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Résumé

Les simulations basées sur les méthodes de Lattice Boltzmann sont bien adaptées
aux simulations d’écoulements de fluides à l’intérieur de structures complexes
rencontrées en génie chimique, telles que les milieux poreux ou les empilements
structurés utilisés dans des colonnes de distillation et de distillation réactive. Elles
requièrent toutefois de grandes quantités de mémoire (environ 10 gigaoctets). Par
ailleurs, leur exécution sur un seul ordinateur de bureau puissant nécessiterait un
temps très long (environ deux ans).

Il est possible de réduire à la fois le temps d’exécution et la quantité de mé-
moire requise par ordinateur en exécutant les simulations LB de manière dis-
tribuée, par exemple en utilisant un cluster. Un Cluster Hétérogène Dynamique
(CHD) est une classe de clusters impliquant des ordinateurs qui sont intercon-
nectés au moyen d’un réseau local, qui ne sont pas nécessairement fiables et qui
ne partagent pas la même architecture, le même système d’exploitation, la même
puissance de calcul, etc. En revanche, les CHD sont faciles à installer, à étendre et
peu coûteux.

Concevoir et développer un logiciel capable de gérer des CHD à grande échelle
de façon efficace, extensible et robuste et capable d’effectuer des simulations LB
à très grande échelle constitue un défi. L’hétérogénéité de la puissance de calcul
doit être prise en compte afin d’éviter que certains ordinateurs soient débordés
et ralentissent le temps global d’exécution. En outre, une panne d’un ou de plu-
sieurs ordinateurs pendant l’exécution d’une simulation ne devrait pas empêcher
son achèvement.

Dans le contexte de cette thèse, un outil de simulation appelé LaBoGrid a été
conçu. LaBoGrid utilise des outils existants de répartition statique de la charge
et implémente une méthode originale de répartition dynamique de la charge, ce
qui lui permet de distribuer une simulation LB de manière à minimiser son temps
d’exécution. De plus, un mécanisme distribué et extensible de tolérance aux pannes,
fondé sur une sauvegarde régulière de l’état de simulation, est proposé. Enfin, La-
BoGrid se base sur un modèle distribué de type « maître-esclaves » qui est robuste
et potentiellement extensible.
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Abstract

Lattice Boltzmann-based (LB) simulations are well suited to the simulation of
fluid flows in complex structures encountered in chemical engineering like porous
media or structured packing used in distillation and reactive distillation columns.
These simulations require large amounts of memory (around 10 gigabytes) and
would require very long execution times (around 2 years) if executed on a single
powerful desktop computer.

The execution of LB simulations in a distributed way (for example, using clus-
ter computing) can decrease the execution time and reduces the memory require-
ments for each computer. Dynamic Heterogeneous Clusters (DHC) is a class of
clusters involving computers inter-connected by a local area network; these com-
puters are potentially unreliable and do not share the same architecture, operating
system, computational power, etc. However, DHCs are easy to setup and extend,
and are made of affordable computers.

The design and development of a software system which organizes large scale
DHCs in an efficient, scalable and robust way for implementing very large scale
LB simulations is challenging. In order to avoid that some computers are over-
loaded and slow down the overall execution, the heterogeneity of computational
power should be taken into account. In addition, the failure of one or several
computers during the execution of a simulation should not prevent its completion.

In the context of this thesis, a simulation tool called LaBoGrid was designed. It
uses existing static load balancing tools and implements an original dynamic load
balancing method in order to distribute the simulation in a way that minimizes its
execution time. In addition, a distributed and scalable fault-tolerance mechanism
based on the regular saving of simulation’s state is proposed. Finally, LaBoGrid is
based on a distributed master-slave model that is robust and potentially scalable.

iii





Remerciements

Je voudrais remercier :

Mon promoteur, P.A. de Marneffe, pour sa confiance et ses conseils avisés tout
au long de ces années de doctorat.

P. Marchot, M. Crine et D. Toye, de m’avoir accepté dans leur équipe pour ce
projet multi-disciplinaire mêlant chimie, physique et informatique.

Les membres de mon jury, B. Boigelot, P. Gribomont, P. Manneback, J. H.
Piater et M. Pirotton, d’avoir pris le temps de lire et de critiquer ce travail.

Mes collègues chimistes, Saïd Aferka, Sébastien Calvo et Djomice Beugre,
pour notre travail commun sur ce projet (et autres activités ludiques associées).

Cyril Briquet, pour ses coups de pouce décisifs au début et tout au long du
doctorat, pour le travail de recherche commun et pour tous les bons conseils pro-
digués sans retenue.

Mes collègues algorithmiciens, Xavier Dalem, Thomas Leuther, Hajar Siar,
Sébastien Jodogne, Cédric Thiernesse et Marie-Thérèse Ratz, pour l’excellente
ambiance de travail qu’ils ont contribué à créer au sein du service et tous les bons
moments, pas nécessairement professionnels, passés ensemble.

Mes amis musiciens et non-musiciens, d’avoir toléré ma mauvaise humeur
quasi chronique en cette période de fin de rédaction.

Gisela Henn, pour sa relecture attentive et ses conseils en langue anglaise (dé-
solé pour les maux de tête).

Mes parents, grands-parents, parrain, marraine, frère, soeurs, oncles, tantes,
cousins, cousines, etc. pour leur soutien et les moments de détente que nous avons
passés ensemble et dont j’ai bien eu besoin tout au long de ces cinq dernières
années. Je propose que l’on fête ça.

Enfin, je voudrais remercier Pascale, ma compagne, pour son soutien de tous
les jours, voire de toutes les heures, le bien-être et la stabilité qu’elle m’a apportés
lors de ces derniers mois. Les choses auraient probablement été plus difficiles sans
toi, merci !

v





Contents

Résumé i

Abstract iii

Remerciements v

Contents vii

List of Figures xv

List of Tables xxi

List of Algorithms xxiii

1 Introduction 1

1.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Lattice Boltzmann Methods 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Lattice Boltzmann Methods . . . . . . . . . . . . . . . . . . . . . 8

vii



viii Contents

2.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Collision Operator . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . 14

2.2.4 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Language Choice . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Sequential Implementation . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 In-place Propagation . . . . . . . . . . . . . . . . . . . . 24

2.5 Parallel and Distributed Implementation . . . . . . . . . . . . . . 35

2.5.1 Problem Subdivision . . . . . . . . . . . . . . . . . . . . 35

2.5.2 Lattice Partitioning . . . . . . . . . . . . . . . . . . . . . 37

2.5.3 Parallel Simulation . . . . . . . . . . . . . . . . . . . . . 38

2.5.4 Data Transmission . . . . . . . . . . . . . . . . . . . . . 43

2.6 Distributed LB Simulation Speedup . . . . . . . . . . . . . . . . 45

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Optimized Implementation of Lattice Boltzmann Simulations 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Data Locality and Representation of Multi-dimensional Arrays . . 50

3.3 Optimizing Propagation Step . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Array Shift . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 Propagation Based on Array Shifting . . . . . . . . . . . 55

3.3.3 Circular Array Shift . . . . . . . . . . . . . . . . . . . . 56

3.3.4 Evaluation of New Propagation Implementation . . . . . . 58

3.4 Adapting Collision to New Data Organization . . . . . . . . . . . 59

3.4.1 Evaluation of New Collision Implementation . . . . . . . 66

3.5 Comparison of Simple and Optimized Implementations . . . . . . 68

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



Contents ix

4 Architecture of the Simulation Tool 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.1 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 LaBoGrid Use Cases . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Lattice Boltzmann Simulations Library . . . . . . . . . . . . . . . 74

4.3.1 Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.2 Solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.3 Collision Operator . . . . . . . . . . . . . . . . . . . . . 76

4.3.4 Boundary Conditions . . . . . . . . . . . . . . . . . . . . 76

4.3.5 Generic Sequential Simulation Code Using LBSL . . . . . 77

4.3.6 Logging and Operators Chain . . . . . . . . . . . . . . . 78

4.3.7 Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.8 Partitions Generator . . . . . . . . . . . . . . . . . . . . 82

4.4 LaBoGrid Components . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.1 Asynchronous Agents . . . . . . . . . . . . . . . . . . . 83

4.4.2 Distributed Components and Deployment . . . . . . . . . 84

4.5 LaBoGrid Configuration . . . . . . . . . . . . . . . . . . . . . . 89

4.5.1 LB Configurations . . . . . . . . . . . . . . . . . . . . . 90

4.5.2 Processing Chains Description . . . . . . . . . . . . . . . 90

4.5.3 Description of Simulations . . . . . . . . . . . . . . . . . 90

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Static Load Balancing 95

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.1 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Graph Representation . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.1 Graph Data Structures . . . . . . . . . . . . . . . . . . . 98

5.3 Distributed LB Simulations Application Graph . . . . . . . . . . 100



x Contents

5.3.1 Sublattices Graph Distribution . . . . . . . . . . . . . . . 101

5.4 Evaluation of Computer Performance . . . . . . . . . . . . . . . 102

5.4.1 Processing Chain Content . . . . . . . . . . . . . . . . . 104

5.4.2 Lattice Size . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5 Resource Graph Generation . . . . . . . . . . . . . . . . . . . . . 107

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Fault-Tolerance 113

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1.1 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 CanoPeer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2.1 Task Scheduling . . . . . . . . . . . . . . . . . . . . . . 116

6.2.2 LaBoGrid Integration . . . . . . . . . . . . . . . . . . . . 117

6.2.3 Resource Discovery . . . . . . . . . . . . . . . . . . . . 118

6.3 Failure Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Checkpoint/restart for Distributed LB Simulations . . . . . . . . . 122

6.4.1 Checkpoint/restart for Sequential LB simulations . . . . . 122

6.4.2 Distributed Checkpoint/restart . . . . . . . . . . . . . . . 123

6.4.3 State Files Compression . . . . . . . . . . . . . . . . . . 126

6.5 Replication Neighborhood Construction . . . . . . . . . . . . . . 129

6.5.1 Replication Graphs . . . . . . . . . . . . . . . . . . . . . 129

6.5.2 PRG Optimization Problem . . . . . . . . . . . . . . . . 132

6.5.3 Construction of the PRG . . . . . . . . . . . . . . . . . . 133

6.5.4 Construction of the RRG Using the PRG . . . . . . . . . 138

6.6 Distributed File System . . . . . . . . . . . . . . . . . . . . . . . 139

6.6.1 LaBoGrid Embedded Distributed File System . . . . . . . 140

6.6.2 Distributed File System Oriented Checkpoint/restart . . . 143

6.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



Contents xi

6.7.1 State Replication Impact on Execution Time . . . . . . . 144

6.7.2 Execution Time in Case of Failure . . . . . . . . . . . . . 147

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7 Dynamic Load Balancing 153

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.1.1 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . 156

7.2 Local Improvements Methods . . . . . . . . . . . . . . . . . . . 156

7.2.1 Balancing Phase . . . . . . . . . . . . . . . . . . . . . . 157

7.2.2 Migration Phase . . . . . . . . . . . . . . . . . . . . . . 158

7.3 Implementation of Migration Phase . . . . . . . . . . . . . . . . 163

7.3.1 Data Structures . . . . . . . . . . . . . . . . . . . . . . . 164

7.3.2 Initialization of G . . . . . . . . . . . . . . . . . . . . . . 165

7.3.3 Construction of X . . . . . . . . . . . . . . . . . . . . . . 169

7.4 Load Balancing with an Adapted Tree Walking Algorithm . . . . 178

7.4.1 Migration Scheduling and Rounding Issues . . . . . . . . 179

7.4.2 TWA Distributed Implementation . . . . . . . . . . . . . 182

7.5 Dynamic Load Balancing Integration in LaBoGrid . . . . . . . . 182

7.5.1 Computer Tree . . . . . . . . . . . . . . . . . . . . . . . 182

7.5.2 Dynamic Load Balancing Implementation . . . . . . . . . 182

7.5.3 Load Balancing Triggering . . . . . . . . . . . . . . . . . 184

7.5.4 Initial Distribution of Sublattices . . . . . . . . . . . . . . 184

7.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.6.1 LB Simulation Execution Time using the Adapted TWA . 185

7.6.2 Exchanged Messages During Balancing Phase . . . . . . 186

7.6.3 Sublattices Migrations . . . . . . . . . . . . . . . . . . . 188

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8 Robust Distributed Control 193

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193



xii Contents

8.1.1 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . 195

8.2 Distributed Agents Identification . . . . . . . . . . . . . . . . . . 195

8.3 Tree-based Broadcasting, Leader Election and Barrier Synchro-
nization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.3.1 Leader Election . . . . . . . . . . . . . . . . . . . . . . . 196

8.3.2 Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.3.3 Barrier Synchronization . . . . . . . . . . . . . . . . . . 197

8.4 Distribution of the Global File Location Table . . . . . . . . . . . 197

8.4.1 General Principles of DHTs . . . . . . . . . . . . . . . . 198

8.4.2 A Simple Example of DHT: Chord . . . . . . . . . . . . . 201

8.4.3 Comparison of Existing DHTs . . . . . . . . . . . . . . . 206

8.4.4 A Missing Function: Update . . . . . . . . . . . . . . . . 209

8.5 MN-tree: A Multiple Purpose Tree Overlay . . . . . . . . . . . . 209

8.5.1 The Overlay . . . . . . . . . . . . . . . . . . . . . . . . 210

8.5.2 Overlay Construction and Joining . . . . . . . . . . . . . 211

8.5.3 Overlay Maintenance . . . . . . . . . . . . . . . . . . . . 213

8.5.4 MN-trees Multiple Purposes . . . . . . . . . . . . . . . . 215

8.6 Distributed LaBoGrid Control . . . . . . . . . . . . . . . . . . . 218

8.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

8.7.1 Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . 219

8.7.2 Barrier Synchronization . . . . . . . . . . . . . . . . . . 220

8.7.3 Table Service . . . . . . . . . . . . . . . . . . . . . . . . 220

8.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

9 Conclusion 223

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

9.2 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 226

9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

9.4 Thesis Statement Fulfillment . . . . . . . . . . . . . . . . . . . . 231



Contents xiii

Bibliography 233

A Agent and Error Handler Class Diagrams 241

B LaBoGrid’s XML Configuration File 243

B.1 LB Configurations . . . . . . . . . . . . . . . . . . . . . . . . . 243

B.2 Processing Chains Description . . . . . . . . . . . . . . . . . . . 244

B.3 Experiment Description . . . . . . . . . . . . . . . . . . . . . . . 246



xiv Contents



List of Figures

2.1 A site (center of the cube) of a D3Q19 lattice and its neighbor-
hood. The numbers are identifiers of the neighborhood vectors (i
is the identifier of vector ni). . . . . . . . . . . . . . . . . . . . . 9

2.2 3D lattices are cubes or cuboids. . . . . . . . . . . . . . . . . . . 15

2.3 Incoming densities for a site on (a) a plane, (b) an edge and (c) a
corner. The arrows represent the incoming densities. . . . . . . . 16

2.4 Outgoing densities for a site on (a) a plane, (b) an edge and (c) a
corner. The arrows represent the outgoing densities. . . . . . . . . 16

2.5 Inflow and outflow planes of a 3D lattice. These planes are normal
to the flow direction. . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Periodic boundary conditions for a flow in a pipe. The longitudi-
nal section of a pipe element is represented. . . . . . . . . . . . . 18

2.7 Example of a lattice face (a) and a lattice edge (b). . . . . . . . . . 29

2.8 Number of outgoing densities for a face (a) and an edge (b) for a
D3Q19 lattice. The arrows represent the outgoing densities. . . . . 30

2.9 Outgoing densities of the face associated to neighbor vector n1
are used as incoming densities for the face associated to neighbor
vector n2. The two cubes represent the same lattice. . . . . . . . . 31

2.10 Constrained (a) and unconstrained (b) partitioning of a lattice.
Constrained partitioning imposes that all sublatties have one and
only one contiguous sublattice by face or edge. . . . . . . . . . . 36

2.11 Outgoing densities of the face associated to neighbor vector n1 of
sublattice A are used as incoming densities for the face associated
to neighbor vector n2 of sublattice B. . . . . . . . . . . . . . . . . 37

2.12 Transmission queues system. . . . . . . . . . . . . . . . . . . . . 43

xv



xvi List of Figures

2.13 Execution time of distributed LB simulation. . . . . . . . . . . . . 46

2.14 Parallel LB simulation speedup. . . . . . . . . . . . . . . . . . . 46

2.15 Parallel LB simulation efficiency. . . . . . . . . . . . . . . . . . . 47

2.16 Comparison of efficiency when using different simulation param-
eters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 Hierarchical organization of memory. . . . . . . . . . . . . . . . 50

3.2 2D array A of 3×3 integers represented using arrays of arrays. . . 51

3.3 2D array of 3×3 integers represented using a 1D array. . . . . . . 52

3.4 Array shift with base pointer move. . . . . . . . . . . . . . . . . . 54

3.5 2D array shift using offset vector (1,1). . . . . . . . . . . . . . . 55

3.6 Shift of the vector representation of a (3×3) array. . . . . . . . . 55

3.7 Two left shifts and a pointer reset. . . . . . . . . . . . . . . . . . 56

3.8 Circular array and one position right shift. . . . . . . . . . . . . . 57

3.9 Comparison of execution time of propagation . . . . . . . . . . . 59

3.10 Comparison of execution time of collision when using initial and
new data organizations. . . . . . . . . . . . . . . . . . . . . . . . 60

3.11 Comparison of execution time of collision when using four com-
binations of data representations and block access parameters. . . 66

3.12 Comparison of execution time for complete simulation when us-
ing four combinations of data representations and block access
parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.13 Comparison of execution time of simple and optimized simula-
tions’ implementation. . . . . . . . . . . . . . . . . . . . . . . . 69

3.14 Comparison of speedup of simple and optimized simulation . . . . 70

4.1 Class diagrams for Lattice and LatticeDescriptor. . . . . . . 75

4.2 Class diagram for Solid. . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Class diagram for CollisionOperator. . . . . . . . . . . . . . . 76

4.4 Class diagram for BoundaryConditions. . . . . . . . . . . . . . 77

4.5 Class diagram for Logger. . . . . . . . . . . . . . . . . . . . . . 80

4.6 Class diagram for PartitionsGenerator. . . . . . . . . . . . . 83



List of Figures xvii

4.7 Deployment of LaBoGrid. . . . . . . . . . . . . . . . . . . . . . 85

4.8 Message path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.9 Comparison of the execution times obtained using a specialized
(spec) and a generic (gen) implementation of a distributed LB
simulation on a (64,64,64) D3Q19 lattice with an SRT collision
operator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.10 Comparison of the execution times obtained using a specialized
(spec) and a generic (gen) implementation of a distributed LB
simulation on a (128,128,128) lattice with an SRT collision op-
erator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1 Example of undirected graph with weighted edges. . . . . . . . . 98

5.2 Representation of Sublattices graph. . . . . . . . . . . . . . . . . 101

5.3 Representation of partial sublattices graph. . . . . . . . . . . . . . 102

5.4 Representation of partial mapping table. . . . . . . . . . . . . . . 102

5.5 CCP in function of hardware configuration and different collision
operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6 CCP in function of hardware configuration and lattice size. . . . . 106

5.7 Execution time of one LB simulation iteration with a (176,176,176)
lattice in function of the number of sublattices. . . . . . . . . . . 109

6.1 Well conditioned RRG with 6 resources and a replication degree
of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2 Degenerated RRG with 6 resources and a replication degree of 2. . 130

6.3 RRG from Figure 6.1 with resources organized by peer. . . . . . . 131

6.4 PRG based on organization presented in Figure 6.3. . . . . . . . . 131

6.5 Corrected version of the RRG from Figure 6.3. . . . . . . . . . . 132

6.6 Execution time of an LB simulation on a D3Q19 lattice of size
(176,176,176) using different replication parameters. . . . . . . . 145

6.7 Contribution of simulation and replication times to the total exe-
cution time in the case of a simulation with 100 iterations. . . . . 146

6.8 Contribution of simulation and replication times to the total exe-
cution time in the case of a simulation with 1000 iterations. . . . . 147



xviii List of Figures

6.9 Mean execution time for different reTheseplication parameters in
function of failure probability. . . . . . . . . . . . . . . . . . . . 148

6.10 Mean execution time in function of the number of replications. . . 149

7.1 G areas illustration. . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.2 Labels associated to the edges connecting a vertex of A to its
neighbors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.3 Loop invariant of loop from Algorithm 7.14. . . . . . . . . . . . . 173

7.4 LB simulation execution times obtained when using increasing
numbers of sublattices and two different mappers. . . . . . . . . . 186

7.5 Number of rounds of diffusion scheme with two initial conditions. 187

7.6 Number of migrated sublattices when mapping a sublattices graph
containing 256 sublattices on a sequence of 10 resource graphs
using four different mappers. . . . . . . . . . . . . . . . . . . . . 190

7.7 Number of migrated sublattices for a sequence of resource graphs
using TWA and increasing the number of computers added to or
removed from resource graphs. . . . . . . . . . . . . . . . . . . . 191

7.8 Mean and Standard Deviation (SD) of Figure 7.7’s curves. . . . . 191

8.1 Chord identifier circle with m = 3. . . . . . . . . . . . . . . . . . 201

8.2 Chord identifier circle with m = 3 and 3 peers represented. . . . . 202

8.3 Chord ring for the situation illustrated in Figure 8.2. . . . . . . . . 204

8.4 Illustration of the position of a node in a tree. . . . . . . . . . . . 210

8.5 Availability of tree structure even in case of multiple failures. . . . 211

8.6 Peer joining a meta-node and triggering the creation of a new
meta-node (R = 2). . . . . . . . . . . . . . . . . . . . . . . . . . 212

8.7 Active maintenance process in case of failure: 1) a meta-node
becomes unreliable, 2) a peer request message is sent and a peer
is moved, 3) the MN-tree is reliable again (R = 3). . . . . . . . . . 214

8.8 Simple broadcast in an MN-tree. . . . . . . . . . . . . . . . . . . 216

8.9 Computer tree derived from a given MN-tree. . . . . . . . . . . . 217

9.1 Example of structured packing used in distillation and reactive
distillation columns. . . . . . . . . . . . . . . . . . . . . . . . . . 226



List of Figures xix

9.2 Mesh representation of a structured packing. . . . . . . . . . . . . 227

9.3 Slices of a velocity field. . . . . . . . . . . . . . . . . . . . . . . 228

9.4 Grouping of two adjacent sublattices A and B into a meta-lattice M. 230

A.1 Class diagrams of Agent and ErrorHandler. . . . . . . . . . . . 242

B.1 An example of LB configuration. . . . . . . . . . . . . . . . . . . 244

B.2 An example of processing chain description. . . . . . . . . . . . . 245

B.3 An example of experiment description. . . . . . . . . . . . . . . . 247



xx List of Figures



List of Tables

2.1 The neighborhood vectors of D3Q19 lattices given in the form
(x,y,z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Execution time gain of optimized implementation regarding sim-
ple implementation. . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 CCP in function of hardware configuration (columns A and B) and
different collision operators (SRT, SRT+smago, MRT, MRT+smago).
Given values result from the division of the actual CCP by 1000. . 105

5.2 CCP of computers of type A, B and C evaluated using an LB
simulation on a (30,30,30) D3Q19 lattice using MRT collision
operator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1 Compressed size of state file and compression ratio for a state file. 126

6.2 Compression ratio of state files after increasing numbers of it-
erations in the context of two different simulations: a flow in a
rectangular pipe and a flow through a metallic foam. . . . . . . . . 127

6.3 Time to generate a state file and write it to disk with and without
compression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.1 h-keys the peers of Figure 8.2 are responsible of. . . . . . . . . . 203

8.2 Definition of Succ and Prec for the situation of Figure 8.2 . . . . . 203

8.3 Comparison of DHTs regarding lookup efficiency, peer routing
table size, overlay maintenance method and Java library availability.208

8.4 Time (in seconds) to broadcast 1000 messages using different
MN-tree parameters. . . . . . . . . . . . . . . . . . . . . . . . . 219

xxi



xxii List of Tables

8.5 Time (in seconds) to execute 1000 barrier synchronizations using
different MN-tree parameters. . . . . . . . . . . . . . . . . . . . 220



