuq + ∂qδup

Ces équations admettent de toute évidence une solution générale du type

∂pδuq = Ωpq
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avec Ωpq = −Ωqp. Mais alors, on a

∂kΩpq = ∂kpδuq = ∂pkδuq = ∂pΩkq

ce qui entraîne la chaîne suivante :

∂kΩpq = ∂pΩkq = −∂pΩqk = −∂qΩpk = ∂qΩkp = ∂kΩqp = −∂kΩpq

dont on déduit
∂kΩpq = 0

On obtient donc, en donnant au tenseur antisymétrique Ωpq sa forme canonique

Ωpq = epqrΩr

la forme générale

δuq = aq + Ωpqξp = ap + epqiξpΩi

= aq + eqipΩiξp

soit la combinaison d'une translation et d'une rotation d'ensemble.

Exercice 13 ∗ Soit un corps libre dans l'espace, chargé de forces fi dans V
et de charges ti sur S. Montrer que pour que ce champ de forces puisse être
équilibré intérieurement par un champ de contraintes de manière que δU = δT ,
il est nécessaire que soient véri�ées les conditions{ ∫

V
fidV +

∫
S
tidS = 0 (Équilibre de translation)

eipq
[∫
V
ξpfqdV +

∫
S
ξptqdS

]
= 0 (Équilibre de rotation)

Solution - Pour un déplacement virtuel de corps rigide, on doit avoir δT = 0.
Or, (voir exercice 12), ces déplacements sont de la forme

δui = ai + eipqΩpξq

d'où la condition

ai

(∫
V

fidV +

∫
S

tidS

)
+ Ωpepqi

(∫
V

ξqfidV +

∫
S

ξqtidS

)
= 0

quels que soient ai et Ωq, ce qui entraîne les conditions annoncées.

Exercice 14 La condition δU= 0 s'applique également aux mécanismes par-
faits, c'est-à-dire composés de corps rigides articulés sans frottement. En déduire
la réaction au point A de la poutre représentée en �gure 3.4.
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Figure 3.4 � Poutre

Solution - Il su�t de considérer RA comme une force, l'appui en A étant coupé.
Le mécanisme ainsi constitué peut alors prendre des déplacements selon la �gure,
ce qui permet d'écrire

δT = RAδA − 100δ1 + 200δ2 − 300δ3 = 0

Or,

δ1 =
500

1100
δA = 0, 4545δA

δ′ =
1400

1100
δA = 1, 273δA

δ2 =
200

700
δ′ = 0, 3637δA

δ” =
500

700
δ′ = 0, 9093δA

δ3 =
200

400
δ” = 0, 4546δA
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si bien que

RA = 100
δ1
δA
− 200

δ2
δA

+ 300
δ3
δA

= 100 · 0, 4545− 200 · 0, 3637 + 300 · 0, 4546 = 109,1N

Exercice 15 Déterminer la loi P = f(x) pour le quadrilatère articulé de la
�gure 3.5. Le ressort, de longueur naturelle `, a une énergie de déformation

U = k
(∆`)2

2

Les barres sont supposées indéformables et idéalement articulées.

Figure 3.5 � Quadrilatère articulé

Solution - Le principe des travaux virtuels s'écrit

k∆`δ∆` = Pδx

Pour exprimer les liaisons entre ∆` et x, le plus simple est d'utiliser le paramètre
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Figure 3.6 � Déformation du quadrilatère

θ représenté en �gure 3.6. On a en e�et

h = 2a cos θ et `+ ∆` = 2a sin θ

d'où
x = a

√
2− h = a(

√
2− 2 cos θ)

et
∆` = 2a sin θ − ` = a(2 sin θ −

√
2)

On en déduit
δx = 2a sin θδθ et δ∆` = 2a cos θδθ

ce qui ramène l'équation d'équilibre à

ka(2 sin θ −
√

2)2a cos θ = P · 2a sin θ

Divisant les deux membres par 2a sin θ, on obtient

P = ka(2 cos θ −
√

2 cotg θ)
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Cette équation atteint un maximum pour

dP

dθ
= ka

(
−2 sin θ +

√
2

sin2 θ

)
= 0

soit pour

sin3 θ =

√
2

2

ce qui donne θ = 62, 99◦. il y correspond la charge maximale

Pmax = 0, 1874ka

correspondant à une instabilité. On peut établir le tableau suivant :

θ(◦) P/(ka) x/a δ`/a
0 −∞ -0,5858 -1,414
10 -6,051 -0,5786 -1,067
20 -2,006 -0,4652 -0,7302
30 -0,7174 - 0,3478 -0,4142
40 -0,1533 -0,1179 -0,1286
45 0 0 0
50 0,09891 0,1286 0,1179
60 0,1835 0,4142 0,3178
62,99 0,1874 0,5059 0,3676
70 0,1693 0,7302 0,4652
80 0,09793 1,067 0,5554
90 0 1,414 0,5858

Ces résultats sont illustrés par la �gure 3.7.
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Figure 3.7 � Quadrilatère articulé : solution
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Chapitre 4

Corps hyperélastiques

4.1 Hyperélasticité

Dans ce qui précède, le travail de déformation a été introduit sans hypothèse
sur sa nature physique. Lorsque l'on suppose qu'il est conservatif, c'est-à-dire
que δW est la di�érentielle totale d'une densité d'énergie de déformation W, le
corps est dit hyperélastique. On a alors

sij =
∂W

∂γij
(4.1)

si l'on fait abstraction, dans la dérivation, des relations de symétrie γij = γji.
Les équations (4.1) n'ont de solution que si

∂sij

∂γkl
=
∂skl

∂γij
(4.2)

ce qui exprime analytiquement la condition d'hyperélasticité.
Comme l'a fait remarquer Lord Kelvin [46], il serait totalement erroné de

croire que l'hyperélasticité implique l'absence d'échange de chaleur. Dans le cas
d'une sollicitations statique (mise en charge lente et progressive, comme on la
réalise lors d'un essai de traction), la lenteur de la transformation permet de
considérer que le corps garde constamment la température de l'ambiance, c'est-
à-dire que la température reste constante. Si U et S sont respectivement la
densité d'énergie interne et la densité d'entropie, on aura donc

δW = δU − TδS = δ(U − TS) = δF (4.3)

57
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où F est la densité d'énergie libre. Nous verrons d'ailleurs dans la suite que la
variation d'entropie n'est pas nulle lors de la déformation. Par contre, dans le
cas des vibrations, la lenteur relative des échanges de chaleur permet de poser
en première approximation que l'entropie ne varie pas, si bien que

δW = δU (4.4)

Ainsi, la nature de l'énergie de déformation est di�érente dans le cas d'une
sollicitation statique et dans le cas des vibrations. Il en résulte une di�érence
entre les modules correspondant à ces deux types de sollicitations. Ceci sera
étudié en détail en section 4.5 de ce chapitre.

4.2 Développement en série de Taylor de l'éner-
gie de déformation

Nous nous limiterons, dans ce qui suit, à l'étude des petites déformations.
Cette restriction permet de développer la densité d'énergie de déformation en
une série de Taylor, que nous limiterons au second ordre :

W (γ) = W0 +

(
∂W

∂γij

)
0

γij +
1

2

(
∂2W

∂γij∂γkl

)
0

γijγkl +O(γ3) (4.5)

En dérivant ce développement par rapport aux déformations, on obtient l'ex-
pression suivantes des contraintes 1 :

sij =

(
∂W

∂γij

)
0

+

(
∂2W

∂γij∂γkl

)
0

γkl +O(γ2) (4.6)

Les deux termes signi�catifs de cette expression s'interprètent comme suit : le
terme

s0
ij =

(
∂W

∂γij

)
0

(4.7)

représente les contraintes résiduelles, présentes dans l'état non déformé ; le se-
cond terme est linéaire en la déformation et fait apparaître le tenseur du qua-
trième ordre

Cijkl =

(
∂2W

∂γij∂γkl

)
0

(4.8)

1. Dorénavant, nous écrirons sij au lieu de s
ij , car nous ne ferons plus référence au caractère

tensoriel covariant des contraintes
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dit tenseur des modules élastiques. L'expression (4.6) donne donc, en négligeant
O(γ2),

sij = s0
ij + Cijklγkl (4.9)

et l'énergie s'écrit à O(γ3) près

W = W0 + s0
ijγij +

1

2
Cijklγijγkl (4.10)

La question du nombre de modules indépendants a fait, au XIXe siècle,
l'objet de nombreuses controverses. C'est ainsi que l'on a connu des théories
� à modules rares �et des théories � à modules nombreux �(de 1 à 36 modules)
[46, 49, 47, 50, 66, 83, 87]. La manière la plus simple de traiter le problème
consiste à remarquer que les déformations forment six grandeurs indépendantes

G1 = γ11

G2 = γ22

G3 = γ33

G4 = γ12

G5 = γ23

G6 = γ31 (4.11)

La matrice hessienne de l'énergie, dé�nie par

Hij =

(
∂2W

∂Gi∂Gj

)
0

(4.12)

est d'ailleurs appelée matrice de Hooke. Cette matrice symétrique de dimension
6× 6 possède en général

6× 7

2
= 21

termes indépendants. Tel est le nombre de modules indépendants d'un solide
anisotrope.

Dans le cas d'un solide isotrope, le terme quadratique

W2 =
1

2
Cijklγijγkl (4.13)

de la densité d'énergie de déformation doit avoir une expression indépendante
du système d'axes choisi. Il ne peut donc dépendre que des invariants du tenseur
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des déformations,
I1 = γii
Î2 = − 1

2 (γij − 1
3γ``δij)(γij −

1
3γmmδij)

I3 = det(γij)

Le choix de Î2 plutôt que I2 est dicté par des conditions de commodité. Parmi
ces trois invariants, seuls I1 et Î2 sont susceptibles de former une combinaison
quadratique, qui aura la forme

W2 = −2GÎ2 +
K

2
I2
1 (4.14)

Les grandeurs G et K sont appelées respectivement module de Coulomb et mo-
dule de compressibilité (Bulk modulus). Cette dernière appellation provient du
fait que dans le cadre des petites déformations, on a

dV ′ = J dV ≈ dV

ce qui revient à dire que

|η| = |dV
′ − dV
dV

| = |J − 1| � 1

Or,
det(gij) = J 2 = |1 + (J − 1)|2 = 1 + 2η + η2 (4.15)

Calculons

det(gij) =

∣∣∣∣∣∣
1 + 2γ11 2γ12 2γ13

2γ21 1 + 2γ22 2γ23

2γ31 2γ32 1 + 2γ33

∣∣∣∣∣∣
= 1 + 2γii +O(γ2) (4.16)

Identi�ant les expressions (4.15) et (4.16), on obtient

2η = 2γii +O(γ2) +O(η2)

soit

γii ≈
dV ′ − dV

dV
(4.17)
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Dans la pratique, on utilise souvent deux autres modules, à savoir le module
de Young E et le coe�cient de Poisson ν, qui sont liés aux précédents par les
relations

G =
E

2(1 + ν)

K =
E

3(1− 2ν)
=

2G(1 + ν)

3(1− 2ν)

E =
9KG

3K + 2G

ν =
1

2

(
3K − 2G

3K +G

)
(4.18)

En fonction de G et ν, on calcule aisément

W2 = G(γijγij +
ν

1− 2ν
γ``γii) (4.19)

On rencontre aussi les coe�cients de Lamé, provenant de l'expression de W2 en
termes des invariants I1 et I2 :

W2 = 2µI2 +
λ

2
I2
1

Ces modules sont liés à G et K par les relations

µ = G et λ = K − 2

3
G (4.20)

.

4.3 Postulat de la stabilité locale

Isolons un morceau in�niment petit dV du corps hyperélastique. Placé dans
la structure, il est en équilibre avec son voisinage, pour une certaine valeur
de la déformation. Imaginons qu'on le découpe du corps : toute relation de
compatibilité, c'est-à-dire d'égalité des déplacements de sa frontière avec les
déplacements de ses voisins étant coupée, il tendra vers une position d'équilibre
propre dé�nie par la condition

∂W

∂γij
= 0
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Le postulat de stabilité locale consiste à a�rmer que cette position d'équilibre
propre correspond à un minimum d'énergie. Analytiquement, comme

W = s0
ijγij +

1

2
Cijklγijγkl

la condition d'équilibre s'écrit

sij =
∂W

∂γij
= s0

ij + Cijklγkl = 0

La solution γ0
ij de cette équation constitue la déformation de relaxation. La

condition de stabilité locale s'écrit alors

0 = W (γ0
ij + δγij)−W (γ0

ij) =
1

2

(
∂2W

∂γij∂γkl

)
γ0

δγijδγkl +O(δγ3)

et, en négligeant le troisième ordre, elle s'exprime par la condition

δ2W = Cijklδγijδγkl > 0 (4.21)

quelle que soit la variation de déformation δγij . Cette condition revient à ad-
mettre que la matrice de Hooke est dé�nie positive. Introduite pour la première
fois par Kirchho� [49, 52] et utilisée après lui par Clebsch [9], cette condition
est actuellement admise de manière assez générale [56].

Dans le cas d'un corps isotrope, les deux formes quadratiques (−Î2) et I2
1

sont positives et indépendantes. La positivité de la matrice de Hooke sera donc
réalisée si

G > 0 et K > 0 (4.22)

Dans ce cadre, en e�et, on ne pourra avoir W2 = 0 que si I1 et Î2 sont simulta-
nément nuls, ce qui, nous l'avons vu, entraîne γij = 0. En termes du module de
Young et du coe�cient de Poisson, les conditions (4.22) impliquent d'abord

E =
9KG

3K + 2G
> 0

c'est-à-dire que le module de Young est positif. Le coe�cient de Poisson, donné
par

ν =
3K − 2G

6K + 2G
=

3− 2GK
6 + 2GK
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pourra varier entre 1/2 pour G/K = 0 et −1 pour G/K = ∞. Les conditions
sont donc, si les modules G et K sont �nis,

−1 < ν <
1

2

Il est à noter que les corps élastiques connus véri�ent tous ν ≥ 0, bien que des
valeurs négatives ne soient pas absurdes sur le plan énergétique. Le cas extrême
K = ∞ se rencontre dans les corps incompressibles, au rang desquels on classe
généralement le caoutchouc. Le fait que K soit in�ni entraîne quelques parti-
cularités qui nécessitent, dans les méthodes numériques, un traitement spécial
[37, 13, 16, 15].

4.4 Stabilité structurale de l'état de référence

Il faut se garder de croire que la stabilité locale dé�nie ci-dessus implique
la stabilité structurale dans le cas général [36]. Ceci n'est vrai que dans le cas
de la linéarisation géométrique (petits déplacements). Dans le cadre des grands
déplacements, la non-linéarité des déformations en termes des déplacements peut
être source d'instabilité. L'étude générale de la stabilité fera l'objet d'un chapitre
spécial. On pourra d'ailleurs consulter à ce sujet des ouvrages spécialisés [58, 86].

Nous remarquerons cependant, que, le plus souvent, la con�guration de ré-
férence est un état d'équilibre stable. Il faut entendre par là que

U(δu)− U0 ≥ 0 (4.23)

l'égalité ne pouvant avoir lieu que si δui représente un déplacement de corps ri-
gide. Cette situation implique un certain nombre de faits que nous allons mettre
en évidence. A cette �n, développons la densité d'énergie de déformation sous
la forme

W (δu) = W0 + δW +
1

2
δ2W + ...

où apparaissent la variation première et la variation seconde. Par intégration,
on obtiendra

U(δu) = U0 + δU +
1

2
δ2U + ...

La condition d'équilibre, en l'absence de charge, s'écrit

δU = 0 (4.24)
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La condition de stabilité, déduite de (4.23), sera, au troisième ordre près,

δ2U ≥ 0 (4.25)

l'égalité n'ayant lieu que si δui est un déplacement de corps rigide.
Calculons explicitement la variation première. On a, dans le cas général,

δW = s0
ijδγij + Cijklγijδγkl

et, l'état de référence étant dé�ni par γij = 0, il vient

δU =

∫
V

s0
ijδγijdV = 0 (4.26)

quel que soit le champ de déplacements virtuels. On reconnaît l'équation des
travaux virtuels en l'absence de charge, ce qui signi�e que les contraintes rési-
duelles sont nécessairement auto-équilibrées. On dit encore que ce sont des états
d'autocontrainte.

Venons-en à la variation seconde. Dans l'expression générale

δ2W = s0
ijδ

2γij + Cijklδγijδγkl + Cijklγijδ
2γkl

on note que, pour la position de référence,

γij = 0

δγij =
1

2
(Diδuj +Djδui)

δ2γij = DiδumDjδum

ce qui mène à l'expression

δ2U =

∫
V

[s0
ijDiδumDjδum +

1

4
Cijkl(Diδuj +Djδui)(Dkδul +Dlδuk)]dV ≥ 0

(4.27)
Cette condition montre que si, en chaque point, les trois valeurs principales des
contraintes résiduelles sont positives, la stabilité est assurée, puisque les mo-
dules sont dé�nis positifs. Mais cette circonstance est rare et en réalité, il existe
presque toujours des zones où les contraintes résiduelles principales sont néga-
tives. Lorsque ces contraintes résiduelles sont su�samment grandes, la stabilité
peut être compromise. La �gure 4.1 donne un exemple d'une telle situation. La
barre centrale, très élancée, peut être comprimée à l'aide d'une vis, ce qui pro-
voque un état d'autocontrainte dans lequel les deux colonnes sont tendues et la
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Figure 4.1 � Une structure pouvant être instable dans son état de référence

barre centrale, comprimée. L'équilibre exige que la sommes des e�orts dans les
colonnes égale l'e�ort dans la barre centrale. Pour un e�ort de compression égal
à la charge d'Euler, la barre �ambe, ce qui constitue une instabilité. Dans ce
cas, l'état de référence (barre rectiligne précomprimée) n'est pas stable, car la
moindre perturbation du déplacement transversal de la barre mène à un nouvel
état d'équilibre (�ambé).

En conclusion, l'état de référence ne peut être stable que si les contraintes
résiduelles de compression sont su�samment modérées.

Passons à présent à la question de la relaxation des contraintes résiduelles :
peut-on trouver un champ de déplacements u0

i qui relaxe, c'est-à-dire annule to-
talement les tensions résiduelles ? Il est clair que si un tel champ de déplacements
existe, les déformations γ0

ij qui en dérivent doivent véri�er la condition

sij(γ
0
kl) = s0

ij + Cijklγ
0
kl = 0
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soit
s0
ij = −Cijklγ0

kl

ce qui entraîne

U(u0
i ) = U0 +

∫
V

s0
ijγ

0
ijdV +

1

2

∫
V

Cijklγ
0
ijγ

0
kldV

= U0 −
1

2

∫
V

Cijklγ
0
ijγ

0
kldV < U0 (4.28)

Or, la stabilité de l'équilibre de référence implique que cette inégalité n'est pas
possible dans le voisinage de cet état, car l'énergie n'y peut qu'augmenter. Ceci
ne signi�e pas que la relaxation soit nécessairement impossible, mais seulement
qu'elle ne peut avoir lieu dans une con�guration très voisine de l'état de réfé-
rence. La stabilité de cet état équivaut en e�et à dire qu'il se trouve au fond
d'un puits de potentiel. Mais on peut très bien imaginer (�g 4.2) de passer

Figure 4.2 � Relaxation par passage d'une instabilité

d'abord au sommet d'une � montagne �(point d'équilibre instable) pour redes-
cendre au fond d'un nouveau puits plus profond que le précédent, dans lequel
les contraintes résiduelles seraient relaxées.
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Ainsi, la relaxation des contraintes résiduelles, quand elle est possible, sup-
pose toujours le passage d'une instabilité. Par ailleurs, il ressort de (4.28) que
l'état relaxé correspond à un minimum absolu d'énergie 2.

Il est du reste assez aisé de trouver un exemple de relaxation par passage
d'une instabilité. Le système à deux barres de la �gure 4.3 a étant supposé

Figure 4.3 � Le système ci-dessus peut être relaxé par passage d'une instabilité

monté sans contraintes résiduelles, on peut faire passer les deux barres à gauche
de leur leur ligne d'appui, moyennant une instabilité dite par claquage (snap
through) après quoi le système se retrouve dans une position d'équilibre sous
autocontrainte, représentée en b sur la même �gure. Dans cette position, les
deux barres sont comprimées, et le ressort est tendu. Cet état étant pris comme
référence, il ne peut y avoir de relaxation à gauche de la ligne d'appui des barres.
Pour annuler les contraintes, il faut nécessairement repasser l'instabilité en sens
inverse.

2. Ce problème a été étudié dans le cadre des petits déplacements par Fraeijs de Veubeke
[36]. Comme il n'existe pas, en théorie linéaire, d'instabilités, la relaxation est alors totalement
impossible.
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4.5 Déformations avec variations de température

4.5.1 Expression de l'énergie libre

Lorsque les températures des di�érents points du corps ne coïncident pas
avec la température de référence T0, il convient de développer l'énergie libre,
non seulement en termes des déformations, mais encore en termes des écarts de
température

θ = T − T0 (4.29)

On écrira donc

F = F (γij , θ) = F0 +

(
∂F

∂γij

)
0

γij +

(
∂F

∂T

)
0

θ

+
1

2

(
∂2F

∂γij∂γkl

)
0

γijγkl +

(
∂2F

∂γij∂T

)
0

γijθ +
1

2

(
∂2F

∂T 2

)
0

θ2

+3eordre

Les contraintes sont alors données par

sij =
∂F

∂γij

=

(
∂F

∂γij

)
0

+

(
∂2F

∂γij∂T

)
0

θ +

(
∂2F

∂γij∂γkl

)
0

γkl

expression où l'on voit apparaître, outre les grandeurs connues s0
ij et Cijkl, un

nouveau terme (−βijθ), avec

βij = −
(

∂2F

∂γij∂T

)
0

= −
(
∂sij
∂T

)
0

Il s'agit des contraintes qui naissent du fait que pour γij = 0, la dilatation
thermique est empêchée, ce qui induit des contraintes de compression lorsque la
température s'élève. Les grandeurs (−βijθ) sont appelées contraintes de bridage
de Duhamel. L'expression générale des contraintes est donc

sij = s0
ij︸︷︷︸

résiduelles

−βijθ︸ ︷︷ ︸
bridage Duhamel

+ Cijklγkl︸ ︷︷ ︸
élastiques

(4.30)
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Comme on le sait, la dérivée de l'énergie libre par rapport à la température
est, au signe près, égale à l'entropie. On a donc

S = −∂F
∂T

= −
(
∂F

∂T

)
0

−
(

∂2F

∂γij∂T

)
0

γij −
(
∂2F

∂T 2

)
0

θ

Le premier terme sera tout naturellement noté S0. Le deuxième fait intervenir
les βij déjà dé�nis. En�n, pour le troisième, on note que

−∂
2F

∂T 2
=

(
∂S

∂T

)
γ=cte

=
ρcv
T

où cv représente la capacité thermique par unité de masse, à déformation cons-
tante, généralisation naturelle de la capacité thermique à volume constant des
�uides. On a donc

S = S0 + βijγij +
(ρcv
T

)
0
θ (4.31)

Rassemblant tous ces résultats, on obtient l'expression suivante pour la densité
d'énergie libre :

F (γij , T ) = F0 + s0
ijγij − S0θ +

1

2
Cijklγijγkl − βijθγij −

(ρcv
T

)
0

θ2

2
(4.32)

4.5.2 Coe�cients de dilatation thermique

Considérons un petit volume dV du corps, supposé à l'état relaxé à la tem-
pérature T0. Chau�ons ce petit volume en le bridant, c'est-à-dire en empêchant
tous ses déplacements. Au cours de cette opération, l'énergie libre prend la va-
leur

F = F0 − S0θ −
(ρcv
T

)
0

θ2

2

Relâchons à présent les brides, laissant ainsi à ce petit volume la liberté de se
déformer, tout en maintenant sa température constante. (Ceci suppose que les
brides soient relâchées progressivement et lentement.) L'énergie libre cherchera
un minimum, qu'elle atteindra pour

∂F

∂γij
= −βijθ + Cijklγkl = 0
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soit pour une déformation

γij(θ) = C−1
ijklβklθ

Le tenseur
αij = C−1

ijklβkl (4.33)

est appelé tenseur des coe�cients de dilatation : c'est l'accroissement de γij à
sij = 0, pour une variation de température unitaire. Dans le cas d'un matériau
thermiquement isotrope, on a simplement

αij = αδij (4.34)

α étant le coe�cient de dilatation thermique. En voici quelques valeurs :

Coe�cients de dilatation
pour T = 30◦C

Matériau 106α (K−1)
Acier au carbone 11,1
Fonte grise 9,9
Bronze CuMn4Sn6 17,2
Laiton CuZn38 18,0
Aluminium, dural 23,1

4.5.3 Déformations adiabatiques

Nous avons déjà signalé que les déformations d'un corps en vibration peuvent
être considérées somme isentropiques et que cela entraîne une légère modi�cation
des modules par rapport au cas statique [47, 56]. La condition de constance de
l'entropie s'écrit

S − S0 =
(ρcv
T

)
0
θ + βijγij = 0,

ce qui fournit la variation de température au cours de la déformation

θ = −
(
T

ρcv

)
0

βijγij (4.35)

Dans le cas d'un corps isotrope,

βij = Cijklδklα = Cijkkα = 3Kαδij
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ce qui donne

θ = −3

(
T

ρcv

)
0

Kαγii (4.36)

Ainsi, une augmentation de volume produit un abaissement de température, et
inversement, une diminution de volume élève la température.

Le calcul des modules adiabatiques peut être mené de plusieurs façons. On
pourrait par exemple développer l'expression de l'énergie interne

U = F + TS

puis la dériver deux fois par rapport aux déformations. Il est plus simple de
raisonner comme suit : dans l'expression générale (4.30) des contraintes, intro-
duisons la variation de température (4.35) exprimant la constance de l'entropie :
il vient

sij = s0
ij +

(
T

ρcv

)
0

βklγklβij + Cijklγkl

Identi�ant alors à
sij = s0

ij + Cadijklγkl

on obtient simplement

Cadijkl = Cijkl +

(
T

ρcv

)
0

βijβkl (4.37)

Cas des corps isotropes

Examinons en détail le cas des corps isotropes. Comme

βij = 3Kαδij

on a

∆Cijkl =

(
T

ρcv

)
0

βijβkl = 9

(
T

ρcv

)
0

K2α2δijδkl

et

∆Cijklγijγkl = 9

(
T

ρcv

)
0

K2α2γiiγkk

ce qui permet d'écrire, dans le cas isentropique,

U = U0 + s0
ijγij +

1

2
(Cijkl + ∆Cijkl)γijγkl

= U0 + s0
ijγij − 2GÎ2 +

1

2
[K + 9

(
T

ρcv

)
0

K2α2]γiiγkk
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On constate donc que le module de Coulomb n'est pas a�ecté, tandis que le
module de compressibilité K est remplacé par

Kad = K + 9

(
T

ρcv

)
0

K2α2 (4.38)

La correction relative est donc

∆K

K
=
Kad −K

K
= 9

(
T

ρcv

)
0

Kα2 (4.39)

Comme nous le verrons ci-dessous, cette correction est de quelques centièmes,
ce qui permet de traiter les corrections du module de Young et du coe�cient de
Poisson comme des di�érentielles. Des relations (4.18), on déduit d'abord

∆E

E
=

∆K

K
− 3∆K

3K +G

=
(3K +G)∆K − 3K∆K

3K +G

=
G

3K +G

∆K

K

=
E

9K

∆K

K

soit

∆E

E
= E

(
T

ρcv

)
0

α2 (4.40)

de même, comme

1 + ν =
E

2G

on a

∆ν

1 + ν
=

∆E

E
= E

(
T

ρcv

)
0

α2 (4.41)
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Exemple numérique

Considérons par exemple le cas de l'acier. On a

E = 2, 1 · 1011Pa

ν = 0, 3

α = 1, 1 · 10−5K−1

ρ = 7800kg/m3

cv = 474
J

K kg

ce qui donne, pour T = 293K,

K =
E

3(1− 2ν)
=

2, 1 · 1011

3 · 0, 4
= 175 · 109Pa

et

ϕ =

(
T

ρcv

)
0

α2 =
293

7800 · 474
· 1, 21 · 10−10 = 9, 671 · 10−15Pa−1

d'où

∆K

K
= 9Kϕ = 9 · (175 · 109) · (9, 671 · 10−15) = 0, 01523

∆E

E
= Eϕ = (2, 1 · 1011) · (9, 671 · 10−15) = 2, 031 · 10−3

∆ν = (1 + ν)
∆E

E
= 1, 3 · (2, 031 · 10−3) = 0, 002640

La plus grande variation relative est celle du module de compressibilité. Elle est
de 1, 5%. Pour le module de Young, elle n'est que de 2 pour mille. La petitesse
de ces di�érences justi�e la pratique courante consistant à confondre les deux
types de modules.

4.5.4 Autre expression des modules adiabatiques

Proposons-nous d'exprimer l'entropie en termes de la température et des
contraintes. A cette �n, nous inverserons les relations

sij − s0
ij = Cijklγkl − βijθ

ce qui donne
γij = C−1

ijkl(skl − s
0
kl) + αijθ
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L'introduction de ce résultat dans l'expression (4.31) de l'entropie conduit à

S = S0 + αij(sij − s0
ij) +

[(ρcv
T

)
0

+ αijβij

]
θ

Le facteur entre crochets est la dérivée de l'entropie par rapport à la tempéra-
ture, à contraintes constantes. Il est donc de la forme(

∂S

∂T

)
s

=
ρcp
T

en notant cp la chaleur spéci�que à contraintes constantes. On a donc

S = S0 + αij(sij − s0
ij) +

(ρcp
T

)
0
θ (4.42)

Quant à la liaison entre cp et cv, elle est donnée par

cp − cv =
αijβijT

ρ
(4.43)

dans le cas général. Pour des corps isotropes, cela donne

cp − cv =
9Kα2T

ρ
(4.44)

Dans le cas de l'acier traité dans la section précédente, on obtient

cp − cv
cv

=
9 · (175 · 109) · (1, 21 · 10−10) · 293

7800 · 474
= 0, 0151

ce qui justi�e le fait que l'on néglige d'ordinaire de distinguer les deux chaleurs
spéci�ques.

Venons en à présent aux modules adiabatiques. De la formule (4.42) on
déduit que lors d'une déformation isentropique, la variation de température est
donnée par

θ = −
(
T

ρcp

)
0

αkl(skl − s0
kl)

Dès lors, la déformation vaudra

γij = Cijkl(sij − sij0)−
(
T

ρcp

)
0

αijαkl(skl − s0
kl)
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ce qui revient à dire que

(Cad)−1
ijkl = Cijkl −

(
T

ρcp

)
0

αijαkl (4.45)

Dans le cas isotrope, on a donc

(Cad)−1
ijkl =

1

E
[(1 + ν)δikδjl − νδijδkl]−

(
T

ρcp

)
0

α2δijδkl (4.46)

Nous laissons au lecteur le soin de véri�er que les deux expressions (4.37) et
(4.45) des modules adiabatiques sont équivalentes, ce qui résulte de la relation
(4.43) entre cp et cv.

4.5.5 Mesure dynamique du module de Young

A ce stade, il convient de noter qu'il existe des méthodes fort précises de
détermination du module de Young adiabatique par des mesures de fréquences
propres. La �gure 4.4 schématise un tel dispositif. Un barreau cylindrique est

Figure 4.4 � Mesure du module de Young par un essai vibratoire

appuyé en son milieu sur un trépied de faibles dimensions. Ses extrémités sont
excitées en vibrations longitudinales. La fréquence propre est donnée par

f =
1

2`

√
E

ρ

où ` est la longueur du barreau et ρ sa masse volumique. Il en découle la relation

E = 4ρ`2f2 (4.47)
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permettant de déterminer E à partir de la fréquence propre.
Couplé à un essai de traction, cet essai se fait de préférence, non pas sur un

barreau cylindrique, mais sur l'éprouvette de traction elle-même. Dans ce cas, la
formule (4.47) n'est plus valable, mais on peut, avec une bonne approximation,
la remplacer par

E = ψ · 4ρ`2f2

le facteur correctif étant donné par (�g. 4.5)

Figure 4.5 � Cas de l'éprouvette de traction

ψ =

∫ `/2
−`/2 Ω sin2 πx

` dx∫ `/2
−`/2 Ω cos2 πx

` dx

formule que l'on obtient aisément par la méthode de Rayleigh. Dans le cas
d'éprouvettes de traction assez longues, on peut considérer que dans les régions
où Ω 6= Ω0, Ω0 étant le section de la partie cylindrique,

sin2 πx

`
≈ 1 et cos2 πx

`
≈ 0

et en notant
∆Ω = Ω− Ω0

on obtient ∫ `/2

−`/2
Ω sin2 πx

`
dx = Ω0

`

2
+

∫ `/2

−`/2
∆Ω sin2 πx

`
dx

≈ Ω0
`

2
+ ∆V
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∆V étant la di�érence entre le volume de l'éprouvette et le volume d'une éprou-
vette cylindrique de section Ω0 et de même longueur :

∆V = V − Ω0
`

2

(Le volume V peut du reste être obtenu par pesée ou par immersion.) De la
même façon, ∫ `/2

−`/2
Ω cos2 πx

`
dx ≈ Ω0

`

2

ce qui conduit �nalement à la formule approchée

ψ ≈ 1 + 2
∆V

Ω0`

Cette dernière formule est d'autant meilleure que la longueur des épaulements
est plus faible devant la longueur de l'éprouvette.

4.6 Exercices

Exercice 16 Un expérimentateur obtient, à l'aide d'un essai de traction sur
un matériau, E = 200GPa et, par un essai de torsion, G = 110GPa. Quel est
le coe�cient de Poisson ? Cette valeur est-elle normale sur le plan théorique ?
Est-ce une valeur habituelle ?

Exercice 17 Soit le système à deux barres de la �gure 4.6, dont la position
de repos correspond à l'angle α. Exprimer l'énergie de déformation à l'aide du
tenseur de Green pour di�érents angles θ et chercher les puits de potentiel.

Figure 4.6 � Système à deux barres
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Solution - Pour un angle θ, la longueur d'une barre devient a/ cos θ, si bien que

γ =

(
a2

cos2 θ
− a2

cos2 α

)
cos2 α

2a2
=

1

2

(
cos2 α

cos2 θ
− 1

)
L'énergie de déformation vaut alors (extension simple)

U = 2 · 1

2
EΩ`2γ2 =

EΩ`

4

(
cos2 α

cos2 θ
− 1

)2

Cherchons les extrema de cette expression. On a

dU
dθ

=
EΩ`

2

(
cos2 α

cos2 θ
− 1

)(
2

cos2 α

cos3 θ
sin θ

)
Cette expression ne s'annule que pour les valeurs suivantes :{

θ = 0
cos θ = cosα soit θ = ±α

Il y a donc trois positions d'équilibre en l'absence de charge. Sont-ce des puits ?
On a

d2U
dθ2

=
EΩ`

2

(
cos2 α

cos2 θ
− 1

)(
2

cos2 α

cos3 θ
cos θ + 6

cos2 α

cos4 θ
sin2 θ

)
+
EΩ`

2

(
2 cos2 α

cos3 θ
sin θ

)2

(4.48)

� Pour θ = 0, on a cosα < cos θ = 1, d'où d2U/dθ2 < 0 : instable.
� Pour θ = ±α, on a

d2U
dθ2

= EΩ` tg2 α > 0

et il s'agit d'un équilibre stable.
Les �gures 4.7 et 4.8 représentent l'allure de la fonction U et de sa dérivée.

Exercice 18 Exprimer directement, à partir de la loi

W2 = −2GÎ2 +
K

2
I2
i

la loi de Hooke. En particulier, montrer que skk = 3Kγkk. Exprimer en�n la loi
de Hooke inverse.
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Figure 4.7 � Énergie du système à deux barres

Figure 4.8 � Dérivée de l'énergie

Solution - On a

W2 = 2G
γ̂ij γ̂ij

2
+
K

2
(γkk)2

d'où

spq =
∂W2

∂γpq
= 2Gγ̂ij

∂γ̂ij
∂γpq

+Kγkk
∂γll
∂γpq

Comme

γ̂ij = γij −
1

3
γllδij

on a
∂γ̂ij
∂γpq

= δipδjq −
1

3
δlpδlqδij = δipδjq −

1

3
δpqδij
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D'autre part,
∂γll
∂γpq

= δlpδlq = δpq

Il en découle

spq = 2Gγ̂ij(δipδjq −
1

3
δpqδij) +Kγkkδpq

et, comme γ̂ii = 0,
spq = 2Gγ̂pq +Kγkkδpq

En particulier, on a
spp = Kγkkδpp = 3Kγkk

comme annoncé.
La loi inverse s'obtient en partant de

γ̂pq =
1

2G
spq −

K

2G
γkkδpq

Comme
γkk =

skk
3K

il vient

γpq = γ̂pq +
1

3
γkkδpq

=
1

2G
spq −

K

2G

skk
3K

δpq +
1

3

skk
3K

δpq

=
1

2G
spq −

1

3

(
1

2G
− 1

3K

)
skkδpq

=
1 + ν

E
spq −

1

3

(
1 + ν

E
− 1− 2ν

E

)
skkδpq

=
1

E
[(1 + ν)spq − νskkδpq]

Exercice 19 Partant de la loi connue de la résistance des matériaux

γij =
1

E
[(1 + ν)sij − νsllδij ]

a) Exprimer sij en termes de γij.
b) Calculer la densité d'énergie de déformation W2.
c) Donner la matrice de Hooke et chercher les conditions pour qu'elle soit

dé�nie positive.

Solution
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a) On a

sij =
E

1 + ν
γij +

ν

1 + ν
sllδij

Comme

γii =
1

E
[(1 + ν)− 3ν]sii =

1− 2ν

E
sii

on obtient

sij =
E

1 + ν
γij +

Eν

(1 + ν)(1− 2ν)
γllδij

= 2G[γij +
ν

1− 2ν
γllδij ]

b) W =
∫
sijdγij = G(γijγij + ν

1+ν γllγii)

c) Posant β = ν
1+ν , on a

H = 2G


1 + β β β
β 1 + β β 0
β β 1 + β

1
0 1

1


Les conditions de positive dé�nition sont (positivité des déterminants princi-
paux) :

1. 1 + β > 0, soit β > −1.

2. (1 + β)2 − β2 = 1 + 2β > 0, soit β > −1/2.

3. (1 + β)3 + 2β3 − 3β2(1 + β) = 1 + 3β > 0, soit β > −1/3

La plus forte de ces conditions est β > −1/3, ce qui s'écrit encore

ν

1− 2ν
+

1

3
=

3ν + 1− 2ν

3(1− 2ν)
=

1 + ν

3(1− 2ν)
> 0

Le signe de cette fraction est identique à celui du produit (1+ν)(1−2ν), positif
pour

−1 < ν <
1

2
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Chapitre 5

Élasticité linéaire

5.1 Linéarisation géométrique

Les équations d'équilibre, que l'on utilise les contraintes de Piola, celles de
Kirchho�-Tre�tz ou encore les contraintes eulériennes, font toujours intervenir
les déplacements, ce qui rend le problème non linéaire. Mais si, en plus des
déformations, les rotations sont petites, on peut écrire

δij +Djui ≈ δij (5.1)

ce qui constitue le cadre de la linéarisation géométrique. On parle souvent de
théorie des petits déplacements, bien que cette dénomination soit impropre, car
aucune restriction n'est nécessaire sur les déplacements de translation.

Moyennant l'hypothèse (5.1), les déformations admettent l'expression li-
néaire simpli�ée

εij =
1

2
(Diuj +Djui) (5.2)

Les contraintes de Kirchho�-Tre�tz, celles de Piola et les contraintes eulériennes
sont alors pratiquement identiques, et nous les noterons σij conformément à la
tradition. Les équations d'équilibre s'écrivent

Djσji + fi = 0 dans V (5.3)

σij = σji dans V (5.4)

njσji = ti sur S (5.5)

83
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En�n, nous supposerons souvent, dans ce qui suit, le corps isotrope, cas où
il admettra les équations constitutives

σij = 2G

(
εij +

ν

1− 2ν
εkkδij

)
(5.6)

Cet ensemble d'équations forme la base de l'élasticité linéaire. Bien que consi-
dérablement simpli�ées, ces équations restent passablement di�ciles à résoudre,
excepté par voie numérique.

Signalons encore qu'en élasticité linéaire, la structure est toujours stable :
les phénomènes du type �ambement ne peuvent être traités à partir de ces
équations. Il en résulte également que les contraintes résiduelles ne peuvent
jamais être relaxées par voie élastique.

5.2 Unicité de la solution

Nous allons établir un résultat important dû à Kirchho� [48, 49]. On appelle
déplacements de corps rigide ou encore, modes rigides (linéarisés) les solutions
des équations εij = 0. Ces équations qui s'écrivent 1

Diuj +Djui = 0

admettent de toute évidence les solutions

Diuj = ωij

avec ωij = ωji. Mais alors, on doit avoir

Dkωij = Dkiuj = Dikuj = Diωkj

ce qui entraîne la chaîne suivante d'égalités :

Dkωij = Diωkj = −Diωjk = −Djωik = Djωki = Dkωji = −Dkωij

soit
Dkωij = 0

Il vient donc, en notant ωij = eijkωk,

ui = ai + eijkωjxk

1. La démonstration peut être faite encore plus simplement à partir des équations de Bel-
trami (voir section 5.4), établies indépendamment de ce résultat.
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avec ai et ωi constants, représentant respectivement une translation d'ensemble
et une rotation (linéarisée) d'ensemble.

Cela étant, le théorème de Kirchho� s'énonce comme suit :

Théorème 2 Deux champs de déplacements véri�ant les conditions d'équilibre
ne peuvent di�érer que d'un mode rigide.

En e�et, soient ui et vi deux solutions des équations d'équilibre. On a, pour
tout déplacement virtuel δui∫

V

σij(u)δεijdV = δT =

∫
V

σij(v)δεijdV

ce qui entraîne∫
V

[σij(u)− σij(v)]δεij =

∫
V

Cijkl[εij(u)− εij(v)]δεijdV = 0

Choisissant alors δui = ui − vi, on obtient∫
V

Cijkl[εij(u)− εij(v)][εkl(u)− εkl(v)]dV = 0

ce qui, vu la positive dé�nition des modules, implique

εij(u− v) = 0

5.3 Méthode directe de résolution. Équation de
Navier

La résolution d'un problème d'élasticité peut être menée en exprimant toutes
les variables en termes des déplacements, suite à quoi on cherche pour quel
champ de déplacements l'équilibre est véri�é ; c'est la méthode directe.

Cherchons l'équation correspondante dans le cas isotrope. Les relations

σij = 2G

(
εij +

ν

1− 2ν
εkkδij

)
(5.7)

entraînent

Djσji = 2G

(
Djεji +

ν

1− 2ν
Diεkk

)
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Notant alors que

2Djεji = Dj(Diuj +Djui) = Dijuj +Djjui

on obtient aisément l'équation de Navier

G

(
Djjui +

1

1− 2ν
Dijuj

)
+ fi = 0 (5.8)

On peut lui donner une autre forme en notant que

∆u = graddivu− rotrotu

ce qui, tous calculs faits, donne

G

(
2(1− ν)

1− 2ν
graddivu− rotrotu

)
+ f = 0 (5.9)

5.4 Méthode semi-inverse. Compatibilité

Le cheminement de la méthode directe est tellement naturel que l'on ne
pense guère à en analyser les étapes. Ce n'est pourtant pas sans intérêt, pour la
bonne compréhension de la méthode semi-inverse. Ces étapes sont reprises dans
le schéma suivant :

u
∂−→ ε

C−→ σ −→ Équilibre

Partant du champ de déplacements, on en a déduit le champ des déformations à
l'aide d'un opérateur de dérivation ∂ ; les contraintes se calculent alors à l'aide
de l'opérateur matriciel C, et il su�t alors de véri�er qu'elles sont en équilibre.

La méthode semi-inverse consiste à suivre le chemin opposé. Dans un certain
nombre de cas, en e�et, il est assez aisé de trouver la solution générale, en termes
des contraintes, des équations d'équilibre (5.3), (5.4) et (5.5). On devra alors
suivre le chemin inverse, représenté ci-dessous :

u
?←− ε C

−1

←− σ ←− Équilibre

Le passage des contraintes aux déformations se fait aisément par la loi de Hooke
inverse qui existe toujours, car la matrice des modules est dé�nie positive. Mais
peut-on, à partir d'un champ de déformations, remonter aux déplacements ? Il
est clair que ce n'est pas possible dans tous les cas, car s'il existe le plus sou-
vent plusieurs champs de contraintes qui véri�ent l'équilibre, le théorème de
Kirchho� nous apprend qu'il n'en existe qu'un seul qui dérive d'un champ de
déplacements 2. (C'est évidemment la solution cherchée.) Il en résulte que l'in-

2. Puisque les modes rigides ne donnent pas de contraintes
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tégration du champ de déplacements ne sera possible que moyennant certaines
conditions sur les déformations appelées équations de compatibilité.

Figure 5.1 � Illustration de la compatibilité

Avant de déterminer ces conditions, essayons de les interpréter par un raison-
nement physique. A cette �n, imaginons (�g. 5.1) que le corps soit découpé en
morceaux très petits, et que chacun de ces morceaux soit déformé de manière
arbitraire. En dehors de cas très particuliers, on ne pourra pas recoller entre
eux les morceaux ainsi déformés de manière que leurs bords se correspondent
parfaitement. La compatibilité exprime précisément que ces morceaux pourront
être réassemblés correctement, comme les pièces d'un puzzle.

La présentation la plus naturelle des équations de compatibilité est celle de
Beltrami, qui procède par une voie constructive, donnant ainsi une méthode
d'intégration des déplacements.

Partons de l'identité

Diuj =
1

2
(Diuj +Djui) +

1

2
(Diuj −Djui)

où apparaît, outre le tenseur des déformations, le tenseur antisymétrique

ωij =
1

2
(Diuj −Djui) (5.10)

Ce dernier est directement lié au demi-rotationnel

ωk =
1

2
ekrsDrus (5.11)

puisque

eijkωk =
1

2
ekijekrsDrus =

1

2
(δirδjs − δisδjr)Drus =

1

2
(Diuj −Djui) = ωij
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On peut donc écrire
Diuj = εij + eijkωk (5.12)

Dans cette équation, seuls les εij sont donnés. La question de la compatibilité
se ramène donc à déterminer s'il existe un champ ωk tel que (εij + eijkωk) soit
le gradient d'un vecteur. Pour qu'il en soit ainsi, il faut que les dérivées croisées
soient égales, ce qui s'écrit

0 = epmiDm(Diuj) = epmiDmεij + epmieijkDmωk

Le dernier terme du second membre s'écrit encore

Dmωk(δpjδkm − δpkδjm) = Dkωkδpj −Djωp

Il vient donc
Djωp −Dkωkδpj = epmiDmεij (5.13)

En particulier, en contractant sur les indices p et j, on obtient

Djωj(1− 3) = ejmiDmεij = 0

puisque εij est un tenseur symétrique. Soustrayant cette équation, combinaison
de plusieurs des équations (5.13), à celles-ci, on obtient le système équivalent

Djωp = epmiDmεij (5.14)

Ce sont les équations de compatibilité de Beltrami, auxquelles il faut donc accor-
der le sens suivant : un champ de déformations εij est compatible si et seulement
si on peut lui associer un champ de vecteurs-rotation ωp qui véri�e les équations
de Beltrami.

Cependant, les cas où l'on peut exhiber directement le bon vecteur-rotation
sont très rares (voir un exemple en section 5.9). Dans la plupart des cas, il
est préférable de déterminer les conditions de son existence. Il s'agit encore de
l'égalité des dérivées croisées :

0 = eqrjDr(Djωp) = eqrjepmiDrmεij

ce qui correspond à la nullité du tenseur (symétrique) d'incompatibilité

Tpq = epmieqrjDmrεij (5.15)

introduit par Washizu [93]. Les six équations

Tpq = 0 (5.16)

sont connues sous le nom d'équations de compatibilité de Barré de Saint-Venant.
Elle garantissent l'existence du vecteur ωi et donc aussi la compatibilité.
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5.5 Propriétés du tenseur d'incompatibilité

Le tenseur d'incompatibilité jouit de quelques propriétés intéressantes. Tout
d'abord, que la compatibilité soit véri�ée ou non, on a toujours

DpTpq = epmieqrjDpmrεij = eqrjDr(epmiDpmεij) = 0 (5.17)

c'est-à-dire que le tenseur d'incompatibilité est toujours un champ intérieure-
ment auto-équilibré.

Par ailleurs, ce tenseur permet de répondre à la question de l'existence d'un
vecteur ωp unique sur une surface. Il s'agit de savoir si sur toute courbe fermée
de cette surface (�g. 5.2), on a bien

Figure 5.2 � Unicité du vecteur-rotation sur une surface

0 =

∫
C
dωp =

∫
C
Djωpdxj

Djωp étant calculé à partir de (5.14). Utilisant le théorème de Stokes-Ampère,
on calcule ∫

C
Djωpdxj =

∫
C
epmiDmεijdxj

=

∫
S

nqeqrjDr(epmiDmεij)dS

ce qui donne ∫
C
dωp =

∫
S

nqeqrjepmiDrmεijdS =

∫
S

nqTqpdS
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et la nullité de cette grandeur sur toute courbe fermée tracée sur S nécessite
donc

nqTqp = 0 sur S (5.18)

C'est ce que nous appellerons les conditions de compatibilité super�cielle.

5.6 Autre forme des équations de compatibilité
de Saint-Venant

On emploie souvent, au lieu du tenseur d'incompatibilité ci-dessus, une autre
expression équivalente, que nous utiliserons plus loin. On peut l'obtenir en s'ap-
puyant sur le fait suivant : si apq est un tenseur symétrique, le tenseur

âls = eklpeksqapq (5.19)

lui correspond biunivoquement. En e�et, on a

âls = (δlsδpq − δlqδps)apq = appδls − als

et, en particulier,
âll = 3app − all = 2all

ce qui permet d'obtenir aisément la relation inverse

als =
1

2
âppδls − âls

Dans le cas présent, il est donc indi�érent d'annuler Tls ou le tenseur T̂ls qui lui
est associé par la relation (5.19). Or,

T̂ls = eklpeksqTpq

= eklpepmieksqeqrjDmrεij

= (δkmδli − δkiδlm)(δkrδsj − δkjδsr)Dmrεij

= (δkmδli − δkiδlm)(Dmkεij −Dmsεik)

ce qui fournit une seconde forme des équations de compatibilité de Saint-Venant :

T̂ls = Dkkεls −Dliεis −Dksεlk +Dlsεkk = 0 (5.20)
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5.7 Équations de Beltrami-Michell

Dans le cas d'un corps élastique homogène et isotrope, il est possible d'ex-
primer directement les équations de compatibilité en termes des contraintes, ce
qui constitue un raccourci avantageux.

Rappelons d'abord l'établissement de l'équation de Hooke inverse. Partant
de (5.6), on calcule d'abord

σii = 2G
1 + ν

1− 2ν
εii

d'où

2Gεii =
1− 2ν

1 + ν
σii

La réintroduction de ce résultat dans (5.6) donne

2Gεij = σij −
ν

1− 2ν

1− 2ν

1 + ν
σllδij

soit encore, en multipliant les deux membres par 1/(2G) = (1 + ν)/E,

εij =
1

E
[(1 + ν)σij − νσllδij ] (5.21)

Ceci posé, on a visiblement

2GT̂ij = (Dkkσij +Dijσkk −Dikσjk −Djkσik)

− ν

1 + ν
(Dkkσllδij +Dijσllδkk −Dikσllδjk −Djkσllδik)

Notant alors que, si l'équilibre est véri�é, on a

Dkσkj = −fj

on transforme l'expression obtenue en

2GT̂ij = Dkkσij +
1

1 + ν
Dijσkk + (Difj +Djfi)−

ν

1 + ν
Dkkσllδij

Ce résultat peut encore être amélioré si l'on note que la contraction sur les
indices i et j donne

2GT̂ii = 2
1− ν
1 + ν

Dkkσii + 2Difi = 0
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c'est-à-dire

Dkkσii = −1 + ν

1− ν
Difi

Il vient donc �nalement

2GT̂ij = Dkkσij +
1

1 + ν
Dijσkk +

(
Difj +Djfi +

ν

1− ν
Dkfkδij

)
= 0 (5.22)

Ce sont les équations de Beltrami-Michell [61]. En l'absence de forces de volume,
elles se ramènent à l'expression simple

Dkkσij +
1

1 + ν
Dijσkk = 0 (5.23)

Ce sont des combinaisons de l'équilibre et de la compatibilité, qui n'auront donc
la valeur d'équations de compatibilité que si l'équilibre intérieur est déjà véri�é
par ailleurs.

5.8 Compatibilité dans les corps multiplement con-
nexes

5.8.1 Introduction

Les conditions de compatibilité obtenues ci-dessus sont nécessaires pour as-
surer l'existence des déplacements. Mais sont-elles su�santes ? Cette question se
réduit fondamentalement à la suivante : étant donné un champ fi irrotationnel
dans V , admet-il un potentiel ϕ tel que fi = Diϕ dans V ? La construction du
potentiel est classique : étant donné un point a ∈ V , on calcule ϕ en un point
x ∈ V par la formule

ϕ(x) = ϕ(a) +

∫
Cax

fidxi (5.24)

Cax étant une courbe quelconque de V joignant a à x (�g. 5.3). Bien entendu,
cette formule ne dé�nit un potentiel unique que si la valeur ϕ(x) ne dépend pas
de la courbe choisie. Étant donné deux courbes di�érentes C1 et C2 (�g. 5.4), on
doit donc avoir ∫

C1
fidxi =

∫
C2
fidxi

ou, ce qui revient au même ∫
C1∪(−C2)

fidxi = 0 (5.25)
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Figure 5.3 � Intégration du potentiel

Figure 5.4 � Unicité du potentiel

en notant (−C2) la courbe C2 parcourue en sens inverse. En d'autres termes, la
circulation de fi sur tout circuit fermé doit être nulle.

A ce stade, deux cas sont possibles :

1. Sur tout circuit fermé de V , on peut appuyer une surface S entièrement
contenue dans V . On dit alors que V est simplement connexe (�g. 5.5).

2. Il existe des circuits fermés de V sur lesquels on ne peut appuyer aucune
surface entièrement contenue dans V . On dit alors que V est multiplement
connexe (�g. 5.5).

Considérons d'abord le premier cas, qui est du reste le seul à être traité dans les
manuels élémentaires d'analyse. Par application du théorème de Stokes-Ampère,
on a alors sur un circuit quelconque (�g. 5.7)∫

C
f · ds =

∫
S

n · rotfdS
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Figure 5.5 � Simplement connexe

Figure 5.6 � Multiplement connexe

soit, dans nos notations, ∫
C
fidxi =

∫
S

nieijkDjfkdS

et comme fi est irrotationnel, ∫
C
fidxi = 0

donc l'existence du potentiel est assurée. Il en découle que dans un corps sim-
plement connexe, les conditions de compatibilité su�sent à assurer l'existence
du champ de déplacements.

5.8.2 Topologie des corps multiplement connexes

Dans un corps V quelconque, deux circuits sont dits réconciliables si l'on
peut faire coïncider le premier avec le second par une déformation continue ne



5.8. CORPS MULTIPLEMENT CONNEXES 95

Figure 5.7 � Cas d'un ouvert simplement connexe

Figure 5.8 � C1 et C2 sont réconciliables

le faisant pas sortir du corps. La trajectoire de réconciliation dé�nit donc une
surface S ⊂ V (�g. 5.8).

Certains circuits peuvent être déformés jusqu'à ne plus former qu'un point :
on les appelle réductibles. Tout autre circuit est irréductible. Toute surface S
construite sur un circuit irréductible coupe donc {V (�g. 5.9).

Un circuit irréductible C est dit simple si l'on peut construire sur C une
surface S telle que S ∩ {V soit d'un seul tenant. Sinon, C est dit composé.
Intuitivement, un circuit simple � n'entoure qu'un trou �.

Appliquée aux circuits simples, la condition C1 R C2 (R signi�e � réconciliable
avec �) est une relation d'équivalence (�g. 5.11) : C1 R C1 (trivial)

C1 R C2 et C2 R C3 ⇒ C1 R C3
C1 R C2 ⇒ C2 R C1
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Figure 5.9 � C1 est irréductible, C2 est réductible

Figure 5.10 � C1 est simple, C2 est composé

Elle divise donc les circuits simples en classes d'équivalence. Le nombre de ces
classes, +1 (pour les circuits réductibles) dé�nit la multiplicité de la connexion
du corps V.

5.8.3 Intégration d'un gradient sur un corps multiplement
connexe

L'intérêt des dé�nitions précédentes réside dans la propriété que voici :

Théorème 3 Étant donné un champ irrotationnel fi, ses circulations sur deux
circuits simples réconciliables sont identiques.

Soient en e�et a ∈ C1 et b ∈ C2 deux points qui se correspondent dans la
déformation de C1 à C2 (�g. 5.12). Lions-les par la trajectoire C3 de a vers b
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Figure 5.11 � � réconciliable avec � est une relation d'équivalence.

Figure 5.12 � Constantes cycliques

lors de cette déformation. Alors,∫
C1
fidxi −

∫
C2
fidxi = ∫

C3
fidxi +

∫
C2
fidxi −

∫
C3
fidxi −

∫
C1
fidxi = 0

car le circuit C = (C3, C2,−C3,−C1) est réductible, si bien que∫
C
fidxi =

∫
S12

nieijkDjfkdS = 0
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Ainsi, il existe, associée à chaque classe de circuits simples, une constante cy-
clique ∆ϕ égale à la circulation de fi sur un quelconque des circuits de cette
classe.

Figure 5.13 � Cas des circuits composés

Le cas des circuits composés s'y réduit aisément. En e�et,comme le montre
la �gure 5.13, il est possible de tracer autour de chaque composante connexe de
S ∩ {V un circuit simple. A l'aide de ponts comme ci-dessus, on obtient que la
valeur de la circulation de fi vaut la somme des constantes cycliques relatives
aux di�érents trous embrassés.

De tout ceci, il résulte qu'un champ irrotationnel dans un ouvert de connexion
m-uple admet un potentiel si et seulement si les (m − 1) constantes cycliques
des classes de circuits simples sont nulles.

5.8.4 Conditions globales de compatibilité dans les corps
multiplement connexes

Partant des relations

Djωp = epmiDmεij

on commence par intégrer les rotations, en supposant véri�ées les conditions de
compatibilité de Saint-Venant :

ωp(y) = ωp(0) +

∫ y

0

epmiDmεijdxj
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par un chemin quelconque. Pour assurer l'unicité, il faudra que sur chaque classe
de circuits simples, les trois constantes cycliques

∆ωp =

∫
C
epmiDmεijdxj (5.26)

s'annulent, ce qui donne 3(m− 1) conditions pour un corps m fois connexe.
Les déplacements se calculent alors à partir des relations

Diuj = εij + eijpωp

Dans ce cas-ci, il faut faire attention à l'existence possible de ∆ωp. Pour deux

Figure 5.14 � Intégration des déplacements

circuits C1 et C2 réconciliables (�g. 5.14), on a, avant de faire un tour,

u−j (b) = u−j (a) +

∫
C3

(εij + eijpω
−
p )dxi

et, après avoir fait un tour,

u+
j (b) = u+

j (a) +

∫
C3

(εij + eijpω
+
p )dxi

soit, par di�érence,

∆uj(b) = ∆uj(a) + eijp∆ωp(bi − ai) (5.27)

c'est-à-dire que le saut de déplacement se compose d'une translation ∆uj(a) et
d'une rotation eijp∆ωp(bi − ai). Tout saut est annulé moyennant les conditions
∆ωp = 0 et

∆uj =

∫
C
(εij + eijpωp)dxi = 0 (5.28)
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5.8.5 Interprétation de Weintgarten-Volterra

Figure 5.15 � Coupure rendant le corps simplement connexe

Figure 5.16 � Déplacements des lèvres de la coupure

Comment interpréter le fait que les conditions locales de compatibilité ne
su�sent pas dans le cas d'un corps multiplement connexe ? Faisons des cou-
pures rendant le corps simplement connexe. Il su�t pour cela de supprimer
l'existence de circuits irréductibles (�g. 5.15). A partir des relations locales de
compatibilité, on peut alors construire un champ de déplacements dans le corps
ainsi transformé. Mais en général, les lèvres de la coupure vont alors s'écarter
d'une translation et d'une rotation : ce sont les dislocations de Volterra [96, 91].
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Pour recoller le lèvres de la coupure, il faudra appliquer au corps des e�orts
capables de l'obliger à véri�er les équations globales ∆up = 0 et ∆ωp = 0. Il
est donc possible, en fabriquant par exemple un tube par cintrage et soudage,
d'introduire des contraintes résiduelles. Ces contraintes ne pourront pas être
annulées sans rompre la compatibilité. C'est pourquoi on dit encore qu'un corps
m fois connexe est 6(m− 1) fois cinématiquement hyperstatique.

5.9 Sur l'indépendance des équations de compa-
tibilité

Les équations de compatibilité de Saint-Venant sont au nombre de six. Mais
sont-elles totalement indépendantes ? Nous allons montrer que, moyennement
certaines conditions sur la surface du corps, on peut se limiter à ne véri�er que
trois équations de compatibilité. Nous commencerons par établir deux lemmes
dus à Fraeijs de Veubeke [36], qui nous aideront à obtenir des théorèmes plus
généraux dus à Washizu [93].

Lemme 1 Si l'on se donne arbitrairement les éléments diagonaux ε11, ε22, ε33

du champ de déformation, il est toujours possible de le compléter de manière à
le rendre compatible.

En e�et, soit (u0
1, u

0
2, u

0
3) une solution particulière des équations

D1u
0
1 = ε11, D2u

0
2 = ε22, D3u

0
3 = ε33

Il su�ra d'écrire

ε12 =
1

2
(D1u

0
2 +D2u

0
1), ε23 =

1

2
(D2u

0
3 +D3u

0
2), ε31 =

1

2
(D3u

0
1 +D1u

0
3)

Lemme 2 Si l'on se donne arbitrairement les termes non diagonaux ε12, ε23,
ε31 du champ de déformation, il est toujours possible de le compléter de manière
à le rendre compatible.
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En e�et 3, il su�t de copier partiellement le raisonnement de Beltrami, en écri-
vant

D2u1 = ε21 − ω3

D3u1 = ε31 + ω2

D1u2 = ε12 + ω3

D3u2 = ε32 − ω1

D1u3 = ε13 − ω2

D2u3 = ε23 + ω1 (5.29)

Les deux premières équations seront compatibles, c'est-à-dire que l'on pourra
trouver un déplacement u1, si

D3ω3 +D2ω2 = D3ε21 −D2ε31 (5.30)

La deuxième paire d'équations, relative à l'existence de u2, exige

D3ω3 +D1ω1 = D1ε32 −D3ε12 (5.31)

En�n, le troisième couple d'équations, relatif à l'existence de u3, conduit à la
condition

D1ω1 +D2ω2 = D2ε13 −D1ε23 (5.32)

Visiblement, la somme des trois conditions (5.30), (5.31), (5.32) donne

D1ω1 +D2ω2 +D3ω3 = 0

ce qui nous ramène aux conditions

D1ω1 = −D3ε21 +D2ε31

D2ω2 = −D1ε32 +D3ε12

D3ω3 = −D2ε13 +D1ε23

qui permettent toujours de trouver une solution particulière ω0
i . Il su�t alors

d'introduire ce champ ω0
i dans les relations (5.29) pour obtenir une solution

particulière u0
i dont on pourra déduire les déformations manquantes.

3. La présente démonstration di�ère de celle de Fraeijs de Veubeke
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5.9.1 Deux résultats généraux sur les champs d'autocon-
trainte

Les deux lemmes ci-dessus vont nous permettre d'établir deux théorèmes sur
les états d'autocontrainte.

Théorème 4 Soit σij un état d'autocontrainte, c'est à dire véri�ant Djσij = 0
dans V et njσij = 0 sur S. Si ce champ a ses termes diagonaux nuls dans V , il
est identiquement nul.

En e�et, il résulte du deuxième lemme ci-dessus que l'on peut trouver un champ
de déplacement vi tel que

σij =
1

2
(Divj +Djvi) , i 6= j

Alors, comme σ11 = 0, σ22 = 0 et σ33 = 0, on a∫
V

(2σ2
12 + 2σ2

23 + 2σ2
31)dV =

∫
V

σij
1

2
(Divj +Djvi)dV

=

∫
S

njσijvidS −
∫
V

viDjσjidV

= 0

puisqu'il s'agit d'un état d'autocontrainte.

Théorème 5 Soit σij un état d'autocontrainte, c'est à dire véri�ant Djσij = 0
dans V et njσij = 0 sur S. Si ce champ a ses termes non diagonaux nuls dans
V , il est identiquement nul.

Le schéma de la démonstration est le même, en se basant sur le premier lemme
ci-dessus.

5.9.2 Les deux théorèmes de Washizu

Revenons au tenseur d'incompatibilité Tij . On sait qu'il véri�e l'équilibre
intérieur :

DjTji = 0 dans V

Il en découle les deux théorèmes suivants :
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Théorème 6 Si un champ de déformations satisfait aux seules équations de
compatibilité T11 = 0, T22 = 0 et T33 = 0 dans un domaine V , le tenseur Tij est
nul dans V chaque fois que les conditions de surface njTji = 0 sont véri�ées 4.

En e�et, les conditions sont telles que le tenseur d'incompatibilité est un état
d'autocontrainte dont les éléments diagonaux sont nuls. De la même façon, on
a le

Théorème 7 Si un champ de déformations satisfait aux seules équations de
compatibilité T12 = 0, T23 = 0 et T31 = 0 dans un domaine V , le tenseur Tij est
nul dans V chaque fois que les conditions de surface njTji = 0 sont véri�ées 5.

5.9.3 Autre énoncé des théorèmes de Washizu

Nous avons vu en section 5.5 que la nullité de l'expression niTip sur la sur-
face du corps est une condition nécessaire à l'existence d'un vecteur rotation
univoque sur cette surface. On peut donc encore énoncer le

Théorème 8 Si le vecteur rotation est dé�ni de manière univoque sur la sur-
face, il su�ra, pour assurer la nullité du tenseur d'incompatibilité, d'exiger un
des deux triplets de conditions T11 = T22 = T33 = 0 ou T12 = T23 = T31 = 0.

5.10 Exercices

Exercice 20 Écrire explicitement les six composantes du tenseur d'incompati-
bilité Tij

Solution

T11 = D22ε33 +D33ε22 − 2D23ε23

T22 = D33ε11 +D11ε33 − 2D13ε13

T33 = D11ε22 +D22ε11 − 2D12ε12

T12 = D23ε31 +D31ε23 −D21ε33 −D33ε21

T23 = D31ε12 +D12ε31 −D32ε11 −D11ε32

T31 = D12ε23 +D23ε12 −D13ε22 −D22ε31

4. Washizu exigeait en fait Tij = 0 sur S, ce qui est plus restrictif
5. Même remarque que pour le théorème précédent
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Exercice 21 Montrer qu'un champ de contraintes en équilibre homogène à l'in-
térieur de V est en général formé des dérivées secondes de trois fonctions de
contrainte que l'on peut dé�nir d'au moins deux manières di�érentes.

Solution - Les relations
Djσji = 0

admettent, si l'on fait provisoirement abstraction de la symétrie des contraintes,
la solution générale

σji = ejklDkAli

les Ali étant des fonctions de contrainte du premier ordre. On jouit, dans cette
expression, d'une invariance de jauge, en ce sens que l'on ne modi�e pas les
contraintes en remplaçant les Ali par

Âli = Ali +Dlψi

ψi étant un vecteur quelconque. On peut en particulier choisir les ψi de manière
à annuler Â11, Â22 et Â33 : il su�t pour cela que

D1ψ1 = −A11, D2ψ2 = −A22, D3ψ3 = −A33

La condition de symétrie des contraintes s'écrit alors

0 = erjiσji = ejirejpqDpÂqi = DpÂqi(δipδqr − δiqδpr)

soit
0 = DiÂri −DrÂii = DiÂri

puisque, par construction, Âii = 0. La solution générale de cette équation a la
forme

Âri = eimnDmBrn

A nouveau, on jouit d'une invariance de jauge, car on ne modi�e pas les Âli en
remplaçant Brn par

B̂rn = Brn +Dnχr (5.33)

Remarquons d'abord que l'on peut choisir les χr de manière à symétriser B̂rn :
en e�et, pour obtenir

eirnB̂rn = eirnBrn + eirnDnχr = 0

il faut que
einrDnχr = eirnBrn
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ce qui est possible si

Di(eirnBrn) = 0

ce qui revient à dire

−erinDiBrn = −Ârr = 0

condition e�ectivement véri�ée. On obtient ainsi l'expression

σij = eiklejmnDkmB̂ln (5.34)

avec B̂ln symétrique. Mais on peut aller plus loin en jouant sur une nouvelle
forme de l'invariance de jauge, qui ne rompt pas la symétrie : il résulte en e�et de
l'expression du tenseur d'incompatibilité que les contraintes ne sont pas altérées
si l'on remplace B̂ij par

B̃ij = B̂ij +
1

2
(Diβj +Djβi)

Or, il est possible de trouver un champ βi qui véri�e l'une des deux conditions
suivantes :

1. 1
2 (Diβj +Diβi) = −B̂ij pour i 6= i

2. D1β1 = −B̂11, D2β2 = −B̂22, D3β3 = −B̂33

Pour le choix (1), le tenseur B̃ij se réduit à le seule diagonale. En notant
ϕ1 = B̃11, ϕ2 = B̃22 et ϕ3 = B̃33, on obtient

σ11 = D22ϕ3 +D33ϕ2

σ22 = D33ϕ1 +D11ϕ3

σ33 = D11ϕ2 +D22ϕ1

σ12 = −D12ϕ3

σ23 = −D23ϕ1

σ31 = −D31ϕ2

C'est le système de fonctions de contrainte de Maxwell (1870) [75].
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Le choix (2) mène à un tenseur B̃ij réduit à ses termes non diagonaux. En
notant Φ1 = −2B̃23, Φ2 = −2B̃31 et Φ3 = −2B̃12, on obtient

σ11 = D23Φ1

σ22 = D13Φ2

σ33 = D12Φ3

σ12 = −1

2
D3(D1Φ1 +D2Φ2 −D3Φ3)

σ13 = −1

2
D2(D3Φ3 +D1Φ1 −D2Φ2)

σ23 = −1

2
D1(D2Φ2 +D3Φ3 −D1Φ1)

C'est le système de fonctions de contrainte de Morera (1892) [75].

Exercice 22 En théorie des poutres, on pose

σzz = a(z) + xb(z) + yc(z)

σxx = σyy = 0

Montrer que, dans le cadre de ces hypothèses, et pour autant que la poutre soit
simplement connexe, il est toujouirs possible de trouver des contraintes σxy, σyz
et σzx de manière à assurer la compatibilité.

Exercice 23 Analyser les conséquences du théorèmes d'unicité de Kirchho� en
ce qui concerne

� la stabilité ;
� les contraintes résiduelles.

Peut-on étudier le �ambement dans le cadre de la théorie linéaire ?

Exercice 24 Quelles sont les conditions pour qu'un champ de déformation de
la forme εij = f(x)δij soit compatible ?

Solution - On a

Tpq = epmieqrjDmrfδij = Dmrfepmieqri

= Dmrf(δpqδmr − δprδqm)

= Dmmfδpq −Dqpf

soit
Dpqf = Dmmfδpq (5.35)
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Contractant sur p et q, on obtient

Dppf = 3Dmmf soit Dmmf = 0

ce qui, comparé à (5.35) donne

Dpqf = 0

La solution de ces 6 équations est

f = α0 + α1x1 + α2x2 + α3x3

Exercice 25 A partir des équations de Navier, étudier le problème d'une sphère
creuse épaisse soumise à une pression interne. En déduire le cas limite d'une
faible épaisseur.

Solution - La symétrie du problème implique uθ = uϕ = 0 (dans les coordonnées
sphériques), soit u = uer. On a encore ∂u/∂θ = ∂u/∂ϕ = 0 . Il en résulte

divu =
1

r2 sin θ

[
∂

∂r
(r2 sin θu) + 0 + 0

]
=

1

r2

∂

∂r
(r2u)

et

rotu =
1

r2 sin θ

∣∣∣∣∣∣
er eθ eϕ
∂
∂r

∂
∂θ

∂
∂ϕ

u 0 0

∣∣∣∣∣∣ = 0

Les forces de volume étant nulles, on a simplement

graddivu = 0

ce qui signi�e que
divu = C

soit, explicitement,
d

dr
(r2u) = Cr2

On en déduit successivement

r2u = C
r3

3
+D

puis

u = C
r

3
+
D

r2
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ce que l'on peut encore écrire

u = Ar +
B

r2

Les déformations sont donc

εrr = ∂u
∂r = A− 2B

r3

εθθ = εϕϕ = u
r = A+ B

r3

εrr + εθθ + εϕϕ = 3A

On en déduit aisément les contraintes :

σrr = 2G

(
εrr +

ν

1− 2ν
divu

)
= 2G

(
A− 2B

r3
+

3ν

1− 2ν
A

)
= 2G

(
1 + ν

1− 2ν
A− 2B

r3

)
σθθ = σϕϕ = 2G

(
εθθ +

ν

1− 2ν
divu

)
= 2G

(
A+

B

r3
+

3ν

1− 2ν
A

)
= 2G

(
1 + ν

1− 2ν
A+

B

r3

)
Les conditions aux limites sont{

σrr = −p en r = Ri
σrr = 0 en r = Re

On en déduit d'abord

B =
R3
e

2

1 + ν

1− 2ν
A

ce qui donne

σrr = 2GA 1+ν
1−2ν

(
1− R3

e

r3

)
= EA

1−2ν

(
1− R3

e

r3

)
σθθ = σϕϕ = 2GA 1+ν

1−2ν

(
1 +

R3
e

2r3

)
= EA

1−2ν

(
1 +

R3
e

2r3

)
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Pour r = Ri, on trouve

−p =
EA

1− 2ν

(
1− R3

e

R3
i

)
soit

A =
p(1− 2ν)

E
(
R3

e

R3
i
− 1
)

La solution �nale est donc

σrr = −p
R3
e

r3 − 1

R3
e

R3
i

− 1

σθθ = σϕϕ = p

R3
e

2r3 + 1

R3
e

R3
i

− 1

(5.36)

Quant au déplacement, il vaut

u = Ar +
B

r2
= A

[
r +

1

2

1 + ν

1− 2ν

R3
e

r2

]
=

pr

2E(
R3
e

R3
i − 1

)

[
(2− 4ν) + (1 + ν)

R3
e

r3

]

soit

u =
pr

2E

(2− 4ν) + (1 + ν)
R3
e

r3

R3
e

R3
i

− 1

(5.37)

Dans le cas d'une faible épaisseur, c'est-à-dire t/R = η � 1, où t est l'épais-
seur, et R, le rayon, on a

r = R(1 + ηρ), avec − 1

2
≤ ρ ≤ 1

2

ρ = (
r

R
− 1)

1

η
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et
Re = R(1 +

η

2
), Ri = R(1− η

2
)

d'où
Re
Ri

=
1 + η/2

1− η/2
= 1 +

η

1− η/2
= 1 + η +O(η2)

et (
Re
Ri

)3

= 1 + 3η +O(η2)

De la même façon, on a
r = R(1 +O(η))

et
Re
r

=
1 + η/2

1 + ηρ
=

1 + ηρ+ η( 1
2 − ρ)

1 + ηρ
= 1 + η(

1

2
− ρ) +Oη2)

d'où (
Re
r

)3

= 1 + 3η(
1

2
− ρ) +O(η2)

On en déduit

σrr = −p
3η( 1

2 − ρ) +O(η2)

3η +O(η2)
= −p

( 1
2 − ρ) +O(η)

1 +O(η)
= −p(1

2
− ρ) +O(η)

puis

σθθ = σϕϕ = p
1
2 + 3

2η( 1
2 − ρ) +O(η2) + 1

3η +O(η2)

= p
3
2 + 3

2η( 1
2 − ρ) +O(η2)

3η(1 +O(η))
=

p

2η
(1 +O(η))

et en�n

u =
pR(1 +O(η))

2E

(2− 4ν) + (1 + ν)[1 + 3η( 1
2 − ρ) +O(η2)]

3η +O(η2))

=
pR

2E

(3− 3ν)(1 +O(η))

3η(1 +O(η))
=

pR

2Eη
(1− ν)(1 +O(η)
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A un ordre de η près, on a donc

σrr ≈ −p(1

2
− ρ) (= O(p))

σθθ = σϕϕ ≈ pR

2t
(= O(p/η)) (5.38)

u ≈ pR2(1− ν)

2Et

On le constate, en comparaison des autres contraintes, σrr est de l'ordre des
termes négligés. Il est donc raisonnable de la considérer comme approximative-
ment nulle. C'est pourquoi on considère généralement qu'une sphère mince sous
pression est en état plan de contrainte (σrr ≈ 0).

