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Coupled capillary and gravity-driven instability in a liquid film overlying a porous layer
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University of Liège, Institute of Physics, B5, B-4000 Lie`ge, Belgium

M. Hennenberg
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In this work, we study the problem of onset of thermal convection in a fluid layer overlying a porous layer,
the whole system being heated from below. We use Brinkman’s model to describe the porous medium and
determine the corresponding linear stability equations. The eigenvalue problem is solved by means of a
modified Galerkin method. The behavior of the critical wave number and temperature gradient is discussed in
terms of the various parameters of the system. We also emphasize the influence of the boundary conditions at
the upper surface of the fluid layer; in particular, we examine the role of a free surface whose surface tension
is temperature dependent~Marangoni effect!. Comparison with earlier works is also made.
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I. INTRODUCTION

Thermal convection of fluids in porous media has be
extensively investigated@1# since the pioneering work o
Horton and Rogers@2# and Lapwood@3#, mainly because of
its technological importance. The related problem of a co
posite system, consisting of a liquid layer overlying a poro
layer, has received significant attention. This configuratio
found in numerous applications such as water reservo
postaccident cooling of nuclear reactors@4#, and solid matrix
heat exchangers. A good review of flow interaction and h
transfer between fluid and porous layers is found in@5#.
Nield @6# first formulated the problem of thermal convectio
in a fluid surmounting a saturated porous medium when
system is bounded by two horizontal heat insulating bou
aries. Nield proposed an analytical solution for the probl
of a nonoscillatory linear regime and a zero critical wa
number. This last assumption was a physical guess base
previous results obtained for thermocapillary instabilities
single-fluid layers between two insulating boundaries~the
Rayleigh-Marangoni-Be´nard problem! and for thermocon-
vection in porous media. The two-layer porous medium p
fluid problem sandwiched between two rigid boundaries w
studied by Chen and Chen@7# who used Darcy’s law to
describe the porous layer and the classical slip condition
Beavers and Joseph@8# at the liquid–porous-medium inter
face. Their linear analysis predicts the existence of a crit
depth ratio, i.e., the ratio of the thickness of the fluid layer
that of the porous layer. This critical value characterize
switch from a dominating circulation in the porous layer to
dominating circulation in the liquid layer. Their numeric
results were confirmed experimentally@9# and an extension
to the nonlinear regime was found in@10#. Poulikakos@11#
used the more general nonlinear Brinkman-Forchheim
model to investigate numerically the characteristics of
flow and temperature fields in a box. Taslim and Narusa
@12# examined extensively the influence of the dimensionl
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numbers on the critical values in three different configu
tions of the porous-liquid system.

The present study aims at developing the linear stab
analysis of a porous-liquid bilayer system under rather g
eral conditions. Instead of Darcy’s law, we use the Brinkm
model @13#; the upper fluid boundary is either rigid or fre
and will include a Marangoni effect. In pure fluid systems
has been widely recognized since the work of Pearson@14#
and Nield@15# that surface tension gradients play a decis
role in the onset of convective instabilities@16,17#. In the
presence of a porous medium, this Marangoni effect has
ceived less attention and this has motivated the present s
Other related efforts to solve the problem can be found in
papers by Vasseuret al. @18#, Hennenberget al. @19#, and
Rudraiah and Prasad@20#. By comparison with these works
we propose a more complete and systematic linear appro
to the problem. In particular, the effect of several dimensio
less groups on the critical values is detailed and the influe
of the nature of the upper fluid boundary is emphasized.

II. MATHEMATICAL FORMULATION

We consider the configuration formed by an incompre
ible fluid layer of thicknessdl overlying a homogeneous po
rous layer of thicknessdp saturated by the same liquid~see
Fig. 1!. The system is supposed to be of infinite extent in

FIG. 1. The geometrical configuration.
©2001 The American Physical Society04-1
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horizontal directions with its density given by the state eq
tion

rk5r0@12aT~Tk2T0!#, ~1!

where the subscriptk refers to the layer (k5 l for the liquid
layer or p for the porous medium!, r0 is the density of the
liquid at temperatureT0, andaT is the constant coefficient o
volumic expansion. The system subject to the gravity field
heated from below and the upper surface of the fluid is eit
rigid, or free with a linear dependence of the surface tens
on temperature:

s5s02g~Tl2T0!, ~2!

wheres0 is the surface tension of the fluid at temperatureT0
and the constant rate of change of surface tension with t
perature,g, is supposed to be positive. Cartesian coordina
are used with the origin at the interface between the por
medium and the fluid layer and with thez axis vertically
upward.

