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Coupled capillary and gravity-driven instability in a liquid film overlying a porous layer
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In this work, we study the problem of onset of thermal convection in a fluid layer overlying a porous layer,
the whole system being heated from below. We use Brinkman’s model to describe the porous medium and
determine the corresponding linear stability equations. The eigenvalue problem is solved by means of a
modified Galerkin method. The behavior of the critical wave number and temperature gradient is discussed in
terms of the various parameters of the system. We also emphasize the influence of the boundary conditions at
the upper surface of the fluid layer; in particular, we examine the role of a free surface whose surface tension
is temperature dependefiarangoni effegt Comparison with earlier works is also made.
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[. INTRODUCTION numbers on the critical values in three different configura-
tions of the porous-liquid system.

Thermal convection of fluids in porous media has been The present study aims at developing the linear stability
extensively investigatedl] since the pioneering work of analysis of a porous-liquid bilayer system under rather gen-
Horton and Rogerg2] and Lapwood 3], mainly because of eral conditions. Instead of Darcy’s law, we use the Brinkman
its technological importance. The related problem of a commodel [13]; the upper fluid boundary is either rigid or free
posite system, consisting of a liquid layer overlying a porousand will include a Marangoni effect. In pure fluid systems, it
layer, has received significant attention. This configuration ishas been widely recognized since the work of Peafddh
found in numerous applications such as water reservoirsand Nield[15] that surface tension gradients play a decisive
postaccident cooling of nuclear reactp43, and solid matrix  role in the onset of convective instabiliti¢s6,17. In the
heat eXChangerS. A gOOd review of flow interaction and heabresence of a porous medium, this Marangoni effect has re-
transfer between fluid and porous layers is found[3h  cejved less attention and this has motivated the present study.
Nield [6] first formulated the problem of thermal convection qyiner related efforts to solve the problem can be found in the
in a fluid surmounting a saturated porous medium when th%apers by Vasseuet al. [18], Hennenbercet al. [19], and
system is bounded by two horizontal heat insulating boundggraiah and Prasd@0]. By comparison with these works,
aries. Nield proposeq an anal_ytical solution for th_e problemy,e propose a more complete and systematic linear approach
of a nonoscillatory linear regime and a zero critical wavey, the problem. In particular, the effect of several dimension-

number. This last assumption was a physical guess based ks groups on the critical values is detailed and the influence
previous results obtained for thermocapillary instabilities ingf the nature of the upper fluid boundary is emphasized.
single-fluid layers between two insulating boundaridse

Rayleigh-Marangoni-Beard problem and for thermocon-
vection in porous media. The two-layer porous medium plus
fluid problem sandwiched between two rigid boundaries was
studied by Chen and ChefiY] who used Darcy’s law to We consider the configuration formed by an incompress-
describe the porous layer and the classical slip condition oble fluid layer of thicknessl, overlying a homogeneous po-
Beavers and JosefB] at the liquid—porous-medium inter- rous layer of thicknesd, saturated by the same liquidee

face. Their linear analysis predicts the existence of a criticakig. 1). The system is supposed to be of infinite extent in the
depth ratio, i.e., the ratio of the thickness of the fluid layer to

that of the porous layer. This critical value characterizes a

Il. MATHEMATICAL FORMULATION

switch from a dominating circulation in the porous layer to a Cold rigid or free surface
dominating circulation in the liquid layer. Their numerical .

. . . 4, Liquid layer
results were confirmed experimental§] and an extension
to the nonlinear regime was found [ii0]. Poulikakos[11] 0 =
used the more general nonlinear Brinkman-Forchheimer
model to investigate n.umerllcally the characterlstlcs of the d, Porous layer g
flow and temperature fields in a box. Taslim and Narusawa
[12] examined extensively the influence of the dimensionless

Hot rigid wall
*Electronic address: tdesaive@ulg.ac.be FIG. 1. The geometrical configuration.
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horizontal directions with its density given by the state equa- ATh
tion

px=pol 1~ ar(Tx—To)], &)

where the subscrigh refers to the layerkK=1 for the liquid
layer orp for the porous mediuin p, is the density of the
liquid at temperatur@,, anda is the constant coefficient of
volumic expansion. The system subject to the gravity field is
heated from below and the upper surface of the fluid is either AT,
rigid, or free with a linear dependence of the surface tension ik,
on temperature:

AT,

AT "
o=0ao— ¥ (T\—Ty), (2) | ilk,

Y

whereay is the surface tension of the fluid at temperaftge d

and the constant rate of change of surface tension with tem-

perature,y, is supposed to be positive. Cartesian coordinates FIG. 2. Scheme of the conductive reference state.

are used with the origin at the interface between the porous

medium and the fluid layer and with treaxis vertically (pOC)pﬂtTp+(p0C)|(Up~VTp)kaVZTp, (8)

upward. . . . .
We take for granted Boussinesq’s approximation in bothvherein ¢ designates the porosityK the permeability,

layers and assume that the fluid is Newtonian. The continudp(Up.vp,Wp) the seepage velocity, the pressureT, the

ity, momentum, and energy equations for the fluid layer ardemperature, and, the mean thermal conductivity in the

respectively given by porous layer. For any physical property one hag=(1
—@)()st (), where the subscripg denotes a property of
V.u=0, (3)  the solid matrix.
Podili+ pou- Vu=—Vp,— pod[1— ar(T,— To)]e, IIl. SMALL PERTURBATION EQUATIONS AND

RELEVANT BOUNDARY CONDITIONS
+ M|V2U| s (4)
From now on, we restrict the analysis to the evolution of
o.T+u, . VT, =k V2T, (5)  infinitesimally small perturbations. The governing equations
are linearized with respect to the reference state, namely, a
whereu,(u,,v,,w,) designates the velocity fiel@, the pres- motionless quiq with heat transported only by conduc';ion. It
sure, T, the temperaturey, the dynamic viscosityk, the IS worth stre_ssmg_that the _unpertl_ered h_eat ﬁlw(ossmg_
thermal conductivityc the specific heat at constant pressure the porous-liquid interface is continuous in the conductive
and k=K, /poc the thermal diffusivity. rest state and one can write
Although Darcy’s law is widely used to describe porous AT AT AT
media, we prefer to choose the Brinkman moded] which K, _':kp_p:kmtﬁ, 9)
accounts for friction caused by macroscopic shear. It is d, dp diot

known that this effect seriously affects the flow field espe- . L
. : . : where K;o1=d;o/(dp /Ky +d; /k;) is the mean conductivity
cially in sparsely packed porous media. This amounts to con hile the subscriptot refers to the “total” system. Figure 2

sidering the saturated porous matrix as a specific fluid with

an effective viscosityt, and subject to an additional external gives a gre}ph!cal representation Aff,, AT, : and AT,
when the liquid and porous layers have different thermal

body force, namely, the classical Darcy term. Doing this al- . . .
Iowg us to keep thﬁ main ingredients 0)1/‘ a fluid syst%m sinc onductivities. The Ilnes .OP and PT represent, rgspectlvely,
e temperature profiles in the porous and the liquid layers

we conserve the same mathematical structure as the equg—

tions of Newtonian fluid mechanics. The continuity, momen—WIth slopgs given by/k, andj/k as the reference conduct-
pg flux j is continuous between both phases.

tum and energy equations for the porous layer read therefol i i o
gy eq P y For convenience, the variables are expressed in dimen-

as sionless form and we use one single set of scaling units for

V.u=0 6) the complete system. In particular, the length is scaled by the
P total thicknessd,,;=d;+d,, the temperature byAT,y
) ) =AT,+AT,, the time byd,/x, and the velocity by
0 0 i i i
Eat o+ —3Up: VUup=—Vp,—pod[1—ar(Ty—To)le, Shgjsfgs In this way, we do not single out either of the two
Eliminating the pressure fields, the dimensionless equa-
M @) tions for the linearized perturbed variables take the following

+ ueV2U,— —uy, o . :
Ke¥ Lo P simplified expressions and involve only four unknown quan-

K
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tities, namely, the vertical component of the velocities in s 5 1 s 5
both the fluid and porous layers and the corresponding tem- A(d;wW,+3Vid,w,) — D—aﬁsz=07zW|+3VhﬂzW| .