Figure 5.17 � Sphère mince : calcul de σθθ.
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La valeur de σθθ peut être obtenue par le raisonnement simple que voici (�g.
5.17) : la résultante verticale des pressions sur la demi-sphère vaut

p

∫
S

cos θdS = p

∫ π/2

0

cos θ · 2πR sin θ ·Rdθ

= pπR2

∫ π/2

0

sin 2θdθ

= pπR2

[
−cos 2θ

2

]π/2
0

= p
πR2

2
(cos 0− cosπ)

= pπR2

Cet e�ort est équilibré par les contraintes σθθ sur l'équateur, dont la résultante
vaut

σθθt · 2πR

On a donc

σθθ =
pπR2

2πRt
=
pR

2t

Un raisonnement semblable prouverait que σϕϕ a la même valeur. On en déduit
d'ailleurs

εθθ =
u

R
=

1

E
(σθθ − νσϕϕ) =

1− ν
E

σθθ =
pR

2Et
(1− ν)

d'où

u =
pR2

2Et
(1− ν)

Exercice 26 Montrer que les hypothèses de Saint-Venant pour les poutres,

σx = τxy = σy = 0

impliquent
σz = a0(z) + xa1(z) + ya2(z)

où a0, a1 et a2 sont des fonctions a�nes de z pour que la compatibilité soit
véri�ée.

Solution - Les équations de Beltrami-Michell s'écrivent alors
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1.

1

1 + ν

∂2σz
∂x2

= 0

1

1 + ν

∂2σz
∂y2

= 0

1

1 + ν

∂2σz
∂x∂y

= 0

ce qui implique
σz = a0(z) + xa1(z) + ya2(z)

2.

∆σz +
1

1 + ν

∂2σz
∂x∂y

= 0⇒ ∂2σz
∂z2

= 0

∆τxz +
1

1 + ν

∂2σz
∂x∂z

= 0⇒ ∆τxz +
1

1 + ν

da1

dz
= 0

∆τyz +
1

1 + ν

∂2σz
∂y∂z

= 0⇒ ∆τyz +
1

1 + ν

da2

dz
= 0



Chapitre 6

Torsion des poutres
prismatiques

6.1 Notion de poutre

Une poutre est un corps élancé, c'est-à-dire qu'une de ses dimensions surpasse
largement les autres (�g. 6.1). Nous placerons l'axe des z suivant la grande
dimension. Dans une poutre prismatique, la section Ω est indépendante de z.
Nous placerons l'origine des axes Gx,Gy de la section au centre de gravité de
celle-ci, dans les axes principaux d'inertie (le trièdre (G, x, y, z) est supposé
dextrorsum). Dès lors,

∫
Ω

xdΩ =

∫
Ω

ydΩ =

∫
Ω

xydΩ = 0 (6.1)

Nous noterons

Ω =

∫
Ω

1dΩ, Ix =

∫
Ω

x2dΩ, Iy =

∫
Ω

y2dΩ (6.2)

La surface latérale de la poutre, y compris celle des trous éventuels, est appelée
manteau.

115
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Figure 6.1 � Poutre

6.2 Torsion uniforme

Les hypothèses de la théorie classique des poutres de Barré de Saint-Venant
[4, 3] sont

 σx = 0, σy = 0, τxy = 0
Pas de charge sur le manteau
Pas de forces de volume

(6.3)

Parmi les di�érents états de contrainte possibles dans ce cadre, la torsion uni-
forme se caractérise par la condition supplémentaire

σz = 0 (6.4)



6.3. ÉQUATIONS D'ÉQUILIBRE 117

6.3 Équations d'équilibre

Les équations générales d'équilibre 1
∂σx

∂x +
∂τxy

∂y + ∂τxz

∂z + fx = 0
∂τxy

∂x +
∂σy

∂y +
∂τyz

∂z + fy = 0
∂τxz

∂x +
∂τyz

∂y + ∂σz

∂z + fz = 0

se réduisent, dans le cadre des hypothèses ci-dessus, à

∂τxz
∂z

= 0,
∂τxz
∂z

= 0 (6.5)

et
∂τxz
∂x

+
∂τyz
∂y

= 0 (6.6)

On satisfait à ces trois conditions en posant

τxz = Gθ
∂ϕ

∂y
, τyz = −Gθ∂ϕ

∂y
(6.7)

θ étant une constante arbitraire et ϕ, une fonction de x et y seulement, appelée
fonction de Prandtl [70]. Elle est dé�nie à une constante additive près.

Sur le manteau, on a nz = 0, et les conditions d'équilibre s'écrivent nxσx + nyτxy = 0
nxτxy + nyσy = 0
nxτxz + nyτyz = 0

Vu les hypothèses, il ne subsiste que la seule équation

nxτxz + nyτyz = 0 (6.8)

En termes de la fonction de Prandtl, elle s'écrit

nx
∂ϕ

∂y
− ny

∂ϕ

∂x
= 0 (6.9)

Dé�nissons sur le contour (�g. 6.2) le vecteur unitaire tangent positif comme

1. Dans les applications, nous utiliserons librement les notations d'ingénieur σx = σxx,
τxy = σxy et γxy = 2εxy , etc. , pour autant qu'aucune confusion ne soit possible avec les
déformations de Green
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Figure 6.2 � Normale et tangente sur le contour

obtenu par rotation du vecteur normal extérieur de π/2 selon la règle du tire-
bouchon autour de l'axe z. Alors, comme

nx = cos θ, ny = sin θ

on obtient

tx = cos(θ +
π

2
) = − sin θ = −ny

ty = sin(θ +
π

2
) = cos θ = nx

L'équation (6.9) devient alors

tx
∂ϕ

∂x
+ ty

∂ϕ

∂y
=
∂ϕ

∂t
= 0

ce qui signi�e que ϕ est constante sur toute composante connexe du contour C.
Appelant C0 le contour extérieur, on �xe la constante arbitraire dans la dé�nition
(6.7) de la fonction de Prandtl par la condition

ϕ|C0 = 0 (6.10)

Sur les contours intérieurs Ci, on peut seulement dire

ϕ|Ci = ϕi (cte) (6.11)
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On peut également prolonger la fonction ϕ à Ω0 = Ω∪ (
⋃
i Ωi) où les Ωi sont

les trous, en posant {
ϕ̂ = ϕ dans Ω
ϕ̂ = ϕi dans Ωi

La fonction prolongée ϕ̂ permet dans bien des cas de simpli�er le problème.
Proposons-nous de calculer les résultantes du champ de cisaillement. Les

e�orts tranchants sont dé�nis par

Tx =

∫
Ω

τxzdΩ, Ty =

∫
Ω

τyzdΩ

On a

Tx = Gθ

∫
Ω

∂ϕ

∂y
dΩ = Gθ

∫
Ω0

∂ϕ̂

∂y
dΩ = Gθ

∫
C0
ϕ̂nyds = 0

Ty = −Gθ
∫

Ω

∂ϕ

∂x
dΩ = −Gθ

∫
Ω0

∂ϕ̂

∂x
dΩ = −Gθ

∫
C0
ϕ̂nxds = 0

La résultante du torseur des contraintes tangentielles étant nulle, il possède donc
un moment indépendant du point par rapport auquel il est calculé. Ce moment,
dit moment de torsion, vaut (�g. 6.3)

Figure 6.3 � Moment de torsion

Mt =

∫
Ω

(xτyz − yτxz)dΩ
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On a

Mt = −Gθ
∫

Ω

(
x
∂ϕ

∂x
+ y

∂ϕ

∂y

)
dΩ

= −Gθ
∫

Ω0

(
x
∂ϕ̂

∂x
+ y

∂ϕ̂

∂y

)
dΩ

= −Gθ
∫
C0

(xnx + yny)ϕ̂ds+Gθ

∫
Ω0

ϕ̂

(
∂x

∂x
+
∂y

∂y

)
dΩ

= 2Gθ

∫
Ω0

ϕ̂dΩ

Ce résultat peut s'écrire

J =
Mt

Gθ
= 2

∫
Ω0

ϕ̂dΩ (6.12)

6.4 Compatibilité

Nous exprimerons la compatibilité à l'aide des équations de Beltrami-Michell

Dkkσij +
1

1 + ν
Dijσkk = 0

Tenant compte des hypothèses et des équations d'équilibre (6.5), on obtient

∇2τxz = 0, ∇2τyz = 0 (6.13)

en notant

∇2 =
∂2

∂x2
+

∂2

∂y2
(6.14)

Ces équations, qui s'écrivent encore

∇2 ∂ϕ

∂x
= 0, ∇2 ∂ϕ

∂y
= 0

impliquent

∇2ϕ = C = cte (6.15)
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6.5 Choix de la constante C

Partant des relations générales

1

G
τxz = γxz =

∂u

∂z
+
∂w

∂x
,

1

G
τyz = γyz =

∂v

∂z
+
∂w

∂y

on obtient, en termes de ϕ,

θ
∂ϕ

∂y
=
∂u

∂z
+
∂w

∂x
, −θ∂ϕ

∂x
=
∂v

∂z
+
∂w

∂y
(6.16)

Dérivons la première de ces équations par rapport à y, et la seconde par rapport
à x. On obtient

∂2w

∂x∂y
= θ

∂2ϕ

∂y2
− ∂2u

∂y∂z

− ∂2w

∂x∂y
= θ

∂2ϕ

∂x2
+

∂2v

∂x∂z

En sommant ces deux équations, on élimine w, ce qui donne

θ∇2ϕ+
∂

∂z

(
∂v

∂x
− ∂u

∂z

)
= 0

Le groupement entre parenthèses n'est autre que le double du vecteur rotation
local ω autour de l'axe de la poutre. On a donc

2
∂ω

∂z
= −θ∇2ϕ = −Cθ

Par conséquent, la torsion ∂ω/∂z des �bres est constante par rapport à z. On
s'aperçoit qu'en posant

C = −2 (6.17)

on a simplement
∂ω

∂z
= θ (6.18)

ce qui donne à θ une signi�cation simple. L'équation régissant la fonction de
Prandtl est alors

∇2ϕ = −2 (6.19)
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6.6 Intégration des déplacements u et v

Les déplacements u et v véri�ent les équations constitutives

∂u

∂x
= εx =

1

E
(σx − νσy − νσz) = 0 (6.20)

∂v

∂y
= εy =

1

E
(σy − νσx − νσz) = 0 (6.21)

∂u

∂y
+
∂v

∂x
= γxy =

1

G
τxy = 0 (6.22)

De plus,
∂v

∂x
− ∂u

∂y
= 2ω

ce qui, couplé avec (6.22), donne

∂v

∂x
= −∂u

∂y
= ω (6.23)

Les équations (6.20) et (6.21) entraînent alors

∂ω

∂x
= − ∂

∂y

(
∂u

∂x

)
= 0,

∂ω

∂y
=

∂

∂x

(
∂v

∂y

)
= 0

c'est-à-dire que l'angle de rotation ω a une valeur unique dans toute la section.
On déduit donc de (6.23), (6.20) et (6.21)

u = u0(z)− ω(z)y, v = v0(z) + ω(z)x (6.24)

Examinons la variation de u0 et v0. Des équations

τxz = G

(
∂u

∂z
+
∂w

∂x

)
, τyz = G

(
∂v

∂z
+
∂w

∂y

)
on déduit

0 =
∂τxz
∂z

= G

(
∂2u

∂z2
+

∂2w

∂x∂z

)
, 0 =

∂τyz
∂z

= G

(
∂2v

∂z2
+

∂2w

∂y∂z

)
et comme

∂w

∂z
= εz =

1

E
(σz − νσx − νσy) = 0
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on obtient, à partir de (6.24) et (6.18)

0 =
∂2u

∂z2
=
∂2u0

∂z2
, 0 =

∂2v

∂z2
=
∂2v0

∂z2
(6.25)

Par conséquent,
u0 = A1 +A2z, v0 = B1 +B2z (6.26)

Les paramètres A1 et A2 régissent un déplacement de corps rigide et peuvent
donc être omis. On a alors

u = A2z − (θz)y, v = B2z + (θz)x

Posant

yT =
A2

θ
, xT = −B2

θ

on obtient
u = −θz(y − yT ), v = θz(x− xT ) (6.27)

xT et yT dé�nissant les coordonnées d'un centre de torsion.

6.7 Intégration du déplacement w

Éliminant ϕ entre les deux équations (6.16), on obtient, par (6.20) et (6.22)

θ
∂2ϕ

∂x∂y
=

∂2u

∂x∂z
+
∂2w

∂x2
=
∂2w

∂x2

−θ ∂
2ϕ

∂x∂y
=

∂2v

∂y∂z
+
∂2w

∂y2
=
∂2w

∂y2

d'où
∇2w = 0 (6.28)

Les conditions aux limites relatives au champ w s'obtiennent comme suit : par
(6.16),

∂w

∂x
= θ

∂ϕ

∂y
− ∂u

∂z
= θ

(
∂ϕ

∂y
+ y − yT

)
∂w

∂y
= −θ∂ϕ

∂x
− ∂v

∂z
= −θ

(
∂ϕ

∂x
+ x− xT

)
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On a donc

∂w

∂n
= θ

[
nx
∂ϕ

∂y
− ny

∂ϕ

∂x
+ nx(y − yT )− ny(x− xT )

]
soit

∂w

∂n
= θ

[
ty
∂ϕ

∂y
+ tx

∂ϕ

∂x
+ nx(y − yT )− ny(x− xT )

]
Comme ∂ϕ/∂t = 0 sur le contour, on a simplement

∂w

∂n
= θ [nx(y − yT )− ny(x− xT )] (6.29)

Tenant compte du fait que

nx = ty =
d

dt
(y − yT ) et ny = −tx = − d

dt
(x− xT )

on peut encore écrire

∂w

∂n
= θ

d

dt

[
(x− xT )2 + (y − yT )2

2

]
(6.30)

Dans le cas de sections multiplement connexes, l'intégrabilité de w n'est pas
garantie sans condition. En e�et, on a , sur les Ci,

∂w

∂t
= tx

∂w

∂x
+ ty

∂w

∂y

= θ

[
tx

(
∂ϕ

∂y
+ y − yT

)
− ty

(
∂ϕ

∂x
+ x− xT

)]
= −θ

[
ny

(
∂ϕ

∂y
+ y − yT

)
+ nx

(
∂ϕ

∂x
+ x− xT

)]
= −θ

[
∂ϕ

∂n
+ nx(x− xT ) + ny(y − yT )

]
La condition d'intégrabilité de w est alors

0 =

∫
Ci

∂w

∂t
ds = −θ

{∫
Ci

∂ϕ

∂n
ds+

∫
Ci

[nx(x− xT ) + ny(y − yT ]ds

}
soit, en faisant usage de la normale intérieure n− = −n (�g. 6.4),
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Figure 6.4 � Normale intérieure

∫
Ci

∂ϕ

∂n
ds =

∫
Ci

[n−x (x− xT ) + n−y (y − yT )]ds

=

∫
Ωi

[
∂

∂x
(x− xT ) +

∂

∂y
(y − yT )

]
dΩ

= 2Ωi

Ainsi, dans le cas de sections multiplement connexes, la fonction de Prandtl
devra encore véri�er les conditions∫

Ci

∂ϕ

∂n
ds = 2Ωi (6.31)

pour que l'unicité du déplacement w soit assurée.

6.8 Principe variationnel régissant la fonction de
Prandtl étendue

De l'équation

∇2ϕ = −2 dans Ω
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on déduit, comme ϕ|C0 = 0 et ϕ|Ci = ϕi,

0 =

∫
Ω

(∇2ϕ+ 2)δϕdΩ

=
∑
i

δϕi

∫
Ci

∂ϕ

∂n
ds−

∫
Ω

gradϕ · gradδϕdΩ + 2

∫
Ω

δϕdΩ

Tenant compte du fait que ∫
Ci

∂ϕ

∂n
ds = 2Ωi

on obtient

0 = 2
∑
i

δϕiΩi + 2

∫
Ω

δϕdΩ−
∫

Ω

gradϕ · gradδϕdΩ

= 2

∫
Ω0

δϕ̂dΩ−
∫

Ω0

gradϕ̂ · gradδϕ̂dΩ

ou encore,

δ

[
1

2

∫
Ω0

|gradϕ̂|2dΩ− 2

∫
Ω0

ϕ̂dΩ

]
= 0 (6.32)

les variations δϕ̂ étant astreintes aux conditions

δϕ̂|C0 = 0, δϕ̂|Ωi = δϕi(cte) (6.33)

Ce principe variationnel peut d'ailleurs servir de base pour démontrer l'unicité
de la solution ϕ̂. En e�et, supposons qu'il existe deux solutions ϕ̂(1) et ϕ̂(2).
Elles véri�ent ∫

Ω0

gradϕ̂(1) · gradδϕ̂dΩ = 2

∫
Ω0

δϕ̂dΩ∫
Ω0

gradϕ̂(2) · gradδϕ̂dΩ = 2

∫
Ω0

δϕ̂dΩ

Soustrayant ces équations variationnelles, on obtient∫
Ω0

grad(ϕ̂(1) − ϕ̂(2)) · gradδϕ̂dΩ = 0

ou, en posant ψ̂ = ϕ̂(1) − ϕ̂(2),∫
Ω0

gradψ̂ · gradδϕ̂dΩ = 0
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Or, ψ̂ est une variation δϕ̂ admissible, car elle véri�e les conditions (6.33) :

ψ̂|C0 = ϕ̂(1)|C0 − ϕ̂
(2)
C0 = 0− 0 = 0

ψ̂|Ωi
= ϕ̂(1)|Ωi

− ϕ̂(2)|Ωi
= ϕ̂i − ϕ̂i = ψ̂i(cte)

On a donc ∫
Ω0

gradψ̂ · gradψ̂dΩ = 0

ce qui implique
gradψ̂ = 0 dans Ω0

et, comme ψ̂|C0 = 0, on a ψ̂ = 0.

6.9 Principe variationnel régissant le gauchisse-
ment

Rappelons que l'on a

∇2w = 0 dans Ω
∂w

∂n
= θ[nx(y − yT )− ny(x− xT )] sur C

Il est donc naturel de poser
w = θgT (6.34)

ce qui dé�nit le gauchissement gT , ce qui donne

∇2gT = 0 dans Ω

nx

(
∂gT
∂x
− y + yT

)
+ ny

(
∂gT
∂y

+ x− xT
)

= 0 sur C

Il est encore équivalent d'écrire l'équation dans Ω sous la forme

∂

∂x

(
∂gT
∂x
− y + yT

)
+

∂

∂y

(
∂gT
∂y

+ x− xT
)

= 0 (6.35)

Pour éviter de faire apparaître explicitement xT et yT , dé�nissons la fonction
auxiliaire

g = gT + yTx− xT y (6.36)
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Elle véri�e les équations

∂

∂x

(
∂g

∂x
− y
)

+
∂

∂y

(
∂g

∂y
+ x

)
= 0 dans Ω

nx

(
∂g

∂x
− y
)

+ ny

(
∂g

∂y
+ x

)
= 0 sur C (6.37)

0n a donc

0 =

∫
Ω

[
∂

∂x

(
∂g

∂x
− y
)

+
∂

∂y

(
∂g

∂y
+ x

)]
δgdΩ

=

∫
C

[
nx

(
∂g

∂x
− y
)

+ ny

(
∂g

∂y
+ x

)]
δgds

−
∫

Ω

[(
∂g

∂x
− y
)
∂δg

∂x
+

(
∂g

∂y
+ x

)
∂δg

∂y

]
δgdΩ

L'intégrale de contour est nulle et comme

δ

(
∂g

∂x
− y
)

=
∂δg

∂x
, δ

(
∂g

∂y
+ x

)
=
∂δg

∂y

on obtient le principe

δ

{
1

2

∫
Ω

[(
∂g

∂x
− y
)2

+

(
∂g

∂y
+ x

)2
]
dΩ

}
= 0 (6.38)

Ici encore, ce principe variationnel permet d'assurer l'unicité de la solution.
Supposons en e�et qu'il existe deux solutions g1 et g2. Elles véri�ent∫

Ω

[(
∂g1

∂x
− y
)
∂δg

∂x
+

(
∂g1

∂y
+ x

)
∂δg

∂y

]
dΩ = 0∫

Ω

[(
∂g2

∂x
− y
)
∂δg

∂x
+

(
∂g2

∂y
+ x

)
∂δg

∂y

]
dΩ = 0

Soustrayons ces deux équations et posons ψ = g1 − g2. Il vient∫
Ω

(
∂ψ

∂x

∂δg

∂x
+
∂ψ

∂y

∂δg

∂y

)
dΩ = 0

Or, ψ est une variation δg admissible, ce qui implique∫
Ω

|gradψ|2dΩ = 0
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soit

gradψ = 0

ou encore,

ψ = cte

La solution est donc dé�nie à une constante additive près. On �xe cette constante
en imposant la condition ∫

Ω

gdΩ = 0 (6.39)

qui exprime que le déplacement d'ensemble est nul.

6.10 Centre de torsion

Le moment est venu de choisir un centre de torsion (xT , yT ). On exigera à
cet e�et que ∫

Ω

gTxdΩ = 0,

∫
Ω

gT ydΩ = 0 (6.40)

c'est-à-dire que les rotations moyennes de la section s'annulent. Comme

gT = g − yTx+ xT y

on obtient les conditions

yT =
1

Ix

∫
Ω

xgdΩ, xT = − 1

Iy

∫
Ω

ygdΩ (6.41)

Ces coordonnées dé�nissent le centre de torsion de Weinstein-Kappus [36, 28].

6.11 Méthodes de résolution

Dans ce qui suit, nous présenterons d'abord quelques solutions exactes. Mal-
heureusement, la théorie ne s'applique facilement qu'à quelques sections simples.
Pour des géométries plus compliquées, on ne peut s'en tirer sans faire d'approxi-
mations. Un outil fécond pour construire celles-ci est constitué par les deux
principes variationnels ci-dessus.



130 CHAPITRE 6. TORSION DES POUTRES PRISMATIQUES

En approchant la fonction de Prandtl, on obtient une théorie sous-estimant 2

la raideur de torsion, mesurée par le module

J =
Mt

Gθ
= 2

∫
Ω0

ϕ̂dΩ

Au contraire, en approchant les gauchissements, on surestime la raideur de
torsion 3. Le module J se calcule alors par

J =
Mt

Gθ
=

∫
Ω

[
x

(
∂g

∂y
+ x

)
− y

(
∂g

∂x
− y
)]

dΩ (6.42)

Notant que, pour δg = g, on obtient par (6.38)

0 =

∫
Ω

[
∂g

∂y

(
∂g

∂y
+ x

)
+
∂g

∂x

(
∂g

∂x
− y
)]

dΩ (6.43)

on a encore

J =

∫
Ω

[(
∂g

∂y
+ x

)2

+

(
∂g

∂x
− y
)2
]
dΩ (6.44)

On remarquera d'ailleurs que la relation(6.43) implique

∫
Ω

(
x
∂g

∂y
− y ∂g

∂x

)
dΩ = −

∫
Ω

[(
∂g

∂y

)2

+

(
∂g

∂x

)2
]
dΩ

si bien que

J = Ix + Iy −
∫

Ω

[(
∂g

∂y

)2

+

(
∂g

∂x

)2
]
dΩ

Ainsi, la raideur de torsion de Barré de Saint-Venant est inférieure à la raideur
de torsion de Coulomb (Ix + Iy) chaque fois que le gauchissement g di�ère de
zéro.

En e�ectuant deux calculs approchés, l'un pour la fonction de Prandtl,
l'autre par le gauchissement g, on obtient deux valeurs di�érentes de J . Leur
proximité relative permet de juger de la qualité des approximations.
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Figure 6.5 � Ellipse

6.12 Solutions exactes

6.12.1 Torsion d'une poutre à section elliptique

La fonction de Prandtl doit s'annuler sur le contour de l'ellipse de la �gure
6.5 dont le contour a pour équation

x2

a2
+
y2

b2
= 1

Mais on a justement

∇2

(
x2

a2
+
y2

b2
− 1

)
=

2

a2
+

2

b2
= 2

a2 + b2

a2b2

si bien que la fonction

ϕ(x, y) =
a2b2

a2 + b2

(
1− x2

a2
− y2

b2

)
véri�e l'équation

∇2ϕ = −2

et constitue donc la solution cherchée. On en déduit les contraintes

τxz = Gθ
∂ϕ

∂y
= −2Gθ

a2y

a2 + b2

τyz = −Gθ∂ϕ
∂y

= 2Gθ
b2x

a2 + b2

2. La justi�cation de cette assertion sera donnée dans le chapitre relatif aux principes
variationnels en élasticité.

3. Idem.
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En ce qui concerne la raideur de torsion, il faut calculer

J = 2

∫
Ω

ϕdΩ = 2
a2b2

a2 + b2

∫
Ω

(
1− x2

a2
− y2

b2

)
dΩ

Posons
x = aρ cos θ, y = bρ sin θ

avec
ρ ∈]0, 1[, θ ∈]0, 2π[

Le jacobien vaut abρ et on obtient

J = 2
a3b3

a2 + b2
· 2π

∫ 1

0

(1− ρ2)dρ = π
a3b3

a2 + b2

Vu la symétrie du pro�l par rapport aux axes, le centre de torsion devra se
trouver à l'origine. Le gauchissement g véri�e les équations

∂g

∂x
=

∂ϕ

∂y
+ y = − 2a2y

a2 + b2
+ y =

b2 − a2

a2 + b2
y

∂g

∂y
= −∂ϕ

∂x
− x = − 2b2x

a2 + b2
− x =

b2 − a2

a2 + b2
x

ce qui donne, en tenant compte de la condition
∫

Ω
gdΩ = 0,

g =
b2 − a2

a2 + b2
xy

6.12.2 Torsion d'une poutre à section rectangulaire

Supposons que, dans la section représentée en �gure 6.6, on ait b ≤ a et
dé�nissons la coordonnée auxiliaire

η = y +
b

2

On cherche alors une solution par la méthode des séries simples de Lévy, qui
consiste à poser

ϕ(x, y) =

∞∑
n=1

An(x) sin
nπη

b
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Figure 6.6 � Rectangle

ce qui permet de véri�er dès le départ les conditions de nullité de ϕ en y = ±b/2.
On a immédiatement

∇2ϕ =

∞∑
n=1

(
A”
n −

n2π2

b2
An

)
sin

nπη

b

Pour résoudre l'équation ∇2ϕ = −2, il convient de développer la fonction
unité en série de sinus. En raison de l'orthogonalité des sinus,∫ b

0

sin
mπη

b
sin

nπη

b
dη =

b

2
δmn

on obtient, pour

1 =

∞∑
n=1

αn sin
nπη

b

les relations

b

2
αn =

∫ b

0

sin
nπη

b
dη = − b

nπ

[
cos

nπη

b

]b
0

=
b

nπ
[1− (−1)n]

ce qui donne

αn =

{
4
nπ si n est pair

0 si n est impair

si bien que

1 =
4

π

∞∑
n=1
impair

1

n
sin

nπη

b
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L'équation à résoudre se développe donc en

∞∑
n=1
impair

(
A”
n −

n2π2

b2
An +

8

nπ

)
sin

nπη

b

+
∞∑
n=2
pair

(
A”
n −

n2π2

b2
An

)
sin

nπη

b
= 0

Pour n pair, on obtient

A”
n −

n2π2

b2
An = 0

ce qui donne

An = Bn ch
nπx

b
+ Cn sh

nπx

b

Les conditions An(±a/2) = 0 mènent alors à Bn = Cn = 0.
Pour n impair, l'équation s'écrit

A”
n −

n2π2

b2
An = − 8

nπ

et admet pour solution particulière

An =
8b2

n3π3

d'où la solution générale

An = Bn ch
nπx

b
+ Cn sh

nπx

b
+

8b2

n3π3

Les conditions de nullité aux extrémités x = ±a/2 s'écrivent

Bn ch
(
±nπa

2b

)
+ Cn sh

(
±nπa

2b

)
+

8b2

n3π3
= 0

ce qui implique Cn = 0 et

Bn = − 8b2

n3π3

1

ch nπa
b
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Il vient donc

An =
8b2

n3π3

(
1−

ch nπx
b

ch nπa
2b

)
et la solution �nale s'écrit

ϕ =
8b2

π3

∞∑
n=1
impair

1

n3

(
1−

ch nπx
b

ch nπa
2b

)
sin

nπη

b

A ce stade, il est intéressant de remarquer que la série

−8b2

π3

∞∑
n=1
impair

1

n3
sin

nπη

b

est la primitive seconde de la série représentant la fonction(−2), nulle en η = 0
et η = b. Elle est donc égale à

η(η − b) = y2 − b2

4

ce qui permet d'écrire ϕ sous la forme

ϕ =

(
b2

4
− y2

)
− 8b2

π3

∞∑
n=1
impair

1

n3

ch nπx
b

ch nπa
2b

sin
nπ(y + b/2)

b

La série restante se présente alors comme une correction aux extrémités des
deux premiers termes qui constituent la solution-limite pour b/a→∞.

Une simple dérivation conduit à l'expression des contraintes :

τxz
Gθ

=
∂ϕ

∂y
= −2y − 8b

π2

∞∑
n=1
impair

1

n2

ch nπx
b

ch nπa
2b

cos
nπ(y + b/2)

b

τyz
Gθ

= −∂ϕ
∂x

=
8b

π2

∞∑
n=1
impair

1

n2

sh nπx
b

ch nπa
2b

sin
nπ(y + b/2)

b

La valeur maximale de τxz est obtenue en x = 0, y = ±b/2 et vaut

|τxz|max = Gθ

b+
8b

π2

∞∑
n=1
impair

1

n2

1

ch nπa
2b


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Calculons à présent la raideur de torsion. On a

J = 2

∫
Ω

ϕdΩ

=
ab3

2
− 2a

∫ b/2

−b/2
y2dy

−16b2

π3

∞∑
n=1
impair

1

n3

∫ a/2

−a/2

ch nπx
b

ch nπa
2b

dx

∫ b/2

−b/2
sin

nπ(y + b/2)

b
dy

=
ab3

2
− ab3

6
− 16b2

π3

∞∑
n=1
impair

1

n3

2b

nπ
th
nπa

2b

b

nπ
· 2

soit �nalement

J =
ab3

3

1− 192

π5

b

a

∞∑
n=1
impair

1

n5
th
nπa

2b


Dans cette expression, le facteur entre parenthèses constitue la correction par
rapport à la valeur ab3/3 qui est la limite du module de torsion pour a/b→∞.

On peut approcher la valeur ci-dessus par une expression plus simple que
l'on obtient de la manière suivante. A partir de n = 3, on a nécessairement
(puisque a ≥ b)

nπa

2b
≥ 3π

2
= 4, 712

Pour cette valeur de l'argument, la tangente hyperbolique vaut 0, 99984 et di�ère
donc de l'unité de moins de deux dix-millièmes. On a donc

J ≈ ab3

3

1− 192

π5

b

a

th
πa

2b
+

∞∑
n=3
impair

1

n5




Il su�t alors de calculer, à partir des résultats bien connus relatifs aux séries de
Riemann [1]

∞∑
n=3
impair

1

n5
=

∞∑
n=1
impair

1

n5
−1 = 1, 00425376279513961613 . . .−1 = 4, 253763 . . . 10−3
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ce qui donne la formule

J ≈ ab3

3

[
1− 192

π5

b

a

(
th
πa

2b
+ 4, 524 · 10−3

)]
qui a au moins le mérite de ne plus contenir de série à calculer.

Venons-en au calcul du gauchissement. Ici encore, la symétrie implique que
le centre de torsion coïncide avec le centre de gravité. On a donc

∂g

∂x
=

∂ϕ

∂y
+ y

= −y − 8b

π2

∞∑
n=1
impair

1

n2

ch nπx
b

ch nπa
2b

cos
nπ(y + b/2)

b

et

∂g

∂y
= −∂ϕ

∂x
− x

= −x+
8b

π2

∞∑
n=1
impair

1

n2

sh nπx
b

ch nπa
2b

sin
nπ(y + b/2)

b

d'où

g = −xy − 8b2

π3

∞∑
n=1
impair

1

n2

sh nπx
b

ch nπa
2b

cos
nπ(y + b/2)

b

Il se décompose en un terme relatif aux sections longues � le terme (−xy) � et
un e�et de bord à décroissance rapide si a/b est grand.

6.12.3 Trou circulaire axial très petit dans un arbre cylin-
drique

La section est représentée en �gure 6.7. Le trou circulaire est supposé très
petit, c'est-à-dire que la distance r du centre du trou au contour de l'arbre véri�e(a

r

)2

= ε� 1

pour tout β. L'équation du contour est

r2 + b2 − 2br cosβ = R2
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Figure 6.7 � Arbre avec trou

Par ailleurs, la fonction

ϕ0 = −1

2
r2 + br cosβ +

R2 − b2

2

est une solution particulière de l'équation ∇2ϕ = −2, car il en est ainsi de
(−r2/2), et les autres termes sont de la forme <F (z) avec

F (z) = bz +
R2 − b2

2

et donc harmoniques. Visiblement, la fonction ϕ0 s'annule sur le contour exté-
rieur. Par contre, sur le cercle de rayon a, elle vaut

ϕ0 = −a
2

2
+ ab cosβ +

R2 − b2

2

ce qui n'est pas constant. Mais en y ajoutant la fonction

ϕ1 = −<
(
a2b

z

)
= −a

2b

r
cosβ
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on obtient une fonction constante sur le cercle de rayon a, à savoir

ϕ = −r
2

2
+ b cosβ

(
r − a2

r

)
+
R2 − b2

2

La valeur de cette fonction sur le contour intérieur est

−a2

2
+
R2 − b2

2
= O(R2)

tandis que sur le contour extérieur, sa valeur absolue est∣∣∣∣−a2b cosβ

r

∣∣∣∣ ≤ a2

r2
br = O(εR2)

très petite devant la précédente, et tendant vers zéro avec ε.
Les contraintes valent alors

1

Gθ
τrz =

1

r

∂ϕ

∂β
= −b sinβ

(
1− a2

r2

)
1

Gθ
τβz = −∂ϕ

∂r
= r − b cosβ

(
1 +

a2

r2

)
Sur le contour intérieur, on a

τβz = Gθ(a− 2b cosβ)

et cette contrainte atteint pour β = π son maximum

τmax = Gθ(2b+ a)

Pour a→ 0, le coe�cient de concentration de contrainte vaut donc

αk =
τmax
Gθb

= 2

Sur le contour extérieur, on a

τ2
rz + τ2

βz = (Gθ)2

[
r2 − 2br cosβ

(
1 +

a2

r2

)
+ b2 cos2 β

(
1 +

a2

r2

)
+ b2 sin2 β

(
1− a2

r2

)]
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et, pour a→ 0,

τ2 = (Gθ)2
[
r2 − 2br cosβ + b2

]
= (Gθ)2R2

Il n'y a donc pas de supplément de contrainte sur le contour. En conclusion,
l'in�uence du trou sur la résistance ne se fait sentir que si

2Gθb > GθR

c'est-à-dire si

b >
R

2

6.13 Solutions approchées (fonction de Prandtl)

On peut obtenir de nombreuses solutions approchées en torsion en considé-
rant des fonctions d'essai ϕ̂ nulles sur C0 et constantes sur les Ωi, dépendant de
quelques paramètres :

ϕ̂ = ϕ̂ (x, y;α1, . . . , αk)

On détermine alors les paramètres de manière que la fonctionnelle

B(α1, . . . , αk) =

∫
Ω0

[
1

2
|gradϕ̂|2 − 2ϕ̂

]
dΩ0

soit minimale, ce qui conduit aux k équations

∂B
∂αj

= 0

Pour déterminer les αj . C'est la méthode de Rayleigh-Ritz. Les αj étant obtenus,
on peut déterminer le champ de cisaillement par

τ = (τxz, τyz) = gradϕ̂× ez

et la constante J par

J =

∫
Ω0

ϕ̂dΩ0

On notera que dans le cas d'une solution approchée, la constante J est toujours
sous-estimée (d'autant moins que la solution est plus proche de la réalité).
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Figure 6.8 � Théorie de Bredt

6.13.1 Théorie de Bredt

Pour traiter les caissons à parois minces à une cellule (�g. 6.8), Bredt [7] a
proposé la solution approchée suivante. On peut admettre que la variation de
ϕ̂, entre le contour C0 où cette fonction est nulle et le contour C1 où elle prend
une valeur constante A, est linéaire. On a alors

gradϕ̂ =
A

t
en

en étant le vecteur unitaire normal à la courbe moyenne C de la paroi, pointant
vers l'intérieur. On en déduit immédiatement

1

2

∫
Ω0

|gradϕ̂|2 dΩ0 =
A2

2

∫
C

1

t2
tds =

A2

2

∫
C

ds

t

et

2

∫
Ω0

ϕ̂dΩ0 = 2AΩ1 + 2

∫
C

A

2
tds = 2AS
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en notant S la surface contenue dans la courbe C. Il vient �nalement

B(A) =
1

2
A2

∫
C

ds

t
− 2AS

Le minimum est obtenu pour

A =
2S∫
C
ds
t

On en déduit

J = 2AS =
4S2∫
C
ds
t

résultat connu sous le nom de deuxième formule de Bredt. Par ailleurs, la
contrainte de cisaillement, toujours tangentielle, vaut

τ = Gθ
A

t

= Gθ
2S∫
C
ds
t

1

t

= GθJ
1

2St

=
Mt

2St

C'est la première formule de Bredt.

6.13.2 Caissons multicellulaires

La même méthode permet de traiter avec autant de facilité le problème de la
torsion d'un caisson multicellulaire. Illustrons la méthode sur le caisson à trois
cellules de la �gure 6.9. Le cisaillement dans la courbe C10 vaudra Gθϕ1/t, celui
qui règne sur C12 vaudra Gθ(ϕ1 − ϕ2)/t, etc. On a donc

1

2

∫
Ω0

|gradϕ̂|2dΩ0 =
ϕ2

1

2

∫
C10

ds

t
+
ϕ2

2

2

∫
C20

ds

t
+
ϕ2

3

2

∫
C30

ds

t

+
(ϕ1 − ϕ2)2

2

∫
C12

ds

t
+

(ϕ2 − ϕ3)2

2

∫
C23

ds

t

et

2

∫
Ω0

ϕ̂dΩ0 = 2ϕ1S1 + 2ϕ2S2 + 2ϕ3S3
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Figure 6.9 � Caisson à trois cellules

S1, S2 et S3 étant les surfaces arrêtées à mi-paroi. La minimisation de la di�é-
rence B de ces deux expressions mène aux trois équations

∂B
∂ϕ1

=

(∫
C10

ds

t
+

∫
C12

ds

t

)
ϕ1 −

(∫
C12

ds

t

)
ϕ2 − 2S1 = 0

∂B
∂ϕ2

= −
(∫
C12

ds

t

)
ϕ1 +

(∫
C20

ds

t
+

∫
C12

ds

t
+

∫
C23

ds

t

)
ϕ2

−
(∫
C23

ds

t

)
ϕ3 − 2S2 = 0

∂B
∂ϕ3

= −
(∫
C23

ds

t

)
ϕ2 +

(∫
C30

ds

t
+

∫
C23

ds

t

)
ϕ3 − 2S3 = 0

permettant de déterminer aisément ϕ1, ϕ2 et ϕ3. Ceux-ci connus, on a simple-
ment

J = 2(ϕ1S1 + ϕ2S2 + ϕ3S3)
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Figure 6.10 � Poutre à parois minces ouverte

6.13.3 Poutres à parois minces ouvertes

Dans le cas de poutre à parois minces ouvertes comme celle de la �gure 6.10,
la fonction de Prandtl doit s'annuler sur tout le contour. On écrira donc

ϕ = A

(
1− 4n2

t2

)
avec A = cte

En principe, il faudrait encore tenir compte de la nullité de ϕ aux extrémités
comme le point B de la �gure. Cependant, cet e�et de bord se fait sur une
longueur très faible, de l'ordre de l'épaisseur t, et nous le négligerons à titre
d'approximation supplémentaire 4. Le champ de cisaillement se déduit par déri-
vation :

|gradϕ| = 8An

t2

Il est linéaire sur l'épaisseur. Calculons les deux termes de la fonctionnelle B à
minimiser :

1

2

∫
Ω

|gradϕ|2dΩ = 32A2

∫
C

t3

12t4
ds =

8

3
A2

∫
C

ds

t

4. Strictement parlant, il s'agit d'une violation des principes de la méthode de Rayleigh-
Ritz.
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et

2

∫
Ω

ϕdΩ = 2A

∫
C

2

3
tds =

4

3
A

∫
C
tds

ce qui donne

B(A) =
8

3
A2

∫
C

ds

t
− 4

3
A

∫
C
tds

Le minimum de cette fonction de A s'obtient pour

0 =
dB
dA

=
16

3
A

∫
C

ds

t
− 4

3

∫
C
tds

ce qui donne

A =
1

4

∫
C tds∫
C
ds
t

On obtient donc

J =
4

3
A

∫
C
tds =

1

3

(∫
C tds

)2∫
C
ds
t

et

τmax = Gθ|gradϕ|max = Gθ
4A

tmin
=

Gθ

tmin

∫
C tds∫
C
ds
t

ou, en termes du moment de torsion,

τmax =
3Mt

tmin
∫
C tds

Pour une épaisseur t constante, on a simplement

J =
1

3
Ght3

avec

h =

∫
C
ds

et

τ = Gθt =
3Mt

ht2
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Figure 6.11 � Section rectangulaire

6.13.4 Solution approchée pour les sections rectangulaires

Pour la section rectangulaire représentée en �gure 6.11, on suppose b < h.
On cherche une solution de la forme

ϕ(x, y) =

(
1− 4x2

b2

)
f(y)

f(y) étant une fonction à déterminer, avec la condition f(±h/2) = 0. On a donc

∂ϕ

∂x
= −8x

b2
f(y)

∂ϕ

∂y
=

(
1− 4x2

b2

)
f ′(y)

d'où

1

2

∫
Ω

|gradϕ|2dΩ =
1

2

∫ h/2

−h/2
dy

∫ b/2

−b/2

[
64x2

b4
f2 +

(
1− 4x2

b2

)2

f ′2

]
dx

=
1

2

∫ h/2

−h/2

(
16

3b
f2 +

8

15
bf ′2

)
dy
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On a d'autre part

2

∫
Ω

ϕdΩ = 2

∫ h/2

−h/2

2

3
bfdy

La condition d'extremum mène à l'équation

− 8

15
bf” +

16

3b
f − 4

3
b = 0

soit

f”− 10

b2
f = −5

2
La solution générale de l'équation homogène s'écrit

f0 = A sh

√
10

b

(
y − h

2

)
+B sh

√
10

b

(
y +

h

2

)
et une solution particulière de l'équation complète est visiblement donnée par

f1 =
b2

4

ce qui donne au total

f = f0 + f1 = A sh

√
10

b

(
y − h

2

)
+B sh

√
10

b

(
y +

h

2

)
+
b2

4

Les conditions aux limites sont

en y = h/2 : B sh

√
10

b2
h = −b

2

4

en y = −h/2 : −A sh

√
10

b2
h = −b

2

4

ce qui donne, en notant, pour la concision, β =
√

10
b ,

f =
b2

4

[
1 +

shβ
(
y − h

2

)
shβh

−
shβ

(
y + h

2

)
shβh

]
On notera que

shβ

(
y − h

2

)
− shβ

(
y +

h

2

)
= shβy chβ

h

2
− shβ

h

2
chβy

− shβy chβ
h

2
− shβ

h

2
chβy

= −2 shβ
h

2
chβy
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et que

shβh = 2 shβ
h

2
chβ

h

2
ce qui donne �nalement

f =
b2

4

(
1− chβy

chβ h2

)
On obtient donc

J =
b3

3

∫ h/2

−h/2
fdy

=
b3

3

(
h− 2

β

shβ h2
chβ h2

)

=
b3

3

(
h− 2

β
thβ

h

2

)
soit, en réintroduisant la valeur de β,

J =
1

3
hb3

(
1− b

h
√

2, 5
th
h
√

2, 5

b

)
On a par ailleurs

τmax =
4

b
f(0)Gθ = Gθb

(
1− 1

ch h
√

2,5
b

)
Cette solution approchée est très proche de la réalité, comme le montre le tableau
suivant :

h/b 1 1,5 2 3 4 ∞
J/(hb3) approché 0,140 0,195 0,228 0,263 0,281 0,333

exact 0,141 0,196 0,229 0,263 0,281 0,333
τmax/(Gθb) approché 0,605 0,815 0,915 0,983 0,996 1,000

exact 0,675 0,852 0,928 0,977 0,990 1,000

6.14 Solutions approchées (gauchissement)

La fonctionnelle à minimiser est ici

A =
1

2

∫
Ω

[(
∂g

∂x
− y
)2

+

(
∂g

∂y
+ x

)2
]
dΩ
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la fonction g n'étant astreinte à aucune condition aux limites à priori. Le résultat
de la minimisation fournit la fonction g à une constante additive près, que l'on
�xe par la condition ∫

Ω

gdΩ = 0

On peut alors obtenir le centre de torsion par les relations

xT = − 1

Iy

∫
Ω

gydΩ, yT =
1

Ix

∫
Ω

gxdΩ

La raideur de torsion est alors donnée par

J = Ip −
∫

Ω

[(
∂g

∂x

)2

+

(
∂g

∂y

)2
]

= 2A

et les contraintes valent

τxz = Gθ

(
∂g

∂x
− y
)
, τyz = Gθ

(
∂g

∂y
+ x

)
6.14.1 Solution élémentaire pour les sections massives

La forme la plus simple que l'on puisse imaginer pour la fonction g est

g = Axy

Cette fonction a bien son intégrale nulle. On obtient

A =

∫
Ω

[
(A− 1)2y2 + (A+ 1)2x2

]
dΩ = (A− 1)2Iy + (A+ 1)2Ix

Minimisons par rapport à la constante A :

0 =
dA
dA

= 2(A− 1)Iy + 2(A+ 1)Ix

soit

A =
Iy − Ix
Ip

Pour la raideur de torsion, on obtient

J = 2A =

(
Iy − Ix − Ix − Iy

Ip

)2

Iy +

(
Iy − Ix + Ix + Iy

Ip

)2

Ix
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soit

J =
4IxIy
Ip

Les contraintes de cisaillement valent

τxz = Gθ(A− 1)y = −2Gθ
Ix
Ip
y

τyz = Gθ(A+ 1)y = 2Gθ
Iy
Ip
x

En�n,

|τ | =
√
τ2
xz + τ2

yz = 2Gθ

√
I2
xy

2 + I2
yx

2

Ip

r étant la distance à l'axe.
Cette théorie, exacte pour une section elliptique, représente la correction

la plus élémentaire que l'on puisse apporter à celle de Coulomb. Elle donne
souvent une première approximation raisonnable. Examinons par exemple le
cas des sections rectangulaires. On a

Ix =
hb3

12
, Iy =

bh3

12

Nous poserons, pour �xer les idées, h ≥ b. On a donc

Ip =
bh3

12

(
1 +

b2

h2

)
et

J =
1

3
hb3

1

1 + b2

h2

Quant aux contraintes, elles valent, selon cette théorie,

τxz = −2Gθ
b2

h2

y

1 + b2

h2

τyz = 2Gθ
x

1 + b2

h2

Le maximum de leur résultante a lieu pour x = b/2, y = h/2 et vaut

τmax = Gθb
1√

1 + b2

h2
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En comparaison, la théorie de Coulomb donne la valeur

τmax = Gθ
√
b2 + h2 = Gθb

√
1 +

h2

b2

On peut donc établir le tableau suivant :
h/b 1 1,5 2 3 4 ∞

J/(hb3) approché 0,167 0,231 0,267 0,300 0,314 0,333
exact 0,141 0,196 0,229 0,263 0,281 0,333

Coulomb 0,167 0,271 0,417 0,833 1,42 ∞
τmax/(Gθb) approché 0,707 0,832 0,894 0,949 0,970 1,000

exact 0,675 0,852 0,928 0,977 0,990 1,000
Coulomb 1,000 1,803 2,236 3,162 4,123 ∞

On remarquera cependant que les contraintes maximales sont mal position-
nées.

6.14.2 Sections rectangulaires

On peut également approcher les sections rectangulaires en prenant un gau-
chissement de la forme

g(x, y) = yf(x)

en supposant que le grand côté h est dirigé suivant l'axe des x. L'autre côté a
pour longueur b. On a alors

∂g

∂x
− y = (f ′(x)− 1)y

∂g

∂y
+ x = f(x) + x

et

A =
1

2

∫ h/2

−h/2

[
b3

12
(f ′ − 1)2 + b(f + x)2

]
dx

Variant f , on obtient l'équation

− b
3

12
f” + bf + bx = 0

soit

f”− 12

b2
f =

12

b
x



152 CHAPITRE 6. TORSION DES POUTRES PRISMATIQUES

et les conditions naturelles d'extrémité

b3

12
(f ′ − 1) = 0 en x = ±h/2

Une solution partielle de l'équation di�érentielle est

f = −x

Comme la solution générale de l'équation homogène associée est

f = A chβx+B shβx

avec

β =

√
12

b

on obtient comme solution générale de l'équation complète

f = −x+A chβx+B shβx

Les conditions d'extrémité sont

f ′
(
h

2

)
= −1 + βA shβ

h

2
+ βB chβ

h

2
= 1

f ′
(
−h

2

)
= −1− βA shβ

h

2
+ βB chβ

h

2
= 1

On en déduit aisément A = 0 et

B =
2

β chβ h2

ce qui donne �nalement

f = −x+ 2
shβx

β chβ h2

Pour e�ectuer le calcul de J , notons que

J =

∫ h/2

−h/2

[
b3

12
(f ′ − 1)f + b(f + x)f

]
dx

+

∫ h/2

−h/2

[
− b

3

12
(f ′ − 1) + b(f + x)x

]
dx
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La première de ces intégrales est nulle, comme on s'en rend compte en posant
δf = f dans la variation première de A. Il su�t donc de calculer

−
∫ h/2

−h/2

b3

12
(f ′ − 1)dx = − b

3

12

∫ h/2

−h/2
2

(
chβx

chβ h2
− 1

)
dx

=
b3

12

(
2h− 4

β
thβ

h

2

)
=

hb3

6
− b3

3β
thβ

h

2

et ∫ h/2

−h/2
bx(f + x)dx =

2b

β chβ h2

∫ h/2

−h/2
x shβxdx

=
2b

β chβ h2

{[
x chβx

β

]h/2
−h/2

−
∫ h/2

−h/2

chβx

β

}

=
2b

β2 chβ h2

[
2
h

2
chβ

h

2
− 2

β
shβ

h

2

]
=

hb3

6
− b3

3β
thβ

h

2

Au total, il vient

J =
hb3

3
− 2b3

3β
thβ

h

2
=
hb3

3

(
1− b

h
√

3
th
h
√

3

b

)
Il est intéressant de noter que ce résultat est très proche de celui de la section
6.13.4. La seule di�érence est le facteur

√
3 = 1, 732 au lieu de

√
2, 5 = 1, 581.

La présente théorie est un petit peu plus raide que celle de la section 6.13.4 :
h/b 1 1,5 2 3 4 ∞

J/(hb3) ϕ̂ 0,140 0,195 0,228 0,263 0,280 0,333
exact 0,141 0,196 0,229 0,263 0,281 0,333

g 0,153 0,207 0,237 0,269 0,285 0,333

6.15 Exercices

Exercice 27 Étudier la torsion d'une barre dont la section est un triangle équi-
latéral (problème de Barré de Saint-Venant).
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Figure 6.12 � Triangle équilatéral

Suggestion - La fonction de Prandtl est le produit des équations des trois côtés,
à un facteur constant près.

Solution - Dans le système d'axes de la �gure 6.12, les équations des trois
côtés sont

y = x
√

3, y = −x
√

3, y = h

Essayons une fonction de Prandtl de la forme

ϕ(x, y) = K
(
y − x

√
3
)(

y + x
√

3
)

(y − h)

= K
(
y2 − 3x2

)
(y − h)

= K
(
y3 − hy2 − 3x2y + 3hx2

)
On obtient successivement

∂ϕ

∂x
= K(−6xy + 6hx)

∂2ϕ

∂x2
= K(−6y + 6h)

∂ϕ

∂y
= K(3y2 − 2hy − 3x2)

∂2ϕ

∂y2
= K(6y − 2h)

si bien que
∇2ϕ = K(−6y + 6h+ 6y − 2h) = 4Kh = −2
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à condition de poser

K = − 1

2h
= − 1

a
√

3

Le résultat est donc

ϕ = − 1

2h
(y3 − hy2 − 3x2y + 3hx2)

Un examen des lignes de niveau de la fonction ϕ indique que la contrainte
tangentielle est maximale au milieu des côtés. On a

τxz = Gθ
∂ϕ

∂y
= − 1

2h
(3y2 − 2hy − 3x2)

et en x = 0, y = h,

τxz = −Gθ
2h

(3h2 − 2h2) = −Gθh
2

soit

τmax =
Gθh

2
=
Gθa
√

3

4
= 0, 4330Gθa

On calcule J par

J = 2

∫
Ω

ϕdΩ

= − 1

h

∫ h

0

dy

∫ y/
√

3

−y/
√

3

(y3 − hy2 − 3x2y + 3hx2)dx

=
h4

15
√

3

soit encore

J =

√
3

80
a4

On a en�n
τmax
Mt

=
20

a3

Exercice 28 Problème de Weber (1921)[94] - Étudier la torsion d'une barre
ronde de diamètre b comportant une rainure semi-circulaire centrée sur la cir-
conférence (�g. 6.13).
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a) Chercher la fonction de Prandtl.

b) Rechercher la tension maximale.

c) Calculer le coe�cient de concentration de contrainte

αk =
τmax
Gθb/2

et sa limite pour a/b→ 0.

Figure 6.13 � Barre rainurée

Suggestion pour le point a :
� Équation de C1 : r2 − a2 = 0
� Équation de C2 : r − a cosβ = 0

Multiplier ces deux équations, diviser par r, multiplier le tout par une constante
à déterminer, repasser en coordonnées cartésiennes, véri�er si l'équation de
Prandtl est satisfaite

Solution de c : la limite du coe�cient de concentration de contrainte est 2.
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Exercice 29 Exprimer, pour Mt = 20Nm, les contraintes dans la poutre à
parois minces de la �gure 6.14, aux points A, B, C et le rapport k = Mt/θ. On
donne : G = 80GPa.

Figure 6.14 � Poutre à parois minces

Solution - Par symétrie, la fonction ϕ̂ ne prend que trois valeurs di�érentes dans
les cellules, à savoir,

ϕ1 = ϕ2 = ϕ3 = ϕ4, ϕ5 = ϕ6 = ϕ7 = ϕ8 et ϕ9

et les parois radiales ne jouent aucun rôle (si ce n'est le positionnement). On a
donc

1

2

∫
Ω0

|gradϕ̂|2dΩ =
1

2

ϕ2
1

1
π · 80 +

1

2

(ϕ1 − ϕ5)
2

1
π · 50 +

1

2

(ϕ5 − ϕ9)
2

1
π · 20
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et

2

∫
Ω0

ϕ̂dΩ = ϕ1π
802 − 502

2
+ ϕ5π

502 − 202

2
+ ϕ9π

202

2

= 1950πϕ1 + 1050πϕ5 + 200πϕ9

ce qui conduit aux équations 130ϕ1 − 50ϕ5 = 1950 (1)
−50ϕ1 + 70ϕ5 − 20ϕ9 = 200 (2)

−20ϕ2 + 20ϕ9 = 200 (3)

On en déduit
(3)⇒ ϕ9 = ϕ5 + 10

(2) et (3)⇒ ϕ5 = ϕ1 + 25

et en conjuguant ce résultat avec (1),

ϕ1 = 40

d'où
ϕ1 = 40, ϕ5 = 65, ϕ9 = 75

Il en résulte

J = π(1950 · 40 + 1050 · 65 + 200 · 75) = 506, 6 · 103mm4 = 506, 6 · 10−9m4

d'où

k =
Mt

θ
= GJ = 80 · 109 · 506, 6 · 10−9 = 40530Nm2/rad

On a alors

|gradϕ̂|A =
10

1
= 10mm

|gradϕ̂|B =
25

1
= 25mm

|gradϕ̂|C =
40

1
= 40mm

et pourMt = 20Nm = 2 · 104Nmm, on a

Gθ =
Mt

J
= 39, 48 · 10−3N/mm2
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On calcule alors les contraintes en A, B et C par τ = Gθ|gradϕ̂|, ce qui donne

τA = 0, 3948MPa

τB = 0, 9870MPa

τC = 1, 579MPa
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Chapitre 7

Le problème de Boussinesq

7.1 Introduction

Le problème de Boussinesq [6] consiste à étudier un corps semi-in�ni soumis
à une charge ponctuelle normale au plan qui le limite. En lui-même, ce problème
n'a guère d'intérêt pratique, mais il constitue une solution élémentaire utile dans
les problèmes de contact.

7.2 Système de coordonnées et équations

La symétrie du problème suggère l'usage de coordonnées sphériques ayant
pour origine le point d'application de la charge (voir �g. 7.1). Toujours pour des
raisons de symétrie, le déplacement uϕ doit être nul, de même que toute espèce
de dérivées par rapport à la longitude ϕ. Nous utiliserons alors les équations de
Navier, ce qui nécessite le calcul des opérateurs divergence et rotationnel. On a

Θ = divu =
1

r2 sin θ

[
∂

∂r
(r2 sin θur) +

∂

∂θ
(r sin θuθ)

]
(7.1)

161
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Figure 7.1 � Problème de Boussinesq

et

rotu =
1

r2 sin θ

∣∣∣∣∣∣
er reθ rsinθeϕ
∂
∂r

∂
∂θ 0

ur ruθ 0

∣∣∣∣∣∣
=

1

r

[
∂

∂r
(ruθ)−

∂ur
∂θ

]
eϕ

= 2ωeϕ

en posant

2ω =
1

r

[
∂

∂r
(ruθ)−

∂ur
∂θ

]
(7.2)

Nous avons encore besoin de calculer

rotrotu =
1

r2 sin θ

∣∣∣∣∣∣
er reθ r sin θ
∂
∂r

∂
∂θ 0

0 0 2ωr sin θ


=

2

r2 sin θ

∂

∂θ
(ωr sin θ)er −

2

r sin θ

∂

∂r
(ωr sin θ)eθ (7.3)
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L'introduction de ces résultats dans l'équation de Navier

2(1− ν)

1− 2ν
graddivu− rotrotu = 0 (7.4)

conduit aux deux équations suivantes :

Selon er :
1− ν
1− 2ν

∂Θ

∂r
− 1

r2 sin θ

∂

∂θ
(ωr sin θ) = 0 (7.5)

Selon eθ :
1− ν
1− 2ν

1

r

∂Θ

∂θ
+

1

r sin θ

∂

∂r
(ωr sin θ) = 0 (7.6)

On peut simpli�er quelque peu ce système en remarquant que l'équation
(7.4) implique, par passage à la divergence, la suivante :

∆divu = ∆Θ = 0 (7.7)

relation qui peut avantageusement remplacer l'une des deux précédentes.

7.3 Recherche de la solution générale

7.3.1 Forme générale de la solution

La solution générale procédera de la résolution des équations d'équilibre
(7.5) et (7.6). Mais on peut d'emblée remarquer qu'un changement d'échelle
ne peut changer la distribution angulaire des déplacements, car il n'a�ecte que
les valeurs du rayon et non celles de la colatitude θ. On peut donc donner aux
déplacements la forme générale séparée

f(r)g(θ)

Par ailleurs, la force appliquée P doit être équilibrée par des contraintes
agissant sur l'hémisphère de rayon r, dont la surface vaut 2πr2. Les contraintes
seront donc de la forme

h(θ)

r2

Les déplacements, combinaisons de primitives des contraintes, seront donc de la
forme

ur =
A(θ)

r
, uθ =

B(θ)

r
(7.8)
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A et B étant des fonctions de θ seul. De ces expressions, on déduit par (7.1)
et(7.2) celles de la divergence et du rotationnel : d'une part,

Θ =
1

r2 sin θ

[
∂

∂r
(r sin θA) +

∂

∂θ
(sin θB)

]
=
C(θ)

r2
(7.9)

avec
C = A+B′ +B cotg θ (7.10)

et, d'autre part,

ω sin θ =
sin θ

2r

(
∂B

∂r
− A′

r

)
= −D(θ)

r2
(7.11)

où

D =
A′ sin θ

2
(7.12)

7.3.2 Détermination de la fonction C

Exprimons à présent l'harmonicité de la divergence : on a d'abord

gradΘ = er
∂

∂r

(
C

r2

)
+ eθ

1

r

∂

∂θ

(
C

r2

)
= −2

C

r3
er +

C ′

r3
eθ

puis

∆Θ = divgradΘ

=
1

r2 sin θ

[
∂

∂r

(
−2r2 sin θ

C

r3

)
+

∂

∂θ

(
r sin θ

C ′

r3

)]
=

1

r2 sin θ

[
2
C

r2
sin θ +

C”

r2
sin θ +

C ′

r2
cos θ

]
La nullité de cette expression s'écrit

C” + C ′ cotg θ + 2C = 0 (7.13)

Cette équation di�érentielle linéaire à coe�cients variables admet visiblement
la solution particulière suivante :

C1 = cos θ
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La méthode générale de résolution des équations di�érentielles linéaires voudrait
que l'on recherche une seconde solution particulière de la forme

C2 = z(θ) cos θ

mais en réalité, on pourra résoudre le présent problème en se limitant à la
solution

C = a cos θ (7.14)

a étant une constante à déterminer.

7.3.3 Détermination de la fonction D

Nous utiliserons à présent l'équation (7.6) qui, par (7.9) et (7.10), devient

1− ν
1− 2ν

1

r3
C ′ − 1

r sin θ

∂

∂r

(
D

r

)
= 0

soit
1− ν
1− 2ν

C ′

r3
+

1

r3 sin θ
D = 0

ou encore

D = − 1− ν
1− 2ν

C ′ sin θ (7.15)

Combinant cette relation avec (7.14), on obtient

D =
1− ν
1− 2ν

a sin2 θ (7.16)

7.3.4 Calcul de la fonction A

On déduit alors la fonction A de l'équation (7.12) :

A′ =
2D

sin θ
=

2(1− ν)

1− 2ν
a sin θ

d'où

A = −2(1− ν)

1− 2ν
a cos θ + b (7.17)

b étant une constante à déterminer.
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7.3.5 Calcul de la fonction B

En vertu de la relation (7.10), la fonction B véri�e l'équation

B′ +B cotg θ = C −A = a+
2(1− ν)

1− 2ν
a cos θ − b

soit

B′ +B cotg θ =
3− 4ν

1− 2ν
a cos θ − b (7.18)

La solution générale B1 de l'équation homogène associée qui s'écrit encore

dB1

B1
= − cotg θdθ = −cos θdθ

sin θ

est donnée par
lnB1 = − ln sin θ + ln c

ou encore, par

B1 =
c

sin θ
(7.19)

Nous chercherons alors une solution particulière de l'équation complète par la
méthode de variation des constantes, ce qui revient à la chercher sous la forme

B2 =
E(θ)

sin θ
(7.20)

Ceci mène à l'équation

E′

sin θ
− E cos θ

sin2 θ
+
E cotg θ

sin θ
=

3− 4ν

1− 2ν
a cos θ − b

soit

E′ =
3− 4ν

1− 2ν
a sin θ cos θ − b sin θ

ce qui entraîne

E =
3− 4ν

1− 2ν
a

sin2 θ

2
+ b cos θ (7.21)

Rassemblant les résultats (7.19), (7.20) et (7.21), on obtient

B =
c

sin θ
+

3− 4ν

2(1− 2ν)
a sin θ + b cotg θ (7.22)
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Mais cette expression ne peut être admise telle quelle, car en θ = 0, elle don-
nerait un déplacement uθ in�ni pour tout r, du fait du sin θ aux dénominateurs
des deux termes extrêmes. Il est donc nécessaire d'imposer une liaison entre b
et c garantissant que

lim
θ=0

b cos θ + c

sin θ
6=∞

Ceci ne sera réalisé que moyennant la condition c = −b qui, introduite dans les
deux derniers termes du second membre de (7.22), donne

b
cos θ − 1

sin θ
= b

cos2 θ − 1

sin θ(cos θ + 1)
= − b sin θ

1 + cos θ

et ramène donc B à l'expression suivante :

B =
3− 4ν

2(1− 2ν)
a sin θ − b sin θ

1 + cos θ
(7.23)

7.3.6 Expression générale des déplacements

Les relations (7.17) et(7.23) permettent d'écrire

ur = −2(1− ν)

1− 2ν
a

cos θ

r
+
b

r
(7.24)

uθ =
3− 4ν

2(1− ν)
a

sin θ

r
− b

r

sin θ

1 + cos θ
(7.25)
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7.3.7 Expression générale des déformations

On a

εr =
∂ur
∂r

=
2(1− ν)

1− 2ν

a cos θ

r2
− b

r2
(7.26)

εθ =
1

r

∂uθ
∂θ

+
ur
r

(7.27)

=
3− 4ν

2(1− 2ν)
a

cos θ

r2
− b

r2

cos θ + cos2 θ + sin2 θ

(1 + cos θ)2

− 4− 4ν

2(1− 2ν)
a

cos θ

r2
+

b

r2

1 + 2 cos θ + cos2 θ

(1 + cos θ)2

= − 1

2(1− 2ν)
a

cos θ

r2
+

b

r2

cos θ

1 + cos θ
(7.28)

εϕ =
ur
r

+
uθ
r

cotg θ

=
a cos θ

2(1− 2ν)r2
(3− 4ν − 4 + 4ν) +

b

r2

1 + cos θ − cos θ

1 + cos θ

= − 1

2(1− 2ν)

a cos θ

r2
+

b

r2

1

1 + cos θ
(7.29)

γrθ =
1

r

∂ur
∂θ

+ r
∂

∂r

(uθ
r

)
=

2(1− ν)

1− 2ν

a

r2
sin θ − 3− 4ν

1− 2ν

a

r2
sin θ + 2

b

r2

sin θ

1 + cos θ

= −a sin θ

r2
+

b

r2

2 sin θ

1 + cos θ
(7.30)

γθϕ = 0 (7.31)

γrϕ = 0 (7.32)

7.3.8 Expression générale des contraintes

Partant de la relation de Hooke

σij = 2G

(
εij +

ν

1− 2ν
εllδij

)
notons d'abord que

εll = Θ =
C

r2
=
a cos θ

r2
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On obtient alors aisément

σr
2G

=
a cos θ

r2

2− ν
1− 2ν

− b

r2
(7.33)

σθ
2G

= −a cos θ

2r2
+

b

r2

cos θ

1 + cos θ
(7.34)

σϕ
2G

= −a cos θ

2r2
+

b

r2

1

1 + cos θ
(7.35)

τrθ
2G

= −a sin θ

r2
+

2b

r2

sin θ

1 + cos θ
(7.36)

τθϕ = 0 (7.37)

τrϕ = 0 (7.38)

7.4 Conditions aux limites

Figure 7.2 � Conditions sur la surface libre

Pour r > 0, les conditions sur la surface libre sont (�g. 7.2)

σθ|θ=±π/2 = 0, τrθ|θ=±π/2 = 0

On notera que la condition portant sur σθ est automatiquement véri�ée. Quant
à la nullité de τrθ, elle nécessite

−a+ 2b = 0
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soit

b =
a

2
(7.39)

Il faut à présent exprimer a en termes de la charge P . Pour ce faire, on
notera que la résultante des contraintes sur n'importe quel hémisphère centré
sur le point d'application de la charge doit équilibrer P . Ainsi que le montre la

Figure 7.3 � Équilibre global

�gure 7.3, cette condition s'écrit∫
S

(τrθ sin θ − σr cos θ) r2 sin θdθdϕ = P

ou, en tenant compte de la symétrie par rapport à ϕ,

P =

∫ π/2

0

(τrθ sin θ − σr cos θ) 2πr2 sin θdθ (7.40)

Nous ferons le calcul en séparant les termes contenant a et les termes contenant
b :



7.5. SOLUTION DU PROBLÈME DE BOUSSINESQ 171

a) Termes contenant a

Pa = 2πGa

∫ π/2

0

(
− sin3 θ − 2

2− ν
1− 2ν

cos2 θ sin θ

)
dθ

= −2πGa

∫ π/2

0

[
(sin2 θ + cos2 θ) +

3

1− 2ν
cos2 θ

]
sin θdθ

= −2πGa

{
− [cos θ]

π/2
0 − 3

1− 2ν

[
cos3 θ

3

]π/2
0

}

= −4πGa(1− ν)

1− 2ν

b) Termes contenant b

Pb = 4πGb

∫ π/2

0

(
sin2 θ

1 + cos θ
+ cos θ

)
sin θdθ

= 4πGb

∫ π/2

0

(1− cos θ + cos θ) sin θdθ

= 4πGb [− cos θ]
π/2
0

= 4πGb

Au total, et en tenant compte de la relation b = a/2, on obtient

P = Pa + Pb = 4πGa

[
− 1− ν

1− 2ν
+

1

2

]
= −4πGa

1

2(1− 2ν)

soit

a = − (1− 2ν)P

2πG
, b =

a

2
(7.41)

7.5 Solution du problème de Boussinesq

Connaissant ces valeurs, on peut en�n les réintroduire dans la solution gé-
nérale, ce qui fournit la solution du problème de Boussinesq :
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1. Déplacements :

ur =
P

4πGr
[4(1− ν) cos θ − (1− 2ν)] (7.42)

uθ =
P sin θ

4πGr

[
1− 2ν

1 + cos θ
− (3− 4ν)

]
(7.43)

uϕ = 0 (7.44)

(7.45)

2. Contraintes :

σr =
(1− 2ν)P

2πr2

(
1− 4− 2ν

1− 2ν
cos θ

)
(7.46)

σθ =
(1− 2ν)P

2πr2

cos2 θ

1 + cos θ
(7.47)

σϕ =
(1− 2ν)P

2πr2

cos θ − sin2 θ

1 + cos θ
(7.48)

τrθ =
(1− 2ν)P

2πr2

sin θ cos θ

1 + cos θ
(7.49)

τrϕ = 0 (7.50)

τθϕ = 0 (7.51)

Dans les problèmes de contact, on s'intéresse spécialement aux déplacements
des points du plan limitant le demi-espace, qui valent

ur|θ=π/2 = −P (1− 2ν)

4πGr

uθ|θ=π/2 = −P (1− ν)

2πGr
= −P (1− ν2)

πEr
(7.52)

7.6 Exercice

Exercice 30 Étudier le problème de Lord Kelvin, consistant en une charge
concentrée dans un massif indé�ni (�g. 7.4)

Suggestion : Ce problème ne di�ère de celui de Boussinesq que par ses conditions
aux limites.
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Figure 7.4 � Problème de Lord Kelvin
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Chapitre 8

Le problème de Hertz

8.1 Introduction

Le problème de Hertz [44] consiste à étudier les forces naissant lors du contact
pressé de deux solides élastiques. Ce problème a notamment une importance
considérable dans l'étude des roulements à billes [82]. Bien que l'on se place

Figure 8.1 � Problème de Hertz

175
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dans le cadre de la linéarisation géométrique et d'un matériau linéaire, la relation
entre la force et le rapprochement des deux corps en contact n'est pas linéaire,
pour la raison suivante : sous l'e�et de la charge, les deux corps s'aplatissent en
leur contact (�g. 8.1), si bien qu'il se forme une aire de contact d'autant plus
grande que l'e�ort est plus important. La raideur s'accroît donc avec la force.

La théorie des contacts ponctuels � on dit encore des contacts hertziens �
repose sur la solution du problème de Boussinesq, qu'il convient donc d'avoir
étudié au préalable.

8.2 Considérations géométriques

8.2.1 Description de la surface d'un corps

Figure 8.2 � Courbure de la surface d'un corps

Considérons un corps C de surface régulière S (au moins deux fois di�éren-
tiable), posé en un point O sur un plan Π auquel sa surface est tangente (�g.
8.2). Nous adopterons le système d'axes suivants : Oz sera l'axe normal au plan,
dirigé vers l'intérieur du corps C ; Ox et Oy seront deux axes orthogonaux à
Oz et entre eux (et, par conséquent, situés dans le plan Π). Dans ce système,
la surface du corps C admet, dans un voisinage du point de contact O, une
équation de la forme

z = Z(x, y) (8.1)
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Notre hypothèse de régularité de la surface nous permet, dans un voisinage éven-
tuellement plus petit que le précédent, d'utiliser un développement de Taylor
limité :

Z(x, y) = Z(0, 0) +

(
∂Z

∂x

)
0

x+

(
∂Z

∂y

)
0

y

+
1

2

(
∂2Z

∂x2

)
0

x2 +

(
∂2Z

∂x∂y

)
0

xy +
1

2

(
∂2Z

∂y2

)
0

y2 + o(x2 + y2)

Les conditions de contact entre le corps et le plan s'écrivant

Z(0, 0) = 0,

(
∂Z

∂x

)
0

= 0,

(
∂Z

∂y

)
0

on se ramène à

Z(x, y) ≈ 1

2
K11x

2 +K12xy +
1

2
K22y

2 (8.2)

où apparaît le tenseur de courbureKij dé�ni par

K11 =

(
∂2Z

∂x2

)
0

, K12 =

(
∂2Z

∂x∂y

)
0

, K22 =

(
∂2Z

∂y2

)
0

(8.3)

Comme tout tenseur symétrique à deux dimensions, il admet deux axes propres
orthogonaux Ox et Oy tels que

Z(x̄, ȳ) =
1

2
K̄11x̄

2 +
1

2
K̄22ȳ

2

Ces axes propres sont appelés axes principaux de courbure. Les valeurs propres
K̄11 et K̄22 sont les courbures principales et leurs inverses sont les rayons prin-
cipaux de courbure. On notera dans la suite

ρ1 =
1

R1
= K̄11, ρ2 =

1

R2
= K̄22

En fonction du signe des courbures principales, on dit que le corps est convexe
ou concave : convexe dans toute direction principale dont la courbure est po-
sitive, concave dans toute direction principale dont la courbure est négative et
en�n rectiligne dans toute direction principale de courbure nulle. Une surface
dont une courbure principale est nulle est développable. Seuls les plans ont leurs
deux courbures principales nulles.
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Figure 8.3 � Interpénétration �ctive des deux corps

8.2.2 Contact de deux corps

Étant donné deux corps élastiques en contact, imaginons un instant qu'ils
puissent s'interpénétrer. Partant de leur position de premier contact, ils se pé-
nètrent mutuellement d'une profondeur h. Prenant l'origine des axes au point
A de la �gure 8.3, les surfaces des deux corps admettront donc les équations
suivantes, en se limitant au second ordre :

Corps I : zI = 1
2

∑2
i,j=1K

I
ijxixj

Corps II : zII = h− 1
2

∑2
i,j=1K

II
ij xixj

(8.4)

Le choix des signes est destiné à maintenir la convention de positivité des cour-
bures en cas de convexité. La réalité, bien entendu, est tout autre, et les deux
corps vont se repousser mutuellement comme le montre la �gure 8.4. Le corps I
admettra un déplacement wI dirigé vers le haut (c'est-à-dire dans le sens des z
positifs) et le corps II, un déplacement wII dirigé vers le bas, d'où les valeurs

zI =
1

2

2∑
i,j=1

KI
ijxixj + wI

zII = h− 1

2

2∑
i,j=1

KII
ij xixj − wII
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Figure 8.4 � Situation réelle

de manière à assurer, dans la zone de contact, l'égalité des cotes, zI = zII , ce
qui implique un déplacement total

w = wI + wII = h− 1

2

2∑
i,j=1

(
KI
ij +KII

ij

)
xixj (8.5)

où apparaît le tenseur des courbures résultantes dé�ni par

KR
ij = KI

ij +KII
ij (8.6)

Dans ce qui suit, nous omettrons l'indice supérieur R pour alléger les écritures.
L'étude de ce tenseur est particulièrement instructive. Il admet en e�et, comme
les tenseurs de courbure des corps, deux directions principales orthogonales,
dans lesquelles on peut écrire

w = h−Ax̄2 −Bȳ2, A =
1

2
K̄11, B =

1

2
K̄22 (8.7)

Lorsque les deux valeurs propres K̄11 et K̄22 sont positives, les lignes w = cte
sont des ellipses : on dit que le contact est ponctuel. Lorsque l'une des deux
est positive et l'autre, nulle, ces mêmes lignes sont des droites : le contact est
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linéaire. En�n, lorsque l'une au moins de ces valeurs propres est négative, le
déplacement est d'autant plus grand que l'on s'éloigne du centre de contact dans
les directions correspondantes, ce qui signi�e que le contact ne peut débuter à
l'origine : le problème est alors mal posé. Dans ce qui suit, nous nous limiterons
aux contacts ponctuels.