List of Algorithms

2.1 Simple LB simulation code. . . . . . . . . . . . . . . . . . . . . 23
2.2 "Propagate values". . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 "Apply boundary conditions". . . . . . . . . . . . . . . . . . 24
2.4 "Apply collision". . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Incorrect in-place propagation of velocity 8 values. . . . . . . . . 26
2.6 Correct in-place propagation of velocity 8 values. . . . . . . . . . 26
2.7 In-place propagation. . . . . . . . . . . . . . . . . . . . . . . . . 28
2.8 Simulation code with in-place propagation. . . . . . . . . . . . . 29
2.9 "Copy outgoing densities to buffers". . . . . . . . . . . . 32
2.10 "Use buffers’ content to set incoming densities". . . 33
2.11 Decomposition of N into a list of prime numbers. . . . . . . . . . 38
2.12 Computation of qx, qy and qz using the list of dividers of N. . . . . 39
2.13 Parallel LB simulation algorithm. . . . . . . . . . . . . . . . . . . 40
2.14 Set sublattice incoming densities. . . . . . . . . . . . . . . . . . . 42
3.1 Circular array shift-based propagation. . . . . . . . . . . . . . . . 58
3.2 extractBlock procedure. This procedure implements the lattice-

block copy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3 "Copy of densities from lattice to block". . . . . . . . 62
3.4 setXYZPos procedure. This procedure sets the x, y, z components

of extracted sites in a given block. . . . . . . . . . . . . . . . . . 63
3.5 "Update x, y and z" . . . . . . . . . . . . . . . . . . . . . . . 64
3.6 updateLattice procedure. This procedure updates a D3Q19 lat-

tice with a given block’s data. . . . . . . . . . . . . . . . . . . . . 64
3.7 "Copy of densities from block to lattice". . . . . . . . 65
3.8 Collision using block access method. . . . . . . . . . . . . . . . . 67
4.1 Program executed by agent thread. . . . . . . . . . . . . . . . . . 84
5.1 Static load balancing during LaBoGrid’s execution. . . . . . . . . 107
6.1 Behavior of job submitter. . . . . . . . . . . . . . . . . . . . . . 120
6.2 "Request new DAs if needed". . . . . . . . . . . . . . . . . . 120
6.3 Sequential LB simulation with checkpointing. . . . . . . . . . . . 123
6.4 Parallel LB simulation with checkpointing. . . . . . . . . . . . . 125

xxiii



xxiv List of Algorithms

6.5 "Checkpoint sublattice state". . . . . . . . . . . . . . . . 125
6.6 "Checkpoint sublattice state" (parallel version). . . . . . . 126
6.7 Construction of x. . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.8 "Initialize x". . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.9 "Balance rows of x". . . . . . . . . . . . . . . . . . . . . . . 136
6.10 Construction of the RRG edges set. . . . . . . . . . . . . . . . . . 138
6.11 Retrieval of a file from DFS. . . . . . . . . . . . . . . . . . . . . 142
6.12 "Get locations from gFLT and download file". . . . . . . 142
6.13 "Checkpoint sublattice state" (DFS version). . . . . . . . 143
7.1 KL refinement algorithm. . . . . . . . . . . . . . . . . . . . . . . 160
7.2 "Build X and Y and set h". . . . . . . . . . . . . . . . . . . 161
7.3 "Build X and Y from E, F and S and set h". . . . . . . . 162
7.4 Unidirectional KL migration. . . . . . . . . . . . . . . . . . . . . 163
7.5 Declarations for uni-directional vertices migration algorithm. . . . 165
7.6 Definitions and declarations for A’s and B’s adjacency lists. . . . . 166
7.7 First pass of G’s initialization. . . . . . . . . . . . . . . . . . . . . 167
7.8 Second pass of G’s initialization. . . . . . . . . . . . . . . . . . . 169
7.9 "Generate list eLst of G[i]’s edges list". . . . . . . . 170
7.10 "Initialize ge". . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.11 "Allocate and initialize G[i]↑.edges using eLst". . . 171
7.12 swap procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.13 Construction of X set. . . . . . . . . . . . . . . . . . . . . . . . . 172
7.14 "Compute costs for vertices of A and build C". . . . . 173
7.15 "Set costs for n". . . . . . . . . . . . . . . . . . . . . . . . . 175
7.16 "Move vertex from (A\X) to X". . . . . . . . . . . . . . . . 176
7.17 "Update costs and C". . . . . . . . . . . . . . . . . . . . . . 177
7.18 Sending of sublattices to neighbors. . . . . . . . . . . . . . . . . 180
7.19 "Initialize B, nErr and nSubs". . . . . . . . . . . . . . . . 181
7.20 "Send sublattices". . . . . . . . . . . . . . . . . . . . . . . . 181
7.21 Sublattices migrations experiment. . . . . . . . . . . . . . . . . . 189
8.1 Barrier synchronization implementation. . . . . . . . . . . . . . . 198
8.2 Efficient location of the peer responsible of h-key k. . . . . . . . . 205



Chapter 1

Introduction

Computational Fluid Dynamics (CFD) is a branch of fluid mechanics that uses
numerical methods to study the motion of fluid flows by solving Navier-Stokes
equations. Lattice Boltzmann (LB) methods is a class of CFD methods well suited
to the simulation of flows in complex structures like porous media or packed beds
in distillation columns. LB simulations (i.e. simulations based on LB methods)
imply the update of real values stored in a multidimensional array during a given
number of time steps.

The multidimensional array used in the context of LB simulations generally
contains several millions of real values. An LB simulation can therefore require
around 10 gigabytes of memory. In addition, it is not unusual to run a simula-
tion for more than 10000 time steps. In this context, if we suppose that a single
computer with a Pentium IV 3GHz processor is equipped with enough memory, it
may take around 2 years to complete the simulation’s execution.

The execution of LB simulations in a distributed way (i.e. by using several
computers) can decrease the execution time. In addition, the amount of memory
required on each computer is smaller than for a single computer. However, the
computers of the distributed execution environment (i.e. that contribute to the
execution of a simulation) may neither be reliable nor share the same architec-
ture, computational power (i.e. the maximum number of instructions that can be
executed by time unit), Operating System (OS), etc. In addition, the probability
of failure increases with the number of computers. Finally, when the number of
computers executing the simulation is large (more than 100 computers), scalabil-
ity problems may arise.

1
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1.1 Thesis Statement

In this thesis, we show that it is possible to design and develop a software system
which organizes large scale clusters of inherently unreliable computers in an effi-
cient, scalable and robust way for implementing very large scale LB simulations.

1.2 Overview

Simulations based on LB methods can require large amounts of memory (several
gigabytes). In addition, if executed using a single processor, a simulation can last
for months on a powerful desktop computer. The parallelization of LB simula-
tions can accelerate the execution because several simulation processes are then
executed by several processors (one per processor) at the same time.

In order to execute large parallel simulations, a supercomputer with many
identical processors and a large amount of memory could be used. However, this
kind of system is sometimes out of reach from financial and/or technical point of
views.

An alternative can be found in clusters made of several affordable desktop
computers inter-connected by a simple Local Area Network (LAN). The memory
and the computational power of such systems can easily be increased by adding
computers to the cluster.

However, the availability of the computers of the cluster can be limited. Fol-
lowing scenario 1 illustrates this property: 50 desktop computers are used to run
LB simulations. However, 2 days a week, 20 of these computers are reserved for
student works and cannot run simulations at the same time. As a result, from sim-
ulation point of view at least, the cluster is composed of 50 computers 5 days a
week and 30 computers the two remaining days.

In addition, the cluster can be made of computers that do not have the same
processor architecture, OS or computational power. In addition, the reliability of
used computers can be limited because of faulty hardware and/or faulty software.
The execution of simulation processes can therefore be interrupted.

We call this kind of systems dynamic heterogeneous clusters: “dynamic” be-
cause the computers availability changes over time (even during the computing

1This scenario is inspired from a real cluster of computers managed by the algorithmics and
software engineering laboratory of University of Liège (ULg) and shared between students for
their practical works and researchers of the EECS department of the ULg.
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of one simulation) and “heterogeneous” because of the variety of architectures,
OSes, etc.

The efficient execution of distributed LB simulations on dynamic heteroge-
neous clusters is challenging. The following paragraphs describe the problems
that need to be solved.

The heterogeneous computational power of available computers must be taken
into account in order to reduce the execution time. If it is not the case (in particular
with an homogeneous distribution of the work among computers), some comput-
ers take more time than others to execute a time step of the simulation (this impairs
on the efficient use of the system by introducing waiting synchronization delays
on the faster computers). By moving work from slower computers to faster ones,
the global execution time can be reduced. Load balancing methods should there-
fore be used to compute the distribution of work among the cluster’s computers.
The problem of computing the work distribution before the application is executed
is called static load balancing.

Another problem is that the limited availability and reliability of the comput-
ers causes the number of executed simulation processes to vary over time. The
interruption of a simulation process prevents the completion of the simulation. In
order to avoid this, a fault-tolerance mechanism must be implemented to make
distributed LB simulations fault-tolerant.

When a simulation process is interrupted, the work that was assigned to it
must be redistributed to the remaining processes. Similarly, when a new process
is available, work should be redistributed in order to use the newly available re-
source. Work redistribution can therefore occur several times during application’s
execution. This problem is called dynamic load balancing and arises additional
constraints regarding static load balancing:

• work distribution computation must be fast and have a modest memory us-
age,

• the amount of work (and associated data) moved between processes must
be minimized.

First constraint stems from the fact that work distribution is executed in parallel
of the application. Second constraint minimizes the work migration time and,
therefore, the total execution time of the distributed application.

We implemented distributed LB simulations using a master-slave model. The
slaves processes execute the simulation and are managed by a master process that:
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• distributes the work among the slaves (possibly several times during the
simulation’s execution),

• detects and handles slaves interruptions and/or arrivals,

• provides required data for simulations,

• retrieves the results.

This model has two drawbacks:

• it is not robust because the master process is a single point of failure,

• it is not scalable because the master process may act like a bottleneck when
the number of slaves is large.

To solve these drawbacks, or at least reduce their importance, another model based
on a robust distributed implementation of the master process is suggested. This
model is based on a self-healing tree organization of the processes. It can be seen
as a generalization of the master-slave model where several masters are organized
into a tree and manage each a set of slaves.

In the context of this thesis, we designed a simulation tool called LaBoGrid.
LaBoGrid implements a fault-tolerance mechanism as well as static and dynamic
load balancing methods. It is based on an original framework facilitating the
development of master-slave-based distributed applications. This framework pro-
vides tools to implement the master process in a robust, scalable and distributed
way. LaBoGrid is therefore able to execute LB simulations in an efficient, poten-
tially scalable and robust way in the context of dynamic heterogeneous clusters.

In addition, LaBoGrid has following properties:

• extensible: LaBoGrid is used in an experimental context, new simulation
methods or algorithms may have to be integrated regularly.

• easy to use and extend: the typical user of LaBoGrid may not have high
programming skills.

1.3 Outline

Chapter 2 describes LB methods and a simple sequential implementation of LB
simulations. A first parallel implementation of LB simulations is given and its
parallel efficiency is evaluated.
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Chapter 3 suggests optimizations for the sequential implementation. Attempts
to improve the efficiency of the parallel implementation are also presented.

Chapter 4 presents the architecture of LaBoGrid, in particular the generic
framework facilitating the development of master-slave-based distributed appli-
cations.

Chapter 5 shows how existing static load balancing tools can be used to reduce
the execution time of LB simulations executed by computers with heterogeneous
computational powers.

Chapter 6 explains how to implement fault-tolerant distributed LB simula-
tions.

Chapter 7 introduces an original dynamic load balancing method.

Chapter 8 addresses the robust, scalable and distributed implementation of
LaBoGrid’s master.

Finally, Chapter 9 concludes this document.

1.4 Context

This thesis has been conducted in the frame of a project2 involving the laboratory of
chemical engineering (LGC3) and the laboratory of algorithmics and software engineering
(AIL4) of the University of Liège (ULg).

The LGC owns X-ray tomography systems giving access to complex geometries
found, for example, in porous media like metallic foams or packed beds in distillation
columns. In particular, an original system able to scan columns of up to 3 meters height
and 0.5 meter diameter with a resolution of 0.4 millimeter is used. Another tomogra-
phy system of the LGC is able to scan objects holding in a cube of 5 centimeters with a
resolution of 5 micrometers.

The goal of the project including this thesis is to create new experimental and simu-
lation-based tools to better characterize fluid flows in this kind of structures. Produced
tools must take into account structures’ complexity and the fact that flows may be turbu-
lent.

Four theses were produced in the context of the project. Saïd Aferka [12] and Sébastien

2 Action de Recherche Concertée (ARC) n◦ 05/10-334 : Techniques expérimentales avancées
et modélisation par automates cellulaire des systèmes multiphasiques : Application aux colonnes
de distillation et de distillation réactive.

3Laboratoire de Génie Chimique.
4Service d’Algorithmique et d’Ingénierie du Logiciel.



6 1. Introduction

Calvo [23] mainly addressed the experimental aspects. The thesis of Djomice Beugre [18]
details the LB model used to describe fluid flows in complex structures. Finally, this thesis
describes the design and the implementation of a simulation tool based on the flow model
defined by Djomice Beugre.

The work of Cyril Briquet [21] on grid computing (a form of distributed computing
based on “coordinated resource sharing and problem solving in dynamic, multi-institution-
al collaborations” [59]) and particularly on peer-to-peer (P2P) grid computing [21, 16, 29]
(a recent subdomain of grid computing based on the fully decentralized organization of
resource sharing based on the “exchange” of computing time) suggested the potential of
this kind of system to gather large amounts of computational power by giving access to
many unreliable computers.

The obtained execution environment is similar to dynamic heterogeneous clusters ex-
cept that the computers are potentially connected through the Internet. In Chapter 6, we
describe how LaBoGrid can be executed by CanoPeer [1], the P2P grid computing mid-
dleware designed by Cyril Briquet, and we show therefore the potential of using a grid
computing middleware to execute distributed LB simulations.



Chapter 2

Lattice Boltzmann Methods And
Their Implementation

2.1 Introduction

A viscous fluid flow is described by Navier-Stokes (N-S) equations. A solution to
these equations is called a velocity field and describes the velocity of the fluid at
points in space and time.

Computational Fluid Dynamics (CFD) is a branch of fluid mechanics that uses
numerical methods to study fluid flows by solving N-S equations. For this pur-
pose, fluids (liquid or gas) flowing through solid structures are simulated. Com-
puters can only handle a finite amount of values with a finite precision. A bounded
spatial domain is therefore discretized into connected cells forming a mesh or grid.

Most CFD methods solve the motion equations at the points defined by the
mesh. Lattice Boltzmann (LB) methods use an alternative approach: fluid is de-
scribed by fictitious particles moving on a regular grid. These particles then col-
lide with each other or against solid obstacles at the cells of the mesh.

LB methods are particularly interesting for simulating fluid flows in complex
boundaries encountered in chemical engineering like porous media or packed beds
in distillation columns [18]. However, LB simulations may require large amounts
of memory (10 gigabytes) and run for months if executed on a single powerful
desktop computer. The distributed implementation of LB simulations can de-
crease the execution time and reduce the memory requirements for each computer.

A possible execution environment are heterogeneous clusters (see Chapter 1).
However, the execution of distributed applications in this kind of environment

7
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arises a potential portability issue: the implementation is executed on computers
that potentially do not share same architecture, OS, etc. An implementation of LB
simulations executed in the context of a heterogeneous cluster should therefore
solve this problem.

2.1.1 Chapter Outline

LB methods are briefly introduced in Section 2.2. A complete and precise presen-
tation of LB methods is out of the scope of this thesis. The content of this section
directly depends on the work of Djomice Beugre [18].

The portability issue and the choice of the programming language used for our
implementation is discussed in Section 2.3.

A basic sequential implementation of LB simulations is presented in Sec-
tion 2.4.

A parallel implementation of LB simulations is described in Section 2.5.

The parallel efficiency of the parallel implementation presented in Section 2.5
is evaluated and discussed in Section 2.6.

Finally, Section 2.7 concludes this chapter.

2.2 Lattice Boltzmann Methods

2.2.1 Definitions

In LB methods, the spatial domain (R3) is discretized into a regular grid called
lattice. Each node of the lattice is called a site and is associated to a point in space.
If the point associated to a site is part of a solid, the site is an obstacle. Time is
also regularly discretized. Finally, the set of possible velocities for a particle (R3)
is reduced to a set of q 3 dimensions velocity vectors vi with i = 0,1, . . . ,q− 1.
These vectors are defined such as a particle at point p in space at time t and
moving according to a velocity vi is at point p+vi at time t +∆t where ∆t is the
time sampling period.

A site has a position x in the lattice with x∈Z3. Function s :Z3→{true, f alse}
is used to define the nature of a site: if s(x) is true then the site at position x is an
obstacle. Otherwise, the site is not an obstacle.
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Figure 2.1: A site (center of the cube) of a D3Q19 lattice and its neighborhood.
The numbers are identifiers of the neighborhood vectors (i is the identifier of vec-
tor ni).

A set of q neighborhood vectors ni with i = 0,1, . . . ,q− 1 and ni ∈ Z3 is
defined such as x+ni is the position of another site of the lattice. ni has the same
direction as vi and is defined such as a particle at the point associated to position
x at discrete time t and moving according to velocity vi is at the point associated
to position x+ni at discrete time t +1.

The neighborhood of a site at position x is the set of q sites at positions x+ni
with i = 0,1, . . . ,q−1. The neighborhood of the site may contain the site itself if
one of the neighborhood vectors is equal to the zero vector (noted 0).

Lattices used in the context of LB methods are generally classified using the
notation DdQq where d is the number of dimensions and q the number of velocity
vectors. Note that for all lattices used in LB methods, for any velocity vi, v j exists
such as vi + v j = 0. Similarly, for any neighborhood vector ni, n j exists such as
ni +n j = 0.

Figure 2.1 shows a site of a D3Q19 lattice and its neighbors. On the fig-
ure, only 18 neighborhood vectors are represented. The last neighborhood vector
being zero vector: the site is also a neighbor of itself. Table 2.1 shows the 19
neighborhood vectors of a D3Q19 lattice.

LB methods are based on the following equation:

fi(x+ni, t +1) = fi(x, t)+Ωi i = 0,1, . . . ,q−1 (2.1)

where x is the position of a site, ni a neighborhood vector and t discrete time.
fi : Z3×Z→ R is called the particle distribution function.
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i ni i ni

0 (0,0,0) 9 (1,−1,0)
1 (1,0,0) 10 (−1,−1,0)
2 (−1,0,0) 11 (1,0,1)
3 (0,1,0) 12 (−1,0,1)
4 (0,−1,0) 13 (1,0,−1)
5 (0,0,1) 14 (−1,0,−1)
6 (0,0,−1) 15 (0,1,1)
7 (1,1,0) 16 (0,−1,1)
8 (−1,1,0) 17 (0,1,−1)

18 (0,−1,−1)

Table 2.1: The neighborhood vectors of D3Q19 lattices given in the form (x,y,z).

fi(x, t) is a real value from the interval [0..1], called density, that can be in-
terpreted [18] as the probability of having particles at position x moving along
velocity vector vi at time t. A velocity vector equal to zero vector therefore allows
to represent particles at rest.

The term Ωi is called collision operator. It describes the interaction of parti-
cles located at a point at a given time.

The discretized density field ρ and the discretized velocity field u can be com-
puted using the particle distribution function:

ρ(x, t) =
q−1

∑
i=0

fi(x, t) (2.2)

u(x, t) =
1

ρ(x, t)

q−1

∑
i=0

fi(x, t)vi (2.3)

ρ(x, t) is a real value (density of the fluid at position x and time t) and u(x, t) is a
vector from R3 (velocity of fluid at position x and time t).

The computation of the densities at time t +1 in function of densities at time t
generally involves two main phases: propagation (sometimes called streaming)
and collision. Propagation is the operation of “moving” fi(x, t) values to x’s neigh-
bors x+ni with i = 0,1, . . . ,q−1. Collision is the computation of the new parti-
cle distribution functions values fi(x, t +1) given the interaction of particles (and,
therefore, based on propagated values). These two operations can be highlighted
by decomposing Equation 2.1 into two equations, first representing propagation
and second collision:

f̂i(x+ni, t) = fi(x, t) (2.4)
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fi(x, t +1) = f̂i(x, t)+Ωi (2.5)

2.2.2 Collision Operator

One pillar of LB methods is the collision operator Ωi and particularly the way it
is calculated. One way is the Bhatnagar-Gross-Krook (BGK) operator [20]:

Ω
BGK
i (x, t) =

1
τ
( f eq

i (x, t)− f̂i(x, t)) i = 0,1, . . . ,q−1 (2.6)

where τ is a relaxation time related to fluid viscosity and f eq
i the local equilibrium

distribution (the notation f eq
i stands for f eq

i (x, t), this shortcut will frequently be
used hereafter to refer to functions of position and time like ρ, u, fi, etc.). The
f eq
i distribution can be computed in order to recover Navier-Stokes macroscopic

equations with BGK model [65, 26].

Velocity vectors can be organized in the following sets:

X+ = {1,7,9,11,13}
X− = {2,8,10,12,14}
Y+ = {3,7,8,15,17}
Y− = {4,9,10,16,18}
Z+ = {5,11,12,15,16}
Z− = {6,13,14,17,18}

Each set contains identifiers of velocity vectors having a positive or negative com-
ponent for each axis. For example, set X+ contains the identifiers of velocity
vectors having x component greater than zero and X− the identifiers of velocity
vectors having x component lower than zero.

The following values are needed to present the computation of f eq
i values in

the case of D3Q19 lattices:

ux = 1
ρ

(
∑k∈X+ f̂k−∑k∈X− f̂k

)
uy = 1

ρ

(
∑k∈Y+ f̂k−∑k∈Y− f̂k

)
uz = 1

ρ

(
∑k∈Z+ f̂k−∑k∈Z− f̂k

)
uc =

(
1− 3

2(ux +uy +uz)
2)
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Local equilibrium distribution is then calculated as follows [18]:

f eq
0 = ρ

3 uc f eq
1 = ρ

18(uc +3ux +
9u2

x
2 )

f eq
2 = ρ

18(uc−3ux +
9u2

x
2 ) f eq

3 = ρ

18(uc +3uy +
9u2

y
2 )

f eq
4 = ρ

18(uc−3uy +
9u2

y
2 ) f eq

5 = ρ

18(uc +3uz +
9u2

z
2 )

f eq
6 = ρ

18(uc−3uz +
9u2

z
2 ) f eq

7 = ρ

36(uc +3(ux +uy)+
9(ux+uy)

2

2 )

f eq
8 = ρ

36(uc +3(−ux +uy)+
9(−ux+uy)

2

2 ) f eq
9 = ρ

36(uc +3(ux−uy)+
9(ux−uy)

2

2 )

f eq
10 = ρ

36(uc +3(−ux−uy)+
9(−ux−uy)

2

2 ) f eq
11 = ρ

36(uc +3(ux +uz)+
9(ux+uz)

2

2 )

f eq
12 = ρ

36(uc +3(−ux +uz)+
9(−ux+uz)

2

2 ) f eq
13 = ρ

36(uc +3(ux−uz)+
9(ux−uz)

2

2 )

f eq
14 = ρ

36(uc +3(−ux−uz)+
9(−ux−uz)

2

2 ) f eq
15 = ρ

36(uc +3(uy +uz)+
9(uy+uz)

2

2 )

f eq
16 = ρ

36(uc +3(−uy +uz)+
9(−uy+uz)

2

2 ) f eq
17 = ρ

36(uc +3(uy−uz)+
9(uy−uz)

2

2 )

f eq
18 = ρ

36(uc +3(−uy−uz)+
9(−uy−uz)

2

2 )

The BGK operator uses a single relaxation time and is sometimes called Single
Relaxation Time (SRT) collision operator. However, it is numerically unstable
when simulating turbulent flows.

More recently, it has been shown that using multiple relaxation times improves
numerical stability in particular when simulating turbulent flows [31]. The Multi-
ple Relaxation Times (MRT) collision operator can be written as follows:

Ω
MRT
i (x, t) =

{
C[feq(x, t)− f̂(x, t)]

}
i (2.7)

where C is a q×q collision matrix, feq(x, t) a vector defined as

( f eq
0 (x, t), f eq

1 (x, t), . . . , f eq
q−1(x, t))

T

and f̂(x, t) a vector defined as

( f̂0(x, t), f̂1(x, t), . . . , f̂q−1(x, t))T .

When a single relaxation time is used, matrix C is equal to 1
τ
I where I is the

identity matrix. In this case, ΩMRT
i = ΩBGK

i .

Matrix C can be expressed in function of two other matrices: C = M−1SM.
Matrix M is a transformation matrix and S contains the relaxation times. These
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matrices are shown hereafter for D3Q19 lattices [31]:

M =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8
12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 −4 4 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 −4 4 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 −4 −4 2 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 −2 −2 2 2 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0
0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0
0 0 0 0 0 0 0 −1 −1 1 1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1


M is orthogonal and therefore M−1 = MT .

S = diag(0,1.19,1.4,0,1.2,0,1.2,0,1.2,
1
τ
,1.4,

1
τ
,1.4,

1
τ
,
1
τ
,
1
τ
,1.98,1.98,1.98)

where τ is a relaxation time that allows to parametrize viscosity. Other values of
S are fixed to enhance numerical stability [31].

Equation 2.7 can therefore be rewritten as follows:

Ω
MRT
i (x, t) =

{
M−1SMfeq(x, t)−M−1SMf(x, t)]

}
i (2.8)

In pratice, matrices M−1S and M−1SM are computed once initially and vector
Mfeq(x, t) = meq(x, t) is directly computed at each time step as follows (instead
of computing vector feq):

meq
0 = ρ meq

1 = −11ρ+9 ‖ j ‖2

meq
2 = 3ρ− 11

2 ‖ j ‖2 meq
3 = jx

meq
4 = −2

3 jx meq
5 = jy

meq
6 = −2

3 jy meq
7 = jz

meq
8 = −2

3 jz meq
9 = 2 j2

x − j2
y − j2

z
meq

10 = 0 meq
11 = j2

y − j2
z

meq
12 = 0 meq

13 = jx jy
meq

14 = jy jz meq
15 = jx jz

meq
16 = 0 meq

17 = 0
meq

18 = 0

where ρ is the local density and jα = ρuα (α = x,y,z).

Large Eddy Simulation (LES) techniques, used to describe turbulent flows,
can be applied to LB methods by combining the turbulent viscosity model of
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Smagorinsky [72] with SRT [43] and MRT [50] collision models. The basic idea
of the method is to locally (i.e. independently for each site) increase relaxation
time: new relaxation time τtot is equal to τ+ τt where τ is the initial relaxation
time and τt the effect of smaller scales (turbulences contribution).