perature fields. It is found that

Pri¢=19,V2w,=RaViT,+ AV4w,—Da V2w, (10)
T -5ty L sx-tyer 11
dTp= kp Wp P (1D
Pr 19,V 2w, = V4w, + RaV 2T, , (12
w2 ktOt
I =V + 1 =W, (13
|
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(23

Vaw, — gowy = A (Viw,— d2w,).
(24)

Boundary condition$20) and(24) are formulated as a con-
sequence of Brinkman’s law; by using Darcy’s law, one
should have to supply only the Beavers-Joseph condi8gn

At the upper surfac€z=1—d). In the linear approach,
the validity of Boussinesq's approximation implies that sur-
face deformations are negligibl@1,15], so that

W, = 0. (25)

wherein all the symbols refer to dimensionless variables. Sikleat transfer is assumed to be governed by Newton’s cooling
dimensionless parameters have been introduced in the abo

equations, namely, RvaaTgATtotdfot/mm , the Rayleigh
number, P& u,/pgk,, the Prandtl number, DaK/dtzot, the
Darcy numberA = u./u,, the dynamic viscosity ratioX

=k /k,, the thermal conductivity ratio, andS

=(pc)i/(pc),, the heat capacity ratio.

In contrast to other authof$,7], we introduce neither a
porous Rayleigh number Ra atgAT,d K/ k, nor a lig-
uid Rayleigh number Ra aTgAT,df’/wq, as one single
set of scaling units is used. It is easily checked that Rg, Ra
and Ra are related by

_Ra(1-d)*
R&=1_d+dx’ (14)
= _Rad2x2 Da L
A= 1—d+dx 13

whered=d,/d;o;. To solve the set10)—(13), we need 12
boundary conditions, which are given below.

At the lower wall(z= —d) the boundary is assumed rigid
and perfectly heat conducting, so that

w,=0, (16)
I W,=0, (17
T.=0. (19

At the interfacg(z=0). Interfacial conditions express the

continuity of the normal and tangential velocities, the conti-

0-'ZT|+Bi T|:O, (26)

wherein Bi is the Biot number. The upper boundary is either
rigid, from which it follows that

(27)

or free with a Marangoni effect, in which case Hg7) is
replaced by

&ZW| :0,

92w, —Ma V2T, =0, (28)

where Ma= yAT,:d;0t/ v, k) IS the Marangoni number.

IV. NORMAL MODE DECOMPOSITION

According to the normal mode technique, we seek solu-
tions for the vertical velocity components and temperature of

the form
Wi
T

for each layer (i=1,p). The amplitudedV;(z) and ®;(2)
describe the variation with respectzmf the vertical veloc-
ity and the temperature in each layer, agdanda, are the
dimensionless wave numbers in tkeandy directions, re-
spectively. Finally,s is the complex growth rate of the dis-
turbances.

The use of Brinkman’s model together with the above
choice of scaling units suggests the introduction of two of

Wi(2)
0i(2)

exfdi(ax+ayy)+st] (29

nuity of temperature and heat flux, and finally the continuitythe al_ternative dimensionless numbkrand« instead of the _
of the normal and tangential components of the stress tensdr@ssical Ra and Ma numbers. These parameters were first

This results in

Wo=w,, (19
I Wp=dW,, (20
T,=T, (21)
3, Tp=X3,T, (22)

proposed by Parmentiet al.[22] and Regnieet al.[23] in

the case of one-layer systems. The introduction of these pa-

rameters is motivated by the fact thatis directly related to

the ratio of buoyancy to thermocapillarity whileis propor-

tional to the temperature difference across the system. Ra

and Ma are related ta and\ by means of
Ra=(Ra)gaN\, (30

Ma=(Ma)o(1— a)\, (31)
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where (Ra) and (Ma), are two arbitrary constants chosen DW, +a%(Ma)o(1— a)\ ©;=0. (47)

here as the critical Rayleigh nhumber for pure buoyancy and

the critical Marangoni number for pure thermocapillarity ina  Note that the dimensionless parameters Pr 8nidave

liquid layer. disappeared from the above equations due to the facwthat
Assuming that the principle of exchange of stability holdswas set to zero at marginal stability.