Dans le cas relativement fréquent où les deux corps se présentent de manière
telle que leurs axes principaux de courbure soient confondus, on a simplement,
dans ces axes,

w = h−Ax2 −By2

avec

A =
1

2

(
ρI1 + ρII1

)
, B =

1

2

(
ρI2 + ρII2

)
(8.8)

Dans le cas général, les axes principaux OxII et OyII du corps II peuvent

Figure 8.5 � Axes principaux de courbure des deux corps

former un angle α avec ceux du corps I (�g. 8.5). Dans les axes principaux des
deux corps, on aura donc

zI =
1

2
ρI1
(
xI
)2

+
1

2
ρI2
(
yI
)2

et

h− zII =
1

2
ρII1
(
xII
)2

+
1

2
ρII2
(
yII
)2

On peut ramener le tout dans les axes du corps I en notant que

xII = xI cosα+ yI sinα

yII = −xI sinα+ yI cosα
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ce qui entraîne

h− zII =
1

2

(
ρII1 cos2 α+ ρII2 sin2 α

) (
xI
)2

+
(
ρII1 − ρII2

)
sinα cosαxIyI

+
1

2

(
ρII1 sin2 α+ ρII2 cos2 α

) (
yI
)2

et

w = h− 1

2

2∑
i,j=1

K̂ijx
I
i x
I
j (8.9)

avec 
K̂11 = ρI1 + ρII1 cos2 α+ ρII2 sin2 α

K̂12 =
(
ρII1 − ρII2

)
sinα cosα

K̂22 = ρI2 + ρII2 cos2 α+ ρII1 sin2 α

(8.10)

Les valeurs principales de la courbure résultante sont donc les solutions 2A et
2B de l'équation séculaire ∣∣∣∣ K̂11 − λ K̂12

K̂12 K̂22 − λ

∣∣∣∣ = 0

soit
λ2 − λ

(
K̂11 + K̂22

)
+
(
K̂11K̂22 − K̂2

12

)
= 0 (8.11)

Il vient donc, en posant arbitrairement B ≥ A,

2(B +A) = K̂11 + K̂22 =
(
ρI1 + ρII1 + ρI2 + ρII2

)
=
∑

ρ (8.12)

et

2(B −A) =

√(
K̂11 + K̂22

)2

− 4
(
K̂11K̂22 − K̂2

12

)
=

√(
K̂11 − K̂22

)2

+ 4K̂2
12

=
{[
ρI1 − ρI2 +

(
ρII1 − ρII2

)
cos 2α

]2
+
(
ρII1 − ρII2

)2
sin2 2α

}1/2

=
[(
ρI1 − ρI2

)2
+
(
ρII1 − ρII2

)2
+ 2

(
ρI1 − ρI2

) (
ρII1 − ρII2

)
cos 2α

]1/2
= F (ρ) (8.13)
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On utilise souvent l'angle auxiliaire δ dé�ni par

cos δ =
B −A
B +A

=
F (ρ)∑

ρ
(8.14)

en fonction duquel on obtient aisément

A = (A+B)
A

A+B
=

1

2
(A+B)(1− cos δ) =

1

2

∑
ρ sin2 δ

2
(8.15)

et

B = (A+B)
B

A+B
=

1

2

∑
ρ cos2 δ

2
(8.16)

Ainsi, il existe un système d'axes Ox,Oy dans lequel le déplacement total prend
la forme

w = h−Ax̄2 −Bȳ2 (8.17)

A et B ayant les expressions (8.15) et (8.16).

8.3 Équilibre de la surface de contact des corps

Figure 8.6 � Déplacement en B dû à une charge en A

La surface de contact étant supposée très petite par rapport aux dimensions
des corps, on peut identi�er ceux-ci à des massifs indé�nis en ce qui concerne
les e�orts. L'étude du problème de Boussinesq nous a montré qu'une charge
concentrée en un point A produit en un autre point B situé sur la surface (�g.
8.6) un déplacement

wIIB =
1− ν2

II

πEII

P

rAB
(8.18)
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Figure 8.7 � Superposition de l'e�et des pressions dans la zone de contact

Dès lors, par superposition, un système de pressions p appliquées sur la surface
de contact S (�g. 8.7) produit dans le corps II un déplacement

wIIB =
1− ν2

II

πEII

∫
S

pA
rAB

dSA = εII

∫
S

pA
rAB

dsA (8.19)

en posant

εII =
1− ν2

II

πEII
(8.20)

De la même façon, le déplacement du corps I vaut

wIB = εI

∫
S

pa
rAB

dSA (8.21)

valeur proportionnelle à la précédente, dans le rapport

wIB
wIIB

=
εI
εII

(8.22)

Le déplacement est donc identique dans les deux corps dans le cas assez habituel
où ils sont constitués de matériaux de mêmes constantes élastiques E et ν.

En�n, le déplacement total, qui a la forme (8.17), vaut

wB = (εI + εII)

∫
S

pA
rAB

dSA (8.23)
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Il s'agit d'une équation intégrale en pA, que l'on désire résoudre analytique-
ment pour des valeurs quelconques de h, A et B. On notera l'analogie entre ce
problème et l'expression donnant le potentiel en électrostatique :

VB =

∫
V

ρA
rAB

dSA

où

ρA =
densité de charge

4πε0

Or, il est bien connu (voir annexe) que le potentiel d'une charge uniforme dans
un ellipsoïde s'écrit

V (x, y, z) =

∫
ellipsoïde

ρ(α, β, γ)√
(x− α)2 + (y − β)2 + (z − γ)2

dαdβdγ

= πρabc

∫ ∞
0

(
1− x2

a2 + ξ
− y2

b2 + ξ
− z2

c2 + ξ

)
dξ√

(a2 + ξ)(b2 + ξ)(c2 + ξ)
(8.24)

L'expression de ce potentiel présente une forte ressemblance avec l'équation
de w, n'était-ce le terme en z. Nous le supprimerons, ainsi que γ, de la façon
suivante. Commençons par mettre les variables à l'échelle :{

x = ax̂ , y = bŷ , z = cẑ

α = aα̂ , β = bβ̂ , γ = cγ̂

et exprimons V (x, y, 0) en termes de ces variables sans dimensions. On a, en
notant B1 la boule unité,

V (x, y, 0) =

∫
B1

ρabcdα̂dβ̂dγ̂√
a2(x̂− α̂)2 + b2(ŷ − β̂)2 + c2γ̂2

= πρabc

∫ ∞
0

(
1− x2

a2 + ξ
− y2

b2 + ξ

)
dξ√

(a2 + ξ)(b2 + ξ)(c2 + ξ)

Divisons les deux derniers membres par c et faisons ensuite tendre c vers zéro.
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On obtient l'identité∫
B1

ρabdα̂dβ̂dγ̂√
a2(x̂− α̂)2 + b2(ŷ − β̂)2

= πρab

∫ ∞
0

(
1− x2

a2 + ξ
− y2

b2 + ξ

)
dξ√

ξ(a2 + ξ)(b2 + ξ)

dont le premier membre peut être intégré par rapport à γ̂ entre les limites

±
√

1− α̂2 − β̂2 ce qui donne

Premier membre =

∫
disque unité

2ρabdα̂dβ̂

√
1− α̂2 − β̂2dγ̂√

a2(x̂− α̂)2 + b2(ŷ − β̂)2

=

∫
ellipse(a,b)

2ρ
√

1− α2

a2 −
β2

b2 dαdβ

r

Le résultat �nal de ces manipulations est

∫
ellipse(a,b)

ρ
√

1− α2

a2 −
β2

b2 dαdβ

r

= ρ
πab

2

∫ ∞
0

(
1− x2

a2 + ξ
− y2

b2 + ξ

)
dξ√

ξ(a2 + ξ)(b2 + ξ)
(8.25)

Nous avons donc obtenu une distribution du type (8.23) conduisant à un dépla-
cement de la forme voulue (8.17). Ceci signi�e que la solution consiste en une
pression de la forme

p = pH

√
1− x2

a2
− y2

b2
(8.26)

à laquelle correspondent les variables h, A, B par les relations

h = (εI + εII)pH
πab

2

∫ ∞
0

dξ√
ξ(a2 + ξ)(b2 + ξ)

(8.27)

A = (εI + εII)pH
πab

2

∫ ∞
0

dξ√
ξ(a2 + ξ)3(b2 + ξ)

(8.28)

B = (εI + εII)pH
πab

2

∫ ∞
0

dξ√
ξ(a2 + ξ)(b2 + ξ)3

(8.29)
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La pression maximale, encore appelée pression de Hertz, est liée à la résul-
tante P des pressions réciproques par la relation

P =

∫
ellipse(a,b)

pH

√
1− x2

a2
− y2

b2
dS

Posant
x = aρ cosϕ, y = bρ sinϕ, ρ ∈]0, 1[, ϕ ∈]0, 2π[

on obtient

dS = ab · 2πρdρ,
√

1− x2

a2
− y2

b2
=
√

1− ρ2

d'où

P = pH2πab

∫ 1

0

√
1− ρ2ρdρ

Posant encore ρ = sin ξ, on obtient

P = pH2πab

∫ π/2

0

cos2 ξ sin ξdξ =
2

3
πabpH

soit

pH =
3

2

P

πab
(8.30)

équation qui signi�e que la pression de Hertz vaut 1,5 fois la pression moyenne.
On peut ré-exprimer les résultats (8.27), (8.28) et (8.29) en termes de P au

lieu de pH , ce qui donne

h = (εI + εII)
3P

4

∫ ∞
0

dξ√
ξ(a2 + ξ)(b2 + ξ)

(8.31)

A = (εI + εII)
3P

4

∫ ∞
0

dξ√
ξ(a2 + ξ)3(b2 + ξ)

(8.32)

B = (εI + εII)
3P

4

∫ ∞
0

dξ√
ξ(a2 + ξ)(b2 + ξ)3

(8.33)

8.4 Résolution des équations

Les équations (8.31) à (8.33) donnent la solution de principe du problème :
connaissant A, B et P , on peut déterminer a et b par les deux dernières équa-
tions, puis h par la première. Mais il faut pour cela parvenir à calculer les
intégrales des seconds membres.
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Tout d'abord, nous introduirons les intégrales elliptiques complètes

K(m) =

∫ π/2

0

dx√
1−m sin2 x

, E(m) =

∫ π/2

0

√
1−m sin2 xdx (8.34)

avec m ∈]0, 1[, dont voici une table [1].

m K(m) E(m)
0 1,5780 1,5780
0,1 1,61244 1,53076
0,2 1,65962 1,48094
0,3 1,71386 1,44536
0,4 1,77752 1,39939
0,5 1,85407 1,35064
0,6 1,94957 1,29843
0,7 2,07536 1,24167
0,8 2,25721 1,17849
0,9 2,57809 1,10477
0,95 2,90834 1,06047
1 ∞ 1

On remarquera que ces intégrales admettent l'expression équivalente

K(m) =

∫ π/2

0

dx√
1−m cos2 x

, E(m) =

∫ π/2

0

√
1−m cos2 xdx (8.35)

Cela étant, il est aisé de transformer les intégrales apparaissant dans les formules
(8.31) à (8.33).

1. Tout d'abord, en posant ξ = a2 tg2 ϕ et e = b/a,

I1 =

∫ ∞
0

dξ√
ξ(a2 + ξ)(b2 + ξ)

=
2

a

∫ π/2

0

√
1 + tg2 ϕ√
e2 + tg2 ϕ

=
2

a

∫ π/2

0

dϕ√
e2 cos2 ϕ+ sin2 ϕ

=
2

a

∫ π/2

0

dϕ√
1− (1− e2) cos2 ϕ

=
2

a
K(1− e2)
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ce qui donne

h = (εI + εII)
3P

2a
K(1− e2) (8.36)

2. Le même changement de variables permet d'écrire

I2 =

∫ ∞
0

dξ√
ξ(a2 + ξ)3(b2 + ξ)

=
2

a3

∫ π/2

0

cos2 ϕdϕ√
e2 cos2 ϕ+ sin2 ϕ

=
2

a3

∫ π/2

0

cos2 ϕdϕ√
1− (1− e2) cos2 ϕ

Comme, par ailleurs,

cos2 ϕ =
1

1− e2
(1− e2) cos2 ϕ =

1

1− e2
− 1

1− e2
[1− (1− e2) cos2 ϕ]

on obtient

I2 =
2

a3(1− e2)
[K(1− e2)− E(1− e2)]

d'où

A = (ε+ε2)
3P

2a3(1− e2)
[K(1− e2)− E(1− e2)] (8.37)

3. Posant en�n ξ = b2 tg2 ϕ, on obtient

I3 =

∫ ∞
0

dξ√
ξ(a2 + ξ)(b2 + ξ)3

=
2

b3

∫ π/2

0

e cos2 ϕdϕ√
e2 cos2 ϕ+ sin2 ϕ

=
2

b3

∫ π/2

0

e cos2 ϕdϕ√
1− (1− e2) cos2 ϕ

Notant que

cos2 ϕ =
1− e2

1− e2
cos2 ϕ

=
1

1− e2
[(1− e2)− (1− e2) sin2 ϕ]

=
1− (1− e2) sin2 ϕ

1− e2
− e2

1− e2

on obtient

I3 =
2e

b3
K(1− e2)− 2e3

b3
E(1− e2)
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ce qui entraîne

B = (ε1 + ε2)
3P

2a3(1− e2)
[

1

e2
E(1− e2)−K(1− e2)] (8.38)

Les équations (8.15), (8.16), (8.37) et (8.38) impliquent

A

B
= tg2 δ

2
=

K(1− e2)− E(1− e2)
1
e2E(1− e2)−K(1− e2)

(8.39)

Cette équation permet de calculer e en fonction du paramètre δ (graphiquement,
on peut tracer une courbe de δ en fonction de e). La valeur de e étant connue,
on calcule a à partir de (8.37) et (8.38), en notant que

A =
1

2

∑
ρ sin2 δ

2
, B =

1

2

∑
ρ cos2 δ

2

ce qui donne

a =

{
3

sin2 δ
2

1

1− e2

[
K(1− e2)− E(1− e2)

]}1/3

(εI + εII)
1/3

(
P∑
ρ

)1/3

(8.40)
Pour une plus grande simplicité, on utilise généralement un module de Young

équivalent Em dé�ni par

1

Em
=

1

2

(
1− ν2

I

EI
+

1− ν2
II

EII

)
=
π

2
(εI + εII) (8.41)

à l'aide duquel on peut écrire

a = ka

(
P

Em
∑
ρ

)1/3

(8.42)

avec

ka =

{
6

π sin2 δ
2

1

1− e2

[
K(1− e2)− E(1− e2)

]}1/3

(8.43)

On en déduit d'abord

b = kb

(
P

Em
∑
ρ

)1/3

(8.44)
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avec
kb = eka (8.45)

puis

pH =
3

2

P

πab
= kpP

1/3
(
Em

∑
ρ
)2/3

(8.46)

avec

kp =
3

2πkakb
(8.47)

et en�n,

h =
3P

πaEm
K(1− e2) = kh

P 2/3

(Em
∑
ρ)

1/3
(8.48)

où

kh =
3

πka
K(1− e2) (8.49)

8.5 Comportements asymptotiques

8.5.1 Cas où e = 1

Pour e = 1, les formules ci-dessus mènent à des formes indéterminées, ce qui
rend nécessaire une étude du comportement des fonctions K et E au voisinage
de e = 1. On a, pour e proche de l'unité,

K(1− e2) =

∫ π/2

0

[
1− (1− e2) sin2 θ

]−1/2
dθ

≈
∫ π/2

0

(
1 +

1− e2

2
sin2 θ

)
≈ π

2
+ (1− e2)

π

8

et

E(1− e2) =

∫ π/2

0

[
1− (1− e2) sin2 θ

]1/2
dθ

≈
∫ π/2

0

(
1− 1− e2

2
sin2 θ

)
≈ π

2
− (1− e2)

π

8
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ce qui donne

lim
e→1

K(1− e2)− E(1− e2)

1− e2
=
π

4

Comme, pour e = 1, on a δ = 90◦ et sin2(δ/2) = 1/2, il vient

ka =

(
6π

π.4
· 2
)1/3

=
3
√

3 = 1, 442

kb = ka

kp =
3

2π

1

32/3
=

3
√

3

2π
= 0, 2295

kh =
3

π

1

31/3

π

2
=

32/3

2
= 1, 040

8.5.2 Très faibles valeurs de e

Pour e→ 0, on peut montrer [1] que

K(1− e2) ≈ ln (4e)

tandis que

E(1− e2) ≈ 1

Il vient alors

tg2 δ

2
=

K − E
E
e2 −K

≈ ln(4/e)− 1
1
e2 − ln(4/e)

≈ e2 ln(4/e)

Comme c'est une petite valeur, on a encore

sin2 δ

2
≈ tg2 δ

2
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d'où, par les formules (6.40) et suivantes,

ka ≈

[
6

π

E
e2 −K
K − E

1

1− e2
(K − E)

]1/3

≈
[

6

π

1

1− e2

(
E

e2
−K

)]1/3

≈
(

6

π

)1/3

e−2/3

kb ≈
(

6

π

)1/3

e1/3

kp =
3

2πkakb
≈ 1

4

(
6

π

)1/3

e1/3

kh ≈ 1

2

(
6

π

)2/3

e2/3 ln(4/e)

8.6 Tables de la solution du problème de Hertz

8.6.1 Valeurs courantes de e

1− e2 e δ(◦) ka kb kp kh
0 1 90 1,442 1,442 0,2296 1,040
0,1 0,9487 87,33 1,481 1,405 0,2294 1,040
0,2 0,8944 85,19 1,526 1,365 0,2292 1,039
0,3 0,8367 82,37 1,580 1,322 0,2286 1,036
0,4 0,7746 79,09 1,645 1,274 0,2278 1,032
0,5 0,7071 75,25 1,728 1,222 0,2261 1,025
0,6 0,6325 70,66 1,837 1,162 0,2237 1,013
0,7 0,5477 64,88 1,992 1,091 0,2197 0,9949
0,8 0,4472 57,16 2,241 1,002 0,2126 0,9618
0,9 0,3162 45,28 2,763 0,8737 0,1978 0,8910
0,95 0,2236 35,26 3,434 0,7678 0,1811 0,8088
1 0 0 ∞ 0 0 0
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8.6.2 Valeurs asymptotiques pour e proche de zéro

e δ(◦) ka kb kp kh
0,01 2,560 26,73 0,2673 0,06683 0,2140
0,02 4,754 16,84 0,3368 0,08420 0,3005
0,05 10,57 9,142 0,4571 0,1143 0,4577
0,1 18,97 5,759 0,5759 0,1440 0,6117
0,15 26,50 4,395 0,6592 0,1648 0,7134
0,20 33,52 3,628 0,7256 0,1814 0,7885

Ces résultats sont représentés graphiquement en �gures 8.8 et 8.9
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Figure 8.8 � Solution du problème de Hertz pour les valeurs courantes de e
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Figure 8.9 � Solution du problème de Hertz pour e proche de zéro
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8.7 Annexe : potentiel de l'ellipsoïde chargé

Soit à chercher la solution du problème

∆V =

{
−4πρ dans un ellipsoïde

0 en dehors
(8.50)

La solution qui suit est due à Dirichlet [57]. Nous nous référons à Appell [2]. La
surface de l'ellipsoïde ayant pour équation

X2

a2
+
Y 2

b2
+
Z2

c2
− 1 = 0

tout point extérieur véri�e

x2

a2
+
y2

b2
+
z2

c2
− 1 > 0

En un tel point, l'équation

x2

a2 + u
+

y2

b2 + u
+

z2

c2 + u
− 1 = 0 (8.51)

admet une et une seule solution u > 0. En e�et, en appelant f(u) le premier
membre de cette équation, on a le schéma de variation suivant :

u 0 ↗ ∞
f(u) + ↘ -1

et on ne peut avoir qu'une seule fois f(ξ) = 0. Ceci dé�nit une fonction ξ des
points P = (x, y, z) telle que{

ξ(P ) = 0 si P est sur la surface de l'ellipsoïde
ξ(P ) > 0 si P est extérieur à l'ellipsoïde

Cela étant, nous allons montrer que le potentiel V cherché est :

1. Si P est extérieur à l'ellipsoïde,

V (P ) = πρabc

∫ ∞
u

(
1− x2

a2 + ξ
− y2

b2 + ξ
− z2

c2 + ξ

)
dξ√
ϕ(ξ)

où
ϕ(ξ) = (a2 + ξ)(b2 + ξ)(c2 + ξ)
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2. Si P est intérieur à l'ellipsoïde,

V (P ) = πρabc

∫ ∞
0

(
1− x2

a2 + ξ
− y2

b2 + ξ
− z2

c2 + ξ

)
dξ√
ϕ(ξ)

en donnant la même signi�cation à ϕ(ξ).

On notera que les deux formules se raccordent sur la surface de l'ellipsoïde, où
u = 0.

Pour démontrer ce résultat, il nous su�ra de calculer ∆V dans les deux cas
et de véri�er qu'à l'in�ni, V tend vers zéro. Ce dernier point est évident, car
u→ 0 à l'in�ni.

8.7.1 Calcul de ∂V/∂x

P extérieur

Tenant compte du fait que u varie avec x,

∂V

∂x
= −2πρabcx

∫ ∞
u

dξ

(a2 + ξ)
√
ϕ(ξ)

− πρabcx
(

1− x2

a2 + ξ
− y2

b2 + ξ
− z2

c2 + ξ

)
1√
ϕ(u)

∂u

∂x

Le dernier terme, résultant du fait que la limite inférieure d'intégration est
variable, s'annule en vertu de la relation (8.51) qui dé�nit u. Il reste donc

∂V

∂x
= −2πρabcx

∫ ∞
u

dξ

(a2 + ξ)
√
ϕ(ξ)

P intérieur

On trouve immédiatement

∂V

∂x
= −2πρabcx

∫ ∞
0

dξ

(a2 + ξ)
√
ϕ(ξ)
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8.7.2 Calcul de ∂2V/∂x2 et de ∆V

P extérieur

On calcule

∂2V

∂x2
= −2πρabc

∫ ∞
u

dξ

(a2 + ξ)
√
ϕ(ξ)

+ 2πρabc
1

(a2 + u)
√
ϕ(u)

∂u

∂x

Il est aisé de déterminer ∂2V/∂y2 et ∂2V/∂z2 par analogie. Il vient ainsi

∆V = 2πρabc

[
−
∫ ∞
u

(
1

a2 + ξ
+

1

b2 + ξ
+

1

c2 + ξ

)
dξ√
ϕ(ξ)

+
1√
ϕ(u)

(
x

a2 + u

∂u

∂x
+

y

b2 + u

∂u

∂y
+

z

c2 + u

∂u

∂z

)]

Arrivé à ce point, on notera d'abord que

∂

∂ξ

(
1√
ϕ(ξ)

)
= − 1

2[ϕ(ξ)]3/2
[(b2 + ξ)(c2 + ξ) + (a2 + ξ)(c2 + ξ)

+(a2 + ξ)(b2 + ξ)]

= − 1

2
√
ϕ(ξ)

[
1

a2 + ξ
+

1

b2 + ξ
+

1

c2 + ξ
]

ce qui entraîne ∫
[

1

a2 + ξ
+

1

b2 + ξ
+

1

c2 + ξ
]
dξ√
ϕξ)

= − 2√
ϕ(ξ)

et ∫ ∞
u

[
1

a2 + ξ
+

1

b2 + ξ
+

1

c2 + ξ
]
dξ√
ϕξ)

= − 2√
ϕ(u)

Nous obtenons donc

∆V = 2πρabc

[
x

a2 + u

∂u

∂x
+

y

b2 + u

∂u

∂y
+

z

c2 + u

∂u

∂z
− 2

]
1√
ϕ(u)
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Le facteur entre crochets est nul. En e�et, en dérivant successivement la relation
(8.51) par rapport à x, y et z, on obtient

2x

a2 + u
−
[

x2

(a2 + u)2
+

y2

(b2 + u)2
+

z2

(c2 + u)2

]
∂u

∂x
= 0

2y

b2 + u
−
[

x2

(a2 + u)2
+

y2

(b2 + u)2
+

z2

(c2 + u)2

]
∂u

∂y
= 0

2z

c2 + u
−
[

x2

(a2 + u)2
+

y2

(b2 + u)2
+

z2

(c2 + u)2

]
∂u

∂z
= 0

Multiplions la première équation par x/(a2 + u), la deuxième par y/(b2 + u) et
la troisième par z/(c2 + u) et additionnons. On obtient, en notant

[. . .] =

[
x2

(a2 + u)2
+

y2

(b2 + u)2
+

z2

(c2 + u)2

]
la relation

2[. . .]− [. . .]

(
x

a2 + u

∂u

∂x
+

y

b2 + u

∂u

∂y
+

z

c2 + u

∂u

∂z

)
= 0

soit

2 =
x

a2 + u

∂u

∂x
+

y

b2 + u

∂u

∂y
+

z

c2 + u

∂u

∂z

Ainsi, ∆V = 0 à l'extérieur de l'ellipsoïde.

P intérieur

On a directement

∂2V

∂x2
= −2πρabc

∫ ∞
0

dξ

(a2 + ξ)
√
ϕ(ξ)

et

∆V = −2πρabc

∫ ∞
0

(
1

a2 + ξ
+

1

b2 + ξ
+

1

c2 + ξ

)
dξ√
ϕ(ξ)

= 4πρabc

(
1√
ϕ(∞)

− 1√
ϕ(0)

)
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et comme √
ϕ(0) = abc

il vient
∆V = −4πρ

La démonstration est donc achevée.

8.8 Exercice

Exercice 31 Étudier le problème de Hertz dans le cas de deux sphères, sans
passer par les intégrales elliptiques complètes.

Figure 8.10 � Contact de deux sphères

Solution - En supposant possible l'interférence des deux corps, on aurait (�g.
8.10)

zI = −h+
r2

2RI
, zII = − r2

2RII
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en assimilant les sphères à des paraboloïdes. La déformation mène à

zI = −h+
r2

2RI
+ wI , zII = − r2

2RII
+ wII

avec zI = zII , ce qui implique

w = wI + wII = h− βr2

avec

β =
1

2

(
1

RI
+

1

RII

)
=

1

4

∑
ρ

où ∑
ρ =

2

RI
+

2

RII

Le problème de Boussinesq donne, pour une charge concentrée (�g. 8.7)

wBII =
1− ν2

II

πEII

P

rAB
= εII

P

rAB

et, par superposition, si S est la surface de contact,

wBII = εII

∫
S

pA
rAB

dSA

De la même façon, on a

wBI = εI

∫
S

pA
rAB

dSA

d'où la relation toujours véri�ée

wBII
wBI

=
εII
εI

(Dans le cas de deux matériaux identiques, on a donc wBII = wBI). Il faut donc
résoudre l'équation intégrale

wB = (εI + εII)

∫
S

pA
rAB

dSA = h− βr2

ou encore,

wB =
2

πEm

∫
S

pA
rAB

dSA = h− βr2
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en dé�nissant Em par

1

Em
=

1

2

(
1− ν2

I

EI
+

1− ν2
II

EII

)

Par symétrie, la zone de contact est un cercle de rayon a. Montrons que la
solution a la forme

p = pH

√
1− r2

a2
=
pH
a

√
r2 − a2

Soit (�g. 8.11) B un point de la zone de contact situé à une distance r du centre

Figure 8.11 � Distance du point A au point B

de celle-ci. Considérons un segmentMN passant par B, limité à la circonférence,
et faisant un angle ψ avec OB. On a donc

OC = r sinψ

CN =

√
a2 − r2 sin2 ψ
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Il vient alors ∫
S

pA
rAB

dS =

∫
S

pA
rAB

rABdrABdψ

=

∫
S

pAdrABdψ

Ainsi que l'illustre la �gure (8.12), le diagramme de p étant sphérique, la section

Figure 8.12 � Calcul du déplacement en B

verticaleMN est encore un demi-cercle de rayon
√
a2 − r2 sin2 ψ, dont la surface

vaut

π

2
(a2 − r2 sin2 ψ)

Il su�t donc de calculer

a

pH

∫
S

pdrdψ =
a

pH

∫ π/2

−π/2

π

2
(a2 − r2 sin2 ψ)dψ

=
a

pH

π

2
(a2π − π

2
r2)
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On a donc

wB =
2

πEm

∫
S

pAdrABdψ

=
2

πEm

pH
a

(
π2a2

2
− π2r2

4

)
=

pHπa

Em
− pHπ

2aEm
r2

ce qui donne

h =
pHπa

Em
(8.52)

et

β =
1

4

∑
ρ =

pHπ

2aEm

d'où

a =
2phπ

Em
∑
ρ

(8.53)

On détermine pH par la condition

P =

∫
S

pdS =
pH
a

2

3
πa3 =

2

3
πpHa

2

ce qui donne

pH =
3P

2πa2
(8.54)

Il vient alors, en combinant (8.53) , (8.54) et (8.52),

a = 3

√
3

P

Em
∑
ρ

= 1, 442 3

√
P

Em
∑
ρ

(8.55)

h =
3

√
9

8

(
P

Em

)2∑
ρ = 1, 040

3

√(
P

Em

)2∑
ρ (8.56)

pH =
3

√
3

8π3
P
(
Em

∑
ρ
)2

= 0, 2295
3

√
P
(
Em

∑
ρ
)2

(8.57)



Chapitre 9

Principes variationnels de
l'élasticité géométriquement
linéaire

9.1 Introduction

Les principes variationnels constituent un outil fécond pour la construction
de solutions approchées en élasticité. De telles solutions ont déjà été construites
dans le chapitre relatif à la torsion. Le présent chapitre développe ce concept
dans le cas général de l'élasticité géométriquement linéaire.

9.2 Principe du minimum de l'énergie totale

Considérons un corps élastique V . Pour exprimer ses liaisons avec la fon-
dation, nous distinguerons sur sa frontière S deux parties distinctes et complé-
mentaires S1 et S2 telles que S = S1 ∪ S2

mes(S1) 6= 0
mes(S1 ∩ S2) = 0

(9.1)

Sur S1, on imposera des déplacements ūi, tandis que sur S2, on imposera des
tractions de surface t̄i. En outre, le corps est soumis à des forces de volume

205
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f̄i. Dans ce qui suit, nous considérerons que les charges f̄i et t̄i sont mortes,
c'est-à-dire indépendantes des déplacements.

Un champ de déplacements ui sera dit cinématiquement admissible si, d'une
part,

ui = ūi sur S1 (9.2)

et si, d'autre part,

U(u) =

∫
V

W (Du)dv <∞ (9.3)

où W (Du) est la densité d'énergie de déformation calculée à partir de ce champ
de déplacements, D symbolisant l'opérateur de calcul des déformations. Notons
que dans les développements qui suivent, il n'est pas nécessaire de supposer le
matériau linéaire.

Dé�nissons le potentiel des charges P par les conditions{
P(0) = 0
δP(u) = −δT (u) = −

∫
V
f̄iδuidV −

∫
S2
t̄iδuidS

(9.4)

On considère alors l'énergie totale

E(u) = U(u) + P(u) (9.5)

Le principe du minimum de l'énergie totale, encore appelé principe de variation
des déplacements, stipule que parmi tous les déplacements cinématiquement ad-
missibles, celui qui véri�e l'équilibre est caractérisé par le fait qu'il minimise
l'énergie totale.

Soit en e�et u la solution cherchée. Tout autre champ de déplacements ciné-
matiquement admissible v véri�era par dé�nition les conditions (9.2) et (9.3),
ce qui implique que la variation

δu = v − u

véri�era
δui = 0 sur S1 (9.6)

Il est équivalent de dire qu'une variation de déplacement d'énergie �nie est
admissible si elle véri�e la condition (9.6). Cela étant, la recherche du minimum
est classique. On a

E(u+ δu) = E(u) + δE +
1

2
δ2E + o((δu)2))



9.2. PRINCIPE DU MINIMUM DE L'ÉNERGIE TOTALE 207

et les conditions de minimum sont

δE = 0, δ2E > 0 ∀δu admissible (9.7)

La condition de nullité de la variation première s'écrit

δE = δU + δP = δU − δT = 0 ∀δ(u) admissible (9.8)

Il s'agit d'un cas particulier du principe des travaux virtuels, restreint aux seuls
déplacements admissibles. Pour obtenir les équations locales qui en résultent,
on calcule

δU =

∫
V

∂W

∂εij

1

2
(Diδuj +Djδui)dV

=

∫
S2

∂W

∂εij
njδuidS −

∫
V

Dj

(
∂W

∂εij

)
δuidV

d'où, en tenant compte de l'expression (9.4) de δP, on tire{
Dj

∂W
∂εij

+ f̄i = 0 dans V

nj
∂W
∂εij

= t̄i sur S2
(9.9)

L'énoncé du principe du minimum de l'énergie totale est dû à Kirchho� [48]
(1850).

De manière générale, un principe variationnel contient certaines variables
soumises à priori à ce que l'on appelle des conditions essentielles. Le résultat
de la variation de ces variables conduit à ce que l'on appelle les conditions
naturelles. Dans le cas présent, on peut donc établir le tableau suivant :

Principe de l'énergie potentielle totale
Variable Conditions essentielles Conditions naturelles
ui ui = ūi sur S1 Équilibre dans V et sur S1

Supposons que l'on cherche une solution approchée en se limitant à certains
déplacements particuliers : on écrira par exemple

ui = ϕi(x;α1, . . . , αp) (9.10)

les αk étant des paramètres scalaires. L'application correcte du principe de va-
riation des déplacements suppose que les conditions ui = ūi soient véri�ées
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exactement, quelles que soient les valeurs des αk. On calculera alors

U(α1, . . . , αp) =

∫
V

W (Dϕ(x;α1, . . . , αp))dV

P(α1, . . . , αp) = −
∫
V

f̄iϕi(x;α1, . . . , αp)dV −
∫
S2

t̄iϕi(x;α1, . . . , αp)dS

et

E(α1, . . . , αp) = U(α1, . . . , αp) + P(α1, . . . , αp)

ce qui ramène le problème élastique à la minimisation d'une fonction de p va-
riables scalaires. La solution approchée sera donc caractérisée par les conditions

∂E
∂αk

= 0, k = 1, . . . p (9.11)

Que perd-on par rapport à la solution exacte en travaillant de la sorte ? En
adoptant la forme restrictive (9.10) pour les déplacements, on limite évidemment
l'ensemble des variations possibles. Ces variations sont � responsables �de la
véri�cation de l'équilibre. De fait, la solution approchée ne véri�era pas les
équations d'équilibre locales, mais seulement p conditions d'équilibre globales,
qui s'écrivent ∫

V

∂W

∂εij

∂εij(ϕ)

∂αk
dV =

∫
V

f̄i
∂ϕi
∂αk

dV +

∫
S2

t̄i
∂ϕi
∂αk

dS (9.12)

La procédure décrite ci-dessus pour construire une approximation est connue
sous le nom de méthode de Rayleigh-Ritz [71, 77, 88, 69, 95]. Dans ce type d'ap-
proche, ce sont toujours les conditions naturelles qui sont a�aiblies (globalisées).

En�n, la condition δ2E = δ2U > 0 permet de distinguer les minima des
maxima. Elle s'écrit explicitement∫

V

∂2W

∂εij∂εkl
δεij(u)δεkl(u)dV > 0

et est véri�ée à priori si l'on admet la stabilité locale du matériau, condition qui
s'écrit

∂2W

∂εij∂εkl
dé�nie positive (9.13)
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9.3 Multiplicateurs de Lagrange

Rappelons brièvement la technique des multiplicateurs de Lagrange pour
la résolution des problèmes d'extrema liés. Soit à chercher le minimum d'une
fonction f(x1, . . . , xn) dans la variété V dé�nie par les conditions

g1(x1, . . . , xn) = 0, . . . , gp(x1, . . . , xn) = 0 (p < n) (9.14)

Nous supposerons que ces p liaisons sont linéairement indépendantes, c'est-à-dire
que

p∑
k=1

αkgradgk = 0 =⇒ αk = 0, k = 1, . . . p

Considérons de nouvelles variables{
ξ1 = g1(x), . . . , ξp = gp(x)
ξp+1, . . . ξn arbitraires

pourvu que la relation x↔ ξ soit biunivoque :

∂(x)

∂(ξ)
6= 0,

∂(ξ)

∂(x)
6= 0

On a alors

df =
∂f

∂ξ1
dξ1 + . . .+

∂f

∂ξp
dξp +

∂f

∂ξp+1
dξp+1 + . . .+

∂f

∂ξn
dξn

Il est clair que pour des accroissements véri�ant les conditions (9.14), dξ1 =
. . . = dξp = 0, si bien que la condition d'extremum s'écrira

∂f

∂ξp+1
dξp+1 + . . .+

∂f

∂ξn
dξn = 0 ∀(dξp+1, . . . , dξn)

Or, cette condition s'écrit encore

df − ∂f

∂ξ1
dξ1 − . . .−

∂f

∂ξp
dξp = 0 ∀(dξ1, . . . , dξn)

Il existe donc p nombres

λ1 =
∂f

∂ξ1
, . . . , λp =

∂f

∂ξp
(9.15)
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tels que
d(f − λ1g1 − . . .− λpgp) = 0 (9.16)

Le système de (n+ p) équations aux (n+ p) inconnues (x1, . . . , xn, λ1, . . . , λp){
grad(f − λ1g1 − . . .− λpgp) = 0

gk = 0 , k = 1, . . . , p
(9.17)

permet de déterminer le point extrémal cherché. Les p inconnues supplémen-
taires λ1, . . . , λp sont appelées multiplicateurs de Lagrange. En dé�nissant la
fonction augmentée

f∗(x, λ) = f(x)− λ1g1(x)− . . .− λ1g1(x) (9.18)

on constate que le système (9.17) s'écrit encore
∂f∗

∂xi
= 0 , i = 1, . . . , n

∂f∗

∂λk
= 0 , k = 1, . . . , p

(9.19)

Les relations (9.15) permettent de donner l'interprétation suivante des multi-

Figure 9.1 � Interprétation des multiplicateurs de Lagrange

plicateurs de Lagrange obtenus à la solution : λk est le taux de variation de f
lorsque l'on perturbe la ke liaison. Illustrons ces considérations par un exemple.
Soit (�g. 9.1) un point lié à n ressorts et astreint à se déplacer dans une glissière,
de telle façon que ses déplacements soient soumis à l'équation

g = u cosβ + v sinβ = 0 (9.20)
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(β est l'inclinaison par rapport à l'axe des x de la normale à la glissière). Le
point considéré est foumis à une force F inclinée d'un angle α sur l'axe des x.
L'énergie du ressort n◦i vaut

Ui =
1

2
kiu

2
i

où ui est le déplacement dans la direction de ce ressort :

ui = u cos θi + v sin θi

On a donc

U =
1

2

∑
i

ki(u cos θi + v sin θi)
2

=
1

2
Kuuu

2 +Kuvuv +
1

2
Kvvv

2

avec

Kuu =
∑
i

ki cos2 θi

Kuv =
∑
i

ki sin θi cos θi

Kvv =
∑
i

ki sin2 θi

et
P = −F (u cosα+ v sinα)

d'où

E = U + P

=
1

2

∑
i

ki(u cos θi + v sin θi)
2 − F (u cosα+ v sinα)

En l'absence de liaison, la solution s'obtiendrait en écrivant
∂E
∂u

= Kuuu+Kuvv − F cosα = 0

∂E
∂v

= Kuvu+Kvvv − F sinα = 0

(9.21)
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Pour tenir compte de la liaison, on considérera la fonction augmentée

E∗(u, v, λ) = U + P − λ(u cosβ + v sinβ)

dont le point stationnaire est donné par Kuuu+Kuvv = F cosα+ λ cosβ
Kuvu+Kvvv = F sinα+ λ sinβ

u cosβ + v sinβ = 0
(9.22)

Comparant le système (9.22) au système (9.21), on constate que λ s'interprète
comme une force normale à la glissière. De fait, par (9.15),

λ =
∂E
∂g

(9.23)

représente l'e�ort nécessaire pour obtenir

δg = δu cosβ + δv sinβ = 1

C'est donc la réaction de la glissière, positive dans la direction indiquée par
l'angle β.

Les résultats qui précèdent peuvent être généralisés aux problèmes variation-
nels. Le problème consistant à chercher l'extremum de

A(u1, . . . , un) =

∫
V

f(u1, . . . , un)dV

moyennant les conditions

g1(u) = 0, . . . , gp(u) = 0 dans V

revient à écrire, en chaque point de V∑
i

δf

δui
δui = 0

chaque fois que ∑
i

δg1

δui
δui = 0, . . . ,

∑
i

δgp
δui

δui = 0

Il faut donc, en chaque point de V , résoudre le problème{
δf −

∑p
k=1 λkδgk = 0

gk = 0
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Les multiplicateurs λk varient évidemment d'un point à l'autre : on a donc des
champs de multiplicateurs de Lagrange. La fonctionnelle augmentée est alors

A∗(u, λ) =

∫
V

[
f(u)−

∑
k

λkgk(u)

]
dV

les λk étant des fonctions des coordonnées.

9.4 Principe à quatre champs de Fraeijs de Veu-
beke

Dans le principe de variation des déplacements, les déformations n'appa-
raissent que comme dérivées des déplacements. La compatibilité intérieure, ex-
primée par

εij =
1

2
(Diuj +Djui) dans V (9.24)

est donc véri�ée à priori. De même les conditions de compatibilité sur S1,

ui = ūi sur S1 (9.25)

doivent être véri�ées à priori.
Une autre manière de procéder consiste à considérer les déformations εij

comme des variables indépendantes et à ignorer au départ les relations (9.25).
Dans cette optique, le problème élastique consiste à minimiser la fonctionnelle

E(ε, u) = U(ε) + P(u) (9.26)

avec

U(ε) =

∫
V

W (ε)dV (9.27)

moyennant les liaisons (9.24) et (9.25), dont on tiendra compte à l'aide d'un
champ spatial de multiplicateurs de Lagrange σij pour la condition (9.24) et d'un
champ super�ciel de multiplicateurs de Lagrange ti pour la condition (9.25). La
fonctionnelle augmentée sera donc

E∗(ε, u, σ, t) =∫
V

{
W (ε) + σij

[
1

2
(Diuj +Djui)− εij

]
− f̄iui

}
dV

−
∫
S2

t̄iuidS −
∫
S1

ti(ui − ūi)dS (9.28)
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Elle sera extrémale par rapport à toutes les variables, sans conditions essen-
tielles. Ce principe est souvent attribué à Washizu [93], bien qu'il ait été énoncé
cinq ans plus tôt par Fraeijs de Veubeke [27]. L'exposé ci-dessus suit du reste
ce dernier auteur qui, pour la méthode utilisée, faisait référence à Friedrichs
[11, 38]. En variant la fonctionnelle E∗ par rapport aux quatre champs ε, u, σ, t,
libres de toute liaison, on obtient toutes les équations de l'élasticité.

1. En variant les déformations, on obtient visiblement l'équation

∂W

∂εij
= σij (9.29)

qui donne aux multiplicateurs σij la signi�cation énergétique de contraintes,
en tant que grandeurs liées aux déformations. Les relations (9.29) sont en
fait les équations constitutives.

2. La variation des déplacements donne∫
V

[
σij

1

2
(Diδuj +Djδui)− f̄iδui

]
dV

−
∫
S2

t̄iδuids−
∫
S1

tiδuidS = 0 (9.30)

E�ectuant une intégration par parties, on obtient∫
S

njσijδuidS −
∫
V

(Djσij)δuidV −
∫
V

f̄iδuidV

−
∫
S2

t̄iδuidS −
∫
S1

tiδuidS = 0 (9.31)

ce qui conduit aux équations

Djσij + f̄i = 0 dans V (9.32)

njσij = t̄i sur S2 (9.33)

njσij = ti sur S1 (9.34)

L'équation (9.32) exprime l'équilibre intérieur pour les contraintes λij ;
l'équation (9.33), l'équilibre sur S2 ; en�n, l'équation (9.34) permet d'in-
terpréter les ti comme des tractions de surface, réactions sur S1.

3. La variation des contraintes σij restitue les relations de compatibilité
(9.24). Ces contraintes apparaissent donc comme les réactions aux forces
qui voudraient provoquer la dislocation du corps.



9.5. PRINCIPE DE HELLINGER-REISSNER 215

4. La variation des réactions ti restitue la compatibilité super�cielle. Les ti
apparaissent donc comme les réactions aux forces qui voudraient rompre
les liaisons cinématiques sur S1.

Ces relations sont résumées dans le tableau suivant :

Principe à 4 champs de FdV
Variable Conditions essentielles Conditions naturelles
ui néant Équilibre dans V , sur S1 et sur S2

εij néant Équations constitutives
σij néant Compatibilité intérieure
ti néant Compatibilité sur S1

On constate donc que, dans un langage imagé,
� la variation des déplacements est � responsable � de l'équilibre : toute
restriction sur les déplacements mènera à des équations d'équilibre globa-
lisées ;

� la variation des contraintes σij est � responsable � de la compatibilité
intérieure : toute restriction sur les contraintes mènera à des conditions
de compatibilité globalisées ;

� la variation des réactions ti est � responsable � de la compatibilité exté-
rieure : toute restriction sur les ti mènera à une compatibilité super�cielle
globalisée ;

� la variation des déformations εij est � responsable � des équations consti-
tutives : toute restriction sur les déformations mènera à une globalisation
des équations constitutives.

9.5 Principe de Hellinger-Reissner

A partir du principe à quatre champs de Fraeijs de Veubeke, on peut en
obtenir d'autres, plus simples, en supposant certaines relations véri�ées à priori.

Supposons les équations constitutives (9.29) véri�ées. La fonctionnelle à uti-
liser sera alors

R(u, σ, t) = min
ε
E∗(ε, u, σ, t)

où, bien entendu, les déformations cesseront d'être indépendantes, et devront
être exprimées en termes des σij , ce qui pose le problème de l'invertibilité des
relations constitutives.
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9.5.1 Invertibilité des relations constitutives

Les relations constitutives

σij =
∂W

∂εij

peuvent-elles être inversées en une relation donnant ε en fonction de σ ? Pour
construire une telle relation, on partira d'un couple (σ, ε) donné et on notera
que les relations constitutives impliquent

dσij =
∂2W

∂εij∂εkl
dεkl = Hijkldεkl

Si l'on peut inverser cette relation sous la forme

dεkl = H−1
ijkldσkl (9.35)

on peut calculer ε en fonction de σ par intégration. Cette inversion est possible
si et seulement si

(Hijklηkl = 0 avec ηkl = ηlk)⇒ ηkl = 0

Comme nous le verrons en exercice, on peut aisément imaginer des structures
de la densité d'énergie de déformation pour lesquelles cette relation n'est pas
véri�ée. Il faut en outre remarquer que les relations (9.35) ne dé�nissent des
déformations uinivalentes que si

∂2εij
∂σkl∂σpq

=
∂2εij

∂σpq∂σkl

soit
∂H−1

ijkl

∂σpq
=
∂H−1

ijpq

∂σkl

condition dont la véri�cation à priori n'est pas évidente. Une autre manière de
procéder est fondée sur la transformation de Legendre, que nous allons introduire
ci-dessous.

9.5.2 Densité d'énergie complémentaire

Dans le principe à quatre champs, on voit apparaître le groupement

A(σ, ε) = σijεij −W (ε)
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dont les propriétés sont les suivantes :

∂A

∂σij
= εij

∂A

∂εij
= σij −

∂W

∂εij

Dé�nissons la fonction
Φ(σ) = max

ε
A(σ, ε) (9.36)

Il s'agit d'une fonction de σ uniquement, ayant pour dérivées

∂Φ

∂σij
=

∂A

∂σij
= εij (9.37)

On l'appelle densité d'énergie complémentaire. Ce procédé de construction de
la fonction Φ, qui permet en fait d'inverser les relations constitutives, porte le
nom de transformation de Legendre ou encore, de transformation de contact.

On donne à la fonction Φ(σ) le nom de densité d'énergie complémentaire.
Cette appellation provient du fait que dans le cas d'un problème unidimen-
sionnel, si l'on trace la courbe σ = F (ε), la densité d'énergie de déformation
représente l'aire comprise entre cette courbe et l'axe des ε. La densité d'énergie
complémentaire représente l'aire comprise entre la courbe et l'axe des σ (�g.
9.2). Elles se complètent mutuellement pour former un rectangle d'aire σε.

Figure 9.2 � Énergie complémentaire

Dans le cas de relations constitutives linéaires et, plus généralement, homo-
gènes de degré 1, on a, pour α ∈ [0, 1]

σij(αε) = ασij(ε)
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et en progressant par accroissement homogène des déformations,

W (ε) =

∫ ε

0

σij(ε
∗)dε∗ij

=

∫ 1

0

σij(αε)εijdα

= σijεij

∫ 1

0

αdα

=
1

2
σijεij (9.38)

si bien que la densité d'énergie de déformation et la densité d'énergie complé-
mentaire ont constamment la même valeur. Ce résultat est connu sous le nom
de théorème de Clapeyron intérieur.

9.5.3 Principe de Hellinger-Reissner

Nous sommes à présent en mesure d'expliciter la fonctionnelle de Hellinger-
Reissner,

R(u, σ, µ) = min
ε
E∗(ε, u, σ, µ) =

=

∫
V

[
σij

1

2
(Diuj +Djui)− Φ(σ)− f̄iui

]
dV

−
∫
S2

t̄iuidS −
∫
S1

ti(ui − ūi)dS (9.39)

C'est le principe de Hellinger-Reissner (Reissner l'a énoncé en 1950 [74] mais
il a été découvert plus tard que Hellinger l'avait déjà publié en 1914). Dans ce
principe,

1. la variation des contraintes conduit à une expression des conditions de
compatibilité sous la forme de relations entre les contraintes et les dérivées
des déplacements :

∂Φ

∂σij
=

1

2
(Diuj +Djui) (9.40)

2. la variation des réactions ti conduit aux conditions de compatibilité exté-
rieures ;
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3. la variation des déplacements mène aux équations d'équilibre Djσji + f̄i = 0 dans V
njσji = t̄i sur S2

njσji = ti sur S1

(9.41)

Ces résultats sont résumés dans le tableau suivant :

Principe de Hellinger-Reissner
Variable Conditions essentielles Conditions naturelles
ui néant Équilibre dans V , sur S1 et sur S2

σij néant Compatibilité intérieure
(sous forme d'équations constitutives)

ti néant Compatibilité sur S1

9.6 Principe à deux champs de Fraeijs de Veu-
beke [33]

Dans le principe à quatre champs, on peut également imposer à priori l'équi-
libre, sous forme des travaux virtuels :∫

V

[
σij

1

2
(Diδuj +Djδui)− f̄iδui

]
dV

−
∫
S2

t̄iδuidS −
∫
S1

tiδuidS = 0 (9.42)

Comme aucune restriction n'est imposée aux déplacements, on peut en particu-
lier poser δui = ui, ce qui donne∫

V

[
σij

1

2
(Diuj +Diui)− f̄iui

]
dV −

∫
S2

t̄iuidS −
∫
S1

tiuidS = 0 (9.43)

Soustrayant cette relation à l'expression générale de E∗, on obtient∫
V

[W (ε)− σijεij ]dV +

∫
S1

tiūidS

et comme l'équilibre implique en particulier

ti = njσij
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on est conduit à la fonctionnelle

F(ε, σ) =

∫
V

[W (ε)− σijεij ]dV +

∫
S1

njσjiūidS (9.44)

dont le caractère stationnaire constitue le principe à deux champs de Fraeijs de
Veubeke. Dans ce principe, les déformations sont libres de toute liaison, et leur
variation fournit les équations constitutives

∂W

∂εij
= σij

Le résultat de la variation des contraintes σij , soumises aux conditions d'équi-
libre, est la compatibilité, comme on peut s'en rendre compte en supprimant,
dans le tableau relatif au principe à quatre champs, les lignes relatives aux
déplacements et aux ti :

Principe à 2 champs de FDV
Variable Conditions essentielles Conditions naturelles
εij néant Équations constitutives
σij équilibre dans V , surS1 et sur S2 Compatibilité

Signalons qu'il est possible de véri�er à priori l'équilibre pour f̄i = 0 à l'aide
de fonctions de contrainte : fonction d'Airy en état plan de contrainte, fonctions
de Maxwell ou de Morera dans le cas tridimensionnel et fonction de Prandtl en
torsion.

9.7 Principe du minimum de l'énergie complé-
mentaire

Ce principe, encore appelé principe de variation des contraintes, est le sy-
métrique du principe de variation des déplacements. On peut l'établir de deux
manières.

1. Dans le principe à deux champs de Fraeijs de Veubeke, on assure à priori les
équations constitutives, ce qui mène à utiliser, comme dans le principe de
Hellinger-Reissner, la densité d'énergie complémentaire Φ(σ). On obtient
ainsi, après un changement de signe, la fonctionnelle

C(σ) =

∫
V

Φ(σ)dV −
∫
S1

njσjiūidS (9.45)
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stationnaire par rapport à tous les états de contrainte statiquement ad-
missibles, c'est-à-dire véri�ant l'équilibre intérieur et extérieur.

2. Dans le principe de Hellinger-Reissner, on suppose l'équilibre véri�é à
priori. La transformation suit la même voie que pour la déduction du
principe à deux champs de Fraeijs de Veubeke et donne également la fonc-
tionnelle (9.45).

Ce principe est résumé par le tableau suivant :

Principe de variation des contraintes
Variable Conditions essentielles Conditions naturelles
σij équilibre dans V , sur S1 et sur S2 Compatibilité

Si l'on utilise le principe de l'énergie complémentaire pour construire des so-
lutions approchées, les champs de contrainte utilisés doivent tous véri�er exac-
tement les conditions d'équilibre. La solution approchée ne véri�era la compati-
bilité que sous certaines formes globales. Il ne sera donc plus possible de dé�nir
des déplacements locaux et il faudra se satisfaire de certaines valeurs moyennes.

9.8 Note sur la forme faible de la compatibilité

Notons E l'espace des champs de tenseurs symétriques du second ordre sur
V , muni du produit scalaire

(ϕ,ψ) =

∫
V

ϕijψijdV (9.46)

Un champ de tenseurs compatible est par dé�nition de la forme

εij(u) =
1

2
(Diuj +Djui)

où ui est un champ de déplacements admissible, c'est-à-dire véri�ant{
‖ε(u)‖2 =

∫
V
εij(u)εij(u)dV <∞

ui = ūi sur S1

Une variation de tenseur compatible est de la forme

δεij = εij(δu)
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où δu est la di�érence de deux champs de déplacements admissibles, de telle
sorte que sur S1, on a

δui = 0

Les variations de tenseurs compatibles forment un sous-espace C0 de E. On
peut montrer que, muni du produit scalaire (9.46), ce sous-espace est complet
et donc, fermé dans E. On notera que si l'on connaît un champ de déplacements
particulier u0 tel que u0i = ūi sur S1, tout champ de déplacements admissible
est de la forme

u = u0 + ∆u

où ∆u est une variation admissible de déplacement.
Considérons à présent le complément orthogonal S0 de C0. Il est dé�ni par

la condition

σ ∈ S0 ⇔
∫
V

σijεijdV = 0 ∀ε ∈ C0

Ceci s'écrit explicitement∫
V

σij
1

2
(Diδuj +Djδui)dV = 0

ce qui signi�e que σ est un champ d'autocontrainte. Ainsi, S0 n'st autre que
l'ensemble des champs d'autocontrainte. Comme C0 est fermé, l'orthogonal de
S0 est C0.

Soit à présent un champ de tenseurs ϕij véri�ant∫
V

ϕijδσijdV −
∫
S1

njδσij ūidS = 0 (9.47)

pour tout champ d'autocontrainte δσij . Introduisant un champ de déplacements
u0 tel que u0i = ūi sur S1, on a∫
V

εij(u0)δσijdV =

∫
V

δσij
1

2
(Diu0j +Dju0i)dV

=

∫
S1

njδσiju0idS +

∫
S2

njδσiju0idS +

∫
V

u0iDjδσijdV

=

∫
S1

njδσiju0idS + 0 + 0

La condition (9.47) est donc équivalente à∫
V

δσij [ϕij − εij(u0)] dV = 0 ∀δσ
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ou
ϕij − εij(u0) ∈ C0

ce qui revient à dire qu'il existe une variation admissible de déplacement ∆u
telle que

ϕij = εij(u0) + εij(∆u)

ou encore
ϕij = εij(u0 + ∆u)

et ceci exprime précisément la compatibilité.

9.9 Exemple de solution approchée construite par
le calcul des variations

Pour illustrer la méthode variationnelle de construction de solutions appro-
chées, étudions la �exion des poutres en I (�g. 9.3). Nous ferons les hypothèses
suivantes :

1. Les semelles sont parfaitement �exibles dans le plan x0y, ce qui revient à
dire qu'elles ne résistent qu'à l'extension. On posera donc

σy = σz = τxy = τyz = τzx = 0 dans les semelles (9.48)

On supposera en outre le déplacement axial uniforme dans chacune des
semelles :

u = u±(x) (9.49)

l'indice (+) correspondant à la semelle inférieure (située en y > 0) et
l'indice (-), à l'autre semelle.

2. Dans l'âme, on admettra d'abord que l'état de contrainte est plan

σz = τxz = τyz = 0 (9.50)

On ajoutera les hypothèses cinématiques suivantes :{
u = U(x) + yα(x)
v = V (x)

(9.51)

La première représente une �exion à la Navier. La seconde, assez bien vé-
ri�ée si la poutre est raidie par des éléments transversaux non représentés
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Figure 9.3 � Poutre en I

ici, entraîne que les charges transversales, de densité linéique q(x), ont un
travail virtuel

δTq =

∫ `

0

q̄(x)δV (x)dx (9.52)

quel que soit leur point d'application sur la section de la poutre. C'est
pour cette raison que nous les avons représentées distribuées sur les deux
semelles.

3. La liaison entre l'âme et la semelle sera assurée par les équations de com-
patibilité

vsemelles = V (9.53)
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et

u+ = U +
h

2
α, u− = U − h

2
α (9.54)

Pour �xer les idées, nous considérerons une poutre console de longueur `. les
conditions d'encastrement sont

U(0) = 0, α(0) = 0, V (0) = 0 (9.55)

En x = `, la poutre est soumise à des e�orts longitudinaux p̄ et transversaux
t̄. Au vu des hypothèses relatives aux e�orts dans les semelles, on doit avoir
t̄ = 0 sur celles-ci. Par contre, ces charges sont compatibles avec les hypothèses
relatives à l'âme, et fournissent un travail virtuel

δTt =

∫
Ωâme

t̄δV (`)dΩ = T̄ δV (`) où T̄ =

∫
Ωâme

t̄dΩ (9.56)

T̄ étant l'e�ort tranchant imposé. Cette globalisation des e�orts résulte des
hypothèses cinématiques. Quant aux e�orts p̄, ils peuvent être répartis aussi
bien sur l'âme que sur les semelles. Leur travail virtuel vaut

δTp =

∫
Ω+

p̄

[
δU(`) +

h

2
δα(`)

]
dΩ +

∫
Ω−

p̄

[
δU(`)− h

2
δα(`)

]
dΩ

+

∫
Ωa

p̄ [δU(`) + yδα(`)] dΩ

= N̄δU(`) + M̄δα(`) (9.57)

avec

N̄ =
∫

Ω+
p̄dΩ +

∫
Ω−

p̄dΩ +
∫

Ωa
p̄dΩ (e�ort normal)

M̄ = h
2

∫
Ω+

p̄dΩ− h
2

∫
Ω−

p̄dΩ +
∫

Ωa
p̄ydΩ (moment)

}
(9.58)

La fonctionnelle du principe de Hellinger-Reissner s'écrit

R =

∫ `

0

{∫
Ωa

[
σx

(
dU

dx
+ y

dα

dx

)
+ τxy

(
α+

dV

dx

)
−
σ2
x + σ2

y − 2νσxσy

2E
−
τ2
xy

2G

]
dΩ

+

∫
Ω+

[
σx

(
dU

dx
+
h

2

dα

dx

)
− σ2

x

2E

]
dΩ +

∫
Ω−

[
σx

(
dU

dx
− h

2

dα

dx

)
− σ2

x

2E

]
dΩ

−q(x)V (x)} dx− N̄U(`)− M̄α(`)− T̄ V (`) (9.59)
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Par variation des di�érentes grandeurs qui interviennent dans cette fonction-
nelle, on peut obtenir les équations de la poutre.

1. Variation de σy : on obtient

σy − νσx
E

= 0

soit
σy = νσx (9.60)

2. Variation de σx : dans l'âme, on obtient

σx − νσy = E

(
dU

dx
+ y

dα

dx

)
ce qui, combiné avec (9.60), donne

σx =
E

1− ν2

(
dU

dx
+ y

dα

dx

)
(9.61)

Dans les semelles, on a

(σx)± = E

(
dU

dx
± h

2

dα

dx

)
(9.62)

3. Variation de U : ce déplacement ne dépendant que de x, il faut d'abord
intégrer sur la section, ce qui donne∫ `

0

[∫
Ω+

σxdΩ +

∫
Ω−

σxdΩ +

∫
Ωa

σxdΩ

]
dδU

dx
dx = N̄δU(`) = 0

ce qui fait apparaître le groupement

N =

∫
Ω+

σxdΩ +

∫
Ω−

σxdΩ +

∫
Ωa

σxdΩ (9.63)

qui s'identi�e à l'e�ort normal. Il vient donc

0 =

∫ `

0

N
dδU

dx
dx− N̄δU(`)

= [NδU ]
`
0 − N̄δU(`)−

∫ `

0

dN

dx
δU(x)dx



9.9. EXEMPLE DE SOLUTION APPROCHÉE 227

Tenant compte de la condition d'encastrement δU(0) = 0, on obtient{
dN
dx = 0 dans ]0, `[

N(`) = N̄
(9.64)

4. Variation de V : on obtient∫ `

0

{[∫
Ωa

τxydS

]
dδV

dx
− qδV

}
dx− T̄ δV (`) = 0

En dé�nissant l'e�ort tranchant

T =

∫
Ωa

τxydS (9.65)

on obtient

0 =

∫ `

0

(
T
dδV

dx
− qδV

)
dx− T̄ δV (`)

= [TδV ]
`
0 − T̄ δV (`)−

∫ `

0

(
dT

dx
+ q

)
δV dx

d'où, comme δV (0) = 0, les équations{
dT
dx + q = 0 dans ]0, `[
T (`) = T̄

(9.66)

5. Variation de α : on obtient ici∫ `

0

{[∫
Ω+

h

2
σxdΩ−

∫
Ω−

h

2
σxdΩ +

∫
Ωa

yσxdΩ

]
dδα

dx

+

[∫
Ωa

τxydΩ

]
δα

}
dx− M̄δα(`) = 0

Dé�nissant le moment

M =
h

2

∫
Ω+

σxdΩ− h

2

∫
Ω−

σxdΩ +

∫
Ωa

σxydΩ (9.67)

et tenant compte de la dé�nition (9.65), on obtient

0 =

∫ `

0

(
M
dδα

dx
+ Tδα

)
dx

= [Mδα]
`
0 − M̄δα(`)−

∫ `

0

(
dM

dx
− T

)
δαdx
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ce qui, comme δα(0) = 0, donne{
dM
dx = T dans ]0, `[

M(`) = M̄
(9.68)

6. Variation de τxy : il vient

τxy = G

(
α+

dV

dx

)
dans l'âme (9.69)

Comme on peut le voir, les contraintes étant libres de toute liaison, les équa-
tions de compatibilité (9.60), (9.61), 9.62) et (9.69) sont véri�ées localement.
Au contraire, les restrictions faites sur les déplacements mènent à des équa-
tions d'équilibre globales. Ceci était prévisible à partir du tableau résumant le
fonctionnement du principe de Hellinger-Reissner.

Par ailleurs, en combinant les équations ((9.60), (9.61), 9.62) et (9.69) aux
dé�nitions (9.63), (9.65) et (9.67) des résultantes, on peut obtenir des équations
constitutives globales. Ce seront, en notant b l'épaisseur de l'âme,

N = EAdU
dx avec A = Ω+ + Ω− + bh

1−ν2

T = GS
(
α+ dV

dx

)
avec S = bh

M = EI dαdx avec I = Ω+
h2

4 + Ω−
h2

4 + bh3

12(1−ν2)

(9.70)

On retrouve ici des calculs simpli�és assez courants dans la pratique, consistant,
d'une part, à utiliser la section de l'âme comme section de cisaillement et, d'autre
part, à négliger l'inertie propre des semelles. Quant au facteur (1−ν2), il provient
de l'hypothèse selon laquelle le déplacement vertical ne dépend pas de y.

9.10 Classi�cation des approches variationnelles

D'après le type d'hypothèses adoptées, on peut distinguer :
� les approches dont les hypothèses ne portent que sur les déplacements
(avec respect des conditions sur S1), que l'on appelle cinématiquement
admissibles (C.A.) ;

� les approches dont les hypothèses ne portent que sur les contraintes (avec
respect de l'équilibre dans V et sur S2), que l'on appelle statiquement
admissibles (S.A.) ;

� les approches dont les hypothèses portent à la fois sur les contraintes et
les déplacements, que l'on appelle mixtes.
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Les approches C.A. mènent à des équations d'équilibre approchées (globales),
tandis que les approches S.A. donnent des équations de compatibilité appro-
chées. Dans les approches mixtes, ni les équations d'équilibre, ni les équations
de compatibilité ne sont véri�ées localement.

Ainsi, la théorie de la section précédente est une approche mixte. Cependant,
si l'on considère que les hypothèses (9.48), (9.49) et (9.50) dé�nissent la notion
de poutre en I, il s'agit d'une théorie C.A. dans ce cadre. On trouvera dans les
exercices du présent chapitre une théorie S.A. dans le cadre des poutres, qui
mène à une véri�cation locale de l'équilibre, mais non de la compatibilité.

9.11 Analyse duale

Qui dit solution approchée dit erreur. Ne peut-on pas essayer de chi�rer cette
dernière ? C'est l'objet de l'analyse duale, consistant à e�ectuer, pour un même
problème, une analyse C.A et une analyse S.A., puis de les comparer.

9.11.1 Cas des relations constitutives linéaires

Nos commencerons par envisager le cas de relations constitutives linéaires,
qui est le plus simple et celui dont les conclusions sont les plus fortes. Le présent
mode d'exposé suit la méthode développée par l'auteur [17, 21, 20, 18].

Soit donc un problème élastique linéaire, dont la solution est caractérisée
par des déplacements u et des contraintes σ, obtenues par variation des fonc-
tionnelles {

E(u) =
∫
V
W (Du)dV −

∫
V
f̄iuidV −

∫
S2
t̄iuidS

C(σ) =
∫
V

Φ(σ)dV −
∫
S1
njσjiūidS

Par dé�nition de l'énergie complémentaire, on a∫
V

W (Du)dV +

∫
V

Φ(σ)dV =

∫
V

σij
1

2
(Diuj +Djui)dV

Or, en posant, dans le théorème des travaux virtuels,

δui = ui dans V ∪ S2 et δui = ūi sur S1

on obtient∫
V

σij
1

2
(Diuj +Djui)dV −

∫
V

f̄iuidS −
∫
S2

t̄iuidS −
∫
S1

njσjiūidS = 0
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c'est-à-dire
E(u) + C(σ) = 0 (9.71)

Pour un quelconque autre champ de déplacements C.A. ũ, on peut écrire
ũi = ui + ∆ui et, comme l'énergie totale est une fonction quadratique,

E(ũ) = E(u+ ∆u)

= E(u) + δE(u; ∆u) +
1

2
δ2E(u; ∆u)

= E(u) +
1

2
δ2E(u; ∆u) (9.72)

puisque le déplacement u réalise la stationnarité. On a d'ailleurs

δ2E(u; ∆u) =

∫
V

Cijklεij(∆u)εkl(∆u)dV ≥ 0 (9.73)

et cette grandeur est une mesure énergétique de l'erreur, dé�nie positive, que
l'on peut noter ‖∆u‖.

De la même façon, pour un quelconque autre champ de contraintes σ̃, on
peut écrire σ̃ = σ + ∆σ et on a comme ci-dessus

C(σ̃) = C(σ + ∆σ)

= C(σ) + δC(σ; ∆σ) +
1

2
δ2C(σ; ∆σ)

= C(σ) +
1

2
δ2C(σ; ∆σ) (9.74)

avec

δ2σ(σ; ∆σ) =

∫
V

C−1
ijkl∆σij∆σkldV ≥ 0 (9.75)

cette grandeur étant une mesure énergétique de l'erreur, dé�nie positive, que
l'on peut noter ‖∆σ‖. Additionnant les résultats (9.72) et (9.74), on obtient

E(ũ) + C(σ̃) = E(u) + C(σ) +
1

2
δ2E(u; ∆u) +

1

2
δ2C(σ; ∆σ) (9.76)

soit, en tenant compte de (9.71),

E(ũ) + C(σ̃) =
1

2

(
‖∆u‖2 + ‖∆σ‖2

)
(9.77)
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Cette formule sert de fondement à l'analyse duale de l'erreur : pour connaître la
somme des erreurs d'énergie, il su�t d'additionner les valeurs des deux fonc-
tionnelles E(ũ) et C(σ̃). On peut d'ailleurs développer certaines relations d'or-
thogonalité et, à partir de là, montrer que

√
2[E(ũ) + C(σ̃)] dé�nit une distance

entre les deux approximations, mais ces faits, bien qu'intéressants, ne nous ser-
viront pas.

Dans le cadre de méthodes numériques comme celle des éléments �nis, il
est utile de représenter la convergence d'approximations successives sur un dia-
gramme. A cette �n, dé�nissons l'énergie complémentaire prolongée C∗ par

C∗ =

{
−E(ũ) pour l'approche C.A.
C(σ̃) pour l'approche S.A.

(9.78)

On obtient alors, en fonction des paramètres de la discrétisation, des courbes de
convergence d'un des deux types représentés en �gure (9.4). La première version,

Figure 9.4 � Courbes de convergence

où la convergence est exprimée en termes du nombre de degrés de liberté ou de
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l'inverse de la taille des éléments �nis, est la plus courante. La seconde, dont
l'abscisse est l'inverse du nombre de degrés de liberté ou la taille d'une maille,
est par certains côtés préférable, car la solution exacte est alors la valeur à
l'origine de C∗, plus facile à estimer que la valeur asymptotique de la première
représentation.

9.11.2 Les cas particuliers de Fraeijs de Veubeke

La formule (9.77) admet deux cas particuliers, obtenus antérieurement par
Fraeijs de Veubeke [30, 32, 35]. Pour abréger les notations, nous écrirons{
U(u) =

∫
V
W (Du)dV , P(u) = −

∫
V
f̄iuidV −

∫
S2
t̄iuidS

Ψ(σ) =
∫
V

Φ(σ)dV , Q(σ) = −
∫
S1
njσjiūidS

(9.79)

1. On suppose que sur S1, on a ūi = 0. On suppose en outre que le champ
de déplacement ũ a été obtenu par une technique de Rayleigh-Ritz, c'est-
à-dire que

δU(ũ; δũ) + δP(δũ) = 0

pour tout δũ de l'espace des déplacements approchés. Alors, la solution
exacte u et la solution approchée ũ sont des variations admissibles de
déplacement et on a

δU(u;u) = 2U(u) = −P(u)

et de même
δU(ũ; ũ) = 2U(ũ) = −P(ũ)

ce qui entraîne
E(u) = −U(u) et E(ũ) = −U(ũ)

et
U(ũ) ≤ U(u)

D'autre part,
C(σ) = Ψ(σ) ≤ C(σ̃) = Ψ(σ̃)

On a alors
U(ũ) ≤ U(u) = Ψ(σ) ≤ Ψ(σ̃) (9.80)

et
E(ũ) + C(σ̃) = Ψ(σ̃)− U(ũ) (9.81)
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2. On suppose que f̄i = 0, t̄i = 0. On suppose en outre que le champ de
contraintes σ̃ a été obtenu par une technique de Rayleigh-Ritz, c'est-à-dire
que

δΨ(σ̃, δσ̃) + δQ(δσ̃) = 0

pour tout δσ̃ de l'espace des contraintes approchées. Alors, la solution
exacte σ et la solution approchée σ̃ sont des variations admissibles de
contrainte et on a

δΨ(σ;σ) = 2Ψ(σ) = −Q(σ)

et
δΨ(σ̃; σ̃) = 2Ψ(σ̃) = −Q(σ̃)

ce qui entraîne
C(σ) = −Ψ(σ) et C(σ̃) = −Ψ(σ̃)

Par ailleurs,
E(u) = U(u) ≤ E(ũ) = U(ũ)

On a donc
Ψ(σ̃) ≤ Ψ(σ) = U(u) ≤ U(ũ) (9.82)

et
E(ũ) + C(σ̃) = U(ũ)−Ψ(σ̃) (9.83)

9.11.3 Cas de relations constitutives non linéaires

On peut se poser la question de ce qu'il subsiste de l'analyse duale lorsque
les relations constitutives sont non linéaires. En examinant la démonstration du
cas linéaire, on remarque que tout repose sur le fait que la variation seconde de
l'énergie totale et de l'énergie complémentaire totale est positive. En fait, cela
revient à dire que W (ε) et que Φ(σ) sont convexes.

Rappelons qu'une fonction W (ε) est convexe si pour tout couple(ε1, ε2), on
a systématiquement, pour 0 ≤ λ ≤ 1, la relation

W
(
(1− λ)ε1 + λε2

)
≤ (1− λ)W (ε1) + λW (ε2) (9.84)

On notera d'abord le théorème suivant :

Théorème 9 Si W (ε) est convexe, il en est de même de Φ(σ).
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En e�et, partant de la dé�nition de Φ(σ),

Φ(σ) = max
ε

(σijεij −W (ε))

il est clair que pour un choix quelconque ε∗ de ε, on a

Φ(σ) ≥ σijε∗ij −W (ε∗)

Choisissons ε∗ correspondant par les équations constitutives au champ de contrainte
(1− λ)σ1 + λσ2. On a donc

Φ
(
(1− λ)σ1 + λσ2

)
=
(
(1− λ)σ1

ij + λσ2
ij

)
ε∗ij −W (ε∗) (9.85)

Mais

Φ(σ1) ≥ σ1
ijε
∗
ij −W (ε∗)

Φ(σ2) ≥ σ2
ijε
∗
ij −W (ε∗)

ce qui entraîne

(1− λ)Φ(σ1) + λΦ(σ2) ≥
(
(1− λ)σ1

ij + λσ2
ij

)
ε∗ij −W (ε∗) (9.86)

La comparaison de (9.85) et (9.86) donne

Φ
(
(1− λ)σ1 + λσ2

)
≤ (1− λ)Φ(σ1) + λΦ(σ2)

Remarque - La réciproque est vraie, car on a également

W (ε) = max
σ

(σijεij − Φ(σ))

En outre, il est aisé de montrer le

Théorème 10 Si W (ε) est convexe et di�érentiable, on a

W (ε+ ∆ε) ≥W (ε) +

(
∂W

∂εij

)
ε

∆εij

En e�et, pour λ ∈ [0, 1], on a

W (ε+ λ∆ε) ≤ (1− λ)W (ε) + λW (ε+ ∆ε)

≤ W (ε) + λ[W (ε+ ∆ε)−W (ε)]
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si bien que
W (ε+ λδε)−W (ε)

λ
≤W (ε+ ∆ε)−W (ε)

Or,

lim
λ→0

W (ε+ λδε)−W (ε)

λ
=

(
∂W

∂εij

)
ε

∆εij

Revenons à l'analyse duale. On a

E(u+ ∆u)− E(u) =

∫
V

[W (ε+ ∆ε)−W (ε)] + P(∆u)

Le fait que E soit stationnaire en u s'écrit

δE(u; ∆u) =

∫
V

(
∂W

∂εij

)
ε

∆εij + P(∆u) = 0

Soustrayant ces deux relations, on obtient

E(u+ ∆u)− E(u) =

∫
V

[W (ε+ ∆ε)−W (ε)−
(
∂W

∂εij

)
ε

∆εij ]dV ≥ 0

en vertu du théorème 10. De la même façon, on obtient aisément

C(σ + ∆σ) ≥ C(σ)

et du reste, la relation (9.71) subsiste, car elle ne fait appel qu'au théorème des
travaux virtuels et à la dé�nition de Φ(σ) par transformation de Legendre.