We take for granted Boussinesq’s approximation in b
layers and assume that the fluid is Newtonian. The cont
ity, momentum, and energy equations for the fluid layer
respectively given by

“•ul50, ~3!

r0] tul1r0ul•“ul52“pl2r0g@12aT~Tl2T0!#ez

1m l¹
2ul , ~4!

] tTl1ul .“Tl5k l¹
2Tl , ~5!

whereul(ul ,v l ,wl) designates the velocity field,pl the pres-
sure, Tl the temperature,m l the dynamic viscosity,kl the
thermal conductivity,c the specific heat at constant pressu
andk l5kl /r0c the thermal diffusivity.

Although Darcy’s law is widely used to describe poro
media, we prefer to choose the Brinkman model@13# which
accounts for friction caused by macroscopic shear. It
known that this effect seriously affects the flow field esp
cially in sparsely packed porous media. This amounts to c
sidering the saturated porous matrix as a specific fluid w
an effective viscosityme and subject to an additional extern
body force, namely, the classical Darcy term. Doing this
lows us to keep the main ingredients of a fluid system si
we conserve the same mathematical structure as the e
tions of Newtonian fluid mechanics. The continuity, mome
tum and energy equations for the porous layer read there
as

“•up50, ~6!

r0

f
] tup1

r0

f2
up•“up52“pp2r0g@12aT~Tp2T0!#ez

1me¹
2up2

m l

K
up , ~7!
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~r0c!p] tTp1~r0c! l~up•“Tp!5kp¹2Tp , ~8!

wherein f designates the porosity,K the permeability,
up(up ,vp ,wp) the seepage velocity,pp the pressure,Tp the
temperature, andkp the mean thermal conductivity in th
porous layer. For any physical property one has ( )p5(1
2f)( )s1f( ) l where the subscripts denotes a property o
the solid matrix.

III. SMALL PERTURBATION EQUATIONS AND
RELEVANT BOUNDARY CONDITIONS

From now on, we restrict the analysis to the evolution
infinitesimally small perturbations. The governing equatio
are linearized with respect to the reference state, name
motionless fluid with heat transported only by conduction
is worth stressing that the unperturbed heat fluxj crossing
the porous-liquid interface is continuous in the conduct
rest state and one can write

kl

DTl

dl
5kp

DTp

dp
5ktot

DTtot

dtot
, ~9!

where ktot5dtot /(dp /kp1dl /kl) is the mean conductivity
while the subscripttot refers to the ‘‘total’’ system. Figure 2
gives a graphical representation ofDTp , DTl , and DTtot
when the liquid and porous layers have different therm
conductivities. The lines OP and PT represent, respectiv
the temperature profiles in the porous and the liquid lay
with slopes given byj /kp and j /kl as the reference conduc
ing flux j is continuous between both phases.

For convenience, the variables are expressed in dim
sionless form and we use one single set of scaling units
the complete system. In particular, the length is scaled by
total thickness dtot5dl1dp , the temperature byDTtot

5DTl1DTp , the time by dtot
2 /k l , and the velocity by

k l /dtot . In this way, we do not single out either of the tw
phases.

Eliminating the pressure fields, the dimensionless eq
tions for the linearized perturbed variables take the follow
simplified expressions and involve only four unknown qua

FIG. 2. Scheme of the conductive reference state.
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tities, namely, the vertical component of the velocities
both the fluid and porous layers and the corresponding t
perature fields. It is found that

Pr21f21] t¹
2wp5Ra¹h

2Tp1L¹4wp2Da21¹2wp , ~10!

] tTp5S
ktot

kp
wp1SX21¹2Tp , ~11!

Pr21] t¹
2wl5¹4wl1Ra¹h

2Tl , ~12!