(i.e.,sis set equal to zero at marginal stabilignd introduc-

ing the expansiori29) as well as relation$30) and (31) in V. RESULTS AND COMMENTS

Egs.(10)—(13), we obtain
A. Analytical results for constant-flux thermal boundary

conditions
A(D?-a?>?W,—Da *(D?-a?)W,—a*(Raga\ ©,=0,

(39) As mentioned in the Introduction, Nield] was the first

to study the linear stability of a porous-liquid bilayer system
k sandwiched between two heat insulating boundaries. The
(Dz—az)p+xﬁwp:o, (33)  zero critical wave number due to these boundary conditions

Kp allowed him to derive the stability criterion analytically. Ex-
2 22N a2 o panding the temperature and the vertical velocity fields as
(D=a’)"Wi—a’(Ra)oar ©,=0, (34 well as the Rayleigh and Marangoni numbers in terms of
K powers ofa? and solving the problem at ordea8 anda?,
(D?-a?)0,+ ﬂwl =0, (35) one easily obtains the compatibility condition. Assuming that
ki the porous layer is described by the Brinkman model, we

. .. extend Nield’'s method to obtain a relation describing the
whereD stands ford/dz. The above four equations give rise " . "
locus of the critical Rayleigh number Rand the critical

to a 12th order system with the following associated bounds . : . :
ary conditions. Marangoni number Ma This relation has the following ge-

neric expression
At z=—d, one has P

W,=0, (36) Ra f1(Da,X,d,A)+Ma.f,(Da,X,d,A)
DW,=0, @7 fa3(Da,X,d,A), (48
wheref,, f,, andf; are complicated functions of the differ-
0,=0. (38  ent parameters of the system. In the particular césel,
Vasseuret al. [18] used the parallel flow assumption to ob-
At z=0, tain an expression similar to E¢8). Both Nield's and Vas-
seur’'s methods yield the same valuesfof f,, andf; for
Wi=W,, (39 different Darcy numbers and depth ratios in the case of in-
sulating boundaries. Here we find it interesting to check re-
DW,=DW,, (40 lation (48) for some other cases.
0,= ®p’ (41) 1. One single viscous fluid layer between one rigid

and one free boundary.
X DO,=DO,, (42) _
Lettingd—0 and Da-0, Eq.(48) becomes
1
A(D3W,—3a’DW,) — —DW,=DW,-3a’DW,,
Da R Ma,
(43 ~a M
320" 28 =L 49
(D*+a%)W,=A(D?+a®)W,. (44)
) recovering the classical result of Nigld5].
Finally, atz=1-d,

2. Porous medium with an upper free surface

We let nowd—1, Ma—0, and A—1. Equation(48)
DO, +Bi®,=0, (46)  reads

W| = 0, (45)

et 12 — cosh{1/\/Da) + JDasinh1/\/Da)]
af3_12(1—2 Da)Da+ (—1+ 24 D&)cosk1//Da)+4(1—6 Da)y/Dasinh(1/\/Da)

(50
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TABLE I. Comparison of the critical conditions for B&¢"=4 18000
%108 andX=0.7
16000
ap R,

d This study Ref[7]  Thisstudy  Ref[7] 14000
0.909 2.14 2.14 19.121 19.093 12000
0.901 23.4 23.41 14.743 14.294
0.885 20.03 20.05 7.782 7.535 10000
0.752 8.28 8.29 0.214 0.207 A

8000

. " . 6000
where Ré is the critical value of the porous Rayleigh num-

ber defined in Eq(14). With Rg, finite and Da~0 in Eqg. 4000
(50), it is found that
2000
Rq‘§=12, (51

which corresponds to the critical value of a Darcy medium
between two rigid wall$6]. This conclusion could also have

been drawn from Eq48) for any value ofX. FIG. 3. Neutral stability curves with Brinkman’s law.

occurs in both the fluid and the porous layers. For the short-
wave mode, convection takes place only in the fluid region.
We first check our computer code by comparing the criti-Thus, the modal change is the result of switching from a
cal conditions with those of Chen and Chif]. We intro-  porous-layer dominated circulation to a liquid-layer domi-
duce therefore the porous wave numbeg)(and the porous nated circulation. These results confirm that Chen and
Rayleigh number (R3 already defined in relatior{14). Chen’s conlusion§7] remain valid not only for Darcy’s but
Since the dimensional wave number must be the same in tHéso for Brinkman's law.
liquid and porous layers as matching of the solutions in the As already pointed out in Sec. Il, Brinkman’s model rests
two layers is required, we have the following relations be-on an effective viscosityu, denotedA in dimensionless
tween the porous wave numbeg, the liquid wave number form. Most published works based on Brinkman’s model as-