Value τt is calculated using following equation:

τt =
1
2

(√
τ2 +18

√
2C2

smg

√
Q− τ

)
where Csmg is the Smagorinsky subgrid constant (generally, 0 ≤Csmg < 0.5) and
Q a value defined as follows:

Q = ∑
α∈x,y,z

∑
β∈x,y,z

18

∑
k=0

[
f̂k− f eq

k

]
nkαnkβ

where nkα is the component along axis α of neighborhood vector nk.

The use of Smagorinsky’s turbulent viscosity model introduces an execution
time overhead because of the computation of τt at each time step. This overhead is
even more important when the turbulent model is combined with MRT collision
model: matrices M−1S and M−1SM need to be recalculated at each time step
instead of being calculated only once at the beginning of the simulation.

2.2.3 Boundary Conditions

As stated previously, a fluid simulated with numerical methods must be defined
on a bounded spatial domain. Boundary conditions are used to describe the fluid
dynamics on its boundaries composed of the lattice borders and fluid-solid inter-
faces.

A general definition for the border of a lattice is the set of sites that lack at least
one neighbor: let x be the position of one of these sites, it exists a neighborhood
vector ni such as x+ni is not the position of a site of the lattice (the position is
out of the lattice).

A 3 dimensions finite lattice (D3Qq family) is a cube or a cuboid (see Fig-
ure 2.2). The components of position x = (x,y,z) have ranges defined in the fol-
lowing way: 0 ≤ x < xSize, 0 ≤ y < ySize and 0 ≤ z < zSize where xSize, ySize
and zSize are the size of each dimension. The size of a 3D lattice is defined by
the vector (xSize,ySize,zSize) and the number of sites of the lattice is given by
xSize× ySize× zSize.

The border sites of a 3D lattice have a position with at least one of the follow-
ing properties:



2. Lattice Boltzmann Methods 15

z

x

y

Figure 2.2: 3D lattices are cubes or cuboids.

• x = 0
• x = xSize−1
• y = 0
• y = ySize−1
• z = 0
• z = zSize−1

As of propagation equation (Equation 2.4), some densities are undefined after
propagation for the border sites of the lattice: density f̂i(x+ni, t) is not defined
for a border site at position x because it has no neighbor at position x−ni.

These undefined densities are called incoming densities. On Figure 2.3, the
arrows represent the incoming densities in three situations: case (a) corresponds
to a site with y = ySize−1, case (b) to a site with x = xSize−1 and y = ySize−1,
and case (c) to the site with x = xSize− 1, y = ySize− 1 and z = zSize− 1. All
other situations are similar to one of these 3 cases. Boundary conditions are used
to set these values.

When a border site has no neighbor at position x + ni, propagation causes
densities to go out of the lattice. These densities are called outgoing densities.
Examples of outgoing densities can be seen in Figure 2.4: the three cases are
similar to the cases of Figure 2.3.

Due to the stochastic nature of LB methods, boundary conditions are not easy
to derive and proposed solutions are generally ad-hoc. To handle fluid behavior
at the interface with a solid, a method called bounce-back is commonly used. In
order to settle the flow in simple structures, a body force can be applied to the
fluid. In this situation, periodic boundary conditions are used: outgoing densities
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Figure 2.3: Incoming densities for a site on (a) a plane, (b) an edge and (c) a
corner. The arrows represent the incoming densities.
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15
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17
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1

13
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Figure 2.4: Outgoing densities for a site on (a) a plane, (b) an edge and (c) a
corner. The arrows represent the outgoing densities.
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Inflow face

Outflow face

Flow direction

Figure 2.5: Inflow and outflow planes of a 3D lattice. These planes are normal to
the flow direction.

are used to set incoming densities (what goes out at one side comes in at the op-
posite side). In more complex structures with potentially turbulent flows, pressure
conditions should be specified.

In the case of 3D lattices, the inflow sites (sites where fluid enters the lattice)
and outflow sites (sites where fluid leaves the lattice) are part of opposite faces of a
cube or cuboid. These faces are normal to flow direction (see Figure 2.5). Periodic
boundary conditions are applied to the faces that are parallel to flow direction.

Bounce-Back

The main idea of the bounce-back [78] method (initially used with cellular au-
tomata) is that a particle following a given direction and that collides with an
obstacle “bounces” in the opposite direction.

After the propagation step, the collision operator is applied on sites that are
not obstacles. If a site is an obstacle, the bounce-back method is applied instead
and the following equation is used instead of Equation 2.5:

fi(x, t +1) = f̂ j(x, t) (2.9)

where i and j are such as ni =−n j.

For instance, if we suppose that s(x) is false and s(x+ ni) is true. Then, if
ni = −n j, the following equalities are derived from Equation 2.4 (first and third
equality) and Equation 2.9 (second equality):

f̂ j(x, t +1) = f j(x+ni, t +1) = f̂i(x+ni, t) = fi(x, t)

This illustrates the fact that particles moving in direction ni and colliding against
an obstacle come back in the opposite direction at time t +1.
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Flow direction

Periodic boundary conditions

Wall

Body Force

Figure 2.6: Periodic boundary conditions for a flow in a pipe. The longitudinal
section of a pipe element is represented.

Body Force and Periodic Boundary Conditions

In simple structures like pipes, a flow can be settled by applying a body force G
on the fluid. In this case, Equation 2.1 can be rewritten as follows:

fi(x+ni, t +1) = fi(x, t)+Ωi +gi (2.10)

where gi is a forcing term computed in function of real body force G. Inflow and
outflow planes are considered as contiguous and the propagation equation (Equa-
tion 2.4) is then used to set incoming densities from inflow plane with outgoing
densities of outflow plane.

This method can be used to simulate a flow in an infinite pipe in the flow di-
rection where walls parallel to flow direction contain the fluid. The lattice then
represents a section of the pipe. Periodic boundary conditions are applied to sim-
ulate the infinite pipe (see Figure 2.6): outgoing densities of the outflow plane are
used to set corresponding incoming densities of the inflow plane.

Periodic boundary conditions are full when periodic boundary conditions are
applied for the whole border of the lattice (instead of only inflow and outflow
planes). In this case, outgoing densities of any face or edge of the lattice are used
to set corresponding incoming densities of opposite face or edge. Full periodic
boundary conditions can be seen as a way to make a lattice infinite in all directions.

Full periodic boundary conditions are applied when using the following equa-
tion instead of propagation equation (Equation 2.4):

f̂i((x+ni) mod s, t) = fi(x, t) (2.11)

where s is the size of the lattice and ((x+ni) mod s) j = (x j +ni j) mod s j.

In this case, the neighborhood of a site must be redefined: the neighborhood
of a site at position x is the set of q sites at positions (x+ ni) mod s with i =
0,1, . . . ,q−1. In this case, a site has always q neighbors.
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Pressure conditions

With pressure conditions, incoming densities of a site are extrapolated using other
propagated densities. In LB methods, pressure conditions are obtained by impos-
ing density conditions. A flow can be obtained by forcing a higher density for
inflow sites than for outflow sites.

A method has been proposed [81] to compute incoming densities for inflow
and outflow sites given an input density ρin and an output density ρout . This
method has been adapted to D3Q19 lattices [18] to obtain a flow in x-axis’s direc-
tion and is summarized below.

The set of density identifiers can be partitionned into 3 subsets: X0 = {0,3,4,5,6,15,16,17,18}
X+ = {1,7,9,11,13}
X− = {2,8,10,12,14}

where X0 is the set of identifiers of densities with velocity vectors normal to x-
axis (and therefore to flow direction), X+ the set of identifiers of densities with
velocity vectors having a positive x component and X− the set of identifiers of
densities with velocity vectors having a negative x component (see Table 2.1).

The following value is needed to compute input pressure conditions:

cin = ρin−

[
∑

k∈X0

fk +2 ∑
k∈X−

fk

]

Incoming densities ( fi with i ∈ X+) for inflow sites can then be computed as fol-
lows:

f1 = f2 +
1
3

cin

f7 = f10 +
1
6

cin

f9 = f8 +
1
6

cin

f11 = f14 +
1
6

cin

f13 = f12 +
1
6

cin
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The following value is needed to compute output pressure conditions:

cout = ρout−

[
∑

k∈X0

fk +2 ∑
k∈X+

fk

]

Incoming densities ( fi with i ∈ X−) for outflow sites can then be computed as
follows:

f2 = f1 +
1
3

cout

f10 = f7 +
1
6

cout

f8 = f9 +
1
6

cout

f14 = f11 +
1
6

cout

f12 = f13 +
1
6

cout

2.2.4 Initial Conditions

LB methods base equation (Equation 2.1) describes the evolution of particle distri-
bution functions. However, initial fi(x,0) values are needed. A common approach
is to initialize the fluid at rest (no flow) [18]:

f0 = 1
3

fi = 1
18

f j = 1
36

where i ∈ {1,2,3,4,5,6} and j ∈ {7,8, . . . ,18}.

The values produced by a previous simulation can be used as initial conditions
in order to continue its execution.

2.3 Language Choice

The distributed LB simulation tool that is presented in this thesis is an experimen-
tal software. Its maintenance and evolution capabilities must therefore be strong.
In addition, the software should be adapted to heterogeneous clusters.
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C, C++ or Fortran are generally chosen to write numerically intensive pro-
grams. In particular, Fortran is appreciated by scientists because of its native
support for complex numbers and multi-dimensional arrays.

However, Fortran is not well suited to nonscientific programming involving
complex data structures and provides few tools to organize and maintain the source
code of complex applications composed of many components requiring several
thousands of lines of code each. In addition, the binary file produced by the com-
pilation of a Fortran program is bound to a particular architecture and OS and is
therefore not directly portable.

C++ provides the Object Oriented Programming (OOP) paradigm to organize
the source code. However, the same portability issue as Fortran remains.

When executing a distributed application in an environment where computers
have several architectures, different operating systems and/or different libraries
installed, the lack of portability is an important issue.

The Java programming language [4] mostly solves the portability issue: the
compilation of a Java program produces byte-code files that can be executed by
any Java Virtual Machine (JVM). Implementations of the JVM are available for
most popular OSes and architectures. Moreover, Java provides the OOP paradigm
as well as convenient tools (like garbage collector, standard libraries, etc.) that
ease and accelerate software development. However, Java has drawbacks regard-
ing scientific programming :

• No support for complex numbers (like C/C++).

• No direct support for multi-dimensional arrays (like C/C++).

• Potential performance problems: the additional complexity layer introduced
by the execution of the byte-code by a JVM introduces an overhead in exe-
cution time when compared to a native implementation.

First drawback can be ignored in the context of LB simulations because no
complex numbers support is needed. Second drawback will be discussed in Chap-
ter 3.

Regarding last drawback, a recent publication [15] has shown that the per-
formance of Java implementations for computationally intensive tasks executed
on distributed systems tends to be similar to native implementations using For-
tran and MPI (Message Passing Interface, an Application Programming Interface
(API) specification for inter-process communications). This is mostly because
JVMs implement a mechanism called Just-In-Time compilation: parts of the byte-
code are converted at run time into native code and directly executed by the CPU.
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With tasks involving the exchange of many small messages (less than 50 bytes),
Java implementation is 2 to 6 times slower than native implementation. LB sim-
ulations executed in a distributed way involve the exchange of many messages.
However, these messages are generally represented on more than 3 kilobytes.

Java is a reasonable compromise between efficiency and portability. In addi-
tion, it is adapted to the organization and maintenance of complex projects involv-
ing several components and requiring many lines of code. It was therefore chosen
to implement our LB simulation tool.

2.4 Sequential Implementation

Previously, LB methods were presented from a mathematical and physical point
of view. In this section, a sequential implementation of LB simulations is given.

LB methods are based on the calculation of particle distribution functions val-
ues using Equation 2.1. The notation fi(x, t) suggests the use of a 4D array to
represent f : 3 dimensions for the position x and one for the velocity i.

Another array of same size can be used to represent f̂ after propagation phase
(see Equation 2.4). The result of the collision operator being applied on f̂ values
is stored back into the array representing f (see Equation 2.5). This process can
be applied again until the right number of time steps has been reached. The solid
function s is represented by a 3D array of booleans.

These arrays can be declared as follows:

f : array[0..xSize-1, 0..ySize-1, 0..zSize-1, 0..18] of real;
fHat : array[0..xSize-1, 0..ySize-1, 0..zSize-1, 0..18] of real;
s : array[0..xSize-1, 0..ySize-1, 0..zSize-1] of boolean;

where xSize, ySize, zSize represent the size of the lattice (in number of sites)
for respectively x, y and z dimensions.

The Algorithm 2.1 illustrates a typical LB simulation code on a D3Q19 lattice.
timeSteps is the number of time steps of the simulation.

"Fill s" fills s in a way depending on the solid shape. Generally, the solid
shape is read from a file. "Initialize f" fills f using the theory described in
Section 2.2.4.
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"Fill s";
"Initialize f";
t := 0;
do t < timeSteps →

"Propagate values";
"Apply boundary conditions";
"Apply collision";
t := t + 1

od

Algorithm 2.1: Simple LB simulation code.

Algorithm 2.2 describes the propagation step. Values are propagated in func-
tion of the neighborhood vectors defined previously in Table 2.1. The use of the
modulo operator to compute the destination position in fHat implements the pe-
riodic boundary conditions described in Section 2.2.3.

"Initialize x, y and z for the scan of f";
do "scan of f is not finished" →

fHat[x, y, z, 0] = f[x, y, z, 0];
fHat[(x+1) mod xSize, y, z, 1] = f[x, y, z, 1];
fHat[(x-1) mod xSize, y, z, 2] = f[x, y, z, 2];
...
fHat[x, (y-1) mod ySize, (z-1) mod zSize, 18] = f[x, y, z, 18];
"Go to next site"

od

Algorithm 2.2: "Propagate values".

Algorithm 2.3 describes command "Apply boundary conditions" and im-
plements pressure boundary conditions. For the sake of readability, only the par-
ticular case of a flow in x direction is presented. "Set incoming densities of
fHat[0, y, z, .]" and "Set incoming densities of fHat[xSize - 1,
y, z, .]" commands are based on the theory described in Section 2.2.3.
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y, z := 0, 0
do y < ySize →

{Set values for inflow plane}
if not s[0, y, z] →

"Set incoming densities of fHat[0, y, z, .]"
2 s[0, y, z] → skip
fi;
{Set values for outflow plane}
if not s[xSize - 1, y, z] →

"Set incoming densities of fHat[xSize - 1, y, z, .]"
2 s[xSize - 1, y, z] → skip
fi;
if z < zSize - 1 → z := z + 1
2 z = zSize - 1 → z := 0; y := y + 1
fi

od

Algorithm 2.3: "Apply boundary conditions".

Algorithm 2.4 describes command "Apply collision" and implements col-
lision, bounce-back and body force (see Sections 2.2.2 and 2.2.3). "Apply colli-
sion operator on fHat[x, y, z, .]" effectively applies collision and body
force. The result of this operation i.e. the 19 densities associated to position
(x,y,z) is stored in the f array at the same position.

2.4.1 In-place Propagation

An in-place version of propagation (Algorithm 2.2) can be written in order to
eliminate the fHat array. The memory usage of LB simulations is therefore de-
creased.

Propagation can be seen as the application of a translation to all values asso-
ciated to a given velocity. For example (see Figure 2.1):

• A translation vector (1,0,0) is applied on each value associated to velocity 1
and f[x + 1, y, z, 1] := f[x, y, z, 1] (with 0 ≤ x < xSize-1).

• A translation vector (−1,1,0) is applied on each value associated to veloc-
ity 8 and f[x - 1, y + 1, z, 8] := f[x, y, z, 8] (with 0 < x <
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"Initialize x, y and z for scan of f";
do "scan of f is not finished" →

if s[x, y, z] → {Bounce-back}
f[x, y, z, 0] := fHat[x, y, z, 0];
f[x, y, z, 1] := fHat[x, y, z, 2];
...
f[x, y, z, 18] := fHat[x, y, z, 15];

2 not s[x, y, z] →
"Apply collision operator on fHat[x, y, z, .]"

fi;
"Go to next site"

od

Algorithm 2.4: "Apply collision".

xSize and 0 ≤ y < ySize - 1).

This translation can be applied directly to values of f array by using three nested
loops, one on each position component (x, y and z) and moving the value at
current position to the new position (see below).

However, the scan direction must be chosen in function of the translation
vector. In the case of velocity 8 for example, Algorithm 2.5 is not correct. It
leads to a situation where f[x-1, 1, z, 8] = f[x-1, 2, z, 8] = . . . = f[x-1,
ySize-1, z, 8] for fixed x and z.

Changing the scan direction for y index solves the problem. A correct in-place
propagation of velocity 8 values is described by Algorithm 2.6.

The loop invariant P is given by the following expression and defines the area
of array f containing propagated values after each iteration:

{P: (0 < x≤ xSize)∧ (0≤ y < ySize−1)∧ (0≤ z < zSize)∧
“Densities associated to velocity 8 have been propagated for sites at positions

(i, j,k)” ∧ ((0≤ i < x−1)∧ (1≤ j < ySize)∧ (0≤ k < zSize))∨
((i = x−1)∧ (y+1 < j < ySize)∧ (0≤ k < zSize))∨

((i = x−1)∧ ( j = y+1)∧ (0≤ k < z))}

After the loop terminated its execution, the following expression is true:

x = xSize∧ y = ySize−2∧ z = 0
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x, y, z := 1, 0, 0;
do x < xSize →

f[x-1, y+1, z, 8] := f[x, y, z, 8];
if z < zSize - 1 → z := z + 1
2 z = zSize - 1 →

z := 0;
if y < ySize - 1 → y := y + 1
2 y = ySize - 1 →

y := 0; x := x + 1
fi

fi
od

Algorithm 2.5: Incorrect in-place propagation of velocity 8 values.

x, y, z := 1, ySize - 2, 0; {P}
do x < xSize → {P}

f[x-1, y+1, z, 8] := f[x, y, z, 8];
if z < zSize - 1 → z := z + 1
2 z = zSize - 1 →

z := 0;
if y > 0 → y := y - 1
2 y = 0 →

y := ySize - 2; x := x + 1
fi

fi {P}
od {P}

Algorithm 2.6: Correct in-place propagation of velocity 8 values.
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The densities associated to velocity 8 of sites at positions (i, j,k) have then been
propagated with i, j,k defined by the following expression:

((0≤ i < xSize−1)∧ (1≤ j < ySize)∧ (0≤ k < zSize))

This shows that the sites at positions (i, j,k) with i, j,k defined as follows:

((i = xSize−1∨ j = 0)∧0≤ k < zSize)

have an obsolete value of density 8. These values are the incoming densities for
velocity 8.

In order to simplify next algorithms description, a notation is introduced to
describe a scan. Let α be an index variable, a scan type of on an array using this
variable can be described using following notation:

• α0: α is incremented from 0 to maximum value (α dimension size minus
one).

• α+: α is incremented from 1 to maximum value. The scan is positive.

• α−: α is decremented from maximum value minus one to 0. The scan is
negative.

The composed notation αiβ jγk represents a scan on a 3D array using variables α,
β and γ.

For example, Algorithm 2.6 uses a x+y−z0 scan and can be rewritten as fol-
lows:

"Initialize x+y−z0 scan";
do "x+y−z0 scan is not finished" →

f[x-1, y+1, z, 8] := f[x, y, z, 8];
"Go to x+y−z0 next"

od

The translation vector that must be applied on values of array f for a velocity
q can be written tq = (tq

x , t
q
y , t

q
z ) where tq

α is equal to 0, 1 or -1 (α = x,y,z). For a
given velocity q, the scan direction is determined using following rules:

• if tq
α = 1, an α− scan is used.
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• if tq
α =−1, an α+ scan is used.

• if tq
α = 0, an α0 scan is used.

Note that Algorithm 2.6 respects these rules.

Algorithm 2.7 describes an in-place propagation. This algorithm does not
implement periodic boundary conditions: outgoing densities are not extracted and
incoming densities are not set.

{Velocity 0 : Nothing to do}
{Velocity 1 : translation (1,0,0)}
"Initialize x, y, z for x−y0z0 scan";
do "x−y0z0 scan is not finished" →

f[x+1, y, z, 1] := f[x, y, z, 1];
"Go to x−y0z0 next"

od;

{Velocity 2 : translation (-1,0,0)}
"Initialize x, y, z for x+y0z0 scan";
do "x+y0z0 scan is not finished" →

f[x-1, y, z, 2] := f[x, y, z, 2];
"Go to x+y0z0 next"

od;

"Apply propagation for velocities 3..17";

{Velocity 18 : translation (0,-1,-1)}
"Initialize x, y, z for x0y+z+ scan";
do "x0y+z+ scan is not finished" →

f[x, y-1, z-1, 1] := f[x, y, z, 1];
"Go to x0y+z+ next"

od

Algorithm 2.7: In-place propagation.

With in-place propagation, boundary conditions (Algorithm 2.3) and collision
(Algorithm 2.4) algorithms must be adapted to directly modify f. In order to in-
clude periodic boundary conditions, LB simulation algorithm 2.1 should be rewrit-
ten as shown in Algorithm 2.8.
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"Initialize f";
"Fill s";
t := 0;
do t < timeSteps →

"Copy outgoing densities to buffers";
"Propagate values";
"Use buffers’ content to set incoming densities";
"Apply boundary conditions";
"Apply collision";
t := t + 1

od

Algorithm 2.8: Simulation code with in-place propagation.

(a) (b)

Site

Figure 2.7: Example of a lattice face (a) and a lattice edge (b).

Periodic Boundary Conditions with In-place Propagation

Before commands "Copy outgoing densities to buffers" and "Use buf-
fers’ content to set incoming densities" from Algorithm 2.8 can be pre-
sented, some definitions are needed.

A site of a lattice with size (sx,sy,sz) is part of a face of the lattice if at least
one component α of its position in the lattice is equal to 0 or sα−1 (α ∈ {x,y,z}).

A site of a lattice with size (sx,sy,sz) is part of an edge of the lattice if two
components α and β of its position in the lattice are respectively equal to 0 or
sα−1 and to 0 or sβ−1 (α,β ∈ {x,y,z},α 6= β).

Figure 2.7 illustrates these two definitions. Note that a site can be part of a
face and an edge at the same time.

A neighborhood vector (see Section 2.2.1) can be associated to each face or
edge of a lattice. The situation can be illustrated by Figure 2.1 where the central
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(a) (b)

Figure 2.8: Number of outgoing densities for a face (a) and an edge (b) for a
D3Q19 lattice. The arrows represent the outgoing densities.

site is replaced by a lattice. A number i can be associated to each face or edge of
a lattice: it is the number of the associated neighborhood vector.

In the context of D3Q19 lattices, there are 5 outgoing densities per site of a
face and 1 outgoing density per site of an edge (see Figure 2.8). All the densities
coming out of a face of a lattice can therefore be stored into a 3D array, one
dimension for the 5 densities and the two others for the position in the face. All
densities coming out of an edge of a lattice can be stored into a 1D array.

A D3Qq lattice has 6 faces and 12 edges. The outgoing densities of a D3Q19
lattice can therefore be stored into 6 3D arrays and 12 1D arrays. These 18 arrays
are called output buffers.

Each output buffer is identified by the number of its associated face or edge.
For example, outgoing densities of face x = xSize− 1 are put into output buffer
1 and outgoing densities for edge x = xSize− 1,z = zSize− 1 are put into output
buffer 11. Output buffers can be declared as follows:

var
out1 : array[0..ySize-1, 0..zSize-1, 0..4] of real;
"Declaration of other face output buffers";
out11 : array[0..ySize-1] of real;
"Declaration of other edge output buffers"

The outgoing densities of a face or an edge are used to set the incoming den-
sities from the opposite face or edge. Figure 2.9 illustrates the situation where the
outgoing densities of the face associated to neighbor vector n1 are used to set the
incoming densities of the face associated to neighbor vector n2. Note that the two
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Figure 2.9: Outgoing densities of the face associated to neighbor vector n1 are
used as incoming densities for the face associated to neighbor vector n2. The two
cubes represent the same lattice.

cubes represent the same lattice if periodic boundary conditions are used.

In Algorithm 2.8, command "Copy outgoing densities to buffers" fills
the output buffers with all outgoing densities of the lattice. It is described in Al-
gorithm 2.9.

The loop invariant P of Algorithm 2.9 is given by the following expression:

{P: (0≤ y≤ ySize) ∧ (0≤ z < zSize) ∧
“Value at position (i,j,k) of output buffer out1 is set” ∧

((0≤ i < y) ∧ (0≤ j < zSize) ∧ (0≤ k < 5)) ∨
((i = y) ∧ (0≤ j < z) ∧ (0≤ k < 5))}

P describes the area of out1 that has already been filled. When the loop termi-
nates, following expression is true:

y = ySize∧ z = 0

This implies that out1 is filled at positions (i, j,k) with:

(0≤ i < ySize)∧ (0≤ j < zSize)∧ (0≤ k < 5)

which represents the whole array.

Command "Use buffers’ content to set incoming densities" is de-
scribed by Algorithm 2.10.