] tTl5¹2Tl1
ktot

kl
wl , ~13!

wherein all the symbols refer to dimensionless variables.
dimensionless parameters have been introduced in the a
equations, namely, Ra5aTgDTtotdtot

3 /n lk l , the Rayleigh
number, Pr5m l /r0k l , the Prandtl number, Da5K/dtot

2 , the
Darcy number,L5me /m l , the dynamic viscosity ratio,X
5kl /kp , the thermal conductivity ratio, and S
5(rc) l /(rc)p , the heat capacity ratio.

In contrast to other authors@6,7#, we introduce neither a
porous Rayleigh number Rap5aTgDTpdpK/n lkp nor a liq-
uid Rayleigh number Ral5aTgDTldl

3/n lk l , as one single
set of scaling units is used. It is easily checked that Ra, Rp ,
and Ral are related by

Rap5
Ra~12d!4

12d1d X
, ~14!

Ral5
Rad2X2 Da

12d1d X
, ~15!

whered5dp /dtot . To solve the set~10!–~13!, we need 12
boundary conditions, which are given below.

At the lower wall(z52d) the boundary is assumed rigi
and perfectly heat conducting, so that

wp50, ~16!

]zwp50, ~17!

Tp50. ~18!

At the interface(z50). Interfacial conditions express th
continuity of the normal and tangential velocities, the con
nuity of temperature and heat flux, and finally the continu
of the normal and tangential components of the stress ten
This results in

wp5wl , ~19!

]zwp5]zwl , ~20!

Tp5Tl , ~21!

]zTp5X]zTl , ~22!
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L~]z
3wp13¹h

2]zwp!2
1

Da
]zwp5]z

3wl13¹h
2]zwl , ~23!

¹h
2wl2]z

2wl5L~¹h
2wp2]z

2wp!.
~24!

Boundary conditions~20! and ~24! are formulated as a con
sequence of Brinkman’s law; by using Darcy’s law, o
should have to supply only the Beavers-Joseph condition@8#.

At the upper surface(z512d). In the linear approach
the validity of Boussinesq’s approximation implies that su
face deformations are negligible@21,15#, so that

wl50. ~25!

Heat transfer is assumed to be governed by Newton’s coo
law

]zTl1Bi Tl50, ~26!

wherein Bi is the Biot number. The upper boundary is eith
rigid, from which it follows that

]zwl50, ~27!

or free with a Marangoni effect, in which case Eq.~27! is
replaced by

]z
2wl2Ma¹h

2Tl50, ~28!

where Ma5gDTtotdtot /n lk l is the Marangoni number.

IV. NORMAL MODE DECOMPOSITION

According to the normal mode technique, we seek so
tions for the vertical velocity components and temperature
the form

S wi

Ti D 5S Wi~z!

Q i~z! D exp@ i ~axx1ayy!1st# ~29!

for each layeri ( i 5 l ,p). The amplitudesWi(z) and Q i(z)
describe the variation with respect toz of the vertical veloc-
ity and the temperature in each layer, andax anday are the
dimensionless wave numbers in thex and y directions, re-
spectively. Finally,s is the complex growth rate of the dis
turbances.

The use of Brinkman’s model together with the abo
choice of scaling units suggests the introduction of two
the alternative dimensionless numbersl anda instead of the
classical Ra and Ma numbers. These parameters were
proposed by Parmentieret al. @22# and Regnieret al. @23# in
the case of one-layer systems. The introduction of these
rameters is motivated by the fact thata is directly related to
the ratio of buoyancy to thermocapillarity whilel is propor-
tional to the temperature difference across the system.
and Ma are related toa andl by means of

Ra5~Ra!0al, ~30!

Ma5~Ma!0~12a!l, ~31!
4-3
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where (Ra)0 and (Ma)0 are two arbitrary constants chose
here as the critical Rayleigh number for pure buoyancy
the critical Marangoni number for pure thermocapillarity in
liquid layer.

Assuming that the principle of exchange of stability hol
~i.e.,s is set equal to zero at marginal stability! and introduc-
ing the expansion~29! as well as relations~30! and ~31! in
Eqs.~10!–~13!, we obtain

L~D22a2!2Wp2Da21~D22a2!Wp2a2~Ra!0al Qp50,
~32!