Malheureusement, cela ne su�t pas pour obtenir une idée de la distance
entre les solutions approchées et la solution exacte. Il faut pour cela faire une
hypothèse plus restrictive, à savoir, la convexité forte, qui consiste à supposer
qu'il existe deux constantes positives α et β telles que W (ε+ ∆ε) ≥ W (ε) +

(
∂W
∂εij

)
ε

∆εij + α|∆ε|2

Φ(σ + ∆σ) ≥ Φ(σ) +
(
∂Φ
∂σij

)
σ

∆σij + β|∆σ|2
(9.87)

Ces conditions sont remplies si W et Φ sont de classe C2 et que les valeurs
propres (v.p.) de leurs matrices hessiennes respectives

Hijkl =
∂2W

∂εij∂εkl
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et

H−1
ijkl =

∂2Φ

∂σij∂σkl

véri�ent

inf
x∈V

min
ε

[v.p.(H)] = α > 0

inf
x∈V

min
σ

[v.p.(H−1)] = β > 0

On obtient alors une forme a�aiblie de l'analyse duale, à savoir,

α‖ε(∆u)‖20 ≤ E(ũ)− E(u)

β‖∆σ‖20 ≤ C(σ̃)− C(σ)

où ‖.‖0 �gure la norme dans L2. En d'autres termes, la di�érence d'énergie
totale ou d'énergie complémentaire totale majore l'erreur en norme L2 des dé-
formations ou des contraintes

9.12 Bornes des raideurs et coe�cients d'in�uence
directs

Figure 9.5 � Bornes des raideurs

Les relations (9.80) et (9.82) impliquent également la possibilité d'encadrer
les coe�cients directs d'in�uence ou de raideur [79, 78, 80, 95]. Soit d'abord un
système de charges dont l'intensité est contrôlée par un paramètre P , appelé
charge généralisée (�g. 9.5). Sous ce système de charges, la structure subira
des déplacements conduisant à un travail T . On appelle déplacement généralisé
conjugué à la charge généralisée P le rapport

U =
T
P

=
2U
P

=
2Ψ

P
(9.88)



9.12. BORNES DES RAIDEURS 237

Le coe�cient d'in�uence direct de la charge P est alors dé�ni par

F =
U

P
=
T
P 2

(9.89)

Pour le déterminer, on peut utiliser un modèle C.A. : on aura alors, puisque
ūi = 0 sur S1,

FCA =
T
P 2

=
2UCA
P 2

Dans un modèle S.A., on dé�nira FSA par

FSA =
2ΨSA

P 2

Il résulte alors de (9.80) que

FCA ≤ F ≤ FSA (9.90)

De la même façon, supposons que l'on impose à la structure un système de
déplacements de frontière contrôlés par un paramètre U , appelé déplacement
généralisé. Si T est le travail de ces déplacements, la force généralisée conjuguée
est par dé�nition

P =
T
U

=
2U
U

=
2Ψ

U
(9.91)

et la raideur directe,

K =
P

U
=
T
U2

(9.92)

Dans le cadre d'un modèle S.A., on calculera

KSA = −QSA
U2

=
2ΨSA

U2

et dans le cadre d'un modèle C.A.,

KCA =
2U
U2

Il résulte alors de (9.82) que

KSA ≤ K ≤ KCA (9.93)

Cette possibilité d'encadrer la vraie valeur des raideurs ou des coe�cients
d'in�uence rend de nombreux services en pratique.
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9.13 Exercices

Exercice 32 Montrer qu'il est possible d'imaginer des relations constitutives
homogènes de degré 1 mais non linéaires.

Suggestion - Pour

W =
√
ε4

11 + ε4
22 + ε4

33 + γ4
12 + γ4

23 + γ4
31

(homogène de degré 2), on a

σ11 =
2ε3

11

W
, σ22 =

2ε3
22

W
, σ33 =

2ε3
33

W

τ12 =
2γ3

12

W
, τ23 =

2γ3
23

W
, τ31 =

2γ3
31

W

et ces relations sont visiblement homogènes de degré 1 :

σ11(αε) =
2α3ε3

11

α2W
= α

2ε3
11

W
= ασ11(ε), etc.

On véri�e que

σ11ε11 + σ22ε22 + σ3ε33 + τ12γ12 + τ23γ23 + τ31γ31

=
2(ε4

11 + ε4
22 + ε4

33 + γ4
12 + γ4

23 + γ4
31

W
= 2W

Exercice 33 Montrer que si les relations constitutives sont invertibles,

1. W (ε) ne peut être homogène de degré 1.

2. Φ(σ) ne peut être constante.

Solution

1. Si W (ε) est homogène de degré 1, on a, par le théorème d'Euler sur les
fonctions homogènes,

W (ε) =
∂W

∂εij
εij

ce qui entraîne

dW =
∂W

∂εij
dεij +

∂2W

∂εij∂εkl
dεkl



9.13. EXERCICES 239

Comme, par ailleurs,

dW =
∂W

∂εij
dεij

on obtient
∂2W

∂εij∂εkl
εijdεkl ∀dεkl

ce qui implique
∂2W

∂εij∂εkl
εij = 0

en contradiction avec l'hypothèse.

2. Si Φ(σ) = cte, on a

εij =
∂Φ

∂σij
= 0

donc la relation entre σ et ε n'est pas bijective.

Exercice 34 Étudier la poutre en I décrite en section 9.9, pour q(x) ≡ 0 , en
faisant les hypothèses suivantes :

H1. Les semelles sont parfaitement souples en �exion,

σy = σz = τxy = τyz = τzx = 0

et leur déplacement est uniforme :

u = u±(x)

H2. L'âme ne résiste qu'au cisaillement :

σx = σy = σz = τyz = τxz = 0

a) Quelles distributions de charges d'extrémité p̄ et t̄ peut-elle admettre dans
ces hypothèses ?

b) Écrire les équations de la poutre.

c) Dans le cadre des hypothèses H1, la solution de la section 9.9 est C.A., et
celle de cet exercice est S.A.. Que peut-on en déduire pour les coe�cients
d'in�uence relatifs à l'e�ort tranchant d'extrémité ? Véri�er que c'est bien
le cas.

d) Étudier la compatibilité des déplacements de l'âme et des déplacements de
la semelle.
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Solution

a) Dans l'âme, les équations d'équilibre s'écrivent

0 =
∂σx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

=
∂τxy
∂y

0 =
∂τxy
∂x

+
∂σy
∂y

+
∂τyz
∂z

=
∂τxy
∂x

0 =
∂τxz
∂x

+
∂τyz
∂y

+
∂σz
∂z

= 0

La contrainte τxy est donc une constante, que nous noterons τ . Dès lors,
à l'extrémité,
� les charges p̄ doivent être concentrées sur les semelles ;
� les charges t̄ doivent être uniformément réparties sur l'âme seule.

b) L'énergie complémentaire de l'âme s'écrit∫ `

0

τ2

2G
Ωadx =

τ2

2G
Ωa` (9.94)

et la fonctionnelle de Hellinger-Reissner pour l'âme a pour expression

Ra =

∫ `

0

[∫
Ωa

τ

(
∂u

∂y
+
∂v

∂x

)
dΩa

]
dx− τ2

2G
Ωa` (9.95)

Pour les semelles, on a

Rs =

∫ `

0

[∫
Ω+

(
σ+

du+

dx
−
σ2

+

2E

)
dΩ +

∫
Ω−

(
σ−

du−
dx
−
σ2
−

2E

)
dΩ

]
dx

(9.96)
En�n, les charges ont pour contribution

Rc = P = −u+(`)

∫
Ω+

p̄dΩ− u−(`)

∫
Ω−

p̄dΩ− t̄
∫

Ωa

v(`)dΩ

= −N̄+u+(`)− N̄−u−(`)− T̄ 1

Ωa

∫
Ωa

v(`)dΩ (9.97)

où l'on a posé

N̄+ =

∫
Ω+

p̄dΩ, N̄− =

∫
Ω−

p̄dΩ (9.98)
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et
T̄ = t̄Ωa (9.99)

La fonctionnelle complète est

R = Ra +Rs +Rc (9.100)

Varions les di�érentes grandeurs :

(i) Variation de τ : on obtient

δτ

∫ `

0

[∫
Ωa

(
∂u

∂y
+
∂v

∂x

)
dΩa

]
dx− τ

G
Ωa`δτ = 0

soit

τ =
G

Ωa`

∫ `

0

[∫
Ωa

(
∂u

∂y
+
∂v

∂x

)
dΩa

]
dx (9.101)

(ii) Variation de σ± : il vient∫ `

0

[∫
Ω±

δσ±

(
du±
dx
− σ±

E

)
dΩ

]
dx = 0

ce qui donne

σ±(x) = E
du±
dx

(9.102)

(iii) Variation de u : Dans l'âme, δu est arbitraire ; à la jonction de
l'âme et des semelles, on a

δu± = δu(x,±h
2

)

Il en découle∫ `

0

[∫
Ωa

τ
∂δu

∂y
dΩ

]
dx+

∫ `

0

(∫
Ω+

σ+dΩ+

)
d

dx
δu(x,

h

2
)dx

+

∫ `

0

(∫
Ω−

σ−dΩ−

)
d

dx
δu(x,−h

2
)dx− N̄+δu+(`)− N̄−δu−(`) = 0
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Posant

N+(x) =

∫
Ω+

σ+(x)dΩ, N−(x) =

∫
Ω−

σ−(x)dΩ (9.103)

on obtient, comme τ est constant,∫ `

0

[
bτδu(x,

h

2
)− bτδu(x,−h

2
)− dN+

dx
δu(x,

h

2
)− dN−

dx
δu(x,−h

2
)

]
dx

+ [N+(`)− N̄+]δu(`,
h

2
) + [N−(`)− N̄−]δu(`,−h

2
) = 0

On en déduit les conditions d'extrémité

N+(`) = N̄+, N−(`) = N̄− (9.104)

et les conditions de transition âme-semelles

dN+

dx
= bτ,

dN−
dx

= −bτ (9.105)

(iv) Variation de v : on obtient

∂τ

∂x
= 0, τ(`) = q = τ (9.106)

Figure 9.6 � Poutre en I à âmes inégales

Il est intéressant de ramener ces équations à la forme classique des poutres.
Notons que le centre de gravité de la section est placé du côté de la semelle
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la plus large, avec un rapport de segments Ω+/Ω− (�g. 9.6). Nous poserons
donc

N(x) =N+(x) +N−(x)

N̄ =N̄+ + N̄−

M(x) =
h

Ω+ + Ω−
(Ω−N+(x)− Ω+N−(x))

M̄ =
h

Ω+ + Ω−

(
Ω−N̄+ − Ω+N̄−

)
T (x) =τbh = T̄ (9.107)

Il vient alors

dN

dx
=
dN+

dx
+
dN−
dx

= 0, N(x) =cte = N̄

dM

dx
=

h

Ω+ + Ω−

(
Ω−

dN+

dx
− Ω+

dN−
dx

)
= bhτ = T, M(`) =M̄

dT

dx
=0, T (x) = T̄ (9.108)

On en déduit directement

M(x) = M̄ − Tx

et comme

N(x) +
Ω+ + Ω−

Ω+h
M(x) = N+(x) +

Ω−
Ω+

N+(x)

on a

N+(x) =
1

1 + Ω−
Ω+

(
N(x) +

Ω+ + Ω−
Ω+h

M(x)

)
=

Ω+

Ω+ + Ω−
N(x) +

1

h
M(x) (9.109)

et, de même,

N−(x) =
Ω−

Ω+ + Ω−
N(x)− 1

h
M(x)
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On peut également établir les équations constitutives globales. On a d'abord

N+ = EΩ+
du+

dx
, N− = EΩ−

du−
dx

puis

N = E

(
Ω+

du+

dx
+ Ω−

du−
dx

)
= E(Ω+ + Ω−)

dû

dx
(9.110)

avec

û =
Ω+

Ω+ + Ω−
u+ +

Ω−
Ω+ + Ω−

u−

Pour le moment de �exion,

M =
hE

Ω+ + Ω−

(
Ω−Ω+

du+

dx
− Ω+Ω−

du−
dx

)
=

EΩ+Ω−h

Ω+ + Ω−

(
du+

dx
− du−

dx

)
= EÎ

dα

dx
(9.111)

avec

Î = Ω+

(
hΩ−

Ω+ + Ω−

)2

+ Ω−

(
hΩ+

Ω+ + Ω−

)2

=
h2Ω+Ω−
Ω+ + Ω−

(9.112)

et
α =

u+ − u−
h

(9.113)

En�n, pour l'e�ort tranchant,

T = G

∫
Ωa

(
∂u

∂y
+
∂v

∂x

)
dΩa

= G

[
b(u+ − u−) +

∂

∂x

∫
Ωa

vdΩa

]
= Gbh

(
α+

dv̂

dx

)
(9.114)

avec

v̂ =
1

bh

∫
Ωa

vdΩ (9.115)
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c) Dans la théorie de la section 9.9, pour une charge en bout, on a (en posant
Ω+ = Ω− = Ωs)

dT

dx
= 0⇒ d2M

dx2
= 0, M = −T̄ (`− x)

α =
1

EI

∫
Mdx = − T̄

EI

(
`x− x2

2

)
dV

dx
=

T̄

GS
− α =

T̄

GS
+

T̄

EI

(
`x− x2

2

)
V = T̄

(
x

GS
+

`x2

2EI
− x3

6EI

)
et, à l'extrémité,

V (`) = T̄

(
`

GS
+

`3

3EI

)
Le travail vaut donc

T = T̄ V (`) = T̄ 2

(
`

GS
+

`3

EI

)
d'où

FCA =
`

GS
+

`3

EI

Dans la présente théorie, les mêmes équations s'appliquent, et on a

FSA =
`

GŜ
+

`3

EÎ

Mais {
I = Ωs

h2

2 + bh3

12(1−ν2) , Î = Ωs
h2

2 ≤ I
Ŝ = S = bh

On a donc
FCA ≤ Fréel ≤ FSA

d) Nous nous limiterons au cas des semelles identiques. On a, d'une part,

du±
dx

=
N±
EΩ±

=
1

EΩs

[
N̄ ± 2

h
(M̄ − T̄ x)

]
=

1

EΩs
[N̄ ∓ T̄ `]
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et, d'autre part,

τ = G

(
∂u

∂y
+
∂v

∂x

)
ce qui entraîne

∂u

∂y
=
τ

G
− ∂v

∂x

et ∫
Ωa

∂u

∂y
dy =

τbh

G
− Ŝ ∂v̂

dx

soit [
u(x,

h

2
− u(x,−h

2

]
b =

τbh

G
− Ŝ ∂v̂

∂x

=
T̄

G
− Ŝ

[
T̄

GŜ
+

T̄

EÎ

(
`x− x2

2

)]
= − T̄ Ŝ

EÎ

(
`x− x2

2

)
à comparer à

b[u+(x)− u−(x)] = − 2b

EΩs
T̄ `x

On constate que ces déplacements sont di�érents : la compatibilité locale
est violée, du fait des restrictions sur les contraintes.

Figure 9.7 � Poutre à section symétrique par rapport au plan de �exion
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Exercice 35 Établir une théorie statiquement admissible de la �exion des pou-
tres ayant le plan de �exion comme plan de symétrie (�g. 9.7), en faisant les
hypothèses suivantes :

σz =
y

I
M(z), σx = σy = τxy = 0

τyz =
1

I
A(y, z)

τxz = τyz
x

b

db

dy

où M est le moment de �exion, I l'inertie de la section (
∫

Ω
y2dΩ), et b(y) la

largeur de la section selon x .

1. Montrer que ce système d'hypothèses garantit l'équilibre sur le manteau de
la poutre.

2. Écrire le principe de Hellinger-Reissner dans le cadre des hypothèses ci-
dessus, pour une poutre console chargée en bout.

3. Étudier comment est véri�ée la compatibilité.

4. Déterminer la fonction A(y, z) pour que l'équilibre interne soit réalisé.

5. Transformer le principe variationnel en tenant compte de la forme obtenue
de A(y, z), de manière à obtenir les équations globales de la poutre.

Solution

1. Appelant C+ la partie du contour de la section située en x > 0 et C− l'autre
partie, la normale sur C± a ses composantes proportionnelles à (1,∓ 1

2
db
dy )

(�g. 9.8). En vertu des hypothèses, sur le manteau, le � vecteur �τ =
(τxz, τyz) vaut

τ = (±1

2

db

dy
τyz, τyz)

donc

τ · n = k(±1

2

db

dy
τyz ∓

1

2

db

dy
τyz) = 0

2. On a

R =

∫ `

0

dz

∫
Ω

{
My

I

∂w

∂z
+
A

I

[(
∂w

∂y
+
∂v

∂z

)
+
x

b

db

dy

(
∂w

∂x
+
∂u

∂z

)]
−M

2

2EI
− A2

2GI2

[
1 +

x2

b2

(
db

dy

)2
]}

dΩ + P (9.116)



248 CHAPITRE 9. PRINCIPES VARIATIONNELS

Figure 9.8 � Normale au manteau

Pour P, on considère des charges en bout :

P = −
∫

Ω

[p̄w(`)− q̄xu(`)− q̄yv(`)]dΩ

3. a) En variant M , on obtient

δM

(
1

I

∫
Ω

y
∂w

∂z
dΩ− M

EI

)
= 0

soit
dα

dz
=
M

EI
en introduisant la rotation moyenne

α =
1

I

∫
Ω

ywdΩ

b) En variant A, on obtient

1

I

∫ b/2

−b/2

[(
∂w

∂y
+
∂v

∂z

)
+
x

b

db

dy

(
∂w

∂x
+
∂u

∂z

)]
dx

− A

GI2

∫ b/2

−b/2

[
1 +

x2

b2

(
db

dy

)2
]
dx = 0 (9.117)

On a immédiatement∫ b/2

−b/2

[
1 +

x2

b2

(
db

dy

)2
]
dx = b

[
1 +

1

12

(
db

dy

)2
]
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L'intégrale contenant les déplacements peut être transformée comme suit.
On a d'abord∫ b/2

−b/2

(
∂v

∂z
+
x

b

db

dy

∂u

∂z

)
dx =

∂

∂z

∫ b/2

−b/2

(
v +

x

b

db

dy
u

)
dx = b

∂v̂

∂z

en posant

v̂ =
1

b

∫ b/2

−b/2

(
v +

x

b

db

dy
u

)
dx (déplacement vertical moyen)

Passons à présent aux termes contenant w, qui s'écrivent∫ b/2

−b/2

(
∂w

∂y
+
x

b

db

dy

∂w

∂x

)
dx

Dans le but de faire également apparaître des moyennes, on notera que

∂

∂y

{
1

b

∫ b/2

−b/2
wdx

}
= − 1

b2
db

dy

∫ b/2

−b/2
wdx+

1

b

∂

∂y

∫ b/2

−b/2
wdx (9.118)

Or, d'une part,

1

b

∂

∂y

∫ b/2

−b/2
wdx =

1

b

1

2

db

dy

[
w

(
b

2

)
+ w

(
− b

2

)]
+

1

b

∫ b/2

−b/2

∂w

∂y
dy (9.119)

et, d'autre part,

− 1

b2
db

dy

∫ b/2

−b/2
wdx = − 1

b2
db

dy
[xw]

b/2
−b/2 +

1

b2
db

dy

∫ b/2

−b/2
x
∂w

∂x
dx

= −1

b

1

2

db

dy

[
w

(
b

2

)
+ w

(
− b

2

)]
+

1

b

∫ b/2

−b/2

x

b

db

dy

∂w

∂x
dx (9.120)

Rassemblant les résultats (9.118), (9.119) et (9.120), on obtient donc sim-
plement∫ b/2

−b/2

(
∂w

∂y
+
x

b

db

dy

∂w

∂x

)
dx = b

∂

∂y

{
1

b

∫ b/2

−b/2
wdx

}
= b

∂ŵ

∂x
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en posant

ŵ =
1

b

∫ b/2

−b/2
wdx (déplacement axial moyen d'un segment y=cte)

Cela étant, l'équation de compatibilité cherchée est

A =
GI

1 + 1
12

(
db
dy

)2

(
∂ŵ

∂y
+
∂v̂

∂z

)

Il s'agit d'une équation globalisée par segments y = cte, ce qui est logique,
puisque A est constante sur un tel segment.

4. Les équations d'équilibre s'obtiennent en variant les déplacements.
a) La variation de u donne

−1

I

x

b

db

dy

dA

dz
= 0 ⇒ dA

dZ
= 0

1

I

x

b

db

dy
A(y, `) = q̄x

La forme de q̂x doit donc être bien dé�nie pour s'accorder au champ inté-
rieur.
b) Variant v, on obtient −1

I

dA

dz
= 0 ⇒ dA

dz
= 0

1

I
A(y, `) = q̄y

Également, q̄y doit avoir une forme bien dé�nie.
c) Venons-en à la variation de w. Il vient, dans Ω,

−y
I

dM

dz
− 1

I

∂A

∂y
− 1

Ib

db

dy
A = 0

et, sur le contour,
A

I

(
ny +

x

b

db

dy
nx

)
= 0

Cette dernière relation est une identité. La précédente s'écrit

∂A

∂y
+

1

b

db

dy
A = −y dM

dz
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Pour dM/dz = 0, cette équation se réduit à

∂A
∂y

A
= −

db
dy

b

et a pour solution générale

A1(y, z) =
B(z)

b

Cherchons donc une solution particulière de l'équation complète sous la
forme

A2(y, z) =
C(y, z)

b

Il vient
1

b

∂C

∂y
− 1

b2
db

dy
C +

1

b2
db

dy
C = −y dM

dz

soit
∂C

∂y
= −dM

dz
by

Comme solution particulière, on peut adopter

C(y, z) =
dM

dz
S(y)

avec

S(y) =

∫ h2

y

b(Y )Y dY

Il s'agit du moment statique de la partie de la section située au-dessus de
y. Rappelons que

S(−h1) =

∫ h2

−h1

b(y)ydy = 0

dès lors que l'origine des axes est située au centre de gravité de la section.
La solution générale de l'équation complète est donc

A(y, z) =
B(z)

b
+
dM

dz

S(y)

b

On détermine B(z) en examinant les points y = −h1 et y = h2. Trois cas
sont possibles :
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Figure 9.9 � Section avec méplat

Figure 9.10 � Section régulière

Figure 9.11 � Section à sommet anguleux

� Premier cas : le section y présente un méplat : b(h2) 6= 0, par exemple
(�g. 9.9). Alors, sur ce méplat, on a la condition τyz = 0, ce qui entraîne

0 = A(h2, z) =
B(z)

b(h2)
+
dM

dz
· 0⇒ B(z) = 0

La même conclusion vaut si le méplat est situé en y = −h1, car S(−h1) =
0.

� Deuxième cas : la section coupe l'axe de y en lui étant perpendiculaire
(�g 9.10). Alors, τyz = 0 en ce point (h2, pour �xer les idées). On a

0 = lim
y→h2

(
B(z)

b(y)
+ S(y)

dM

dz

)
⇒ lim

y→h2

B(z)

b(y)
= 0

ce qui n'est possible que si B(z) = 0.
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� Troisième cas : la section coupe l'axe de y en faisant avec lui un angle
θ, avec 0 < θ < π (�g 9.11). Alors, en supposant que cela se passe en
y = h2, posons ξ = h2 − y. Il vient

b(h2 − ξ) = ξ tg θ +O(ξ2)

et

S(h2 − ξ) =

∫ h2

h2−ξ
yb(y)dy

=

∫ 0

−ξ
(h2 − Ξ)

(
Ξ tg θ +O(Ξ2)

)
dΞ

= h2
ξ2

2
tg θ +O(ξ3)

donc S
b → 0 pour ξ → 0 et comme b → 0, il faudra que B(z) = 0 pour

que A(y, z) reste �ni.
En résumé, dans les trois cas ci-dessus, on a B = 0 et

A(y, z) =
dM

dz

S(y)

b

Les contraintes de cisaillement ont donc la forme dé�nitive suivante :

τyz =
dM

dz

S(y)

Ib

τxz =
dM

dz

S(y)

Ib

x

b

db

dy

5. On notera que∫
Ω

S

Ib

[(
∂w

∂y
+
∂v

∂z

)
+
x

b

db

dy

(
∂w

∂x
+
∂u

∂z

)]
dΩ

=

∫ h2

−h1

S

I

{
1

b

∫ b/2

−b/2

[(
∂w

∂y
+
∂v

∂z

)
+
x

b

db

dy

(
∂w

∂x
+
∂u

∂z

)]
dx

}
dy

=

∫ h2

−h1

S

I

(
∂ŵ

∂y
+
∂v̂

∂z

)
dy

comme nous l'avons vu en 3). On peut encore écrire∫ h2

−h1

S

I

∂v̂

∂z
dy =

dV

dz
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avec

V =

∫ h2

−h1

S

I
v̂dy =

∫
Ω

S

Ib

(
v +

x

b

db

dy
u

)
dΩ

De plus,

∫ h2

−h1

S

I

∂ŵ

∂y
dy =

[
S

I
ŵ

]h2

−h1

−
∫ h2

−h1

ŵ

I

dS

dy
dy

=

∫ h2

−h1

ŵ

I
ybdy

=
1

I

∫
Ω

wydy = α

On a donc ∫ h2

−h1

S

I

(
∂ŵ

∂y
+
∂v̂

∂z

)
dy = α+

dV

dz

Ceci permet d'écrire le principe variationnel, en posant

A =
TS

b

sous la forme

R =

∫ `

0

[
M
dα

dz
+ T

(
α+

dV

dz

)
− M2

2EI
− T 2

2GΩ∗

]
dx− M̄α(`)− T̄ V (`)

où l'on a posé

1

Ω∗
=

∫
Ω

S2

I2b2

[
1 +

x2

b2

(
db

dy

)2
]
dΩ

soit

Ω∗ =
I2∫

Ω
S2

b

[
1 + x2

b2

(
db
dy

)2
]
dΩ

=
I2∫ h2

−h1

S2

b

[
1 + 1

12

(
db
dy

)2
]
dy
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C'est la section réduite de cisaillement. Les équations globales sont

dM

dz
= T, M(`) = M̄

dT

dz
= 0, T (`) = T̄

M = EI
dα

dz

T = GΩ∗
(
α+

dV

dz

)

Exercice 36 Étudier la même poutre que ci-dessus, en posant

w = yα(z)
u = 0
v = v(z)
σx = 0
σy = 0
τxy = 0

Comparer aux résultats de l'exercice précédent.

Solution - Le principe de Hellinger-Reissner s'écrit ici

∫ `

0

∫
Ω

[
σzyα

′(z) + τyz

(
α+

dv

dz

)
− σ2

z

2E
−
τ2
yz

2G

]
dΩdz

−
∫

Ω

[pyα(`) + qyv(`)] dΩ stat.

Variant σz on obtient

σz = Eyα′(z)

La variation de τyz donne

τyz = G

(
α+

dv

dz

)



256 CHAPITRE 9. PRINCIPES VARIATIONNELS

En variant α, on obtient
− d

dz

∫
Ω

σzydΩ +

∫
Ω

τyzdΩ = 0[∫
Ω

σzydΩ

]
z=`

=

∫
Ω

pydΩ

Ceci mène à dé�nir
� le moment M =

∫
Ω
yσzdΩ

� l'e�ort tranchant T = τyzdΩ
� le moment d'extrémité M̄ =

∫
Ω
pydΩ

en fonction desquels ces équations s'écrivent{
dM

dx
= T

M(`) = M̄

En variant v, on obtient
d

dz

∫
Ω

τyzdΩ =
dT

dz
= 0

T (`) = T̄ =
∫

Ω
qydΩ

On peut réécrire ces équations en termes des résultantes. De simples intégrations
donnent

M =

∫
Ω

yσzdΩ = EI
dα

dz

T =

∫
Ω

τyzdΩ = GΩ

(
α+

dv

dz

)
et

σz =
M

I
y, τyz =

T

GΩ

d'où la forme globale de la fonctionnelle de Hellinger-Reissner :∫ `

0

[
M
dα

dz
+ T

(
α+

dv

dz

)
− M2

2EI
− T 2

2GΩ

]
− M̄α(`− T̄ v(`)

Par rapport à la solution de l'exercice précédent, qui est S.A., celle-ci est C.A.
dans le cadre des hypothèses de poutre σx = σy = τxy = 0. La seule di�érence
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�nale est la présence de Ω à la place de Ω∗. La théorie des bornes nous permet
d'a�rmer que

Ω∗exercice précédent ≤ Ω∗réel ≤ Ω

(ce qui prouve en particulier que les sections de cisaillement sont toujours infé-
rieures aux sections).
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Chapitre 10

Élasticité plane

10.1 État plan de contrainte

Figure 10.1 � Etat plan de contrainte

Considérons (�g. 10.1) une plaque d'épaisseur t, sollicitée dans son plan et
ayant ses surfaces x3 = ±t/2 libres. On aura donc

σ33 = τα3 = 0 en x3 = ±t/2 (10.1)

en convenant que les indices grecs peuvent valoir 1 ou 2. La sollicitation étant
symétrique par rapport au plan moyen, on aura encore{

uα(xβ , x3) = uα(xβ ,−x3)
u3(xβ , x3) = −u3(xβ ,−x3)

(10.2)

259
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Dans ces conditions, comme

2εα3 = Dαu3 +D3uα

on a encore ∫ t/2

−t/2
2εα3dx3 = Dα

∫ t/2

−t/2
u3dx3 + [uα]

t/2
−t/2 = 0 (10.3)

ce qui entraîne ∫ t/2

−t/2
τα3dx3 = 2G

∫ t/2

−t/2
εα3dx3 = 0 (10.4)

Les équations locales d'équilibre selon x1 et x2 s'écrivent

Dβσαβ +D3τα3 + fα = 0

Intégrons les sur l'épaisseur, et introduisons les moyennes

σ∗αβ =
1

t

∫ t/2

−t/2
σαβdx3 et f∗α =

1

t
fαdx3

On obtient

Dβσ
∗
αβ +

1

t
[τα3]

t/2
−t/2 + f∗α = 0

ce qui, vu les conditions (10.1), se ramène à

Dβσ
∗
αβ + f∗α = 0 (10.5)

De même, intégrons sur l'épaisseur l'équation d'équilibre selon x3, qui s'écrit

Dατα3 +D3σ33 + f3 = 0

Il vient

Dα

∫ t/2

−t/2
τα3dx3 + [σ33]

t/2
−t/2 +

∫ t/2

−t/2
f3dx3 = 0

Tenant compte des relations (10.1) et (10.4), on obtient la condition supplémen-
taire ∫ t/2

−t/2
f3dx3 = 0 (10.6)

qui ne fait qu'exprimer la symétrie de la sollicitation par rapport au plan moyen
de la plaque.
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Les équations constitutives locales s'écrivent

εαβ =
1

E
[(1 + ν)σαβ − ν(σγγ + σ33)δαβ ]

εα3 =
1 + ν

E
τα3

ε33 =
1

E
[(1 + ν)σ33 − ν(σγγ + σ33)]

En les intégrant sur l'épaisseur, on obtient respectivement∫ t/2

−t/2
εαβdx3 =

1

E

[
(1 + ν)

∫ t/2

−t/2
σαβdx3

−ν

(∫ t/2

−t/2
σγγdx3 +

∫ t/2

−t/2
σ33dx3

)
δαβ

]
0 = 0∫ t/2

−t/2
ε33dx3 =

1

E

[
(1 + ν)

∫ t/2

−t/2
σ33dx3

−ν

(∫ t/2

−t/2
σγγdx3 +

∫ t/2

−t/2
σ33dx3

)]
Faisant l'hypothèse supplémentaire∫ t/2

−t/2
σ33dx3 = 0 (10.7)

et dé�nissant en outre les déformations moyennes

ε∗αβ =
1

t

∫ t/2

−t/2
εαβdx3 =

1

2
(Dαu

∗
β +Dβu

∗
α) (10.8)

où apparaissent naturellement les déplacements moyens

u∗α =
1

t

∫ t/2

−t/2
uαdx3 (10.9)

ainsi que le gon�ement

q =
1

t

∫ t/2

−t/2
ε33dx3 =

1

t
[u3]

t/2
−t/2 (10.10)
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on obtient

ε∗αβ =
1

E

[
(1 + ν)σ∗αβ − νσ∗γγδαβ

]
(10.11)

et
q = − ν

E
σ∗γγ (10.12)

Les relations (10.11) s'inversent sous la forme

σ∗1 =
E

1− ν2
(ε∗1 + νε∗2)

σ∗2 =
E

1− ν2
(ε∗2 + νε∗1)

τ∗ = Gγ∗

(10.13)

en écrivant
ε∗1 = ε∗11, ε

∗
2 = ε∗22, γ

∗ = 2ε∗12

et
σ∗1 = σ∗11, σ

∗
2 = σ∗22, τ

∗ = τ∗12

et on a donc
ε∗1 = D1u

∗
1, ε

∗
2 = D2u

∗
2, γ

∗ = D1u
∗
2 +D2u

∗
1 (10.14)

Les équations moyennes (10.5), (10.13) et (10.14), fondées sur les hypothèses
(10.1), (10.2), (10.6) et (10.7), forment le système de l'état plan de contrainte.
Il s'agit évidemment d'une théorie approchée et, en particulier, les équations
générales de Navier et de Beltrami-Michell ne s'appliquent pas directement à
cet état. Dans la pratique courante, on omet les étoiles dans les notations. Il ne
faut pas perdre de vue, cependant, que les solutions obtenues représentent des
moyennes.

10.2 État plan de déformation

L'état plan de déformation, qui s'applique aux corps très longs dans la direc-
tion x3 et sollicités uniquement selon x1 et x2, se caractérise par les conditions uα = uα(xβ)

u3 = 0
f3 = 0

(10.15)
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On a alors exactement

εα3 =
1

2
(Dαu3 +D3uα) = 0, ε33 = 0 (10.16)

Par conséquent, comme

ε33 =
1

E
(σ33 − νσαα)

on obtient
σ33 = νσαα (10.17)

et, dès lors,
σkk = σαα + σ33 = (1 + ν)σαα (10.18)

Introduisant ces résultats dans les autres relations de Hooke, on obtient

εαβ =
1

E
[(1 + ν)σαβ − νσkkδαβ ]

=
1

E
[(1 + ν)σαβ − ν(1 + ν)σγγδαβ ] (10.19)

et

εα3 =
1

2G
τα3 (10.20)

Ces dernières équations entraînent

τα3 = 0 (10.21)

On peut uni�er la théorie des deux états plans en écrivant la relation (10.19)
sous la forme

εαβ =
1

Ê
[(1 + ν̂)σαβ − ν̂σγγδαβ ] (10.22)

Pour réaliser l'équivalence, il faut que le module de Young e�ectif Ê et le coef-
�cient de Poisson e�ectif ν̂ véri�ent les relations

1 + ν̂

Ê
=

1 + ν

E
(10.23)

et
ν̂

Ê
=
ν(1 + ν)

E
=
ν(1 + ν̂)

Ê
(10.24)

Cette dernière condition implique

ν =
ν̂

1 + ν̂
(10.25)
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ce qui s'inverse en

ν̂ =
ν

1− ν
(10.26)

et

Ê = E
1 + ν̂

1 + ν
= E

1 + ν
1−ν

1 + ν
=

E

1− ν2
(10.27)

La relation inverse est

E = Ê
1 + 2ν̂

(1 + ν̂)2
(10.28)

On notera en�n que la relation (10.23) équivaut à

Ĝ = G (10.29)

10.3 Équations générales des états plans

Contrairement à la théorie de l'état plan de contrainte, celle de l'état plan de
déformation est rigoureuse et on peut lui appliquer les équations de Navier et de
Beltrami-Michell. L'équivalence exposée ci-dessus permet d'obtenir les équations
correspondantes pour l'état plan de contrainte par l'arti�ce suivant :

� dans un premier temps, on particularise les équations générales de l'élas-
ticité au cas de la déformation plane ;

� ensuite, on y fait apparaître les valeurs e�ectives Ê et ν̂ ;
� il su�t alors de remplacer Ê par E et ν̂ par ν pour obtenir les équations
relatives à l'état plan de contrainte.

10.3.1 Équation plane de Navier

Dans l'équation générale

G

[
2(1− ν)

1− 2ν
graddivu− rotrotu

]
+ f = 0

on calcule

1− ν = 1− ν̂

1 + ν̂
=

1

1 + ν̂

1− 2ν = 1− 2ν̂

1 + ν̂
=

1− ν̂
1 + ν̂
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ce qui mène à l'équation

G

[
2

1− ν̂
graddivu− rotrotu

]
+ f = 0 (10.30)

Posant

ε =
divu
1− ν̂

=
D1u1 +D2u2

1− ν̂
(10.31)

2ω = D1u2 −D2u1 (10.32)

on a
rotu = 2ωe3

et

rotrotu =

∣∣∣∣∣∣
e1 e2 e3

D1 D2 D3

0 0 2ω

∣∣∣∣∣∣ = 2(e1D2ω − e2D1ω)

ce qui permet d'écrire l'équation (10.30) sous la forme
D1ε−D2ω +

f1

2G
= 0

D2ε+D1ω +
f2

2G
= 0

(10.33)

10.3.2 Équation plane de Beltrami-Michell

L'équation générale s'écrit

Dkkσij +
1

1 + ν
Dijσkk +

(
Difj +Djfi +

ν

1− ν
Dkfkδij

)
= 0

On a d'abord
σkk = (1 + ν)σγγ

De plus, comme f3 = 0,
ν

1− ν
Dkfk = ν̂Dγfγ

Il vient donc, comme toutes les dérivées par rapport à x3 sont nulles,

Dγγσij +Dijσγγ + (Difj +Djfi + ν̂Dγfγδij) = 0
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Pour (i, j) = (α, β), on obtient

Dγγσαβ +Dαβσγγ + (Dαfβ +Dβfα + ν̂Dγfγδαβ) = 0 (10.34)

Pour (i, j) = (α, 3), il vient, du fait que σα3 = 0,

Dα3σγγ +D3fα = 0

équation identiquement véri�ée. En�n, pour (i, j) = (3, 3), on obtient

Dγγσ33 +D33σγγ + ν̂Dγfγ = 0

et, en exprimant σ33 en termes de σγγ ,

σ33 = νσγγ =
ν̂

1 + ν̂
σγγ

il vient
Dγγσαα + (1 + ν̂)Dγfγ = 0 (10.35)

Or, en contractant (10.34) sur α et β, on obtient précisément

2Dγγσαα +Dαfα +Dαfα + 2ν̂Dαfα = 0

c'est-à-dire (10.35), qui est donc un corollaire de (10.34). Les seules équations
de Beltrami-Michell à prendre en compte sont donc les équations (10.34).

10.4 Fonction d'Airy

Lorsque les forces de volume sont nulles, les équations d'équilibre s'écrivent{
D1σ11 +D2σ12 = 0
D1σ12 +D2σ22 = 0

Pour un corps simplement connexe, il existe donc deux fonctions ψ1 et ψ2 telles
que {

σ11 = D2ψ1, σ12 = −D1ψ1

σ12 = D2ψ2, σ22 = −D1ψ2
(10.36)

Pour garantir la symétrie des contraintes, on doit avoir

D1ψ1 +D2ψ2 = 0 (10.37)
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ce qui entraîne, toujours pour un corps simplement connexe, l'existence d'une
fonction ϕ telle que

ψ1 = D2ϕ, ψ2 = −D1ϕ (10.38)

C'est la fonction d'Airy. Les contraintes en dérivent par les relations

σ11 = D22ϕ, σ22 = D11ϕ, σ12 = −D12ϕ (10.39)

Sur la frontière du corps (�g. 10.2), les tractions de surface T1 et T2 véri�ent

Figure 10.2 � Normale et tangente au contour

T1 = n1D2ψ1 − n2D1ψ1

T2 = n1D2ψ2 − n2D1ψ2

et, comme le vecteur unitaire tangent t est lié au vecteur unitaire normal n par
les relations

n1 = t2, n2 = −t1
on obtient

T1 =
∂ψ1

∂t
, T2 =

∂ψ2

∂t
(10.40)

ou encore

T1 =
∂

∂t
D2ϕ, T2 = − ∂

∂t
D1ϕ (10.41)

Lorsque le plan considéré est percé de trous, (�g. 10.3), l'univocité de la fonc-
tion d'Airy est soumise à certaines conditions supplémentaires. Tout d'abord,
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Figure 10.3 � Plan percé d'un trou

ψ1 et ψ2 ne sont univoques que si, sur le contour C de chaque trou,

0 =

∫
C

∂ψα
∂t

ds =

∫
C
Tαds

c'est-à-dire que la résultante des tractions de surface au bord du trou doit être
nulle. Supposons cette condition satisfaite. Alors, l'univocité de la fonction
d'Airy nécessite que

0 =

∫
C

∂ϕ

∂t
ds

=

∫
C
(t1D1ϕ+ t2D2ϕ)ds

=

∫
C
(−t1ψ2 + t2ψ1)ds

=

∫
C

(
−ψ2

dx1

dt
+ ψ1

dx2

dt

)
ds

Intégrant par parties et tenant compte de l'univocité de ψ1 et ψ2, on obtient

0 = saut(−ψ2x1 + ψ1x2) +

∫
C

(
x1
∂ψ2

∂t
− x2

∂ψ1

∂t

)
ds

=

∫
C
(x1T2 − x2T1)ds

ce qui exprime la nullité du moment des tractions de surface.
En conclusion, la condition d'univocité de la fonction d'Airy sur un corps

multiplement connexe est que les forces appliquées sur le bord de chaque trou
forment un torseur nul.
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10.5 Compatibilité en termes de la fonction d'Airy

Appliquant les équations de Beltrami-Michell (10.34) aux contraintes écrites
sous la forme (10.39), on obtient, en posant

∇2 = D11 +D22 (10.42)

les conditions  ∇2D22ϕ+D11∇2ϕ = 0
−∇2D12ϕ+D12∇2ϕ = 0
∇2D11ϕ+D22∇2ϕ = 0

qui se ramènent visiblement à une seule équation de compatibilité, à savoir,

∇4ϕ = 0 (10.43)

10.6 Problèmes axisymétriques plans 1

Un problème plan est axisymétrique si sa géométrie est circulaire et la solli-
citation, purement radiale. Dans les coordonnées polaires, on a alors

u = uer (10.44)

et

rotu =
1

r

∣∣∣∣∣∣
er eθ e3

Dr 0 0
u 0 0

∣∣∣∣∣∣ = 0

si bien que l'équation plane de Navier se ramène à

2G

1− ν
graddivu =

E

1− ν2
graddivu = −f

soit, pour f = fer,
E

1− ν2

d

dr

(
1

r

d

dr
(ru)

)
= −f

Pour f = 0, tout d'abord, on a

E

1− ν2

1

r

d

dr
(ru) = 2A = cte

1. Les sections qui suivent sont systématiquement écrites dans le cadre de l'état plan de
contrainte. Pour convertir ces résultats au cas de l'état plan de déformation, il su�t d'y
remplacer E et ν par Ê et ν̂ tels que dé�nis en section 10.2.
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d'où
E

1− ν2

d

dr
(ru) = 2Ar

et
E

1− ν2
ru = Ar2 +B

soit

u =
1− ν2

E

(
Ar +

B

r

)
(10.45)

Pour le cas f 6= 0, cherchons une solution particulière de la forme

u = rC(r) +
D(r)

r

On a alors
d

dr
(ru) =

d

dr
(r2C +D) = 2Cr + C ′r2 +D′

et
1

r

d

dr
(ru) = 2C + C ′r +

D′

r

Posant
D′ = −C ′r2 (10.46)

on obtient alors
d

dr

(
1

r

d

dr
(ru)

)
= 2C ′ = −1− ν2

E
f

et

D′ = −C ′r2 =
1− ν2

2E
fr2

d'où

C = −1− ν2

2E

∫
fdr

D =
1− ν2

2E

∫
fr2dr

La solution générale de l'équation est donc

u =
1− ν2

E

[
Ar +

B

r
− r

2

∫
fdr +

1

2r

∫
fr2dr

]
(10.47)
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On en déduit aisément les déformations

εr =
du

dr
=

1− ν2

E

[
A− B

r2
− 1

2

∫
fdr − 1

2r2

∫
fr2dr

]
εθ =

u

r
=

1− ν2

E

[
A+

B

r2
− 1

2

∫
fdr +

1

2r2

∫
fr2dr

]
auxquelles correspondent les contraintes

σr =
E

1− ν2
(εr + νεθ)

= (1 + ν)A− (1− ν)
B

r2
− 1 + ν

2

∫
fdr − 1− ν

2

1

r2

∫
fr2dr

σθ =
E

1− ν2
(εθ + νεr)

= (1 + ν)A+ (1− ν)
B

r2
− 1 + ν

2

∫
fdr +

1− ν
2

1

r2

∫
fr2dr(10.48)

10.7 Cylindre épais sous pressions interne et ex-
terne

Ce problème a été résolu par Lamé et Clapeyron en 1833 [55].

10.7.1 Cas général

Pour traiter le cas d'un cylindre sous pressions interne et externe, il su�t,
dans les équations (10.48, de poser f = 0 et

σr(Ri) = (1 + ν)A− (1− ν)
B

R2
i

= −pi

σr(Re) = (1 + ν)A− (1− ν)
B

R2
e

= −pe

En éliminant alternativement A et B, on obtient

(1 + ν)A =

pi
R2

e
− pe

R2
i

1
R2

i
− 1

R2
e

=
piR

2
i − peR2

e

R2
e −R2

i

(1 + ν)B =
pi − pe
1
R2

i
− 1

R2
e

=
(pi − pe)R2

iR
2
e

R2
e −R2

i
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d'où

σr =
piR

2
i − peR2

e

R2
e −R2

i

− pi − pe
R2
e −R2

i

R2
iR

2
e

r2

σθ =
piR

2
i − peR2

e

R2
e −R2

i

+
pi − pe
R2
e −R2

i

R2
iR

2
e

r2

 (10.49)

Les contraintes circonférentielles aux rayons extrêmes sont

σθ(Ri) =
piR

2
i − peR2

e + (pi − pe)R2
e

R2
e −R2

i

= pi
R2
i +R2

e

R2
e −R2

i

− pe
2R2

e

R2
e −R2

i

(10.50)

σθ(Re) =
piR

2
i − peR2

e + (pi − pe)R2
i

R2
e −R2

i

= pi
2R2

i

R2
e −R2

i

− pe
2R2

e

R2
e −R2

i

(10.51)

En�n, le déplacement radial est donné par

u =
1− ν2

E

{
r

1 + ν

piR
2
i − peR2

e

R2
e −R2

i

+
1

1− ν
pi − pe
R2
e −R2

i

R2
iR

2
e

r

}
(10.52)

aux rayons extrêmes, il vaut

u(Ri) =
Ri

E(R2
e −R2

i )

{
pi[(1− ν)R2

i + (1 + ν)R2
e]− 2peR

2
e

}
u(Re) =

Ri
E(R2

e −R2
i )

{
2piR

2
i − pe[(1− ν)R2

e + (1 + ν)R2
i ]
}
 (10.53)

10.7.2 Cas du cylindre très mince

Examinons le cas particulier d'un cylindre très mince. Posant, dans ce cas,

t = Re −Ri, R =
Re +Ri

2
(10.54)

la condition de minceur s'écrit

t

R
= η � 1 (10.55)
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Alors,
r = R(1 + ρη), ρ ∈ [−1/2, 1/2]
Ri = R(1− η/2), Re = R(1 + η/2)

et, en notant p∗ l'ordre de grandeur des pressions,

R2
e −R2

i = R2(1 + η + η2

4 )−R2(1− η + η2

4 ) = 2R2η
R2
i = R2[1− η +O(η2)]

R2
e = R2[1 + η +O(η2)]
r2 = R2[1 + 2ρη +O(η2)]

R2
iR

2
e = R4[1 +O(η2)]

piR
2
i − peR2

e = piR
2(1− η)− peR2(1 + η) +O(p∗η2)

= R2[(pi − pe)− η(pi + pe) +O(p∗η2)]

On en déduit

σr =
1

2R2η

[
R2(pi − pe)− ηR2(pi + pe)− (pi − pe)R2(1− 2ρη) +O(η2p∗)

]
= −1

2
[(pi + pe)− 2ρ(pi − pe)] +O(ηp∗)

σθ =
1

2R2η

[
R2(pi − pe)− ηR2(pi + pe) + (pi − pe)R2(1− 2ρη) +O(η2p∗)

]
=

pi − pe
η

− 1

2
[(pi + pe)− 2ρ(pi − pe)] +O(ηp∗)

La plus grande contrainte est visiblement

σθ = (pi − pe)
R

t
+O(p∗) (10.56)

Comme
σr = O(p∗) (10.57)

cette contrainte est négligeable devant la première. On a d'autre part

u =
1

E

[
(1− ν)

R2(pi − pe)
2Rη

+ (1 + ν)
R2(pi − pe)

2Rη
+O(p∗R)

]
=

(pi − pe)R
Eη

+O(
p∗R

E
)

=
(pi − pe)R2

Et
+O(

p∗R

E
) (10.58)

Les formules (10.56) à (10.58) sont connues sous le nom de formules des chau-
dières.
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10.7.3 Cas du rayon intérieur tendant vers zéro

Dans le cas d'un cylindre creux sous pression externe, on a

σθ(Ri) = − 2peR
2
e

R2
e −R2

i
σr(Ri) = 0

u(Ri) = − 2peR
2
eRi

E(R2
e −R2

i )

u(Re) = − peRe
E(R2

e −R2
i )

[(1− ν)R2
e + (1 + ν)R2

i ]

Dans ces formules, faisons tendre le rayon intérieur vers zéro. Il vient

lim
Ri→0

σθ(Ri) = −2pe, lim
Ri→0

σr(Ri) = 0

lim
Ri→0

u(Ri) = 0, lim
Ri→0

u(Re) = −peRe(1− ν)

E

 (10.59)

Comparons cette solution à celle d'un cylindre plein. Dans ce dernier cas, le
déplacement devant être �ni en r = 0, on doit avoir B = 0 et

u =
1− ν2

E
Ar

ce qui donne
σr = (1 + ν)A, σθ = (1 + ν)A (10.60)

d'où

σr = σθ = −pe
A = − pe

1 + ν

u = −1− ν
E

per (10.61)

Le comparaison de ces résultats avec les formules (10.59) montre que les dépla-
cements sont identiques, mais que la contrainte maximale dans le cylindre ayant
un trou in�niment petit est double de celle qui règne dans le cylindre plein. Le
trou in�niment petit provoque donc une concentration de contrainte mesurée
par

αk =
lim
Ri→0

σθ(Ri)

σθ(sans trou)
= 2
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10.7.4 Cas du rayon extérieur tendant vers l'in�ni

Le cas Re → ∞ correspond à un tunnel profondément enfoncé dans le sol.
On a alors, pour pe = 0 et en posant n = Ri/Re,

σr = pi
n2

1− n2
− pi

1− n2

R2
i

r2
−→ −pi

R2
i

r2
(10.62)

et

σθ = pi
n2

1− n2
+

pi
1− n2

R2
i

r2
−→ pi

R2
i

r2
(10.63)

La contrainte maximale vaut donc pi. Le déplacement se calcule par

u =
1

E

[
(1− ν)rpi

n2

1− n2
+ (1 + ν)

pi
1− n2

R2
i

r

]
−→ 1 + ν

E
pi
R2
i

r
(10.64)

Sa valeur maximale est

u(Ri) =
1 + ν

E
piRi

10.8 Frettage

Le frettage consiste à assembler un arbre à un moyeu dont le diamètre est
très légèrement supérieur à celui de l'arbre. Pour réaliser cet assemblage, on
peut

� Utiliser une presse si l'interférence est modérée.
� Chau�er le moyeu de manière à le dilater, en�ler l'arbre et laisser refroidir.
� Refroidir l'arbre de manière à le contracter, l'en�ler dans le moyeu et le
laisser reprendre la température ambiante.

La pression régnant à l'interface arbre/moyeu permet alors de transmettre un
couple ou une force axiale par frottement.

Avant l'assemblage, l'arbre a un rayon extérieur Rea et le moyeu, un rayon
intérieur Rim. Après assemblage, leur rayon commun sera R, les deux pièces
ayant subi des variations de rayon

uim = R−Rim > 0 et uea = R−Rea < 0

La condition d'équilibre est l'égalité des pressions :

p = −σrim = −σrea
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Par les formules des cylindres épais, on a, en posant Qm = Rim/Rem et Qa =
Ria/Rea,

uim =
Rim

Em(R2
em −R2

im)
p[(1− νm)R2

im + (1 + νm)R2
em]

=
pRim

Em(1−Q2
m)

[(1 + νm) + (1− νm)Q2
m]

uea = − Rea
Ea(R2

ea −R2
ia)
p[(1− νa)R2

ea + (1 + νm)R2
ia]

= − pRea
Ea(1−Q2

a)
[(1− νa) + (1 + νa)Q2

a]

ce que nous noterons simplement

uim = CmpRim, uea = −CapRea (10.65)

avec

Cm =
1

Em

[
1 +Q2

m

1−Q2
m

+ νm

]

Ca =
1

Ea

[
1 +Q2

a

1−Q2
a

− νa
]

 (10.66)

Comme on doit avoir

|uim|+ |uea| = uim − uea = R−Rim −R+Rea = Rea −Rim

on obtient la condition

p(CmRim + CaRea) = Rea −Rim (10.67)

En général, on se donne la pression à obtenir, à partir du couple et de la force
axiale à transmettre. Supposant alors que l'on se �xe d'avance le rayonRim, on
déduit de la relation précédente

Rea(1− Cap) = Rim(1 + Cmp)

soit

Rea = Rim
1 + Cmp

1− Cap
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En pratique, la di�érence de rayons est très petite, de l'ordre de quelques cen-
tièmes de millimètres pour un diamètre de 50 mm. En d'autres termes,

Rea −Rim
R

=
δ

R
� 1

ce qui permet d'écrire sans grande erreur la formule (10.67) sous la forme

δ

R
= (Ca + Cm)p

qui est celle qu'utilisent les ingénieurs.

10.9 Disque en rotation

Considérons à présent un disque tournant à la vitesse angulaire ω. Un élé-
ment de volume dV de ce disque subit la force centrifuge

fdV = ρdV ω2r

ce qui donne
f = ρω2r

On a alors ∫
fdr = ρω2 r

2

2∫
fr2dr = ρω2 r

4

4

En introduisant ces valeurs dans les formules (10.47) et (10.48), on obtient

u =
1− ν2

E

[
Ar +

B

r
− ρω2r3

4
+
ρωr3

8

]
=

1− ν2

E

[
Ar +

B

r
− 1

8
ρω2r3

]
(10.68)

et

σr = (1 + ν)A− (1− ν)
B

r2
− (1 + ν)

ρω2r2

4
− (1− ν)

ρω2r2

8

= (1 + ν)A− (1− ν)
B

r2
− 3 + ν

8
ρω2r2 (10.69)
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σθ = (1 + ν)A+ (1− ν)
B

r2
− (1 + ν)

ρω2r2

4
+ (1− ν)

ρω2r2

8

= (1 + ν)A+ (1− ν)
B

r2
− 1 + 3ν

8
ρω2r2 (10.70)

10.9.1 Disque plein de rayon extérieur Re

Dans ce cas, on doit avoir B = 0 pour que la solution soit �nie à l'origine.
En r = Re, la condition σr = 0 entraîne

(1 + ν)A =
3 + ν

8
ρω2R2

e

La solution est donc

u =
1− ν2

E

ρω2r2

8

(
3 + ν

1 + ν
R2
er − r3

)
(10.71)

σr =
3 + ν

8
ρω2(R2

e − r2) (10.72)

σθ =
3 + ν

8
ρω2

(
R2
e −

1 + 3ν

3 + ν
r2

)
(10.73)

Les deux contraintes atteignent leur maximum au centre du disque, où

σr = σθ =
3 + ν

8
ρω2R2

e

10.9.2 Disque creux de rayons extrêmes Ri et Re

Les conditions σr(Ri) = 0 et σr(Re) = 0 s'écrivent ici
(1 + ν)A− (1− ν)

B

R2
i

=
3 + ν

8
ρω2R2

i

(1 + ν)A− (1− ν)
B

R2
e

=
3 + ν

8
ρω2R2

e

On en déduit

(1− ν)B

(
1

R2
i

− 1

R2
e

)
=

3 + ν

8
ρω2(R2

e −R2
i )

soit

(1− ν)B =
3 + ν

8
ρω2R2

eR
2
i
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et

(1 + ν)A =
3 + ν

8
ρω2(R2

e +R2
i )

ce qui mène à la solution suivante :

u =
1− ν2

E

ρω2

8

[
3 + ν

1 + ν
(R2

e +R2
i )r +

3 + ν

1− ν
R2
eR

2
i

r
− r3

]
(10.74)

σr =
3 + ν

8
ρω2

[
(R2

e +R2
i )−

R2
eR

2
i

r2
− r2

]
(10.75)

σθ =
3 + ν

8
ρω2

[
(R2

e +R2
i ) +

R2
eR

2
i

r2
− 1 + 3ν

3 + ν
r2

]
(10.76)

La contrainte radiale maximale se produit pour r =
√
RiRe et vaut

σr max =
3 + ν

8
ρω2(R2

e −R2
i )

La contrainte azimutale maximale a lieu pour r = Ri. Elle vaut

σθ max =
3 + ν

4
ρω2

(
R2
e +

1− ν
3 + ν

R2
i

)
En particulier, pour R → 0, σθ max tend vers une valeur double de celle du
disque plein. Ici encore,

αk =
σθ max(Ri → 0)

σθ max(plein)
= 2

10.10 Utilisation de la variable complexe [22, 62,
54, 75, 36]

10.10.1 Généralités

Les variables complexes rendent de grands services dans la résolution de
nombreux problèmes plans. Commençons par rappeler qu'un nombre complexe
a+ ib peut être représenté comme un vecteur (a,b) dans l'espace R2 (�g. 10.4).
Les changements d'axes orthogonaux sont très simples en variables complexes :
si η est l'angle avec l'axe des x de la direction de la normale à une courbe (�g.
10.5), un vecteur

aex + bey = αn + βt
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Figure 10.4 � Représentation d'un nombre complexe dans le plan

s'exprime par

a = α cos η + β sin η

b = α sin η − β cos η

ce qui équivaut à
a+ ib = eiη(α+ iβ) (10.77)

Par ailleurs, on a la relation géométrique utile

āb = (a1 − ia2)(b1 + ib2)

= (a1b1 + a2b2) + i(a1b2 − a2b1)

= a · b + ia× b (10.78)

en notant a×b pour la troisième composante du produit vectoriel. Deux vecteurs
sont donc orthogonaux si <(āb) = 0 et on aura alors

āb = i|a||b|

10.10.2 Fonctions analytiques et antianalytiques

La di�érentielle d'une fonction f(x, y) s'écrit en général

df =
∂f

∂x
dx+

∂f

∂y
dy
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Figure 10.5 � Changement d'axes

Notant z = x+ iy, on a

dx =
dz + dz̄

2
et dy =

dz − dz̄
2i

= − i
2

(dz − dz̄)

ce qui permet d'écrire

df =
1

2

∂f

∂x
(dz + dz̄)− i

2

∂f

∂y
(dz − dz̄)

=
1

2

(
∂f

∂x
− i∂f

∂y

)
dz +

1

2

(
∂f

∂x
+ i

∂f

∂y

)
dz̄

=
∂f

∂z
dz +

∂f

∂z̄
dz̄

avec
∂f

∂z
=

1

2

(
∂f

∂x
− i∂f

∂y

)
et
∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
(10.79)

Cela étant, une fonction est analytique si elle ne dépend pas de z̄, soit si

∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
= 0 (10.80)

ce qui, sous forme réelle, s'écrit

∂<f
∂x

=
∂=f
∂y

,
∂<f
∂y

= −∂=f
∂x

(10.81)
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Une fonction est antianalytique si elle ne dépend pas de z, ce qui s'écrit

∂f

∂z
=

1

2

(
∂f

∂x
− i∂f

∂y

)
= 0 (10.82)

ou sous forme réelle :

∂<f
∂x

= −∂=f
∂y

,
∂<f
∂y

=
∂=f
∂x

(10.83)

Notons que si une fonction est

{
analytique
antianalytique

}
, f̄ est

{
antianalytique
analytique

}
,

car le passage de f à f̄ se fait en changeant le signe de =f . De plus, si f est
analytique, on a(

df

dz

)
=

1

2

(
∂f

∂x
− i∂f

∂y

)
=

1

2

(
∂<f
∂x

+ i
∂=f
∂x
− i∂<f

∂y
+
∂=f
∂y

)
=

1

2

(
∂<f
∂x
− i∂=f

∂x
+ i

∂<f
∂y

+
∂=f
∂y

)
=

1

2

[
∂

∂x
(<f − i=f) + i

∂

∂y
(<f − i=f)

]
=

df̄

dz̄

Il est donc légitime d'écrire cette dérivée f̄ ′.

10.10.3 Coordonnées curvilignes orthogonales

Considérons deux nouvelles coordonnées α et β et le changement de variables

x = x(α, β), y = y(α, β) (10.84)

Elles dé�nissent un système orthogonal si les nombres ∂z/∂α et ∂z/∂β sont
représentés dans R2 par des vecteurs orthogonaux, soit si (�g. 10.6)

<
(
∂z̄

∂α

∂z

∂β

)
= 0 (10.85)
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Figure 10.6 � Coordonnées curvilignes orthogonales

quels que soient α et β. Dans ce cas, les courbes α = cte et β = cte forment
un réseau orthogonal. En un point (α, β) quelconque, la normale unitaire à la
courbe α = cte est donnée par

∂z

∂α∣∣∣∣ ∂z∂α
∣∣∣∣

Si η est l'angle que fait cette normale avec l'axe de x, on a

∂z

∂α∣∣∣∣ ∂z∂α
∣∣∣∣ = eiη (10.86)

Le vecteur

∂z

∂β∣∣∣∣ ∂z∂β
∣∣∣∣
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est normal au précédent. Nous le supposerons obtenu en tournant le précédent
de π/2 dans le sens trigonométrique 2. Alors,

∂z

∂β∣∣∣∣ ∂z∂β
∣∣∣∣ = ieiη

Notant

A =

∣∣∣∣ ∂z∂α
∣∣∣∣ , B =

∣∣∣∣ ∂z∂β
∣∣∣∣ (10.87)

on a donc
∂z

∂α
= Aeiη,

∂z

∂β
= Bieiη (10.88)

Il en résulte évidemment

dz =
∂z

∂α
dα+

∂z

∂β
dβ = eiη(Adα+Bdβ) (10.89)

et

dz̄ = e−iη(Adα− iBdβ) (10.90)

Ces relations s'inversent en

Adα =
1

2

(
e−iηdz + eiηdz̄

)
Bdβ = − i

2

(
e−iηdz − eiηdz̄

)
(10.91)

Soit alors une fonction f(x, y). On a

df =
1

A

∂f

∂α
Adα+

1

B

∂f

∂β
Bdβ

=
1

A

∂f

∂α

1

2

(
e−iηdz + eiηdz̄

)
− 1

B

∂f

∂β

i

2

(
e−iηdz − eiηdz̄

)
=

1

2

(
1

A

∂f

∂α
− i

B

∂f

∂β

)
e−iηdz +

1

2

(
1

A

∂f

∂α
+

i

B

∂f

∂β

)
eiηdz̄

2. Si ce n'est pas le cas, il su�t de permuter le rôle des variables α et β
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ce qui implique
∂f

∂z
=

1

2
e−iη

(
1

A

∂f

∂α
− i

B

∂f

∂β

)
= e−iηDf

∂f

∂z̄
=

1

2
eiη
(

1

A

∂f

∂α
+

i

B

∂f

∂β

)
= eiηD̄f

(10.92)

en introduisant les opérateurs

D =
1

2

(
1

A

∂

∂α
− i

B

∂

∂β

)
, D̄ =

1

2

(
1

A

∂

∂α
+

i

B

∂

∂β

)
(10.93)

En particulier, la condition d'analyticité de f s'écrit

D̄f =
1

2

(
1

A

∂f

∂α
+

i

B

∂f

∂β

)
= 0 (10.94)

Un système de coordonnées (α, β) dé�nit une transformation conforme si
A=B. Dans ce cas,

D =
1

2A

(
∂

∂α
− i ∂

∂β

)
, D̄ =

1

2A

(
∂

∂α
+ i

∂

∂β

)
c'est-à-dire que les fonctions analytiques sont, dans ce système, également fonc-
tions de γ = α+ iβ seulement. On véri�e aisément qu'alors,

A = B =

∣∣∣∣dzdγ
∣∣∣∣

et

eiη =

(
dz

dγ

)
∣∣∣∣dzdγ

∣∣∣∣
10.10.4 Transformation des vecteurs

Comme le montre la �gure 10.7, un vecteur (Tx, Ty) dont l'image complexe
est Tx + iTy, se transforme selon la normale et la tangente à la courbe α = cte
par

Tx = Tα cos η − Tβ sin η

Ty = Tα sin η + Tβ cos η

ce qui donne
Tx + iTy = Tαe

iη + iTβe
iη = eiη(Tα + iTβ) (10.95)
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Figure 10.7 � Transformation d'un vecteur

10.10.5 Transformation des tenseurs symétriques

Dans le système d'axes (x, y), le tenseur σ s'applique à un vecteur n pour
donner un nouveau vecteur T, selon la loi

Tx = σxnx + τxyny

Ty = τxynx + σyny

On recherche les composantes de ce même tenseur dans le système (α, β), c'est-
à-dire que ces composantes doivent véri�er

Tα = σαnα + ταβnβ

Tβ = ταβnα + σβnβ

A cette �n, on remarquera d'abord que

Tx + iTy = (σx + iτxy)nx + (τxy + iσy)ny

= (σx + iτxy)nx + (σy − iτxy)iny

=

[
1

2
(σx + σy) +

1

2
(σx − σy) + iτxy

]
nx

+

[
1

2
(σx + σy)− 1

2
(σx − σy)− iτxy

]
iny

ce qui donne l'expression complexe de l'application d'un tenseur sur un vecteur :

Tx + iTy =
σx + σy

2
(nx + iny) +

1

2
(σx − σy + 2iτxy)(nx − iny) (10.96)



10.10. UTILISATION DE LA VARIABLE COMPLEXE 287

Cette expression équivaut à

eiη(Tα + iTβ) =
σx + σy

2
eiη(nα + inβ) +

1

2
(σx − σy + 2iτxy)e−iη(nα − inβ)

soit

Tα + iTβ =
σx + σy

2
(nα + inβ) + e−2iη 1

2
(σx − σy + 2iτxy)(nα − inβ)

c'est-à-dire que{
σα + σβ = σx + σy

σα − σβ + 2iταβ = e−2iη(σx − σy + 2iτxy)
(10.97)

10.10.6 Structure générale d'une fonction harmonique réelle

On peut écrire l'opérateur de Laplace sous la forme

∇2f =

(
∂2

∂x2
+

∂2

∂y2

)
f

=

(
∂

∂x
+ i

∂

∂y

)(
∂

∂x
− i ∂

∂y

)
f

= 4
∂

∂z̄

∂

∂z
f

Pour ∇2f = 0, on a donc
∂f

∂z
= F ′(z)

et
f = F (z) +G(z̄) (10.98)

Si la fonction f est réelle, on a

=f = =F + =G = 0

Comme les fonctions F et G véri�ent les relations

∂<F
∂x

=
∂=F
∂y

,
∂=F
∂x

= −∂<F
∂y

∂<G
∂x

= −∂=G
∂y

,
∂=G
∂x

=
∂<G
∂y
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on a

∂<F
∂x

=
∂=F
∂y

= −∂=G
∂y

=
∂<G
∂x

∂<F
∂y

= −∂=F
∂x

=
∂=G
∂x

=
∂<G
∂y

ce qui implique
<F = <G+ cte

Faisant rentrer la constante dans F , on obtient G = F̄ , d'où

f = F + F̄ , avec F analytique (10.99)

C'est la forme générale des solutions réelles de l'équation de Laplace.

10.10.7 Structure générale d'une fonction biharmonique
réelle

L'équation biharmonique ∇4ϕ = 0 équivaut évidemment à

∇2ϕ = harmonique

ce qui permet d'écrire
∇2ϕ = 4F ′ + 4F̄ ′

F étant une fonction analytique. Le facteur 4 est introduit pour la commodité.
Cela revient encore à dire

4
∂

∂z̄

∂

∂z
ϕ = 4F ′ + 4F̄ ′

Intégrant, on obtient
∂ϕ

∂z
= z̄F ′ + F̄ +G′(z)

Une nouvelle intégration donne

ϕ = z̄F + zF̄ +G(z) +H(z̄)

Les deux premières fonctions de cette expression ont une somme réelle. Par le
même raisonnement que ci-dessus, on trouve que la somme ne sera réelle que si
H = Ḡ. La solution générale est donc

ϕ = z̄F + zF̄ +G+ Ḡ avec F et G analytiques (10.100)
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Cette formule est due à Goursat [41].
Une autre expression peut être obtenue en posant

F (z) = zH(z)

Il vient alors
ϕ = |z|2(H + H̄) + (G+ Ḡ)

ou encore,
ϕ = (x2 + y2)h(x, y) + g(x, y) (10.101)

où h et g sont deux fonctions harmoniques.

10.11 Forme complexe de la solution des équa-
tions de l'élasticité plane en l'absence de
forces de volume [54, 62]

10.11.1 Déplacements

Les équations de Navier, sous la forme (10.33), avec f1 = f2 = 0, sont des
équations de Cauchy-Riemann. On peut donc écrire

ε+ iω =
4

E
F ′(z) (10.102)

On a alors

ε =
2

E
(F ′ + F̄ ′), ω =

2

Ei
(F ′ − F̄ ′)

Or,

∂

∂z
(u+ iv) =

1

2

(
∂u

∂x
+ i

∂v

∂x
− i∂u

∂y
+
∂v

∂y

)
=

1− ν
2

ε+ iω

ce qui donne

∂

∂z
(u+ iv) =

1− ν
E

(F ′ + F̄ ′) +
2

E
(F ′ − F̄ ′)

=
3− ν
E

F ′ − 1 + ν

E
F̄ ′
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Intégrant cette équation, on trouve la forme générale des déplacements :

u+ iv =
1

E
[(3− ν)F − (1 + ν)zF̄ ′ − (1 + ν)K̄ ′] (10.103)

10.11.2 Contraintes

Les contraintes se déduisent de ce résultat par dérivation. Notant d'abord
que

ε =
εx + εy
1− ν

=
1

E(1− ν)
(σx − νσy + σy − νσx) =

σx + σy
E

on obtient, en tenant compte de (10.102),

(σx + σy) + iEω = 4F ′ (10.104)

D'autre part, on a

∂

∂z̄
(u+ iv) =

1

2

(
∂u

∂x
+ i

∂v

∂x
+ i

∂u

∂y
− ∂v

∂y

)
=

1

2

(
∂u

∂x
− ∂v

∂y

)
+
i

2
γxy

La loi de Hooke donne

1

2

(
∂u

∂x
− ∂v

∂y

)
=

1

2E
(σx − νσy − σy + νσx)

=
1 + ν

2E
(σx − σy)

=
1

4G
(σx − σy)

et
i

2
γxy =

i

4G
2τxy

Il vient donc

σx − σy + 2iτxy = 4G
∂

∂z̄
(u+ iv)

=
2E

1 + ν

1

E
[−(1 + ν)zF̄”− (1 + ν)K̄”]

soit
σx − σy + 2iτxy = −2zF̄”− 2K̄” (10.105)
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10.11.3 Fonctions de contrainte

Calculons à présent les fonctions de contrainte du premier ordre ψ1 et ψ2 et
la fonction d'Airy ϕ. On remarquera d'abord que les relations

ψ1 =
∂ϕ

∂y
, ψ2 = −∂ϕ

∂x

entraînent

ψ = ψ1 + iψ2 =
∂ϕ

∂y
− i∂ϕ

∂x
= −i

(
∂ϕ

∂x
+ i

∂ϕ

∂y

)
= −2i

∂ϕ

∂z̄
(10.106)

D'autre part, on a

σx − σy + 2iτxy =
∂ψ1

∂y
+
∂ψ2

∂x
+ i

(
∂ψ2

∂y
− ∂ψ1

∂x

)
= −i

(
∂ψ1

∂x
+ i

∂ψ1

∂y

)
+

(
∂ψ2

∂x
+ i

∂ψ2

∂y

)
= −2i

(
∂ψ1

∂z̄
+ i

∂ψ2

∂z̄

)
soit

σx − σy + 2iτxy = −2i
∂ψ

∂z̄
(10.107)

En�n, comme

σx + σy =
∂ψ1

∂y
− ∂ψ2

∂x
, τxy − τxy =

∂ψ1

∂x
+
∂ψ2

∂y
= 0

on a

2
∂ψ

∂z
=
∂ψ1

∂x
− i∂ψ1

∂y
+ i

∂ψ2

∂x
+
∂ψ2

∂y
= −i(σx + σy) (10.108)

Ces relations permettent de calculer la fonction ψ. Par (10.107) et (10.105), on
a

∂ψ

∂z̄
= i(−zF̄”− K̄”)

d'où
ψ = i(−zF̄ ′ − K̄ ′ − L) (10.109)

L étant une nouvelle fonction analytique. Par ailleurs, on déduit de (10.108) et
(10.104)

∂ψ

∂z
= − i

2
(σx + σy) = − i

2
4<F ′ = −i(F ′ + F̄ ′)
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ce qui entraîne

ψ = −i(F + zF̄ ′ + M̄) (10.110)

avec M analytique. La comparaison des résultats (10.109) et (10.110) donne

F = L, M̄ = K̄ ′

si bien que

ψ = −i(F + zF̄ ′ + K̄ ′) (10.111)

On en déduit directement l'expression de la fonction d'Airy : comme

∂ϕ

∂z̄
=
i

2
ψ =

1

2
(F + zF̄ ′ + K̄ ′)

on obtient par intégration

ϕ =
1

2
(z̄F + zF̄ + K̄ +N)

N étant analytique. Pour que cette expression soit réelle, il faudra que N=K,
ce qui mène à la forme dé�nitive

ϕ =
1

2
(z̄F + zF̄ +K + K̄) (10.112)

en bon accord avec l'expression de Goursat des fonctions biharmoniques.

10.11.4 Calcul des contraintes en coordonnées curvilignes
orthogonales

Dans le cas de coordonnées curvilignes orthogonales, le calcul des contraintes
se fait simplement à partir des relations suivantes :

σα + σβ = σx + σy

= ∇2ϕ

= 4
∂

∂z

∂ϕ

∂z̄

= 4e−iηD
(
e−iηDϕ

)
(10.113)
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et

σα − σβ + 2iταβ = e−2iη(σx − σy + 2iτxy)

= −4e−2iη ∂
2ϕ

∂z̄2

= −4e−2iηeiηD
(
eiηDϕ

)
= −4e−iηD

(
eiηDϕ

)
(10.114)

10.11.5 Expression des tractions de surface

Les tractions de surface sur un bord sont données par

Tx =
∂ψ1

∂t
, Ty =

∂ψ2

∂t
(10.115)

soit

Tx + iTy =
∂ψ

∂t
(10.116)

En coordonnées curvilignes orthogonales,

Tα + iTβ = e−iη(Tx + iTy) = e−iη
∂ψ

∂t
(10.117)

10.12 Problème de Koloso� (1910) [54]

On considère un plaque plane très large dans laquelle est percé un trou
elliptique de demi-axes a et b, le grand axe étant incliné d'un angle γ par rapport
à la direction des tractions à l'in�ni (�g. 10.8). On peut fonder l'étude de ce
problème sur la transformation

z = f(ζ) = c(ζ +
m

ζ
), 0 ≤ m ≤ 1, c > 0 (10.118)

qui, pour un bon choix de c et m, applique l'ellipse du plan des z en un cercle
du plan des ζ. En e�et, pour |ζ| = 1, on a

f(ζ) = c(eiθ +me−iθ)

soit

x = c(1 +m) cos θ, y = c(1−m) sin θ
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Figure 10.8 � Problème de Kolosov

si bien que
x2

c2(1 +m)2
+

y2

c2(1−m)2
= 1 (10.119)

On reconnaît là l'équation d'une ellipse de demi-axes

a = c(1 +m), b = c(1−m) (10.120)

Ces demi-axes étant donnés, on calcule c et m par

c =
a+ b

2
, m =

a− b
a+ b

(10.121)

L'inclinaison d'un angle γ du champ de contraintes par rapport à l'ellipse en-
traîne

σx1
+ σy1 = σx + σy ; σx1

− σy1 + 2iτx1y1 = e−2iγ(σx − σy + 2iτxy)

Dès lors, à l'in�ni, les conditions

σx1
= σ, σy1 = 0, τx1y1 = 0
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se transforment en

σx + σy = σ, σx − σy + 2iτxy = e2iγσ

ou, en termes des fonctions F et K,

4<F ′ = σ, −2(zF̄” + K̄”) = σe2iγ (10.122)

Les conditions sur le bord du trou sont

iψ = F + zF̄ + K̄ ′ = 0 (10.123)

En fait, nous exprimerons F et K en termes de ζ :

F (z) = F (f(ζ)) = F1(ζ), K(z) = K (f(ζ)) = K1(ζ)

On calculera donc

F ′(z) =
F ′1(ζ)

f ′(ζ)
, K ′(z) =

K ′1(ζ)

f ′(ζ)

et

F”(z) =
1

f ′(ζ)

F1”(ζ)f ′(ζ)− F ′1(ζ)f”(ζ)

[f ′(ζ)]2

=
F1”f ′ − F ′1f”

f ′3

K”(z) =
K1”f ′ −K ′1f”

f ′3

Tenant compte de ces transformations, on aura

ux + iuy =
1

E

[
(3− ν)F1 − (1 + ν)

f

f̄ ′
F̄ ′1 − (1 + ν)

K̄ ′1
f̄ ′

]
σx + σy = 4<(

F ′1
f ′

)

σx − σy + 2iτxy = −2

(
f
F̄1”f̄ ′ − F̄ ′1f̄”

f̄ ′3
+
K̄1”f̄ ′ − K̄ ′1f̄”

f̄ ′3

)
iψ = F1 +

f

f̄ ′
F̄ ′1 +

K̄ ′1
f̄ ′

(10.124)
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A l'in�ni, on aura

f(ζ) ≈ cζ, f ′(ζ) = c

(
1− m

ζ2

)
≈ c, f”(ζ) = 2mζ−3 ≈ 0 (10.125)

ce qui permet d'écrire

σ ≈ 4<F
′
1

c
, σe2iγ ≈ −2

(
ζ

c
F̄1” +

K̄1”

c2

)
(10.126)

De telles conditions peuvent être véri�ées par des développements de la forme

F ′1 =

∞∑
n=0

Anζ
−n, K1” =

∞∑
n=0

Bnζ
−n (10.127)

Les conditions à l'in�ni donnent immédiatement

<A0 =
σc

4
, B0 = −σc

2

2
e−2iγ (10.128)

Il nous faut à présent intégrer les déplacements pour véri�er leur univocité.
On a 

F1 = A0ζ +A1 ln ζ +

∞∑
n=2

An
ζ1−n

1− n

K ′1 = B0ζ +B1 ln ζ +

∞∑
n=2

Bn
ζ1−n

1− n

Les seuls termes qui n'assurent pas l'univocité sont ceux en ln ζ, qui changent
de dé�nition à chaque tour du trou. Ces termes sont

1

E

[
(3− ν)A1 ln ζ − (1 + ν)B1

ln ζ

f̄ ′

]
d'où la condition A1 = B1 = 0.