The loop invariant P of Algorithm 2.10 describes the area of array f that con-
tains valid incoming densities. P is given by following expression:

{P: (0≤ y≤ ySize) ∧ (0≤ z < zSize) ∧ “Incoming densities of f are valid at
positions (0, i1, j1,1), (0, i2, j2,7), (0, i3, j3,9), (0, i4, j4,11) and (0, i5, j5,13)” ∧

Q1∧Q2∧Q3∧Q4∧Q5}
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{Fill output buffer 1}
"Initialize y, z for y0z0 scan"; {P}
do "y0z0 scan is not finished" → {P}

out1[y, z, 0] := f[xSize-1, y, z, 1];
out1[y, z, 1] := f[xSize-1, y, z, 7];
out1[y, z, 2] := f[xSize-1, y, z, 9];
out1[y, z, 3] := f[xSize-1, y, z, 11];
out1[y, z, 4] := f[xSize-1, y, z, 13];
"Go to y0z0 next" {P}

od; {P}
"Fill other face output buffers";
{Fill output buffer 11}
y := 0;
do y < ySize →

out11[y] := f[xSize-1, y, zSize-1, 11];
y := y + 1

od;
"Fill other edge output buffers"

Algorithm 2.9: "Copy outgoing densities to buffers".
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{Use output buffer 1 to set incoming densities}
"Initialize y, z for y0z0 scan"; {P}
do "y0z0 scan is not finished" → {P}

f[0, y, z, 1] := out1[y, z, 0];
if y + 1 < ySize → f[0, y+1, z, 7] := out1[y, z, 1];
2 y + 1 = ySize → skip
fi;
if y - 1 >= 0 → f[0, y-1, z, 9] := out1[y, z, 2];
2 y - 1 < 0 → skip
fi;
if z + 1 < zSize → f[0, y, z+1, 11] := out1[y, z, 3];
2 z + 1 = zSize → skip
fi;
if z - 1 >= 0 → f[0, y, z-1, 13] := out1[y, z, 4];
2 z - 1 < 0 → skip
fi;
"Go to y0z0 next" {P}

od; {P}
"Use other face output buffers to set incoming densities";
{Use output buffer 11 to set incoming densities}
y := 0;
do y < ySize →

f[0, y, 0, 11] := out11[y];
y := y + 1

od;
"Use other edge output buffers to set incoming densities"

Algorithm 2.10: "Use buffers’ content to set incoming densities".
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where Qk is the definition of ik and jk with k = 1,2,3,4,5. Qk expressions are
given below.

Q1: ((0≤ i1 < y)∧ (0≤ j1 < zSize)) ∨ ((i1 = y < ySize)∧ (0≤ j1 < z))

Q2: ((1≤ i2 ≤ y < ySize)∧ (0≤ j2 < zSize)) ∨
((i2 = y+1 < ySize)∧ (0≤ j2 < z)) ∨

((y = ySize)∧ (1≤ i2 < ySize)∧ (0≤ j2 < zSize))

Q3: ((0≤ i3 < y−1)∧ (0≤ j3 < zSize)) ∨ ((0≤ i3 = y−1)∧ (0≤ j3 < z))

Q4: ((0≤ i4 < y)∧ (1≤ j4 < zSize)) ∨ ((i4 = y < ySize)∧ (1≤ j4 ≤ z))

Q5: ((0≤ i5 < y)∧ (0≤ j5 < zSize−1)) ∨ ((i5 = y < ySize)∧ (0≤ j5 < z))

After loop’s execution, at least the following expression E is true:

y = ySize

The following incoming densities are therefore valid after the execution of the
loop associated to invariant P.

• (0, i1, j1,1) with (0≤ i1 < ySize)∧ (0≤ j1 < zSize),

• (0, i2, j2,7) with (1≤ i2 < ySize)∧ (0≤ j2 < zSize),

• (0, i3, j3,9) with (0≤ i3 < ySize−1)∧ (0≤ j3 < zSize),

• (0, i4, j4,11) with (0≤ i4 < ySize)∧ (1≤ j4 < zSize),

• (0, i5, j5,13) with (0≤ i5 < ySize)∧ (0≤ j5 < zSize−1).

Listed ranges are implied by E ∧Qk with k = 1,2,3,4,5. The following incoming
densities are therefore still not valid after the execution of the loop:

• (0, i2, j2,7) with (i2 = 0)∧ (0≤ j2 < zSize),

• (0, i3, j3,9) with (i3 = ySize−1)∧ (0≤ j3 < zSize),

• (0, i4, j4,11) with (0≤ i4 < ySize)∧ ( j4 = 0),

• (0, i5, j5,13) with (0≤ i5 < ySize)∧ ( j5 = zSize−1).

Valid incoming densities are set at these positions when copying the content of
output buffers 7, 9, 11 and 13 into array f. For example, the copy of output
buffer 11 into array f (see Algorithm 2.10) sets incoming densities for the area
(0, i4, j4,11) listed above.
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2.5 Parallel and Distributed Implementation

With the current trend of multi-core processors and distributed computing, parallel
and distributed implementations are necessary to take advantage of all available
processing power of several or even only one computer. The simulation code
presented in previous section should therefore be parallelized (i.e. decomposed
into several processes or threads in order to be simultaneously executed by several
processors). This section describes the parallelization of LB simulations.

2.5.1 Problem Subdivision

A way to parallelize a program is to subdivide the problem it solves into smaller
subproblems. Each subproblem is then associated to a different process. The sub-
problems are solved in parallel, potentially with communications between pro-
cesses. Finally the global solution is obtained by aggregating the solutions of the
subproblems.

An obvious way to subdivide LB simulations is to partition the lattice and as-
sociate each partition (called sublattice) to a different process. Sublattices are, in
fact, lattices. The name is introduced only to make a clear difference between a
lattice and its partitions. Several definitions (size, border, face, edge, outgoing
densities, incoming densities) and properties associated to lattices are also appli-
cable to sublattices.

In the same way a lattice is partitioned into sublattices, the solid is partitioned
accordingly into subsolids. A subsolid is also a solid in the same way a sublattice
is a lattice.

When a site from the border of a sublattice has no neighbor, it is because its
neighbor either is in another sublattice, or it is not in the lattice (and the site is then
also part of the border of the lattice). The former situation introduces a new kind
of boundary. These boundaries have no real physical meaning, they only exist be-
cause of the partitioning. However, they imply additional incoming densities and
outgoing densities regarding the subdivided lattice: outgoing (respectively incom-
ing) densities of a sublattice are not necessarily outgoing (respectively incoming)
densities of the lattice.

Two sublattices are neighbors if their borders contain sites that are neighbors
in the global lattice. The incoming densities of sites from the border of a sublattice
are set with outgoing densities of sites from the border of a neighbor sublattice.
Two processes are neighbors if they execute the simulation code on neighboring
sublattices.
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(a) (b)

Figure 2.10: Constrained (a) and unconstrained (b) partitioning of a lattice. Con-
strained partitioning imposes that all sublatties have one and only one contiguous
sublattice by face or edge.

If periodic boundary conditions (see Section 2.2.3) are considered, the def-
inition of the neighborhood of a site implies that a sublattice is potentially its
neighbor.

To simplify the operations of extraction of outgoing densities and setting of
incoming densities, following constraint is enforced on lattice partitioning: all
sublattices have one and only one neighboring sublattice by face or edge. Fig-
ure 2.10 illustrates a lattice partitioning applying this constraint and a partitioning
that does not. The greyed sublattices of situation (b) have more than one neigh-
boring sublattice for one of their faces.

Each sublattice has a unique identifier represented by an integer. The neigh-
borhood of sublattices can be represented by a 3D array of sublattice identifiers
called sublattices neighborhood array and noted SN. Each identifier is present ex-
actly one time in the array. The position (x,y,z) of a sublattice with identifier i in
the SN implies that SN[x, y, z] = i.

As stated in Section 2.4.1, the faces and edges of a lattice (and therefore a
sublattice) can be associated to a neighborhood vector. Let A be a sublattice at
position p, n j be a neighborhood vector, r be the size of SN and B be a sublattice at
position (p+n j) mod r (the modulus implies full periodic boundary conditions).
The outgoing densities of sublattice A from the face or edge associated to vector
n j are used by sublattice B as incoming densities for the face or edge associated
to the opposite vector of n j.

Figure 2.11 illustrates the situation where the outgoing densities of the face
of sublattice A associated to neighborhood vector n1 are used to set the incoming
densities of the face of sublattice B associated to vector n2. Note that Figure 2.11
is very similar to Figure 2.9, the only difference is that, in Figure 2.11, the two
cubes represent two distinct sublattices instead of the same lattice.
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Figure 2.11: Outgoing densities of the face associated to neighbor vector n1 of
sublattice A are used as incoming densities for the face associated to neighbor
vector n2 of sublattice B.

2.5.2 Lattice Partitioning

Let (sx,sy,sz) be the size of the lattice to partition and let N be the number of
sublattices to obtain (chosen according to the expected number of processes). The
partitioning problem can be reduced to finding the partitioning factors qx, qy and
qz such as N = qxqyqz and qα < sα with α = x,y,z. The partitioning factors give
the size of the sublattices neighborhood array defined in previous section. Each
dimension α is then divided into qα equal parts if sα is divisible by qα with α =
x,y,z. The N sublattices then have size (sx/qx,sy/qy,sz/qz).

If sα is not divisible by qα, sublattices at positions p with 0 ≤ pα < (sα mod
qα) have size z with zα = sα/qα + 1. Sublattices at positions p′ with (sα mod
qα)≤ p′α < qα have size z′ with z′α = sα/qα.

A simple method to partition the lattice is to slice it: for example, qx and qy
are equal to 1 and qz = N. A drawback of this method is that it cannot be applied
if N > sz. In addition, it has been shown [39] that the number of border sites of
a sublattice for a fixed total number of sites is minimized when a sublattice is a
cube. The more the shape of the sublattice is far from a cube, the larger is the
number of border sites.

Thus, the partitioning problem can be described as a constrained optimization
problem: find qx, qy and qz such as

1. qx,qy,qz ∈ N?,

2. N = qxqyqz,

3. (sx/qx)
2 +(sy/qy)

2 +(sz/qz)
2 is minimized.

We solved this problem algorithmically: a prime factorization is first applied
on N, the obtained factors are then multiplied until three factors remain. These
three factors are the partitioning factors. Algorithm 2.11 generates the list of
prime factors of N. The result of this algorithm is a list sorted in descending order
containing at least one prime factor of N (N itself if it is a prime number).
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var
x, d : integer;
e : "list of integers";

begin
x, d, e := N, 2, "empty list";
do x > 1 →

if x mod d = 0 →
"Add d at the beginning of e";
x := x div d

2 x mod d 6= 0 → d := d + 1
fi;
d := d + 1

od
end

Algorithm 2.11: Decomposition of N into a list of prime numbers.

Partitioning factors are then calculated using this list with Algorithm 2.12.
Partitioning factors (initially equal to one) are modified only by multiplying them-
selves with a prime factor of N that was not already used. This ensures that
N = qxqyqz after all factors have been used. At each iteration, the partitioning
factor associated to the largest dimension is increased. Since the list of prime
factors is sorted in descending order, the largest factors are applied to the largest
dimensions. This should prevent the production of degenerated sublattices (i.e.
far from cubes) if possible.

2.5.3 Parallel Simulation

As stated previously, in order to execute an LB simulation in parallel, a lattice can
be subdivided into sublattices. The simulation code can then be executed on each
sublattice by a separate process.

A master process initially partitions the lattice using the method described
in previous section and associates a sublattice to each worker process (a process
executing the simulation code). Following information is provided by the master
to the workers:

• a sublattice and the associated subsolid,
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var
x, d : integer;
L : "list of dividers of N";

begin
sx, sy, sz := xSize, ySize, zSize;
qx, qy, qz := 1, 1, 1;
do "next integer of L exists" →

d := "get next integer of L";
m := max(sx, sy, sz);
if sx = m →

qx := qx * d; sx := sx div d
2 sy = m →

qy := qy * d; sy := sy div d
2 sz = m →

qz := qz * d; sz := sz div d
fi

od
end

Algorithm 2.12: Computation of qx, qy and qz using the list of dividers of N.
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• the size of array SN and the position p of this sublattice in SN,

• the neighborhood of the process.

The LB simulation code executed by each worker processor is described by
Algorithm 2.13. It is a distributed version of Algorithm 2.8.

"Wait information from master";
"Initialize sublattice";
"Fill subsolid";
t := 0;
do t < timeSteps →

"Copy outgoing densities to buffers";
"Send sublattice’s outgoing densities to neighbors";
"Propagate sublattice values";
"Receive outgoing densities from neighbors";
"Use received outgoing densities to set incoming densities";
"Apply sublattice boundary conditions";
"Apply sublattice collision";
"Wait all outgoing densities have been sent";
t := t + 1

od

Algorithm 2.13: Parallel LB simulation algorithm.

"Wait information from master" blocks until all required information is
received. "Copy outgoing densities to buffers" and "Propagate sub-
lattice values" commands were previously described by algorithms 2.9 and 2.7
respectively. "Wait all outgoing densities have been sent" ensures that
command "Copy outgoing densities to buffers" does not overwrite data
before they are completely transmitted.

Sublattice Incoming and Outgoing Densities

Let S be the set of all border sites of all sublattices and B the set of global lat-
tice border sites. If there are several sublattices, B is a subset of S. "Apply
sublattice boundary conditions" sets the incoming densities of the sublat-
tice’s border sites that are also in B. Thus, it is described by a slightly modified
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version of Algorithm 2.3: let p be the position of the sublattice (see Section 2.5.1),
the incoming densities of the inflow plane are set only if sublattice’s inflow plane
is included in the lattice’s inflow plane; if flow direction is the same as α-axis
(with α = x,y,z), this is true if pα = 0.

Similarly, the incoming densities of the outflow plane are set only if sublat-
tice’s outflow plane is included in lattice’s outflow plane. If flow direction is the
same as α-axis (with α = x,y,z), this is true if pα = qα−1 where qα is the parti-
tioning factor associated to dimension α.

In Algorithm 2.8 (sequential implementation), the outgoing densities of the
lattice are copied into the output buffers. The content of these buffers is then used
in order to set lattice’s incoming densities. With sublattices, the content of output
buffers cannot be used anymore to set incoming densities because the outgoing
densities to use potentially come from another sublattice.

To store the outgoing densities coming from other sublattices, input buffers
are defined. In the same way than output buffers, each input buffer is associated
to a face or an edge of the sublattice and thus to a neighborhood vector. They can
be represented by 3D arrays for faces or 1D arrays for edges. Input buffers can be
declared as follows:

var
in1 : array[0..ySize-1, 0..zSize-1, 0..4] of real;
"Declare other face input buffers";
in11 : array[0..ySize-1] of real;
"Declare other edge input buffers"

"Send sublattice’s outgoing densities to neighbors" sends the
content of output buffers to the neighboring processes. "Receive outgoing
densities from neighbors" receives all outgoing densities from neighboring
processes and stores them into the input buffers such as the content of output
buffer i is put into input buffer j with ni = −n j. Incoming densities are set only
when all outgoing densities have been received from neighbors. This operation is
therefore blocking.

"Use received outgoing densities to set incoming densities" is
described by Algorithm 2.14.
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{Use input buffer 2 to set incoming densities}
"Initialize y, z for y0z0 scan";
do "y0z0 scan is not finished" →

f[0, y, z, 1] := in2[y, z, 0];
if y + 1 < ySize → f[0, y+1, z, 7] := in2[y, z, 1];
2 y + 1 = ySize → skip
fi;
if y - 1 >= 0 → f[0, y-1, z, 9] := in2[y, z, 2];
2 y - 1 < 0 → skip
fi;
if z + 1 < zSize → f[0, y, z+1, 11] := in2[y, z, 3];
2 z + 1 = zSize → skip
fi;
if z - 1 >= 0 → f[0, y, z-1, 13] := in2[y, z, 4];
2 z - 1 < 0 → skip
fi;
"Go to y0z0 next"

od;

"Use other face input buffers to set incoming densities";

{Use input buffer 14 to set incoming densities}
y := 0;
do y < ySize-1 →

f[0, y, 0, 11] := in14[y];
y := y + 1

od;

"Use other edge input buffers to set incoming densities"

Algorithm 2.14: Set sublattice incoming densities.
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Figure 2.12: Transmission queues system.

2.5.4 Data Transmission

Our implementation of LB simulations is written using the Java programming
language. To take advantage of several CPUs of a computer, several threads can
be instantiated.

Transmission queues can be used to exchange messages between threads on a
shared memory architecture. For example, a thread A sends a message to thread B
by putting it into a queue. Thread B can then retrieve the message from the queue.
Another queue is used by B to send messages to A. There must be two queues by
pair of neighboring threads to obtain full-duplex communication.

In the context of a distributed implementation of LB simulations, communi-
cations occur between threads potentially distributed among different computers.
Data are then transferred through a network using sockets (endpoints of a bidirec-
tional communication) to send and receive bytes.

The above system based on transmission queues can easily be combined with
socket communications. For bidirectional communications between two comput-
ers, one socket is needed on each computer but two threads are associated to each
socket: a sending thread (extracting messages from a queue and sending them
through a socket) and a receiving thread (reading messages from a socket and
putting them into a queue).

Such a communication system is illustrated in figure 2.12. Let A and ST 1 be
threads running on computer C1 and B and RT 1 be threads running on computer
C2. Socket s1 connects C1 to C2 on C1 and socket s3 connects C2 to C1 on C2. Note
that s1 and s3 are the endpoints of the same communication channel. If thread A
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wants to send a message to thread B, it puts a message in output queue 1. Thread
ST 1 extracts the message from output queue 1 and sends it to computer C2 using
socket s1 (the message is converted into a bytes stream). Thread RT 1 running on
C2 then reads the message from socket s3 (the message is reconstructed from a
byte stream) and puts it in the input queue. Thread B can then extract the message
from the input queue. Thread ST 2 sends messages to another computer than C2
and thread RT 2 receives messages from another computer than C1.

The messages a worker thread sends during an LB simulation to a neighbor
thread can be declared in the following way:

type
Message = record

outId : integer;
data : "output buffer content";

end

where outId is the identifier of an output buffer and data a pointer to the con-
tent of the output buffer identified by outId. "Send sublattice outgoing
densities to neighbors" command introduced in previous section puts such
messages in an output queue. To select the output queue, the destination com-
puter must be known. This information is given by master process when providing
thread’s neighborhood.

"Receive sublattice incoming densities" retrieves messages such as
defined above from input queue and fills input buffers with their content (the data
pointer does not point to an output buffer but to a copy of it on destination com-
puter). Field outId is used to choose the input buffer to fill (if outId = i, input
buffer j is chosen such as ni +n j = 0). This input buffer is then filled with the
content pointed by data.

In the transmission system described previously, a message has to be converted
into a byte stream to be sent using a socket. Also, a byte stream read from a socket
will have to be converted into a message. Java provides an obvious solution to this
problem: object serialization. Object serialization is therefore used by sending
and receiving threads.
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2.6 Distributed LB Simulation Speedup

Speedup quantifies how much a parallel program is faster than its corresponding
sequential version. It is noted Sp where p is the number of processors used and is
defined as follows:

Sp =
T1

Tp

where T1 is the execution time of the sequential version and Tp the execution time
using p processors. The ideal speedup is obtained when Sp = p.

The efficiency of a parallel program is defined as follows:

Ep =
Sp

p

It varies between 0 and 1 with programs featuring and ideal speedup having an
efficiency of 1.

To evaluate the speedup and the efficiency of our distributed LB simulation
implementation, a simulation on a lattice of (64,64,64) sites using the SRT col-
lision operator has been executed during 200 time steps on a cluster of Pentium
Celeron 2.4 Ghz processors connected by a switched-ethernet 100 Mbits network.

The obtained execution times are shown in Figure 2.13. We can see that the
execution time clearly decreases when the number of processors grows. The exe-
cution time of the simulation is divided by almost 10 when executed on 32 com-
puters.

However, Figure 2.14 shows that the speedup is far from ideal.

Figure 2.15 shows the efficiency of the LB simulation distributed implemen-
tation. Starting with 0.82 with 2 processors, the efficiency is only 0.31 with 32
processors.

The observed poor efficiency is explained by the fact that the percentage of
total execution time spent in synchronization and data transmission increases with
the number of processors, computers are inter-connected with a “slow” (in com-
parison to high-bandwidth technologies like Infiniband generally used in the con-
text of High Performance Computing) network and, finally, additional operations
are required regarding a sequential simulation to copy outgoing densities from a
sublattice to output buffers and copy the content of input buffers into a sublattice.

The efficiency of a parallel or distributed implementation depends on the ra-
tio of computation time to transmission time. A high value of this ratio leads to a
good efficiency. In the context of distributed LB simulations, the value of this ratio
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Figure 2.13: Execution time of distributed LB simulation.

0 5 10 15 20 25 30 35

0

2

4

6

8

10

12

Number of processors

S
p

e
e

u
p
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Figure 2.15: Parallel LB simulation efficiency.

depends on the size of the sublattice and the computational complexity of the sim-
ulation code. In particular, the SRT collision operator has a lower computational
complexity than the MRT operator.

Figure 2.16 shows the efficiency of previous simulation (64-SRT) compared
to a simulation on a lattice of (32,32,32) sites (32-SRT) and on the same lattice of
(64,64,64) sites but using the MRT collision operator (64-MRT). As expected, a
higher efficiency is obtained when using a more complex simulation codes (MRT
instead of SRT) and a lower efficiency is obtained with a smaller lattice (and
therefore smaller sublattices).

2.7 Conclusion

In this chapter, we presented a class of CFD methods called Lattice Boltzmann
(LB) methods. These are interesting for simulating fluid flows in complex bound-
aries and are well suited to parallel and distributed computing.

Distributed computing introduces a potential portability problem that is solved
by implementing distributed LB simulations in Java. It has been shown [15] that
Java is an acceptable compromise between efficiency and portability.

Simple sequential and parallel implementations have been presented. The par-
allel implementation has been evaluated by executing distributed LB simulations
on up to 32 computers inter-connected by a switched-ethernet 100 Mbits network.
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Figure 2.16: Comparison of efficiency when using different simulation parame-
ters.

We evaluated the parallel efficiency of our implementation of distributed LB
simulations and observed that it mainly depends on sublattices size (which de-
pends on the number of processors/computers and the size of the lattice) and the
computational complexity of the collision operator. For example, we observed a
“good” efficiency of 0.91 for a simulation on a (64,64,64) lattice using an MRT
collision operator executed on 2 computers but a “bad” efficiency of 0.10 for a
simulation on a (32,32,32) lattice using an SRT collision operator executed on 32
computers.

A poor parallel efficiency does not mean that the execution time was not re-
duced by using more computers. In the context of the simulation on the (64,64,64)
lattice using an MRT collision operator, the execution time was divided by a fac-
tor 18.27 when using 32 computers instead of a single one and by 2.64 with a
(32,32,32) lattice and using the SRT collision operator. It is therefore generally
more interesting to execute a simulation in parallel than sequentially.



Chapter 3

Optimized Implementation of Lattice
Boltzmann Simulations

3.1 Introduction

In Chapter 2, LB methods have been presented and a simple sequential implemen-
tation was proposed. A parallel version of this implementation was also presented.

LB simulations imply massive memory accesses. The sequential implementa-
tion can therefore be optimized by ensuring a better data locality (i.e. data asso-
ciated to addresses that are close in memory address space should be accessed at
close moments in time).

A first way to improve data locality is to change the representation of multi-
dimensional arrays: Java provides an arrays-of-arrays representation that does
not necessarily ensure a good data locality. An alternative storage scheme is to
represent a multi-dimensional array in a one-dimensional array and explicitly (i.e.
at application level) compute the position of an element in the 1D array given its
position in the multi-dimensional array.

This new representation allows to apply an optimization method suggested
by Murphy [58] which reduces the complexity of propagation (see Section 2.4).
However, the representation required by Murphy’s method does not ensure the
data locality principle during collision pahse (see Section 2.4). To solve this, the
collision implementation has been adapted.

49
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Figure 3.1: Hierarchical organization of memory.

3.1.1 Chapter Outline

In Section 3.2, the data locality principle is defined and the representation of multi-
dimensional arrays in Java is discussed.

Section 3.3 describes how propagation can be improved with a method in-
spired from the work of Murphy [58].

Section 3.4 presents how collision’s implementation can be adapted to the new
storage scheme to further improve implementation’s efficiency.

The simple implementation presented in Chapter 2 is compared to the opti-
mized implementation in Section 3.5.

Finally, Section 3.6 concludes this chapter.

3.2 Data Locality and Representation of Multi-dim-
ensional Arrays

In today’s computers, memory has a hierarchical organization which can be visu-
alized as a layered pyramid [39] (see Figure 3.1). Layers at the bottom are large
(they can contain many bytes) but have high access times and layers at the top
are small but have low access times. Data used as operands of an instruction are
loaded into the registers from cache memory (which has generally also several
levels having same properties as the layers of the “memory pyramid”). If data are
not available in cache memory, a cache miss occurs and the program’s execution
is interrupted until data are transferred from main memory to cache memory. The
minimum amount of data that can be loaded into cache memory is given by a value
called cache line size. When a cache miss occurs, a portion of main memory is
copied into cache memory.

Typical code optimization includes the minimization of the number of cache
misses by using an optimal data organisation in memory and an optimal data ac-
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Figure 3.2: 2D array A of 3×3 integers represented using arrays of arrays.

cess “scheduling”. The data locality (data brought into cache are used at least
once before being flushed out of it) principle is then ensured.

In the context of LB simulations on a D3Q19 lattice, 4D arrays of double
precision floating point values are used. Some languages (C/C++ with static allo-
cation, Fortran) support directly multi-dimensional arrays. Other languages (Java,
C/C++ with dynamic allocation) support multi-dimensional arrays indirectly by
using arrays of arrays (see Figure 3.2 for an example of a 2D array).