B. Numerical results for general thermal boundary conditions

a,, and the overall wave numbar sumeue= u| [24,25 which meansA =1, but recently Giv-
ler and Altobelli [26] determined experimentally that
a_a_ a (52) =7.5"34for wall-bounded flow through a cylindrical plug of
ddp dit porous material. Because of this important difference in the

values ofA, we found it interesting to study the influence of

In [7] the upper fluid boundary is rigid and perfectly heatthis parameter on the critical values. Figure 5 shows the
conducting, Darcy’s law is selected, and the Beavers-Joseplariation ofa; andA . with the parameteA. Globally, A has
slip condition[8] is applied at the porous-liquid interface. To a minor effect on the critical wave numbeg which runs
solve the 12th order eigenproblem, we use a modified Galefrom 27.6(for A=1) to 28.4(for A =20), butA has a more
kin method based on a Chebychev polynomial expansion adensitive influence om. It is interesting to note that the
Wi(2), Wy(2), ©,(2), and® (z). Table | shows a compari-
son between our results and those of Chen and Chgfor
Dat"®"=4x 1076 (Da“"*"=Da/d?) and X=0.7. A very
good accord between both approaches is observed.

The neutral stability curves expressikgin terms of the
wave numbera using Brinkman'’s law are shown in Fig. 3

0.1

for different depth ratiogl. This figure is qualitatively simi- -o.1§—
lar to the stability curves obtained by Chen and Cheéh 2| z,
with Darcy’s model. For large depth ratios, the curves are 03§

bimodal, exhibiting two relative minima, and the long-wave i
branch is the most unstable. For small depth ratios, the short -04F
wave branch is the most unstable. One also observes that, fc .o sk
lower depth ratios, the long-wave instability disappears. To _
understand the reason for this modal change, we have als F
represented in Fig. 4 the streamline patterns correspondingt 6650203 04 05 0.6 B a—
the short-wave(on the leff and long-wave(on the righy x
modes. The convection is clearly dominated by the porous FIG. 4. Streamline patterns with Brinkman's law. £&0~ >,
layer in the long-wave mode but the onset of convectionX=0.7, Bi=«, andd=0.7 (on the lefy and 0.9(on the righj.

-06F
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p17000 5000 ] = - » ] » -

284} ] 3000
s ] 3000 RN
I ] 2000
I - 16500 1000 T iloss
282} = A ——~— d=070
- - 16000

28 A
— 15500
— s aC i
—_— A‘C i
27.8 T 10
— 15000
_ 6
1 4
4 2 T T
276 ] 0 25 % Bi 75 700
L L L L 1|0 L L L L 2|0 L L 14500
A FIG. 7. Effect of Bi ona.; and \. in the pure buoyancy case

(=1, X=0.7, and Da=10"5%).
FIG. 5. Effect of the viscosity ratio\ on the critical wave
numbera, and the critical temperature differenag (Da=10"°,  depth ratio on the critical wave number for four values of Da.
X=0.7, Bi=, andd=0.9). For Da=10 6, we observe a sudden jump in the critical
wave number around=0.93 from the short-wave mode to
critical values remain quasiconstant far greater than 10. the long-wave mode but there is no jump in the other curves.
For simplicity, we will takeA=1 in the following as its One notices that the short-wave branch is absent for small
value has no determining influence on the critical conditionsyalues of Da, which corresponds to a not very permeable
It was mentioned above that the stability curves are genporous medium. Hence, as the porous layer strongly damp-
erally bimodal and that a modal change is observed wheens the penetration of the fluid, the circulation is maintained
changing the depth ratio. This phenomenon was first dein the fluid layer(the long-wave mode For large values of
scribed by Chen and Ch¢fi] for Darcy’s model but for only  Da, the short-wave branch is absent, as could have been ex-
one value of their Darcy number, namely, D&=9  pected because the very permeable porous layer no longer
X 10" °. Here, we want to complement the result of Chen anciampens the fluid motion and convection is observed in the
Chen by examining the influence of the Darcy number on thevhole cavity. The bilayer system behaves more like a fluid
switch between porous dominated and liquid dominated cirand a,=3.1, which is the critical value observed in a pure
culation as a function ofl. Figure 6 shows the effect of the liquid between two rigid isothermal walls.