Venons-en aux conditions au bord du trou, représenté dans le plan des ζ par
le cercle |ζ| = 1. On a

f = c

(
ζ +

m

ζ

)
= c(eiθ +me−iθ) = ceiθ(1 +me−2iθ)

f ′ = c

(
1− m

ζ2

)
= c(1−me−2iθ)
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La condition iψ = 0 équivaut à la suivante :

0 = f̄ ′F1 + fF̄ ′1 + K̄ ′1 = (1−me2iθ)F1 + (eiθ +me−iθ)F̄ ′1 + K̄ ′1

avec 

F1 = A0e
iθ −

∞∑
n=2

An
ei(1−n)θ

n− 1

F̄ ′1 = Ā0 +

∞∑
n=0

Āne
inθ

K̄ ′1 = B̄0e
−iθ −

∞∑
n=2

B̄n
ei(1−n)θ

n− 1

En identi�ant les coe�cients des di�érentes puissances de eiθ, on obtient les
conditions suivantes :

eiθ 7→ A0 +A2m+ Ā0 + Ā2m−
B̄2

c
= 0

e2iθ 7→ Ā3m−
1

2

B̄3

c
= 0

e3iθ 7→ −A0m+ Ā2 +mĀ4 −
B̄4

c
= 0

eikθ, k > 3 7→ Āk−1 +mĀk+1 +
B̄k+1

kc
= 0

e−iθ 7→ −A2 + Ā0m+
A4m

3
+
B̄0

c
= 0

e−ikθ, k > 1 7→ −Ak+1

k
+m

Ak−1

k − 2
= 0

Cherchons une solution telle que Ak = 0, k ≥ 3 et Bk = 0, k ≥ 5. Tenant compte
des conditions (10.128) et supposant =A0 = 0, on obtient

e2iθ 7→ B3 = 0

e−iθ 7→ A2 = mĀ0 +
B̄0

c
=
σc

4
(m− 2e2iγ)

e3iθ 7→ B4 = 3c(A2 −A0m) = −3σc2

2
e2iγ

eiθ 7→ B2 = c(Ā0 +A0 +mĀ2 +mA2) =
σc2

2
(1 +m2 − 2m cos 2γ)
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Les fonctions cherchées sont donc F ′1 =
σc

4
+
σc

4
(m− 2e2iγ)ζ−2

K1” = −σc
2

2
e−2iγ +

σc2

2
(1 +m2 − 2m cos γ)ζ−2 − 3σc2

2
e2iγζ−4

(10.129)
Au bord du trou, la contrainte normale est évidemment nulle, si bien que

σt = σx + σy = 4<F ′ = 4<
(
F ′1
f ′

)
= σ<1 + (m− 2e2iγ)ζ−2

1−mζ−2

comme |ζ| = 1, on a ζ = eiθ, ce qui donne

σt = σ
1−m2 + 2m cos 2γ − 2 cos(2γ − 2θ)

1 +m2 − 2m cos 2θ
(10.130)

Examinons deux cas particuliers.

1. Pour γ = π
2 , le grand axe du trou est perpendiculaire au champ de

containte principal et

σt = σ
1−m2 − 2m+ 2 cos 2θ

1 +m2 − 2m cos 2θ

Son maximum se produit pour θ = 0 et vaut

σt max = σ
3− 2m−m2

(1−m)2
= σ

3 +m

1−m
= σ

(
1 + 2

1 +m

1−m

)
= σ

(
1 + 2

a

b

)
le coe�cient de concentration de contrainte vaut donc

αk =
σt max

σ
= 1 + 2

a

b
(10.131)

C'est la conclusion fondamentale du problème de Koloso�.

2. Pour γ = 0, le petit axe du trou est perpendiculaire au champ de contrainte
principal. On a

σt = σ
1−m2 + 2m− 2 cos 2θ

1 +m2 − 2m cos 2θ

Le maximum se produit alors en θ = π
2 et vaut

σt max = σ

(
1 + 2

b

a

)
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On peut exprimer les résultats précédents sous une autre forme : au voisinage
du sommet de l'ellipse, on peut écrire

x = a

√
1− y2

b2
≈ a− ay2

2b2
= a− y2

2R

où R est le rayon de courbure. On a donc

R =
b2

a
,

b

a
=

√
R

a
,

a

b
=

√
a

R

et, en notant T le demi-axe a, on a donc

αk = 1 + 2

√
T

R
(10.132)

Figure 10.9 � Entaille elliptique

Cette formule, due à Inglis (1913), est fréquemment employée, même lorsque
le trou n'est pas elliptique. On l'utilise également pour les entailles elliptiques
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(�g. 10.9). C'est là une approximation, car cela suppose que l'on peut couper la
tôle du problème de Koloso� le long de son axe sans rien changer, ce qui serait
vrai si l'on avait σt = 0 en θ = π

2 . Or, en fait, en ce point,

σt = σ
1−m2 − 2m− 2

1 +m2 + 2m
= −σ

et cette valeur n'est négligeable devant le maximum que pour les très grandes
valeurs de T/R.

10.13 Problème de Kirsch (1898)

Le problème de Kirsch est le cas particulier du précédent où l'ellipse est un
cercle, ce qui revient à dire que m = 0. On a alors

a = b = c = R, z = Rζ, f ′ = c = R, γ = 0

et

F ′ =
F ′1
c

=
σ

4

(
1− 2

R2

z2

)
=

σ

4

(
1− 2

R2

r2
e−2iθ

)
K” =

K1”

c2
= −σ

2
+
σ

2

R2

r2
− 3

2
σ
R2

z4

= −σ
2

(
1− R2

r2
e−2iθ + 3

R4

r4
e−4iθ

)
F” = σ

R2

z3

d'où

σx + σy = 4<F ′ = σ

(
1− 2

R2

r2
cos 2θ

)
σx − σy + 2iτxy = −2(zF̄” + K̄”)

= −2σR2 z

z̄3
+ σ

(
1− R2

r2
e2iθ + 3

R4

r4
e4iθ

)
= σ

(
1− R2

r2
e2iθ − 2

R2

r2
e4iθ + 3

R4

r4
e4iθ

)
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et, en composantes polaires,

σr + σθ = σ

(
1− 2

R2

r2
cos 2θ

)
σr − σθ + 2iτrθ = e−2iθ(σx − σy + 2iτxy)

= σ

(
e−2iθ − R2

r2
− 2

R2

r2
e2iθ + 3

R4

r4
e2iθ

)
On en déduit

σr =
σ

2

[(
1− R2

r2

)
+

(
1− 4

R2

r2
+ 3

R4

r4

)
cos 2θ

]
σθ =

σ

2

[(
1 +

R2

r2

)
−
(

1 + 3
R4

r4

)
cos 2θ

]
τrθ = −σ

2

(
1 + 2

R2

r2
− 3

R4

r4

)
sin 2θ

(10.133)

Au bord du trou, la contrainte σθ vaut

σθ = σ(1− 2 cos 2θ)

Elle atteint son maximum en θ = π/2, où elle vaut 3σ. La perturbation de l'état
de contrainte décroît comme 1/r2. Son gradient relatif est donné par

χ =

∣∣∣∣ 1

σθ

dσθ
dr

∣∣∣∣
au maximum

=
7

3R
(10.134)

Les coe�cients de concentration de contrainte relatifs à d'autres sollicitations
s'obtiennent par superposition : en superposant un état de contrainte σ∞x à un
état de contrainte σ∞y , on aura, au bord du trou,

σθ = σ∞x (1− 2 cos 2θ) + σ∞y

(
1− 2 cos 2(θ +

π

2
)
)

= σ∞x (1− 2 cos 2θ) + σ∞y (1 + 2 cos 2θ)

= (σ∞x + σ∞y ) + 2(σ∞x − σ∞y ) cos 2θ

dont le maximum vaudra

σθ max = (σ∞x + σ∞y ) + 2|σ∞x − σ∞y | (10.135)

Pour un état de traction uniforme σ∞x = σ∞y = σ, on obtient ainsi

σθ max = 2σ, αk = 2
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Dans le cas d'un cisaillement uniforme,σ∞x = −σ∞y = τ , il vient

σθ max = 4τ

Le coe�cient de concentration de contrainte sera ici le rapport des diamètres
des cercles de Mohr, soit

αk =
4τ − 0

σ∞x − σ∞y
= 2

10.14 Fissure sous contrainte uniaxiale

Si, dans le problème de Koloso�, on pose m = 1, on obtient une �ssure
rectiligne, de longueur 2a = 4c, perpendiculaire au champ principal de contrainte
pour γ = π/2. Il vient alors

F ′1 =
σc

4
(1 + 3ζ−2)

K1” =
σc2

2
(1 + 4ζ−2 + 3ζ−4)

d'où

F1 =
σc

4
(ζ − 3ζ−1)

K1 =
σc2

2

(
ζ2

2
− 2 ln ζ − 1

2
ζ−2

)
(10.136)

On simpli�e ces expressions en posant

ζ = eξ

soit

z = c

(
ζ +

1

ζ

)
= 2c ch ξ = a ch ξ
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ce qui revient à utiliser les coordonnées elliptiques. On a alors, comme dz/dξ =
a sh ξ,

F =
σa

4
(2 sh ξ − ch ξ)

F ′ =
σ

4

(
2

ch ξ

sh ξ
− 1

)
F” = − σ

2a sh3 ξ

K ′ =
σa

2

(
ch ξ − 1

sh ξ

)
K” =

σ

2

(
1 +

ch ξ

sh3 ξ

)
(10.137)

On en déduit aisément les contraintes :


σx + σy = 4<F ′ = σ

(
ch ξ

sh ξ
+

ch ξ̄

sh ξ̄
− 1

)
σx − σy + 2iτxy = −2(zF̄” + K̄”) = −σ

(
− ch ξ

sh3 ξ
+ 1 +

ch ξ̄

sh3 ξ̄

)
(10.138)

La zone intéressante est évidemment le voisinage de la �ssure. Dans cette région,
on peut poser

z = a ch ξ = a+ reiθ = a(1 + εeiθ), ε� 1

Il vient alors

sh ξ =

√
ch2 ξ − 1 =

√
1 + 2εeiθ +O(ε2)− 1 =

√
2εeiθ/2(1 +O(ε))
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Introduisant ces valeurs dans les expressions (10.138) des contraintes, on obtient

σx + σy = σ

(
1 + εeiθ√

2ε
e−iθ/2 +

1 + εe−iθ√
2ε

eiθ/2 − 1

)
=

2σ√
2ε

cos
θ

2
+O(σ)

σx − σy + 2iτxy = −σ
[
− (1 + εeiθ)e3iθ/2

(2ε)3/2
+ 1 +

(1 + εe−iθ)e3iθ/2

(2ε)3/2

]
= σ

[
2−3/2ε−1/2e3iθ/22i sin θ +O(1)

]
=

σ

2
√

2ε

(
cos

3θ

2
+ i sin

3θ

2

)
4i sin

θ

2
cos

θ

2
+O(σ)

=
2σ√
2ε

sin
θ

2
cos

θ

2

(
− sin

3θ

2
+ i cos

3θ

2

)
+O(σ)

On en déduit les expressions asymptotiques suivantes des contraintes :

σx =
σ√
2ε

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
+O(σ)

σy =
σ√
2ε

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
+O(σ)

τxy =
σ√
2ε

cos
θ

2
sin

θ

2
cos

3θ

2
+O(σ)

(10.139)

En mécanique de la rupture, on introduit le facteur d'intensité de contrainte
KI dé�ni par

KI = σ
√
πa (10.140)

en fonction duquel les expressions asymptotiques (10.139) s'écrivent encore

σx =
KI√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
+O(σ)

σy =
KI√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
+O(σ)

τxy =
KI√
2πr

cos
θ

2
sin

θ

2
cos

3θ

2
+O(σ)

(10.141)

Il est à noter que, bien que ces contraintes tendent vers l'in�ni pour r → 0,
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leur énergie élastique dans une zone de rayon R reste �nie. En e�et,

W =
σ2
x + σ2

y − 2νσxσy

2E
+
τxy
2G

=
σ2
x + σ2

y − 2νσxσy + 2(1 + ν)τ2
xy

2E

=
K2
I

4πrE
cos2 θ

2

{(
1− sin

θ

2
sin

3θ

2

)2

+

(
1 + sin

θ

2
sin

3θ

2

)2

−2ν

(
1− sin

θ

2
sin

3θ

2

)(
1 + sin

θ

2
sin

3θ

2

)
+2(1 + ν) sin2 θ

2
cos2 3θ

2

}
=

K2
I

4πrE
cos2 θ

2

{
2− 2ν + (2 + 2ν) sin2 θ

2
sin2 3θ

2

+2(1 + ν) sin2 θ

2
cos2 3θ

2

}
=

K2
I

2πrE
cos2 θ

2

[
(1− ν) + (1 + ν) sin2 3θ

2

]
=

K2
I

4πrE
(1 + cos θ)

[
(1− ν) +

1 + ν

2
(1− cos 3θ)

]
=

K2
I

4πrE

[
(1− ν)(1 + cos θ) +

1 + ν

2
(1 + cos θ − cos 3θ − cos θ cos 3θ)

]
Intégrant sur un cercle de rayon R, on obtient

UR =

∫ π

−π
dθ

∫ R

0

Wrdr =

∫ R

0

K2
I

4πrE
rdr [(1− ν)2π + (1 + ν)π]

=
3− ν
4E

K2
IR (10.142)

De la même façon, la contrainte équivalente de Tresca est donnée par

σT = |σx − σy + 2iτxy| =
KI√
2πr
| sin θ| (10.143)

Elle tend vers l'in�ni pour r → 0, mais sa moyenne quadratique sur une zone
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de rayon R est donnée par

σ̃2
T =

1

2πR

∫ R

0

dr

∫ π

−π
σT rdrθ =

1

2πR

K2
I

2π

∫ R

0

rdr

r

∫ π

−π
sin2 θdθ =

K2
I

4π

soit

σ̃T =
KI

2
√
π

(10.144)

On admet, en mécanique de la rupture, que dans un matériau fragile, la
�ssure progresse de manière instable, sans augmentation de charge, dès que le
facteur d'intensité des contraintes admet une valeur critique KIc. Le facteur KI

est également considéré comme la grandeur à prendre en compte pour expliquer
la propagation des �ssures en fatigue.

La plasticité du matériau a pour e�et de perturber la distributions des
contraintes ci-dessus. Si l'on adopte le critère de Tresca, on a σT ≥ σe (limite
élastique) si

√
r ≤ KI | sin θ|√

2πσe

ce qui signi�e que la zone plastique est contenue dans la boule de rayon

rp =
K2
I

2πσ2
e

(10.145)

soit encore
rp
a

=
1

2

(
σ

σe

)2

(10.146)

On admet généralement que les résultats de la mécanique de la rupture repré-
sentent bien la réalité tant que la zone plastique reste relativement petite.

10.15 Coin soumis à une force et à un moment
(Problème de Michell, 1900)

Dans ce problème, illustré par la �gure 10.10, il est clair que les contraintes
doivent s'évanouir à l'in�ni, puisque la section ne fait qu'augmenter quand x
croît. On a donc à l'in�ni, {

4<F ′ → 0
−2(zF̄” + K̄”)→ 0
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Figure 10.10 � Problème de Michell

En conséquence, on cherchera une solution de la forme

F ′ =

∞∑
n=1

Anz
−n, K” =

∞∑
n=1

Bnz
−n (10.147)

Sur les bords θ = ±θ0, on doit avoir

ψ = −i(F + zF̄ ′ + K̄ ′) = cte (bords libres) (10.148)

On calcule aisément

F (z) = A1 ln z +

∞∑
n=2

An
z1−n

1− n

K̄ ′(z) = B̄1 ln z̄ +

∞∑
n=2

B̄n
z̄1−n

1− n

zF̄ ′ =

∞∑
n=1

Ānzz̄
−n
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soit, en termes de r et θ,

F = A1(ln r + iθ) +

∞∑
n=2

An
1− n

r1−nei(1−n)θ

K̄ ′ = B1(ln r − iθ) +

∞∑
n=2

B̄n
1− n

r1−nei(n−1)θ

zF̄ ′ = A1e
2iθ +

∞∑
n=2

Ānr
1−nei(n+1)θ

ce qui permet d'écrire

iψ = (A1 + B̄1) ln r + (A1 − B̄1)iθ + Ā1e
2iθ

+

∞∑
n=2

r1−n
[
An

1− n
ei(1−n)θ + Āne

i(n+1)θ +
B̄n

1− n
ei(n−1)θ

]
(10.149)

La condition(10.148) revient à dire qu'en θ = ±θ0, la fonction ψ ne dépend pas
de r. En annulant les coe�cients des di�érentes puissances de r, on obtient les
relations

B̄1 = −A1

B̄n = −Ane−2i(n−1)θ0 + (n− 1)Āne
2iθ0 (calculé en θ0)

B̄n = −Ane+2i(n−1)θ0 + (n− 1)Āne
−2iθ0 (calculé en (−θ0))

(10.150)
En soustrayant les deux dernières conditions, on obtient

Ān +An
sin 2(n− 1)θ0

(n− 1) sin 2θ0
= 0

ce qui équivaut à

<An
[
1 +

sin 2(n− 1)θ0

(n− 1) sin 2θ0

]
+ i=An

[
−1 +

sin 2(n− 1)θ0

(n− 1) sin 2θ0

]
= 0

Il est clair qu'en dehors des cas particuliers où l'un des coe�cients est nul, on
aura <An = =An = 0. La nullité en question suppose véri�ée l'une des relations{

sin 2(n− 1)θ0 = −(n− 1) sin 2θ0

sin 2(n− 1)θ0 = (n− 1) sin 2θ0
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ce qui n'a lieu que pour n = 2, valeur pour laquelle on trouve

<A2 = 0, =A2 arbitraire

On obtient alors, en additionnant les deux dernières équations du système
(10.150),

B̄2 = −2A2 cos 2θ0 = −2i=A2 cos 2θ0

Les seules constantes qui subsistent sont donc

C1 = <A1, C2 = =A1, C3 = =A2

en fonction desquelles on peut écrire

B̄1 = −(C1 + iC2), B̄2 = −2iC3 cos 2θ0

Il vient donc 
F = (C1 + iC2) ln z − iC3

z

K ′ = −(C1 − iC2) ln z − 2iC3 cos 2θ0

z

(10.151)

et

F ′ =
C1 + iC2

z
+
iC3

z2

=
C1 + iC2

r
(cos θ − i sin θ) +

iC3

r2
(cos 2θ − i sin 2θ)

d'où

σx + σy = 4<F ′ = 4r−1(C1 cos θ + C2 sin θ)

+ 4C3r
−2 sin 2θ = σr + σθ (10.152)

Les dérivées secondes sont données par

F̄” = −(C1 − iC2)z̄−2 + 2iC3z̄
−3, K̄” = −(C1 + iC2)z̄−1 − 2iC3 cos 2θ0z̄

−2

ce qui donne

σx − σy + 2iτxy

= 2(C1 − iC2)zz̄−2 − 4iC3zz̄
−3 + 2(C1 + iC2)z̄−1 + 4iC3 cos 2θ0z̄

−2

= 2(C1 − iC2)r−1e3iθ − 4iC3r
−2e4iθ + 2(C1 + iC2)r−1eiθ

+ 4iC3 cos 2θ0r
−2e2iθ



310 CHAPITRE 10. ÉLASTICITÉ PLANE

On passe aux coordonnées polaires par la transformation

σr − σθ + 2iτrθ = e−2iθ(σx − σy + 2iτxy)

= 2(C1 − iC2)r−1eiθ − 4iC3r
−2e2iθ + 2(C1 + iC2)r−1e−iθ

+ 4iC3 cos 2θ0r
−2

On en déduit directement

σr − σθ =
4

r
(C1 cos θ + C2 sin θ) +

4C3

r2
sin 2θ

2τrθ =
4C3

r2
(cos 2θ0 − cos 2θ)

d'où, par comparaison avec (10.152)
σr =

4

r
(C1 cos θ + C2 sin θ) +

4C3

r2
sin 2θ

σθ = 0

τrθ =
2C3

r2
(cos 2θ0 − cos 2θ)

(10.153)

Il reste à déterminer les constantes. Comme, par (10.149),

ψ = 2(C1 + iC2)θ + (C1 − iC2)
e2iθ

i
on a

P + iQ = ψ(θ0)− ψ(−θ0) = 4(C1 + iC2)θ0 + 2(C1 − iC2) sin 2θ0

si bien que

4C1 =
P

θ0 + 1
2 sin 2θ0

, 4C2 =
Q

θ0 − 1
2 sin 2θ0

(10.154)

Pour la détermination de C3, le plus simple est de calculer directement le mo-
ment M sur un cercle de rayon R : on a en e�et (�g .10.11)

M =

∫ θ0

−θ0
τrθR ·Rdθ

= 2C3

∫ θ0

−θ0
(cos 2θ0 − cos 2θ)dθ

= 2C3(2θ0 cos 2θ0 − sin 2θ0)
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Figure 10.11 � Calcul du moment

soit

2C3 =
M

2θ0 cos 2θ0 − sin 2θ0
(10.155)

Rassemblant les résultats (10.153), (10.154) et (10.155), on obtient comme ex-
pression �nale des contraintes

σr =
P

θ0 + 1
2 sin 2θ0

cos θ

r
+

Q

θ0 − 1
2 sin 2θ0

sin θ

r

+
M

2θ0 cos 2θ0 − sin 2θ0

sin 2θ

r2

σθ = 0

τrθ =
M

2θ0 cos 2θ0 − sin 2θ0

cos 2θ0 − cos 2θ

r2
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10.16 Problème de Flamant (1892)

Figure 10.12 � Problème de Flamant

Pour θ0 = π/2, le problème précédent correspond à un demi-plan indé�ni :
c'est le problème de Flamant. On a alors

sin 2θ0 = sinπ = 0, cos 2θ0 = cosπ = −1

et, en se limitant à la seule charge (P,Q), il vient
σr = 2

P cos θ +Q sin θ

πr
σθ = 0
τrθ = 0

En notant que selon la �gure 10.12,

P = S cos γ, Q = S sin γ



10.16. PROBLÈME DE FLAMANT 313

on peut encore écrire

σr = 2S
cos(θ − γ)

πr
, σθ = 0, τrθ = 0 (10.156)

les composantes cartésiennes des contraintes sont liées aux précédentes par

σx + σy = σr + σθ = 2S
cos(θ − γ)

πr

σx − σy + 2iτxy = e2iθ(σr − σθ + 2iτrθ) = e2iθ2S
cos(θ − γ)

πr

ce qui donne

σx =
S cos(θ − γ)

πr
(1 + cos 2θ) =

2S cos(θ − γ)

πr
cos2 θ

σy =
S cos(θ − γ)

πr
(1− cos 2θ) =

2S cos(θ − γ)

πr
sin2 θ

τxy =
S cos(θ − γ)

πr
sin 2θ =

2S cos(θ − γ)

πr
sin θ cos θ

(10.157)

On utilise aussi parfois le système Ox1y1 de la charge, représenté en �gure
10.13. Alors, comme l'angle λ compté à partir de l'axe des x1 est donné par

λ = θ − γ

on a

σx1
+ σy1 = σr + σθ = 2S

cos(θ − γ)

πr
= 2S

cosλ

πr

σx1
− σy1 = e2iλ(σr − σθ + 2iτrθ) = e2iλ2S

cosλ

πr

soit
σx1

=
S cosλ

πr
(1 + cos 2λ) =

2S cos3 λ

πr
=

2S cos4 λ

πx1

σy1 =
S cosλ

πr
(1− cos 2λ) =

2S cosλ

πr
sin2 λ =

2S sin2 cos2 λ

πx1

τx1y1 =
2S cosλ

πr
sinλ cosλ =

2S sinλ cos3 λ

πx1
(10.158)
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Figure 10.13 � Système d'axes de la charge

Fait remarquable, ces dernières expressions ne font pas intervenir l'angle γ de
la charge.

Intégrons les déplacements. Avec

C1 =
P

2π
, C2 =

Q

2π

les formules (10.151) donnent

F =
P + iQ

2π
ln z, F̄ ′ =

P − iQ
2π

1

z̄
, K̄ ′ = −P − iQ

2π
ln z̄

d'où

u+ iv =
1

E

[
(3− ν)

P + iQ

2π
ln z − (1 + ν)

P − iQ
2π

z

z̄
+ (1 + ν)

P − iQ
2π

ln z̄

]
=

1

2πE

[
(3− ν)(P + iQ)(ln r + iθ)− (1 + ν)(P − iQ)e2iθ

+(1 + ν)(P − iQ)(ln r − iθ)]
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Il vient donc

u =
1

2πE
[(3− ν)(P ln r −Qθ)− (1 + ν)(P cos 2θ +Q sin 2θ)

+ (1 + ν)(P ln r −Qθ)]

=
1

2πE
{P [4 ln r − (1 + ν) cos 2θ)]−Q[4 + (1 + ν) sin 2θ]} (10.159)

et

v =
1

2πE
[(3− ν)(Pθ +Q ln r)− (1 + ν)(P sin 2θ −Q cos 2θ)

− (1 + ν)(Pθ +Q ln r)]

=
1

2πE
{P [2(1− ν)θ − (1 + ν) sin 2θ] +Q[2(1− ν) ln r + (1 + ν) cos 2θ]}

(10.160)

Ces déplacements sont évidemment dé�nis à un mouvement de corps rigide près.
On ne peut lever l'indétermination en exigeant la nullité à l'in�ni, du fait de
leur structure. Mais on peut imposer qu'en un point de coordonnées (R, 0), R
étant �xé, u = v = ω = 0. Comme

u(R, 0) =
1

2πE
{P [4 lnR− (1 + ν)]− 4Q} = u0

v(R, 0) =
1

2πE
{Q[2(1− ν) lnR+ (1 + ν)]} = v0

ω(R, 0) =
4

E
=F ′(R, 0) =

4

E
=
[
P + iQ

2π

1

R

]
=

1

2πE

4Q

R
= ω0

le déplacement à soustraire a pour composantes{
ũ = u0 − ω0y = u0 − ω0r sin θ
ṽ = v0 + ω0(x−R) = v0 − ω0R+ ω0r cos θ

Il vient alors

û = u− ũ = 1
2πE {P [4 ln r

R + (1 + ν)(1− cos 2θ)]

−Q[− r
R sin θ + (1 + ν) sin 2θ]}

v̂ = v − ṽ = 1
2πE {P [2(1− ν)θ − (1 + ν) sin 2θ]

+Q[2(1− ν) ln r
R − (1 + ν)(1− cos 2θ) + 4(1− r

R sin θ]}
(10.161)
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10.17 Disque circulaire soumis à deux forces P
opposées

Figure 10.14 � Disque soumis à deux forces opposées

Ce problème se résout par superposition. La charge P située en A (�g. 10.14)
provoquerait, dans le demi-plan situé sous la tangente en A, des contraintes
données par 

σrA + σθA =
2P cosα

πrA

σrA − σθA + 2iτrAθA =
2P cosα

πrA
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De même, la charge située en B provoquerait, dans le demi-plan situé au-dessus
de la tangente en B, des contraintes données par

σrB + σθB =
2P cosβ

πrB

σrB − σθB + 2iτrBθB =
2P cosβ

πrB

En superposant ces deux états, on obtient, en un point C situé sur la circonfé-
rence, et dans les coordonnées polaires du cercle,

� Contraintes dues à PA :


σr + σθ =

2P cosα

πrA

σr − σθ + 2iτrθ =
2P cosα

πrA
e−2iβ1

 , d'où,

en notant d le diamètre du cercle,

σr =
P cosα

πrA
(1 + cos 2β1) =

2P cosα

πrA
cos2 β1 =

2P

πd
cosα cosβ1

σθ =
P cosα

πrA
(1− cos 2β1) =

2P cosα

πrA
sin2 β1 =

2P

πd
cosα tg β1 sinβ1

τrθ = −P cosα

πrA
sin 2β1 = −2P cosα

πrA
sinβ1 cosβ1 = −2P

πd
cosα sinβ1

� Contraintes dues à PB :


σr + σθ =

2P cosβ

πrB

σr − σθ + 2iτrθ =
2P cosβ

πrB
e2iα1

 , d'où



σr =
2P

πd
cosβ cosα1

σθ =
2P

πd
cosβ tgα1 sinα1

τrθ =
2P

πd
cosβ sinα1

Additionnant, et tenant compte des relations α1 = π
2 − α et β1 = π

2 − β (voir
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�gure 10.14), on obtient, toujours sur la circonférence,

σr =
2P

πd
(sinβ cosα+ sinα cosβ) =

2P

πd
sin(α+ β)

σθ =
2P

πd
(cosα cotg β cosβ + cosβ cotgα cosα)

=
2P

πd
cotgα cotg β sin(α+ β)

τrθ =
2P

πd
(cosα cosβ − cosα cosβ) = 0

Cette distribution de contraintes permet d'équilibrer les deux charges, mais elle
ne véri�e pas l'équilibre à la frontière du cercle, où

σr =
2P

πd
sin(α+ β) = p = cte

puisque (voit �gure 10.14)

α+ β =
1

2

arc(ACB)

d/2
= γ

En additionnant un état de contrainte hydrostatique

σx = σy = −p

évidemment en équilibre à l'intérieur, puisqu'il s'agit d'un champ de contraintes
constantes, on rétablit l'équilibre à la frontière, sans déséquilibrer les charges
qui produisent un état de contrainte in�ni dans leur voisinage. C'est le résultat
obtenu par Michell en 1900 : l'état de contrainte dans un cylindre soumis à deux
charges opposées s'obtient en superposant les contraintes de Flamant relatives à
ces deux charges et un état hydrostatique

−p = −2P

πd
sin γ

Les composantes cartésiennes du champ de contrainte résultant sont données
par (�g. 10.15)

σx + σy =
2P cosα

πrA
+

2P cosβ

πrB
− 2P

πd
sin γ

σx − σy + 2iτxy =
2P cosα

πrA
e−2iα′ +

2P cosβ

πrB
e−2iβ′
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Figure 10.15 � Calcul des contraintes en un point du disque

ce qui donne

σx =
P

π

[
cosα

rA
(1 + cos 2α′) +

cosβ

rB
(1 + cos 2β′)− 2 sin γ

d

]

=
2P

π

[
cosα sin2 α

rA
+

cosβ sin2 β

rB
− sin γ

d

]

σy =
P

π

[
cosα

rA
(1− cos 2α′) +

cosβ

rB
(1− cos 2β′)− 2 sin γ

d

]

=
2P

π

[
cos3 α

rA
+

cos3 β

rB
− sin γ

d

]

τxy =
P

π

[
−cosα sin 2α′

rA
+

cosβ sin 2β′

rB

]

=
P

π

[
− sinα cos2 α

rA
+

sinβ cos2 β

rB

]

(10.162)
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10.18 Poutre circulaire soumise à un moment cons-
tant (Golovin, 1881) [40]

Figure 10.16 � Poutre circulaire en �exion pure

Dans ce problème illustré par la �gure 10.16, il est clair que les contraintes
doivent être indépendantes de θ. Il doit donc en être de même de la fonction
d'Airy. Dans l'expression générale

ϕ =
1

2
(z̄F + zF̄ +K + K̄)

posons F = zH. Il vient alors

ϕ =
1

2

(
|z|2(H + H̄) +K + K̄

)
Il su�ra donc de trouver des fonctions analytiques H et K dont les parties
réelles ne dépendent pas de θ. Les seules fonctions de ce type sont

H = A ln z +B, K = C ln z +D

La constante D est improductive et peut donc, sans perte de généralité, être
posée nulle. On a alors

F = Az ln z +Bz, K = C ln z



10.18. POUTRE CIRCULAIRE SOUMISE À UN MOMENT CONSTANT321

et

ϕ = Ar2 ln r +Br2 + C ln r (10.163)

Sur le contour, les cercles de rayon a et b sont libres de toute charge ; en outre,
sur le segment AB, la résultante des charges est nulle. On peut donc poser

iψ = 0 en r = a et r = b

soit explicitement

0 = F + zF̄ ′ + K̄ ′ = A(z ln z + z ln z̄ + z) + 2Bz +
C

z̄

= eiθ
[
A(2r ln r + r) + 2Br +

C

r

]
en r = a et r = b

Il en résulte les conditions A(2b ln b+ b) + 2Bb+ C
b = 0

A(2a ln a+ a) + 2Ba+ C
a = 0

(10.164)

Par ailleurs, sur le segment AB, on a

M =

∫ B

A

(xTy − yTx)ds

=

∫ B

A

(
x
∂ψy
∂t
− y ∂ψx

∂t

)
ds

= [xψy − yψx]
B
A −

∫ B

A

(ψydx− ψxdy)

=

∫ B

A

(
∂ϕ

∂x
dx+

∂ϕ

∂y
dy

)
= [ϕ]

B
A

soit

M = ϕ(b)− ϕ(a) = A(b2 ln b− a2 ln a) +B(b2 − a2) + C ln
b

a
(10.165)



322 CHAPITRE 10. ÉLASTICITÉ PLANE

Cette condition, jointe aux deux équations (10.164), permet de calculer


A = −2M

N
(b2 − a2)

B =
M

N
[(b2 − a2 + 2(b2 ln b− a2 ln a)]

C = −4M

N
a2b2 ln

b

a

(10.166)

avec

N =
(
b2 − a2

)2 − 4a2b2 ln2 b

a
(10.167)

Nous sommes à présent en mesure de calculer les contraintes :

σr + σθ = σx + σy = 4<F ′ = 4A(ln r + 1) + 4B

σr − σθ + 2iτrθ = e−2iθ(−2zF̄”− 2K̄”) = e−2iθ

(
−2A

z

z̄
+ 2

C

z̄2

)
= −2A+

2C

r2

d'où 
σr = A(2 ln r + 1) + 2B + C

r2

σr = A(2 ln r + 3) + 2B − C
r2

τrθ = 0

soit, explicitement,


σr = −4M

N

[
a2b2

r2
ln
b

a
− b2 ln

b

r
− a2 ln

r

a

]
σθ = −4M

N

[
b2 − a2 −

a2b2 ln b
a

r2
− b2 ln

b

r
− a2 ln

r

a

]
τrθ = 0

(10.168)
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Calculons à présent les déplacements. On a

u+ iv =
1

E
[(3− ν)F − (1 + ν)zF̄ ′ − (1 + ν)K̄ ′]

=
1

E

{
(3− ν)(Az ln z +Bz)− (1 + ν)z[A(ln z̄ + 1) +B]− (1 + ν)

C

z̄

}
=

1

E

{
(3− ν)[Areiθ(ln r + iθ) +Breiθ]

−(1 + ν)reiθ[A(ln r − iθ + 1) +B]− (1 + ν)
C

r
eiθ
}

et

ur + iuθ = e−iθ(u+ iv)

=
1

E
{(3− ν)[Ar(ln r + iθ) +Br]− (1 + ν)r[A(ln r − iθ + 1) +B]

−(1 + ν)
C

r

}

ce qui donne (à un déplacement de corps rigide près)

 ur = 1
E

{
2(1− ν)(Ar ln r +Br)− (1 + ν)(Ar + C

r )
}

uθ = 4
EArθ

(10.169)

On remarquera que uθ varie linéairement en fonction du rayon, c'est-à-dire que
l'hypothèse de Bernoulli (conservation de la planéité des sections droites) est
véri�ée. Par ailleurs, la théorie de Winkler [97, 98], dans laquelle σθ varie selon
un loi hyperbolique, donne pour cette contrainte des valeurs très voisines de la
présente solution.

Lorsque la poutre est très mince, c'est-à-dire pour b−a
2R � 1, on a, en posant

t = (b− a) = 2Rε, ε� 1

r = R+ y = R(1 + ερ)
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les relations asymptotiques suivantes :

b2 − a2 = 4εR2

a2b2 ln b
a

r2
= 2R2ε(1− 2ερ) (1 +O(ε))

b2 ln
b

r
= R2

[
ε(1− ρ) +O(ε2)

]
a2 ln

r

a
= R2

[
ε(1 + ρ) +O(ε2)

]
N =

64

3
R4ε4

(
1 +O(ε2)

)
ce qui donne

σθ = − 3M

16R4ε4
[
4R2ε− 2R2ε(1− 2ερ)−R2ε(1− ρ)−R2ε(1 + ρ)

]
(1 +O(ε))

= − 3Mερ

4R2ε3
(1 +O(ε))

= −6My

t3
(1 +O(ε))

c'est-à-dire que la formule de la �exion des poutres droites s'applique avec une
erreur de l'ordre de t/R.

10.19 Problème de Neuber [64, 65]

On considère une portion de plan limitée par des hyperboles et soumise à une
extension sous une charge P . On désire connaître la contrainte à fond d'entaille
(point A sur la �gure 10.17).

La solution de ce problème repose sur la transformation conforme

z = a sh ξ (10.170)

soit, en termes réels, pour ξ = α+ iβ,

x = a shα cosβ, y = a chα sinβ

Dans cette transformation, les courbes α = cte ont pour équation

x2

a2 sh2 α
+

y2

a2 ch2 α
= 1 (10.171)



10.19. PROBLÈME DE NEUBER 325

Figure 10.17 � Problème de Neuber

Ce sont donc des ellipse de demi-axes a shα et a chα. Les courbes β = cte ont
pour équation

y2

a2 sin2 β
− x2

a2 cos2 β
= 1 (10.172)

Il s'agit d'hyperboles, d'axe réel selon y et égal à 2a sinβ et d'axe imaginaire
2a cosβ sur l'axe des x. Ces hyperboles admettent les asymptotes

y = ±x tg β

faisant un angle ±β avec l'axe des x. Pour α su�samment grand, les ellipses
(10.171) tendent à devenir circulaires, avec un rayon

r ≈ a shα ≈ a chα ≈ ae
α

2

A ces grandes distances de l'origine, on a donc

x ≈ r cosβ, y ≈ r sinβ
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c'est-à-dire que β représente asymptotiquement l'angle θ de la trigonométrie.
Nous écrirons les fonctions F et K en termes de ξ :

F (z) = F (a sh ξ) = F1(ξ), K(z) = K(a sh ξ) = K1(ξ)

Les dérivées se calculent alors par la relation

F ′(z) =
F ′1(ξ)

a ch ξ

et de même pour K ′.
A l'in�ni, la distribution des contraintes doit approcher celle du coin de

Michell,
F (z) = C ln z

Comme, pour α su�samment grand,

ln z = ln(a sh ξ) ≈ ln(
a

2
eξ) = ln

a

2
+ ξ

nous chercherons une solution pour laquelle

F1(ξ) = Cξ (10.173)

Pour déterminer la fonction K1, nous partirons du fait que sur les frontières
β = ±β0 du domaine, la fonction ψ doit être constante, puisque ces bords sont
libres de toute charge. Considérons le bord β = β0. On a

iψ = F + zF̄ ′ + K̄ ′

= Cξ +
Ca sh ξ + K̄ ′1

a ch ξ̄

= C(α+ iβ0) +
Ca sh(α+ iβ0) + K̄ ′1(α, β0)

a ch(α− iβ0)

Sa constance s'exprime par la condition

0 =
∂

∂α
(iψ) =

1

a2 ch2(α− iβ0)
[Ca2 ch2(α− iβ0) + Ca2 cos 2β0

+ a ch(α− iβ0)K̄1”(α, β0)− a sh(α− iβ0)K̄ ′1(α, β0)]

Ceci sera réalisé si

ch(α− iβ0)K̄1”(α, β0)− sh(α− iβ0)K̄ ′1(α, β0)

= −Ca cos 2β0 − Ca ch2(α− iβ0) (10.174)
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En l'absence de second membre, cette équation peut s'écrire

K̄1”(α, β0)

K̄ ′1(α, β0)
=

sh(α− iβ0)

ch(α− iβ0)

et admet visiblement la solution

K̄ ′1(α, β0) = A ch(α− iβ0)

On trouve aisément une solution particulière pour le premier terme du second
membre, sous la forme

K̄ ′1I(α, β0) = B sh(α− iβ0)]

qui mène à la condition

B[ch2(α− iβ0)− sh2(α− iβ0)] = −Ca cos 2β0

On a donc
K̄ ′1I(α, β0) = −Ca cos 2β0 sh(α− iβ0) (10.175)

Pour le second terme du second membre, on utilisera la méthode de variation
des constantes : en posant

K̄ ′1II = Ā(α, β0) ch(α− iβ0)

on obtient
Ā′(α, β0) ch2(α− iβ0) = −Ca ch2(α− iβ0)

d'où Ā(α, β0) = −Ca(α− iβ0) et

K̄ ′1II(α, β0) = −Ca(α− iβ0) ch(α− iβ0) (10.176)

Au total, la constance de ψ est assurée sur le bord β = β0 si K̄1 y est de la
forme

K̄ ′1(α, β0) = −Ca cos 2β0 sh(α− iβ0)− Ca(α− iβ0) ch(α− iβ0) (10.177)

La condition sur le bord β = −β0 s'obtient en remplaçant dans la condition
(10.174) β0 par (−β0). On véri�e sans peine qu'elle sera réalisée si

K̄ ′1(α,−β0) = −Ca cos 2β0 sh(α+ iβ0)− Ca(α+ iβ0) ch(α+ iβ0) (10.178)
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On constate donc que la fonction

K ′1(ξ) = −Ca cos 2β0 sh ξ − Caξ ch ξ (10.179)

permet de véri�er l'équilibre sur le contour. Avec cette fonction, on obtient, en
β = ±β0,

iψ = C

(
ξ +

sh ξ

ch ξ̄
− cos 2β0 sh ξ̄

ch ξ̄
− ξ̄ ch ξ̄

ch ξ̄

)
= C(±2iβ0 ± i sin 2β0)

La charge P vaut donc

P = ψ(β0)− ψ(−β0) = C(4β0 + 2 sinβ0)

ce qui détermine la constante C :

C =
P

4β0 + 2 sinβ0
(10.180)

Au fond de l'entaille, la contrainte normale est nulle, donc la contrainte
tangentielle vaut

σt = σx + σy = 4<F ′ = 4<
(

F ′1
a ch ξ

)
= < 4C

a ch ξ

Au point A a pour coordonnées α = 0, β = β0, cela donne

σt = < 4C

a cosβ0
=

4C

a cosβ0
= σmax

La contrainte nominale dans la section est naturellement

σnom =
P

d
=

P

2a sinβ0
=
C(2β0 + sinβ0)

a sinβ0

ce qui donne la valeur suivante du coe�cient de concentration de contrainte :

αk =
σmax

σnom
=

4 tg β0

2β0 + sin 2β0
(10.181)

Il est de coutume d'employer le rayon de courbure à fond d'entaille pour décrire
celle-ci. Pour déterminer ce rayon, notons que le bord est une hyperbole dont
l'équation (10.172) peut être écrite, pour les petites valeurs de x,

y = a sinβ0

√
1 +

x2

a2 cos2 β0
≈ a sinβ0

(
1 +

x2

2a2 cos2 β0

)
= y0 +

x2

2R
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ce qui donne
1

R
=

sinβ0

a cos2 β0

et, puisque d/2 = a sinβ0,
d

2R
= tg2 β0

Tenant compte de la formule classique

sin 2β0 =
2 tg β0

1 + tg2 β0

on obtient

αk =
2
√

d
2R

arctg

(√
d

2R

)
+

√
d

2R

1 + d
2R

(10.182)

Pour d/R→ 0, on a αk → 1 ; pour d/R→∞,

αk ≈
2
√

d
2R

π
2

=

√
0, 8106

d

R

La formule (10.182) étant compliquée, Neuber a proposé de l'approcher par une
expression de la forme

αk = 1 +

(√
A+B

d

R
−
√
A

)
(10.183)

Pour être correct à l'in�ni, il faudra évidemment que B = 0, 8106. Par ailleurs,
les valeurs de d/R les plus courantes en pratique sont de l'ordre de d/R = 30.
Pour cette valeur, le calcul donne αk = 4, 963. On détermine alors A en résolvant
la relation (10.183) comme suit :

(αk − 1)2 + 2
√
A(αk − 1) +A = A+B

d

R

d'où

√
A =

1

2

[
B d
R

(αk − 1)
− (αk − 1)

]

=
1

2

[
0, 8106 · 30

3, 963
− 3, 963

]
= 1, 087
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soit A = 1, 181. La formule approchée est donc 3

αk =

√
1, 181 + 0, 8106

d

R
− 0, 087 (10.184)

Le tableau suivant compare les valeurs obtenues par ces deux formules :

d/R αk exact αk approché erreur %
0 1 0,9997 -0.03
1 1,301 1,324 +1,8
2 1,556 1,587 +2
5 2,168 2,201 +1,5
10 2,937 2,960 +0,8
20 4,075 4,083 +0,2
50 6,387 6,371 -0,3
100 9,014 8,982 -0,4
200 12,74 12,69 -0,4
500 20,13 20,07 -0,3
1000 28,47 28,40 -0,2

Comme on peut le constater, la correspondance est excellente (moins de 2 %
d'erreur).

10.20 Problème de Neuber en �exion

Pour la même géométrie, considérons à présent une �exion pure. Dans le cas
du coin, on a, pour cette sollicitation,

F =
iA

z
, K = iB ln z

Cet état devra se retrouver au voisinage de l'in�ni. Or, pour ξ →∞, on a

a sh ξ ≈ a

2
eξ, ln(a sh ξ) ≈ ln

a

2
+ ξ

Ceci suggère de chercher une solution de la forme

F = iAe−ξ, K = iBξ (10.185)

3. La formule proposée par Neuber est αk =
√

0, 8d/R+ 1, 2− 0, 1.
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ce qui entraîne

F ′ =
−iAe−ξ

a ch ξ
K ′ =

iB

a ch ξ

et

iψ = F + a sh ξF̄ ′ + K̄ ′

= i

[
Ae−ξ +A

sh ξe−ξ̄

ch ξ̄
− B

a ch ξ̄

]

= i
Ae−ξ ch ξ̄ +A sh ξe−ξ̄ −B/a

ch ξ̄

= i

A
2

(
e−ξ+ξ̄ + e−ξ−ξ̄ + eξ−ξ̄ − e−ξ−ξ̄

)
−B/a

ch ξ̄

= i
A cos 2β −B/a

ch ξ̄

Cette fonction sera nulle en β = ±β0 si l'on pose

B = Aa cos 2β0 (10.186)

On détermine alors A par la relation entre le moment et la fonction d'Airy (voir
section 10.18) :

M = [ϕ]
β0

−β0

Dans notre cas,

ϕ =
1

2
(z̄F + zF̄ +K + K̄)

=
1

2

(
iAa sh ξ̄e−ξ − iAa sh ξe−ξ̄ = iBξ − iBξ̄

)
=

iAa

4

(
eξ̄−ξ − e−ξ̄−ξ − eξ−ξ̄ + e−ξ−ξ̄

)
+
iB

2
(ξ − ξ̄)

=
iAa

4
2 sh(−2iβ) + iB · 2iβ

=
Aa

2
sin 2β −Aa cos 2β0 · β

=
Aa

2
(sin 2β − 2β cos 2β0)
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d'où
M = Aa(sin 2β0 − 2β0 cos 2β0)

ce qui donne

A =
M

a(sin 2β0 − 2β0 cos 2β0)

On a alors

σx + σy = 4<F ′ = <
(
−4iAe−ξ

a ch ξ

)
A fond d'entaille, pour α = 0, β = −β0, cela donne

σx + σy = <
(
−4iAeiβ0

a cosβ0

)
=

4A

a
tg β0 = σmax

La contrainte nominale dans la section est dé�nie par la loi d'équarrissage clas-
sique,

σnom =
6M

d2
=

6Aa(sin 2β0 − 2β0 cos 2β0)

4a2 sin2 β0

ce qui conduit à la valeur suivante du coe�cient de concentration de contrainte :

αk =
σmax

σnom
=

8

3
tg β0

sin2β0

sin 2β0 − 2β0 cos 2β0
(10.187)

On véri�e que pour β0 → 0, on a

sin2β0 − 2β0 cos 2β0 ≈ 2β0 −
8β3

0

6
− 2β0 +

8β3
0

2
≈ 8β3

0

3

si bien que αk → 1, comme on pouvait s'y attendre. Exprimons à présent αk en
termes de d/(2R). Tenant compte des relations

tg β0 =

√
d

2R

sinβ0 =
tg β0√

1 + tg2 β0

=

√
d

2R√
1 + d

2R

sin 2β0 =
2 tg β0

1 + tg2 β0
=

2
√

d
2R

1 + d
2R

cos 2β0 =
1− tg2 β0

1 + tg2 β0
=

1− d
2R

1 + d
2R
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on obtient

αk =
4

3

(
d

2R

)3/2

√
d

2R
−
(

1− d

2R

)
arctg

√
d

2R

(10.188)

De la même façon qu'en extension, on peut approcher cette formule par une
expression de la forme

αk = 1 +

(√
A+B

d

R
−
√
A

)
A l'in�ni, on a

αk ≈
4
3
d

2R

√
d

2R

d
2R

π
2

=

√
0, 3603

d

R

d'où B = 0, 3603. Pour d/R = 30, le calcul donne αk = 3, 469, ce qui donne

√
A =

1

2

(
0, 3603 · 30

2, 469
− 2, 469

)
= 0, 9544

soit A = 9110. On obtient ainsi la formule 4

αk ≈
√

0, 9110 + 0, 3663
d

R
+ 0, 0456 (10.189)

Les résultats donnés par la formule exacte et par la formule approchée sont
comparés dans le tableau suivant :

d/R αk exact αk approché erreur %
0 1 1 0
1 1,180 1,173 -0,6
2 1,333 1,323 -0,8
5 1,705 1,693 -0,7
10 2,180 2,170 -0,5
20 2,899 2,895 -0,1
50 4,390 4,396 +0,1
100 6,110 6,124 +0,2
200 8,567 8,588 +0,2
500 13,47 13,50 +0,2
1000 19,02 19,05 +0,2

4. La formule originale de Neuber est αk ≈
√

0, 355d/R+ 0, 85 + 0, 08
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Ici encore, la correspondance est excellente (moins de 0,8 % d'erreur).

10.21 Annexe : disques d'épaisseur variable en
rotation

10.21.1 Équations générales

Les disques de turbines sont d'épaisseur t variable en fonction du rayon.
Une étude approchée de ces disques peut être faite en admettant les hypothèses
suivantes :

ur = u(r) σz = τrz = 0

Il vient alors, par les travaux virtuels, en considérant une variation δu nulle aux
rayons d'extrémité R1 et R2,

0 = 2π

∫ R2

R1

(
rtσr

∂δu

∂r
+ tσθδu − ρω2r2tδu

)
dr

= 2π

∫ R2

R1

[
− d

dr
(rtσr) + tσθ − ρω2r2t

]
δudr

ce qui conduit à l'équation d'équilibre

d

dr
(rtσr)− tσθ = ρω2r2t (10.190)

Les relations entre les déformations et les contraintes sont
du

dr
=

1

E
(σr − νσθ)

u

r
=

1

E
(σθ − νσr)

Pour que ces deux relations soient compatibles, il faut que

d

dr
[r(σθ − νσr)] = σr − νσθ

ce qui s'écrit encore

r
d

dr
(σθ − νσr) = (1 + ν)(σr − σθ) (10.191)
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10.21.2 Disque d'égale résistance

Il est possible d'obtenir
dσr
dr

=
dσθ
dr

= 0

dans certaines conditions. A partir de la relation (10.191), on déduit immédia-
tement

σr = σθ = σ = cte

La relation (10.190) fournit alors une expression de l'épaisseur : elle devient en
e�et

σ
d

dr
(rt)− tσ + ρω2r2t = 0

soit

σ

(
r
dt

dr
+ 1− 1

)
= −ρω2r2t

ce qui entraîne

dt

t
= −ρω

2rdr

σ
, ln

t

t0
= −ρω

2r2

2σ

et

t = t0 exp

(
−ρω

2r2

2σ

)
Cette expression suppose que le disque va de r = 0 à r =∞. Les déplacements
dans le disque sont alors donnés par

u =
r

E
(σ − νσ) =

(1− ν)σr

E

10.21.3 Jante

En pratique, le disque se termine par une jante à laquelle sont accrochés les
aubages. On peut admettre que la jante se comporte comme une barre courbe
en extension, avec

ε =
u

r
= cte

L'e�ort circonférentiel dans la jante est donc donné par

Nj = EΩ
(u
r

)
j

Les forces agissant sur la jante sont (�g. 10.18)
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Figure 10.18 � Equilibre de la jante

� La force centrifuge de la jante, dont la résultante sur une demi-circonférence
est

ρΩω2rj · 2rj = 2ρΩω2r2
j

� La force centrifuge des aubes. Si la masse des aubes par unité de longueur
est de µ au rayon ra, cette force vaut, pour une demi-circonférence,

µω2ra · 2ra = 2µω2r2
a

� Les forces de rappel du disque, résultantes des σr en r = r2, rayon
de la jonction du disque et de la jante. Leur résultante sur une demi-
circonférence est

σr(r2)t2 · 2r2
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Au total, on a donc

2Nj = 2

(
ρΩ + µ

r2
a

r2
j

)
︸ ︷︷ ︸

µ∗

ω2r2
j − 2σr(r2)t2rr

soit
EΩ

(u
r

)
j

= EΩ
u2

r2
= µ∗ω2r2

j − σr(r2)t2r2

ce qui donne

u2 =
r2

EΩ
[µ∗ω2r2

j − σr(r2)t2r2] (10.192)

10.21.4 Moyeu

On munit également les disques d'un moyeu, allant de l'arbre (rayon r0) à un
rayon r1 = 1, 8 à 2r0. Ce moyeu, d'épaisseur tm constante, véri�e les équations
clasiques des disques d'épaisseur constante en rotation :

u =
1− ν2

E

[
Ar +

B

r
− 1

8
ρω2r3

]

σr = (1 + ν)A− (1− ν)
B

r2
− 3 + ν

8
ρω2r2

σθ = (1 + ν)A+ (1− ν)
B

r2
− 1 + 3ν

8
ρω2r2

(10.193)

10.21.5 Renforcement neutre

Nous dirons qu'une jante et un moyeu constituent un renforcement neutre
d'un disque d'égale résistance si leur comportement est identique à celui de la
portion de disque qu'ils remplacent, c'est-à-dire s'ils donnent le même u et le
même (tσr). Cette notion permet le dimensionnement complet du disque.

1. Condition de jante - La jante et les aubages étant donnés, la relation
entre le déplacement et l'e�ort est fournie par l'équation (10.192). Si σ est
la contrainte dans le disque, on doit avoir

σ(r2) = σ, u(r2) =
σr2(1− ν)

E
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d'où la condition

σr2(1− ν)

E
=

r2

EΩ
(µ∗ω2r2

j − σt2r2)

ce qui donne

t2 = −EΩ

σr2
2

σr2(1− ν)

E
+
µ∗ω2r2

j

σr2

=
µ∗ω2r2

j

σr2
− (1− ν)Ω

r2
(10.194)

On en déduit les épaisseurs du disque en r 6= r2 à partir des relations

t2 = t0 exp

(
−ρω

2r2
2

2σ

)
t = t0 exp

(
−ρω

2r2

2σ

)
qui se combinent en

t

t2
= exp

(
ρω2(r2

2 − r2)

2σ

)
(10.195)

En particulier, pour r = r1, on a

t1 = t2 exp

(
ρω2(r2

2 − r2
1)

2σ

)
(10.196)

2. Condition de moyeu - Le moyeu doit d'abord véri�er

σr(r0) = (1 + ν)A− (1− ν)
B

r2
0

− 3 + ν

8
ρω2r2

0 = −p (10.197)

où p est l'éventuelle pression de frettage sur l'arbre. Une second relation
est donnée par l'égalité des déplacements du dsque et du moyeu en r = r1 :

u(r1) =
1− ν2

E

[
Ar1 +

B

r1
− 1

8
ρω2r2

1

]
=

(1− ν)σr1

E

soit

A+
B

r2
1

=
σ

1 + ν
+

1

8
ρω2r2

1 (10.198)
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Les deux équations (10.197) et (10.198) dé�nissent A et B. On en déduit

σr(r1) = (1 + ν)A− (1− ν)
B

r2
1

− 3 + ν

8
ρω2r2

1

ce qui permet de �xer l'épaisseur du moyeu par la condition d'équilibre

σr(r1)tm = σt1

soit

tm = t1
σ

σr(r1)
(10.199)

3. Raccordement du moyeu - Il est évidemment nécessaire de réaliser un congé
pour le raccordement du moyeu au disque, de manière à limiter les concen-
trations de contrainte. Une idée raisonnable de cette concentration est
donnée par la formule suivante, relative aux changements de section des
barres [19] :

αk = max(1, α∗k) avec α∗k = 0, 9616 +B

√
t1
R

où B dépend du rapport t1/tm, selon le tableau suivant :

t1/tm B
1 0,075
1,1 0,2
1,2 0,285
1,3 0,34
1,4 0,37
1,5 0,395
1,6 0,415
1,7 0,43
1,8 0,44
1,9 0,455
2 0,46
>2 0, 27 + 0, 095t1/tm
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10.21.6 Exemple



ω = 314rad/s Ω = 2480mm2

r0 = 90mm µ = 8kg/m
rj = 579mm ρ = 7800kg/m3

r2 = 545mm E = 210GPa
ra = 615mm ν = 0, 3
r1 = 180mm σ = 100MPa

p = 0

On calcule successivement

Jante et voile

µ∗ = ρΩ + µ
r2
a

r2
j

= 7800 · 2, 480 · 10−3 + 8

(
615

579

)2

= 28, 37kg/m

t2 =
28, 37 · 314

2 · 0, 579
2

108 · 0, 545
− 0, 7 · 2, 480 · 10−3

0, 545

= 17, 21 · 10−3 − 3, 185 · 10−3 = 14,02 · 10−3m
t

t2
= exp

(
7800 · 314

2
(0, 545

2 − r2)

2 · 108

)
= exp

(
3, 845(0, 545

2 − r2)
)

t1 = 14, 02 · 10−3 · exp
(

3, 845(0, 545
2 − 0, 180

2
)
)

= 38,78 · 10−3m

Moyeu
� Condition d'équilibre à l'arbre

1, 3A− 0, 7
B

0, 09
2 =

3, 3

8
7800 · 314

2 · 0, 09
2

soit

1, 3A− 86, 42B = 2, 570 · 10−6 ⇔ A− 66, 48B = 1, 997 · 10−6

� Compatibilité à la jonction moyeu-voile

A+
B

0, 180
2 =

108

1, 3
+

1

8
7800·314

2·0, 180
2

= 76, 92·106+3, 115·106 = 80, 04·106
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soit
A+ 30, 86B = 80, 04 · 106

� On déduit de ces deux conditions

A = 55,29 · 106Pa, B = 802,0 · 103N

On a donc

σr = 1, 3A−0, 7
B

r2
−3, 3

8
7800·314

2
r2 = 71, 88·106−561, 4 · 103

r2
−317, 2·106r2

En r = 0, 180m, il vient

σr = 44, 27 · 106Pa

si bien que

tm = t1
100

44, 27
= 87,59mm

Contrainte circonférentielle en r = r0

σθ(r0) = 1, 3A+ 0, 7
B

r2
0

− 1 + 3ν

8
ρω2r2

0

= 71, 88 · 106 + 69, 31 · 106 − 1, 479 · 106 = 139,7 · 106Pa

Congé - Le plus grand rayon possible, en se racordant à 90◦ sur le moyeu,
est approximativement égal à

R =
tm − t1

2
=

87, 59− 38, 78

2
= 24,41mm

En adoptant cette valeur, on obtient t1/R = 1, 589. Il en découle, dans la formule
relative à αk, B = 0, 485, ce qui donne

αk = 0, 9616 + 0, 485
√

1, 589 = 1, 573

La contrainte maximale est donc

σ max = 1, 573 · 100 = 157,3MPa

Le pro�l obtenu est représenté en �gure 10.19.
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Figure 10.19 � Pro�l calculé

10.22 Exercices

Exercice 37 Trouver directement l'état de contrainte le long du trou dans le
problème de Kirsch sans passer par la formulation complexe.

Solution - A l'in�ni, on doit avoir

ϕ∞ ≈ σ
y2

2

Au bord du trou, on a

∂

∂t

(
∂ϕ

∂x

)
=

∂

∂t

(
∂ϕ

∂y

)
= 0

ce qui permet de poser ϕ = ∂ϕ/∂r = 0. L'expression asymptotique de ϕ à l'in�ni
peut encore s'écrire

ϕ∞ = σ
r2

2
sin2 θ =

σr2

4
(1− cos 2θ)

Ceci suggère de chercher une fonction d'Airy qui soit la somme d'une fonction
de périodicité 0 et d'une fonction de périodicité 2. On écrira donc

ϕ = r2f1 + f2

en donnant aux fonctions harmoniques f1 et f2 les expressions suivantes :

f1 = <(A ln z +B + Cz2 +Dz−2) = A ln r +B + Cr2 cos 2θ +Dr−2 cos 2θ

f2 = <(E ln z + F +Gz2 +Hz−2) = E ln r + F +Gr2 cos 2θ +Hr−2 cos 2θ
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Il vient ainsi

ϕ = Ar2 ln r+Br2 +Cr4 cos 2θ+D cos 2θ+E ln r+F +Gr2 cos 2θ+Hr−2 cos 2θ

Au voisinage de l'in�ni, cette expression devient

ϕ = Ar2 ln r + Cr4 cos 2θ + (B +G cos 2θ)r2 + o(r2)

On doit donc avoir

A = C = 0, B =
σ

4
, G = −σ

4

Il reste

ϕ =
σr2

4
(1− cos 2θ) +D cos 2θ + E ln r + F +Hr−2 cos 2θ

Au rayon a du trou, on doit avoir

ϕ =
σa2

4
+ E ln a+ F +

(
−σa

2

4
+D +Ha−2

)
cos 2θ = 0

∂ϕ

∂r
=

σa

2
+
E

a
+
(
−σa

2
− 2Ha−3

)
cos 2θ = 0

ce qui mène aux conditions

E = −σa
2

2

H = −σa
2

4

F = −σa
2

4
− E ln a =

σa2

4
− σa2

2
ln a

D =
σa2

4
−Ha−2 =

σa2

4
+
σa2

4
=
σa2

2

Il vient donc

f1 =
σ

4
+
σ

2

a2

r2
cos 2θ

f2 = −σa
2

2
ln r +

σa2

4
− σa2

2
ln a− σ

4
r2 cos 2θ − σa4

4r2
cos 2θ
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Les contraintes au bord du trou véri�ent σr = τrθ = 0, σθ = σx + σy = ∇2ϕ.
Or, f2 est harmonique, donc

∇2ϕ = ∇2[(x2 + y2)f1]

On calcule aisément

∂

∂x
[(x2 + y2)f1] = 2xf1 + (x2 + y2)

∂f1

∂x
∂2

∂x2
[(x2 + y2)f1] = 2f1 + 4x

∂f1

∂x
+ (x2 + y2)

∂2f1

∂x2

et, de même,

∂2

∂y2
[(x2 + y2)f1] = 2f1 + 4y

∂f1

∂y
+ (x2 + y2)

∂2f1

∂y2

ce qui donne

∇2ϕ = 4

(
f1 + x

∂f1

∂x
+ y

∂f1

∂y

)
= 4(f1 + r · gradf1) = 4

(
f1 + r

∂f1

∂r

)
soit, au bord du trou,

σθ = 4

[
σ

4
+
σ

2

a2

r2
cos 2θ − rσ

2
2
a2

r3
cos 2θ

]
r=a

= 4
(σ

4
− σ

2
cos 2θ

)
= σ(1− 2 cos 2θ)

Le maximum a lieu pour θ = ±π/2 et vaut 3σ.

Exercice 38 Soit un arbre de rayon Ri sur lequel est fretté un moyeu de rayon
extérieur Re. Les deux pièces sont en acier (E = 210GPa, ν = 0, 3, ρ =
7800kg/m3). Avant pose, le rayon de l'arbre surpasse le rayon intérieur du
moyeu. On donne

Ri = 40mm, Re = 150mm, δ = 100µm

On demande

1. La pression de contact de l'arbre sur le moyeu lors de la pose.

2. Comment évolue cette pression lorsque l'ensemble tourne ?
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3. A quelle vitesse la pression de l'arbre sur le moyeu s'annule-t-elle ?

Solution

1.

Qm =
40

150
= 0, 2267

Cm =
1

210000 · 0, 9289
(1, 3 + 0, 7 · 0, 711) = 6, 919 · 10−6(MPa)−1

Ca =
1

210000
(0, 7 + 1, 3 · 0) = 3, 333 · 10−6(MPa)−1

δ

R
=

0, 1

40
= 2, 5 · 10−3

p =
δ
R

Ca + Cm
=

2, 500 · 10−3

(6, 919 + 3, 333) · 10−6
= 243,9MPa

2. Le frettage conduit à une distribution de contraintes de la forme représen-
tée en �gure 10.20. Il s'y superpose le champ de contraintes d'un disque

Figure 10.20 � Distribution des contraintes de frettage

en rotation de rayon Re, du moins tant que le décollement n'a pas lieu.
La contrainte radiale de ce champ est donnée, en r = Ri, par

σr =
3 + ν

8
ρω2R2

e(1−Q2)
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Superposant, on obtient

−σr =

(
243, 9 · 106 − 3, 3

8
7800 · 0, 15

5 · 0, 9289ω2

)
soit

−σr = (243, 9 · 106 − 67, 25ω2)

3. σr = 0 pour

ω2 =
243, 9 · 106

67, 25
= 3, 627 · 106(rad/s)2

ω = 1904rad/s = 18190tr/min



Chapitre 11

Théorie technique des poutres

11.1 Introduction

La théorie des poutres de Barré de Saint-Venant, bien qu'exacte, n'est pas
entièrement satisfaisante pour les besoins de la pratique. Tout d'abord, elle est
compliquée. Ensuite, elle ne permet pas de prendre en compte la torsion non
uniforme de manière correcte. Par ailleurs, pour toutes les poutres longues,
on peut négliger les déformations dues à l'e�ort tranchant. Nous présentons
ici une théorie approchée d'application plus générale, fondée sur une approche
variationnelle et une étude approfondie des ordres de grandeur.

11.2 Ordres de grandeur des contraintes

Soit ρ une dimension caractéristique des sections. Une valeur raisonnable est
par exemple

ρ =

√
Ip
Ω
, avec Ω = section, Ip =

∫
Ω

(x2 + y2)dΩ (11.1)

Soit encore ` une dimension caractérisant la longueur de la poutre. Nous nous
intéressons ici aux phénomènes à grande longueur d'onde, c'est-à-dire que nous
admettrons que les contraintes varient signi�cativement, le long de l'axe longitu-
dinal z de la poutre, sur une longueur de l'ordre de `. Les équations d'équilibre

347
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intérieur, qui s'écrivent

Dβσαβ +D3σα3 = 0

Dασα3 +D3σ33 = 0 (11.2)

où α et β peuvent prendre les valeurs 1 et 2, impliquent alors les relations
suivantes, si σ est l'ordre de grandeur de σ33 :

σα3 = O
(
σ
ρ

`

)
σαβ = O

(
σ
ρ2

`2

)
(11.3)

Supposant ρ2/`2 très petit devant l'unité, on peut donc écrire le principe de
Hellinger-Reissner sous la forme∫

V

(
σ33D3u3 + σα3(Dαu3 +D3uα)− σ2

33

2E
− σα3σα3

2G

)
dV + P(uα, u3) stat

ce qui donne, par variation des contraintes,

σ33 = ED3u3, σα3 = G(Dαu3 +D3uα) (11.4)

On peut, en réintroduisant ces valeurs dans le principe, se ramener à un principe
de variation des déplacements :∫

V

[
E

2
(D3u3)2 +

G

2
(D1u3 +D3u1)2 +

G

2
(D2u3 +D3u2)2

]
dV

+ P(u1, u2, u3) stat (11.5)

11.3 Ordres de grandeur des déplacements

Commençons par examiner les restrictions nécessaires à la validité de la
linéarisation géométrique. On peut s'attendre à observer des déplacements u3

d'un ordre de grandeur di�érent de celui des deux autres. C'est pourquoi nous
écrirons

u3 = O(W ), uα = O(U)

La déformation de Green γ33 s'écrit

γ33 = D3u3 +
1

2
(D3u1)2 +

1

2
(D3u2)2 +

1

2
(D3u3)2
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et ses termes successifs ont les ordres de grandeur suivants :

W

`
,

U2

`2
,

U2

`2
,

W 2

`2

Pour que la linéarisation géométrique soit valable, il faut donc que

W 2

`2
� W

`
,

U2

`2
� W

`

soit encore
W

`
� 1 (11.6)

et
U2

ρ2
� W

`

`2

ρ2
(11.7)

Par ailleurs, les déformations γαβ ont pour expression

2γαβ = Dαuβ +Dβuα +DαuγDβuγ +Dαu3Dβu3

et leurs di�érents termes ont pour ordre de grandeur

U

ρ
,

U

ρ
,

U2

ρ2
,

W 2

ρ2

ce qui mène aux conditions
U

ρ
� 1 (11.8)

et
W 2

`2
`2

ρ2
� U

ρ
(11.9)

Les conditions (11.6) et (11.8) signi�ent que le déplacement axial est très pe-
tit devant la longueur de la poutre et que les déplacements transversaux sont
très petits devant les dimensions de la section. Les relations (11.7) et (11.9) se
combinent pour donner

U2/ρ2

W/`
� `2

ρ2
� U/ρ

W 2/`2
(11.10)

En écrivant

X =
U/ρ

W/`
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cela donne

X
U

ρ
� `2

ρ2
� X

W/ρ

Une valeur raisonnable de X est donc

X =
U/ρ

W/`
≈ `2

ρ2
(11.11)

ce qui implique

U ≈W `

ρ
(11.12)

c'est-à-dire que les déplacements transversaux sont aux déplacements axiaux
comme la longueur est à la dimension ρ. Dans ces conditions, les déformations
γα3, données par

2γα3 = Dαu3 +D3uα +DαuγD3uγ +Dαu3D3u3

ont leurs termes d'ordres de grandeur respectifs

W

ρ
,

U

`
,

U2

ρ`
,

W 2

ρ`

On constate que le troisième terme est au second comme U/ρ et que le quatrième
est au premier comme W/`, ce qui justi�e l'emploi de la théorie linéaire.

11.4 Structure des déplacements u1 et u2

En régime élastique, les déformations restent petites, du moins pour les corps
su�samment raides. Soit donc ε� 1 l'ordre de grandeur attendu des déforma-
tions. Commençons par examiner ε33. On a

ε33 = D3u3 = O(W/`)

ce qui mène à poser

W = ε`, U = ε
`2

ρ
(11.13)

Examinons à partir de là les trois déformations dans le plan d'une section. La
physique du problème suppose

εαβ =
1

2
(Dαuβ +Dβuα) = O(ε)
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alors qu'à priori,

Dαuβ = O
(
ε
`2

ρ2

)
, Dβuα = O

(
ε
`2

ρ2

)
Par conséquent, on peut écrire que les déplacements uα véri�ent

Dαuβ = −Dβuα à O(
ρ2

`2
) près (11.14)

soit  D1u1 ≈ 0 d'où u1 ≈ u(z) + θ1(z)y
D2u2 ≈ 0 d'où u2 ≈ v(z) + θ2(z)x

D1u2 ≈ −D2u1 d'où θ1 ≈ −θ2 = −θ(z)
On obtient ainsi la structure suivante du champ de déplacement : u3 = u3(x, y, z)

u1 = u(z)− yθ(z)
u2 = v(z) + xθ(z)

(11.15)

Il en découle directement, dans les notations classiques de l'ingénieur,

ε33 = D3u3

γ13 = D1u3 + u′ − θ′y
γ23 = D2u3 + v′ + θ′x (11.16)

en marquant d'un prime les dérivées des fonctions de z.

11.5 Gauchissement de torsion et structure de
l'énergie de déformation

L'énergie de déformation par unité de longueur de la poutre s'écrit

2U ′ = E

∫
Ω

(D3u3)2dΩ +G

∫
Ω

[
(D1u3 + u′ − θ′y)2 + (D2u3 + v′ + θ′x)2

]
dΩ

On véri�e aisément que la première intégrale est d'ordre EΩε2, tandis que la
seconde est d'ordre EΩε2 `

2

ρ2 . Dans le processus de minimisation, on pourra donc,
avec une bonne approximation, varier u3 séparément dans la seconde, car les
termes apportés par la première seront ρ2/`2 fois plus petits. Cette minimisation
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ne faisant intervenir que les dérivées selon x et y, elle pourra être e�ectuée section
par section, ce qui mène au principe variationnel∫

Ω

[
(D1u3 + u′ − θ′y)21 + (D2u3 + v′ + θ′x)2

]
dΩ = min

u3

La solution de ce problème est visiblement de la forme suivante 1 :

u3 = w(z)− u′x− v′y + θ′ψ(x, y) (11.17)

où la fonction ψ minimise l'intégrale∫
Ω

[
(D1ψ − y)2 + (D2ψ + x)2

]
dΩ (11.18)

Ceci ne dé�nit ψ qu'à une constante près. On �xe cette dernière en imposant la
condition ∫

Ω

ψdΩ = 0 (11.19)

Cette fonction est appelée gauchissement de torsion. En notant J la valeur
minimale obtenue,

J = min
ψ

∫
Ω

[
(D1ψ − y)2 + (D2ψ + x)2

]
dΩ (11.20)

on constate que l'énergie de cisaillement par unité de longueur de la poutre se
ramène à

2U ′c = GJθ′2 (11.21)

A propos de la constante J , notons que, pour toute variation δψ de ψ, on a∫
Ω

[(D1ψ − y)D1δψ + (D2ψ + x)D2δψ]dΩ = 0 (11.22)

Pour le choix particulier δψ = ψ, on obtient∫
Ω

[
(D1ψ)2 + (D2ψ)2

]
dΩ =

∫
Ω

(yD1ψ − xD2ψ)dΩ

1. Cette formule a été introduite pour la première fois par Timoshenko [84], sous une forme
restreinte à la torsion. Elle a été généralisée par Wagner [92] et, surtout, par Vlassov [90]. C'est
pourquoi on parle souvent de théorie de Vlassov.
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Il en découle que

J =

∫
Ω

[
(D1ψ)2 + (D2ψ)2

]
dΩ− 2

∫
(yD1ψ − xD2ψ)dΩ + Ip

avec

Ip =

∫
Ω

(x2 + y2)dΩ

soit

J = Ip −
∫

Ω

[
(D1ψ)2 + (D2ψ)2

]
dΩ ≤ Ip

l'égalité n'ayant lieu que si la gauchissement est nul.
A partir de l'expression (11.17), on déduit aisément

D3u3 = w′ − u”x− v”y + θ”ψ

ce qui permet de donner à l'énergie de déformation par unité de longueur de la
poutre la forme suivante :

2U ′ = EΩw′2 + EIxu”2 + EIyv”2 + EKθ”2 + 2ELxθ”u” + 2ELyθ”v” +GJθ′2

(11.23)
en posant

Ω =

∫
Ω

dΩ, Ix =

∫
Ω

x2dΩ, Iy =

∫
Ω

y2dΩ

K =

∫
Ω

ψ2dΩ, Lx = −
∫

Ω

ψxdΩ, Ly = −
∫

Ω

ψydΩ (11.24)

Nous supposons ici implicitement véri�ées les conditions

Ixy =

∫
Ω

xydΩ = 0,

∫
Ω

xdΩ,

∫
Ω

ydΩ = 0 (11.25)

qui signi�ent que l'on travaille dans les axes principaux d'inertie de la section.