Arrays of arrays allow more flexibility (e.g. in a 2D, lines can have different
sizes or even not be allocated) but have drawbacks: data locality is not necessarily
optimized (if accessing elements line by line in a 2D array, two subsequent lines
are not necessarily contiguous) and many pointers have to be stored in arrays in
addition to data.

In general, for a d-dimensional array of size (s1,s2, . . . ,sd), the number of
additional pointers that have to be stored is given by:

d−1

∑
i=1

i

∏
j=1

s j (3.1)

If arrays of arrays are used to represent the 4-dimensional array used for a
lattice of size (s,s,s) (see Section 2.4), the total amount of memory (expressed in
bytes) needed by the lattice is given by T (s) =D(s)+P(s) where D is the memory
needed for the values and P the memory needed for the pointers. The values D(s)
and P(s) can be calculated as follows:

D(s) = 19sds3 (3.2)

P(s) = sp(s+ s2 + s3) (3.3)

where sd is the size of a double precision floating point value in bytes and sp the
size of a pointer, also expressed in bytes. The value Rval(s) = D(s)/(D(s)+P(s))
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Figure 3.3: 2D array of 3×3 integers represented using a 1D array.

gives the percentage of total memory allocated for an array actually used to store
values. In the context of the 4D array used to store densities in LB simulations,
Rval(s) can be rewritten as follows:

Rval(s) =
19sds3

19sds3 + sp(s+ s2 + s3)

=
19sd

19sd + sp(s−2 + s−1 + s0)

In the minimal case (s = 1),

Rval
min = Rval(1) =

19sd

19sd +3sp
(3.4)

and when s tends to infinity,

Rval
max = lim

s→∞
Rval(s) =

19sd

19sd + sp
(3.5)

A double precision floating point value is represented by 8 bytes (64 bits) so
sd = 8. On a 64 bits architecture, a pointer is also represented on 8 bytes (sp = 8).
In this situation, Rval

min ≈ 86% and Rval
max = 95%. This means that the memory

“wasted” by pointers when using arrays of arrays is at most of about 14% but at
least 5% of total used memory. For example, when s = 100, D(100) = 152×106

(≈ 145 Mbytes), P(100) = 8080800 (≈ 8 MBytes) and Rval(100)≈ 94%.

In order to represent lattices (and solids), the flexibility of arrays of arrays
is not needed. The drawbacks of this technique can be avoided by representing
multi-dimensional arrays in a 1D array (as done internally in languages supporting
directly multi-dimensional arrays). Figure 3.3 shows the representation of array
A from Figure 3.2 in a 1D array. No additional pointers are used and consecutive
lines are contiguous in memory.



3. Optimized Implementation of Lattice Boltzmann Simulations 53

In general, for a dD array of size (s1,s2, . . . ,sd), a 1D array of size ∏
d
i=1 si is

needed. An index function δ : Nd → N that, from the position (i1, i2, . . . , id) (with
0≤ i j < si for i = 1,2, . . . ,d) of an element of the dD array, gives the position in
the 1D array must also be defined. Following index function can be used:

δ(i1, i2, . . . , id) =
d

∑
j=1

i j

d

∏
k= j+1

sk (3.6)

In the example given in Figure 3.3, δ(i1, i2) = i1×3+ i2 with 0≤ i1, i2 < 3.

Let v f be the 1D representation of a D3Q19 lattice of size (xSize,ySize,zSize).
The size of v f (in number of floating point values) is given by xSize× ySize×
zSize×19. To have the same data organization as used in simple implementation
(see Chapter 2), the following index function must be used:

δ(x,y,z,q) = x× (ySize× zSize×19)+
y× (zSize×19)+
z×19+
q

With this representation, in order to ensure data locality, lattice elements should
be accessed in the following way:

i := 0;
do i < xSize*ySize*zSize*19 →

"Access vf[i]";
i := i + 1

od

Following loop on x, y, z and q accesses elements in the same order than pre-
vious loop (for scan notation, see Section 2.4.1) with function delta(x,y,z,q)
returning δ(x,y,z,q):

"Initialize x0y0z0q0 scan";
do "x0y0z0q0 is not finished" →

"Access vf[delta(x, y, z, q)]";
"Go to x0y0z0q0 next"

od
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Figure 3.4: Array shift with base pointer move.

The collision operator’s implementation presented in Section 2.4 ensures data
locality but propagation’s implementation does not.

3.3 Optimizing Propagation Step

An optimized propagation method based on an alternative data organization has
been proposed by Murphy [58]. This method significantly reduces the complexity
of propagation (without the copy of outgoing and incoming densities, see Sec-
tion 2.4.1): for a cubic lattice of size (L,L,L), complexity becomes O(1) instead
of O(L3)). We slightly modified the method to reduce its memory overhead and
to adapt it to the Java language which does not allow pointer arithmetic required
by Murphy’s technique.

3.3.1 Array Shift

Murphy’s method is based on the constant time shift of elements of an array. The
shift operation is implemented by moving the base pointer (pointer to the first
element of the array) of the array to the “right” (base pointer is increased) or to
the “left” (base pointer is decreased).

For example, Figure 3.4 illustrates the shift an array containing five elements
two positions to the right. The base pointer of the array is moved two positions to
the left. As shown in the figure, an element at position i in the array before shift
has position i+2 after shift.

With a shift of n positions to the right, n elements are undefined at the begin-
ning of the array. With a shift of n positions to the left, n elements are undefined
at the end of the array.

The shift of the elements of an array is defined by an integer called the offset:
with an offset equal to n, after the shift, the element at position i is at position i+n
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Figure 3.6: Shift of the vector representation of a (3×3) array.

if it is in the array boundaries. If n is positive, elements are shifted to the right. If
n is negative, elements are shifted to the left.

The shift of the elements of a dD array is defined by a vector called offset
vector: with an offset vector v an element at position p has position p+v after the
shift if it is in the array boundaries. Figure 3.5 illustrates the shift of the elements
of a 2D array of size (3,3) with an offset vector (1,1).

If a dD array is represented using a 1D array, the shift of its elements using
vector v is obtained by shifting the 1D array elements using offset δ(v). Figure 3.6
illustrates the shift of the elements of the simple array backing the 2D array of
Figure 3.5 with offset δ(1,1) = 1×3+1 = 4. In the figure, the element with label
“3” has been marked as undefined. Its value is, in fact, known but does not make
sense in the context of the multi-dimensional array shift.

Note that in order to use the base array pointer move method to shift elements
of an array without potentially overwriting required data in memory, enough mem-
ory needs to be reserved to the left and/or to the right of the array.

3.3.2 Propagation Based on Array Shifting

In-place propagation presented in Section 2.4.1 (without extraction of outgoing
densities and setting of incoming densities) can be implemented using multi-
dimensional array shifting if lattice values are reorganized: the values associ-
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ated to each velocity should be grouped in separate 3D arrays (represented by 1D
arrays). Instead of a 4D array, a D3Q19 lattice is then represented by 19 one-
dimensional arrays. The index function δ(x,y,z) for these arrays is given by:

δ(x,y,z) = x× (ySize× zSize)+
y× (zSize)+
z

As stated in Section 2.4.1, propagation is the application of a translation vec-
tor to all values associated to each velocity. Propagation can therefore be imple-
mented by shifting each of the 19 arrays of new representation by a fixed offset.

The offset di to apply to the array associated to velocity i is given by δ(ni)
where ni is the neighborhood vector associated to velocity i (see Chapter 2).

As stated previously, memory must be reserved around the array in order to
move the array base pointer without overwriting other used data. In its implemen-
tation, Murphy allocates a supplementary space of |di| × k values. This way, k
shifts can occur before no more space is available to continue to shift array base
pointers. At this point, array elements are copied back to their initial positions
and the base pointer is reset. k new shifts can then occur again. Figure 3.7 shows
an array of five elements with 2 additional positions reserved at its left. Two right
shifts with an offset of 1 can then be performed before pointer and data are reset.

3.3.3 Circular Array Shift

To avoid the memory overhead and pointer reset operation of Murphy’s method,
we use a circular array: the base pointer never moves but an offset pointing to the
actual first position of the circular array can be displaced (see Figure 3.8).
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A circular array represented using a simple array can be declared as follows:

var
v : array[0..N-1] of "type";
off : integer

where v contains the data of the circular array, N is the size of the circular array
and off the index of the first element of the array. The element at position i in the
circular array is at position (o f f + i) mod N in v.

To apply an offset a to the elements of v, the following instructions are exe-
cuted:

off := (off - a) mod N

In an implementation of propagation using circular array shift, a D3Q19 lattice
can be represented as follows:

var
f : array[0..18, 0..M-1] of real;
offs : array[0..18] of integer
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where f contains the density distribution function values, M is equal to xSize×
ySize× zSize and offs contains the offsets associated to each 3D array represent-
ing the values associated to each velocity. Initially, offs is filled with zeros.

Propagation can then be implemented as described by Algorithm 3.1. This
algorithm can replace "Propagate values" in Algorithm 2.8 describing an LB
simulation with in-place propagation. It can also be used in the parallel LB simu-
lation’s implementation.

{Velocity 0 : Nothing to do}

{Velocity 1 : translation (1,0,0)}
offs[1] := (offs[1] - ySize * zSize) mod M;

{Velocity 2 : translation (-1,0,0)}
offs[2] := (offs[2] + ySize * zSize) mod M;

"Apply propagation for velocities 3..17";

{Velocity 18 : translation (0,-1,-1)}
offs[18] := (offs[18] + zSize + 1) mod M

Algorithm 3.1: Circular array shift-based propagation.

3.3.4 Evaluation of New Propagation Implementation

Figure 3.9 shows the execution time of propagation implemented using circu-
lar array shifts (“off” in the legend) and the method described in Section 2.4.1
(“simple” in the legend). The x-axis gives the value L for a (L,L,L) lattice. The
execution time (y-axis) is the time to execute one propagation on a lattice of given
size.

We observe that the optimized method is almost 26 times faster than simple
method with a (80,80,80) lattice. This result is not surprising as the complexity
of propagation is reduced from O(L3) to O(L2) (the quadratic term comes from
the copy of densities into output buffers and from input buffers, see Section 2.5.3).

Propagation based on circular array shifts is more efficient than Murphy’s
method [58] because:
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Figure 3.9: Comparison of execution time of propagation

• there is no substantial memory overhead,

• no “pointer reset” operations are needed.

However, the cost of accessing elements of the array is increased because of the
additional modulus. This cost is discussed in next section.

3.4 Adapting Collision to New Data Organization

The new data organization dramatically improves the efficiency of propagation op-
eration (see Figure 3.9). However, due to data locality problems and a much more
complex element access (access to one element of a circular array implies sev-
eral additions, multiplications and a modulus), collision operation requires nearly
twice as much time as with simple organization (see Figure 3.10).

To reduce the number of cache misses and complex element accesses, the
values associated to a part of lattice sites can be copied into a small 2D array
(called a block) with B lines (B is the maximum number of sites the block can
contain) and 19 columns (each line represents the densities of a site). The copy
operation (called lattice-block copy) must be written in order to minimize the
number of cache misses. Collision is then applied on the block sites and the lattice
updated with block data. As for lattice-to-block copy, block-to-lattice copy must
minimize the number of cache misses.

A block can be declared as follows:
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Figure 3.10: Comparison of execution time of collision when using initial and
new data organizations.

type
Block = record

size : integer;
data : array[B, 0..18] of real;
xPos : array[B] of integer;
yPos : array[B] of integer;
zPos : array[B] of integer

end

where B is the maximum size of the block, size its actual size, data the array
containing densities and xPos, yPos and zPos arrays containing respectively the
x, y and z components of the extracted sites in the lattice.

In order to improve data locality and avoid the complex access to sites, con-
tiguous values in the lattice are copied velocity by velocity into the block. Because
circular arrays are used to store densities associated to a given velocity, the area
that must be copied into the block can be separated in two: one at the end of the
array, one at the beginning. In this case, copy is done in two passes. In Java,
array copies have a native implementation. Block copies are therefore efficient
operations.

In Algorithm 3.2, lattice-block copy is implemented by procedure extract-
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Block. This procedure is correct if B < XSIZE * YSIZE * ZSIZE where XSIZE,
YSIZE and ZSIZE are the components of the size of a D3Q19 lattice. The copy of
contiguous values of the lattice into a block is described in Algorithm 3.3.

procedure extractBlock(start : integer; bl : Block);
var

yzSize, xyzSize : integer;
begin

yzSize := YSIZE * ZSIZE;
xyzSize := XSIZE * yzSize;
bl.size := min(xyzSize - start, B);

if bl.size = 0 → skip
2 bl.size > 0 →

setXYZPos(start, bl);
q := 0;
do q < 19 →

from := (offs[q] + start) mod xyzSize;
to := (offs[q] + start + bl.size) mod xyzSize;
"Copy of densities from lattice to block";
q := q + 1

od
fi

end

Algorithm 3.2: extractBlock procedure. This procedure implements the lattice-
block copy.

Procedure setXYZPos, described by Algorithm 3.4, sets the x, y and z com-
ponents of each site of a block bl. After setXYZPos is executed, bl.xPos[i],
bl.yPos[i] and bl.zPos[i] are respectively the x, y and z component of bl’s
ith site with 0≤ i <bl.size.

The principle behind block-lattice copy is similar to lattice-block copy and is
implemented by procedure updateLattice described by Algorithm 3.6.

The collision implementation can be rewritten using these procedures to mod-
ify lattice densities through blocks. Lattice’s sites are extracted block by block us-
ing procedure extractBlock. Collision operator or bounce-back is then applied
on an extracted block’ sites. The data locality principle is ensured because the
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if from < to →
pos := q;
i := from;
do i < to →

bl.data[pos] := f[q, i];
i, pos := i + 1, pos + 19

od
2 from > to →

pos := q;
i := from;
do i < xyzSize →

bl.data[pos] := f[q, i];
i, pos := i + 1, pos + 19

od;
i := 0;
do i < to →

bl.data[pos] := f[q, i];
i, pos := i + 1, pos + 19

od
fi

Algorithm 3.3: "Copy of densities from lattice to block".
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procedure setXYZPos(start : integer; bl : Block);
var

yzSize, x, y, z : integer
begin

yzSize = YSIZE * ZSIZE;

{Position of the first site of block bl}
x = (start / yzSize);
y = (start mod yzSize) / ZSIZE;
z = start mod ZSIZE;

site = 0;
do z < ZSIZE and site < bl.size →

xPos[site] = x;
yPos[site] = y;
zPos[site] = z;
site, z := site + 1, z + 1

od;
if z < ZSIZE → skip
2 z = ZSIZE →

z := 0; "Update x, y and z"
fi;

do site < bl.size →
xPos[site] = x;
yPos[site] = y;
zPos[site] = z;
site, z := site + 1, z + 1;
"Update x, y and z"

od
end

Algorithm 3.4: setXYZPos procedure. This procedure sets the x, y, z components
of extracted sites in a given block.
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if z < ZSIZE → skip
2 z = ZSIZE →

z := 0; y := y + 1;
if y < YSIZE → skip
2 y = YSIZE →

y := 0; x := x + 1
fi

fi

Algorithm 3.5: "Update x, y and z"

procedure updateLattice(start : integer; bl : Block);
var

yzSize, xyzSize : integer;
begin

if bl.size = 0 → skip
2 bl.size > 0 → skip

yzSize := YSIZE * ZSIZE;
xyzSize := XSIZE * yzSize;
q := 0;
do q < 19 →

from := (offs[q] + start) mod xyzSize;
to := (offs[q] + start + bl.size) mod xyzSize;
"Copy of densities from block to lattice";
q := q + 1

fi
end

Algorithm 3.6: updateLattice procedure. This procedure updates a D3Q19
lattice with a given block’s data.
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if from < to →
pos := q;
i := from;
do i < to →

f[q, i] := bl.data[pos];
i, pos := i + 1, pos + 19

od
2 from > to →

pos := q;
i := from;
do i < xyzSize →

f[q, i] := bl.data[pos];
i, pos := i + 1, pos + 19

od;
i := 0;
do i < to →

f[q, i] := bl.data[pos];
i, pos := i + 1, pos + 19
od

fi
od

Algorithm 3.7: "Copy of densities from block to lattice".



66 3. Optimized Implementation of Lattice Boltzmann Simulations

simpleTime offTime offBlock10 offBlock20
0

100

200

300

400

500

600

700

800

Configurations

T
im

e 
(m

s)

Figure 3.11: Comparison of execution time of collision when using four combi-
nations of data representations and block access parameters.

densities of a site are contiguous in a block. Finally, the updated block is copied
back into lattice using updateLattice procedure. Algorithm 3.8 describes the
new implementation of the collision.

3.4.1 Evaluation of New Collision Implementation

Figure 3.11 shows the execution times of collision using different lattices repre-
sentations and access methods. Given time (expressed in milliseconds) is the time
to execute one collision on all sites of a (64,64,64) D3Q19 lattice. These exe-
cution times have been measured on a Pentium Celeron 2.4 Ghz computer of the
cluster used in Section 2.6. The labels of the figure’s legend have the following
meaning:

• simple: Simple data organization.

• off: Propagation optimized data organization, no block access for collision.

• offBlock10: Propagation optimized data organization, block access (maxi-
mum block size B=10).

• offBlock20: Propagation optimized data organization, block access (maxi-
mum block size B=20).

Unsurprisingly, “off” configuration is the slowest because the data locality
principle is not ensured by the data organization introduced in previous section.
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var
block : Block;
k, pos, site, x, y, z : integer

begin
k := 0;
do k < XSIZE*YSIZE*ZSIZE →

{Copy next block’s content from the lattice}
extractBlock(k, block);
pos, site := 0, 0;
{Apply collision operator or bounce-back to block’s
sites}
do site < block.size →

x := block.xPos[site];
y := block.yPos[site];
z := block.zPos[site];
if s[x, y, z] →

{Bounce-back}
block.data[pos] := block.data[pos];
block.data[pos + 1] := block.data[pos + 2];
...
block.data[pos + 18] := block.data[pos + 15];

2 not s[x, y, z] →
"Apply collision operator on block[pos..pos + 18]"

fi;
site, pos := site + 1, pos + 19

od;
{Update lattice with block’s content}
updateLattice(k, block);
k := k + blockSize

od
end

Algorithm 3.8: Collision using block access method.
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Figure 3.12: Comparison of execution time for complete simulation when using
four combinations of data representations and block access parameters.

However, block access method brings collision execution time with optimized
data organization at the same level as collision with simple data organization.

3.5 Comparison of Simple and Optimized Implemen-
tations

Figure 3.12 shows the execution times for one time step of a complete simu-
lation (propagation, boundary conditions and collision) using the configurations
presented above on a (64,64,64) D3Q19 lattice. As can be seen on the figure,
optimized implementation is more than twice faster than simple implementation.

The execution time gain of optimized implementation can be computed as
follows:

1− to
ts

where to is the execution time of optimized implementation and ts the execution
time of simple implementation. Table 3.1 shows the execution time gain of op-
timized implementation (using optimized storage scheme and block access with
B = 20) for several lattice sizes.

Figure 3.13 shows the comparison of execution time of a parallel LB simula-
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lattice size Gain (%)
163 47
323 48
643 61

Table 3.1: Execution time gain of optimized implementation regarding simple
implementation.
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Figure 3.13: Comparison of execution time of simple and optimized simulations’
implementation.

tion using simple and optimized implementations. Same setup as in Section 2.6
has been used (200 time steps on a (64,64,64) D3Q19 lattice executed on a Pen-
tium Celeron computers cluster). Figure 3.14 compares the speedup of simple and
optimized implementations. Optimized implementation is clearly faster (from
2.38 times with 1 processor to 1.69 times with 32 processors). However, sim-
ple implementation features a better speedup. This is due to the fact that simple
implementation does not ensure data locality, the subdivision of the lattice into
smaller sublattices therefore artificially improves data locality.

On Figure 3.14, a “bump” is observed for the speedup of optimized imple-
mentation when using 8 processors. There are two reasons for this:

• With 8 processors, sublattices are all cubes and the number of border sites
is minimized (see Section 2.5.2).
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Figure 3.14: Comparison of speedup of simple and optimized simulation

• Block access method described previously has an efficiency that depends on
the shape of the lattice (and therefore sublattice). We have observed that a
cubic shape for sublattices produces the best results.

3.6 Conclusion

The simple implementation presented in Chapter 2 has been optimized using a
method described by Murphy [58] that reduces the execution time of propagation.
Murphy’s method was adapted in order to take into account the properties of Java.
We also improved the method in order to reduce its memory overhead.

In addition, the implementation of collision has been modified in order to take
into account the new data representation implied by Murphy’s method.

The execution time of LB simulations is more or less reduced by half for both
sequential and parallel implementations when proposed optimizations are used
instead of the simple implementation presented in Chapter 2. We also observe
that the speedup of distributed LB simulations becomes slightly smaller with the
optimized implementation. This is because the distribution of the implementation
from Chapter 2 artificially improves data locality.



Chapter 4

Architecture of the Simulation Tool

4.1 Introduction

The implementation of distributed LB simulations is presented in chapters 2 and 3.
In addition to be efficient, the implementation should be flexible as it may have to
be extended or modified regularly. In addition, these extensions and modifications
should be accessible to users that may not have high programming skills.

LaBoGrid, the software developed in the context of this thesis, is both a li-
brary to ease the writing of any type of LB simulation program (like Palabos [8],
Sailfish [10] and El’Beem [3]) and a simulation tool based on LB methods (like
PowerFlow R© [9]) able to run a sequence of simulations in a distributed way.
Thanks to techniques described in chapters 5, 6, 7 and 8, LaBoGrid is adapted
to dynamic heterogeneous clusters, which is not the case with above tools.

LaBoGrid is based on an original generic framework presented in this chap-
ter. This framework was developed to ease the writing of software components
communicating in an asynchronous way possibly through the network when the
components are executed by different computers. We expect this generic frame-
work to introduce a simulation execution time overhead when compared to the
specific implementation of chapter 3. However, we will observe that this over-
head remains acceptable.

4.1.1 Chapter Outline

In order to explain some architectural choices, several LaBoGrid use cases are
presented in Section 4.2.

71
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The Lattice Boltzmann Simulations Library (LBSL), consisting of a collection
of generic classes, and a way to describe any LB simulation using this library is
given in Section 4.3.

LaBoGrid’s implementation and the generic framework it is based on are de-
scribed in Section 4.4.

Section 4.5 briefly explains how the user can configure LaBoGrid.

The execution times of distributed LB simulations using a specific implemen-
tation or LaBoGrid are compared in Section 4.6.

Finally, Section 4.7 concludes this chapter.

4.2 LaBoGrid Use Cases

The Laboratory of Chemical Engineering of the Univeristy of Liège currently uses
LaBoGrid to obtain the velocity field of fluids flowing in complex structures like
porous media or packed beds. These structures are obtained by X-ray tomography
which produces, after numerical reconstruction of the 3D images, large matrices
of voxels (containing several millions of voxels). These matrices are used as solids
of LB simulations and impose the size of the lattice to use. A solid matrix is stored
in a file that LaBoGrid takes as input.

The result of an LB simulation is the state of its lattice (i.e. the densities at all
sites of the lattice).

Here are some use cases for LaBoGrid and what they imply:

1. The user wants to run a simulation for a given number of time steps using a
given solid file. At the end of the simulation, he wants to get the state of the
lattice for further analysis.

To run a simulation, the user has to provide at least a solid file and a number
of time steps. Also, the state of the lattice should be written to disk at the
end of the simulation so the user can run further analysis on it later.

2. The user wants to run a simulation using a given solid file; the simulation
code has to regularly log the speed of the fluid at some given sites of the
lattice. The user does not need the state of the lattice at the end of the
simulation.

The user should have access to specific information about the simulation
during its execution. Also, the final lattice state is not required in this case.
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The writing of lattice’s state to disk at the end of the simulation should
therefore be an optional operation. Logging is an interesting feature for two
reasons: it can give a hint on the lattice state before the simulation ends
and it generally represents far less data than the complete state of the lattice
(which can require several gigabytes to be represented).

3. The user wants to run a simulation using a given solid file; the simulation
code has to regularly log the speed of the fluid at some given sites of the
lattice before and after the application of collision operator. The user does
not need the state of the lattice at the end of the simulation.

The user should have a fine control on when the logging occurs (for exam-
ple, before and after the application of the collision operator, not only at the
end of a simulation iteration).

4. The user wants to compare a new collision operator implementation to the
implementation he used before. Therefore, he wants to run two simulations
during the same number of time steps and using the same solid starting from
a fluid at rest and finally, get the obtained lattice states in order to compare
them.

The user should be able to easily change some elements of a simulation
like lattice type (number of dimensions and velocities), collision operator
or boundary conditions and not only their parameters.

5. The user wants to run a simulation using as initial conditions the result of
another simulation.

The result of a previous simulation that has been saved to disk (see item 1)
can be given to LaBoGrid to set the initial conditions of a simulation.

6. The user wants to run two subsequent simulations, the second one using the
result of first one as starting point. The user only wants to get the result of
the second simulation.

The result of a simulation that will be used as initial conditions of next
simulation in a sequence does not need to be written to a file provided to the
user.

More complex use cases can be generated by combining several of the use cases
presented above.
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4.3 Lattice Boltzmann Simulations Library

As stated in Section 2.3, Java was chosen as implementation language. The Lattice
Boltzmann Simulations Library (LBSL), included in LaBoGrid, is therefore a set
of classes representing the generic concepts of an LB simulation:

• the lattice,

• the solid,

• the collision operator,

• the boundary conditions.