GOE VI. INFLUENCE OF THE TOP BOUNDARY CONDITIONS
50F ON THE CRITICAL VALUES
40 3 A first linear stability analysis of thermoconvection in a
30F porous-liquid bilayer was done by Nie[6] who studied the
203_ situation of two layers bounded by rigid adiabatically insu-
i lating walls. Chen and ChdiT], Taslim and Narusawil 2],
a [ and Poulikako$11] considered rigid perfectly heat conduct-
c T ing walls. The originality of our approach is that we investi-
10
gate the more general case of a top boundary that can be
either rigid or free, including a Marangoni effect; moreover,
i we use Newton’s cooling lawBiot condition as a more
general thermal condition.
i o The effect of the Biot number on the critical values is
— I * i * B shown in Fig. 7 for pure buoyancy and for several depth
ratios. Figure 7 indicates that the variation of Bi from 0 to 10
i significantly affects the magnitude af andA.. For higher
. . . . 1 . . . . 1 . values of Bi, the role of Bi is minute. This behavior is not
0.85 0-9d 0.95 surprising as the nature of the boundary changes drastically
from an insulated surface to a partially conductive boundary.
FIG. 6. Effect of Darcy number Da on the critical wave number It is clear that, on increasing the Biot number, temperature
as a function ofd (X=0.7 and Bi=x). perturbations will not grow so easily, therefore increasing the
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VIl. CONCLUSIONS
R —4—— purethermocapillarity A linear stability analysis is proposed to study the onset of
10 ——v—— pure buoyancy

thermal convection in a porous medium underlying a liquid

7\.0 layer, the system being heated from below. With respect to
10°F previous works, we have examined the effects resulting from
the substitution of Darcy’s by Brinkman'’s law. We have also

08 055 g 09 055 given up the assumption of a rigid upper boundary, either

perfectly heat conducting or heat insulating. We have inves-
tigated the more general situation wherein the upper bound-
ary of the fluid layer is free with a temperature dependent
surface tension; moreover, heat transfer is described by the
more general Newton cooling law with Biot number varying
between zero and infinity.

The main results obtained can be summarized as follows.
First, it is shown that Brinkman’s model gives qualitatively
08 085 d °° 095 the same results as Darcy’s law. Indeed, the effective viscos-
ity introduced in Brinkman’s approach does not significantly
affect the critical stability conditions. Second, the stability
curves are bimodal for large depth ratios and one observes a
. ] ] sudden jump in the critical wave number when the depth
critical temperature gradient. When th_e B|ot_ numbe_r be+atio is modified, as already reported by Chen and Cfién
comes larger and larger, more energy is required to inducg, aqdition, the critical depth ratio disappears at very large
motion and itis also natural that t.he critical wavelepgth ofand at very small Darcy numbers. Third, we have empha-
the convective cells decreases. Figure 7 thus provides angjzeq the influence of the upper boundary condition in the
posteriorijustification of the infinite Biot number used in the liquid layer. In the pure thermocapillary case convection is
previous simulgtions since the critical values are nearly ingonfined to the fluid layer except for a very small fluid depth.
dependent of Bi. _ . This result is interesting as it opens the possibility of stop-

To analyze the influence of the Marangoni condition, weping yundesirable convection in the porous medium. In work
have plotted in Fig. 8 the critical valueg and\. for two oy in progress, we will examine whether the presence of a
values of the parameter that measures the relative IMpOr- porous support will modify the nature of the patterns appear-
tance of the capillary and buoyancy effects. The curves ifyg in the fluid layer. This will be achieved in the framework