11.6 Dé�nition du centre de torsion

Considérons le changement de variables à deux paramètres xT et yT dé�ni
par

u = uT + θyT , v = vT − θxT (11.26)
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revenant à écrire

u1 = uT − θ(y − yT ), u2 = vT + θ(x− xT )

Le point (xT , yT ) se présente alors comme le point où l'on mesure les dépla-
cements uT et vT . En choisissant bien ce point, il est possible de découpler la
�exion et la torsion. On a en e�et

2U ′ = EΩw′2 + EIx(uT ” + θ”yT )2 + EIy(vT ”− θ”xT )2 + EKθ”2

+ELxθ”(uT ” + θ”yT ) + 2ELyθ”(vT ”− θ”xT ) +GJθ′2

= EΩw′2 + EIxuT ”2 + EIyvT ”2 + 2E(Lx + yT Ix)θ”uT ”

+2E(Ly − xT Iy)θ”vT ” + E(K + y2
T Ix + x2

T Iy + 2LxyT − 2LyxT )θ”2

+GJθ′2

Il su�t donc de poser
yT = −Lx

Ix
=

1

Ix

∫
Ω

xψdΩ

xT = −Ly
Iy

= − 1

Iy

∫
Ω

yψdΩ
(11.27)

pour obtenir l'expression découplée suivante de l'énergie :

2U ′ = EΩw′2 + EIxuT ”2 + EIyvT ”2 + EKT θ”
2 +GJθ′2 (11.28)

avec
KT = K − y2

T Ix − x2
T Iy (11.29)

Le point dé�ni par les coordonnées xT , yT est le centre de torsion de Kappus-
Weinstein [36, 45].

Remarquons que l'on a encore

u3 = w(z)− u′Tx− v′T y + θ′ψT (11.30)

avec
ψT = ψ − yTx+ xT y (11.31)

et que

J =

∫
Ω

[
(D1ψT − y + yT )2 + (D2ψT + x− xT )2

]
dΩ (11.32)
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11.7 Fonction de Prandtl

Les équations régissant le gauchissement de torsion s'obtiennent aisément à
partir de (11.18) :{

D1(D1ψ − y) +D2(D2ψ + x) = 0 dans Ω
n1(D1ψ − y) + n2(D2ψ + x) = 0 sur ∂Ω

On satisfait à ces conditions en posant

D1ψ − y = D2ϕ, D2ψ + x = −D1ϕ (11.33)

avec la condition de contour

n1D2ϕ− n2D1ϕ = 0

soit, comme (�g. 11.1) n1 = t2 et n2 = −t1,

t1D1ϕ+ t2D2ϕ = Dtϕ = 0 (11.34)

La fonction ϕ ainsi dé�nie porte le nom de fonction de Prandtl [70].

Figure 11.1 � Normale et tangente au contour

L'exploitation de la condition de contour (11.34) appelle quelques commen-
taires. En e�et, il ne faut pas perdre de vue que les sections creuses ne sont pas
rares. Pour celles-ci,

∂Ω = C0 ∪ C1 ∪ . . . Ck
où C0 est le contour extérieur et Ci, i = 1, . . . , k , les contours intérieurs (�g.
11.2). Comme la fonction de Prandtl n'est dé�nie qu'à une constante additive
près, on pose généralement

ϕ|C0 = 0 (11.35)



356 CHAPITRE 11. THÉORIE TECHNIQUE DES POUTRES

Figure 11.2 � Poutre à section creuse

Pour les autres contours, on a alors

ϕ|Ci = ϕi (cte sur Ci) (11.36)

Cependant, il est clair que toutes les fonctions ϕ véri�ant ces conditions ne
peuvent pas convenir, car il faut encore assurer l'existence du gauchissement de
torsion, solution de (11.33). L'intégrabilité locale de ψ sera assurée si

D2(D1ψ) = D22ϕ+ 1 = D1(D2ψ) = −D11ϕ− 1

soit si

∇2ϕ+ 2 = 0 (11.37)

Sur chaque Ci, i = 1, . . . , k, on devra en outre assurer l'unicité de la fonction ψ,
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c'est-à-dire la condition

0 =

∫
Ci
Dtψds

=

∫
Ci

(t1D1ψ + t2D2ψ)ds

=

∫
Ci

(−n2D1ψ + n1D2ψ)ds

=

∫
Ci

[−n2(D2ϕ+ y)− n1(D1ϕ+ x)]ds

soit ∫
Ci

∂ϕ

∂n
ds = −

∫
Ci

(n1x+ n2y)ds

Cette dernière intégrale de contour peut être transformée comme suit : appelant

Figure 11.3 � Dé�nition de la normale n−

Ωi l'aire du trou n◦i, la normale extérieure à Ωi est n− = −n (�g. 11.3) et on a

−
∫
Ci

(n1x+ n2y)ds =

∫
Ci

(n−1 x+ n−2 y)ds =

∫
Ωi

(D1x+D2y)dΩ = 2Ωi
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ce qui ramène les conditions de contour à∫
Ci

∂ϕ

∂n
ds = 2Ωi (11.38)

On remarquera que le problème (11.37), assorti des conditions aux limites
(11.35), (11.36) et (11.38) n'est pas d'un type classique, puisque l'on impose en
fait deux conditions sur les Ci. On pourrait donc se poser des questions quant
à l'existence de la solution. Pour dissiper ces doutes, dé�nissons la fonction
prolongée ϕ̂ sur Ω0 = Ω ∪ Ω1 ∪ . . . ∪ Ωk par{

ϕ̂ = ϕ dans Ω
ϕ̂ = ϕi dans les Ωi

(11.39)

et considérons le problème de minimisation de la fonctionnelle

I =

∫
Ω0

[
(D1ϕ̂)2 + (D2ϕ̂)2 − 2ϕ̂

]
dΩ (11.40)

Ce problème admet visiblement une solution, et celle-ci véri�e les relations sui-
vantes pour tout δϕ̂ nul sur C0 :

0 =

∫
Ω0

(D1ϕ̂D1δϕ̂+D2ϕ̂D2δϕ̂− 2δϕ)dΩ

=

∫
Ω

(D1ϕ̂D1δϕ̂+D2ϕ̂D2δϕ̂− 2δϕ̂)dΩ−
∑
i

δϕiΩi

=
∑
i

δφi

∫
Ci

∂ϕ

∂n
ds−

∫
Ω

δϕ(∇2ϕ+ 2)dΩ− 2
∑
i

Ωiδϕi

soit précisément {
∇2ϕ+ 2 = 0 dans Ω∫
Ci

∂ϕ
∂nds = 2Ωi sur les Ci

Le principe variationnel (11.40) sert de base à de nombreuses solutions appro-
chées. La variation particulière δϕ̂ = ϕ̂ fournit la relation importante∫

Ω0

[
(D1ϕ̂)2 + (D2ϕ̂)2

]
dΩ0 = 2

∫
Ω0

ϕ̂dΩ
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qui entraîne

J =

∫
ω

[
(D1ψ − y)2 + (D2ψ + x)2

]
dΩ

=

∫
Ω

[
(D1ϕ)2 + (D2ϕ)2

]
dΩ

=

∫
Ω0

[
(D1ϕ̂)2 + (D2ϕ̂)2

]
dΩ

= 2

∫
Ω0

ϕ̂dΩ (11.41)

11.8 Résultantes et équations d'équilibre

Considérons un système de forces de volume f1, f2, f3 et calculons leur éner-
gie potentielle sur une section donnée :

P ′ = −
∫

Ω

(f1u1 + f2u2 + f3u3)dΩ

On a tout d'abord

−
∫

Ω

(f1u1 + f2u2)dΩ = −
∫

Ω

{f1[uT − θ(y − yT )] + f2[vT + θ(x− xT )]}dΩ

= −qxuT − qyvT −mT θ

en dé�nissant les résultantes

qx =
∫

Ω
f1dΩ (résultante des forces selon Ox)

qy =
∫

Ω
f2dΩ (résultante des forces selon Oy)

mt =
∫

Ω
[(x− xT )f2 − (y − yT )f1]dΩ (moment autour de Oz)


(11.42)

D'autre part,

−
∫

Ω

f3u3dΩ = −
∫

Ω

f3(w − xu′T − yv′T + ψT θ
′)dΩ

= −nw +mxu
′
T +myv

′
T − bθ′
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en posant

n =
∫

Ω
f3dΩ (résultante des forces selon Oz)

mx =
∫

Ω
f3xdΩ (moment des forces f3 dans le plan xOz)

my =
∫

Ω
f3ydΩ (moment des forces f3 dans le plan yOz)

b =
∫

Ω
f3ψT dΩ (bimoment des forces f3)


(11.43)

La variation de l'énergie de déformation par unité de longueur vaut, à partir
de (11.28)

δU ′ = EΩw′δw′ + EIxuT ”δuT ” + EIyvT ”δvT ” + EKT θ”δθ” +GJθ′δθ′

= Nδw′ −MxδuT ”−MyδvT ” +Bδθ” +Mtδθ
′

à condition de dé�nir les résultantes suivantes :

N = EΩw′ =
∫

Ω
σ33dΩ (e�ort normal)

Mx = −EIxuT ” =
∫

Ω
σ33xdΩ (moment de �exion

dans le plan xOz)
My = −EIxvT ” =

∫
Ω
σ33ydΩ (moment de �exion

dans le plan yOz)
B = EKθ” =

∫
Ω
σ33ψT dΩ (bimoment de Vlassov)

Mt = GJθ′ =
∫

Ω
[σt13(D1ψ − y)

+σt23(D2ψ + x)]dΩ (moment de torsion)


(11.44)

où σt13 et σt23 représentent les contraintes de torsion. Comme celles-ci sont de la
forme

σt13 = Gθ′D2ϕ, σt23 = −Gθ′D1ϕ

où ϕ est la fonction de Prandtl, on a l'égalité∫
Ω

(σt13D1ψ + σt23D2ψ)dΩ = Gθ′
∫

Ω

(D2ϕD1ψ −D1ϕD2ψ)dΩ

= Gθ′

∑
i6=0

∫
Ci
ψ(n1D2ϕ− n2D1ϕ)ds−

∫
Ω

ψ(D12ϕ−D12ϕ)dΩ

 = 0
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qui ramène Mt à sa dé�nition classique

Mt =

∫
Ω

(xσt23 − yσt13)dΩ (11.45)

Le problème de l'équilibre intérieur se traite en minimisant l'énergie totale
par rapport à toute variation de déplacements nulle avec toutes ses dérivées aux
extrémités. On a

δE =

∫ `

0

(Nδw′ −MxδuT ”−MyδvT ” +Bδθ” +Mtδθ
′

− nδw +mxδu
′
T +myδv

′
T − bδθ′ − qxδuT − qyδvt −mtδθ)dz = 0

ce qui mène aux équations suivantes :

N ′ + n = 0 (11.46)

et
Mx”−m′x + qx = 0
My”−m′y + qy = 0
−B” + b′ +mt = 0

 (11.47)

Introduisant les grandeurs

Qx = M ′x −mx

Qy = M ′y −my

R = B′ − b

 (11.48)

on peut mettre les équations (11.47) sous la forme suivante :

Q′x + qx = 0
Q′y + qy = 0

R′ = mt

 (11.49)

Il se trouve que les trois nouvelles grandeurs dé�nies en (11.48) peuvent être
interprétées comme des résultantes simples. En e�et, si l'on admet l'équilibre
local,  Qx

Qy
R

 =

∫
Ω

(D3σ33 + f3)

 x
y
ψT

 dΩ = −
∫

Ω

Dασα3

 x
y
ψT

 dΩ
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d'où, en intégrant par parties,

Qx =
∫

Ω
σ13dΩ (e�ort tranchant selon xOz)

Qy =
∫

Ω
σ23dΩ (e�ort tranchant selon yOz)

R =
∫

Ω
(σ13D1ψT + σ23D2ψT )dΩ (bi-e�ort tranchant)


(11.50)

11.9 Conditions aux limites

Considérant à présent des variations quelconques des déplacements, on ob-
tient les termes aux limites suivants :

[Nδw]`0 − [Mxδu
′
T ]`0 − [Myδv

′
T ]`0 + [Bδθ′]`0 + [Mtδθ]

`
0

+ [M ′xδuT ]`0 + [M ′yδvT ]`0 − [B′δθ]`0 (11.51)

Supposons, pour �xer les idées, qu'il s'agit d'une poutre console. A l'extrémité
libre, les tractions de surface t̄1, t̄2 et t̄3 induiront une énergie potentielle

P = −
∫

Ω

[t̄1u1(`) + t̄2u2(`) + t̄3u3(`)]dΩ

= −
∫

Ω

{t̄1[uT (`)− (y − yT )θ(`)] + t̄2[vT (`) + (x− xT )θ(`)]

+t̄3[w(`)− xu′T (`− yv′T (`) + ψT θ
′(`)]}dΩ

= N̄w(`) + x̄uT (`) + Q̄yvT (`)− M̄xu
′
T (`)− M̄yv

′
T (`)

+M̄tθ(`) + B̄θ′(`) (11.52)

avec

N̄ =
∫

Ω
t̄3dΩ, Q̄x =

∫
Ω
t1dΩ, Q̄y =

∫
Ω
t̄2dΩ

M̄x =
∫

Ω
t̄3xdΩ, M̄y =

∫
Ω
t̄3ydΩ, M̄t =

∫
Ω

[t̄2(x− xT )− t̄1(y − yT )]dΩ

B̄ =
∫

Ω
t̄3ψT dΩ


(11.53)
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Les conditions d'extrémité sont alors
N(`) = N̄ , Qx(`) = Q̄x, Qy(`) = Q̄y

Mx(`) = M̄x, My(`) = M̄y, Mt(`)−B′(`) = M̄t

B(`) = B̄

 (11.54)

Les conditions d'encastrement varient avec la perfection de celui-ci. Au mi-
nimum, on aura, en z = 0, uT = vT = wT = u′T = v′T = θ = 0. Si, de plus,
l'encastrement assure la nullité du gauchissement, on aura en outre θ′ = 0.
Nous appellerons le premier cas encastrement imparfait et le second, encastre-
ment parfait.

11.10 Calcul des contraintes

A partir des résultantes, il est aisé de calculer les contraintes normales

σ33 = E(w′ − xu′′′T − yvT ” + ψT θ”)

=
N

Ω
+ x

Mx

Ix
+
My

Iy
+ ψT

B

KT
(11.55)

De même, les contraintes de torsion s'obtiennent par

σt13 = Gθ′(D1ψ − y) = Gθ′D2ϕ

σt23 = Gθ′(D2ψ + x) = −Gθ′D1ϕ

ou encore, par

σt13 =
Mt

J
(D1ψ − y) =

Mt

J
D2ϕ

σt23 =
Mt

J
(D2ψ + x) = −Mt

J
D1ϕ (11.56)

Par contre, le calcul des contraintes de cisaillement de �exion est plus déli-
cat, car du fait de nos hypothèses, ces contraintes ne travaillent pas. Au sens
variationnel, on n'a accès qu'aux résultantes (11.50), ce qui signi�e que le calcul
local de ces contraintes revêt une part inévitable de convention dans le cas d'une
distribution arbitraire des forces f1, f2, f3. On mène généralement le calcul en
admettant que f3 a la même forme que σ33, soit

f3 =
n

Ω
+ x

mx

Ix
+ y

my

Iy
+ ψT

b

KT
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Il vient alors  Dασ
f
α3 = −xQx

Ix
− yQy

Iy
− ψT

B

KT
dans Ω

nασ
f
α3 = 0 sur ∂Ω

(11.57)

Mais la solution de ce problème n'est pas unique : à toute solution particulière
de (11.57), on peut ajouter une solution de l'équation homogène, qui est de la
forme

σ13 = D2Φ, σ23 = −D1Φ, Φ|C0 = 0, Φ|Ci = Φi

qui s'interprète comme un champ de torsion. Comme le moment de torsion des
contraintes de �exion doit être nul, le plus simple est d'imposer la condition
d'orthogonalité à tout champ de torsion :

0 =

∫
Ω

(
σf13D2Φ− σf23D1Φ

)
dΩ

=
∑
i 6=0

Φi

∫
Ci

(
n2σ

f
13 − n1σ

f
23

)
ds−

∫
Ω

Φ
(
D2σ

f
13 −D1σ

f
23

)
dΩ

ce qui équivaut à 
D2σ

f
13 = D1σ

f
23 dans Ω

∫
Ci

(
t1σ

f
13 + t2σ

f
23

)
ds = 0 sur les Ci

(11.58)

Ces relations assurent l'existence d'un potentiel g tel que

σf13 = D1g, σf23 = D2g (11.59)

et ramènent le problème (11.57) à
∇2g + x

Qx
Ix

+ y
Qy
Iy

+ ψT
B

KT
= 0 dans Ω

∂g

∂n
= 0 sur ∂Ω

(11.60)

La solution de ce problème a la forme

g =
Qx
Ix
gx +

Qy
Iy
gy +

B

KT
gψ (11.61)
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les fonctions gx, gy et gψ étant dé�nies comme les solutions des problèmes par-
tiels 

∇2

 gx
gy
gψ

+

 x
y
ψT

 = 0 dans Ω

∂
∂n

 gx
gy
gψ

 = 0 sur ∂Ω

(11.62)

ou, ce qui revient au même, comme les fonctions qui minimisent les fonctionnelles

Ix =

∫
Ω

(
|gradgx|2 − xgx

)
dΩ

Iy =

∫
Ω

(
|gradgy|2 − ygy

)
dΩ (11.63)

Iψ =

∫
Ω

(
|gradgψ|2 − ψT gψ

)
dΩ

Le champ de cisaillement de �exion dé�ni par les relations (11.59) à (11.63) est
appelé champ principal de �exion [36].

11.11 Torsion non uniforme

Attardons-nous un peu sur le cas particulier de la torsion, c'est�dire d'une
sollicitation n'excitant que la rotation θ. Nous considérerons le cas d'une poutre
console, parfaitement encastrée en z = 0. On a donc

δE =

∫ `

0

(EKT θ”δθ” +GJθ′δθ′)dz − M̄tδθ(`)− B̄δθ′(`) = 0 (11.64)

On observera tout d'abord la possibilité d'exciter la torsion par un bimoment
d'extrémité, qui consiste en un système de charges axiales (de résultante et de
moments nuls). Il est aisé de déduire de (11.64) l'équation di�érentielle

EKT θ
IV −GJθ” = 0 dans ]0, `[ (11.65)

et les conditions d'extrémité

θ(0) = θ′(0) = 0 (11.66)

EKT θ”(`) = B̄ (11.67)

GJθ′(`)− EKT θ
′′′(`) = M̄t (11.68)
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Des conditions (11.65) et (11.68), on déduit aisément l'équation

θ′′′ − GJ

EKT
θ′ = − M̄t

EKT
dans ]0, `[

dont la solution générale a la forme

θ =
M̄t

GJ
z + C1 + C2 ch

z

z0
+ C3 sh

z

z0

avec

z2
0 =

EKT

GJ
(11.69)

Des conditions d'appui, on déduit

C1 + C2 = 0,
M̄t

GJ
+
C3

z0
= 0

d'où

θ =
M̄t

GJ

(
z − z0 sh

z

z0

)
+ C1

(
1− ch

z

z0

)
A l'extrémité z = `, on a par (11.67)

− M̄t

GJ

sh(`/z0)

z0
− 1

z2
0

C1 ch(`/z0) =
B̄

EKT

d'où

C1 = − M̄t

GJ
z0 th(`/z0)− z2

0

B̄

EKT ch(`/z0)

La solution est donc

θ =
M̄t

GJ

[
z − z0 sh

z

z0
− z0 th

`

z0
+ z0 ch

z

z0
th

`

z0

]
+

B̄

EKT
z2

0

ch z
z0
− 1

sh `
z0

soit

θ =
M̄t

GJ

[
z − z0 th

`

z0
+ z0

sh `−z
z0

ch `
z0

]
+

B̄

EKT
z2

0

ch z
z0
− 1

sh `
z0

(11.70)

Dans le cas où la poutre est su�samment longue (`/z0 > 3), on peut écrire
à 5◦/◦◦ près th(`/z0) ≈ 1, ce qui entraîne

sh `−z
z0

ch `
z0

=
sh `

z0
ch z

z0
− sh z

z0
ch `

z0

ch `
z0

≈ ch
z

z0
− sh

z

z0
= exp

(
− z

z0

)
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et

ch z
z0
− 1

sh `
z0

=
ch
[
`
z0
−
(
`−z
z0

)]
− 1

sh `
z0

=
ch `

z0
ch `−z

z0
− sh `

z0
sh `−z

z0
− 1

sh `
z0

≈ ch
`− z
z0
− sh

`− z
z0
− 1 = exp

(
−`− z

z0

)
− 1

d'où

θ ≈ M̄t

GJ

[
z − z0 + z0 exp

(
− z

z0

)]
− B̄

EKT
z2

0

[
1− exp

(
−`− z

z0

)]
(11.71)

La solution se présente donc comme la superposition d'une torsion uniforme

θu =
M̄t

GJ
(z − z0) (11.72)

et de termes d'extrémité, dont la profondeur de pénétration est z0 (c'est-à-
dire qu'ils décroissent d'un facteur e tous les z0). Le terme de torsion uniforme
correspond à un encastrement imparfait �ctif à une distance z0, comme le montre
la �gure 11.4. Le comportement de la solution dépend évidemment de la longueur

Figure 11.4 � Torsion non uniforme
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z0 =

√
EKT

GJ

Cette a�rmation est générale. En e�et, la torsion sera non uniforme si les termes
EKT θ”

2 et GJθ′2 de l'énergie de déformation sont du même ordre de grandeur.
Or, si λ est la longueur d'onde de l'angle de torsion θ, lui-même d'ordre de
grandeur Θ, on a

EKT θ”
2 = O

(
EKT

Θ2

λ4

)
, GJθ′2 = O

(
GJ

Θ2

λ2

)
et l'interaction n'aura lieu que si

λ2 = O
(
EKT

GJ

)
(11.73)

ce qui détermine la profondeur de pénétration. Il est donc utile de chi�rer ce
rapport dans les cas courants.

11.12 Étude approchée des sections massives

Pour les sections massives, on peut, en première approximation, utiliser la
méthode de Rayleigh, avec un gauchissement de la forme [90]

ψ(x, y) = Axy (11.74)

qui véri�e visiblement la condition∫
Ω

ψ(x, y)dxdy = 0

On a alors∫
Ω

[
(D1ψ − y)2 + (D2ψ + x)2

]
dΩ = (A− 1)2Ix + (A+ 1)2Iy

et cette expression est minimale pour

2(A− 1)Ix + 2(A+ 1)Iy = 0

soit

A =
Ix − Iy
Ix + Iy

(11.75)
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On en déduit les coordonnées approchées du centre de torsion par

xT = − 1

Iy

∫
Ω

yψdΩ =
1

Iy

Iy − Ix
Ix + Iy

∫
Ω

xy2dΩ

yT =
1

Ix

∫
Ω

xψdΩ =
1

Ix

Ix − Iy
Ix + Iy

∫
Ω

x2ydΩ

 (11.76)

et la constante K est donnée par

K =

∫
Ω

ψ2dΩ =
(Ix − Iy)2

(Ix + Iy)2

∫
Ω

x2y2dΩ (11.77)

On a alors
KT = K − y2

T Ix − x2
T Iy (11.78)

Quant à la constante de torsion, elle est donnée par

J =

(
Ix − Iy
Ix + Iy

− 1

)2

Ix +

(
Ix − Iy
Ix + Iy

+ 1

)2

Ix =
4IxIy
Ix + Iy

(11.79)

Pour une section symétrique ayant les deux moments d'inertie égaux, comme le
cercle ou le carré, on obtient donc

KT = 0, J = 2I

conformément à la théorie élémentaire de Coulomb. Dans le cas d'une section
dont un des moments d'inertie est très inférieur à l'autre (Iy � Ix), comme
une ellipse très allongée ou un rectangle très mince, on obtient, si la section est
symétrique,

J =
4Iy

1 +
Iy
Ix

, K =

(
1− Iy

Ix

)2

(
1 +

Iy
Ix

)2

∫
Ω

x2y2dΩ

Ainsi, pour un rectangle très mince, de largeur a et d'épaisseur t� a,

J =
1

3

at3

1 +
(
t
a

)2 , K =

(
1− t2

a2

)2

(
1 + t2

a2

)2 1

144
a3t3

ce qui donne

z2
0 =

1

48
a2

(
1− t2

a2

)2

1 + t2

a2
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soit, dans le cas extrême où t/a→ 0,

z0 ≈
a√
48
≈ a

7
(11.80)

C'est donc la plus grande dimension de la section qui importe. Ce phénomène
est encore renforcé dans le cas des poutres à parois minces comme nous allons
le voir.

11.13 Théorie des poutres à parois minces ou-
vertes

11.13.1 Considérations géométriques

Figure 11.5 � Poutre à parois minces ouverte

Une poutre à parois minces a sa section constituée de corps très minces
reliés en des n÷uds. On dit qu'elle est ouverte si son pro�l est simplement
connexe. En admettant une certaine approximation géométrique aux n÷uds, on
décrit la section à l'aide de sa ligne moyenne, repérée par une coordonnée s, et
une coordonnée n selon l'épaisseur (�g. 11.5). La longueur totale a de la ligne
moyenne est supposée très grande devant l'épaisseur du pro�l. Par ailleurs, la
ligne moyenne peut être courbe, pourvu que son rayon de courbure R véri�e la
condition t/R� 1. En�n, on suppose toujours que la poutre est longue, ce qui
s'écrit ici a/`� 1. En un point quelconque de la ligne moyenne, de coordonnées
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Figure 11.6 � Normale et tangente unitaires

(x̄(s), ȳ(s)), on dé�nit le vecteur unitaire tangent

es =

(
dx̄

ds
,
dȳ

ds

)
(11.81)

et le vecteur normal (à gauche, dans le sens de parcours)

en =

(
−dȳ
ds
,
dx̄

ds

)
(11.82)

comme le montre la construction vectorielle de la �gure 11.6. La courbure de la

Figure 11.7 � Courbure de la ligne moyenne
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ligne moyenne, 1/R(s), peut être dé�nie comme le taux de variation de l'orien-
tation de la tangente lors d'une progression le long du feuillet moyen (�g. 11.7) :

1

R
= −dα

ds
(11.83)

Le signe négatif provient de la convention dé�nissant α comme l'angle entre
l'axe des x et la tangente orientée positivement. Notant que

cosα =
dx̄

ds
, sinα =

dȳ

ds

on obtient aisément
d2x̄

ds2
= − sinα

dα

ds
=

1

R

dȳ

ds

d2ȳ

ds2
= cosα

dα

ds
= − 1

R

dx̄

ds

(11.84)

Un point quelconque de la section a ses coordonnées égales à

(x, y) = (x̄, ȳ) + nen

soit explicitement

x(s, n) = x̄(s)− ndȳ
ds

y(s, n) = ȳ(s) + n
dx̄

ds

 (11.85)

En conséquence, le jacobien de la transformation (s, n) 7→ (x, y) s'écrit

∂(x, y)

∂(s, n)
=

∣∣∣∣∣∣∣∣∣
dx̄

ds
− nd

2ȳ

ds2
−dȳ
ds

dȳ

ds
+ n

d2x̄

ds2

dx̄

ds

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
(

1 +
n

R

) dx̄
ds

−dȳ
ds(

1 +
n

R

) dȳ
ds

dx̄

ds

∣∣∣∣∣∣∣∣∣ = 1 +
n

R
(11.86)
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car on a toujours (
dx̄

ds

)2

+

(
dx̄

ds

)2

= 1

L'élément de surface vaut donc

dxdy =
(

1 +
n

R

)
dsdn ≈ dsdn (11.87)

puisque t/R� 1.

11.13.2 Une formule d'intégration par parties [31]

Figure 11.8 � Description d'un pro�l rami�é

Dans le cas d'un pro�l rami�é, on dé�nit arbitrairement un sens de parcours
sur chaque branche Ci de la ligne moyenne, comme le montre la �gure 11.8. On
a alors, pour une fonction quelconque de s,∫

C
fds =

∑
i

∫
Ci
fds

L'intégration par parties demande alors une certaine attention. En e�et, si f est
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une fonction continue aux n÷uds, g ne l'étant pas nécessairement, on aura∫
C
gDsfds =

∑
i

∫
Ci
gDsfds

=
∑
i

[gf ]Bi

Ai
−
∑
i

∫
Ci
fDsgds

=
∑

n÷uds N

fNTN (g)−
∑
i

∫
Ci
fDsgds (11.88)

en posant en chaque n÷ud

TN (g) =
∑

gconvergents −
∑

gdivergents

un g étant convergent s'il appartient à une branche convergeant vers N , di-
vergent sinon.

11.13.3 Torsion

Le problème fondamental en torsion est de minimiser l'intégrale∫
Ω

[
(D1ψ − y)2 + (D2ψ + x)2

]
dΩ =

∫
Ω

|f |2dΩ

avec

f =

(
D1ψ − ȳ − n

dx̄

ds

)
e1 +

(
D2ψ + x̄− ndȳ

ds

)
e2 (11.89)

Notant que

e1 · es =
dx̄

ds
, e1 · en =

dȳ

ds

e2 · es = −dȳ
ds
, e2 · en =

dx̄

ds

on a encore

fs =

(
D1ψ − ȳ − n

dx̄

ds

)
dx̄

ds
+

(
D2ψ + x̄− ndȳ

ds

)
dȳ

ds
= Dsψ − r − n (11.90)

avec

r = ȳ
dx̄

ds
− x̄dȳ

ds
(11.91)
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et

fn = −
(
D1ψ − ȳ − n

dx̄

ds

)
dȳ

ds
+

(
D2ψ + x̄− ndȳ

ds

)
dx̄

ds

= Dnψ + x̄
dx̄

ds
+ ȳ

dȳ

ds
(11.92)

La grandeur r dé�nie ci-dessus a une interprétation géométrique utile : c'est,

Figure 11.9 � Interprétation géométrique de r

comme l'illustre la �gure 11.9, la projection sur la normale au pro�l de la distance
au centre de gravité de la section.

On est donc amené à minimiser l'expression

∫
Ω

[
(Dsψ − r − n)

2
+

(
Dnψ + x̄

dx̄

ds
+ ȳ

dȳ

ds

)2
]
dΩ (11.93)

On remarquera que le premier terme entre parenthèses de l'intégrale est d'ordre
O(ψa +ρ) et le second, d'ordre O(ψt +ρ). Le second est donc beaucoup plus grand
et, moyennant une erreur d'ordre t2/a2, on peut le minimiser séparément, ce qui
mène à la condition

Dnψ = −x̄dx̄
ds
− ȳ dȳ

ds

ce qui mène à

ψ(s, n) = ψ̄(s)− n
(
x̄
dx̄

ds
+ ȳ

dȳ

ds

)
(11.94)
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Introduisant cette valeur dans la premier terme, on trouve

Dsψ − r − n = Dsψ̄ − n− n
(
x̄
d2x̄

ds2
+ ȳ

d2ȳ

ds2

)
− r − n

= Dsψ̄ − n−
n

R

(
x̄
dȳ

ds
− ȳ dx̄

ds

)
− r − n

= Dsψ̄ − 2n− r
(

1 +
n

R

)
soit, en négligeant n/R devant l'unité,

Dsψ − r − n ≈ Dsψ̄ − r − 2n

Il reste donc à minimiser l'expression∫
Ω

(Dsψ̄ − r − 2n)2dΩ =

∫
C
t(Dsψ̄ − r)2ds+

∫
C

t3

3
ds (11.95)

Variant ψ̄, on obtient

0 =

∫
C
t(Dsψ̄ − r)Dsδψ̄ds

=
∑
N

TN [t(Dsψ̄ − r)]δψ̄N −
∫
C
δψ̄Ds[t(Dsψ̄ − r)]ds

ce qui mène aux conditions Ds[t(Dsψ̄ − r)] = 0 dans les Ci

TN [t(Dsψ̄ − r)] = 0 aux n÷uds

La solution de ce problème est aisée à construire (�g. 11.10) : aux n÷uds d'ex-
trémité, la condition est simplement Dsψ̄ = r, et en maintenant cette propriété
sur tout l'arc adjacent, on satisfait à l'équation di�érentielle sur cet arc. Par
conséquent, de proche en proche, on obtient en tout n÷ud Dsψ̄ = r sur tous les
arcs adjacents. Il su�t donc de construire la fonction

ω = ω0 +

∫
rds (11.96)

obtenue en partant d'un n÷ud quelconque, et continue aux n÷uds. On détermine
�nalement ω0 par la condition∫

Ω

ψdΩ =

∫
C
ψ̄tds =

∫
C
ωtds = 0 (11.97)
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Figure 11.10 � Construction de la solution

Figure 11.11 � Aire sectorielle

La fonction ω ainsi dé�nie porte le nom d'aire sectorielle, car la grandeur

dω = rds

vaut deux fois l'aire balayée par le vecteur joignant le point courant sur la courbe
moyenne au centre de gravité, comme l'illustre la �gure 11.10. On a évidemment

Dsψ̄ − r = Dsω − r = 0

ce qui entraîne que

J =

∫
C

t3

3
ds (11.98)

C'est la formule classique de la raideur de torsion des sections minces 2.

2. Vlassov [90] néglige dans ses développements la variation sur l'épaisseur des glissements,
ce qui revient à négliger dans (11.95) le terme (2n) devant r, alors que ce dernier peut être
petit. Cette hyperidéalisation conduit à J = 0 et oblige à réintroduire la valeur correcte (11.98)
... comme un fait d'expérience.
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Les coordonnées du centre de torsion sont données par

yT =
1

Ix

∫
Ω

xψdΩ (11.99)

=
1

Ix

∫
Ω

(
x̄− ndȳ

ds

)[
ψ̄ − n

(
x̄
dx̄

ds
+ ȳ

dȳ

ds

)]
dΩ

=
1

Ix

{∫
C
tx̄ωds+

∫
C

t3

12

[
x̄
dx̄

ds

dȳ

ds
+ ȳ

(
dȳ

ds

)2
]
ds

}

≈ 1

Ix

∫
C
tx̄ωds (11.100)

avec une erreur relative O(t2/a2) et, de même,

xT ≈ −
1

Iy

∫
C
tȳωds (11.101)

Calculons à présent la constante K. On a

K =

∫
Ω

ψ2dΩ

=

∫
C
tω2ds+

∫
C

t3

12

(
x̄
dx̄

ds
+ ȳ

dȳ

ds

)2

ds

≈
∫
c
tω2ds (11.102)

avec une erreur relative O(t2/a2). On en déduit directement

KT = K − x2
t Iy − y2

T Ix

Il est intéressant d'évaluer la grandeur du rapport K/J . On a

ω = O(ra) = O(a2)

d'où
K = O(ta5)

et, par ailleurs
J = O(t3a)

ce qui donne
K

J
= O

(
a4

t2

)
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si bien que la longueur �ctive d'encastrement véri�e

z0 = O
(
a · a

t

)
(11.103)

Ainsi, dans une poutre à section mince, les e�ets de torsion non uniforme ont
une profondeur de pénétration nettement plus grande que la plus grande dimen-
sion du pro�l, ce qui a d'ailleurs fait dire à certains auteurs que le principe de
Saint-Venant ne s'applique pas à ce genre de poutres. La section rectangulaire
mince fait exception à cette règle parce que, dans ce cas, r est toujours nul, de
même que ω, si bien que c'est le terme négligé dans (11.102) qui subsiste seul.
Il est d'ailleurs habituel de dire que K ≈ 0 pour ce pro�l.

11.13.4 Cisaillement de �exion

Tout revient à minimiser les trois intégrales dé�nies en (11.63), qui s'écrivent
ici

Ix =

∫
Ω

[
(Dsgx)

2
+ (Dngx)

2 −
(
x̄− ndȳ

ds

)
gx

]
dΩ

Iy =

∫
Ω

[
(Dsgy)

2
+ (Dngy)

2 −
(
ȳ + n

dx̄

ds

)
gy

]
dΩ

Iψ =

∫
Ω

[
(Dsgψ)

2
+ (Dngψ)

2 − ψT gψ
]
dΩ

Dans les trois cas, le terme (Dng∗)2, a2/t2 fois plus grand que le terme (Dsg∗)2,
peut être minimisé séparément , ce qui conduit à

gx ≈ ḡx(s), gy ≈ ḡy(s), gψ ≈ ḡψ(s)

et ramène les intégrales à minimiser à

Ix =

∫
C
t
[
(Dsḡx)

2 − x̄ḡx
]
ds

Iy =

∫
C
t
[
(Dsḡy)

2 − ȳḡy
]
ds

Iψ =

∫
C
t
[
(Dsḡψ)

2 − ψ̄T ḡψ
]
ds

=

∫
C
t
[
(Dsḡψ)

2 − (ω − yT x̄+ xT ȳ)ḡψ

]
ds (11.104)
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Les solutions de ces trois problèmes véri�ent les équations

Ds(tDsḡx) + x̄ = 0
Ds(tDsḡy) + ȳ = 0

Ds(tDsḡψ) + ω − yT x̄+ xT ȳ = 0

 dans les Ci (11.105)

et les conditions
TN (tDsḡx) = 0
TN (tDsḡy) = 0
TN (tDsḡψ) = 0

 aux n÷uds (11.106)

L'introduction des �ux de cisaillement

Sx = tDsḡx = tτf(x) (11.107)

Sy = tDsḡy = tτf(y) (11.108)

Sψ = tDsḡψ = tτf(ψ) (11.109)

permet de réécrire ces relations comme suit : DsSx + x̄ = 0
DsSy + ȳ = 0

DsSψ + ω − yT x̄+ xT ȳ = 0

 dans les Ci, TN (Sx) = 0
TN (Sy) = 0
TN (Sψ) = 0

 aux n÷uds (11.110)

Il s'agit donc, dans les trois cas, de résoudre un problème de la forme

DsS = Ψ dans les Ci, TN (S) = 0 aux noeuds (11.111)

Un tel problème n'admet de solution que si∫
C

Ψds = 0

car ∫
C
DsSds =

∑
N

TN (S) = 0

Si cette condition est véri�ée, on obtient la fonction S comme suit (�g. 11.12) :
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Figure 11.12 � Construction de la fonction S

on part d'un n÷ud d'extrémité et on détermine

S =

∫ s

0

Ψ(ζ)dζ

jusqu'à atteindre un nouveau n÷ud. On procède de même pour toutes les
branches possédant un noeud d'extrémité. Il est alors possible de progresser
de n÷ud en n÷ud, grâce aux relations∑

Sconv −
∑

Sdiv = 0

en partant d'abord des n÷uds où une seule branche reste inconnue.
Dans le cas présent, on a∫

C
x̄ds =

∫
Ω

xdΩ = 0∫
C
ȳds =

∫
Ω

ydΩ = 0∫
C
ωds =

∫
Ω

ψdΩ = 0

ce qui garantit l'existence des trois solutions.On notera que Sx et Sy ne sont
autres que les moments statiques, en conformité avec les cours élémentaires de
résistance des matériaux (formules du type τ = QS

It ).
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11.14 Caissons

Dans le cas des caissons mono- ou multicellulaires, la méthode la plus simple
de calcul de la torsion uniforme est la théorie de Bredt, déjà exposée en sections
6.13.1 et 6.13.2 et sur laquelle nous ne reviendrons pas. Nous nous intéresserons
cependant à la détermination du gauchissement et des �ux de contrainte de
cisaillement de �exion.

11.14.1 Détermination du gauchissement

On peut déduire le gauchissement par une voie analogue à celle que nous
avons suivie pour les poutres à parois minces ouvertes. Mais ici, on peut écrire∫

Ω

(Dsψ̄ − r − 2n2)dΩ ≈
∫

Ω

(Dsψ̄ − r)2dΩ =

∫
C
t(Dsψ̄ − r)2ds (11.112)

car la raideur de torsion est beaucoup plus grande que∫
C

t3

3
ds

du fait que l'on ne peut obtenir Dsψ̄ = r partout. En e�et, la fonction r n'est
pas intégrable sur un contour fermé, du fait que∫

Cfermé

rds = 2 · (aire du contour)

Au problème de la recherche de ψ̄ véri�ant les conditions

Figure 11.13 � Maillage du contour

{
Ds(tDsψ̄) = 0 dans les Ci
TN (tDsψ̄) = 0 aux n÷uds

(11.113)
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on peut donner une solution approchée par la méthode suivante (�g. 11.13) :
on décompose le contour en un certain nombre de segments approximativement
rectilignes, appelés éléments, et limités par des n÷uds de maillage . Sur chaque
élément, r est une constante. On y approche ψ̄ par une fonction a�ne, entière-
ment dé�nie par ses valeurs aux n÷uds de maillage. Ainsi, sur l'élément 1 − 2
de la �gure 11.13, on écrira

ψ̄ = ψ̄1

(
1− s

`12

)
+ ψ̄2

s

`12

en notant s la coordonnée allant de 1 ver 2, et `12 la longueur de cet élément.
On a alors

Dsψ̄ − r =
ψ̄2 − ψ̄1

`12
− r12

en notant r12 la valeur unique de r sur l'élément 1− 2. On en déduit∫
1−2

t(Dsψ̄ − r)2ds =

(
ψ̄2 − ψ̄1

`12
− r12

)2 ∫
1−2

tds

= t12`12

[(
ψ̄2 − ψ̄1

`12

)2

− 2r12
ψ̄2 − ψ̄1

`12
+ r2

12

]
où t12 est l'épaisseur moyenne de l'élément 1−2. Procédant de même pour tous
les éléments, on obtient une expression de la forme∫

C
t(Dsψ̄ − r)2ds =

∑
ij

Kijψ̄iψ̄j − 2
∑
i

giψ̄i + terme indépendant des ψ̄i

dont le minimum est atteint pour∑
j

Kijψ̄j = gi

soit
Kq = g

en notant q le vecteur dont les éléments sont les ψ̄i. Le problème se ramène
ainsi à l'inversion d'une matrice. Cependant, sa résolution se heurte à une petite
di�culté technique, car la matrice K est singulière. En e�et,

qTKq =

∫
C
t(Dsψ̄)2ds = 0
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pour q = vecteur constant, soit pour ψ̄1 = . . . = ψ̄n. Pour s'en sortir, il su�t de
poser arbitrairement ψ̄ = 0 en un n÷ud de maillage quelconque, ce qui diminue
d'une unité la dimension du système matriciel et fait disparaître la singularité
puisque dans ce cas

Dsψ̄ = 0⇒ ψ̄ = 0 partout

A la solution ψ̄∗ ainsi obtenue, on ajoute uniformément ψ̄0 choisi de telle façon
que ∫

C
t
(
ψ̄0 + ψ̄∗

)
ds = 0

soit

ψ̄0 = − 1

Ω

∫
C
tψ̄∗tds

= − 1

Ω

∑
élts i−j

∫
i−j

[
ψ̄∗i

(
1− s

`ij

)
+ ψ̄∗j

s

`ij

]
tds

≈ − 1

Ω

∑
élts i−j

ψ̄∗i + ψ̄∗j
2

`ijtij

l'égalité étant exacte si les éléments sont d'épaisseur constante. Il est alors aisé
de calculer les coordonnées du centre de torsion, ainsi que toutes les grandeurs
dépendant de ψ̄. On notera en particulier que

J =
∑

élts i−j

(
ψ̄i − ψ̄j
`ij

− rij
)2

`ijtij

Cette procédure n'est d'ailleurs rien d'autre qu'une méthode d'éléments �nis.

11.14.2 Recherche des champs de cisaillement de �exion

La même méthode peut être appliquée pour la recherche des champs de
cisaillement de �exion, en minimisant les fonctionnelle Ix, Iy et Iψ, après dis-
crétisation des fonctions gx, gy et gψ. Celles-ci obtenues, on obtient aisément les
�ux de cisaillement, par des formules du type

Sxij
= tij

gxi
− gxj

`ij

(Les �ux sont constants dans chaque élément.)
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11.15 Exercices

Exercice 39 Calculer la raideur de torsion d'une poutre en I à ailes en dé-
pouille (�g. 11.14).

Figure 11.14 � Poutre en I à ailes en dépouille

Solution - On a
J = Jâme + 2Jsemelle

avec

Jâme =
1

3
b1c

3
1

Pour la semelle supérieure, on a

ds =
dζ

cos α2

et

t = c2

(
1− 2ζ

b2

)
+ c3

2ζ

b2
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Posant

ξ =
2ζ

b2
, dζ =

b2
2
dξ

on a

Jsemelle =
1

3

2

cos α2

∫ b2/2

0

[
c2

(
1− 2ζ

b2

)
+ c3

2ζ

b2

]3

dζ

=
1

3

b2
cos α2

∫ 1

0

[c2(1− ξ) + c3ξ]
3dξ

=
1

3

b2
cos α2

{
c32

∫ 1

0

(1− ξ)3dξ + 3c22c3

∫ 1

0

(1− ξ)2ξdξ

+3c2c
2
3

∫ 1

0

(1− ξ)ξ2dξ + c33

∫ 1

0

ξ3dξ

}
Tenant compte du fait que∫ 1

0

ξm(1− ξ)ndξ = B(m+ 1, n+ 1) =
Γ(m+ 1)Γ(n+ 1)

Γ(m+ n+ 2)
=

m!n!

(m+ n+ 1)!

on obtient ∫ 1

0

(1− ξ)3dξ =

∫ 1

0

ξ3dξ =
3!0!

4!
=

1

4∫ 1

0

(1− ξ)2ξdξ =

∫ 1

0

ξ2(1− ξ)dξ =
2!1!

4!
=

1

12

Il en résulte

Jsemelle =
1

3

b2
4 cos α2

(c32 + +c22c3 + c2c
2
3 + c33)

=
1

3

b2
4 cos α2

(c2 + c3)(c22 + c23)

si bien que

J =
1

3
b1c

3
1 +

2

3

b2
cos α2

· 1

4
(c2 + c3)(c22 + c23)

Dans la plupart des cas, on peut confondre cos α2 avec l'unité, ce qui donne

J ≈ 1

3
b1c

3
1 +

2

3
b2 ·

1

4
(c2 + c3)(c22 + c23)
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Figure 11.15 � Résultante des contraintes de cisaillement

Exercice 40 Montrer que la résultante (Qx, Qy) des contraintes de cisaillement
de �exion passe par le centre de torsion.

Solution - Il su�t de montrer (�g. 11.15) que

Mt(τ
f ) = −QxyT +QyxT

Or,

Mt(τ
f ) =

∫
Ω

[
xD2

(
Qx
Ix
gx +

Qy
Iy
gy

)
− yD1

(
Qx
Ix
gx +

Qy
Iy
gy

)]
dΩ

Notant que∫
Ω

[
(D1ψ − y)D1

(
Qx
Ix
gx +

Qy
Iy
gy

)
+ (D2ψ + x)D2

(
Qx
Ix
gx +

Qy
Iy
gy

)]
dΩ = 0

on a encore

Mt(τ
f ) = −

∫
Ω

[
D1ψD1

(
Qx
Ix
gx +

Qy
Iy
gy

)
+D2ψD2

(
Qx
Ix
gx +

Qy
Iy
gy

)]
dΩ

= −
∫
∂Ω

ψ
∂

∂n

(
Qx
Ix
gx +

Qy
Iy
gy

)
ds+

∫
Ω

ψ∇2

(
Qx
Ix
gx +

Qy
Iy
gy

)
dΩ

= −
∫

Ω

ψ

(
Qx
Ix
x+

Qy
Iy
y

)
dΩ

= −QxyT +QyxT
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Exercice 41 A partir de l'exercice précédent, montrer que le centre de torsion
d'une section composée de parois minces rectilignes convergeant en un point se
trouve en ce point de concours (�g. 11.16).

Figure 11.16 � Poutre à parois minces convergeant en un point

Solution - Les e�orts tranchants partiels des parois rectilignes ont la direction
de ces parois, donc leur résultante passe par leur intersection.

Exercice 42 Dé�nissant, à partir d'un point quelconque de la section d'une
poutre, la fonction

ψA = ψ − yAx+ xAy

où ψ est le gauchissement de torsion, on considère la grandeur

K(A) =

∫
Ω

ψ2
AdΩ

1. Quelle fonctionnelle est minimisée par ψA ?

2. Montrer que K(A) admet un minimum lorsque A est le centre de torsion
et que ce minimum est précisément KT .

3. En déduire que le centre de torsion d'un pro�l composé de segments recti-
lignes concurrents est le point d'intersection de ces segments.

Solution

1. On a
ψ = ψA + yAx− xAy
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d'où
D1ψ = D1ψA + yA, D2ψ = D2ψA − xA, δψ = δψA

et, par conséquent,

J = inf
ψ

∫
Ω

[
(ψA − y + yA)2 + (ψA + x− xA)2

]
dΩ

2. On a évidemment

K(A) =

∫
Ω

(ψ − yAx+ xAy)2dΩ

= K + y2
AIx + x2

AIy − 2yA

∫
Ω

xψdΩ + 2xA

∫
Ω

yψdΩ

= K + y2
AIx + x2

AIy − 2yAIxyT − 2xAIyxT

et cette expression est minimale pour

yA = yT , xA = xT

Elle vaut alors
K(T ) = K − y2

T Ix− x2
T Iy = KT

3. Lorsque A est le point de concours (�g. 11.17), on a sur chaque segment

Figure 11.17 � A est le point de concours des parois

rA = (ȳ − yA)
dx̄

ds
− (x̄− xA)

dȳ

ds
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d'où
ωA = 0, KA = 0

Pour tout autre point B, ωB 6= 0, KB > 0. Donc A est le centre de torsion.

Exercice 43 Calculant, à partir d'un point quelconque (xA, yA), la fonction ψA
minimisant ∫

Ω

[
(ψA − y + yA)2 + (ψA + x− xA)2

]
dΩ,

montrer que

yT − yA =
1

Ix

∫
Ω

xψAdΩ, xT − xA = − 1

Iy

∫
Ω

yψAdΩ

En déduire la position du centre de torsion d'une poutre en U.

Solution - On a en e�et
ψ = ψA + yAx− xAy

d'où

yT = =
1

Ix

∫
Ω

x(ψA + yAx− xAy)dΩ =
1

Ix

∫
Ω

xψAdΩ + yA

xT = = − 1

Iy

∫
Ω

y(ψA + yAx− xAy)dΩ = − 1

Ix

∫
Ω

yψAdΩ + xA

Pour la poutre en U (�g. 11.18), en partant du point O, centre de l'âme, on a
visiblement

rA12 =
h

2
, rA34 = −h

2
, rA23 = 0

d'où

ω2 = ω3 = 0, ω1 = −bht
2
, ω4 =

bht

2

et

xT = − 1

Iy

(
−b

2h2t

8
− b2h2t

8

)
=
b2h2t

4Iy

Quant à yT , il est nul par symétrie.

Exercice 44 Est-il possible de provoquer la torsion d'un poutre en sollicitant
sa section �nale par des contraintes σ33 ?



11.15. EXERCICES 391

Figure 11.18 � Poutre en U

Réponse - Il su�t pour cela d'appliquer des contraintes σ33 telles que

N =

∫
Ω

σ33dΩ = 0

Mx =

∫
Ω

σ33xdΩ = 0

My =

∫
Ω

σ33ydΩ = 0

BT =

∫
Ω

σ33ΨT dΩ 6= 0

La �gure 11.19 illustre un tel système de charges pour une poutre en I.

Exercice 45 Comparer la raideur de torsion d'un tube de rayon R et d'épais-
seur t à celle du même tube fendu longitudinalement, pour R = 25mm, t =
1mm.
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Figure 11.19 � Système de contraintes normales provoquant la torsion

Solution -

Jnon fendu = 2πR3t

Jfendu = 2πR
t3

3

Jnon fendu
Jfendu

= 3

(
R

t

)2

= 3 · 625 = 1875

On notera que ce rapport est considérable !



Chapitre 12

Flexion des plaques

12.1 Introduction

La théorie des plaques traite de la �exion des corps plans dont l'épaisseur
est faible devant les deux autres dimensions.

12.2 Description de la plaque et évaluation des
ordres de grandeur

Figure 12.1 � Plaque

Pour décrire la géométrie de la plaque, on repère les points du feuillet moyen

393
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par deux coordonnées x1 et x2, parcourant une surface S. Un point quelconque
de la plaque a la forme (x1, x2, z), z variant de −t/2 à t/2 (�g. 12.1). Par
convention, nous écrirons xα l'une quelconque des coordonnées x1 ou x2. La
coordonnée x3 = z est toujours soigneusement distinguée des deux autres.

Figure 12.2 � Sollicitation par pression

Un cas typique de sollicitation de plaque est celui où une pression p agit sur
une des deux faces de la plaque (�g. 12.2). Dans ce cas, la contrainte σ33 prend
la valeur −p sur la face comprimée et s'annule sur l'autre face. Notant S3 l'ordre
de grandeur de σ33 et P celui de la pression, on aura donc

S3 = P, D3σ33 = O(
P

t
) (12.1)

A partir de l'équation d'équilibre

Dασα3 +D3σ33 = 0

on tire, en notant T l'ordre de grandeur des contraintes σα3 et λ leur longueur
d'onde dé�nie par

Dασα3 = O(
T

λ
)

la relation
T

λ
=
S3

t

c'est-à-dire

T = S3
λ

t
= P

λ

t
(12.2)

On peut s'attendre à ce que les contraintes σαβ varient de leur ordre de grandeur
sur une distance du même ordre de grandeur λ ; d'autre part, les contraintes
tangentielles sont nulles sur les deux faces de la plaque, ce qui implique

D3σα3 = O(
T

t
)
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De l'équation d'équilibre
Dβσβα +D3σα3 = 0 (12.3)

on déduit donc, en notant Sα l'ordre de grandeur des contraintes σαβ ,

Sα
λ

=
T

t

soit

Sα = T
λ

t
= S3

(
λ

t

)2

= P

(
λ

t

)2

(12.4)

Figure 12.3 � Sollicitation par e�orts tangentiels

Un autre type de mise en charge en �exion consiste à imposer des e�orts
tangentiels opposés sur les deux faces (�g. 12.3). Dans ce cas, on a

σα3(± t
2

) = qα = O(Q)

et on s'attend à ce que les σα3 soient des fonctions paires de z. Alors, comme

D3σ33 = −Dασα3

σ33 sera impaire de z. Or, cette contrainte doit s'annuler en ±t/2. Il en résulte
que

D3σ33 = O(S3/t)

On en déduit

Dβσβα = O(
T

λ
) = O(

S3

t
)

d'où
S3 = T

t

λ

En�n, on déduit à nouveau de l'équation (12.3) que

Sα = T
λ

t
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On constate que dans les deux cas,{
T = Sα

t
λ

S3 = Sα
(
t
λ

)2 (12.5)

Dès lors, si l'on restreint l'analyse aux e�ets à une distance grande devant l'é-
paisseur, ce qui revient à admettre que λ est grand devant t, on obtient que les
contraintes de cisaillement σα3 sont t/λ plus petites que les contraintes d'exten-
sion σαβ et la contrainte σ33, (t/λ)2 fois plus petite que les σαβ . En admettant
une erreur de l'ordre de (t/λ)2 sur les contraintes, on peut donc poser σ33 ≈ 0,
ce qui ramène à un état plan de contrainte.

12.3 Structure des contraintes σαβ
La symétrie gauche en z des problèmes de �exion mène à écrire les contraintes

σαβ comme des fonctions impaires de z, que nous développerons en série de
Taylor :

σαβ = zAαβ(x1, x2) +
z3

3
Bαβ(x1, x2) + . . . (12.6)

Il en découle en particulier

D33σαβ = zBαβ + . . . (12.7)

Nous allons montrer que ces derniers termes doivent être négligeables. En e�et,
une des équations de compatibilité de Beltrami-Michell s'écrit

Dγγσαβ +D33σαβ +
1

1 + ν
Dαβσγγ +

1

1 + ν
Dαβσ33 = 0

Eu égard aux ordres de grandeur obtenus ci-dessus, on a à priori

Dγγσαβ +
1

1 + ν
Dαβσγγ = O

(
Sα
λ2

)
Dαβσ33 = O

(
S3

λ2

)
= O

(
Sα
λ2

t2

λ2

)
ce qui donne, à t2/λ2 près,

D33σαβ = O
(
Sα
λ2

)
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L'introduction de ce résultat dans (12.6) et(12.7) donne

σαβ − zAαβ = O
(
Sα

t2

λ2

)
Ainsi, l'erreur commise en limitant l'expression des contrainte σαβ au seul terme
linéaire en z est du même ordre que celle qui provient de l'hypothèse d'un état
plan de contrainte. Nous écrirons donc à juste titre

σαβ = zAαβ (12.8)

Il est d'usage d'utiliser d'autres grandeurs que les variable Aαβ , à savoir les
moments

Mαβ =

∫ t/2

−t/2
zσαβdz = Aαβ

∫ t/2

−t/2
z2dz = Aαβ

t3

12
(12.9)

En fonctions de ceux-ci, on a donc

σαβ =
12z

t3
Mαβ (12.10)

Traditionnellement, on appelleM11 etM22 moments de �exion etM12, moment
de torsion. Ils sont représentés en �gure 12.4.

Figure 12.4 � Représentation des moments
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12.4 Application du principe de Hellinger-Reissner

Tenant compte de l'hypothèse d'état plan de contrainte, le principe de Hellinger-
Reissner d'écrit∫

S

{∫ t/2

−t/2

[
σαβ

1

2
(Dαuβ +Dβuα) + σα3(Dαu3 +D3uα)− Φ(σ)

]
dz

}
dS

+ P(u) stationnaire (12.11)

en notant P(u) l'énergie potentielle des charges. Dans le cas d'un corps isotrope,
on a

Φ(σ) =
1 + ν

2E
σαβσαβ −

ν

2E
σαασββ +

1

2G
σα3σα3 (12.12)

Pour les contraintes σαβ , nous appliquerons le résultat de structure linéaire en
z ; par contre, nous ne ferons pas d'hypothèses particulières sur les contraintes
σα3, ni sur les déplacements. On a d'abord∫ t/2

−t/2
σαβ

1

2
(Dαuβ +Dβuα)dz =

1

2
Mαβ

∫ t/2

−t/2

12

t3
z(Dαuβ +Dβuα)dz

=
1

2
Mαβ

{
Dα

(∫ t/2

−t/2

12z

t3
uβdz

)
+Dβ

(∫ t/2

−t/2

12z

t3
uαdz

)}
ce qui suggère d'introduire les rotations moyennes

ϕα =

∫ t/2

−t/2

12z

t3
uαdz (12.13)

Pour justi�er cette appellation, notons d'abord que si les déplacements étaient
linéaires en z, c'est-à-dire de la forme uα = zψα, on aurait bien

ϕα =

∫ t/2

−t/2

12

t3
z2ψαdz = ψα

De plus, comme

z = −D3

(
t2

8
− z2

2

)
une simple intégration par parties fournit

ϕα =

[
−12

t3

(
t2

8
− z2

2

)
uα

]t/2
−t/2︸ ︷︷ ︸

0

+
12

t3

∫ t/2

−t/2

(
t2

8
− z2

2

)
D3uαdz (12.14)
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ce qui fait e�ectivement apparaître ϕα comme une moyenne pondérée de la
pente D3uα puisque

12

t3

∫ t/2

−t/2

(
t2

8
− z2

2

)
dz =

12

t3

(
t3

8
− t3

24

)
= 1 (12.15)

A l'aide de ces rotations moyennes, on peut donc écrire∫ t/2

−t/2
σαβ

1

2
(Dαuβ +Dβuα)dz = Mαβ

1

2
(Dαϕβ +Dβϕα) (12.16)

Par ailleurs, on calcule aisément∫ t/2

−t/2

(
1 + ν

2E
σαβσαβ −

ν

2E
σαασββ

)
dz =

12

t3

{
1 + ν

2E
MαβMαβ −

ν

2E
MααMββ

}
(12.17)

Pour pouvoir traiter d'une manière analogue les autres termes de la fonc-
tionnelle (12.11), il nous faut recourir aux équations d'équilibre qui résultent,
comme on sait, de la variation des déplacements uα. On obtient, pour autant
que P(δuα) = 0, les équations d'équilibre intérieur

Dβσαβ +D3σα3 = 0

Les conditions de contour seront traitées plus loin. On déduit de la structure de
σαβ

D3σα3 = −12z

t3
DβMαβ

et, tenant compte de la nullité des contraintes de cisaillement sur les deux faces
de la plaque,

σα3 =
12

t3

(
t2

8
− z2

2

)
DβMαβ

L'intégration de ces relations sur l'épaisseur fournit les e�orts tranchants

Qα =

∫ t/2

−t/2
σα3dz = DβMαβ (12.18)

en vertu de (12.15). La relation inverse s'écrit

σα3 =
12

t3

(
t2

8
− z2

2

)
Qα (12.19)
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A partir de ce résultat, on peut calculer∫ t/2

−t/2
σα3(Dαu3 +D3uα)dz = Qα

12

t3

∫ t/2

−t/2

(
t2

8
− z2

2

)
(Dαu3 +D3uα)dz

= Qα

{
Dα

[
12

t3

∫ t/2

−t/2

(
t2

8
− z2

2

)
u3dz

]
+

12

t3

∫ t/2

−t/2

(
t2

8
− z2

2

)
D3uαdz

}
On retrouve dans le second terme la rotation moyenne ϕα ; quant au premier,
il s'interprète comme la dérivée par rapport à xα d'un déplacement transversal
moyen

w =
12

t3

∫ t/2

−t/2

(
t2

8
− z2

2

)
u3dz (12.20)

ce qui permet d'écrire �nalement∫ t/2

−t/2
σα3(Dαu3 +D3uα)dz = Qα(ϕα +Dαw) (12.21)

Il reste à calculer le terme∫ t/2

−t/2

σα3σα3

2G
dz =

1

2G

144

t6
QαQα

∫ t/2

−t/2

(
t4

64
− t2z2

8
+
z4

4

)
dz

=
1

2G

144

t6
QαQα

t5

120

=
1

2G

QαQα
5t/6

(12.22)

Ayant pris pour point de départ une structure particulière des contraintes,
nous avons par le fait même restreint les charges qu'il est possible de prendre en
compte. Pour préciser celles-ci, il faut examiner les conditions d'équilibre. Ainsi,
par exemple, en posant à priori σα3 = 0 en z = ±t/2, nous avons implicitement
éliminé la cas d'une mise en charge par des e�orts tangentiels opposés sur les
deux faces, du reste moins important en pratique. Les seules charges possibles
découlent de l'équation d'équilibre selon z, qui s'écrit

Dασα3 + f3 = 0

f3 étant une charge de volume verticale. Cette charge a d'ailleurs une structure
en z déterminée :

f3 = −12

t3

(
t2

8
− z2

2

)
DαQα
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Sa résultante

p =

∫ t/2

−t/2
f3dz = −DαQα (12.23)

doit être considérée comme une représentation � équivalente �d'une éventuelle
charge de pression. Cette approximation est nécessitée par l'hypothèse d'état
plan de contrainte. On notera que l'on a exactement∫ t/2

−t/2
f3u3dz = pw (12.24)

Examinons en�n les conditions qu'il est possible d'imposer sur la partie ∂S2

du contour où l'on impose les e�orts. Si nα sont les composantes de la normale
au contour, les tractions de surface imposées T̄α doivent avoir la même structure
que les contraintes pour véri�er la condition d'équilibre local :

T̄α = nβσβα =
12z

t3
nβMβα

Après multiplication par z et intégration, cela donne

nβMαβ =

∫ t/2

−t/2
zT̄αdz = M̄nα

Pour les tractions de surface T̄3, on devra avoir

T̄3 = nβσβ3 =
12

t3

(
t2

8
− z2

2

)
nβQβ

Intégrant sur z, on obtient

nβQβ =

∫ t/2

−t/2
T̄3dz = Q̄n

On véri�e sans peine qu'à l'aide de ces résultantes et moments, le travail virtuel
des tractions de surface s'écrit∫

∂S2

(M̄nαδϕα + Q̄nδw)ds

Adoptant sur ∂S2 le système d'axes curvilignes dé�ni par la normale et la
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Figure 12.5 � Normale et tangente sur le contour

tangente au contour parcouru dans le sens laissant l'aire à gauche (�g. 12.5), on
peut écrire

δϕα = (δϕβnβ)nα + (δϕβtβ)tα = δϕnnα + δϕttα

où δϕn est la rotation normale et δϕt, la rotation tangentielle. Il en découle que

M̄nαδϕα = nαM̄nαδϕn + tαM̄nαδϕt = M̄nδϕn + M̄ntδϕt

où s'introduisent le moment de �exion de contour

M̄n = nαM̄nα (12.25)

pour lequel l'équilibre s'écrit

Mαβnαnβ = M̄n (12.26)

et le moment de torsion de contour

M̄nt = tαM̄nα (12.27)

pour lequel la condition d'équilibre est

Mαβnαtβ = M̄nt (12.28)

Ils permettent d'écrire le travail virtuel des tractions de surface sous la forme∫
∂S2

(M̄nδϕn + M̄ntδϕt + Q̄nδw)ds (12.29)

Ces e�ort et moments sont représentés en �gure 12.6.
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Figure 12.6 � Moment normal et moment de torsion sur le bord

12.5 Équations générales des plaques

En rassemblant les résultats acquis jusqu'ici, on peut donner au principe de
Hellinger-Reissner la forme bidimensionnelle

δ

{∫
S

[
Mαβ

1

2
(Dαϕβ +Dβϕα) +Qα(ϕα +Dαw)

−12

t3
((1 + ν)MαβMαβ − νMααMββ)− 1

2nGt
QαQα − pw

]
dS

−
∫
∂S2

(M̄nϕn + M̄ntϕt + Q̄nw)ds

}
= 0 (12.30)

où nous avons écrit n à la place de 5/6 pour des raisons qui apparaîtront dans
la suite.

La variation des ϕα dans ce principe conduit aux équations d'équilibre des
moments

DβMβα = Qα dans S (12.31)

Mαβnαnβ = M̄n et Mαβnαtβ = M̄nt sur ∂S2 (12.32)

La variation de w fournit

DαQα + p̄ = 0 dans S (12.33)

nαQα = Q̄n sur ∂S2 (12.34)

Variant les moments, on obtient les relations moments-courbures :

1

2
(Dαϕβ +Dβϕα) =

12

Et3
[(1 + ν)Mαβ − νMγγδαβ ]
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Il est d'usage de noter χαβ les courbures

χαβ =
1

2
(Dαϕβ +Dβϕα) (12.35)

En particulier, on appelle torsion la grandeur (2χ12). La résolution de ces équa-
tions, de manière à expliciter les moments, fournit

Mαβ = D[(1− ν)χαβ + νχγγδαβ ] (12.36)

où l'on a introduit la raideur de plaque

D =
Et3

12(1− ν2)
(12.37)

En�n, la variation des e�orts tranchants mène à l'équation

Qα = nGt(ϕα +Dαw) = nGtγα (12.38)

en notant
γα = ϕα +Dαw (12.39)

L'énergie complémentaire de déformation s'écrit

Ψ =

∫
S

{
12

Et3
[(1 + ν)MαβMαβ − νMααMββ ] +

1

2nGt
QαQα

}
dS (12.40)

L'énergie de déformation s'en déduit en y remplaçant les valeurs de Mαβ et de
Qα obtenues en (12.36) et (12.38). Il vient

U =

∫
S

{
D

2
[(1− ν)χαβχαβ + νχααχββ ] +

nGt

2
γαγα

}
dS

soit explicitement,

U =

∫
S

{
D

2
[(1− ν)(χ2

11 + χ2
22 + 2χ2

12) + ν(χ2
11 + χ2

22 + 2χ11χ22)]

+
nGt

2
(γ2

1 + γ2
2)

}
dS

=

∫
S

{
D

2
[χ2

11 + χ2
22 + 2χ11χ22 + 2(1− ν)(χ2

12 − χ11χ22)] +
nGt

2
(γ2

1 + γ2
2)

}
dS

(12.41)
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12.6 Autres types d'hypothèses

La théorie ci-dessus est due à Reissner [72, 73]. Une autre approche, dévelop-
pée par Hencky [43], consiste à poser σ33 = 0 comme ci-dessus, puis à pro�ter
du relâchement de la compatibilité en z que cette hypothèse entraîne dans un
cadre variationnel, pour poser u3 = w(x, y) ; on y ajoute une structure linéaire
des déplacements uα :

uα = zϕα (12.42)

Le développement de cette théorie mène à des expressions semblables aux pré-
cédentes, sauf à donner à n la valeur 1 au lieu de 5/6, ce qui manifeste le
supplément de raideur d'une théorie cinématiquement admissible (dans le cadre
σ33 = 0) par rapport à la théorie de Reissner, qui est statiquement admissible.
Par ailleurs, il n'y a pas, dans cette théorie, de restrictions sur la forme de la
mise en charge.

12.7 L'hypothèse de Kirchho�

Une simpli�cation supplémentaire, introduite pour la première fois par Kirch-
ho� [48, 52], consiste à négliger la déformation due à l'e�ort tranchant. On notera
en e�et que l'équation d'équilibre

Qα = DβMβα

entraîne la relation

Q =
M

λ
(12.43)

entre l'ordre de grandeur Q des e�orts tranchants et l'ordre de grandeur M
des moments. Les courbures sont de l'ordre de ϕ/λ, en appelant ϕ l'ordre de
grandeur des rotations, si bien que, par les équations moments-courbures,

M =
Et3

12(1− ν2)

ϕ

λ
(12.44)

Par ailleurs, l'ordre de grandeur Q des e�orts tranchants est lié à l'ordre de
grandeur γ des glissements γα3 par la relation

Q = nGtγ (12.45)

On obtient donc
Q

M
=

1

λ
=
nGtλ

Et3
12(1− ν2)

γ

ϕ
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ce qui entraîne

γ

ϕ
=

E

12(1− ν2)nG

(
t

λ

)2

c'est-à-dire

ϕα = −Dαw +O

[
E

12(1− ν2)nG

(
t

λ

)2

ϕ

]
(12.46)

Pour une plaque homogène en z, de coe�cient de Poisson égal à 0, 3, on a

E

12(1− ν2)nG
=

1

6n(1− ν)
= 0, 29 (12.47)

en supposant n = 5/6. Dès lors, en posant à priori

ϕα = −Dαw (12.48)

on ne commet qu'une erreur du même ordre de grandeur que celles que nous
avons déjà consenties jusqu'ici. Ce n'est que dans le cas de matériaux équiva-
lents, destinés à représenter, par exemple, des sandwiches (�g. 12.7) (souvent
anisotropes d'ailleurs), que l'on peut observer des valeurs relativement grandes
du rapport (12.47). La simpli�cation (12.48) est connue sous le nom d'hypothèse
de Kirchho�. On peut également donner à cette hypothèse une présentation

Figure 12.7 � Sandwich

énergétique. En e�et, les relations (12.43) impliquent que l'énergie de �exion a
pour ordre de grandeur

E.F. =
1

2

12

Et3
{(1 + ν)MαβMαβ − νMαα} = O

(
1

2

12

Et3
M2

)
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tandis que l'ordre de grandeur de l'énergie de cisaillement est

E.C. =
1

2nGt
QαQα = O

(
1

2

1

nGt

M2

λ2

)
si bien que leur rapport est de l'ordre de

E.C.

E.F.
=

E

12nG

t2

λ2
(12.49)

En admettant une erreur en E
12nG

t2

λ2 sur le calcul de l'énergie, on peut donc
écrire le principe de Hellinger-Reissner simpli�é

δ

{∫
S

[
1

2
Mαβ(Dαϕβ +Dβϕα) +Qα(ϕα +Dαw)

− 12

t3
((1 + ν)MαβMαβ − νMααMββ)

]
−
∫
S

p̄wdS −
∫
∂S2

(M̄nϕn + M̄ntϕt + Q̄nw)ds

}
= 0 (12.50)

où les e�orts tranchants Qα jouent le rôle de multiplicateurs de Lagrange as-
sociés à la condition de Kirchho�. Pour le reste, ils perdent toute signi�cation
énergétique (ils ne travaillent pas) et si l'on exprime les conditions de Kirchho�
à priori, ils disparaissent du principe. C'est du reste de cette manière que l'on
procède le plus souvent : à partir des conditions (12.48), on calcule les courbures

χαβ = −1

2
(Dαβw +Dβαw) = −Dαβw (12.51)

Sur le contour, on a

ϕn = −Dnw, ϕt = −Dtw (12.52)

ce qui mène à la forme suivante du principe de Hellinger-Reissner :

δ

{∫
S

[
−MαβDαβw −

12

t3
((1 + ν)MαβMαβ − νMααMββ)− pw

]
dS

−
∫
∂S2

(Q̄nw − M̄nDnw − M̄ntDtw)ds

}
= 0 (12.53)
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Figure 12.8 � Indépendance de la pente normale sur le bord

12.8 Le paradoxe de Kirchho�

Il se trouve que les conditions de Kirchho� modi�ent profondément la struc-
ture des conditions aux limites. Tout d'abord, sur ∂S1, on remarquera que s'il
est possible, étant donné une fonction w̄, de se donner Dnw arbitrairement (�g.
12.8), il n'en est pas de même de Dtw, puisque

w̄(s) = w̄(s1) +

∫ s

s1

Dtwds
∗

Au lieu des trois conditions w = w̄, ϕn = ϕ̄n et ϕt = ϕ̄t, on se trouve donc réduit
à w = w̄ et Dnw = Dnw. De la même manière, sur ∂S2, on sera ramené à deux
conditions seulement. Pour le montrer, nous supposerons ∂S2 formé d'un nombre
�ni d'arcs réguliers Ci joignant un point Pi−1 à un point Pi, comme représenté
en �gure 12.9. En ces points, le contour peut posséder des angles. Notant que
Dtw dépend de w, on peut faire apparaître ce dernier par une intégration par
parties :

−
∫
∂S2

(−M̄ntDtw)ds = −
∑
i

∫
Ci

(−M̄ntDtw)ds

=
∑
i

[
M̄ntw

](Pi)−

(Pi−1)+
−
∑
i

∫
Ci

(DtM̄nt)wds
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Figure 12.9 � Contour typique

et, en réarrangeant les termes, on obtient

−
∑
i

[
M̄nt(Pi+)− M̄nt(Pi−)

]
wi −

∑
i

∫
Ci

(DtM̄nt)wds

ce qui permet de donner au travail des forces imposées sur ∂S2 la forme �nale

−
∫
∂S2

(K̄nw − M̄nDnw)ds−
∑
i

Z̄iwi (12.54)

en dé�nissant les forces de coin

Z̄i = M̄nt(Pi+)− M̄nt(Pi−) (12.55)

et l'e�ort tranchant de Kirchho�

K̄n = Q̄n +DtM̄nt (12.56)

Il n'est donc plus possible de spéci�er séparément Q̄n, M̄n et M̄nt, le premier et
le troisième se combinant pour donner l'e�ort K̄n et les forces de coin. Ce fait
paradoxal, démontré par Kirchho� par la présente méthode, a suscité au XIXe

siècle de nombreuses controverses, jusqu'à ce que Thomson (Lord Kelvin) et Tait
[83] en donnent une interprétation physique très claire. Du fait de l'hypothèse
de Kirchho�, un moment de torsion élémentaire M̄ntds est indiscernable par son
travail d'un couple de forces M̄nt situées à une distance ds. Les di�érents couples
équivalents de forces M̄nt relatifs à des éléments voisins s'équilibrent à DtM̄nt
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Figure 12.10 � Paradoxe de Kirchho�

près, si bien que sur l'arc régulier considéré, on applique en fait une densité
d'e�orts tranchants DtM̄nt (�g. 12.10). Ainsi, les couples M̄ntds s'équilibrent à
DtM̄ntds près, sauf aux extrémités de l'arc où, ne trouvant pas d'équivalent, les
e�orts M̄nt forment une charge de coin.