In the context of parallel and distributed LB simulations, lattice and solid need
to be partitioned into sublattices and subsolids (see Section 2.5). Different parti-
tioning methods can be used. These methods depend on the number of dimensions
of the lattice and the solid. However, the result is always the same: a collection of
partitions. So, two additional concepts can be added for parallel and distributed
simulations:

• the partition,

• the partitions collection generator.

4.3.1 Lattice

The Lattice class is the base class of all lattices. A lattice has a size represented
by an integer vector. The length of this vector is the number of dimensions of the
lattice and each component of this vector is the size of corresponding dimension.

A descriptor is associated to lattices: it defines the velocity vectors of the
lattice. Lattice representation is the responsibility of the subclasses.

Figure 4.1 shows the class diagram of Lattice and LatticeDescriptor
classes.

The behaviour of Lattice class includes:

• The Input/Output of lattice state (densities associated to each site of the
lattice) from/to a file (read and write methods).
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Figure 4.1: Class diagrams for Lattice and LatticeDescriptor.

Figure 4.2: Class diagram for Solid.

• The initialization of densities leading to a fluid at rest (densities are initial-
ized with equilibrium distribution; setEquilibrium method).

• The in-place propagation of densities and output buffers filling (see Sec-
tion 2.4.1; propagate method).

• The extraction of outgoing densities given an output direction (getOutDensi-
ties method).

• The setting of incoming densities (setInDensities method).

The BorderData class wraps the outgoing densities associated to an output
direction.

4.3.2 Solid

The Solid class is the base class of all solids. Like lattices, solids have a size
represented by an integer vector and can be read/written from/to a file. A Solid
instance implements the solid function s defined in Section 2.2.1. In particular, a
possible implementation of s is to use a boolean array (see Section 2.4).

Figure 4.2 shows the class diagram of Solid class.
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Figure 4.3: Class diagram for CollisionOperator.

4.3.3 Collision Operator

The CollisionOperator class is the base class of all implementations of the
collision operator (like SRT and MRT operators presented in Section 2.2.2). Sub-
classes of CollisionOperator generally also implement bounce-back conditions
for fluid-solid interface sites.

Figure 4.3 shows CollisionOperator class diagram. The behavior of the
class includes:

• the association of a collision operator instance to given lattice and solid
(setLattice and setSolid methods),

• the application of collision operator to all sites of the lattice (collide
method).

4.3.4 Boundary Conditions

The BoundaryConditions class is the base class for all boundary conditions ex-
cept solid-fluid interface boundary conditions (generally implemented by a sub-
class of CollisionOperator) and periodic boundary conditions (can be imple-
mented directly using getOutDensities and setInDensities methods from
Lattice class).

Figure 4.4 shows the class diagram of BoundaryConditions class. The be-
havior of the class includes:

• the association of a boundary conditions instance to given lattice and solid
(setLattice and setSolid methods),

• the application of boundary conditions to some border sites of the lattice
(apply method).
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4.3.5 Generic Sequential Simulation Code Using LBSL

Given the generic classes defined previously, all instances of a sequential LB sim-
ulation are captured by Program 4.1. Of course, the specific instantiated classes
must be compatible: a collision operator defined for a 2D lattice cannot be used
with a 3D lattice, solid and lattice must have same size, etc.

int maxT = ...; // The number of time steps
Lattice latt = ...;
Solid solid = ...;
CollisionOperator col = ...;
BoundaryConditions bound = ...;

initLatticeAndSolid(latt, solid);
col.setLattice(latt);
col.setSolid(solid);
bound.setLattice(latt);
bound.setSolid(solid);
LatticeDescriptor desc = fluid.getLatticeDescriptor();
int velNum = desc.getNumberOfVelocities();
for(int i = 0; i < maxT; ++i) {

latt.propagate();
for(int q = 0; q < velNum; ++q)

latt.setInDensities(latt.getOutDensities(q));
bound.apply();
col.collide();

}

Program 4.1: Generic LB simulation code using LBSL.

The call to function initLatticeAndSolid represents the initialization of the
lattice and the solid. The instructions of this function depend on the chosen initial

Figure 4.4: Class diagram for BoundaryConditions.
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conditions.

For example, to start a simulation from a fluid at rest and with a solid read
from a file named “solidData”, function initLatticeAndSolid would have the
following body:

latt.setEquilibrium();
solid.read("solidData");

Another example of initial conditions is to reuse the result of a previous sim-
ulation as starting point. The result of a simulation is the state of the lattice at the
end of the simulation. If file “stateData” contains the result of a previous simu-
lation, to reuse this state, function initLatticeAndSolid would have following
body:

latt.read("stateData");
solid.read("solidData");

Of course, these initial conditions have no meaning if previous simulation was
run using a solid that is not the same as the one from file “solidData”.

The innermost loop on q implements periodic boundary conditions. In a paral-
lel simulation, this loop should be replaced by instructions that send BorderData
instances extracted using getOutDensities method to neighbors, and receive
BorderData instances from neighbors used to set incoming densities with method
setInDensities (see Program 4.2).

4.3.6 Logging and Operators Chain

According to LaBoGrid use cases, the simulation code should be able to regu-
larly log information about the fluid or other simulation-related information. For
example, the speed of the fluid at a given point should be logged every 10 time
steps. Another example is the logging of current time step every 5 time steps (to
see simulation progression).
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// Wait information from master process
...
// Next variables are initialized in function of
// received configuration
int maxT = ...; // The number of time steps
Lattice latt = ...;
Solid solid = ...;
CollisionOperator col = ...;
BoundaryConditions bound = ...;

initLatticeAndSolid(latt, solid);
col.setLattice(latt);
col.setSolid(solid);
bound.setLattice(latt);
bound.setSolid(solid);
LatticeDescriptor desc = fluid.getLatticeDescriptor();
int velNum = desc.getNumberOfVelocities();
for(int i = 0; i < maxT; ++i) {

latt.propagate();
for(int q = 0; q < velNum; ++q) {

BorderData bd = latt.getOutDensities(q);
// send bd to a neighboring process
...

}
for(int q = 0; q < velNum; ++q) {

// receive bd from a neighboring process
BorderData bd = ...;
latt.setInDensities(bd);

}
bound.apply();
col.collide();

}

Program 4.2: Generic parallel LB simulation code using LBSL.
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Figure 4.5: Class diagram for Logger.

A logger is a software component that is activated at each simulation itera-
tion. The refresh rate defines when the logger actually logs information about the
simulation: let i be the current iteration and r the refresh rate, the logger logs infor-
mation when i mod r is equal to zero. Several output types can be used: printing
in a file, a message sent to the controller that prints its content to a file, etc. When
configuring the logger (see Section 4.5), the wanted output type must be provided.
Finally, a logger has a unique identifier. A log can therefore be identified using
this information and, for example, be redirected to a particular file.

The Logger class is the base class for all loggers. Figure 4.5 shows the class
diagram of Logger. The apply method logs data when required (in function of
current iteration and refresh rate). Program 4.3 (based on Program 4.1) gives an
example of logging happening after collision.

...
Logger log = "a specific Logger instance";

...
for(int i = 0; i < T; ++i) {

latt.propagate();
for(int q = 0; q < velNum; ++q)

latt.setInDensities(latt.getOutDensities(q));
bound.apply();
col.collide();
log.apply();

}

Program 4.3: Example of a generic LB simulation code with logging.

In Program 4.3, if the user wants to change the place where the logging occurs
(for example, between boundary conditions and collision), he must modify the
simulation code.
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LaBoGrid should be easy to use, even for users who do not necessarily have
high programming skills. Therefore, the choice of specific classes for lattice,
solid, collision operator and logger, as well as the selection of the logging place,
should require as little code modifications by the user as possible.

A first step towards this goal is the introduction of the concept of processing
chain: it is a representation of the operations that are applied on the lattice at each
simulation iteration. For example, the processing chain of Program 4.3 contains
following operations: propagation, periodic boundaries, boundary conditions, col-
lision, logging.

A processing chain is a list of processing elements. There are two types of
processing elements: operators and loggers. An operator potentially modifies the
state of the lattice or sublattice (propagation, collision, etc.). The interface of a
processing element is similar to the interface of Logger class: one apply method
returning no value and taking no argument. A generic simulation code using a
processing chain is given by Program 4.4. We suppose that ProcessingChain
class implements the java.lang.Iterable interface. Notation Iterator<T>
it means that a call to method it.next() returns the next element of the pro-
cessing chain (if it exists, otherwise an exception is thrown) and that this element
is an instance of class T.

Lattice latt = ...;
Solid solid = ...;
ProcessingChain pc = ...;

initLatticeAndSolid(latt, solid);
for(int i = 0; i < T; ++i) {

Iterator<ProcessingElement> it = pc.iterator();
while(it.hasNext()) {

ProcessingElement pe = it.next();
pe.apply();

}
}

Program 4.4: Generic LB simulation code using a processing chain.

Section 4.5 introduces a description for LB simulation codes like the one given
by Program 4.4. The user will therefore be able to describe a simulation without
having to explicitly write the associated Java code (excepting for specific classes
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that may be needed for the requested simulation).

4.3.7 Partitions

The Partition class attributes are defined by concepts and constraints introduced
in sections 2.4.1 and 2.5.1: output direction (one per velocity vector except rest
vector), partition neighborhood (one partition per output direction) and sublattices
neighborhood array (array containing sublattices identifiers and in which adjacent
identifiers mean adjacent sublattices).

The Partition class represents the portion of discrete space associated to a
sublattice and a subsolid. There is a one-to-one relation between a partition and
a sublattice and a partition and a subsolid. The attributes of Partition class
include:

• the partition identifier (an integer) which is the associated sublattice’s iden-
tifier,

• the partition size (an integer array),

• the list of neighboring partitions identifiers,

• a map of all output directions to a partition identifier,

• the position of the origin of the partition in complete space,

• the position of the partition in the sublattices neighborhood array,

• a boolean array indicating if the plane or edge associated to a given velocity
vector is an outflow,

• a boolean array indicating if the plane or edge associated to a given velocity
vector is an inflow.

The behavior of Partition class is only composed of accessors to the at-
tributes.

4.3.8 Partitions Generator

The partitions generator produces a collection of partitions given the global lattice
size, the number of partitions to generate and the lattice descriptor. Figure 4.6
shows the class diagram of the base class of all partitions generators.
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Figure 4.6: Class diagram for PartitionsGenerator.

For example, the generate method of a subclass of PartitionsGenerator
that partitions 3D lattices can implement the algorithm described in Section 2.5.2.

4.4 LaBoGrid Components

LaBoGrid is composed of several software components generally distributed on
several computers. The components hosted by different computers interact by
sending messages through the network. In addition, the components hosted by the
same computer mostly have to run in parallel and their interactions easily lead to
race conditions and deadlocks. These elements suggested a generic framework
based on agents communicating in an asynchronous way called asynchronous
agents.

4.4.1 Asynchronous Agents

Each agent runs in a separate thread called agent thread. All interactions between
agents are based on events. An agent can submit an event to another agent which
handles it. Each agent handles at most one event at a time (to ensure mutual exclu-
sion on agent’s state). An event is represented by an object. An event submitted to
an agent is inserted in its events queue. The program executed by an agent thread
is essentially described by Algorithm 4.1.

The loop of Algorithm 4.1 is called event handling loop and, during its execu-
tion, the agent is in a state called event handling state. Before the event handling
loop is executed, some initialization operations can take place, the agent is then in
initialization state. If an error occurs during initialization, the loop is not executed.

The event handling loop terminates its execution if an error occurred during
an event handling or when a stop event is taken from queue. Finally, clean-up
operations can be executed after message handling phase, the agent is then in
closing state.

An error handler can be associated to an agent. The error handler is generally
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"Initialize agent";
if "An error occured during initializing" → skip
2 "No error occured during initializing" →

do "Agent is running" →
"Extract an event from queue";
"Handle extracted event";
if "No error occured during event handling" → skip
2 "An error occured during event handling" →

"Stop handling loop"
fi

od
fi;
"Close agent"

Algorithm 4.1: Program executed by agent thread.

an agent as well. In case an error occurred during initialization or event handling
(i.e. a Throwable was thrown), it is signaled to the error handler. Note that if an
error is signaled to the error handler (by submitting an event if error handler is an
agent). The source of the error is always about to terminate its execution (in case
of error, the agent always enters closing phase). This implies that an agent has not
to be explicitly stopped when it produced an error.

A more detailed description of the classes implementing agents and error han-
dlers is given in Appendix A.

4.4.2 Distributed Components and Deployment

The parallel implementation of an LB simulation presented in Section 2.5.3 re-
quires a master that sends initial information to workers. In the context of LaBo-
Grid, the master is part of a component called the Controller and a worker is part
of a component called Distributed Agent (DA). Typically, the Controller runs on
a reliable computer and DAs are executed on cluster computers. A computer exe-
cutes at most one DA. Each DA has a unique identifier (given by the Controller)
and knows the address of the Controller.

The concepts represented by the Controller and the DA are common to all dis-
tributed applications based on a master-slave model. These agents can therefore
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Figure 4.7: Deployment of LaBoGrid.

be generic. Specific agents attached to them actually implement a particular ap-
plication. A specific Controller Agent (CA) is associated to the Controller and a
specific Task is associated to each DA. In the context of LaBoGrid, the CA imple-
ments simulation’s master process and a Task a simulation’s worker process.

Agents may have to exchange messages through the network. An additional
agent called Communicator is executed on each computer running the Controller
or a DA. The Communicator handles all network related operations (establishing
connections, receiving/sending messages, etc.).

Figure 4.7 shows the deployment of presented agents and the link between
them. A link between two agents means they interact directly by inserting events
in their respective queues. Communicators interact by sending messages through
the network.

Controller and Controller Agent

The Controller maintains the list of all available DAs currently running. To fill
this list, all DAs first connect to the Controller. The Controller then associates a
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unique identifier to each DA.

It also instantiates the Controller Agent whose behavior is specific to the ap-
plication. In the context of LaBoGrid, the CA keeps track of the simulation that is
currently running. At the beginning of each simulation, it also distributes required
information to all DAs.

According to LaBoGrid use cases, the user should be able to retrieve the result
of a simulation and store it to disk in order to, for example, restore it later and
use it as initial conditions for another simulation. The result of a simulation is the
state of the lattice at the end of the simulation. However, at the end of a distributed
simulation, lattice’s state is partitioned.

A solution is to generate lattice’s global state in memory using the state of all
sublattices and then write this global state to disk in one file. However, this method
potentially requires a lot of available memory on the computer executing the CA.
Another solution is to store the state of each sublattice in a separate file (called
state file). The associated subsolid is written in the same file. The collection of
partitions generated for the simulation is also written to a file. The global lattice
state can then be reconstructed using the collection of partitions and the state files.

There are 3 possible situations when starting a simulation, leading to different
simulation initializations:

• Fluid is initially at rest and solid is read from a file:

1. Space is partitioned by a PartitionsGenerator instance.

2. A partition (and therefore a sublattice and a subsolid) is associated to
each Task. Addresses of neighboring Tasks are sent to each Task (two
Tasks are neighbors if they run a simulation on neighboring sublat-
tices).

3. The solid is read from a given file. Subsolids are extracted from solid
according to generated partitions and sent to workers.

4. In case the user requested the result to be stored to disk, generated
partitions collection is written to a file called partitions file.

5. When all Tasks are ready (sublattices are all initialized with a fluid at
rest), the CA signals to all Tasks the simulation can start.

• The result of a previous simulation is given and must be used as initial
conditions:

1. Partitions collection is read from a given partitions file.
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2. A partition (and therefore a sublattice and a subsolid) is associated to
each Task. Addresses of neighboring Tasks are sent to each Task.

3. Subsolids and sublattices are read from given files and sent to workers.

4. When all Tasks are ready (sublattice and subsolid have successfully
been received), the CA signals to all Tasks the simulation can start.

• The result of previous simulation in the sequence is used as initial condi-
tions: in this case, Tasks already have all required information to start the
simulation.

Distributed Agent and Task

The Distributed Agent (DA) knows the address of the Controller. It first connects
to it in order to receive a unique identifier. Once it is identified, the DA is able to
instantiate its associated Communicator and, finally, the specific Task agent that
implements a particular application.

LaBoGrid Task waits for initial data and/or a signal from CA to start a simu-
lation. Once a Task has finished its simulation, it signals it to the CA.

If simulation’s result is required by the user, the CA downloads it from each
finished Task. Each DA then waits for data and/or a signal for the next simulation
or stops its execution if there is no more simulation to be executed.

Communicator

The Communicator accepts connections from other remote Communicators and
sends and receives messages. Agents called Message Output Streams (MOS) are
instantiated by the Communicator to send messages to remote Communicators.
There is one MOS per remote Communicator. Message Input Streams (MIS) are
components receiving messages from a remote Communicators. There is one MIS
per remote Communicator.

MOS and MIS agents implement respectively the sender and the receiver
threads from communication model described in Section 2.5.4.

Messages received by MISs are routed by the Communicator to associated
DA or Controller. Figure 4.8 illustrates the path followed by a message sent by a
Communicator to another.

There are 2 types of connections accepted by the Communicator:
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Com. MOS MIS Com.Net.

Figure 4.8: Message path.

• a connection from a new DA (only Controller’s Communicator accepts this
kind of connection),

• a connection from a MOS.

The first kind of connection is handled by the Controller which assigns an identi-
fier to the new DA. The second kind of connection leads to the instantiation of a
new MIS to be paired with connecting MOS.

The messages the Communicator sends are instances of Message class. Its
members include the address of sender Communicator and the address of the des-
tination. A destination can also be specified using the identifier of the DA asso-
ciated to destination Communicator. In this case, before the message can be sent
or a connection established, the Communicator must query the address associated
to the given identifier to the Controller. A special identifier is used to represent
the Controller and, as the address of the Controller is known by every DA (and
Controller), it does not need to be queried.

To limit the number of address queries to the Controller, addresses are cached.
Also, if a MOS connects to a Communicator, it first sends the address of its Com-
municator and this address is stored by destination Communicator as there is a
high probability that messages will be sent to connecting Communicator.

Several connections to the same computer can be requested to the Communi-
cator. In this case, only one connection is established and all components use this
same connection. The MOS avoids concurrent access to the socket by sending the
messages it extracts from its message queue. As writing a message to the MOS
means inserting a message in its queue, MOS default write operation is asyn-
chronous. When a MOS is closed, it sends all messages inserted in its message
queue before closing was requested, it stops extracting messages from its message
queue (general behavior of an agent) and it finally closes its underlying socket.

Communicator features two message sending modes:

• a datagram mode,

• a connected mode.
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In datagram mode, the destination field of the message must be set and simply
submitted to the Communicator. In case the MOS for given destination already
exists, a message is written to this MOS. Otherwise, a new MOS is instantiated,
the message is written to this new MOS and, finally, the MOS closing is scheduled.
The MOS is not closed immediately in case other messages for same destination
are submitted a short time later.

In connected mode, an indirect access to a MOS is given to write messages:
a proxy object called Message Output Stream Accessor (simply called accessor
hereafter) is used. The accessor forwards messages to send to MOS. When an ac-
cessor is closed, it notifies the Communicator. If no more accessors are associated
to a MOS, its closing is scheduled. The accessor also implements synchronous
message sending: it writes the message to MOS and waits for a notification from
the MOS signaling that the message was successfully sent or an error occurred.

4.5 LaBoGrid Configuration

An XML configuration file written by the user is used to describe the sequence
of simulations LaBoGrid must execute. This XML file is given as input to LaBo-
Grid’s CA and Tasks.

In Java, a class can be instantiated given its name. The only constraint is
that the class must have a constructor without arguments. This implies that a
specific class name given in the XML configuration file can be used to instantiate
the class in LaBoGrid provided that the class was loaded by the JVM executing
LaBoGrid. Additional JAR files can therefore be provided, these files contain the
implementation of subclasses implementing base classes from LBSL referenced
in the configuration file.

The content of the XML configuration file is only briefly described in this
section. For a more detailed presentation, see Appendix B.

The XML file is composed of three parts:

1. LB configurations,

2. Processing chains description,

3. Simulations description.

These parts are described below.
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4.5.1 LB Configurations

This part is composed of a set of LB configurations. An LB configuration has a
unique identifier and contains the required information to instantiate a lattice and
a solid for a simulation and generate the collection of partitions needed to decom-
pose the lattice and the solid into sublattices and subsolids (see Section 4.3.8).

4.5.2 Processing Chains Description

This part is composed of a set of processing chain descriptions. A processing
chain description has a unique identifier and is composed of a sequence of loggers
and operators descriptions. It contains the required information to instantiate the
processing chain to apply to the lattice at each time step (see Section 4.3.6).

4.5.3 Description of Simulations

The set of simulations to be executed is called an experiment. An experiment is
composed of a sequence of simulations sequences. A simulation sequence can
contain one or more simulations. In a simulation sequence, the result of interme-
diate simulations is not necessarily retrieved but each simulation of the sequence
(except the former) uses the state of previous simulation as initial conditions.

A simulation is described by an LB configuration, a processing chain and the
number of time steps to execute. In addition, a simulation input and a simulation
output can be defined. A simulation input is a component that can be used to get a
file from a specific medium (local file, remote file, FTP server, etc.). A simulation
output is a component that can be used to put a file to a specific medium. The files
obtained/put from/to an input/output are solid files, state files and partitions files
(see Section 4.4.2).

Simulation output definition is always optional: when defined, simulation’s
result is written to it. Simulation input definition is mandatory for the first sim-
ulation of a simulations sequence in order to read the solid file or the result of a
previous simulation to use as initial conditions.

4.6 Results

In order to observe the impact of using the general framework presented in this
chapter for distributed LB simulations’ implementation instead of the specialized
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Figure 4.9: Comparison of the execution times obtained using a specialized
(spec) and a generic (gen) implementation of a distributed LB simulation on a
(64,64,64) D3Q19 lattice with an SRT collision operator.

code used to produce the results of Chapter 3, we compared the execution times
obtained in the two cases.

Figure 4.9 shows the execution times of a distributed LB simulation on a
(64,64,64) D3Q19 lattice using the SRT collision operator obtained when using
the two implementations on an increasing number of processors. Unsurprisingly,
the generic implementation is always slower than the specific one with a differ-
ence factor between the execution times of the two implementations varying from
1.02 when using 1 processor to 1.58 when using 32 processors.

The main cause of generic implementation’s slowness comes from communi-
cation layer because data read from a socket must be routed to the destination
thread. This operation is more complex in the generic implementation. This
explains the fact that the difference between the two implementations becomes
larger when the number of used processors increases: the number of messages
exchanged through the network becomes more important and highlights the more
complex routing algorithm of generic implementation.

The impact of using the generic implementation is less important for dis-
tributed simulations implying bigger sublattices. Figure 4.10 shows the execution
time of the same simulation but on a (128,128,128) lattice. The factor between
the execution times obtained with the two implementations distributed on 32 pro-
cessors is then reduced to 1.17. The reduction of the overhead factor is caused by
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Figure 4.10: Comparison of the execution times obtained using a specialized
(spec) and a generic (gen) implementation of a distributed LB simulation on a
(128,128,128) lattice with an SRT collision operator.

the fact that the computation time to communication time ratio is larger.

4.7 Conclusion

In this chapter, we presented the architecture of LaBoGrid, a powerful tool al-
lowing the execution of structured sequences of distributed LB simulations. The
sequence of simulations and the parameters of these simulations are described by
the user in an XML file given as input to LaBoGrid.

LaBoGrid can also be used as a library to easily write sequential simulation
codes based on LB methods. Though this is not the main purpose of LaBoGrid, it
allows to easily try alternative implementations of some important components of
LB simulations (lattice, solid, collision operator, etc.).

Finally, LaBoGrid is written using a generic framework based on asynchronous
agents. This generic framework provides a message passing service (the Commu-
nicator) and generic classes that can be used to describe any distributed application
based on a master-slave model (CA and Task).

We observed that the generic framework used by LaBoGrid introduces an
overhead in distributed simulations execution time when compared to the specific
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implementation used to produce the results of Chapter 3. However, this over-
head remains reasonably low. For example, there is a factor 1.17 between the
execution times of the two implementations for a distributed LB simulation on a
(128,128,128) lattice using an SRT collision operator and executed on 32 proces-
sors. This factor decreases when a more complex simulation code and/or larger
sublattice are used, i.e. when the computation time to communication time ratio
increases.

The generic framework presented in Section 4.4 allows LaBoGrid’s imple-
mentation extension with additional agents implementing the techniques described
in next chapters. Therefore, the generic implementation of LB simulations is con-
sidered as a reasonable trade-off between efficiency and extensibility.
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Chapter 5

Static Load Balancing

5.1 Introduction

In Chapter 4, a simulation tool based on LB methods called LaBoGrid is de-
scribed. In this system, a Controller and several Distributed Agents (DAs) are
executed in parallel: each DA executes a Task running the simulation code on a
sublattice (a part of the global lattice, see Chapter 2) and the Controller steers the
whole process.

LaBoGrid is able to set the initial conditions of a simulation by using the result
of a previous one: at the end of a simulation, the state of each sublattice is written
to a state file (one per sublattice). This state file can then be read later to set the
initial state of a sublattice.

There are two problems with the presented architecture:

• If a simulation with X sublattices was run on X computers (one sublattice
per computer), the result of the simulation cannot directly be reused to set
the initial conditions of a simulation that must be run on Y computers with
X > Y . Also, if X < Y , some computers will have no sublattice associated
to them and will therefore not be used for the simulation.

• All computers receive the same amount of work: they will all execute the
same number of instructions because sublattices are equally sized and simu-
lation code executed by each computer is mostly the same. In this situation,
fast computers will wait for slow computers at each time step.