~D22a2!Qp1X
ktot

kp
Wp50, ~33!

~D22a2!2Wl2a2~Ra!0al Q l50, ~34!

~D22a2!Q l1
ktot

kl
Wl50, ~35!

whereD stands ford/dz. The above four equations give ris
to a 12th order system with the following associated bou
ary conditions.

At z52d, one has

Wp50, ~36!

DWp50, ~37!

Qp50. ~38!

At z50,

Wl5Wp , ~39!

DWl5DWp , ~40!

Q l5Qp , ~41!

X DQ l5DQp , ~42!

L~D3Wp23a2DWp!2
1

Da
DWp5D3Wl23a2DWl ,

~43!

~D21a2!Wl5L~D21a2!Wp . ~44!

Finally, atz512d,

Wl50, ~45!

DQ l1Bi Q l50, ~46!
06630
d
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D2Wl1a2~Ma!0~12a!l Q l50. ~47!

Note that the dimensionless parameters Pr andS have
disappeared from the above equations due to the fact ths
was set to zero at marginal stability.

V. RESULTS AND COMMENTS

A. Analytical results for constant-flux thermal boundary
conditions

As mentioned in the Introduction, Nield@6# was the first
to study the linear stability of a porous-liquid bilayer syste
sandwiched between two heat insulating boundaries.
zero critical wave number due to these boundary conditi
allowed him to derive the stability criterion analytically. Ex
panding the temperature and the vertical velocity fields
well as the Rayleigh and Marangoni numbers in terms
powers ofa2 and solving the problem at ordersa0 and a2,
one easily obtains the compatibility condition. Assuming th
the porous layer is described by the Brinkman model,
extend Nield’s method to obtain a relation describing t
locus of the critical Rayleigh number Rac and the critical
Marangoni number Mac . This relation has the following ge
neric expression

Rac f 1~Da,X,d,L!1Mac f 2~Da,X,d,L!

5 f 3~Da,X,d,L!, ~48!

wheref 1 , f 2, and f 3 are complicated functions of the differ
ent parameters of the system. In the particular caseX51,
Vasseuret al. @18# used the parallel flow assumption to o
tain an expression similar to Eq.~48!. Both Nield’s and Vas-
seur’s methods yield the same values off 1 , f 2, and f 3 for
different Darcy numbers and depth ratios in the case of
sulating boundaries. Here we find it interesting to check
lation ~48! for some other cases.

1. One single viscous fluid layer between one rigid
and one free boundary.

Letting d→0 and Da→0, Eq. ~48! becomes

Rac

320
1

Mac

48
51, ~49!

recovering the classical result of Nield@15#.

2. Porous medium with an upper free surface

We let now d→1, Ma→0, and L→1. Equation~48!
reads
Rap
c5

12@2cosh~1/ADa!1ADa sinh~1/ADa!#

12~122 Da!Da1~21124 Da2!cosh~1/ADa!14~126 Da!ADa sinh~1/ADa!
, ~50!
4-4
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where Rap
c is the critical value of the porous Rayleigh num

ber defined in Eq.~14!. With Rap finite and Da→0 in Eq.
~50!, it is found that

Rap
c512, ~51!

which corresponds to the critical value of a Darcy mediu
between two rigid walls@6#. This conclusion could also hav
been drawn from Eq.~48! for any value ofX.

B. Numerical results for general thermal boundary conditions

We first check our computer code by comparing the cr
cal conditions with those of Chen and Chen@7#. We intro-
duce therefore the porous wave number (ap) and the porous
Rayleigh number (Rap) already defined in relation~14!.
Since the dimensional wave number must be the same in
liquid and porous layers as matching of the solutions in
two layers is required, we have the following relations b
tween the porous wave numberap , the liquid wave number
al , and the overall wave numbera:

al

dl
5

ap

dp
5

a

dtot
. ~52!

In @7# the upper fluid boundary is rigid and perfectly he
conducting, Darcy’s law is selected, and the Beavers-Jos
slip condition@8# is applied at the porous-liquid interface. T
solve the 12th order eigenproblem, we use a modified Ga
kin method based on a Chebychev polynomial expansio
Wl(z), Wp(z), Q l(z), andQp(z). Table I shows a compari
son between our results and those of Chen and Chen@7# for
DaChen5431026 (DaChen5Da/d2) and X50.7. A very
good accord between both approaches is observed.