12.9 Équation de Sophie Germain

L'élimination des moments au pro�t des déplacements dans le principe (12.53)
mène au principe variationnel∫

S

D

2
{(∇2w)2 + 2(1− ν)[(D12w)2 −D11wD22w]}dS

−
∫
S

pwdS −
∫
∂S2

(K̄nw − M̄nDnw)ds−
∑
i

Ziwi minimum (12.57)
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Lors d'une variation de w, le terme multiplié par (1 − ν) ne produit que des
termes aux limites. Il peut donc être omis dans le cas d'une plaque encastrée
sur tout son contour. L'équation d'équilibre intérieur s'écrit

∇4w =
p

D
(12.58)

et a été obtenue pour la première fois par Sophie Germain en 1816. La théorie
de Sophie Germain péchait cependant par ses conditions aux limites.

12.10 Expression des résultantes de bord en termes
des déplacements

Partant de l'expression générale des moments

Mαβ = −D[(1− ν)Dαβw + νDγγwδαβ ]

on obtient directement

Mn = −D[(1− ν)nαnβDαβw + ν∇2w] (12.59)

On notera que ∇2w est la trace de la matrice hessienne de composantes Dαβw.
Comme cette matrice a, dans le système de base (n, t), les composantes[

nαnβDαβw nαtβDαβw
nαtβDαβw tαtβDαβw

]
on a donc également

∇2w = nαnβDαβw + tαtβDαβw

si bien que
Mn = −D∇2w +D(1− ν)tαtβDαβw

Or, on peut écrire

tαtβDαβw = tβDt(Dβw)

= Dt(tβDβw)−DβwDttβ

= Dttw −DβwDttβ

Notant que
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Figure 12.11 � Dérivée du vecteur normal

tβDttβ = Dt

(
tβtβ

2

)
= Dt

(
1

2

)
= 0

et que
nβDttβ = Dt(nβtβ)− tβDtnβ = −tβDtnβ = −Dtθ

θ étant l'angle que fait la normale avec une direction �xe (�g. 12.11), on obtient

Dttβ = −nβ(Dtθ)

ce qui entraîne �nalement

Mn = −D∇2w +D(1− ν)[Dttw +Dnw(Dtθ)] (12.60)

On peut procéder de même pour le calcul de Kn. Tout d'abord,

Qα = DβMβα = −D[(1− ν)Dαββw + νDγγαw] = −DDα∇2w

d'où
Qn = nαQα = −DDn∇2w

On a par ailleurs

Mnt = −D(1− ν)nαtβDαβw

= −D(1− ν)[Dt(Dnw)−DαwDtnα]

= −D(1− ν)[Dtnw − (Dtθ)Dtw]

Rassemblant ces deux résultats, on obtient

Kn = Qn +DtMnt = −DDn∇2w −D(1− ν)Dt[Dtnw − (Dtθ)Dtw] (12.61)
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12.11 Comparaison des théories avec et sans e�et
des e�orts tranchants

La caractéristique essentielle de la théorie de Kirchho� est que le champ de
rotations ϕα est intégrable, ce qui revient à dire que

Ω = D1ϕ2 −D2ϕ1 = 0

Au contraire, dans les théories de Hencky et de Reissner, on a

Ω = e3αβDαϕβ

= −e3αβDαβw +
1

nGt
e3αβDαQβ

=
1

nGt
e3αβDαγMγβ

=
D

nGt
e3αβDαγ [(1− ν)χγβ − νχλλδγβ ]

=
D(1− ν)

nGt
e3αβDαγχγβ −Dνe3αβDαβχλλ

=
D(1− ν)

2nGt
e3αβDαγ(Dγϕβ +Dβϕγ)

=
D(1− ν)

2nGt
e3αβDαγγϕβ

=
D(1− ν)

2nGt
∇2Ω

soit

∇2Ω =
2nGt

D(1− ν)
Ω =

12n

t2
Ω (12.62)

dans le cas d'une plaque homogène sur son épaisseur. Avant d'examiner les
propriétés de cette équation, notons que cette grandeur Ω admet, dans la théorie
de Reissner, la représentation

Ω =
12

t3

∫ t/2

−t/2
z(D1u2 −D2u1)dz =

12

t3

∫ t/2

−t/2

(
t2

8
− z2

2

)
D3(D1u2 −D2u1)dz

qui la donne comme une moyenne pondérée de la torsion normale de la plaque
[29], ainsi que l'illustre la �gure 12.12. L'équation (12.62), écrite sous la forme

Ω =
t2

12n
∇2Ω
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Figure 12.12 � Torsion normale

se présente comme une perturbation singulière de l'équation de Kirchho�. Elle
admet des solutions à variation très rapide : ainsi, en cherchant une solution de
la forme

Ω = A exp(−αx1 − βx2)

on obtient
t2

12n
(α2 + β2) = 1

soit, lorsque n = 5/6, √
α2 + β2 ≈ 3

t

c'est-à-dire que la profondeur de pénétration (distance à laquelle la solution
est divisée par e) est de l'ordre de t/3. Par conséquent, les zones de violation
de la condition de Kirchho� sont très localisées, près des bords ou des points
d'application de la charge.

La recherche du champ de déplacements w se fait, en théorie de Kirchho�, à
partir de l'équation de Sophie Germain. Dans le cadre des théories prenant en
compte l'e�et de l'e�ort tranchant, il faut partir de la relation

Mαβ =
D

2
(1− ν)(Dαϕβ +Dβϕα) + νDDγϕγδαβ

ce qui donne

p = −DαβMαβ

= −D
2

(1− ν)(Dαβαϕβ +Dαββϕα)− νDDααγϕγ

= −D∇2Dαϕα = −D∇2

(
−Dααw +Dα

Qα
nGt

)
= D∇4w +D

∇2p

nGt
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soit, �nalement,

∇4w =
p

D
− ∇

2p

nGt
(12.63)

La solution de cette équation peut être mise sous la forme

w = wK + wS

où wk est la solution de Kirchho� et wS , une solution de l'équation

∇4wS = −∇
2p

nGt

Cette dernière, qui véri�e

∇2
(
∇2wS +

p

nGt

)
a la forme générale

wS = w∗ + w∗∗

avec
∇2w∗ = − p

nGt
, ∇4w∗∗ = 0

La solution partielle w∗∗ est toujours régulière ; en revanche, la régularité de w∗

dépend de celle de p. Si la charge de pression p est relativement régulière, il en
sera de même de w∗ et, du fait du coe�cient 1/(nGt) qui est petit devant 1/D,
w∗ sera négligeable devant wK . Par contre, pour les charges très irrégulières, la
situation change radicalement. Ainsi, dans le cas d'une charge concentrée en un
point a, la solution w∗ est

w∗ = − P

nGt

1

2π
ln(|x− a|)

et admet donc une singularité logarithmique. Au contraire, la solution de Kir-
chho� conduit à un déplacement �ni (mais à une singularité logarithmique des
moments).

12.12 Torsion d'une plaque rectangulaire encas-
trée sur un bord

La comparaison des deux types de théories de plaques se fait aisément dans le
cas de la torsion d'une plaque rectangulaire (�g. 12.13). En théorie de Kirchho�,
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Figure 12.13 � Torsion d'une plaque

on cherche une solution de la forme

w(x, y) = yA(x) (12.64)

ce qui donne 

χxx = −∂
2w

∂x2
= −yA”(x)

χyy = −∂
2w

∂y2
= 0

χxy = − ∂2w

∂x∂y
= −A′(x)

On aura donc  Mx = D(χxx + νχyy) = −DyA”
My = D(χyy + νχxx) = −νDyA”
Mxy = D(1− ν)χxy = −D(1− ν)A′

La torsion pure est caractérisée par Mx = My = 0, ce qui implique A” = 0, soit
A′ = θ = cte, d'où

w(x, y) = θxy

On a alors

Mxy = −D(1− ν)θ, Qx =
∂Mxy

∂y
= 0, Qy =

∂Mxy

∂x
= 0
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Figure 12.14 � Conditions aux limites

Examinons à présent les conditions aux limites, à l'aide de la �gure 12.14.

1. En y = b/2, on doit avoir My = 0, ce qui est identiqument véri�é ; on a
d'autre part Mnt = −Mxy, ds = −dx, d'où la condition

Kn = Qy +
∂Mxy

∂x
= 0

également véri�ée. Mais il convient de noter que l'on n'a pas Mxy = 0.
D'ailleurs, au coin 2, il existe une force de coin

Z2 = (Mnt)2+
− (Mnt)2−

= − (Mxy)2+
− (Mxy)2−

= 2D(1− ν)θ

2. En y = −b/2, on a également My = 0 et Mnt = −Mxy, ds = dx, d'où la
condition

Kn = −Qy −
∂Mxy

∂x
= 0

également véri�ée sans mener à Mxy = 0. Au coin 1, il existe une force de
coin

Z2 = (Mnt)1+
− (Mnt)1−

= (Mxy)1+
+ (Mxy)1−

= −2D(1− ν)θ

3. Sur le bord x = `, le moment Mn = Mx est nul ; on a par ailleurs Mnt =
Mxy et ds = dy, d'où la valeur suivante de l'e�ort tranchant de Kirchho� :

Kn = Qx +
∂Mxy

∂y
= 0
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Le moment de torsion appliqué à l'extrémité de la plaque vaut

Mt =
b

2
Z2 +

(
− b

2

)
Z1 = 2D(1− ν)bθ = 2

Et3b

12(1 + ν)
θ =

1

3
Gt3bθ (12.65)

On retrouve donc la formule classique des poutres à section mince. Il est inté-
ressant de noter la chose suivante : si l'on calcule en x = a∫ b/2

−b/2
Mxydy = D(1− ν)θb

on n'obtient que la moitié du moment, l'autre provenant des moments de torsion
résiduels aux coins (voir l'interprétation de Thomson-Tait), assimilables aux
contraintes de cisaillement nécessaires pour refermer les lignes de cisaillement
que l'on obtiendrait en théorie des poutres (�g. 12.15). Du reste, en ne comptant
que les Mxy, on ne retient dans le calcul du moment que les contraintes τxy ,
et la théorie des poutres enseigne e�ectivement que les contraintes τxy et τxz
contribuent chacune pour moitié au moment.

Figure 12.15 � Les contraintes tangentielles dans les deux directions ont une
contribution identique au moment

Voyons à présent comment étudier le même problème en prenant en compte
l'e�et des e�orts tranchants. Tout d'abord, il faudra modi�er la structure du
moment Mxy pour lui permettre de s'annuler sur les bords libres. D'autre part,
pour sauvegarder la nullité des moments Mx et My, il faudra que les rotations
ϕx et ϕy véri�ent

∂ϕx
∂x

=
12

Et3
(Mx − νMy) = 0 (12.66)

∂ϕy
∂y

=
12

Et3
(My − νMx) = 0

La nullité de Qy nécessitera la relation

ϕy = −∂w
∂y

(12.67)
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tandis que

ϕx = −∂w
∂x

+
Qx
nGT

implique, par dérivation,

∂Qx
∂x

= nGt

(
∂ϕx
∂x

+
∂2w

∂x2

)
Si l'on admet un déplacement w de la même forme qu'en théorie de Kirchho�,
à savoir,

x = θxy (12.68)

on obtient donc par (12.66) ∂Qx/∂x = 0, soit

Qx = nGtf(y)

ce qui implique

ϕx = −∂w
∂x

+ f(y) (12.69)

Il vient alors

Mxy = D
1− ν

2

(
∂ϕx
∂y

+
∂ϕy
∂x

)
= D

1− ν
2

(
− ∂2w

∂x∂y
+ f ′(y)− ∂2w

∂x∂y

)
= D

1− ν
2

(−2θ + f ′(y))

et

Qx =
∂Mx

∂x
+
∂Mxy

∂y
= D

1− ν
2

f”(y) = nGtf(y)

ce qui donne l'équation
f”(y) + ω2f(y) = 0 (12.70)

avec

ω2 =
2nGt

D(1− ν)
=

12n

t2
(12.71)

La solution générale de cette équation s'écrit

f(y) = A chωy +B shωy
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les constantes A et B étant à choisir de manière que Mxy s'annule en y = ±b/2,
ce qui fournit les conditions

−2θ ± ωA shω
b

2
+ ωB chω

b

2
= 0

dont on déduit

A = 0

B =
2θ

ω chω b2

Il vient donc

f(y) =
2θ shωy

ω chω b2
et

ϕx = −θy +
2θ shωy

ω chω b2

Mxy = −D(1− ν)θ

(
1− chωy

chω b2

)

Qx = 2nGtθ
shωy

ω chω b2

On remarquera que l'e�ort tranchant Qx est strictement con�né aux bords,
décroissant à partir de ceux-ci en étant approximativement divisé par e sur une
distance égale à t/(n

√
12). Quant aux contraintes, elles valent

τxy =
12

t3

(
t2

8
− z2

2

)
Qx = 2

√
12nGθ

(
1

8
− z2

2t2

)
sh
√

12nyt
ch
√

12n b
2t

τyz =
12z

t3
Mxy = 2Gθz

(
1−

ch
√

12nyt
ch
√

12n b
2t

)
(12.72)

Le moment de torsion à l'extrémité est donné par

Mt = −
∫ b/2

−b/2
(Mxy − yQx)dy =

1

3
Gbt3

(
1−

thω b2
ω b2

)
θ (12.73)

Il est plus petit que celui que fournit la théorie de Kirchho�, ce qui est normal,
puisque celle-ci surestime les raideurs. La présente solution coïncide avec la so-
lution approchée développée en section 6.13.4, où elle est comparée à la solution
exacte.
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12.13 Flexion des plaques rectangulaires simple-
ment appuyées (théorie de Kirchho�) : mé-
thode des séries doubles de Navier

Figure 12.16 � Plaque simplement appuyée

Les plaques rectangulaires simplement appuyées s'étudient aisément à l'aide
des séries doubles de Navier :

w(x, y) =

∞∑
k,`=1

wk` sin
kπx

a
sin

`πy

b
(12.74)

où les wk` sont des inconnues, en double in�nité. On déduit immédiatement de
cette expression

χxx = −∂
2w

∂x2
=
∑
k`

k2π2

a2
wk` sin

kπx

a
sin

`πy

b

χyy = −∂
2w

∂y2
=
∑
k`

`2π2

b2
wk` sin

kπx

a
sin

`πy

b

χxy = − ∂2w

∂x∂y
= −

∑
k`

kπ

a

`π

b
wk` cos

kπx

a
cos

`πy

b
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et

Mxx = D(χxx + νχyy) = π2
∑
k`

(
k2

a2
+ ν

`2

b2

)
wk` sin

kπx

a
sin

`πy

b

Myy = D(χyy + νχxx) = π2
∑
k`

(
`2

b2
+ ν

k2

a2

)
wk` sin

kπx

a
sin

`πy

b

Mxy = D(1− ν)χxy = −π2(1− ν)
∑
k`

k`

ab
wk` cos

kπx

a
cos

`πy

b

Pour calculer l'énergie de déformation

U =
1

2

∫ a

0

dx

∫ b

0

[Mxxχxx +Myyχyy + 2Mxyχxy]dy

on notera les relations∫ A

0

sin
mπX

A
sin

nπX

A
dX =

∫ A

0

cos
mπX

A
cos

nπX

A
dX =

A

2
δmn

dont on déduit

2U = D
π4ab

4

∑
k`

[
k4

a4
+
`4

b4
+ 2ν

k2

a2

`2

b2
+ 2(1− ν)

k2`2

a2b2

]
w2
k`

= D
π4ab

4

∑
kl

(
k2

a2
+
`2

b2

)2

w2
k` (12.75)

Étant donné une charge p répartie, on peut calculer son énergie potentielle

P = −
∫ a

0

dx

∫ b

0

pwdy

Cette énergie potentielle est une fonctionnelle linéaire du déplacement w, as-
sociant donc un nombre à chaque champ de déplacements particulier. Dans le
cas de charges concentrées sur une courbe ou sur un point, l'énergie potentielle
reste dé�nie, mais son expression est di�érente : pour une charge q répartie sur
une courbe C, on aura

P = −
∫
C
qwds
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et pour une charge P concentrée en un point B, il faudra écrire

P = −Pw(B)

Quoi qu'il en soit, la linéarité (et la continuité) de la fonctionnelle permet d'écrire

P(w) = P

(∑
k`

wk` sin
kπx

a
sin

`πy

b

)
= −

∑
k`

Pk`wk`

ce qui fait apparaître la composante (k, `) de la charge, dé�nie par

Pk` = −P
(

sin
kπx

a
sin

`πy

b

)
(12.76)

Ce point de vue, bien qu'un peu abstrait, permet de traiter avec la même aisance
tous les problèmes menant à une énergie �nie, ce qui constitue le cadre naturel
du problème. En particulier, les charges concentrées se traitent aussi simplement
que les autres. La solution résulte en e�et de la minimisation de l'énergie totale

U + P =
1

2
D
π4ab

4

∑
k`

(
k2

a2
+
`2

b2

)2

w2
k` −

∑
k`

Pk`wk`

par rapport aux inconnues wkl, ce qui fournit, par simple dérivation, la solution

wk` =
4

π4ab

Pk`(
k2

a2
+
`2

b2

)2 (12.77)

Il su�t alors de recombiner ces valeurs pour obtenir les déplacements et les
moments.

Traitons à titre d'exemple le cas d'une charge P concentrée au centre de la
plaque. On a, dans ce cas,

P(w) = −Pw
(
a

2
,
b

2

)
Or,

w

(
a

2
,
b

2

)
=
∑
k,`

k` sin
kπ

2
sin

`π

2
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et on sait qu'en général, sin mπ
2 = 0 si m est pair, si bien que seules inter-

viendront les valeurs impaires de k et `. Nous tiendrons compte de ce fait en
écrivant

k = 2m+ 1, ` = 2n+ 1, Wmn = w(2m+1,2n+1)

Notant encore que

sin
(

(2m+ 1)
π

2

)
= (−1)m

on obtient

w

(
a

2
,
b

2

)
=
∑
mn

Wmn(−1)m+n (12.78)

Par conséquent,

Pmn = (−1)m+nP

et

Wmn =
4P

π4Dab

(−1)m+n[(
2m+ 1

a

)2

+

(
2n+ 1

b

)2
]2 (12.79)

Le déplacement au droit de la charge se calcule alors par (12.78).
La sommation des séries obtenues se fait d'ordinaire par voie numérique.

Pour e�ectuer une somme double de ce genre, il convient de progresser simul-
tanément en m et n, ce qui se fait de la manière suivante : on progresse en fait
en incrémentant d'une unité le nombre r = (m + n). A r = 2 correspond m =
1, n = 1. Pour r = 3, il existe deux termes, (m = 2, n = 1) et (m = 1, n = 2).
Pour r = 4, les termes sont (m = 3, n = 1); (m = 2, n = 2); (m = 1, n = 3)
et ainsi de suite, c'est-à-dire que l'on calcule en fait

∑
m,n

Φmn =

∞∑
r=2

r−1∑
n=1

Φr−n,n

Il convient de noter que la vitesse de convergence de la série est tributaire de
la régularité de la mise en charge. Pour une précision donnée, il faut sommer
plus de termes dans le cas d'une charge concentrée que dans le cas d'une charge
répartie.
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12.14 Flexion d'une plaque rectangulaire appuyée
sur deux bords opposés (théorie de Kirch-
ho�) : méthode des séries simples de Lévy

Figure 12.17 � Plaque appuyée à ses deux extrémités

Dans le cas d'une plaque rectangulaire appuyée sur deux bords opposés (�g.
12.17), il est plus simple d'utiliser les séries simples de Lévy, de la forme

w(x, y) =

∞∑
n=1

An(y) sin
nπx

a
(12.80)

où apparaissent des fonctions inconnues An(y), en simple in�nité. On obtient
aisément

χxx = −∂
2w

∂x2
=
∑
n

n2π2

a2
An sin

nπx

a

χyy = −∂
2w

∂y2
= −

∑
n

An” sin
nπx

a

χxy = − ∂2w

∂x∂y
= −

∑
n

nπ

a
A′n cos

nπx

a
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et

Mxx = D(χxx + νχyy) = D
∑
n

(
n2π2

a2
An − νAn”

)
sin

nπx

a

Myy = D(χyy + νχxx) = −D
∑
n

(
An”− n2π2

a2
An

)
sin

nπx

a

Mxy = D(1− ν)χxy) = −D(1− ν)
∑
n

A′n cos
nπx

a

L'énergie de déformation se calcule alors par

U =
1

2

∫ a

0

∫ b/2

−b/2
(Mxxχxx +Myyχyy + 2Mxyχxy)dy

ce qui donne

U =
1

2

Da

2

∑
n

∫ b/2

−b/2

[
n4π4

a4
A2
n − 2ν

n2π2

a2
AnAn” +An”2 + 2(1− ν)

n2π2

a2
A′2n

]
dy

et, après réarrangement des termes,

U =
1

2

Da

2

∑
n

∫ b/2

−b/2

[(
An”− n2π2

a2
An

)2

+ 2(1− ν)
n2π2

a2

(
A′2n +AnAn”

)]
dy

(12.81)
L'énergie potentielle des charges s'écrit, quant à elle,

P = P

(∑
n

An(y) sin
nπx

a

)
=
∑
n

Pn (An(y)) (12.82)

Pn étant l'harmonique d'ordre n de l'énergie potentielle. La minimisation de
l'énergie potentielle totale (U + P) mène à une simple in�nité de problèmes
variationnels à une dimension.

Illustrons cette méthode par un exemple. Il s'agit d'une plaque supportant
une charge uniformément répartie sur sa ligne médiane (�g. 12.18).

L'énergie potentielle vaut

P = −q
∫ b/2

−b/2

∑
n

An sin
nπ

2
dy (12.83)
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Figure 12.18 � Plaque sous une charge uniformément répartie sur sa ligne
médiane

si bien que la variation desAn mène aux conditions suivantes, où les harmoniques
sont découplés :

Da

2

∫ b/2

−b/2

[(
An”− n2π2

a2
An

)(
δAn”− n2π2

a2
δAn

)
+2(1− ν)

n2π2

a2

(
A′nδA

′
n +

1

2
AnδAn” +

1

2
An”δAn

)]
dy

− q sin
nπ

2

∫ b/2

−b/2
δAndy = 0

Intégrant deux fois par parties de manière à faire disparaître les dérivées des
δAn dans les intégrales, on obtient (après multiplication par 2/(Da))[(

An”− n2π2

a2
An

)
δA′n + 2(1− ν)

n2π2

a2

(
A′nδAn +

1

2
AnδA

′
n

)]b/2
−b/2

−
[(
A′′′n −

n2π2

a2
A′n

)
δAn + (1− ν)

n2π2

a2
A′nδAn

]b/2
−b/2

+

∫ b/2

−b/2

(
AIVn − 2

n2π2

a2
An” +

n4π4

a4
An

)
δAndy−

2q

Da
sin

nπ

2

∫ b/2

−b/2
δAndy = 0

ce qui permet de déduire l'équation d'Euler

AIVn − 2
n2π2

a2
An” +

n4π4

a4
An =

2q

Da
sin

nπ

2
dans ]− b/2, b/2[ (12.84)
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et les conditions aux limites suivantes (δAn et δA′n sont libres aux extrémités
y = ±b/2) :

A′′′n − (2− ν)
n2π2

a2
A′n = 0 en y = ±b/2

(nullité de l'e�ort tranchant de Kirchho�) (12.85)

et

An”− ν n
2π2

a2
An = 0 en y = ±b/2 (nullité du moment normal) (12.86)

La solution générale de l'équation di�érentielle (12.84) est

An = (Bn + Cny) ch
nπy

a
+ (En + Fny) sh

nπy

a
+

2qa3 sin nπ
2

Dn4π4

La symétrie du problème par rapport à y exige Cn = En = 0. On a alors
successivement

An = Bn ch
nπy

a
+ Fny sh

nπy

a
+

2qa3 sin nπ
2

Dn4π4

A′n =
(nπ
a
Bn + Fn

)
sh
nπy

a
+
nπ

a
Fny ch

nπy

a

An” =

(
n2π2

a2
Bn + 2

nπ

a
Fn

)
ch
nπy

a
+
n2π2

a2
Fny sh

nπy

a

A′′′n =

(
n3π3

a3
Bn + 3

n2π2

a2
Fn

)
sh
nπy

a
+
n3π3

a3
Fny ch

nπy

a

Ces résultats permettent d'écrire les conditions aux limites. La condition (12.85)
donne

−n
3π3

a3
(1− ν)Bn sh

nπb

2a
+
n2π2

a2
Fn

[
(1 + ν) sh

nπb

2a
− (1− ν)

nπb

2a
ch
nπb

2a

]
= 0

ce qui équivaut à

Bn =
a

nπ
Fn

[
1 + ν

1− ν
− nπb

2a
coth

nπb

2a

]
(12.87)

Quant à la condition relative au moment normal, elle s'écrit

(1− ν)
n2π2

a2
Bn ch

nπb

2a
+ Fn

[
2
nπ

a
ch
nπb

2a
+
n2π2

a2

b

2
(1− ν) sh

nπb

2a

]
=

2νqa sin nπ
2

Dn2π2
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soit, en éliminant Bn à l'aide de (12.87),[
(3 + ν) ch

nπb

2a
− (1− ν)

nπb
2a

sh nπb
2a

]
nπ

a
Fn =

2νqa sin nπ
2

Dn2π2

ce qui donne

Fn =
nπ

a

2νqa3 sin nπ
2

Dn4π4

1

(3 + ν) ch nπb
2a − (1− ν)

nπb
2a

sh nπb
2a

et

An =
2νqa3 sin nπ

2

Dn4π4

{
1 +

ν

Nn

[(
1 + ν

1− ν
− nπb

2a
coth

nπb

2a

)
ch
nπy

a
+
nπy

a
sh
nπy

a

]}
avec

Nn = (3 + ν) ch
nπb

a
− (1− ν)

nπb

2a

sh
nπb

2a

Il s'agit d'une série à convergence assez rapide (terme général O(1/n4)). En
première approximation, on peut ne conserver que le premier terme, car le second
est nul, et pour le troisième, la valeur de n4 est 81. On obtient ainsi

w ≈ 2qa3

Dπ4

{
1 +

ν

N1

[(
1 + ν

1− ν
− πb

2a
coth

πb

2a

)
ch
πy

a
+
πy

a
sh
πy

a

]}
sin

πx

a
(12.88)

Le premier terme de l'accolade représente la �exion cylindrique. Le second, dû
à l'e�et de Poisson, s'appelle déformation anticlastique. Lorsque la plaque est
large (a petit devant b), cette déformation reste con�née aux bords de la plaque,
avec une profondeur de pénétration de l'ordre de a/π. Lorsque, au contraire, la
plaque est étroite, on s'attend à retrouver des résultats comparables à ceux
d'une poutre. Pour b� a, on a en e�et

N1 ≈ 3 + ν − (1− ν) = 2(1 + ν)

πb

2a
coth

πb

2a
≈ 1

ch
πb

2a
≈ 1 +

π2y2

2a2

πy

a
sh
πy

a
≈ π2y2

a2
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d'où

w ≈ 2qa3

Dπ4

{
1 +

ν

2(1 + ν)

[
2ν

1− ν

(
1 +

π2y2

2a2

)
+
π2y2

a2

]}
sin

πx

a

≈ 2qa3

Dπ4

{
1

1− ν2

[
1 + ν

π2y2

2a2

]}
sin

πx

a

≈ 2Pa3

π4Eb t
3

12

[
1 + ν

π2y2

2a2

]
sin

πx

a

où P est la charge totale qb. Notant que χxx = π2

a2A1 sin πx
a , on obtient

w ≈ 2Pa3

π4Eb t
3

12

sin
πx

a
+ νχxx

y2

2

ce qui correspond bien à la structure en y du déplacement que donne la théorie
des poutres 1. La solution des poutres aurait donné une �èche au centre égale à
Pa4/(48Eb t

3

12 ). Nous obtenons ici π4/2 = 48, 70 au lieu de 48, mais ceci est dû
à la troncature du développement.

12.15 Flexion des plaques circulaires

Les plaques circulaires s'étudient naturellement en coordonnées cylindriques
(r, θ, z). Les courbures s'obtiennent aisément en remarquant qu'elles sont aux
rotations comme les déformations sont aux déplacements : partant des rotations
ϕr et ϕθ, on obtient

χrr =
∂ϕr
∂r

χθθ =
1

r

∂ϕθ
∂θ

+
ϕr
r

χrθ =
1

2

(
∂ϕθ
∂r
− ϕθ

r
+

1

r

∂ϕr
∂θ

)
=

1

2

[
1

r

∂ϕr
∂θ

+ r
∂

∂r

(ϕθ
r

)]
(12.89)

1. Dans le cas d'une poutre, σyy = 0, donc εyy = −νεxx, soit
∂2w

∂y2
= −χyy = νχxx.
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Les glissements sont les sommes des rotations et des composantes du gradient
du déplacement :

γrz = ϕr +
∂w

∂r

γθz = ϕθ +
1

r

∂w

∂θ
(12.90)

Figure 12.19 � Secteur de plaque

Pour obtenir les équations d'équilibre à l'intérieur et sur le contour, le plus
simple est de considérer l'équilibre d'un secteur de plaque d'angle α et de rayon
allant de R1 à R2 (�g. 12.19), à l'aide du principe des travaux virtuels

∫ α

0

∫ R2

R1

{
Mrδ

(
∂ϕr
∂r

)
+Mθδ

(
1

r

∂ϕθ
∂θ

+
ϕr
r

)
+Mrθδ

[
1

r

∂ϕr
∂θ

+ r
∂

∂r

(ϕθ
r

)]
+Qrδ

(
ϕr +

∂w

∂r

)
+Qθδ

(
ϕθ +

1

r

∂w

∂θ

)
− pδw

}
rdrdθ = 0

A la variation de ϕr correspondent l'équation

− ∂

∂r
(rMr) +Mθ −

∂Mrθ

∂θ
+ rQr = 0 dans S (12.91)

et les conditions aux limites{
rMrδϕr = 0 en r = R1 et r = R2

Mrθδϕr = 0 en θ = 0 et θ = α

La variation de ϕθ donne l'équation

1

r

∂

∂r

(
r2Mrθ

)
+

∂

∂θ
Mθ = rQθ dans S (12.92)
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et les conditions aux limites{
rMrθδϕθ = 0 en R = R1 et r = R2

Mθδϕθ = 0 en θ = 0 et θ = α

En�n, en variant w, on obtient

∂

∂r
(rQr) +

∂Qθ
∂θ

+ pr = 0 dans S (12.93)

et, aux limites, {
rQrδw = 0 en r = R1 et r = R2

Qθδw = 0 en θ = 0 et θ = α

Dans le cadre de l'hypothèse de Kirchho�, il convient d'introduire aux fron-
tières les e�orts tranchants de Kirchho� et les charges de coin. Pour les obtenir,
notons que sur les bords r = cte, le travail virtuel de bord∫ α

0

(rMrδϕr + rMrθδϕθ + rQrδw)dθ

se transforme, en tenant compte des conditions de Kirchho�

ϕr = −∂w
∂r

, ϕθ = −1

r

∂ϕ

∂θ
(12.94)

en

−
∫ α

0

(
rMrδ

∂w

∂r
−Mrθδ

∂w

∂θ
+ rQrδw

)
dθ

= [Mrθδw]
α
0 −

∫ α

0

rMrδ
∂w

∂r
dθ +

∫ α

0

r

(
Qr +

1

r

∂Mrθ

∂θ

)
δwdθ

ce qui donne l'e�ort tranchant de Kirchho�

Kr = Qr +
1

r

∂Mrθ

∂θ
(12.95)

Sur les bords θ = cte, on obtient de même

Kθ = Qθ +
∂Mrθ

∂r
(12.96)

Quant aux charges de coin, elles gardent leur signi�cation classique ∆Mnt.
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12.16 Déformations axisymétriques

Un problème est dit axisymétrique si sa géométrie, ses charges et ses �xations
sont indépendantes de θ. La symétrie impose alors que les lignes verticales avant
déformation restent dans le même plan méridien, c'est-à-dire que ϕθ soit nul. De
plus, toute dérivée par rapport à θ doit s'annuler. On obtient ainsi les conditions

Mrθ = 0, χrθ = 0, γθz = 0, Qθ = 0 (12.97)

Les problèmes axisymétriques peuvent se traiter soit par la méthode énergétique,
soit par résolution directe des équations d'équilibre. Examinons à titre d'exemple
le cas d'une charge concentrée au centre de la plaque. Comme le montre la �gure

Figure 12.20 � Équilibre sous une charge concentrée

12.20, l'équilibre des e�orts tranchants implique, en un rayon r quelconque,

P = −2πrQr

soit

Qr = − P

2πr
(12.98)

L'e�ort tranchant admet donc au centre une singularité en 1/r. L'équilibre des
moments s'écrit alors

d

dr
(rMr)−Mθ = rQr = − P

2π
(12.99)

Dans le cadre des hypothèses de Kirchho�, les courbures valent

χrr =
dϕr
dr

= −d
2w

dr2
, χθθ =

ϕr
r

= −1

r

dw

dr
, χrθ = 0

d'où

Mr = −D
(
d2w

dr2
+
ν

r

dw

dr

)
, Mθ = −D

(
1

r

dw

dr
+ ν

d2w

dr2

)
(12.100)
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ce qui mène à l'équation

− d

dr

(
r
d2w

dr2

)
+

1

r

dw

dr
= − P

2πD
(12.101)

Il est commode de poser q = dw
dr , ce qui ramène l'équation ci-dessus à

− d

dr

(
r
dq

dr

)
+
q

r
= − P

2πD

Cherchons d'abord des solutions de l'équation homogène sous la forme

q = r`

Il vient (
1− `2

)
r`−1 = 0

soit ` = ±1, ce qui permet d'écrire la solution générale sous la forme

qh = Ar +
B

r

Une solution particulière de l'équation complète peut être cherchée sous la forme

qp = rf(r)

ce qui donne

f + 3rf ′ + r2f”− f =
P

2πD

Essayant une solution de la forme f ′ = C/r, on obtient la condition

2C =
P

2πD

soit

C =
P

4πD

Il vient ainsi

f(r) =
P

4πD
ln r

et

qp =
P

4πD
r ln r
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Finalement, la solution générale de l'équation complète est

q = qp + qh =
P

4πD
r ln r +Ar +

B

r

On en déduit par intégration

w =
P

4πD

(
r2

2
ln r − r2

4

)
+A

r2

2
+B ln r + C∗ (12.102)

Au centre de la plaque, on doit avoir dw/dr = q = 0, ce qui implique B = 0.
Supposant la plaque appuyée sur son contour, on aura w(R) = 0, ce qui donne

C∗ = − P

4πD

(
R2

2
lnR− R2

4

)
−AR

2

2

et

w =
P

4πD

(
r2

2
ln r − R2

2
lnR− r2 −R2

4

)
+A

r2 −R2

2

=
P

4πD

(
r2

2
ln
r

R
+
r2 −R2

2
lnR− r2 −R2

4

)
+A

r2 −R2

2

=
P

4πD

(
r2

2
ln
r

R
+
R2 − r2

4

)
+ F

r2 −R2

2

en modi�ant la constante d'intégration. Il vient alors

ϕr = −dw
dr

= − P

4πD
r ln

r

R
− Fr

et

Mr = D

(
dϕr
dr

+ ν
ϕr
r

)
= − P

4π

[
(1 + ν) ln

r

R
+ 1
]
−DF (1 + ν)

La nullité de ce moment à l'appui donne donc

F = − P

4πD(1 + ν)

d'où l'expression �nale du déplacement :

w =
P

8πD

[
r2 ln

r

R
+

3 + ν

2(1 + ν)

(
R2 − r2

)]
(12.103)
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On notera que la �èche au centre est �nie et vaut

w(0) =
3 + ν

1 + ν

PR2

16πD
(12.104)

On peut en déduire la rotation

ϕr = −dw
dr

=
P

8πD

[
2r ln

r

R
− 1− ν

2(1 + ν)
r

]
ainsi que les courbures

χrr =
P

8πD

[
3 + 5ν

2(1 + ν)
+ 2 ln

r

R

]
χθθ =

P

8πD

[
− 1− ν

2(1 + ν)
+ 2 ln

r

R

]
et les moments

Mr =
P

8π

[
3 + ν

2
+ 2(1 + ν) ln

r

R

]
Mθ =

P

8π

[
5ν − 1

2
+ 2(1 + ν) ln

r

R

]
(12.105)

On constate donc que les moments présentent une singularité logarithmique,
mais que le déplacement est �ni. La raison en est que

Pw(0) = 2(U) =

∫
S

12

Et2
(M2

r +M2
θ − 2νMrMθ)dS

et que la singularité logarithmique est de carré intégrable :

2π

∫ R

0

r
(

ln
r

R

)2

dr <∞

donc w(0) <∞. Ceci est propre à la théorie de Kirchho�. Au contraire, si l'on
tient compte de la déformation due à l'e�ort tranchant, il apparaît dans l'énergie
le terme supplémentaire∫

S

Q2
r

2nGt
dS =

2π

2nGt

∫ R

0

(
P

2πr

)2

rdr =∞
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ce qui signi�e que la �èche est in�nie. Calculons la di�érence wS entre ces deux
solutions. Elle est, comme on a vu, de la forme

wS = w∗ + w∗∗

où w∗ véri�e
∇2w∗ = − p

nGt

tandis que w∗∗, biharmonique, est une correction éventuelle permettant de tenir
compte des conditions aux limites. La solution complète w = wK + wS devra,
sur le contour de rayon R, véri�er les conditions aux limites suivantes :

1. w(R) = 0. Comme c'est déjà le cas de wK , il faudra que

wS(R) = 0

2. Mr(R) = 0. Pour véri�er cette condition, il faut d'abord établir l'expres-
sion du moment. On a

ϕr = −dw
dr

+
Qr
nGt

= −dw
dr
− P

2πrnGt

ce qui entraîne

χr =
dϕr
dr

= −d
2w

dr2
+

P

2πnGtr2

χθ =
ϕr
r

= −1

r

dw

dr
− P

2πnGtr2

et

Mr = D(χr + νχθ) = −D
[
d2w

dr2
+
ν

r

dw

dr

]
+ (1− ν)

DP

2πnGtr2

En r = R, la grandeur entre crochets s'annule pour wK , si bien qu'il reste
la condition

D

[
d2ws
dr2

+
ν

r

dwS
dr

]
=

(1− ν)DP

2πR2nGt
(12.106)

Commençons par calculer w∗. On notera que si p était une charge répartie,
on aurait, sur tout disque de rayon r,

−
∫
Sr

p

nGt
dS =

∫
Sr

∇2w∗dS = 2πr
dw∗

dr
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Il su�t, dans notre cas, de remplacer p par la mesure de Dirac Pδ, ce qui entraîne
la relation

− P

nGt
= 2πr

dw∗

dr
soit

dw∗

dr
= − P

2πnGt

1

r
Cette équation admet la solution

w∗ = − P

2πnGt
ln
r

R
(12.107)

en tenant compte de la condition de nullité de w∗ sur le bord. Calculons la
contribution de ce w∗ au premier membre de (12.106). On a

d2w∗

dr2
=

P

2πr2nGt
,

1

r

dw

dr
= − P

2πr2nGt

d'où

D

[
d2w∗

dr2
+
ν

r

dw∗

dr

]
=

(1− ν)DP

2πr2nGt

On constate donc que la condition (12.106) est véri�ée sans qu'il soit nécessaire
de faire appel à une fonction correctrice w∗∗.

Le déplacement total est donc donné par

w = wK + wS = wK + w∗

=
P

8πD

[
r2 ln

r

R
+

3 + ν

2(1 + ν)
(R2 − r2)

]
− P

2πnGt
ln
r

R

=
PR2

8πD

[(
r2

R2
− λ2

R2

)
ln
r

R
+

3 + ν

2(1 + ν)

(
1− r2

R2

)]
avec

λ =

√
2

3n

t2

1− ν
≈ t

Au voisinage de l'origine, on peut écrire

8πD

πR2
w ≈ 3 + ν

2(1 + ν)
− λ2

R2
ln
r

R

et le second terme égale le premier pour

ln
r

R
= − 3 + ν

2(1 + ν)

R2

λ2
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soit
r

R
= exp

(
− 3 + ν

2(1 + ν)

R2

λ2

)
ou encore

r

λ
=
R

λ
exp

(
− 3 + ν

2(1 + ν)

R2

λ2

)
Posant

x =

√
3 + ν

2(1 + ν

r

λ
, X =

√
3 + ν

2(1 + ν

R

λ

on obtient
x = Xe−X

2

Le maximum du second membre a lieu pour

0 =
d

dX

(
Xe−X

2
)

= (1− 2X2)e−X
2

soit pour X = 1/
√

2. Il vaut 0, 4289. Ainsi, le rayon r0 où la correction due à
l'e�ort tranchant égale la solution de Kirchho� véri�e

r0

λ
≤ 0, 4289

√
2(1 + ν)

3 + ν
≈ 0, 4

c'est-à-dire que les di�érences par rapport à la solution de Kirchho� ne sont
signi�catives qu'à une distance de la charge de l'ordre de grandeur de l'épaisseur
de la plaque.

12.17 Exercices

Exercice 46 Étudier une plaque circulaire soumise à une charge uniformément
répartie, et simplement appuyée sur son contour (théorie de Kirchho�).

Exercice 47 Même problème dans le cas d'un contour encastré.

Exercice 48 Étudier, dans le cadre de la théorie de Kirchho�, le cas d'une
plaque circulaire encastrée à son contour et soumise à une charge concentrée.
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Chapitre 13

Théorèmes énergétiques
extérieurs

13.1 Préambule

Les théorèmes énergétiques extérieurs sont ici considérés comme des appli-
cations particulières des principes variationnels. Les énoncés ainsi obtenus sont
très généraux et très précis, excluant en particulier les nombreuses équivoques
qui peuvent naître d'une approche par trop simpli�ée.

13.2 Théorème de Castigliano

Nous considérerons dans ce qui suit des variations de contraintes gouver-
nées par un ensemble discret de paramètres gr, que nous appellerons charges
généralisées. Ces variations auront donc la forme

δσij =
∑
r

σrijδgr (13.1)

Nous ne ferons aucune hypothèse à priori sur l'admissibilité statique des modes
de contrainte σrij . Nous utiliserons la fonctionnelle de Hellinger-Reissner∫

V

[
σij

1

2
(Diuj +Djui)− Φ(σ)− f̄iui

]
dV −

∫
S2

t̄iuidS −
∫
S1

ti(ui − ūi)dS

441
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Les variations de contraintes considérées conduisent à une variation du premier
terme que l'on peut mettre sous la forme∑

r

δgr

∫
V

σrij
1

2
(Diuj +Djui)dV =

∑
r

δgrqr (13.2)

où apparaissent les déplacements généralisés qr conjugués aux charges gr, donnés
par

qr =

∫
V

σrij
1

2
(Diuj +Djui)dV (13.3)

Cette dé�nition, qui peut paraître quelque peu arti�cielle, se simpli�e par une
intégration par parties : on a en e�et

qr =

∫
S

njσ
r
ijuidS −

∫
V

uiDjσ
r
ijdV

et, en faisant apparaître les charges liées au champ de contrainte σrij ,{
tri = njσ

r
ij sur S

fri = −Djσ
r
ij dans V

(13.4)

on obtient

qr =

∫
S

triuidS +

∫
V

fri uidV (13.5)

c'est-à-dire que qr s'identi�e au travail d'une variation δgr = 1.
Appliquant à présent une variation de contrainte de la forme (13.1) dans le

principe de Hellinger-Reissner, on obtient les équations ce compatibilité globales

qr =

∫
V

∂Φ

∂σij
σrijdV (13.6)

qui constituent le théorème de Castigliano. On écrit souvent [59, 12, 26, 68, 67]
les relations (13.6) sous la forme condensée mais beaucoup moins précise

qr =
∂Ψ

∂gr
(13.7)

où Ψ est l'énergie complémentaire. Le théorème de Castigliano est largement ap-
pliqué pour le calcul des déplacements généralisés, comme nous allons l'illustrer
sur un certain nombre d'exemples simples relatifs aux poutres.
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Figure 13.1 � Calcul du déplacement du point A.

13.2.1 Déplacement d'un point d'une poutre

Soit (�g. 13.1) une poutre arbitrairement chargée, dont on désire connaître
le déplacement qA en un point. Connaissant le diagramme des moments M que
subit la poutre, il su�t de déterminer en outre le diagramme des moments MA

correspondant à une charge gA = 1 au point A. Alors, comme

Ψ =

∫ `

0

M2

2EI
dx

on aura

qA =

∫ `

0

M

EI
MAdx

13.2.2 Même problème pour une poutre hyperstatique

Lorsque la poutre est hyperstatique, il existe plusieurs variations du moment
MA capables d'équilibrer la charge unitaire en A et dont les déplacements géné-
ralisés se limitent à qA du fait des �xations. Dans la �gure 13.2,MA1

est obtenu
en posant que le moment est nul sur l'appui central. Le déplacement généralisé
correspondant à cet état est

qA − qC
c

b+ c
− qD

b

b+ c
= qA
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Figure 13.2 � Dans le cas d'une poutre hyperstatiques, plusieurs diagrammes
de moments MA sont possibles.

De même, le déplacement généralisé correspondant à MA2
est

qA − qB
c

a+ b+ c
− qD

a+ b

a+ b+ c
= qA

En�n, le déplacement généralisé correspondant à MA3
est de la forme

qA − αqB − βqc − γqD = qA

On a donc

qA =

∫
0

`
M

EI
MA1dx =

∫
0

`
M

EI
MA2dx

∫
0

`
M

EI
MA3dx
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Cette observation permet, dans bien des cas, d'obtenir de notables simpli�ca-
tions. Dans le cas présent, les deux premiers champs de moments sont nettement
plus simples que le troisième.

13.2.3 Déplacements pondérés

Figure 13.3 � Déplacement pondéré.

Soit (�g. 13.3) une poutre soumise à une sollicitation quelconque. En consi-
dérant une charge répartie entre deux points a et b de la poutre, on obtiendra
le déplacement généralisé

q =

∫ b

a

v(x)dx

dont la valeur sera

q =

∫ `

0

M

EI
M1dx

où M1 est un champ de moments équilibrant la charge répartie considérée. On
peut obtenir de la sorte de nombreuses espèces de déplacements pondérés.

13.2.4 Rapprochement de deux points A et B.

Supposons que l'on veuille connaître le rapprochement de deux points A et
B du portique représenté en �gure 13.4. Ce déplacement qAB est conjugué au
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Figure 13.4 � Rapprochement de deux points A et B de la structure

couple de charges δg1 représentées dans la même �gure et

qAB =
∂Ψ

∂g1

Ici encore, on peut, pour le calcul des σ1
ij , rendre au préalable le système iso-

statique, par exemple en remplaçant l'articulation en D par un appui simple.

13.2.5 Formules de Navier-Bresse [12, 60, 67]

Considérons une poutre à faible courbure, soumise à une sollicitation plane.
L'énergie complémentaire de déformation s'écrit

Ψ =

∫ `

0

(
N2

2EΩ
+

T 2

2GΩ∗
+
M2

2EI

)
ds

où ds est l'élément d'abscisse curviligne le long de la �bre moyenne, Ω, la section,
Ω∗, la section réduite de cisaillement et I, l'inertie. Dans tout ceci, nous ferons
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Figure 13.5 � Conventions relatives aux signes des e�orts et moments.

les conventions de signe indiquées en �gure 13.5. Les déplacements u0, v0, ω0

sont imposés à l'origine et on désire connaître les déplacements en A. Pour les
déterminer, on considère les états de contrainte correspondants à δFxA

, δFyA et
δMA.

État dû à δg1 = δFxA

La �gure 13.6 montre que δFx0 = δg1

δFy0 = 0
δM0 = −yδg1

Le déplacement conjugué est donc donné par

δT = −δFx0u0 − δFy0v0 − δM0ω0 + δFxA
uA = δg1(ua − u0 + yω0)

c'est-à-dire

q1 = uA − u0 + yω0
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Figure 13.6 � État dû à δg1 = δFxA
.

Par ailleurs, le champ de contrainte est facile à calculer :

δN = δg1 cos θ

δT = −δg1 sin θ

δM = −δg1(y − η)

ce qui donne la première formule de Navier-Bresse

uA = u0 − ω0y +

∫ `

0

N cos θ

EΩ
ds−

∫ `

0

T sin θ

GΩ∗
ds−

∫ `

0

M(y − η)

EI
ds (13.8)

État dû à δg2 = δFyA

On voit sur la �gure 13.7 que

δFx0 = 0, δFy0 = δg2, δM0 = xδg2

d'où

δT = −δFx0u0 − δFy0v0 − δM0ω0 + δFyAvA = δg2(vA − v0 − xω0)
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Figure 13.7 � État dû à δg2 = δFyA .

soit
q2 = vA − v0 − xω0

Le champ de contrainte correspondant sera

δN = δg2 sin θ

δT = δg2 cos θ

δM = (x− ξ)δg2

ce qui donne la deuxième formule de Navier-Bresse

vA = v0 + ω0x+

∫ `

0

N sin θ

EΩ
ds+

∫ `

0

T cos θ

GΩ∗
ds−

∫ `

0

M(x− ξ)
EI

ds (13.9)

État dû à δg3 = δMA

On voit sur la �gure 13.8 que

δFx0 = 0, δFy0 = 0, δM0 = δMA
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Figure 13.8 � État dû à δMA

d'où
q3 = ωA − ω0

D'autre part, le champ de contrainte correspondant est

δM = δMA, δN = 0, δT = 0

ce qui mène à la troisième formule de Navier-Bresse

ωA = ω0 +

∫ `

0

M

EI
ds (13.10)

Ces formules sont souvent utilisées pour le calcul des déformations des poutres.
Lorsque celles-ci sont su�samment élancées, si F est l'ordre de grandeur des ef-
forts N et T , M est de l'ordre de F` ; on a par ailleurs, si ρ est le rayon de
giration de la section de la poutre,

Ω = O(ρ2), Ω∗ = O(ρ2), I = O(ρ4)

N

Ω
= O

(
F

ρ2

)
,

T

Ω∗
= O

(
F

ρ2

)
,

M ·
{
x
y

}
I

= O
(
F`2

ρ4

)
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ce qui montre que les déformations dues au moment sont prépondérantes. On
obtient alors, en faisant formellement tendre Ω et Ω∗ vers l'in�ni dans les for-
mules précédentes, les expressions simpli�ées dites de Navier :

u ≈ u0 − ω0y +

∫ `

0

M(y − η)

EI
ds

v ≈ v0 + ω0x+

∫ `

0

M(x− `)
EI

ds

ω ≈ ω0 +

∫ `

0

M

EI
ds (13.11)

13.3 Systèmes hyperstatiques - Théorème de Me-
nabrea

On appelle état d'autocontrainte un état de contrainte auquel correspond un
déplacement généralisé con�né à la partie S1 de la surface où sont établies les
�xations. Dans le cas fréquent où les déplacements imposés sont nuls (absence
de tassement d'appuis), le déplacement généralisé est d'ailleurs nul pour la so-
lution cherchée. Ainsi, pour une poutre sur trois appuis, le champ de moment

Figure 13.9 � État d'autocontrainte de la poutre sur trois appuis.

représenté en �gure 13.9 est un état d'autocontrainte, puisqu'il correspond au
système de charges composé d'une charge g vers le bas en B, d'une charge gb/`
en A et d'une charge ga/` en C, ces dernières vers le haut. Le déplacement
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généralisé correspondant, donné par

q =
b

`
vA − vB +

a

`
vC

est en e�et un pur déplacement d'appuis.
L'existence d'états d'autocontrainte est caractéristique de l'hyperstaticité du

système. Il est intéressant de noter qu'il est possible de les interpréter en termes
de coupures. Ainsi, l'état considéré ci-dessus est le diagramme des moments de
la poutre dont on aurait coupé l'appui central, celui-ci étant remplacé par sa
réaction. Par cette coupure, on a dé�ni un système isostatique de référence S0

� ici, la poutre sur deux appuis d'extrémité. C'est ainsi que l'on aurait pu, par
exemple, mettre une rotule en un point D de la travée BC, comme l'illustre
la �gure 13.10. L'état d'autocontrainte correspondant eût alors correspondu à

Figure 13.10 � Un autre système isostatique de référence.

un couple de moments appliqué à la rotule, voir �gure 13.11. C'est exactement

Figure 13.11 � Le nouveau système isostatique de référence conduit au même
état d'autocontrainte.

le même état d'autocontrainte que ci-dessus, à un facteur éventuel près. Nous
laissons au lecteur le soin de véri�er que l'on retrouverait un état de contrainte
identique en coupant l'appui A ou l'appui C ou encore, en faisant une quel-
conque coupure des moments : le système considéré n'admet qu'un seul état
d'autocontrainte indépendant.

Considérons à présent une poutre continue sur quatre appuis A,B,C,D (�g.
13.12). Une manière de le rendre isostatique consiste à supprimer les deux appuis
C et D. En appliquant une charge unitaire en C et en D, on obtient deux
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Figure 13.12 � Poutre sur quatre appuis. Une premère façon de la rendre
isostatique.

états d'autocontrainte indépendants. Un autre système isostatique s'obtient en
plaçant des rotules au droit des appuis B et C, comme l'illustre la �gure 13.13.

Figure 13.13 � Poutre sur quatre appuis. Un autre système isostatique de
référence.

En appliquant de couples de moments à ces deux rotules, on obtient appa-
remment deux autres états d'autocontrainte. Mais ces deux nouveaux états sont
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des combinaisons des précédents, comme le montre clairement la �gure 13.14. Il

Figure 13.14 � L'état d'autocontrainte 2 est une combinaison des états 3 et 4.

n'y a, en fait, que deux états d'autocontrainte indépendants pour ce système.
Ces exemple montrent le bien-fondé de la dé�nition suivante : on appelle de-

gré d'hyperstaticité h d'un système élastique le nombre d'états d'autocontrainte
linéairement indépendants de ce système. Cette dé�nition, tout-à-fait générale,
inclut aussi bien l'hyperstaticité intérieure que l'hyperstaticité extérieure. Ainsi,
le cadre de la �gure 13.15 est trois fois intérieurement hyperstatique (il s'agit
d'hyperstaticité cinématique : le corps est doublement connexe).

Un système isostatique de référence s'obtient en plaçant des rotules en B, C
et D et on en déduit aisément les trois modes d'autocontrainte représentés. La
caractéristique de modes d'autocontrainte purement intérieurs comme ceux-ci
est que les déplacements généralisés correspondants sont toujours nuls.

La notion de mode d'autocontrainte sert de fondement à une méthode de
résolution des systèmes hyperstatiques que l'on appelle méthode des forces. Son
principe est le suivant. Les équations d'équilibre, sous les charges de volume et
les tractions de surface sur S2, admettent la solution générale

σij = σ0
ij +

h∑
k=1

σ̂kij ĝk (13.12)

où σ0
ij représente une solution particulière des équations d'équilibre sous les

charges données, tandis que les σ̂kij sont les états d'autocontrainte, gouvernés
par les charges généralisées ĝk 1 que l'on appelle, en la circonstance, inconnues
hyperstatiques. La solution particulière s'obtient dans un système isostatique de
référence quelconque, éventuellement même di�érent du système ayant présidé
à la détermination des états d'autocontrainte. Il est clair que les coupures ayant
mené à la solution particulière ont rompu la compatibilité, mais celle-ci pourra
être rétablie en faisant usage du principe de Hellinger-Reissner, où la variation
des contraintes a précisément pour objet de l'obtenir. Le champ σ0

ij étant choisi

1. Les accents circon�exes sont destinés à marquer qu'il s'agit d'états d'autocontrainte.
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Figure 13.15 � Cadre.

une fois pour toutes, on aura

δσij =

h∑
k=1

σ̂kijδĝk (13.13)

Par dé�nition, les déplacements généralisés conjugués aux états d'autocontrainte
sont toujours imposés � le plus souvent nuls, d'ailleurs. Nous les noterons donc
q̄k, conformément à nos conventions générales. L'application particulière du
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principe de Hellinger-Reissner à ce problème mène à la condition

h∑
k=1

δĝk

∫
V

∂Φ

∂σij
σ̂kijdV =

h∑
k=1

q̄kδĝk

qui entraîne, vu l'arbitraire des δĝk, les équations∫
V

∂Φ

∂σij
σ̂kijdV = q̄k (13.14)

constituant le théorème de Menabrea sous sa forme la plus générale. Le même
résultat aurait d'ailleurs pu être déduit du principe du minimum de l'énergie
complémentaire totale, car les variations de contrainte considérées sont stati-
quement admissibles.

13.4 Exemples d'application des deux théorèmes
précédents

13.4.1 Arc à deux articulations

A titre d'illustration, proposons-nous de calculer le déplacement de la clef
d'un arc à deux articulations soumis à une charge verticale appliquée sur ladite
clef (�g. 13.16). On commence par chercher une solution particulière, qui s'ob-
tient le plus simplement en plaçant une rotule sous la charge. Il est aisé de se
rendre compte que cette solution sera

M0 =
P

2 cosα
y

y étant représenté sur la �gure. Quant à l'état d'autocontrainte, on l'obtient
aisément en remplaçant l'appui C par un appui à rouleaux. Nous noterons M̂
le champ de moment correspondant. Le déplacement conjugué est

q̂ = uC − uA

nul dans la solution. Cette dernière est de la forme

M = M0 + ĝM̂

ĝ étant déterminé par la condition∫ `

0

MM̂

EI
ds =

∫ `

0

M0M̂

EI
ds+ ĝ

∫ `

0

M̂2

EI
ds = 0
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Figure 13.16 � Arc à deux articulations.

soit

ĝ = −
∫ `

0
M0M̂
EI ds∫ `

0
M̂2

EI ds

L'état de contrainte étant déterminé, on calcule le déplacement par le théo-
rème de Castigliano. A cet e�et, il su�t de connaître une distribution de moment
équilibrant une charge unitaire à la clef. Une telle distribution est donnée par

µ(s) =
M0

P
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Par le théorème de Castigliano, on a donc

u =

∫ `

0

Mµ

EI
ds =

1

P

∫ `

0

MM0

EI
ds

13.4.2 Coupures généralisées

Pour illustrer le fait que la notion de coupure peut être parfois inattendue,
considérons le système à trois barres de la �gure 13.17, soumis à une chrge P .
Les équations d'équilibre des trois barres s'écrivent

Figure 13.17 � Système à trois barres.

{
N1 cos θ1 +N2 cos θ2 +N3 cos θ3 + P = 0

N1 sin θ1 +N2 sin θ2 +N3 sin θ3 = 0

Pour obtenir des solutions particulières à ces équations, on peut poser N1 = 0,
N2 = 0 ou encore N3 = 0, ce qui revient à couper la barre correspondante.
Mais on peut aussi bien écrire par exemple N1 = kN2, avec k quelconque.
C'est ce que l'on appelle une coupure généralisée, pour la simple raison que
sa réalisation technique ne saute pas aux yeux. Elle est cependant possible à
l'aide d'un système hydraulique composé de deux vérins dont les pistons ont
des surfaces kS pour la barre 1 et S pour la barre 2 (�g. 13.18). Une connexion
hydraulique garantit l'égalité des pressions, d'où

N1 = kSp, N2 = Sp

ce qui implique N1 = kN2. Dans ces conditions, la solution particulière véri�e{
N20

(k cos θ1 + cos θ2) +N30
cos θ3 = −P

N20
(k sin θ1 + sin θ2) +N30

sin θ3 = 0
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Figure 13.18 � Coupure généralisée obtenue à l'aide de vérins.

ce qui donne successivement

N30
= −N20(k sin θ1 + sin θ2)

sin θ3

et
N20 [k cos θ1 + cos θ2 − (k sin θ1 + sin θ2) cotg θ3] = −P

ce qui permet de calculer N20
, N30

et en�n N10
. Bien entendu, cette solution

particulière n'est pas la plus simple. Aussi allons-nous en chercher une qui, elle,
l'est particulièrement. Elle consiste à imposer la condition

N10 = −N20

cos θ2

cos θ1

ce qui donne directement

N30 = − P

cos θ3

et
N20(sin θ2 − tg θ1 cos θ2) = −N30 sin θ3 = P tg θ3

Quant à l'état d'autocontrainte, il doit véri�er la double condition{
N̂1 cos θ1 + N̂2 cos θ2 + N̂3 cos θ3 = 0

N̂1 sin θ1 + N̂2 sin θ2 + N̂3 sin θ3 = 0

On peut poser, par exemple, N̂3 = 1, ce qui donne{
N̂1 cos θ1 + N̂2 cos θ2 = − cos θ3

N̂1 sin θ1 + N̂2 sin θ2 = − sin θ3
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Il est aisé de voir que la solution est unique : le système est une fois hypersta-
tique. La solution a donc la forme

N1 = N10 + ĝN̂1, N2 = N20 + ĝN̂2, N3 = N30 + ĝN̂3

avec la condition∫ `1

0

(N10
+ ĝN̂1)N̂1

E1Ω1
+

∫ `2

0

(N20
+ ĝN̂2)N̂2

E2Ω2
+

∫ `3

0

(N30
+ ĝN̂3)N̂3

E3Ω3
= 0

soit

ĝ = −

∫ `1

0

N10N̂1

E1Ω1
dx+

∫ `2

0

N20
N̂2

E2Ω2
dx+

∫ `3

0

N30
N̂3

E3Ω3
dx∫ `1

0

N̂2
1

E1Ω1
dx+

∫ `2

0

N̂2
2

E2Ω2
dx+

∫ `3

0

N̂2
3

E3Ω3
dx

13.5 Théorème de Clapeyron extérieur

Figure 13.19 � Théorème de Clapeyron extérieur.

Proposons-nous de calculer l'énergie complémentaire en termes des charges
et déplacements généralisés (�g. 13.19). Les forces appliquées, gouvernées par
des charges généralisées d'intensité g1, . . . , gn, peuvent être équilibrées par des
champs ce contrainte particuliers σ1

ij , . . . , σ
n
ij (non nécessairement compatibles),

auxquels il convient d'ajouter une combinaison des h états d'autocontrainte
σ̂1
ij , . . . , σ̂

h
ij . On a donc en général

σij =

n∑
k=1

σkijgk +

h∑
`=1

σ̂`ij ĝ` (13.15)
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Lorsque le matériau a des propriétés homogènes de degré 1, on a

Φ(σ) =
1

2

∂Φ

∂σij
σij

d'où, par intégration,

Ψ(σ) =
1

2

∫
V

∂Φ

∂σij
σijdV

=
1

2

n∑
k=1

gk

∫
V

∂Φ

∂σij
σkijdV +

1

2

h∑
`=1

ĝ`

∫
V

∂Φ

∂σij
σ̂`ijdV

soit, en faisant appel aux théorèmes de Castigliano et de Menabrea,

Ψ(σ) =
1

2

n∑
k=1

gkqk +
1

2

h∑
`=1

ĝ`q̄` (13.16)

C'est le théorème de Clapeyron extérieur.

13.6 Théorème de réciprocité de Betti

Considérons (�g. 13.20) un corps élastique soumis à deux systèmes de charges
di�érents, caractérisés par les charges généralisées g(1)

r pour le premier et g(2)
r

pour le second. Chacun peut en outre avoir des déplacements imposés, q̄(1)
` pour

le premier et q̄(2)
` pour le second. Calculons la valeur du travail croisé

T12 =

n∑
k=1

g
(1)
k q

(2)
k +

h∑
`=1

ĝ
(1)
` q̄

(2)
`

On a

T12 =

n∑
k=1

g
(1)
k

∫
V

(
∂Φ

∂σij

)(2)

σ
k(1)
ij dV +

h∑
`=1

ĝ
(1)
`

∫
V

(
∂Φ

∂σij

)(2)

σ̂
`(1)
ij dV

=

∫
V

(
∂Φ

∂σij

)(2)

σ
(1)
ij dV

=

∫
V

C−1
ijpqσ

(1)
ij σ

(2)
pq dV
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Figure 13.20 � Théorème de réciprocité de Betti.

en supposant le corps linéairement élastique. On obtiendrait de la même façon

T21 =

n∑
k=1

g
(2)
k q

(1)
k +

h∑
`=1

ĝ
(2)
` q̄

(1)
` =

∫
V

C−1
ijpqσ

(2)
ij σ

(1)
pq dV

Vu la symétrie des relations de Hooke, on en déduit T12 = T21, soit explicitement

n∑
k=1

g
(1)
k q

(2)
k +

h∑
`=1

ĝ
(1)
` q̄

(2)
` =

n∑
k=1

g
(2)
k q

(1)
k +

h∑
`=1

ĝ
(2)
` q̄

(1)
` (13.17)

C'est le théorème de réciprocité de Betti. On l'énonce souvent en supposant les
déplacements imposés nuls, ce qui donne

n∑
k=1

g
(1)
k q

(2)
k =

n∑
k=1

g
(2)
k q

(1)
k (13.18)



13.7. THÉORÈME DE RÉCIPROCITÉ DE MAXWELL 463

13.7 Théorème de réciprocité de Maxwell

Figure 13.21 � Théorème de réciprocité de Maxwell.

Considérons (�g. 13.21) le cas de deux charges généralisées g1 et g2, sans
tassement d'appui, et supposons que{

g
(1)
1 = 1, g

(1)
2 = 0

g
(2)
1 = 0, g

(2)
2 = 1

On a alors, par le théorème de Betti,

q
(1)
2 = q

(2)
1

C'est le théorème de réciprocité de Maxwell : le déplacement généralisé q2 sous
la charge g1 = 1 est égal au déplacement généralisé q1 sous la charge g2 = 1.
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Chapitre 14

Diagrammes d'in�uence

14.1 Notion de diagramme d'in�uence

Dans un certain nombre d'applications pratiques, on s'intéresse à un e�et
particulier : déplacement généralisé, force généralisée, pour un grand nombre de
cas de charge. L'exemple le plus typique est celui du pont où en dé�lant, un
train prend toutes les positions possibles sur le tablier, chacune correspondant
à une sollicitation particulière. Le diagramme d'in�uence est précisément la
représentation de la grandeur de l'e�et considéré pour une charge unitaire placée
en un point quelconque. Dans le cas d'une charge composée, il su�t alors de
sommer les e�ets.

14.2 Diagramme d'in�uence d'un déplacement gé-
néralisé

Soit à chercher le diagramme d'in�uence d'un déplacement généralisé q0 (�g.
14.1). Traçons la déformée de la structure sous une charge conjuguée g0 = 1.
On notera que, par le théorème de Betti, le travail d'une charge quelconque g1

sur cette déformée, soit g1q
(0)
1 , est égal au travail de g0 pour la déformée due à

la charge g1, ce qui s'écrit

T10 = g1q
(0)
1 = T01 = g0q

(1)
0 = q

(1)
0

465
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Figure 14.1 � Ligne d'in�uence d'un déplacement généralisé.

Ainsi, le déplacement considéré q(1)
0 dû à une charge quelconque g1 est égal au

travail de cette charge pour la déformée due à le charge unitaire g0 = 1. Cette
déformée constitue donc le diagramme d'in�uence du déplacement q0.

14.3 Diagramme d'in�uence d'un e�et de type
e�ort

Pour ce problème, les exposés classiques [12, 67] distinguent le cas des struc-
tures isostatiques, où il est d'usage d'invoquer le principe des travaux virtuels,
du cas des structures hyperstatiques, pour lesquelles on fait appel au principe
de réciprocité. Voici un exposé uni�é fondé sur le principe de variation des dé-
placements.

Soit F l'e�ort généralisé (contrainte, réaction, etc.) dont on cherche le dia-
gramme d'in�uence et soit d(u) le déplacement conjugué à F pour un champ
de déplacement u. F sera par exemple (�g. 14.2) la réaction au point A d'une
poutre, le moment en un point D de cette poutre, etc. Une règle essentielle
est que le déplacement d(u) doit être nul pour toute variation de déplacement
cinématiquement admissible. C'est le cas pour les deux exemples considérés ci-
dessus, car à la réaction est conjuguée la violation de la condition d'appui et au
moment en D, un saut de rotation en ce point.

Pour faire apparaître d(u) dans le principe de variation des déplacements, on
relâche la condition d(u) = 0 en faisant la coupure voulue : on coupera l'appui
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Figure 14.2 � Poutre sur trois appuis.

en A, ou l'on installera une rotule en D. On utilise alors la fonctionnelle énergie
totale augmentée

U∗ + P − Fd(u) (14.1)

où F est le multiplicateur de Lagrange associé à la condition d(u) = 0. La
notation U∗ rappelle que le système a subi une coupure, ce dont il faut tenir
compte dans le calcul de l'énergie, en faisant une coupure dans les intégrations.
Pour la commodité, nous utiliserons la notation

U∗(u) =
1

2
a∗(u, u), δU∗ = a∗(u, δu) =

∫ ∗
V

Cijklεij(u)εkl(δu)dV (14.2)

qui fait bien apparaître le caractère de forme bilinéaire de l'énergie. Soit alors v
le champ de déplacement tel que{

d(v) = −1
a∗(v, δu) = 0 ∀δu tel que d(δu) = 0

}
(14.3)

Ces conditions signi�ent que l'on cherche le champ de déplacement v tel que
d(v) = −1 et qu'en outre, l'équilibre soit satisfait en l'absence de charges ex-
térieures. Pour la poutre de la �gure 14.12, ce sera le champ de déplacement
représenté en �gure 14.3. Pour une poutre sur deux appuis A et B, dont on

Figure 14.3 � Déplacement v lié à la réaction en A.

recherche la réaction RA, il s'agira du déplacement de corps rigide indiqué en
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Figure 14.4 � Cas d'une poutre sur deux appuis.

�gure 14.4. Le champ de déplacement réel de la structure sous les charges rend
la fonctionnelle (14.1) stationnaire, ce qui s'écrit

a∗(u, δu) + P(δu)− Fd(δu) = 0

pour tout δu. Le choix particulier δu = v donne

a∗(u, v) + P(v)− Fd(v) = 0

Mais on a d'une part d(v) = −1 et d'autre part, comme d(u) = 0, on a également
a∗(u, v) = 0, ce qui implique

F = −P(v) = T (v) (14.4)

On obtient ainsi le théorème de Land :

Théorème 11 Pour obtenir le diagramme d'in�uence d'un e�ort F , on fait une
coupure relative à cet e�ort. On cherche alors le déplacement du système coupé
tel que, d'une part, la valeur du déplacement conjugué à l'e�ort considéré soit
égal à (−1) et que, d'autre part, l'équilibre soit véri�é en l'absence de charges.
La valeur de F pour une mise en charge quelconque est alors égale au travail de
cette mise en charge pour le déplacement en question.

14.3.1 Remarque

Dans le cas d'une structure isostatique, le déplacement en question est le
seul déplacement sans déformation de la structure coupée.

14.4 Exemples

14.4.1 Réaction d'une poutre sur deux appuis

Soit à déterminer la réaction en B de la poutre de la �gure 14.5 posée sur
deux appuis A et B et soumise à trois charges P1, P2 et P3. On coupe l'appui
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Figure 14.5 � Réaction d'une poutre sur deux appuis.

en B et on donne à la poutre un déplacement unitaire en ce point, dans le sens
inverse à RB . On a alors

qC =
AC

AB
, qD =

AD

AB
, qE =

AE

AB

d'où

RB = P1
AC

AB
+ P2

AD

AB
+ P3

AE

AB

14.4.2 E�ort tranchant d'une poutre sur deux appuis

On considère la poutre sur deux appuis avec encorbellements de la �gure
14.6, soumise à un système de charges P1, P2, P3, P4. On désire connaître l'e�ort
tranchant au point C. Pour obtenir la ligne d'in�uence, on e�ectue une coupure
simple relative à l'e�ort tranchant (coupure de cet e�ort uniquement). Cette
coupure peut être conçue comme réalisée à l'aide de deux plateaux permettant
de passer le moment mais non l'e�ort tranchant. Ces plateaux, étant in�niment
rigides, ne permettent que les déformations où les lèvres de la coupure restent
parallèles entre elles. la ligne d'in�uence est représentée sur la �gure. On en
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Figure 14.6 � E�ort tranchant d'une poutre sur deux appuis.

déduit, pour la mise en charge donnée,

TC = P1 · q1 + P2 · q2 + P3 · q3 + P4 · q4

= −P1
AD

AC
− P2

BE

BC
+ P3

BF

BC
+ P4

BG

BC

14.4.3 Moment d'une poutre cantilever

Une poutre cantilever est une poutre sur appuis multiples rendue isostatique
à l'aide de rotules. Soit par exemple à déterminer la ligne d'in�uence du moment
en E de la poutre cantilever de la �gure 14.7. On pratique la coupure simple
relative aux moments en E, qui consiste en une rotule en ce point, comme
le montre la �gure 14.8. La seule di�culté réside dans la détermination de
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Figure 14.7 � Moment d'une poutre cantilever.

Figure 14.8 � Ligens d'in�uence des moments en E et F .

l'unité : l'angle est en principe unitaire, mais comme il s'agit d'un déplacement
in�nitésimal, c'est un segment rectiligne situé à une distance horizontale unitaire
de C qui doit avoir une longueur égale à 1. On a également représenté sur la
�gure la ligne d'in�uence du moment en F .

14.4.4 Moment dans un arc à trois articulations avec mise
en charge indirecte

Pour tracer la déformée de l'arc de la �gure 14.9 où l'on aura préalablement
inséré une rotule en B, on peut chercher le centre instantané de rotation R
de la section BC comme indiqué en �gure 14.10. La déformation de l'arc est
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Figure 14.9 � Arc à trois articulations à mise en chatge indirecte.

alors simple à obtenir, et les poteaux et passerelles suivent en gardant leur
longueur, ce qui permet de faire la construction au compas. La seule di�culté
est de dé�nir l'unité. Avant déformation, les points A,B,R sont en ligne droite
et le déplacement BB′ du point B mesure la rotation des deux parties. C'est
dans cette direction que doit être mesurée la rotation : à une distance égale à 1
(dans la direction RA), l'unité u est parallèle à BB′. Pour une mise en charge
(P1, P2, P3), on aura donc

MB =
1

u
(P1 · q1 + P2 · q2 + P3 · q3)

Figure 14.10 � Diagramme d'in�uence du moment en B.
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14.4.5 Réaction de l'appui intermédiaire d'une poutre sur
trois appuis

La �gure 14.11 est su�samment explicite pour se passer de commentaires.

Figure 14.11 � Ligne d'in�uence de la réaction de l'appui intermédiaire d'une
poutre sur trois appuis.

14.4.6 E�ort dans une barre quelconque d'un treillis iso-
statique

Figure 14.12 � Treillis.

Sur le treillis de la �gure 14.12, soit à déterminer l'in�uence d'une charge sur
l'e�ort de traction dans la barre GH. Le déplacement conjugué à cet e�ort (la
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barre GH étant coupée) est le rapprochement des deux points G et H dans la
direction GH. On donne à ce déplacement la valeur (−1). On détermine alors la
déformée du treillis, par les méthodes classiques de la cinématique des travaux
virtuels (�g. 14.13). La valeur de l'e�ort de la barre GH pour une charge P1 est

Figure 14.13 � Diagramme d'in�uence de l'e�ort dans la barre GH.

donc

NGH =
1

u
P1 · q1



Chapitre 15

Stabilité des systèmes
élastiques

15.1 Introduction

Le problème de la stabilité d'un équilibre élastique se pose notamment dans
le cas d'une colonne comprimée par une charge P (�g. 15.1). Si la colonne est

Figure 15.1 � Flambage.

su�samment longue, on observe qu'à partir d'une charge donnée, elle �échit,

475
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prenant ainsi une nouvelle position d'équilibre assez éloignée de la précédente. 1

Il s'agit évidemment d'une instabilité. Dans le cas considéré, elle porte le nom de
�ambage et mène le plus souvent à la ruine de l'édi�ce que soutient la colonne.
C'est dire l'importance pratique du phénomène.

Nous avons vu, lors de l'étude de l'élasticité géométriquement linéarisée, que
tout état d'équilibre était stable dans le cadre de cette théorie. En conséquence,
la théorie de la stabilité relève à priori de l'élasticité non linéaire (grands dépla-
cements).

15.2 Principe du minimum de l'énergie

Soit une structure en équilibre sous un système de charges, et soit E l'énergie
totale correspondant à cet état d'équilibre. De nombreuses causes fortuites, au
nombre desquelles il faut compter les vibrations de la fondation, l'e�et du vent,
etc., peuvent donner à la structure une certaine énergie cinétique T . Il s'agit en
l'occurrence de vitesses tendant à déplacer la structure de son état d'équilibre.
Pour que ce déplacement ne croisse pas indé�niment, il faudra que la variation
d'énergie totale E tende à diminuer l'énergie cinétique. Or, la conservation de
l'énergie implique

∆E + ∆T = 0 (15.1)

si bien que pour obtenir ∆T < 0 en s'écartant de l'équilibre, il faudra que
∆E > 0. Dans ce cas, la structure se mettra à osciller, jusqu'à ce que l'amortisse-
ment inévitable, bien que souvent faible, anihile la vibration. Ainsi, la condition
de stabilité de l'équilibre est que, lors d'un déplacement à partir de la position
d'équilibre, l'énergie totale augmente. C'est la condition de Lejeune-Dirichlet
Dirichlet1847. Il est équivalent de dire qu'un équilibre stable correspond à un
minimum d'énergie totale.