The first problem can be solved by associating one or several sublattices (in-
stead of only one sublattice) to each Task and therefore computer. The sublattices

95
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can therefore be distributed on any number of computers as long as this number
is less or equal to the total number of sublattices.

The execution time of a distributed application, and in particular LB simula-
tions, is essentially equal to the addition of processing time and communication
time. Processing time is the time to process all application data in parallel. Com-
munication time is the time to transfer data between processes during the execu-
tion of the application.

The sublattices should be distributed among computers in a way the compu-
tational power of the computers (the maximum number of instructions they can
execute per time unit) is considered. It is the case when more sublattices are asso-
ciated to faster computers and less to slower ones. The processing time can then
be minimized.

In addition to taking computers’ power into account, the amount of data ex-
changed between computers during the execution of an LB simulation should be
minimized: the data exchanged between two adjacent sublattices can be transmit-
ted through memory instead of the network if these sublattices are on the same
computer. The communication time can then be minimized by taking sublattices
adjacency into account.

In the context of distributed LB simulations, the problem of finding the optimal
sublattices distribution that minimizes a distributed simulation’s execution time
is called load balancing. If this problem must be solved only once before the
simulation is executed, it is called static load balancing.

A distributed application can be represented by a graph called application
graph. The cluster that will execute this application can also be represented by
a graph called resource graph. These representations allow the use of a class of
tools called mappers (JOSTLE [76], METIS [47], SCOTCH [62], PaGrid [45],
etc.). These tools solve the load balancing problem for given application and
resource graphs.

When the application graph and the resource graph are known in advance and
do not change during the application’s execution, the static load balancing prob-
lem can be solved using static mappers.

5.1.1 Chapter Outline

Section 5.2 introduces the graph representation of a distributed application and
the cluster that will execute it. These graph representations allow the use of static
mappers to solve the static load balancing problem.
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Section 5.3 presents the application graph associated to distributed LB simu-
lations. The distributed representation of the application graph is also discussed.

Section 5.4 explains how the performance of computers that will execute a dis-
tributed LB simulation is evaluated to be taken into account during load balancing
process.

Section 5.5 describes how the resource graph can be built and when this pro-
cess occurs in LaBoGrid’s execution.

Section 5.6 presents the execution time of distributed LB simulations using
different mappers.

Section 5.7 concludes this chapter.

5.2 Graph Representation

Some parallel/distributed applications can be represented by an undirected graph
called application graph. The nodes of the application graph represent data that
can be processed in parallel. An edge between two nodes of the application graph
means that data are exchanged between the processes handling the data associated
to these nodes. Nodes and edges can potentially be weighed: the weight of a node
is proportional to the amount of instructions needed to process its associated data
and the weight of an edge is proportional to the amount of data exchanged between
the two associated nodes during the application execution.

A cluster, a computational grid or a supercomputer can also be represented
by an undirected graph called resource graph. The nodes of the resource graph
represent a computer or a processor. An edge between two nodes means they are
interconnected by a network link or they can use shared memory to communi-
cate. This graph can also be weighed: the weight of a node is proportional to
the computational power of the associated computer or processor (the maximum
number of instructions it can execute per time unit) and the weight of an edge is
proportional to its bandwidth.

A graph G can be represented by a set of nodes N and a set of edges E and
noted G = (N,E). Let G1 = (N1,E1) and G2 = (N2,E2) be two graphs, the map-
ping of G1 onto G2 is composed of a partitioning of N1 and a relation associating
each partition to a node of N2. More formally, a mapping is:

• a partitioning Q = {P1,P2, . . . ,Pn} with n = |N2| and ∪n
i=1Pi = N1,
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Figure 5.1: Example of undirected graph with weighted edges.

• a bijection f : Q→ N2 such as each partition of Q is associated to one and
only one node of N2.

The graph mapping problem is common in scientific simulations [33] where
mesh based computations are represented using a graph. Many graph partition-
ing tools already exist (JOSTLE [76], METIS [47], SCOTCH [62], PaGrid [45],
etc.). Among the listed tools, only PaGrid tries to directly minimize the execution
time of the application (other tools like MiniMax [52] and PART [27] also directly
minimize execution time but the former does not take into account application’s
granularity1 and the latter features a substantial execution time). SCOTCH does
not directly minimize execution time but takes into account the fact that the re-
source graph can be weighted.

In our context, LB simulations are run on a cluster with computers being part
of the same network (any computer is linked to any computer and all links have
the same bandwidth) but having potentially different computational powers. The
edges of related resource graph thus have all the same weight but nodes have
potentially different weights.

5.2.1 Graph Data Structures

Let G = (V,E) be a graph where V is the set of vertices and E the set of edges. Let
n = |V | be the number of vertices in the graph. We suppose that V = [0..n− 1].
An edge e ∈ E can therefore be represented by a pair (i, j) with 0 ≤ i, j < n and
i 6= j.

Edges can be weighted. In this case, E contains triples (i, j,w) where 0 ≤
i, j < n, i 6= j and w > 0. w is the weight of the edge.

An example of undirected graph with weighted edges is given in Figure 5.1.

G can be represented using an adjacency matrix m. m is a n×n matrix defined
as follows:

1Granularity is the ratio of the amount of computation to the amount of communication; this
ratio is low for fine-grained applications and high for coarse-grained applications.
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• mii = 0 with 0≤ i < n,

• mi j = 1 if (i, j) ∈ E with 0≤ i, j < n and i 6= j,

• mi j = 0 if (i, j) 6∈ E with 0≤ i, j < n and i 6= j.

The values of matrix m can also be used to represent the weight of an edge.
If mi j = 0, there is no edge going from i to j. If mi j > 0, mi j is the weight of the
edge going from i to j.

If G is undirected, m is symmetric.

The adjacency matrix m for the graph of Figure 5.1 is defined as follows:

m =

0 4 5
4 0 5
5 5 0



Another data structure to represent G is the adjacency list. The ith element of
the list is the list of vertices adjacent to i. j is in the ith list of vertices if (i, j) ∈ E.

If a weight is associated to the edges, the elements adjacency list’s ith ele-
ment are pairs of integers ( j,w) where j is the adjacent vertex and w the weight
associated to the edge. ( j,w) is in the ith list of vertices if (i, j,w) ∈ E.

The adjacency list for the graph of Figure 5.1 is defined as follows:

{{(1,4),(2,5)},{(0,4),(2,5)},{(0,5),(1,5)}}

The adjacency list and the adjacency matrix contain the same information.
However, they facilitate different operations:

• The adjacency list efficiently provides all adjacent vertices to a given vertex.

• The adjacency matrix allows to efficiently test if two given vertices are ad-
jacent.

The choice of the representation therefore depends on the kind of required opera-
tion.
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5.3 Distributed LB Simulations Application Graph

Distributed LB simulations can be represented by an application graph. One pos-
sibility is to associate a lattice site to each node of the application graph (there
is a bijection between the set of all lattice sites and the set of application graph’s
nodes). However, the partitions produced by the tools presented in previous sec-
tion do not necessarily imply an organization in a regular grid of the sites asso-
ciated to a partition. This implies that arrays are potentially not directly usable
to represent the organization of the sites associated to a given partition. Adapting
simulation algorithms to use more general data structures than arrays to represent
sites’ organization would lead to an important execution time overhead.

The solution we chose is to use sublattices as nodes of the application graph.
The advantage of this choice is that the simulation code can remain unchanged.
Because sublattices have all the same size, the nodes of the LB simulation applica-
tion graph have all the same weight. Edges do not because the number of outgoing
densities can be different in function of output direction (see Section 2.4.1).

In Section 2.5.1, we introduced the concept of Sublattices Neighborhood Ar-
ray (SNA), a multi-dimensional array of sublattice identifiers. A sublattice identi-
fier is associated to each position in this array and the identifier of each sublattice
appears exactly one time in the array.

The SNA represents the neighborhood of each sublattice: let A be a sublattice
at position p in the array, if sublattice B is the neighbor of A associated to neigh-
borhood vector n j, position of B is (p+n j) mod r where r is the size of the SNA.
This means that identifiers of neighboring sublattices are adjacent in sublattices
neighborhood array.

The sublattices graph is the graph representation of the SNA: each vertex
is associated to a sublattice and if two sublattices are adjacent in the SNA, an
edge connects their associated vertices in the sublattices graph. The edges of
the sublattices graph is weighted by the amount of bytes exchanged between the
sublattices of given edge every simulation iteration.

The sublattices graph is represented using an adjacency list: to each sublattice
is associated the list of adjacent sublattices. The adjacency list is represented by
an array indexed using sublattices identifiers. Each element of the array is an
array of records, each record containing the weight of the associated edge and
the identifier of adjacent sublattice. Figure 5.2 illustrates this data structure. The
chosen data structure allows to efficiently have access, given a sublattice identifier,
to its adjacent sublattices. However, each edge is represented two times.

The partitioning of the sublattices graph means a partition is associated to each
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Figure 5.2: Representation of Sublattices graph.

sublattice. In the context of LaBoGrid, a partition is associated to a particular DA
and the DA identifier can be used as partition identifier. The result of a partition-
ing can therefore be represented by an array of DA identifiers (actually integers)
indexed using sublattice identifiers. This array is called mapping table.

Another interesting structure that can be built from the mapping table is the
partitions table that gives the set of sublattices associated to a DA given its iden-
tifier.

Mapping and partitions tables contain the same information but are efficient
for different operations:

• mapping table efficiently provides the identifier of the partition (DA identi-
fier) for a given sublattice,

• partitions table efficiently provides the sublattices associated to a given par-
tition.

5.3.1 Sublattices Graph Distribution

Before the execution of an LB simulation, a partition of the sublattices graph
is associated to each DA. Before the simulation starts, the Controller provides
following structures to each DA:

• a part of the sublattices graph called partial sublattices graph,

• a part of the mapping table called partial mapping table.

The partial sublattices graph is represented using an array of pointers to records.
Each record contains the identifier of a sublattice and a pointer to an array. This
array is the list of the edges to neighboring sublattices: each entry is a pointer to
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Figure 5.4: Representation of partial mapping table.

a record giving the identifier of the neighbor and the weight of associated link.
Figure 5.3 illustrates this structure.

The partial mapping table is represented by an array of pointers to records.
These records contain a sublattice identifier and a DA identifier. The entries of
this array correspond to sublattices that are the neighbor of a sublattice from the
partial sublattices graph but are located on another DA (given by the second entry
of the record). Figure 5.4 illustrates this structure.

The partial sublattices graph and partial mapping table arrays can be sorted
regarding the identifier of the sublattice associated to an entry in order to enable
the efficient access to the information associated to a sublattice given its identifier.

The partial sublattices graph is used to connect simulation threads on a partic-
ular DA. The partial mapping table provides, given a sublattice identifier, the DA a
simulation thread must connect to in order to send a part of its outgoing densities.

5.4 Evaluation of Computer Performance

To set the weights of resource graph’s nodes, several methods can be considered:

• Simply use the computational power of computers: weight is proportional
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to the maximum number of instructions executed by computer per time unit.
Memory bandwidth and cache memory size are then ignored. However, the
content of Chapter 3 suggests that these parameters have a significant impact
on performance.

• Define a model that takes computational power, memory bandwidth, cache
memory size, etc. as input parameter and outputs a weight. The definition
of this kind of model is not always trivial and a new model is needed each
time the simulation instructions change. This is problematic as we stated in
Chapter 4 that the user can easily change these instructions.

• Estimate the number of sites a computer can handle per time unit when
no communication occurs. This value is called Contextual Computational
Power (CCP). The CCP can be obtained by executing a benchmark code
(for example, a small simulation). The main advantage of this approach
is that it encompasses all parameters impacting the execution time of LB
simulations (computational power, memory bandwidth, etc.).

Last method was chosen and is described in this section.

To estimate the CCP of a computer, the execution time texec in seconds of a
simulation on a lattice with s sites during N time steps is measured on a particular
computer. The CCP is then calculated using following relation:

CCP =
s×N
texec

.

It is expressed in sites per second.

When a computer has several processors or cores, the simulation is indepen-
dently executed in parallel by each processor or core. Let p be the number of
processors of the computer, the CCP is then calculated using following relation:

CCP =
p× s×N

texec
.

The CCP of a computer depends on its configuration (OS, CPU speed, mem-
ory bandwidth, etc.) but also on the parameters of the simulation used during
benchmark. Following simulation parameters can impact the CCP:

• Lattice type (dimensions, number of neighbors per site) and size,

• Solid structure (because bounce-back is less complex to compute than a
collision operator, see Section 2.2.3),
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• Processing chain without loggers (defines the instructions to execute at each
time step, see Section 4.3.6).

Therefore, a CCP value is uniquely identified by a computer identifier, a lattice
type, a lattice size and the content of a processing chain when loggers are ignored.
The notation CCP(n, p) represents the CCP for the computer associated to a node
n of the resource graph evaluated using simulation parameters p.

In the following, we analyse the parameters that, in addition to computer per-
formances, influence the value of the CCP for a given computer. Following obser-
vations highlight the fact that the CCP must be evaluated for every combination
of computer and simulation parameters.

In practice, we chose to ignore solid structure during the evaluation of a com-
puter’s CCP because most simulations we execute imply a porosity (i.e. the ratio
of the volume of voids to the total volume) that is high (more than 90%). The
portion of time for the execution time of bounce-back is therefore negligible re-
garding the portion of time for the execution of the collision operator. In addition,
we consider that porosity is homogeneously distributed among subsolids (i.e. all
subsolids have the same porosity).

5.4.1 Processing Chain Content

Benchmarks consisting of a sequential LB simulation on a lattice of size (20,20,20)
with 200 time steps are executed using different collision operators (see Sec-
tion 2.2.2):

• the SRT operator (SRT on the legend of Figure 5.5),

• the SRT operator with Smagorinsky viscosity model (SRT + smago),

• the MRT operator (MRT),

• the MRT operator with Smagorinsky viscosity model (MRT + smago).

A D3Q19 lattice with the optimized representation presented in Chapter 3 is used.

Benchmarks are run on two types A and B of computers. Computer A has the
following configuration:

• CPU: Pentium IV 3.06 Ghz with hyper-threading support (processor has
two separated pipelines)
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Figure 5.5: CCP in function of hardware configuration and different collision
operators.

A B
SRT 921 597

SRT+smago 560 366
MRT 60 40

MRT+smago 11 8

Table 5.1: CCP in function of hardware configuration (columns A and B) and dif-
ferent collision operators (SRT, SRT+smago, MRT, MRT+smago). Given values
result from the division of the actual CCP by 1000.

• Cache: 1 MB

Computer B has the following configuration:

• CPU: Pentium Celeron 2.40 Ghz

• Cache: 128 KB

Figure 5.5 shows the CCP for the four collision operators presented above
evaluated on the two given computer types A and B. This information is also
given by Table 5.1. For SRT collision operator, computer A is 1.54 times as
fast as computer B. When using more complex collision operators requiring more
instructions, the factor between the CCP estimated for the two computer types
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Figure 5.6: CCP in function of hardware configuration and lattice size.

becomes smaller (from 1.52 for SRT+smago down to 1.44 for MRT+smago).
This is probably because the portion of execution time used to access data be-
comes smaller when collision operator becomes more complex: the disadvantage
of small cache memory of computer type B becomes less important.

SRT operator is far less complex to compute than MRT operator: the factor
between CCP with SRT and MRT operators is of approximately 15 on both com-
puter types.

Finally, the use of Smagorinsky viscosity model also decreases the CCP. On
computer type A, there is a factor 1.64 with SRT operator and 5.43 with MRT op-
erator. On computer type B, similar factors are obtained: 1.63 with SRT operator
and 5.26 with MRT operator. The use of the Smagorinsky model has a substantial
cost in the context of the MRT operator because it implies several small matrices
multiplications.

5.4.2 Lattice Size

Figure 5.6 shows the CCP plotted for increasing sizes of lattice. The x-axis gives
the side of the cubic lattice and y-axis the measured CCP. An LB simulation with
the SRT collision operator was used.

The CCP increases with the size of the lattice, this is related to the fact that
the optimized implementation presented in Chapter 3 gives better performances
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as the size of the lattice increases.

5.5 Resource Graph Generation

In the context of LaBoGrid, several distributed LB simulations are executed in
sequence. Therefore, several potentially different application graphs need to be
mapped onto the resource graph during LaBoGrid’s execution: a load balancing
process is triggered before the execution of each simulation.

The topology of the resource graph does not change during LaBoGrid’s exe-
cution. However, CCP(n, p) values need to be reevaluated when p changes and
this implies that the weights of the nodes of the resource graph potentially change
before every simulation.

Algorithm 5.1 describes when the load balancing process is triggered during a
typical execution of LaBoGrid. Computers are benchmarked in parallel, the part

do "There are simulations to execute" →
p := "Parameters of current simulation";
if "CCP values available for p" →

skip
2 "CCP values not available for p" →

"Benchmark computers"
fi;
"Generate application and resource graphs";
"Map application graph onto resource graph";
"Distribute sublattices on computers";
"Execute current simulation";
"Go to next simulation"

od

Algorithm 5.1: Static load balancing during LaBoGrid’s execution.

"Benchmark computers" essentially consists in the Controller sending bench-
mark parameters to all DAs and then waiting benchmark for the results. CCP
values calculated during a previous execution of LaBoGrid can be reused if sim-
ulation implementation has not changed meanwhile. They are then given as input
parameters to LaBoGrid.
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5.6 Results

In this section, we analyze the execution time of distributed LB simulations when
using two mappers: SCOTCH [62] and PaGrid [45]. SCOTCH is used with two
configurations:

1. the resource graph is weighted; this configuration is called heterogeneous
SCOTCH.

2. the resource graph is not weighted; this configuration is called homogeneous
SCOTCH.

Homogeneous SCOTCH corresponds to the situation where all computers are con-
sidered as having the same CPU power.

Heterogeneous SCOTCH [62] is able to map a fully weighted application
graph on a fully weighted resource graph. PaGrid [45] is able to map an ap-
plication graph with weighted edges onto a fully weighted resource graph. The
absence of weights on the application graph’s nodes is not important as sublattices
would all have the same weight (they represent the same amount of instructions).
PaGrid tries to directly minimize the application’s execution time.

In the figures of this section, following labels are used:

• PaGrid is self-explanatory,

• HeScotch stands for heterogeneous SCOTCH,

• HoScotch stands for homogeneous SCOTCH.

In addition to computer types A and B presented in Section 5.4, a third type C
is introduced with following specifications:

• CPU: 2 Intel Xeon 5130 2GHz (two cores per CPU, four cores in total)

• Cache: 4096KB

Table 5.2 compares types A, B and C regarding their CCP evaluated using an LB
simulation on a (30,30,30) D3Q19 lattice using MRT collision operator. Type C
computer is 6 times faster than type A computer which is 1.5 times faster than
type B computer.

Figure 5.7 shows the execution time of one iteration of a distributed LB sim-
ulation on a lattice of size (176,176,176) and using MRT collision operator in
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A B C
60 40 385

Table 5.2: CCP of computers of type A, B and C evaluated using an LB simulation
on a (30,30,30) D3Q19 lattice using MRT collision operator.
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Figure 5.7: Execution time of one LB simulation iteration with a (176,176,176)
lattice in function of the number of sublattices.
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function of the total number of sublattices distributed among cluster’s computers.
The simulation is run on a cluster composed of 8 A computers, 8 B computers and
1 C computer.

PaGrid gives the best results when mapping 32 sublattices. When mapping at
least 64 sublattices, heterogeneous SCOTCH leads to the lowest execution times.

We observe that increasing the total number of sublattices leads to lower exe-
cution times. This is due to the fact that the mappers can produce finer mappings
when the number of sublattices is high. For example, the execution time of the
simulation is divived by 2.22 when mapping 256 sublattices instead of 32 sublat-
tices with heterogeneous SCOTCH mapper.

Finally, the same simulation was executed when associating exactly one sub-
lattice per computer (there are 17 sublattices distributed among 17 computers).
This case represents the best homogeneous distribution that can be achieved with
cuboid sublattices because all sublattices have almost the same size and there
is exactly one sublattice per computer. The measured time for one iteration is
7770 milliseconds.

With more than 128 sublattices, heterogeneous SCOTCH provides distribu-
tions that lead to lower execution times than the best homogeneous case which
shows that load balancing has an interest in the context of distributed LB sim-
ulations: when mapping 256 sublattices extracted from a (176,176,176) lattice
using heterogeneous SCOTCH, the execution of a simulation using an MRT col-
lision operator is 1.34 times faster than with best homogeneous distribution.

A final observation is that the execution time obtained by using the mappings
produced by the homogeneous SCOTCH mapper is at least greater by a factor
1.13 than the execution time obtained with the best homogeneous distribution.
This difference has two reasons:

• the homogeneous SCOTCH mapper allows small imbalances between the
partitions it produces. This means that the sublattices distribution is gener-
ally not perfectly homogeneous.

• there is an execution overhead when the sites associated to a computer are
organized into several sublattices instead of a single one. The overhead is
caused by the fact that more outgoing and incoming densities have to be
handled when the number of sublattices increases for a fixed number of
sites.
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5.7 Conclusion

In this chapter, a graph representation of distributed LB simulations called appli-
cation graph was introduced. This representation is interesting because it allows to
use existing static load balancing tools based on graph mapping called static map-
pers. These tools require a graph representation of the cluster that will execute the
distributed application called resource graph.

In our context, the edges of the application graph and the nodes of the resource
graph are weighted. In order to weight the resource graph nodes, a score called
CCP (Contextual Computational Power) was introduced. This score gives the
number of lattice sites a given computer can execute per time unit. The CCP can
directly be used to weight the resource graph nodes. The CCP is obtained using
benchmarks involving the execution of short LB simulations.

Two static mappers were evaluated by comparing the execution time of dis-
tributed LB simulations using the produced mappings: PaGrid and SCOTCH.
Two configurations of SCOTCH were used: heterogeneous SCOTCH (resource
graph is weighted) and homogeneous SCOTCH (resource graph is not weighted).
The observed execution times show that taking the heterogeneous CPU power
of cluster’s computers into account is an interesting approach that reduces the
overall execution time of LB simulations when compared to the execution time
obtained without considering heterogeneity. For example, the execution time of a
distributed LB simulation on a (176,176,176) lattice using the MRT collision op-
erator was divided by 1.34 when distributing 256 sublattices on 17 computers of a
heterogeneous cluster instead of assigning one of 17 sublattices to each computer.

We also observed that, for mapping tools to be efficient, the application graph
should represent a fine-grained application. In our case, this amounts to decrease
the size of the sublattices by increasing their number. However, increasing the
number of sublattices per computer implies an execution time overhead. The grain
of distributed LB simulations should therefore be increased only when a gain is
expected (i.e. when computers have heterogeneous computational powers).
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Chapter 6

Fault-Tolerance

6.1 Introduction

In previous chapters, several aspects of an efficient implementation of distributed
LB simulations were described. However, even with an efficient implementation,
some LB simulations can run for several days. In this context, it is not unusual
that a process does not complete its execution because, for example, of a software
failure (operating system freeze, program interruption, etc.) or a hardware failure
(temporary network failure, memory failure, etc.). These problems are called
failures in this chapter.

A distributed application is fault-tolerant if it is able to continue its execution
in case of failure. The lack of fault-tolerance can be a limiting factor in the scala-
bility of a distributed application because the probability of failure grows with the
number of computers/processors.

In case of failure, a distributed LB simulation cannot be finished because the
part of lattice’s state associated to the interrupted process is unavailable. In addi-
tion, because simulation processes are waiting for data coming from their neigh-
bors, a deadlock may appear because some processes will never receive the data
they are waiting for.

To avoid the problems described above, the complete state of the simulation
should be available even in case of failure. A common mechanism called check-
point/restart [68, 49, 35, 36, 63] can then be used: the state of the application is
regularly saved and, in case of failure, the latest saved state is reloaded to restart
the execution from this point.

In order to be retrieved in case of failure, the state should be saved into a reli-

113
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able storage. In the context of LaBoGrid, the computer executing the Controller
could be used but this creates a bottleneck when saving the state and when load-
ing it. Another solution is to use a distributed storage: the computers executing
the simulation processes are used to store the simulation’s state. Each computer
saves the state of the process it is running. However, this does not prevent the
loosing of a part of simulation’s state in case of failure. Data replication must be
used to obtain a reliable distributed storage: the state of each process is replicated
on several computers, therefore if one of these computers becomes unexpectedly
unavailable, the states it hosted are probably still available on other computers.

A failure detection mechanism is required to be able to trigger simulation
restart in case of failure. It has been shown that, in asynchronous systems, failure
detectors are not reliable [25]: a failure can stay unnoticed for some time (false
negative) and a failure can be erroneously detected because of network conges-
tion, slow computers, etc. (false positive). However, hypothesis on the execution
environment (see Section 6.3) reduce the probability of false positives. Moreover,
false negatives are acceptable, in our context, as long as failures are eventually
detected.

A failure can be temporary. In this case, when the affected computer is ready
again, it should be reused to execute a process of the distributed application. In
addition, if many failures occur, the number of processes of the application de-
creases and can finally reach zero, in which case the application is not executed
anymore. Therefore, if the number of failures during an execution can be large,
a mechanism that searches for available computers (computers able to execute a
process of the application) should be implemented. The process of finding ready
computers is called resource discovery.