The neutral stability curves expressingl in terms of the
wave numbera using Brinkman’s law are shown in Fig.
for different depth ratiosd. This figure is qualitatively simi-
lar to the stability curves obtained by Chen and Chen@7#
with Darcy’s model. For large depth ratios, the curves
bimodal, exhibiting two relative minima, and the long-wa
branch is the most unstable. For small depth ratios, the sh
wave branch is the most unstable. One also observes tha
lower depth ratios, the long-wave instability disappears.
understand the reason for this modal change, we have
represented in Fig. 4 the streamline patterns correspondin
the short-wave~on the left! and long-wave~on the right!
modes. The convection is clearly dominated by the por
layer in the long-wave mode but the onset of convect

TABLE I. Comparison of the critical conditions for DaChen54
31026 andX50.7

ap
c Rap

c

d This study Ref.@7# This study Ref.@7#

0.909 2.14 2.14 19.121 19.093
0.901 23.4 23.41 14.743 14.294
0.885 20.03 20.05 7.782 7.535
0.752 8.28 8.29 0.214 0.207
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occurs in both the fluid and the porous layers. For the sh
wave mode, convection takes place only in the fluid regi
Thus, the modal change is the result of switching from
porous-layer dominated circulation to a liquid-layer dom
nated circulation. These results confirm that Chen a
Chen’s conlusions@7# remain valid not only for Darcy’s but
also for Brinkman’s law.

As already pointed out in Sec. II, Brinkman’s model res
on an effective viscosityme denotedL in dimensionless
form. Most published works based on Brinkman’s model
sumeme5m l @24,25# which meansL51, but recently Giv-
ler and Altobelli @26# determined experimentally thatL
57.522.4

13.4 for wall-bounded flow through a cylindrical plug o
porous material. Because of this important difference in
values ofL, we found it interesting to study the influence
this parameter on the critical values. Figure 5 shows
variation ofac andlc with the parameterL. Globally,L has
a minor effect on the critical wave numberac which runs
from 27.6~for L51) to 28.4~for L520), butL has a more
sensitive influence onlc . It is interesting to note that the

FIG. 3. Neutral stability curves with Brinkman’s law.

FIG. 4. Streamline patterns with Brinkman’s law. Da51025,
X50.7, Bi5`, andd50.7 ~on the left! and 0.9~on the right!.
4-5
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critical values remain quasiconstant forL greater than 10.
For simplicity, we will takeL51 in the following as its
value has no determining influence on the critical conditio

It was mentioned above that the stability curves are g
erally bimodal and that a modal change is observed w
changing the depth ratio. This phenomenon was first
scribed by Chen and Chen@7# for Darcy’s model but for only
one value of their Darcy number, namely, DaChen59
31026. Here, we want to complement the result of Chen a
Chen by examining the influence of the Darcy number on
switch between porous dominated and liquid dominated
culation as a function ofd. Figure 6 shows the effect of th

FIG. 5. Effect of the viscosity ratioL on the critical wave
numberac and the critical temperature differencelc (Da51025,
X50.7, Bi5`, andd50.9).

FIG. 6. Effect of Darcy number Da on the critical wave numb
as a function ofd (X50.7 and Bi5`).
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depth ratio on the critical wave number for four values of D
For Da51026, we observe a sudden jump in the critic
wave number aroundd50.93 from the short-wave mode t
the long-wave mode but there is no jump in the other curv
One notices that the short-wave branch is absent for sm
values of Da, which corresponds to a not very permea
porous medium. Hence, as the porous layer strongly da
ens the penetration of the fluid, the circulation is maintain
in the fluid layer~the long-wave mode!. For large values of
Da, the short-wave branch is absent, as could have been
pected because the very permeable porous layer no lo
dampens the fluid motion and convection is observed in
whole cavity. The bilayer system behaves more like a fl
and ac.3.1, which is the critical value observed in a pu
liquid between two rigid isothermal walls.