Il convient de noter que ce principe ne permet que de garantir la stabilité
in�nitésimale, c'est-à-dire que la stabilité n'est garantie que pour des perturba-
tions su�samment petites. Il est très possible qu'une perturbation assez grande
entraîne le passage par un autre point où l'énergie est maximale, entraînant
ainsi la structure vers un autre minimum qui constituera une nouvelle position
d'équilibre stable. Une comparaison utile et classique consiste à raisonner sur
le problème d'une bille dans une chaîne de montagnes. Dans le cas représenté
en �gure 15.2, les points A et B sont deux positions d'équilibre stable. Mais en

1. Pour pouvoir observer ce phénomène à l'état pur, il convient d'utiliser une colonne faite
d'un matériau à haute limite élastique, car dans le cas contraire, la �exion risque de produire
une déformation plastique menant à la ruine.
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Figure 15.2 � Analogie de la bille.

donnant une énergie su�sant à la bille, il est possible de passer d'une position
à l'autre. Observons que ce problème est moins académique qu'il ne pourrait
sembler. Ainsi [26], si l'on place un crayon sur sa face extrême plane, comme
l'illustre la �gure 15.3, il est stable au sens in�nitésimal, car tout petit mouve-
ment autour de sa position d'équilibre relève son centre de gravité. Néanmoins,

Figure 15.3 � Ce crayon est stable au sens in�nitésimal, mais il s'agit d'une
stabilité est précaire.

il s'agit d'un équilibre précaire, car il existe un seuil, fort proche de la verticale,
où le centre de gravité passe par une hauteur maximale, suite à quoi il redes-
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cend. Un exemple similaire est celui de la bille maintenue en un sommet par
une fraisure (�g. 15.4). On peut donc dire que, dans un certain sens, l'étude

Figure 15.4 � Bille maintenue en équilibre par une fraisure.

Figure 15.5 � La stabilité devrait être mesurée par l'énergie à apporter pour
la détruire.

de la stabilité in�nitésimale est incomplète et que la stabilité d'un équilibre
donné devrait en fait être mesurée par la plus petite di�érence d'énergie entre
l'état considéré et une instabilité voisine, comme l'illustre la �gure 15.5. Ainsi,
dans le cas du crayon, on observerait que le saut d'énergie correspondant est
très faible. Malheureusement, dans nombre de cas pratiques, une telle démarche
nécessiterait un nombre d'analyses que l'on ne peut raisonnablement prescrire.

15.3 Variations successives de l'énergie totale

Étant donné un état d'équilibre caractérisé par un champ de déplacement
u0, considérons une petite perturbation θw du champ de déplacement, où w
représente une variation cinématiquement admissible de déplacement, de norme
unitaire, et θ, un paramètre réel. Supposant w �xé, l'énergie se présente comme
une fonction de θ. Nous admettrons qu'il est possible de la développer en série
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de Taylor jusqu'au second ordre, c'est-à-dire que

E(u0 + θw) = E(u0) + θδE(u0;w) +
θ2

2
δ2E(u0;w) + o(θ2) (15.2)

où apparaissent la variation première δE et la variation seconde δ2E . Le champ
de déplacement u0, comme tout état d'équilibre, véri�e la condition de station-
narité de l'énergie totale

δE(u0;w) = 0 (15.3)

si bien que l'on peut écrire

∆E(u0 → u0 + θw) = E(u0 + θw)− E(u0) =
θ2

2
δ2E(u0;w) + o(θ2) (15.4)

Pour θ su�samment petit, le signe de la variation d'énergie sera celui de la
variation seconde, ce qui permet de dire que si la variation seconde est négative
pour une variation de déplacement donnée de norme unitaire, la structure est
instable. A l'inverse, la structure sera stable si, pour toute variation de déplace-
ment w de norme unitaire, la variation seconde est positive.

Il peut se faire que la variation seconde soit nulle. Dans ce cas, il faut pousser
le développement en série plus loin

E(u0 + θw) = E(u0) + θδE +
θ2

2
δ2E +

θ3

3!
δ3E +

θ4

4!
δ4E + . . . (15.5)

ce qui dé�nit la variation troisième, la variation quatrième, etc. Si la variation
troisième est di�érente de zéro pour un certain w, positive pour �xer les idées,
il su�t de changer le signe de θ (ce qui équivaut à remplacer w par −w) pour
changer le signe de l'accroissement d'énergie : la structure est donc instable.
Si la variation troisième est nulle, on reproduit sur la variation quatrième le
raisonnement relatif à la variation seconde : elle doit être positive pour qu'il y
ait stabilité. Plus généralement, si la première variation non nulle est d'ordre
impair, l'équilibre est instable. Si cette variation est d'ordre pair, l'équilibre est
stable si elle est toujours positive. Ces résultats s'interprètent aisément à l'aide
de l'analogie de la bille. Le fait que la première variation non nulle soit d'ordre
impair signi�e que l'on se trouve sur un palier, comme l'illustre la �gure 15.6.
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Figure 15.6 � Cas où la première variation non nulle est d'ordre impair.

15.4 Analyse générale de la stabilité des corps
élastiques

Nous nous limiterons au cas habituel d'un matériau linéaire. Notant tou-
jours u0 le déplacement à l'équilibre et θw la perturbation, on peut écrire les
déformations de Green sous la forme

γij =
1

2
[Di(u

0
j + θwj) +Dj(u

0
i + θwi) +Di(u

0
m + θwm)Dj(u

0
m + θwm)]

= γ0
ij + θγ1

ij +
θ2

2
γ2
ij (15.6)

avec

γ0
ij = 1

2 (Diu
0
j +Dju

0
i +Diu

0
mDju

0
m)

γ1
ij = 1

2 (Diwj +Djwi +Diu
0
mDjwm +Dju

0
mDiwm)

γ2
ij = DiwmDjwm

 (15.7)

L'énergie de déformation s'écrit donc (en supposant l'existence de contraintes
initiales s∗ij à l'état de référence)

U =

∫
V

s∗ij

(
γ0
ij + θγ1

ij +
θ2

2
γ2
ij

)
dV

+
1

2

∫
V

Cijkl

(
γ0
ij + θγ1

ij +
θ2

2
γ2
ij

)(
γ0
kl + θγ1

kl +
θ2

2
γ2
kl

)
dV

= U0 + θδU +
θ2

2
δ2U +

θ2

3!
δ3U +

θ4

4!
δ4U (15.8)
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avec
U0 =

∫
V

(
s∗ijγ

0
ij + 1

2Cijklγ
0
ijγ

0
kl

)
dV

δU =
∫
V

(
s∗ijγ

1
ij + Cijklγ

0
ijγ

1
kl

)
dV

δ2U =
∫
V

(
s∗ijγ

2
ij + Cijklγ

0
ijγ

2
kl + Cijklγ

1
ijγ

1
kl

)
dV

δ3U = 3
∫
V
Cijklγ

1
ijγ

2
kldV

δ4U = 3
∫
V
Cijklγ

2
ijγ

2
kldV


(15.9)

Dans le cas usuel de charges mortes, l'énergie potentielle s'écrit

P = P(u0) + δP (15.10)

On a d'abord δU + δP = 0, ce qui signi�e que le champ de déplacement u0

correspond à un état d'équilibre. Examinons à présent la variation seconde. En
notant s0

ij les contraintes totales à l'équilibre,

s0
ij = s∗ij + Cijklγ

0
kl (15.11)

on peut la mettre sous la forme

δ2U =

∫
V

(
s0
ijγ

2
ij + Cijklγ

1
ijγ

1
kl

)
dV (15.12)

Quel est son signe ? Examinons d'abord le second terme. Le tenseur Cijkl étant
dé�ni positif, ce terme sera toujours positif ou nul, et ne s'annulera que si γ1

ij = 0.
On a

γ1
ij =

1

2
(Diwj +Djwi +Diu

0
mDjwm +Dju

0
mDiwm)

=
1

2
[(δjm +Dju

0
m)Diwm + (δim +Diu

0
m)Djwm]

et, en introduisant les coordonnées spatiales à l'équilibre ξi = (xi + u0
i ),

γ1
ij =

1

2
(DjξmDiwm +DiξmDjwm)

Nous noterons ∂i les dérivées par rapport aux ξi. On a, si γ1
ij = 0,

0 = ∂pxi∂qxjγ
1
ij =

1

2
(∂qxjDjξm∂pxiDiwm + ∂pxiDiξm∂qxjDjwm)

=
1

2
(δqm∂pwm + δpm∂qwm)
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soit
1

2
(∂pwq + ∂qwp) = 0 (15.13)

La solution de cette équation est

wp = ap + epqrωqξr (15.14)

c'est-à-dire un déplacement de corps rigide à partir de la con�guration déformée.
En supposant les déplacements rigides bloqués, on aura donc γ1

ij 6= 0, et le second
terme de la variation seconde est toujours positif.

Venons-en au premier terme de cette variation, qui s'écrit∫
V

s0
ijDiwmDjwmdV

Il ne peut jamais être négatif si le tenseur s0
ij est dé�ni positif, c'est-à-dire si,

pour tout vecteur qi, on a
s0
ijqiqj > 0

Par conséquent, il ne peut y avoir d'instabilité si le tenseur des contraintes
totales à l'équilibre est dé�ni positif en tout point du corps.

Mis à part cette conclusion qualitative importante, le test de la variation
seconde semble à priori assez délicat à mener, puisqu'il suppose en principe
l'exploration de la totalité de la sphère unité, pour une norme qu'il nous reste à
préciser. Le choix de celle-ci est relativement arbitraire, à ceci près qu'il convient
au moins qu'il assure la bornation de la variation seconde. La plus simple des
normes assurant cette condition est

‖w‖2 =

∫
V

Cijklγ
1
ijγ

1
kldV (15.15)

Ce choix fait, on évite l'exploration de la sphère unité par la méthode sui-
vante, proposée par Jacobi : appelons µ la grandeur

µ = sup
C

−
∫
V
s0
ijγ

2
ijdV∫

V
Cijklγ1

ijγ
1
kldV

(15.16)

C étantl'ensemble des perturbations admissibles de déplacements. Selon la valeur
de µ, trois cas peuvent se présenter :

1. µ > 1 - Dans ce cas, pour tout ε > 0, il existe un déplacement w ∈ C tel
que

−
∫
V

s0
ijγ

2
ijdV ≥ (µ− ε)

∫
V

Cijklγ
1
ijγ

1
kldV
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Il en découle

δ2U =

∫
V

s0
ijγ

2
ij +

∫
V

Cijklγ
1
ijγ

1
kldV ≤ (1− µ+ ε)

∫
V

Cijklγ
1
ijγ

1
kldV < 0

pour ε < µ− 1, ce qui implique que l'équilibre est instable.

2. µ < 1 - Alors, tout déplacement w ∈ C véri�e

−
∫
V

s0
ijγ

2
ijdV ≤ µ

∫
V

Cijklγ
1
ijγ

1
kldV <

∫
V

Cijklγ
1
ijγ

1
kldV

ce qui signi�e que l'on a toujours δ2U > 0. L'équilibre est donc stable.

3. µ = 1 - Dans ce cas, on ne peut pas conclure.

La plupart des auteurs admettent implicitement que la meilleure borne su-
périeure (15.16) est réalisée par un champ de déplacement donné. Or, cette
propriété n'a rien d'évident, et la question reste ouverte dans le cas général 2.
Signalons cependant qu'elle est garantie lorsque les dérivées intervenant dans
le numérateur sont au moins d'un ordre inférieur à celles qui apparaissent dans
le dénominateur, auquel cas il y a complète continuité (voir par exemple Ne-
cas [63], Riesz et Nagy [76]). Cette condition est véri�ée pour les poutres sans
déformation à l'e�ort tranchant, les plaques de Kirchho� et quelques autres cas.

Supposant cette réalisation e�ective, la recherche de µ peut être considé-
rée comme le problème de maximisation du numérateur, moyennant la condi-
tion ‖w‖2 = 1, qui peut être reprise à l'aide d'un multiplicateur lagrangien λ.
L'équation variationnelle de ce problème est alors

δ

{
−
∫
V

s0
ijγ

2
ij − λ

∫
V

Cijklγ
1
ijγ

1
kldV

}
= 0 (15.17)

et se présente comme un problème aux valeurs propres λ. La plus grande de
celles-ci est précisément µ. Le déplacement correspondant est appelé la forme
critique.

15.5 Bifurcation de l'équilibre

On dit qu'il y a instabilité par bifurcation de l'équilibre lorsque l'état d'équi-
libre initial véri�e

δim +Diu
0
m ≈ δim (15.18)

2. Dans le cas d'une structure discrétisée, cette propriété est évidente, car la sphère unité
dans Rn est compacte, et toute fonction continue y atteint ses bornes.
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c'est-à-dire qu'il est caractérisé par des rotations in�nitésimales. Dans ce cas,
on a

γ1
ij ≈

1

2
(Diwi +Diwj) = εij(w)

et le critère de la variation second se ramène à tester que

δ2E =

∫
V

s0
ijDiwmDjwmdV +

∫
V

Cijklεij(w)εkl(w)dV > 0

Seul, le premier terme subit l'in�uence de l'équilibre initial, et il varie linéai-
rement avec les contraintes. C'est pourquoi on parle, dans ce cas, de stabilité
linéaire. On pro�te de cette propriété pour choisir au départ la forme du champ
de contrainte, et dé�nir son amplitude à part : on choisit donc un champ unitaire

s0
ij = −Sij (15.19)

et le champ menant à l'instabilité sera −σSij , où σ est le facteur multiplicatif.
Tout revient à chercher la facteur critique (encore appelé, par abus de langage,
charge critique), dé�ni comme la plus petite valeur de σ pour laquelle

δ2E = −σ
∫
V

SijDiwmDjwmdV +

∫
V

Cijklεij(w)εkl(w)dV = 0

et qui véri�e

σ = inf
w∈C

∫
V
Cijklεij(w)εkl(w)dV∫
V
SijDiwmDjwmdV

(15.20)

Si cette valeur est réalisée, il est équivalent de chercher les solutions du problème
aux valeurs propres

δ

{∫
V

Cijklεij(w)εkl(w)dV − σ
∫
V

SijDiwkDjwkdV

}
= 0 (15.21)

les formes critique véri�ent alors l'équation

D`(Ck`ijεij(w)− σDj(SjiDiwk) = 0 dans V (15.22)

et les conditions aux limites

n`(Ck`ijεij(w))− σnj(SijDiwk) = 0 sur S2 (15.23)

S2 étant la portion de la surface où les e�orts sont imposés nuls.
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15.6 La colonne d'Euler

le plus classique des problèmes de bifurcation est celui d'une colonne encas-
trée en son pied et soumis à une charge P en son sommet (�g. 15.7). Sous une

Figure 15.7 � Colonne d'Euler.

faible charge, la colonne reste droite ; mais à partir d'une charge donnée, elle
�échit. C'est ce que l'on appelle le �ambage. Appelant z la coordonnée prise
le long de la colonne et x l'axe tel que Ix soit le plus petit des deux moments
d'inertie, on écrira

u3 = w(z) + xα(z)

u1 = u(z) (15.24)

En admettant l'approximation des gradients de déplacements modérés, on écrira,
en notant d'un prime la dérivation par rapport à z,

γ33 = D3u3 +
1

2
(D3u1)2 = w′ + xα′ +

1

2
u′2

γ13 = D1u3 +D3u1 = α+ u′ (15.25)
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Le déplacement à l'équilibre est w0. La perturbation est caractérisée par w, u
et α. Nous ferons l'hypothèse d'absence de déformation due à l'e�ort tranchant,
ce qui s'écrit

α = −u′ (15.26)

et donne

γ33 = w′ − xu” +
1

2
u′2

soit

ε33 = w′ − xu”

γ2
33 = u′2

L'état de contrainte initial normalisé est S33 = −1/Ω, ce qui donne directement
la charge critique P comme facteur d'amplitude. Le principe variationnel s'écrit
alors ∫ `

0

(EΩw′2 + EIu”2 − Pu′2)dz stationnaire (15.27)

Les formes critiques véri�ent donc les équations suivantes −EΩw” = 0 dans ]0, `[
EΩw′(`) = 0

w(0) = 0
(15.28)

et 
EIuIV + Pu” = 0 dans ]0, `[

−EIu′′′(`)− Pu′(`) = 0
u(0) = 0
u′(0) = 0

(15.29)

Des équations (15.28), on déduit w = 0. A partir des deux premières équations
du système (15.29), on déduit

u′′′(z) +
P

EI
u′(z) = 0

ce qui donne la solution générale

u(z) = A cos

√
P

EI
z +B sin

√
P

EI
z + C
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Des conditions aux limites en z = 0, on déduit B = 0 et C = −A. La condition
d'extrémité donne alors

cos

√
P

EI
` = 0

soit √
P

EI
` =

π

2
+ (n− 1)π =

(
n− 1

2

)
π, n entier > 0

ou encore

P =

(
n− 1

2

)2
π2EI

`2

Ce sont les charges d'Euler. La plus petite d'entre elles, qui marque la limite de
stabilité, est

Pcr =
π2EI

4`2
(15.30)

15.7 Autres cas d'appuis

Lorsque les appuis sont di�érents du cas envisagé ci-dessus, les équations
d'équilibre intérieur restent inchangées, mais les conditions aux limites varient.
Voici quelques cas courants.

15.7.1 Poutre bi-appuyée

Ce cas est illustré par la �gure 15.8. Les conditions d'extrémité sont ici

u(0) = 0, u(`) = 0, u”(0) = 0, u”(`) = 0

L'équation d'équilibre

uIV +
P

EI
u” = 0

admet la solution générale

u(z) = A cosωz +B sinωz + Cz +D (15.31)

avec

ω2 =
P

EI

Les conditions en z = 0 donnent

A+D = 0
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Figure 15.8 � Flambage d'une poutre sur deux appuis.

et
−Aω2 = 0

ce qui implique A = D = 0, en excluant le cas ω = 0 pour lequel la solution est
identiquement nulle. Ensuite, on déduit des conditions en z = `

B sinω`+ C` = 0

et
−B2ω2 sinω` = 0

d'où C = 0 et, pour que la solution ne soit pas identiquement nulle,

sinω` = 0

ce qui donne
ω` = nπ, n entier > 0

On obtient donc

P = n2π
2EI

`2
, Pcr =

π2EI

`2
(15.32)
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15.7.2 Poutre encastrée-appuyée

Figure 15.9 � Flambage d'une poutre encastrée-appuyée.

C'est le cas illustré en �gure 15.9. Portant dans la solution générale (15.31)
les conditions aux limites

u(0) = 0, u′(0) = 0, u(`) = 0, u”(`) = 0

on obtient d'abord
A+D = 0, ωB + C = 0

puis {
A(cosω`− 1) +B(sinω`− ω`) = 0

−Aω2 cosω`−Bω2 sinω` = 0

Ce système homogène de deux équations aux inconnues A et B n'admet de
solution non nulle que si son déterminant est nul,

−ω2 sinω`(cosω`− 1) + ω2(sinω`− ω`) = 0

soit, en excluant la solution triviale ω = 0,

tgω` = ω` (15.33)



490 CHAPITRE 15. STABILITÉ DES SYSTÈMES ÉLASTIQUES

Figure 15.10 � Représentation des solutions de tgω` = ω`.

Pour résoudre cette équation, il est utile de tracer les graphes y = tgω` et
y = ω`, voir �gure 15.10. Les solutions cherchées sont leurs intersections. Pour
ω` grand, on peut résoudre approximativement l'équation tgω` = ∞, ce qui
mène aux solutions asymptotiques

(ω`)n ≈
π

2
+ nπ

Pour obtenir avec précision la première solution, on peut utiliser l'itération

(ω`)k+1 = arctg(ω`)k + π

en partant de π. Après quatre itérations, 4 chi�res sont stabilisés :

ω` = 4, 493 =

√
P

EI

ce qui donne

Pcr =
(4, 493)2EI

`2
= 20, 19

EI

`2
=

π2EI

(0, 6992`)2
≈ π2EI

(0, 7`)2
(15.34)
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La solution asymptotique ω` = 3π
2 eût donné la valeur par excès

Pcr ≈
π2EI

(0, 6667`)2
= 22, 21

EI

`2

15.7.3 Poutre bi-encastrée

Figure 15.11 � Flambage d'une poutre bi-encastrée.

Les conditions aux appuis de ce cas représenté en �gure 15.11 sont

u(0) = 0, u′(0) = 0, u(`) = 0, u′(`) = 0

En les portant dans la solution générale (15.31), on obtient d'abord

A+D = 0, ωB + C = 0

puis {
A(cosω`− 1) +B(sinω`− ω`) = 0
−Aω sinω`+B(cosω`− 1) = 0
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Ce système homogène en A et B n'admet de solution non nulle que si

ω(cosω`− 1)2 + ω(sinω`− ω`) sinω` = 0

ce qui implique, pour ω 6= 0

cos2 ω`− 2 cosω`+ 1 + sin2 ω`− ω` sinω` = 0

soit
2(1− cosω`) = ω` sinω`

Ceci peut encore s'écrire

4 sin2 ω`

2
= ω` · 2 sin

ω`

2
cos

ω`

2

soit

4 sin
ω`

2
(sin

ω`

2
− ω`

2
cos

ω`

2
) = 0 (15.35)

Cette équation est résolue chaque fois que

sin
ω`

2
= 0 (15.36)

ou

tg
ω`

2
=
ω`

2
(15.37)

Les solutions de (15.36) sont

ω`

2
= nπ, n entier > 0

soit

P =
4n2π2EI

`2
, Pcr =

4π2EI

`2
(15.38)

Quant à l'équation (15.37), elle se résout comme dans le cas de la poutre
encastrée-appuyée. La plus petite valeur de ω`

2 est alors 4,493, ce qui donne

P ′cr =
4π2EI

(0, 6992`)2
(15.39)

valeur plus grande que la précédente. L'existence de ces deux familles de modes
critiques s'explique aisément : le premier mode critique présente deux points
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Figure 15.12 � Les deux familles de modes critiques d'une poutre bi-encastrée.

d'in�exion où M = 0, voir �gure 15.12a. La partie centrale, de longueur `/2,
peut donc être identi�ée à une poutre sur deux appuis, d'où la solution

Pcr =
π2EI

(`/2)2

Le deuxième présente un point d'in�exion au centre et la poutre peut donc être
assimilée à l'assemblage bout à bout de deux poutres encastrées-appuyées de
longueur `/2, voir �gure 15.12b. Il vient donc

P ′cr =
π2EI(

0, 6992 `2
)2
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15.8 Colonne �ambant sous son propre poids ou
sous une charge longitudinale uniformément
répartie

15.8.1 Colonne encastrée à sa base et �ambant sous son
propre poids

Figure 15.13 � Colonne sous une charge uniformément répartie.

Dans ce cas illustré en �gure 15.13, soit q la densité linéique de charge. La
solution statique est donc

N0 = −q(`− z) (15.40)

ce qui mène au problème de stationnarisation de la fonctionnelle∫ `

0

EIu”2dz − q
∫ `

0

(`− z)u′2dz (15.41)

L'équation de la forme critique est donc

EIuIV + q
d

dz
[(`− z)u′] = 0 (15.42)
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avec les conditions aux limites
−EIu′′′(`)− q(`− `)u′(`) = 0

EIu”(`) = 0
u(0) = 0
u′(0) = 0

(15.43)

La solution exacte de ce problème a été développée par Greenhill [42, 86]. Elle
fait appel aux fonctions de Bessel d'ordre 1/3 et son exposé est assez lourd. Nous
nous contenterons ici de développer une solution approchée par la méthode de
Rayleigh-Ritz. Posant

u = az2 +Bz3 (15.44)

on satisfait aux conditions aux limites en z = 0. On calcule sans di�culté∫ `

0

(`− z)u′2dz = `4
(

1

3
A2 +

3

10
B2`2 +

6

10
AB`

)
et ∫ `

0

u”2dz = `
(
4A2 + 12AB`+ 12B`2

)
Il su�t donc de trouver les points stationnaires de la forme quadratique

A2

(
4− β

3

)
+ 2AB`

(
6− 3β

10

)
+B2`2

(
12− 3β

10

)
en posant

β =
q`3

EI

Il en découle les équations
(

4− β
3

)
A+

(
6− 3β

10

)
B = 0(

6− 3β
10

)
A+

(
12− 3β

10

)
B = 0

compatibles en dehors de la solution nulle moyennant la condition(
4− β

3

)(
12− 3β

10

)
−
(

6− 3β

10

)2

= 0

soit
β2 − 160β + 1200 = 0
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La plus petite racine de cette équation est

βcr = 7, 889 (15.45)

ce qui donne

(q`)cr = 7, 889
EI

`2
(15.46)

La solution exacte est βcr = 7, 837, inférieure à la valeur approchée de 7◦/◦◦
seulement.

15.8.2 Colonne bi-appuyée, soumise à la fois à une charge
en bout et à une charge répartie

Figure 15.14 � Colonne bi-appuyée, soumise à la fois à une charge en bout et
à une charge répartie.

En comptant, comme l'indique la �gure 15.14, la coordonnée z à partir du
point le plus haut de la poutre, on a ici

N0(z) = −P − qz (15.47)
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ce qui mène à rendre stationnaire l'expression∫ `

0

EIu”2dz − P
∫ `

0

u′2dz − q
∫ `

0

zu′2dz

On résout ce problème de manière approchée en posant [86]

u(z) = A sin
πz

`
(15.48)

ce qui ramène la variation seconde à

EI
π4

`4
A2 `

2
− P π

2A2

`2
`

2
− q π

2A2

`2
`2

4

Le point stationnaire correspond donc à la condition

P +
q`

2
=
π2EI

`2
= PE (15.49)

On constate que cette solution équivaut à admettre que la moitié de la charge
répartie est appliquée à chacune des extrémités de la poutre.

15.9 E�et de la déformation due à l'e�ort tran-
chant

Pour évaluer l'e�et de la déformation due à l'e�ort tranchant, nous repar-
tirons des expressions (15.24) et (15.25), mais nous abandonnerons l'hypothèse
(15.26). La variation seconde s'écrit alors

δ2U =

∫ `

0

{
EΩw′2 + EIα′2 +GΩ∗(α+ u′2)

}
dz +

∫ `

0

N0u
′2dz (15.50)

Traitons par exemple le cas d'une poutre bi-appuyée chargée en bout. Nous
noterons encore N0 = −P . Les équations relatives à w sont les mêmes qu'en
l'absence de déformation à l'e�ort tranchant et mènent encore à w = 0. Les
équations relatives à α et u sont

−(EIα′)′ +GΩ∗(α+ u′) = 0 dans ]0, `[
−(GΩ∗(α+ u′))′ + (Pu′)′ = 0 dans ]0, `[

EIα′(0) = 0
EIα′(`) = 0

u(0) = 0
u(`) = 0

(15.51)
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De la deuxième, on tire

α′ = −
(

1− P

GΩ∗

)
u” (15.52)

soit

α = −
(

1− P

GΩ∗

)
u′ +A

avec A=cte et

(α+ u′) =
P

GΩ∗
u′ +GΩ∗A

Introduisant ces résultats dans la première équation de (15.51), on obtient

EI

(
1− P

GΩ∗

)
u′′′ + Pu′ +GΩ∗A = 0

ce qui équivaut à
uIV + ω2u” = 0 (15.53)

avec

ω2 =
P

EI

(
1− P

GΩ∗

) (15.54)

Les conditions aux limites sont, compte tenu de (15.52)

u(0) = u(`) = u”(0) = u”(`)

On retrouve donc le même problème que sans e�ort tranchant, mais avec une
autre dé�nition de ω. La solution est donc encore

ω =
nπ

`

soit
P

1− P

GΩ∗

=
n2π2EI

`2
= n2PE

en notant PE la charge d'Euler. On en déduit, pour m = 1,

Pcr = PE

(
1− Pcr

GΩ∗

)
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soit

Pcr =
PE

1 +
PE
GΩ∗

(15.55)

Ce résultat a été obtenu par Engesser [23]. La correction relative par rapport à
la charge d'Euler est

π2EI

GΩ∗`2
(15.56)

Pour les poutres courantes, ce rapport est petit, et la correction est négligeable.
En revanche, pour les poutres composées de plusieurs matériaux et pour les
structures en treillis étudiées comme des poutres à titre d'approximation, la
section de cisaillement Ω∗ peut être relativement petite, de sorte que le rapport
(15.56) ne soit plus négligeable devant l'unité. La formule d'Engesser a d'ailleurs
été mise à l'honneur suite à la ruine, au début duXXe siècle, du Pont du Québec
qui était formé de poutres en treillis [24, 25].

15.10 Stabilité des plaques

Nous considérerons, dans cette section, des plaques de Kirchho� soumises à
des e�orts membranaires

N0
αβ = tσ0

αβ

Dans certaines circonstances, ces e�orts peuvent mener au voilement, qui consiste
en une �exion de la plaque. Le champ de déplacements correspondant est de la
forme  u1 = −zD1w(x, y)

u2 = −zD2w(x, y)
u3 = w(x, y)

(15.57)
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Les déformations de Green correspondant à la sollicitation initiale s'écrivent
alors, dans le cadre des gradients de déplacements modérés,

γ11 = D1u1 +
1

2
(D1u2)2 +

1

2
(D1u3)2

= D1u1 +
1

2
z2(D12w)2 +

1

2
(D1w)2

γ22 = D2u2 +
1

2
(D2u1)2 +

1

2
(D2u3)2

= D2u2 +
1

2
z2(D21w)2 +

1

2
(D2w)2

γ12 =
1

2
(D1u2 +D2u1 +D1u3D2u3)

=
1

2
(D1u2 +D2u1 +D1wD2w) (15.58)

si bien que

γ2
11 = z2(D12w)2 + (D1w)2

γ2
22 = z2(D12w)2 + (D2w)2

γ2
12 = D1wD2w (15.59)

La variation seconde de l'énergie s'écrit donc

δ2U =

∫
S

D
{

(∇2w)2 + 2(1− ν)
[
(D12w)2 −D11wD22w

]}
ds

+

∫
S

(σ0
11 + σ0

22)
t3

12
(D12w)2dS +

∫
S

N0
αβDαwDβwdS

On notera que comme les contraintes initiales sont nécessairement beaucoup plus
petites que les modules élastiques, la deuxième intégrale de cette expression est
négligeable devant la première. Dès lors, en posant

N0
αβ = −PN̄αβ (15.60)

on obtient l'expression simpli�ée suivante

δ2U =

∫
S

D
{

(∇2w)2 + 2(1− ν)
[
(D12w)2 −D11wD22w

]}
ds

− P
∫
S

N̄αβDαwDβwdS (15.61)

qui est due à Bryan [8].
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15.11 Voilement d'une plaque rectangulaire sim-
plement appuyée et comprimée dans une
direction

Figure 15.15 � Plaque comprimée dans une direction.

La �gure 15.15 représente le problème. Développant le déplacement w en
série double de Navier

w =
∑
m,n

wmn sin
mπx

a
sin

nπy

b
(15.62)

on obtient aisément à partir de (15.61), en posant N̄x = 1,

δ2U = D
π4ab

4

∑
m,n

w2
mn

(
m2

a2
+
n2

b2

)2

− P
∑
m,n

m2

a2
w2
mn

π2ab

4

La variation de wmn fournit la charge

Pmn =
Dπ2a2

m2

(
m2

a2
+
n2

b2

)2

=
Dπ2

a2

(
m+

n2

m

a2

b2

)2

(15.63)

Pour m �xé, c'est toujours Pm1 qui a la plus petite valeur,

Pm1 =
Dπ2

a2

(
m+

1

m

a2

b2

)2

(15.64)
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La valeur critique de m dépend du rapport a/b. On a

∂Pm1

∂m
=
Dπ2

a2
2

(
m+

1

m

a2

b2

)(
1− 1

m2

a2

b2

)
et cette dérivée s'annule pour

m =
a

b
(15.65)

C'est donc la valeur entière de m la plus proche de a/b qui donne le minimum.
La valeur de celui-ci est toujours supérieure à

Dπ2

a2

(a
b

+
a

b

)2

= 4
Dπ2

b2

On a donc toujours en pratique

Pcr = 4k
Dπ2

b2
, k ≥ 1, k ≈ 1 (15.66)

Pour trouver la valeur de k, voyons comment évoluent les charges Pm1 en fonc-
tion du rapport a/b. On a

Pm1 =
Dπ2

a2

(
m+

1

m

a2

b2

)2

Pm+1,1 =
Dπ2

a2

(
(m+ 1) +

1

(m+ 1)

a2

b2

)2

donc Pm1 = P(m+1),1 lorsque

m+
1

m

a2

b2
= (m+ 1) +

1

m+ 1

a2

b2

soit pour
1

m(m+ 1)

a2

b2
= 1

c'est-à-dire
a

b
=
√
m(m+ 1)

En ce point, la valeur commune est

Pm1 =
Dπ2

a2
[m+ (m+ 1)]2 =

Dπ2

a2
(2m+ 1)2 =

Dπ2

b2

(
4m2 + 4m+ 1

m2 +m

)
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soit

k = 1 +
1

4m(m+ 1)

Ainsi, à partir de a/b = 1, on a toujours

1 < k < 1 +
1

4m(m+ 1)
≈ 1 +

1

4a
2

b2

= 1 +
b2

4a2

c'est-à-dire que k ne s'écarte guère de l'unité. En particulier, la transition entre
P11 et P21 a lieu pour

a

b
=
√

2

valeur pour laquelle

k = 1 +
1

8
= 1, 125

C'est la plus grande valeur pour a/b > 1. Pour a/b < 1, on a

P11 =
Dπ2

a2

(
1 +

a2

b2

)2

=
Dπ2

b2

(
b

a
+
a

b

)2

soit

k =
1

4

(
b

a
+
a

b

)2

Pour les besoins de la pratique, on se place du côté de la sécurité en admet-
tant la valeur unique

Pcr ≈
4Dπ2

b2

toujours approchée par défaut, et d'autant plus correcte que le rapport a/b est
plus grand. Tout ce qui précède est bien illustré par la �gure 15.16 qui représente
les valeurs de k en fonction du rapport a/b.

Il est intéressant, quant à la physique du problème, de noter que la condi-
tion (15.65) signi�e que la plaque tend à voiler selon des cellules de voilement
sensiblement carrées. C'est l'impossibilité de ce mode de déformation pour a/b
non entier qui relève la charge critique.
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Figure 15.16 � Diagramme du coe�cient k en fonction du rapport a/b.

15.12 Flambage par �exion et torsion

Dans l'étude du �ambage, nous n'avons jusqu'ici considéré que l'instabilité
en �exion. Mais il peut se faire, lorsque la poutre a une faible raideur de torsion,
que des formes critiques plus complexes mènent à une charge critique plus faible.
Ce genre d'instabilité est fréquent dans le cas des poutres à parois minces. Nous
considérerons donc des déplacements transversaux incluant de la torsion, soit

u1 = u(z)− yθ(z)
u2 = v(z) + xθ(z) (15.67)

Il vient alors, dans le cadre des gradients de déplacements modérés,

γ33 = D3u3 +
1

2
(D3u1)2 +

1

2
(D3u2)2

=
1

2
u′2 +

1

2
v′2 − u′θ′y + v′θ′x+

1

2
θ′(x2 + y2)

soit
γ2

33 = u′2 + v′2 − 2u′θ′y + 2v′θ′x+ θ′(x2 + y2) (15.68)

Dans le cas d'un champ de contrainte initial de compression pure

σ0
33 = −P

Ω
(15.69)
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on a donc ∫
V

σ0
33γ

2
33dV = −P

∫ `

0

(
u′2 + v′2 +

Ip
Ω
θ′2
)
dz (15.70)

Reprenant alors le terme linéaire de l'énergie d'une poutre en �exion et torsion,
on obtient

δ2U =

∫ `

0

(
EIxu”2 + EIyv”2 + EKθ”2 + 2ELyv”θ” + 2ELxu”θ”

)
dz

+

∫ `

0

GJθ′2dz − P
∫ `

0

(
u′2 + v′2 +

Ip
Ω
θ′2
)
dz (15.71)

où, rappelons-le, les intégrales Lx et Ly sont liées au coordonnées du centre de
torsion par les relations

Lx = −IxyT , Ly = IyxT (15.72)

Les équations régissant les formes critiques se déduisent aisément de l'ex-
pression (15.71). Dans le cas d'une colonne encastrée à sa base et libre à son
extrémité, elles s'écrivent

� Pour u 
EIxu

IV + ELxθ
IV + Pu” = 0 dans ]0, `[

u(0) = 0
u′(0) = 0

EIxu”(`) + ELxθ”(`) = 0
EIxu

′′′(`) + ELxθ
′′′(`) + Pu′(`) = 0

� Pour v 
EIyv

IV + ELyθ
IV + Pv” = 0 dans ]0, `[

v(0) = 0
v′(0) = 0

EIyv”(`) + ELyθ”(`) = 0
EIyu

′′′(`) + ELyθ
′′′(`) + Pv′(`) = 0
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� Pour θ

EKθIV + ELxu
IV + ELyv

IV −GJθ” + P
Ip
Ω
θ” = 0 dans ]0, `[

θ(0) = 0
nullité du gauchissement : θ′(0) = 0

EKθ”(`) + +ELxu”(`) + ELyv”(`) = 0

EKθ′′′(`) + +EL′′′x ”(`) + ELyv
′′′(`)−GJθ′(`) +

PIp
Ω

θ′(`) = 0

En posant

u = U
(

1− cos
πz

`

)
, v =

(
1− cos

πz

`

)
, θ = Θ

(
1− cos

πz

`

)
(15.73)

on satisfait aux trois premières conditions aux limites pour chaque champ. Il
reste alors à véri�er les conditions(

EIx
π3

8`3
− Pπ

2`

)
U + ELx

π3

8`3
Θ = 0(

EIy
π3

8`3
− Pπ

2`

)
V + ELy

π3

8`3
Θ = 0

ELx
π3

8`3
U + ELy

π3

8`3
V +

(
EK

π3

8`3
+GJ

π

2`
− P Ip

Ω

π

2`

)
Θ = 0(15.74)

En introduisant les notations

Px =
π2EIx

4`2
, Py =

π2EIy
4`2

, Pθ =
Ω

Ip

(
π2EK

4`2
+GJ

)
(15.75)

on obtient la condition suivante :∣∣∣∣∣∣∣
Px − P 0 −yTPx
0 Py − P xTPy

−yTPx xTPy
IP
Ω

(Pθ − P )

∣∣∣∣∣∣∣ = 0 (15.76)

dont les trois solutions sont les charges critiques relatives aux trois formes fon-
damentales de �ambage. Les formes critiques s'obtiennent alors en combinant
(15.73) et (15.74). Il est intéressant de considérer deux cas particuliers.
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15.12.1 Le centre de torsion coïncide avec le centre de
gravité

Dans ce cas, Lx = Ly = 0 et le système (15.74) est découplé. Les trois charges
critiques sont Px, Py, Pθ. Si y est la plus petite des deux inerties de �exion, le
�ambage par torsion sera déterminant si

Ω

Ip

(
GJ +

π2EK

4`2

)
≤ π2EIy

4`2

soit si
J

Ip
+
E

G

π2EK

4Ip`2
≤ π2EIy

4Ω`2

Or, le gauchissement de torsion ψ a les coordonnées pour gradient, ce qui im-
plique ψ = O(ρ2) où ρ est le rayon de giration de la section. Il en découle
que

K =

∫
V

ψ2dV = O(ρ4Ω)

Comme
Ip = ρ2Ω

ce qui signi�e que l'on doit avoir

J

Ip
≤ π2EIy

4`2
− E

G

π2EK

4Ip`2
= O

(
ρ2

`2

)
Cette condition d'extrême petitesse du rapport J/Ip n'est véri�ée en pratique
que pour les sections minces, pour lesquelles

J = O
(
ρt3
)
, t = épaisseur du pro�l

Ip = O
(
ρ4
)

ce qui donne
J

Ip
= O

(
t3

ρ3

)
si bien que le �ambement par torsion ne pourra être déterminant que si

t

ρ
≤ O

(ρ
`

)2/3

(15.77)
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15.12.2 La section possède un axe de symétrie

Dans ce cas, une des coordonnées du centre de torsion, soit yT , est nulle et
une des charges critiques est Px. Les deux autres véri�ent l'équation

(Py − P )
Ip
Ω

(Pθ − P )− x2
TPy = 0

soit

P 2 − (Py + Pθ)P +

(
PyPθ −

Ωx2
T

Ip
Py

)
= 0

Les solutions de cette équation sont données par

P =
1

2

[
(Py + Pθ)±

√
(Py − Pθ)2 + 4

Ωx2
T

Ip
Py

]
(15.78)

La plus petite de ces valeurs est inférieure à Px et à Py et la plus grande leur
est supérieure. Cependant, pour que cet écart se fasse sentir, il faut que

4
Ωx2

T

Ip
Py

soit du même ordre de grandeur que |Py − Pθ|.

15.13 Déversement des poutres �échies

Le déversement est une instabilité particulière des poutres possédant un
moment d'inertie Ix beaucoup plus grand que l'autre et chargées en �exion
dans le plan de forte inertie (c'est notamment le cas des poutres en I ayant une
âme très haute et des semelles de faible largeur). On observe qu'à partir d'une
certaine valeur du moment, le plan de forte inertie de la poutre se voile, dans un
mouvement comprenant à la fois de la translation et de la torsion. Nous nous
limiterons au cas des poutres ayant deux axes de symétrie. On a donc

Ix � Iy, Ix � J, xT = yT = 0 (15.79)

La sollicitation initiale est un moment x0, pouvant dépendre de z. Il y est associé
une contrainte d'extension

σ0
z =

M0
x

Ix
x (15.80)
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et des contraintes de cisaillement τ0
xz et τ

0
yz véri�ant les équations

D1τ
0
xz +D2τ

0
yz +

M0
x
′

Ix
x = 0 dans Ω

n1τxz + n2τyz = 0 sur ∂Ω∫
Ω
τxzdΩ = T 0

x = M0
x
′

∫
Ω
τyzdΩ = 0

(15.81)

La perturbation de déplacement sera de la forme{
u1 = u(z)− yθ(z)
u2 = v(z) + xθ(z)

(15.82)

ce qui donne, dans le cadre des gradients de déplacements modérés, γ2
33 = (D1u1)2 + (D1u2)2 = u′2 + v′2 − 2yθ′u′ + 2xθ′v′ + θ′2(x2 + y2)
γ2

13 = D1u2D3u2 = θ(v′ + θ′x)
γ2

23 = D2u1D3u1 = −θ(u′ − θ′y)
(15.83)

On a donc∫
Ω

(σ0
zγ

2
33 + 2τ0

xzγ
2
13 + 2τ0

yzγ
2
23)dΩ

= 2M0
xθ
′v′ + 2θv′T 0

x + 2θθ′
∫

Ω

(xτxz + yτyz)dΩ (15.84)

Examinons la dernière intégrale du second membre. On a∫
Ω

(xτxz + yτyz)dΩ =

∫
Ω

[
τxzD1

(
x2 + y2

2

)
+ τyzD2

(
x2 + y2

2

)]
dΩ

=

∫
∂Ω

(
x2 + y2

2

)
(n1τxz + n2τyz)dΩ−

∫
ω

(
x2 + y2

2

)
(D1τxz +D2τyz)dΩ

=
T 0
x

Ix

∫
Ω

(
x3 + +xy2

2

)
dΩ = 0

en vertu des symétries de la section. En conséquence,∫
Ω

(σ0
zγ

2
33 + 2τ0

xzγ
2
13 + 2τ0

yzγ
2
23)dΩ = 2M0

xθ
′v′ + 2θv′T 0

x = 2v′(M0
xθ)
′ (15.85)
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compte tenu du fait que T 0
x = M0

x
′
.

La variation seconde de l'énergie de déformation s'écrit donc, en posant
M0
x = λµ(z),

δ2U =

∫ `

0

(EIyv”2 + EKθ”2 +GJθ′2)dz + 2λ

∫ `

0

v′(µθ)′dz (15.86)

15.13.1 Déversement d'une poutre soumise à un moment
quelconque et appuyée à ses extrémités de telle
façon que v = 0 et θ = 0

Ce genre d'appui correspond rigoureusement à une fourche articulée à ses
extrémités, voir �gure 15.17. La variation de v dans (15.86) fournit les conditions

Figure 15.17 � Appui sur fourche.

EIyv
IV − λ(µθ)” = 0 dans ]0, `[ (15.87)

v(0) = v(`) = 0

EIyv”(0) = EIyv”(`) = 0

De l'équation (15.87), on déduit

v” = λ
µθ

EIy
+ C1z + C2

et, comme v” et θ s'annulent aux extrémités, cela se ramène à

v” = λ
µθ

EIy
(15.88)
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Réintroduisons ce résultat dans (15.86). On a d'une part∫ `

0

EIyv”2dz = λ2

∫ `

0

µ2θ2

EIy
dz

et d'autre part, comme θ = 0 aux extrémités,

2λ

∫ `

0

v′(µθ)′dz = 2[v′µθ]`0 − 2

∫ `

0

v”
µθ

EIy
dz = −2λ2

∫ `

0

µ2θ2

EIy
dz

Ceci ramène la variation seconde à l'expression suivante qui ne contient que le
champ θ :

δ2U =

∫ `

0

(EKθ”2 +GJθ′2)dz − λ2

∫ `

0

µ2θ2

EIy
dz (15.89)

Il en découle la formule générale

λcr =
√
EIy ·GJ

(
inf
θ

∫ `
0

(
θ′2 + EK

GJ θ”
2
)
dz∫ `

0
µ2θ2dz

)1/2

(15.90)

Traitons le cas particulier d'un moment constant (µ = 1). La variation de θ
dans (15.89) conduit alors à l'équation

EKθIV −GJθ”− λ2 θ

EIy
= 0

La solution générale de cette équation est

θ = C1 cosαz + C2 sinαz + C3 chβz + C4 shβz

avec

α =

√√√√√G2J2 + 4λ2 K
Iy
−GJ

2EK
, β =

√√√√√G2J2 + 4λ2 K
Iy

+GJ

2EK

Les conditions en z = 0 sont

θ = 0 d'où C1 + C3 = 0

θ” = 0 d'où αC1 + βC3 = 0
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ce qui implique C1 = C3 = 0. En z = `,

θ = 0 d'où C2 sinα`+ C4 shβ` = 0

θ” = 0 d'où − α2C2 sinα`+ β2C4 shβ` = 0

La compatibilité de ce système en C2 et C4 exige

sinα` shβ`(α2 + β2) = 0

et, comme α et β sont positifs, cela implique

sinα` = 0

et, donc, C4 = 0. On obtient �nalement

θ = C2 sinαz

avec α` = nπ, soit √
G2J2 + 4λ2

K

Iy
−GJ = 2EK

n2π2

`2

c'est-à-dire

G2J2 + 4λ2K

Iy
=

(
2EK

n2π2

`2

)2

+G2J2 + 4EK
n2π2

`2
GJ

ou encore,

λ2 =
EIyGJ

`2
n2π2

(
1 +

n2π2

`2
EK

GJ

)
La charge critique est donc

λcr =

√
EIyGJ

`
π

√
1 +

π2

`2
EK

GJ
(15.91)

15.13.2 Remarque sur la répartition des charges [58]

Dans le problème du déversement, si les charges ne sont pas appliquées sur
l'axe neutre, mais à une hauteur a par rapport à celui-ci, leur énergie potentielle
s'écrit (voir �g. 15.18)

P = −P [u+ a(1− cos θ)]

si bien que
δ2P = −Paθ2

et ce terme doit être ajouté à la variation seconde :

δ2E = δ2U − Paθ2 (15.92)
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Figure 15.18 � E�et déstabilisant de la hauteur du point d'application de la
charge.

15.13.3 Déversement d'une poutre appuyée sur des fourches
en ses deux extrémités, sous l'e�et d'une charge
centrale appliquée à une hauteur a par rapport à
l'axe neutre

On peut chercher une solution approchée de ce problème par une technique
de Rayleigh-Ritz, en posant

θ(z) = Θ sin
πz

`
(15.93)

Le moment d'équilibre vaut

M0
x =


P
z

2
dans ]0, `/2[

P
`− z

2
dans ]`/2, `[
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Il vient alors, en tenant compte de la symétrie du problème par rapport au point
d'application de la charge,

δ2E =

∫ `

0

(EKθ”2 +GKθ′2)dz − 2P 2

4EIx

∫ `/2

0

z2θ2dz − Pa
[
θ

(
`

2

)]2

= EK
π4

2`3
Θ2 +GJ

π2

2`
Θ2 − 2

P 2Θ2

4EIx

∫ `/2

0

z2 sin2 πz

`
dz − PaΘ2

Pour le calcul de l'intégrale qui reste encore, on note que∫ `/2

0

z2 sin2 πz

`
dz =

1

2

∫ `/2

0

z2

(
1− cos

2πz

`

)
dz

=
`3

48
− 1

2

∫ `/2

0

z2 cos
2πz

`
dz

=
`3

48
− `3

16π3

∫ π

0

ξ2 cos ξdξ

= `3
{

1

48
− 1

16π3

[
2ξ cos ξ + (ξ2 − 2) sin ξ

]π
0

}
= `3

(
1

48
+

1

8π2

)
= `3

π2 + 6

48π2

L'annulation de la variation seconde donne alors une équation du second degré
en P ,

(π2 + 6)`3

96π2EIx
P 2 + Pa− π2

2`

(
1 +

π2

`2
EK

GJ

)
GJ = 0

soit

P 2 +
96π2EIxa

(π2 + 6)`3
P − 48π4

π2 + 6

EIxGJ

`4

(
1 +

π2

`2
EK

GJ

)
= 0

La racine positive de cette équation de la forme

P 2 + bP − c = 0

est

P =

√(
b

2

)2

+ c− b

2
=

c√(
b

2

)2

+ c+
b

2

=

√
c√

1 +
b2

4c
+

b

2
√
c
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soit, explicitement,

Pcr = 17, 16

√
EIxGJ

(
1 +

π2

`2
EK

GJ

)
`2

· K (15.94)

avec

K =
1√

1 + 12, 10
a2

`2
EIx

GJ
(
1 + π2

`2
EK
GJ

) + 3, 478
a

`

√
EIx

GJ
(
1 + π2

`2
EK
GJ

) (15.95)

Pour les faibles valeurs du rapport a/`, on peut écrire sans grande erreur

Pcr = 17, 16

√
EIxGJ

(
1 +

π2

`2
EK

GJ

)
`2

(
1− 3, 478

a

`

√
EIx

GJ
(
1 + π2

`2
EK
GJ

))
(15.96)

La formule (15.94) estime la charge critique avec un excès d'environ 3%. Les va-
leurs exactes ont été calculées par Timoshenko [85] à partir d'un développement
en série.
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Annexe A

Équations de l'élasticité en
coordonnées curvilignes
orthogonales

A.1 Introduction

Il n'est pas rare de devoir écrire les équations de l'élasticité en coordonnées
curvilignes. Le plus souvent, il est vrai, il s'agit de coordonnées curvilignes or-
thogonales. Mais après un certain nombre de travaux dans ce cadre restreint
[14], nous sommes �nalement arrivé à la conclusion que le chemin le plus simple
est encore d'examiner au départ le cas de coordonnées curvilignes quelconques,
puis de particulariser les résultats aux coordonnées curvilignes orthogonales. On
peut ainsi obtenir sans grand e�ort la forme générale des opérateurs courants �
gradient, divergence, rotationnel, laplacien � ainsi que l'expression générale des
déformations et des équations d'équilibre pour tout système orthogonal.

A.2 Coordonnées curvilignes

A.2.1 Base covariante

Soit P un point de l'espace euclidien à trois dimensions, dépendant de trois
coordonnées x1, x2, x3, de telle façon que P(x1, x2, x3) ∈ C2. On appelle base

517
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covariante l'ensemble des trois vecteurs

gi = DiP (A.1)

pour autant qu'ils soient linéairement indépendants. Tout vecteur a peut alors
être mis sous la forme

a = aigi (A.2)

Les nombres ai sont appelés composantes contravariantes du vecteur a.

A.2.2 Tenseur métrique

Pour une variation in�nitésimale dxi des coordonnées, le point P se déplace
d'un vecteur dP = gidx

i. L'élément de longueur correspondant est donné par

ds2 = dP · dP = gidx
i · gjdxj = gijdx

idxj (A.3)

ce qui fait apparaître le tenseur métrique

gij = gi · gj (A.4)

qui, par dé�nition, est symétrique et dé�ni positif. Son inverse est noté gij ,
c'est-à-dire que

gikgkj = δij (A.5)

A.2.3 Base contravariante

Appliquant le tenseur métrique inverse gij à la base covariante, on obtient
les vecteurs

gi = gijgj (A.6)

qui jouissent de la propriété suivante :

gi · gj = gikgk · gj = gikgkj = δij (A.7)

Ces vecteurs gi forment la base contravariante. La propriété (A.7) exprime que
les deux bases sont biorthogonales. Tout vecteur a peut être mis sous la forme

a = aig
i (A.8)

Les nombres ai sont appelés composantes covariantes du vecteur a. On notera
que

a · gi = ajg
j · gi = ajδ

j
i = ai (A.9)

a · gi = akgk · gi = akδki = ai (A.10)
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A.2.4 Produit scalaire de deux vecteurs

Étant donné deux vecteurs a et b, on a les quatre expressions suivantes de
leur produit scalaire :

a · b =


aig

i · bkgk = aib
kδik = aib

i

aigi · bkgk = aibkδ
k
i = aibi

aigi · bjgj = gija
ibj

aig
i · bjgj = gijaibj

(A.11)

A.2.5 Produit mixte et produit vectoriel

Produit mixte de trois vecteurs

Le produit mixte (a,b, c) de trois vecteurs a, b et c est un nombre dé�ni
comme suit :

� Sa grandeur est égale au volume du parallélipipède construit sur les trois
vecteurs en question.

� Son signe est positif si le trièdre {a,b, c} a la même orientation (dex-
trorsum ou sinistrorsum) que le trièdre {g1,g2,g3}, négatif dans le cas
contraire.

Il va de soi que cette dé�nition n'est pas totalement indépendante de la base
choisie, puisque le produit mixte change de signe si l'on change l'orientation
d'un des vecteurs de base ou si l'on permute deux éléments de la base. C'est
pourquoi on dit que le produit mixte est un pseudo-scalaire.

Le produit mixte jouit de la propriété suivante :

(a,b, c)(d, e, f) =

∣∣∣∣∣∣
a · d a · e a · f
b · d b · e b · f
c · d c · e c · f

∣∣∣∣∣∣ (A.12)

qu'il est facile de véri�er dans un système d'axes cartésiens rectangulaires, où

(a,b, c) =

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
Introduisant alors le pseudo-tenseur de Lévy-Civitta

εijk = (gi,gj ,gk) (A.13)
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on remarquera qu'il est totalement antisymétrique et ne possède de ce fait qu'une
seule composante indépendante, à savoir

ε123 = (g1,g2,g3) > 0

La propriété (A.12) entraîne alors

(ε123)2 =

∣∣∣∣∣∣
g1 · g1 g1 · g2 g1 · g3

g2 · g1 g2 · g2 g2 · g3

g3 · g1 g3 · g2 g3 · g3

∣∣∣∣∣∣ = g

en notant g le déterminant du tenseur métrique. Il vient donc

ε123 =
√
g (A.14)

Produit vectoriel

On dé�nit alors le produit vectoriel a× b de deux vecteurs a et b par

a× b = (a,b,gk)gk

Développant a et b dans la base covariante, on obtient alors

a× b = aibj(gi,gj ,gk)gk = εkija
ibjgk

soit, pour c = a× b,

ck = εkija
ibj (A.15)

De la même façon, en posant

εijk = (gi,gj ,gk) = gi`gjmgknε`mn (A.16)

on trouve

ε123 =
1
√
g

(A.17)

et, pour c = a× b, il vient

ci = εijkajbk (A.18)
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Produits de pseudo-tenseurs de Lévy-Civitta

La propriété (A.12) implique

εijkε`mn = (gi,gj ,gk)(g`,gm,gn) =

∣∣∣∣∣∣
δi` δim δjn
δj` δjm δjn
δk` δkm δkn

∣∣∣∣∣∣
= δi`δ

j
mδ

k
n + δj`δ

k
mδ

i
n + δimδ

j
nδ
k
` − δinδjmδk` − δi`δjnδkm − δimδ

j
`δ
k
n (A.19)

En particulier,

εijkεimn = 3δjmδ
k
n+δjnδ

k
m+δkmδ

j
n−δknδjm−3δjnδ

k
m−δjmδkn = δjmδ

k
n−δkmδjn (A.20)

εijkεijn = 3δkn − δkn = 2δkn (A.21)

et
εijkεijk = 6 (A.22)

A.3 Dérivation des vecteurs de base

A.3.1 Dérivées de la base covariante

Dans maintes applications, il est nécessaire de dériver les vecteurs de base.
A cette �n, on pose

Dkgi · g` = Γk`i (A.23)

On donne aux Γk`i le nom de symboles de Christo�el de première espèce. Ils sont
symétriques par rapport à leurs indices extrêmes, puisque

Γk`i = DkiP · g`

En projetant les dérivées de la base covariante sur la base contravariante, on
obtient

Dkgi · g` = g`mDkgi · gm = g`mΓkmi = Γ `
k i (A.24)

Les Γ `
k i sont appelés symboles de Christo�el de second espèce.

A.3.2 Dérivées de la base contravariante

Pour obtenir les dérivées de la base contravariante, notons que

Dkg
i · g` = Dk(gi · g`)− gi ·Dkg` = −Γ i

k ` (A.25)
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A.3.3 Relations entre les symboles de Christo�el et le ten-
seur métrique

On a immédiatement

Digjk = Di(gj · gk) = Digj · gk + gj ·Digk = Γikj + Γijk (A.26)

Écrivons trois fois cette relation, en permutant les indices de manière cyclique :

Digjk = Γijk + Γikj

Djgki = Γjki + Γjik

Dkgij = Γkij + Γkji

et soustrayons la deuxième relation de la somme des deux autres, puis divisons
par deux. On obtient, en tenant compte de la symétrie des symboles de Chris-
to�el par rapport à leurs indices extrêmes, la relation fondamentale suivante :

Γijk =
1

2
(Digjk +Dkgij −Djgki) (A.27)

Cette relation est très utile, car elle permet de calculer les symboles de Christo�el
à partir du tenseur métrique.

A.4 Dérivation covariante d'un vecteur

La dérivation d'un vecteur nécessite à la fois la dérivation de ses composantes
et celle de la base. Pour u = uigi, on a

Dku = Dku
igi + uiDkgi = Dku

igi + uiΓ `
i kg` = (Dku

i + u`Γ i
k `)gi

La quantité entre parenthèses est appelée dérivée covariante et notée ui|k. Ainsi,

Dku = ui|kgi avec ui|k = Dku
i + Γ i

k `u
` (A.28)

Passons au cas u = uig
i. On a

Dku = Dkuig
i + uiDkg

i = Dkuig
i − uiΓ i

k `g
` = (Dkui − Γ `

k iu`)g
i

ce qui mène à écrire

Dku = ui|kgi avec ui|k = Dkui − Γ `
k iu` (A.29)
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A.5 Tenseurs du second ordre et leurs dérivées
covariantes

Un tenseur du second ordre est une grandeur à deux indices qui, appliquée
à un vecteur, donne un nouveau vecteur. Plusieurs cas sont possibles :

1. aijbj = ci (tenseur deux fois covariant)

2. aijbj = ci (tenseur deux fois contravariant)

3. aijb
j = ci (tenseur mixte)

4. aji bj = ci(tenseur mixte)

La dérivation covariante des tenseurs est dé�nie par les relations

(aijb
j)|k = aij |kbj + aijb

j |k
(aijbj)|k = aij |kbj + aijbj |k
(aijb

j)|k = aij |kbj + aijb
j |k

(aji bj)|k = aji |kbj + aji bj |k

Examinons le cas d'un tenseur deux fois contravariant. Posant ci = aijbj , on
doit donc avoir

ci|k = Dkc
i + Γ i

k `c
` = aij |kbj + aijDkbj − aijΓ `

k jb`

soit
Dka

ijbj + aijDkbj + Γ i
k `a

`jbj = aij |kbj + aijDkbj − aijΓ `
k jb`

ce qui équivaut à

aij |kbj = (Dkaij + Γ i
k `a

`j + Γ j
k `a

i`)b`

Ceci devant être vrai pour tout vecteur bi, on obtient

aij |k = Dkaij + Γ i
k `a

`j + Γ j
k `a

i` (A.30)

On montrerait de même que

aij |k = Dkaij − Γ `
k ia`j − Γ `

k jai` (A.31)

aij |k = Dka
i
j + Γ i

k `a
`
j − Γ `

k ja
i
` (A.32)
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A.6 Lemme de Ricci

Calculons les dérivées covariantes du tenseur métrique. On a

gij |k = Dkgij − Γ `
k ig`j − Γ `

k jgi` = Dkgij − Γkji − Γkij = 0

en vertu de (A.26). C'est le lemme de Ricci : les dérivées covariantes du tenseur
métrique sont nulles.

Le tenseur métrique inverse possède la même propriété. En e�et, en dérivant
l'identité

gijg
jm = δmi

on obtient
Dkgijg

jm + gijDkg
jm = 0

Contractons avec gpi. On obtient

gpigjmDkg
ij + δpjDkg

jm = 0

soit

Dkg
pm = −gpigjmDkgij

= −gpigjm(Γkij + Γkji)

= −gjmΓ p
k j − g

piΓ m
k i

Dès lors,
gpm|k = Dkg

pm + Γ p
k jg

jm + Γ m
k ig

pi = 0

En�n, on a encore

δji |k = Dkδ
j
i + Γ j

k mδ
m
i − Γ m

k iδ
j
m = 0 + Γ j

k i − Γ j
k i = 0

Une conséquence importante de ce lemme est

ai|k = (gija
j)|k = gija

j |k
ai|k = (gijaj)|k = gijaj |k (A.33)

A.7 Propriétés de
√
g

Remarquons d'abord que l'élément de volume élémentaire se construit sur le
parallélipipède formé par les trois vecteurs g1dx

1, g2dx
2 et g3dx

3, ce qui donne

dV = (g1dx
1,g2dx

2,g3dx
3) =

√
g dx1dx2dx3 (A.34)
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Les dérivées de
√
g sont tout-à-fait remarquables. En e�et,

Di(
√
g) = Diε123 = (Dig1,g2,g3) + (g1, Dig2,g3) + (g1,g2, Dig3)

= Γ k
i 1(gk,g2,g3) + Γ k

i 2(g1,gk,g3) + Γ k
i 3(g1,g2,gk)

En vertu des propriétés du produit mixte, cela donne

Di(
√
g) = Γ 1

i 1ε123 + Γ 2
i 2ε123 + Γ 3

i 3ε123 =
√
g Γ k

i k (A.35)

En�n, il y a lieu de signaler une identité utile :

Di(
√
ggi) = (Di

√
g)gi +

√
gDig

i =
√
g(Γ k

i kg
i − Γ i

i `g
`) = 0 (A.36)

que nous appellerons dans la suite identité de Jacobi 1.

A.8 Opérateurs di�érentiels courants

A.8.1 Gradient

Étant donné une fonction scalaire ϕ, on dé�nit son gradient par la relation

dϕ = gradϕ · dP

ce qui peut encore s'écrire

dϕ = gradϕ · gidx
i

Or, on sait que
dϕ = Diϕdx

i

Par comparaison, on déduit que

gradϕ · gi = Diϕ (A.37)

ce qui revient à dire que les dérivées courantes sont les composantes covariantes
du gradient.

1. Dans le cadre d'une présentation des coordonnées curvilignes par transformation des co-
ordonnées cartésiennes [14], le même résultat se retrouve comme une propriété du déterminant
jacobien et est connu sous le nom d'identité de Jacobi [39]. Il est donc légitime de conserver
cette appellation pour l'identité (A.36) ci-dessus qui est son strict équivalent géométrique.
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A.8.2 Élément de surface orienté

Considérons une fonction arbitraire ϕ. On connaît la relation d'Ostrogradski∫
V

gradϕdV =

∫
S

ϕndS (A.38)

Le groupement ndS qui apparaît dans l'élément de surface est ce que nous
appellerons l'élément de surface orienté. Transposons la première intégrale de
la relation ci-dessus dans l'espace des coordonnées xi. Au volume V de l'espace
physique correspond le volume V ′ de l'espace des coordonnées. L'élément de
volume physique étant dV =

√
g dV ′, on a∫

V

gradϕdV =

∫
V ′

√
gDiϕg

idV ′

Notons S′ la frontière de V ′ et soit νi le vecteur normal à cette surface. L'ap-
plication du théorème d'Ostrogradski donne ici∫

V ′

√
gDiϕg

idV ′ =

∫
S′

√
gνiϕg

idS′ −
∫
V ′
ϕDi(

√
ggi)dV ′ (A.39)

et le dernier terme du second membre est nul en vertu de l'identité de Jacobi.
L'identi�cation des termes de surface de (A.38) et (A.39) pour toute fonction ϕ
conduit alors à la relation

ndS =
√
gνig

idS′

soit encore
njdS = n · gjdS =

√
gνjdS

′ (A.40)

A.8.3 Divergence

La formule classique ∫
V

divudV =

∫
S

u · ndS (A.41)

se transforme en∫
V ′

√
g divudV ′ =

∫
S′

√
g u · giνidS′ =

∫
S′

√
g uiνidS

′ =

∫
V ′
Di(
√
gui)dV ′

ce qui donne

divu =
1
√
g
Di(
√
g ui) (A.42)
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Tenant compte de l'expression (A.35) des dérivées de
√
g, on peut encore écrire

divu =
1
√
g

(
√
gDiu

i + ui
√
gΓ k

i k) = Diu
i + Γ i

i ku
k = ui|i (A.43)

On déduit alors de (A.41) la relation fondamentale∫
V

ui|idV =

∫
S

uinidS (A.44)

A.8.4 Laplacien

Le laplacien est dé�ni par la relation

∆ϕ = divgradϕ

ce qui, en vertu de (A.42) et de (A.37) traduit sous la forme

(gradϕ)i = gijDjϕ

entraîne

∆ϕ =
1
√
g
Di(
√
ggijDjϕ) (A.45)

A.8.5 Rotationnel

Nous introduirons le rotationnel par la relation∫
V

rotudV =

∫
S

n× udS

qui se transforme dans l'espace des coordonnées comme suit∫
V ′

√
g rotudV ′ =

∫
S′

√
gνig

i × udS′ =

∫
V ′
Di(
√
ggi × u)dV ′

En vertu de l'identité de Jacobi, la dernière intégrale se réduit à∫
V ′

√
ggi ×DiudV

′



528 ANNEXE A. COORDONNÉES CURVILIGNES ORTHOGONALES

On en déduit

rotu = gi ×Diu

= gpε
pqr(gi · gq)ur|i

= gpε
pqrδiqur|i

= gpε
pqrur|q (A.46)

On notera que

εpqrur|q = εpqrDqur + εpqrΓ m
q rum = εpqrDqur

en vertu de la symétrie des symboles de Christo�el par rapport à leurs indices
extrêmes. On obtient ainsi l'expression plus simple

rotu · gp = εpqrDqur (A.47)

A.9 Tenseur des déformations de Green

Au cours de la déformation, un point P se transporte en P + u. On a alors

d(P + u) = (DkP +Dku)dxk = (gk +Dku)dxk

et l'élément de longueur après déformation est donc donné par

|d(P + u)|2 = (gk +Dku)dxk · (g` +D`u)dx`

= (gk` + gk ·D`u + g` ·Dku +Dku ·D`u)dxkdx`

= (gkl + 2γ1
kl + γ2

kl)dx
kdx`

avec

γ1
kl =

1

2
(uk|` + u`|k) (A.48)

γ2
kl = ui|kgi · uj |`gj = ui|kui|` (A.49)

A.10 Equations d'équilibre

Nous nous limitons ici au cas géométriquement linéaire. On écrit alors εkl =
γ1
kl. Pour un déplacement virtuel δu, le théorème des déplacements virtuels
s'écrit ∫

V

(σijδεij − f iδui)dV =

∫
S

tiδuidS = 0 (A.50)
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Or, ∫
V

σijδεijdV =
1

2

∫
V

σij(δui|j + δuj |i)dV =

∫
V

σijδui|jdV

Notons que le théorème de la divergence entraîne∫
V

(σijδui)|jdV =

∫
S

σijδuinjdS

ce qui se développe en∫
V

σij |jδuidV +

∫
V

σijδui|jdV =

∫
S

σijδuinjdS

soit ∫
V

σijδui|jdV =

∫
S

σijδuinjdS −
∫
V

σij |jδuidV

Dès lors, (A.50) se ramène à

−
∫
V

(σij |j + f i)δuidV +

∫
S

(njσ
ij − ti)dS = 0

ce qui donne les équations d'équilibre

σij |j + f i = 0 dans V

njσ
ij = ti sur S (A.51)

A.11 Coordonnées curvilignes orthogonales

Des coordonnées curvilignes sont dites orthogonales si leur tenseur métrique
est diagonal. Dans tout ce qui concerne ce type de coordonnées, nous ne suivrons
pas la convention de sommation d'Einstein et les sommes à e�ectuer seront
notées explicitement. Par dé�nition, on a ici

gij = h2
i δij (A.52)

avec hi = |gi|. On a immédiatement
√
g = h1h2h3 (A.53)

Les symboles de Christo�el se calculent alors par la formule classique (A.29), ce
qui donne

Γki` =
1

2
[Dk(h2

i δi`) +D`(h
2
i δki)−Di(h

2
kδk`)]
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L'examen de ce résultat mène à la conclusion que deux indices au moins doivent
être confondus pour trouver une valeur non nulle et que

Γkk` =
1

2
D`(h

2
k) = hkD`hk

Γkik = −1

2
Di(h

2
k) = −hkDihk

Γkkk =
1

2
[Dk(h2

k) +Dk(h2
k)−Dk(h2

k)] = hkDkhk (A.54)

On en déduit aisément

Γ k
k ` =

D`hk
hk

Γ i
k k = −kkDihk

h2
i

Γ k
k k =

Dkhk
hk

(A.55)

et les dérivées covariantes se calculent comme suit

1. Pour i 6= k,

ui|k = Dkui −
∑
m

Γ m
i kum

= Dkui −
Dkhi
hi

ui −
Dihk
hk

uk

= hiDk

(
ui
hi

)
− uk
hk
Dihk (A.56)

2.

ui|i = Diui −
∑
m

Γm
i ium

= Diui −
∑
m 6=i

Γm
i ium − Γ i

i iui

= Diui +
∑
m 6=i

hiDmhi
h2
m

um −
Dihi
hi

ui

= hiDi

(
ui
hi

)
+
∑
m6=i

um
hm

hiDmhi
hm

(A.57)
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3. Pour i 6= k,

ui|k = Dku
i +
∑
m

Γ i
k mu

m

= Dku
i + Γ i

k ku
k + Γ i

k iu
i

= Dku
i − hkDihk

h2
i

uk +
Dkhi
hi

ui

=
1

hi
Dk(hiu

i)− (hku
k)
Dihk
h2
i

(A.58)

4.

ui|i = Diu
i +
∑
m

Γ i
i mu

m

= Diu
i +

∑
m 6=i

Γ i
i mu

m + Γ i
i iu

= Diu
i +

∑
m 6=i

um
Dmhi
hi

+ ui
Dihi
hi

=
1

hi
Di(hiu) +

∑
m 6=i

(hmu
m)
Dmhi
hihm

(A.59)

A.12 Utilisation des composantes physiques

Il est d'usage, dans le cas des coordonnées curvilignes orthogonales, d'utiliser
la base dite physique,

ei =
gi
hi

= hig
i (A.60)

qui est orthonormée. Un vecteur s'écrit alors

a =
∑
i

âiei

les âi étant ses composantes physiques. Comme

a
∑
i

âiei =
∑
i

âi
gi
hi

=
∑
i

âihig
i

il est clair que

ai =
âi
hi
, ai = hiâi (A.61)
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Pour les tenseurs, on utilisera la condition d'invariance du scalaire

ϕ = aijb
icj = aij

b̂i
hi

ĉj
hj

= âij b̂iĉj

ce qui donne
aij = hihj âij (A.62)

et de même,

aij =
1

hihj
âij , aij =

hj
hi
âij (A.63)

Reprenons dans ce cadre les opérateurs usuels

A.12.1 Gradient

gradϕ =
∑
i

Diϕgi =
∑
i

1

hi
Diϕei (A.64)

A.12.2 Divergence

divu =
1
√
g

∑
i

Di

(√
gui
)

=
1
√
g

∑
i

Di

(√
g

hi
ûi

)
(A.65)

A.12.3 Rotationnel

rotu =
1
√
g

∑
`,i,k

g`e`ikDiuk =
1
√
g

∑
`,i,k

e`ikh`e`Di(hkûk)

ce que l'on peut encore écrire

rotu =
1
√
g

∣∣∣∣∣∣
h1e1 h2e2 h3e3

D1 D2 D3

h1û1 h2û2 h3û3

∣∣∣∣∣∣ (A.66)

A.12.4 Laplacien

∆ϕ =
1
√
g

∑
i,j

Di

(√
g gijDjϕ

)
=

1
√
g

∑
i

(√
g

h2
i

Diϕ

)
(A.67)
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A.12.5 Dérivées covariantes

Pour i 6= k, on tire de (A.56)

ui|k = hiDkûi − ûkDihk (A.68)

et, par (A.57),

ui|i = hiDiûi +
∑
m 6=i

ûm
hiDmhi
hm

(A.69)

A.12.6 Déformations

Des formules précédentes, on déduit, pour i 6= k

2εik = hiDkûi − ûkDihk + hkDiûk − ûiDkhi

= h2
iDk

(
ûi
hi

)
+ h2

kDi

(
ûk
hk

)
En conséquence,

2ε̂ik =
2εik
hihk

=
hi
hk
Dk

(
ûi
hi

)
+
hk
hi
Di

(
ûk
hk

)
(A.70)

De même,

ε̂ii =
1

h2
i

ui|i =
1

hi
Diûi +

∑
m6=i

ûm
Dmhi
hihm

(A.71)

A.12.7 Équations d'équilibre

La démarche la plus simple pour obtenir les équations d'équilibre consiste à
utiliser le principe des travaux virtuels. Pour une variation de déplacement δûk,
on a, en vertu de (A.70) et (A.71)

δε̂kk =
1

hk
Dkδûk

Pour i 6= k δε̂ii =
Dkhi
hihk

δûk

Pour ` 6= k 2δε̂k` =
hk
h`
D`

(
δûk
hk

)
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Le principe des travaux virtuels s'écrit donc, pour δûk,

∫
V ′

√
g

σ̂kk 1

hk
Dkδûk +

∑
i 6=k

σ̂ii
Dkhi
hihk

δûk +
∑
` 6=k

σ̂k`
hk
h`
D`

(
δûk
hk

)
−f̂kδûk

}
dV ′ = 0

ce qui conduit à la condition d'équilibre intérieur

−Dk

(√
g

hk
σ̂kk

)
− 1

hk

∑
` 6=k

D`

(√
g hk

h`
σ̂k`

)
+
∑
i 6=k

√
gσ̂ii

Dkhi
hihk

−√gf̂k = 0

soit encore

1
√
g
Dk

(√
g

hk
σ̂kk

)
+

1
√
g hk

∑
` 6=k

D`

(√
g hk

h`
σ̂k`

)
−
∑
i 6=k

σ̂ii
Dkhi
hihk

+ f̂k = 0 (A.72)

A.13 Exercices

Exercice 49 Écrire l'expression du gradient, de la divergence, du rotationnel,
du laplacien, des déformations et des équations d'équilibre en coordonnées cy-
lindriques.

Indication

P =

 r cos θ
r sin θ
z



gr =

 cos θ
sin θ

0

 , gθ =

 −r sin θ
r cos θ

0

 , gz =

 0
0
1


On véri�e aisément leur orthogonalité.

hr = 1, hθ = r, hz = 1

ds2 = dr2 + r2dθ2 + dz2

√
g = r
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Exercice 50 Idem pour les coordonnées sphériques caractérisées par

P =

 r sin θ cosϕ
r sin θ cosϕ
r cos θ


Indication

hr = 1, hθ = r, hϕ = r sin θ

Exercice 51 Idem pour les coordonnées elliptiques cylindriques, données par
les relations

P =

 a ch ξ cos η
a sh ξ sin η

z


Indication

hξ = hη = a

√
ch2 ξ − cos2 η, hz = 1
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