Fig. 8 show the evolution d&; and\ . with the depth ratios  of 3 nonlinear approach based on the amplitude method.
in the pure buoyancy casexE1l) and in the pure ther-

mocapillary case¢=0). We first observe that capillarity is
more destabilizing than buoyancy as the critical valigs
are larger fora=1 than fora=0. The critical depth ratio
corresponding to the transition from a liquid-layer dominated This text presents results of the Belgian Program Inter-
circulation to a porous-layer dominated circulation is muchUniversity Pole of AttractionlUPA 5) initiated by the Bel-
larger fora@=0 than fora=1. Therefore the appearance of gian State, Prime Minister’'s Office, Federal Office for Sci-
large cells extending over both layers is restricted to a verentific, Technical and Cultural Affairs. Support from ESA
small fluid depth in the pure thermocapillary case. By com-through the CIMEX-MAP project and from the European
parison, the convection cells are larger in the thermocapillarynion through the ICOPAC projediContract No. HRPN-
case than in the buoyancy case because the correspondi@d-2000-0013pis also acknowledged. It is also a pleasure
wave numbers are smaller. The difference in the sizes of th thank Dr. J. Bragard for stimulating discussions as well as
cells tends to decrease for the long-wave mode, i.e.afor Professor E. Arquis and Professor J. P. CaltagirgviaS-

——a—— pure thermocapillarity
——»—— pure buoyancy

FIG. 8. Effect ofa on a, and\, (Da=1%x10"° andX=0.7).
a=0, pure capillarity;a=1, pure buoyancy.

ACKNOWLEDGMENTS

tending to zero. TER Laboratory, ENSCPB, Bordeaux
[1] D.A. Nield, Convection in Porous Medj&nd ed.(Springer- Aring (Kluwer Academic, Dordrecht, 1991pp. 563-615.
Verlag, Berlin, 1999. [6] D.A. Nield, J. Fluid Mech81, 513(1977).
[2] C.W. Horton and G.T. Rogers, J. Appl. Phy§, 367 (1945. [7] F. Chen and C.F. Chen, J. Heat Transf#&6, 403 (1988.
[3] E.R. Lapwood, Proc. Cambridge Philos. Sd44, 508 (1948. [8] G.S. Beavers and D.J. Joseph, J. Fluid Me)h.197 (1967).
[4] C.W. Somerton and |. Catton, J. Heat Transfé4, 160 [9] F. Chen and C.F. Chen, J. Fluid Me&@Q7, 311(1989.
(1982. [10] F. Chen and C.F. Chen, J. Fluid Me@84, 97 (1992.

[5] V. Prasad, inConvective Heat and Mass Transfer in Porous [11] D. Poulikakos, Phys. Fluidg9, 3949(1986.
Media, edited by S. KakacB. Kilkis, F.A. Kulacki, and F.  [12] M.E. Taslim and U. Narusawa, J. Heat Transfdrl, 357

066304-7



TH. DESAIVE, G. LEBON, AND M. HENNENBERG PHYSICAL REVIEW B4 066304

(1989. [19] M. Hennenberg, M.Z. Saghir, A. Rednikov, and J.C. Legros,
[13] H.C. Brinkman, Appl. Sci. Res., Sect. & 27 (1947. Transp. Porous Media7, 327 (1997.
[14] J.R.A. Pearson, J. Fluid MecH, 489(1958. [20] N. Rudraiah and V. Prasad, Acta Med®27, 235(1998.
[15] D.A. Nield, J. Fluid Mech9, 341352(1964). [21] S.H. Davis and L.A. Segel, Phys. Fluidg, 470 (1968.

[16] P. Colinet, J.C. Legros, and M.G. Velardéonlinear Dynam- [22] P.M. Parmentier, V.C. Regnier, G. Lebon, and J.C. Legros,

. . . N i Phys. Rev. B54, 411(1996.

:_CS gggjljrface Tension Driven Instabilitié#/iley-VCH, Ber [23] V. Regnier, P.C. Dauby, P. Parmentier, and G. Lebon, Phys.
n - , . Rev. E55, 6860(1997).

[17] E.L. KoschmiederBenard Cells and Taylor VorticesCam- [24] T.S. Lundgren, J. Fluid Mecl1, 273 (1972

bridge University Press, Cambridge, 1993 [25] G. Neale and W. Nader, Can. J. Chem. EB8.475 (1974).
[18] P. Vasseur, C.H. Wang, and M. Sen, Waerme Stoffuebertragi26] R.C. Givler and S.A. Altobelli, J. Fluid Mech258 355
24, 337(1989. (1994.

066304-8