VI. INFLUENCE OF THE TOP BOUNDARY CONDITIONS
ON THE CRITICAL VALUES

A first linear stability analysis of thermoconvection in
porous-liquid bilayer was done by Nield@6# who studied the
situation of two layers bounded by rigid adiabatically ins
lating walls. Chen and Chen@7#, Taslim and Narusawa@12#,
and Poulikakos@11# considered rigid perfectly heat conduc
ing walls. The originality of our approach is that we inves
gate the more general case of a top boundary that can
either rigid or free, including a Marangoni effect; moreove
we use Newton’s cooling law~Biot condition! as a more
general thermal condition.

The effect of the Biot number on the critical values
shown in Fig. 7 for pure buoyancy and for several dep
ratios. Figure 7 indicates that the variation of Bi from 0 to
significantly affects the magnitude ofac andlc . For higher
values of Bi, the role of Bi is minute. This behavior is n
surprising as the nature of the boundary changes drastic
from an insulated surface to a partially conductive bounda
It is clear that, on increasing the Biot number, temperat
perturbations will not grow so easily, therefore increasing

r

FIG. 7. Effect of Bi onac and lc in the pure buoyancy cas
(a51, X50.7, and Da51025).
4-6
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COUPLED CAPILLARY AND GRAVITY-DRIVEN . . . PHYSICAL REVIEW E64 066304
critical temperature gradient. When the Biot number b
comes larger and larger, more energy is required to ind
motion and it is also natural that the critical wavelength
the convective cells decreases. Figure 7 thus providesa
posteriori justification of the infinite Biot number used in th
previous simulations since the critical values are nearly
dependent of Bi.

To analyze the influence of the Marangoni condition,
have plotted in Fig. 8 the critical valuesac and lc for two
values of the parametera that measures the relative impo
tance of the capillary and buoyancy effects. The curves
Fig. 8 show the evolution ofac andlc with the depth ratios
in the pure buoyancy case (a51) and in the pure ther
mocapillary case (a50). We first observe that capillarity i
more destabilizing than buoyancy as the critical valueslc
are larger fora51 than fora50. The critical depth ratio
corresponding to the transition from a liquid-layer domina
circulation to a porous-layer dominated circulation is mu
larger fora50 than fora51. Therefore the appearance
large cells extending over both layers is restricted to a v
small fluid depth in the pure thermocapillary case. By co
parison, the convection cells are larger in the thermocapil
case than in the buoyancy case because the correspo
wave numbers are smaller. The difference in the sizes of
cells tends to decrease for the long-wave mode, i.e., foac
tending to zero.

FIG. 8. Effect ofa on ac andlc (Da5131025 andX50.7).
a50, pure capillarity;a51, pure buoyancy.
us
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VII. CONCLUSIONS

A linear stability analysis is proposed to study the onse
thermal convection in a porous medium underlying a liqu
layer, the system being heated from below. With respec
previous works, we have examined the effects resulting fr
the substitution of Darcy’s by Brinkman’s law. We have al
given up the assumption of a rigid upper boundary, eit
perfectly heat conducting or heat insulating. We have inv
tigated the more general situation wherein the upper bou
ary of the fluid layer is free with a temperature depend
surface tension; moreover, heat transfer is described by
more general Newton cooling law with Biot number varyin
between zero and infinity.

The main results obtained can be summarized as follo
First, it is shown that Brinkman’s model gives qualitative
the same results as Darcy’s law. Indeed, the effective visc
ity introduced in Brinkman’s approach does not significan
affect the critical stability conditions. Second, the stabil
curves are bimodal for large depth ratios and one observ
sudden jump in the critical wave number when the de
ratio is modified, as already reported by Chen and Chen@7#.
In addition, the critical depth ratio disappears at very la
and at very small Darcy numbers. Third, we have emp
sized the influence of the upper boundary condition in
liquid layer. In the pure thermocapillary case convection
confined to the fluid layer except for a very small fluid dep
This result is interesting as it opens the possibility of sto
ping undesirable convection in the porous medium. In wo
now in progress, we will examine whether the presence o
porous support will modify the nature of the patterns appe
ing in the fluid layer. This will be achieved in the framewo
of a nonlinear approach based on the amplitude method
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