A part of the research presented in this chapter (sections 6.2, 6.4 and 6.5) is
the result of a cooperative work with Cyril Briquet who designed CanoPeer [1], a
Peer-to-Peer (P2P) grid computing middleware for distributed applications com-
posed of a set of independent tasks potentially processing large input data files
and producing output data files. CanoPeer integrates a mechanism to find new
resources to execute submitted tasks. It can therefore be used by LaBoGrid as a
resource discovery service.

The task scheduling policy of CanoPeer can lead to the simultaneous interrup-
tion of the execution of several tasks. In the context of independent tasks, this
only postpones the termination of the job because the interrupted tasks are ex-
ecuted and completed later. With a distributed LB simulation, the simulation is
restarted, possibly from a previously saved state if it is available. The state’s avail-
ability probability should be maximized even in the case of simultaneous failures
caused by CanoPeer’s scheduling policy.
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6.1.1 Chapter Outline

Section 6.2 introduces CanoPeer, a P2P grid computing middleware designed by
Cyril Briquet. This section also describes how LaBoGrid and CanoPeer interact.
Finally, CanoPeer is presented as a resource discovery service for LaBoGrid.

Section 6.3 presents the failure detection mechanism implemented in LaBo-
Grid.

Section 6.4 describes the checkpoint/restart mechanism adapted to distributed
LB simulations. This mechanism is based on the regular replication of the state of
the simulation on several computers: each computer saves the part of the state it
hosts on a set of other computers called replication neighborhood.

Section 6.5 describes the construction of the replication neighborhoods the
distributed checkpoint/restart mechanism presented in Section 6.4 depends on.
The replication neighborhoods are built in a way that maximizes the probability
of state’s availability even in the case of multiple simultaneous failures caused by
CanoPeer.

The distributed checkpoint/restart mechanism is disk-based and implies the
management of files distributed on several computers. Section 6.6 introduces a
distributed file system-oriented approach of this task.

Section 6.7 presents execution times of fault-tolerant distributed LB simula-
tions. The impact of replication and the choice of its parameters on the total
execution time is discussed.

Section 6.8 concludes this chapter.

6.2 CanoPeer

Grid computing is a recent form of distributed processing that can be defined by
“coordinated resource sharing and problem solving in dynamic, multi-institutional
collaborations” [60]. Shared resources are mainly CPU time, memory and/or disk
space. These resources are used by distributed applications and the set of avail-
able resources can change over time and during the execution of the distributed
application.

Peer-to-Peer (P2P) grid computing [21, 16, 29] is a very recent subdomain
of grid computing. In these systems, the organization of resource sharing is fully
decentralized.

CanoPeer [1] is a P2P grid computing middleware designed by Cyril Briquet in
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the context of his PhD thesis [21]. Essentially, CanoPeer’s purpose it to schedule
independent tasks grouped in jobs on computers from potentially several institu-
tions.

The main software components of CanoPeer are:

• the resource,

• the peer,

• the user agent.

The resource is executed on a worker computer and is able to execute one task
at a time. It also downloads the required input files to be processed by the task.

A peer controls a set of resources. Peers are connected and form the peer
network. A peer shares its resources with its neighbors in the peer network. Peers
try to complete submitted tasks as fast as possible. Therefore, if a peer is not able
to directly schedule all submitted tasks on the resources it controls, it submits
tasks to its neighbors in the peer network: if these have idle resources, they will
schedule the tasks on them.

The user agent is the software component a human user can interact with in
order to submit a job (a set of tasks) to a peer.

6.2.1 Task Scheduling

The tasks of a job submitted by a user agent to a given peer are scheduled on the
resources it controls and/or on resources controlled by neighbor peers in the peers
network. When a job is completed (all its tasks have been successfully executed),
the results of the tasks are forwarded to the user agent and made accessible to the
human user.

From the point of view of a particular peer p, a task scheduled by peer p on
a resource it controls is called a local task; a task forwarded to peer p by another
peer and scheduled by peer p on a resource it controls is called a remote task. In
this case, peer p has “shared” one of its resources.

When a peer schedules tasks, local tasks can have priority over remote tasks
(it depends on the scheduling policy implemented by the peer [21]). This means
that, if there is no idle resource controlled by a peer to execute submitted tasks, the
peer will interrupt the execution of remote tasks on resources it controls in order to
execute local tasks instead. If there are no resources running remote tasks, tasks
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are queued and forwarded to other peers to be potentially scheduled as remote
tasks.

A task that does not complete its execution because of the crash of a resource
or because it was interrupted in order to free a resource is queued by the peer that
submitted it initially to be scheduled again. This implies that a submitted task is
eventually executed.

The described scheduling policy implies that a task’s execution is interrupted
not only in case of failure: CanoPeer becomes an additional source of interrup-
tions and increases the probability that a task is interrupted before completion.
Another important consequence of this policy is that grouped task interruptions
are not uncommon events: if a peer has scheduled several remote tasks, it can
interrupt all of them to run newly submitted local tasks.

In the context of CanoPeer, the tasks of a particular job are generally indepen-
dent. The interruption of a particular task does therefore not interrupt the overall
job’s execution but only postpones its completion.

6.2.2 LaBoGrid Integration

LaBoGrid’s main components are the Controller and the Distributed Agents (DAs).
The DAs execute the distributed LB simulation code. The Controller essentially
steers the whole process. DAs can be executed by CanoPeer resources (one DA
per resource).

A LaBoGrid task (LB task) is a CanoPeer task that runs a DA when executed
by a resource. A LaBoGrid job (LB job) is a CanoPeer job composed of several
LB tasks. The submission to CanoPeer of an LB job composed of n LB tasks
therefore eventually leads to the execution of n DAs.

The Controller is executed by an “out-of-the-Grid” computer and uses a Cano-
Peer user agent to submit LB jobs. The LaBoGrid configuration file (see Sec-
tion 4.5) is associated to the LB job as input file of LB tasks.

LB tasks are not independent, they must be executed simultaneously. A Cano-
Peer peer always tries to minimize the completion time of a job by running simul-
taneously as many tasks of the job as possible (possibly by submitting some tasks
to other peers). The LB tasks dependence constraint is therefore compatible with
the goal of CanoPeer peers (shortest job’s execution time).

A version of LaBoGrid incorporating only the features presented so far (op-
timized distributed LB simulations, static load balancing) could be submitted to
CanoPeer as is. However, it is very likely that the execution of LaBoGrid will
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not finish successfully because one or several LB tasks and therefore DAs will be
interrupted before the completion of the LB jobs submitted by LaBoGrid’s Con-
troller.

6.2.3 Resource Discovery

As stated in previous section, the Controller submits LB jobs to CanoPeer. An LB
job submission can be seen as a request for new DAs to execute simulations. New
DAs have to be requested in two situations:

• initially,

• after the detection of one or several failures (new DAs should replace the
“lost” ones).

The number of LB tasks the initial LB job contains should be equal to the
number of resources that are ready to execute a DA. These resources are controlled
by the peer the LB job was submitted to or its neighbors in the peer network.
However, this number is unknown and can vary over time (if resources crash or
new resources become available).

The submission by the Controller of an LB job containing an arbitrary large
number of LB tasks is problematic. As stated previously, if n LB tasks are sub-
mitted to CanoPeer, n DAs are eventually executed. However, if n is greater than
the number of available resources m, m DAs are actually executed and (n−m) LB
tasks are queued. If the m executed DAs complete the execution of all requested
LB simulations, the Controller and the m executed DAs finish their execution.
The (n−m) queued LB tasks are then executed, even if the Controller is already
closed. An LB task executed when the Controller that submitted it is already
closed is called a useless task.

The life-time of useless tasks is small (the connection of executed DAs to
the Controller fails as Controller is not running anymore). However, the time to
execute all queued tasks can become large if they are numerous (for example, if
1000 LB task are scheduled on 10 resources and executed during 1 second each
before they detect that the Controller is not running anymore, at least 100 seconds
are required before all useless tasks have been executed). Also, this imposes a
pointless load on peers that queue useless tasks.

The maximum number of DAs needed to execute an LB simulation is known,
it is the total number of sublattices. However, the total number of sublattices can
be much larger than the number of available resources. Submitting an LB job with
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a number of LB tasks equal to the number of sublattices is therefore potentially
problematic as well.

An LB task executed by a CanoPeer resource and running a DA that registered
to the Controller is called a registered task. We suggest a method where tasks are
progressively submitted: an LB job contains a limited number of LB tasks; once
all submitted LB tasks become registered tasks, a new LB job can be submitted. If
some LB tasks are queued because there are not enough available resources, there
is no need to submit additional LB jobs. The number of LB tasks per submitted
LB job represents the maximum number of useless tasks that will be executed.

The component of LaBoGrid that submits LB jobs to CanoPeer is called the
job submitter. Two event types can trigger a DA request:

• The number of sublattices has changed. This can occur when executing a
new simulation. More DAs may be requested for this new simulation.

• A new DA has connected to the Controller. If the number of registered
tasks is equal to the total number of submitted LB tasks, a new LB job can
be submitted to CanoPeer.

The behavior of the job submitter is described by Algorithm 6.1. s is the total
number of submitted LB tasks, r the number of registered tasks and m the maxi-
mum number of LB tasks needed for current simulation. s is not updated in case
of DA failure because associated tasks will be eventually executed again. "Take
an event from queue" extracts an event from job submitter’s event queue. If
no event is available, the command waits until an event is available.

Algorithm 6.2 highlights the condition that must be verified to submit a new
LB job: the number of registered tasks must be equal to the number of submit-
ted LB tasks (i.e. all submitted LB tasks are running a DA) and the number of
submitted LB tasks must be smaller than the maximum number of DAs needed to
execute current simulation. If the condition is verified, an LB job composed of K
LB tasks is submitted to CanoPeer (K is a parameter of job submitter). Note that
the number of registered tasks cannot be larger than the number of submitted LB
tasks.

6.3 Failure Detection

In order to recover from a failure, it must first be detected. Failure detection, in our
context, consists in detecting if a DA is still running (no failure) or not (failure)
during the execution of a simulation.
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s, r, m := 0, 0, 0;
do "Job submitter has not been interrupted" →

"Take an event from queue";
if "Event signals new DA connection" →

r := r + 1;
"Request new DAs if needed"

2 "Event signals new number of sublattices" →
m := "New number of sublattices";
"Request new DAs if needed"

2 "Event signals a DA failure" →
r := r - 1

fi;
od

Algorithm 6.1: Behavior of job submitter.

if s = r and s < m →
"request K new DAs";
s := s + K

2 s 6= r or s ≥ m → skip
fi

Algorithm 6.2: "Request new DAs if needed".
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A common mechanism used to detect failures is the “heartbeat”: a message is
regularly sent to the monitored DA; if it is not acknowledged after a given amount
of time (timeout), the monitored DA is considered as “down” (“up” otherwise).

In synchronous systems, this type of detector is reliable. However, it is not
the case in asynchronous systems [25]: a failure can remain unnoticed for some
time (false negative) and a failure can be erroneously detected because of network
congestion, slow computers, etc. (false positive).

We ignore network congestion and consider that computers slow enough to
not be able to acknowledge a small heartbeat message can be considered as a
real failure: a pathologically slow computer slows the whole simulation down and
should better be ignored for the rest of the simulations’ execution. Finally, we
consider the network (or at least the used communication protocol) as reliable (no
message is lost). For all these reasons, the heartbeat mechanism is considered as
a reliable enough failure detector.

In LaBoGrid, this mechanism is partially implemented by Message Output
Streams (MOS, see Section 4.4.2). Each time a heartbeat message is sent, an
acknowledgement (ACK) is awaited from remote Message Input Stream (MIS). If
no ACK is received after a given amount of time or there was a stream error (an
error detected by TCP) while sending the message, the remote DA is considered
as down.

The Controller regularly sends a heartbeat message to all DAs. When a failure
is detected, the Controller triggers the checkpoint/restart process on all remaining
DAs. In addition, all DAs regularly send a heartbeat message to the Controller. If
a failure is detected, DAs must stop their execution.

In the context of CanoPeer, a remote task executing a DA can be interrupted
in order to execute a very short local task (i.e. a task that is completed in a few
seconds). The DA is then interrupted for a very short period of time and is maybe
executed again on the same computer. Because of the failure detection method de-
scribed above, this interruption is not necessarily detected because it may happen
between two heartbeats. However, even with this kind of very short interruption,
the simulation cannot continue.

In order to detect this situation, a MIS receiving a message checks if the iden-
tifier in the destination field of the message is the same as hosting DA’s identifier.
If it is not the case, the micro-interruption is signaled to remote MOS because the
DA executed after the micro-interruption has not the same identifier as the DA
executed before the micro-interruption. The MOS therefore detects the micro-
interruption.



122 6. Fault-Tolerance

6.4 Checkpoint/restart for Distributed LB Simulations

The checkpoint/restart mechanism [68, 49, 35, 36, 63, 38] consists in saving reg-
ularly the state of a program in order to reload it in case of failure. The operation
of saving the state of the program is called checkpointing. When the program is
interrupted because of a failure, its last saved state is loaded, potentially on an-
other computer. This operation is called rollback. After a rollback, the execution
of the application can be restarted.

In case of failure, the processing time consumed since the last checkpoint is
lost because of the rollback. Checkpointing frequency should therefore grow with
the probability of failure. However, checkpointing has a cost: the execution of the
program must be paused while its state is saved and state saving may take time.

Checkpointing can be transparent or controlled at the application level. Ap-
plication-level checkpointing enables a finer control on the timing and on the se-
lection of relevant data to save [63, 35]. Transparent checkpointing [38, 68] is
controlled by the operating system or the middleware. The main advantage of this
method is that it does not need a modification of the application code. However, it
may involve an overhead in the amount of data to save. Application-level check-
pointing is chosen for LaBoGrid, in particular because a fine control is required
for our distributed checkpointing method (see Section 6.4.2).

The state of an application can be stored to disk (disk-based checkpointing) or
directly into memory (diskless checkpointing). The latter solution avoids long ac-
cess times associated to disk-based data storage [63]. However, disk-based check-
pointing saves RAM and is therefore chosen.

For the sake of clarity, the checkpoint/restart mechanism will first be intro-
duced for nondistributed LB simulations. After that, the distributed checkpoint/re-
start mechanism used in LaBoGrid will be presented.

6.4.1 Checkpoint/restart for Sequential LB simulations

The state of an LB simulation is composed of the densities associated to all lattice
sites. Checkpointing therefore consists in storing all these values to disk in a file
called state file.

A single state file could be used to store all states alternatively. The problem is
that if the program is interrupted while it is writing data into the file, the contents
of the file are corrupted and no restart is possible. Data from different checkpoints
are therefore stored into a new file. In order to save disk space, each time a new
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state was completely written to disk, the previous state file is deleted.

Algorithm 6.3 (based on Algorithm 2.1) describes an LB simulation with a
checkpoint every P iterations and restarting from iteration S. P is called check-
point period and S restart iteration. If S is equal to 0, the lattice is initialized at

"Set lattice at state S";
t := S;
do t < timeSteps →

"Propagate values";
"Apply boundary conditions";
"Apply collision";
if t mod P = 0 →

"Save lattice state to disk";
"Delete previous state file"

2 t mod P 6= 0 → skip
fi;
t := t + 1

od

Algorithm 6.3: Sequential LB simulation with checkpointing.

equilibrium and no state file is read. Otherwise, the state file associated to iteration
S is read to set the initial values of the lattice.

6.4.2 Distributed Checkpoint/restart

The distributed LB simulation code presented in Algorithm 2.13 can be adapted in
the way presented in Algorithm 6.3 to implement the distributed checkpoint/restart
mechanism. However, a state file then contains the state of a sublattice and its
associated subsolid. In case of failure, to be able to restart the distributed simula-
tion, all state files associated to the restart iteration must be available, otherwise
the state of the lattice is not completely available.

The file associated to the previous state should be deleted only if all current
state files are completely written to disk: if a failure occurs when a DA executed
by a slower computer is writing its state file, the previous state is potentially not
completely available anymore because DAs executed by faster computers have
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already deleted the state files from it. DAs are therefore synchronized by the
Controller regarding the deletion of state files.

Finally, state files generated by a DA should not be stored only on the com-
puter hosting the DA: in case of failure of a computer hosting a DA, the state files
generated by the associated DA would not be available anymore and the simula-
tion could not be restarted. One solution is to store all state files on the computer
hosting the Controller (this computer is considered as reliable). In case of failure
of one or several worker computers, all state files are still available. However, this
storage scheme is not efficient because the Controller acts as a bottleneck.

Another solution is to replicate state files on several worker computers. If one
of these computers fails, a state file is still available on another computer. Each
DA therefore sends its state files to a set of other DAs which write the received
file to the disk of their associated computer. This set of DAs is called replication
neighborhood. The construction of the replication neighborhood for all DAs is
discussed later in this chapter (see Section 6.5).

The robustness of this scheme increases with the number of state file replicas
available. However, the cost of replication in terms of execution time increases
linearly with the number of replicas. There is therefore a robustness/efficiency
trade-off regarding the number of replicas. The number of replicas to generate for
a state file is called replication degree. The replication degree gives the size of
replication neighborhoods.

Algorithm 6.4 (based on Algorithm 2.13) describes a distributed LB simula-
tion code with a checkpoint every P iterations, a replication degree D and restart-
ing from iteration S. "Checkpoint sublattice state" command defines the
state’s replication (see Algorithm 6.5).

The time to execute "Save sublattice state to disk" and "Send state
file to D other DAs" is called replication time.

To reduce the impact of replication on simulation execution time, state files
replication can be executed in parallel of the simulation. "Checkpoint sublat-
tice state" can then be rewritten as shown in Algorithm 6.6.

"Start new replication process" starts a new thread that executes in se-
quence the commands "Send state file to D other DAs", "Signal state
file was replicated" and "Wait all state files have been repli-
cated".

"Wait for end of previous replication process" ensures that there
is only one replication process in progress at a time for all DAs.
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"Wait informations from master";
"Set sublattice at state S";
t := S;
do t < timeSteps →

"Extract sublattice outgoing densities";
"Send sublattice outgoing densities to neighbors";
"Propagate sublattice values";
"Receive sublattice incoming densities";
"Set sublattice incoming densities";
"Apply sublattice boundary conditions";
"Apply sublattice collision";
"Wait for all outgoing densities to have been sent";
"Checkpoint sublattice state";
t := t + 1

od

Algorithm 6.4: Parallel LB simulation with checkpointing.

if t mod P = 0 →
"Save sublattice state to disk";
"Send state file to D other DAs";
"Signal state file was replicated";
"Wait for all state files to have been replicated";
"Delete previous state file"

2 t mod P 6= 0 → skip
fi

Algorithm 6.5: "Checkpoint sublattice state".
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if t mod P = 0 →
"Save sublattice state to disk";
"Wait for the end of previous replication process";
"Delete obsolete state file"
"Start new replication process"

2 t mod P 6= 0 → skip
fi

Algorithm 6.6: "Checkpoint sublattice state" (parallel version).

Configuration compressed size (KB) Compression Ratio
Equilibrium 2.09 0.0017
Random 1120.25 0.93

Table 6.1: Compressed size of state file and compression ratio for a state file.

6.4.3 State Files Compression

State files could contain compressed data in order to reduce their transmission
time and therefore the replication time. A state file contains all sublattice values
(a vector of real values for each site) and subsolid values (a boolean for each site
of the lattice). The compression ratio (ratio of compressed data size to uncom-
pressed data size) for subsolids should be good (around 0.1%) as subsolid values
are very redundant. The compression ratio for sublattices depends on the state of
the simulated flow.

The compression ratio of a state file containing a D3Q19 sublattice of size
(20,20,20) and a subsolid containing only empty space (all values are equal to
false) has been evaluated in two configurations:

• fluid at equilibrium,

• completely random fluid (this fluid has no physical meaning).

The uncompressed state file weighs 1195.88 kilobytes for both configurations.

Table 6.1 shows the compressed size and compression ratio for these two con-
figurations. With a fluid at equilibrium, a very good compression ratio is achieved
as the redundancy is very important. With a fluid initialized with random values,
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#iterations pipe foam
0 0.0017 0.0023
1 0.0032 0.0189
10 0.0067 0.5847
100 0.0030 0.6875
1000 0.0030 0.6875

Table 6.2: Compression ratio of state files after increasing numbers of iterations
in the context of two different simulations: a flow in a rectangular pipe and a flow
through a metallic foam.

it is clearly not the case. However, “real-world” fluids may exhibit more redun-
dancy.

To illustrate the evolution of lattice values redundancy, the compression ratio
for state files was measured for increasing numbers of iterations in two different
flow simulations:

1. a flow trough a rectangular pipe,

2. a flow trough a metallic foam.

The measured compression ratios are given in Table 6.2. Compression ratio stabi-
lizes for both simulations after 100 iterations.

We observe that for simulation 1 (pipe), the compression ratio remains good
throughout the execution. This is because the obtained flow is laminar and lattice
values are therefore very redundant (lattice slices perpendicular to flow direction
are identical).

For simulation 2 (foam), compression ratio stabilizes at around 69% which is
better than the completely random case. This simulation is representative of the
kind of simulations that are typically run with LaBoGrid.

Compression reduces the size of the data that must be replicated and should
therefore reduce the transmission time of these data. However, it has a cost re-
garding the time to generate the state file. Table 6.3 shows the time to generate a
state file and write it to disk with and without compression in the case of simula-
tion 2 after 100 iterations. It takes about 12 times more time to generate a state
file and write it to disk when compression is enabled. However, state files are
transmitted multiple times through the network because of replication but written
only one time to disk. Compression’s cost is therefore potentially acceptable if
the replication degree is large.
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Write type Write time (ms)
Uncompressed 45
Compressed 531

Table 6.3: Time to generate a state file and write it to disk with and without
compression.

Replication time with compression enabled or disabled can be estimated in
function of replication degree. It is then possible to establish if compression
should be used (i.e. if replication time without compression is higher than repli-
cation time with compression).

Let Wu be the time to generate and write a state file to disk without compres-
sion and Wc be the time to generate and write the same file but with compression.
Let Tu be the time to transmit the uncompressed file and Tc be the time to transmit
the compressed file. Finally, let d be the replication degree. d is calculated such
as

Wu +dTu >Wc +dTc (6.1)

Let B be the bandwidth of the network used to transmit state files (B = 10240
kilobytes/second is an estimate of the bandwidth of TCP/IP communications over
a 100 megabits Ethernet network). In the case of simulation 2, after 100 iterations,
the parameters of Equation 6.1 have the following values:

Wu = 0.045
Wc = 0.531

Tu =
1638.4
10240

= 0.16

Tc =
1126.4
10240

= 0.11

All parameters are expressed in seconds.

When solving inequality in Equation 6.1, we find that d > 9.72. Compression
is therefore interesting when the replication degree is greater or equal to 10.

The choice of the replication degree is based on the level of robustness that is
required. A replication degree equal to 10 implies that at least 9 computers can
fail simultaneously without affecting the availability of full simulation’s state. In
environments like CanoPeer, this level of robustness can be required. It is then
interesting to compress state files.
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However, in more reliable environments where the simultaneous failure of
several computers is an uncommon event, a lower replication degree is used (d =
1). State files compression then implies an overhead regarding the replication of
uncompressed files.

6.5 Replication Neighborhood Construction

As stated previously, a DA that replicates its state sends its state file to a set of
DAs called replication neighborhood. The replication degree gives the size of
replication neighborhoods. Two important aspects have to be taken into account
when building replication neighborhoods:

• Robustness: in the context of CanoPeer, grouped failures can be a common
event. Replication neighborhoods must be built in a way that ensures that
state files are still available in case of grouped failure (and, of course, single
failures).

• Efficiency: each DA should be part of the same number of replication neigh-
borhoods in order to uniformly share state files transmissions. Also, this
ensures an efficient usage of distributed disk space.

Grouped failures have the property that interrupted DAs have mostly been
executed by resources controlled by the same peer. State files should therefore be
replicated to resources controlled by different peers: if a state file is replicated to
three resources from three different peers and two grouped failures occur because
of two of these peers, the replicated file is still available. This replication scheme
is also robust to single failures.

The construction of replication neighborhoods can be expressed as a graph op-
timization problem. We present hereafter the graph optimization problem related
to the construction of replication neighborhoods as well as a heuristic solution to
this problem.

6.5.1 Replication Graphs

The resource-level replication graph (RRG) is a directed graph where each vertex
represents a resource. An edge going from vertex p to vertex q means that the DA
executed by the resource associated to q is in the replication neighborhood of the
DA executed by the resource associated to p.
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Figure 6.1: Well conditioned RRG with 6 resources and a replication degree of 2.

Figure 6.2: Degenerated RRG with 6 resources and a replication degree of 2.

The replication degree d imposes that each vertex of the RRG has exactly d
outgoing edges. To uniformly distribute transmissions, each vertex should ideally
have d incoming edges.

Figure 6.1 shows a well-conditioned RRG with a replication degree equal to
two. Each vertex has exactly two incoming and two outgoing edges. A degener-
ated RRG is shown in Figure 6.2. Two resources centralize most of the replicas
and thus, act as bottlenecks. Such a situation should be avoided if possible.

The peer-level replication graph (PRG) is a directed graph where each vertex
represents a peer. An edge going from vertex p to vertex q means that a resource
from the peer associated to q is in the replication neighborhood of a resource from
the peer associated to p.

A vertex of the PRG is weighted with the number of resources owned by
its associated peer. An edge of the PRG going from a vertex p to a vertex q is
weighted by the number of resources from the peer associated to q being in the
replication neighborhoods of resources from the peer associated to p.

Figure 6.3 shows the RRG from Figure 6.1 where resources are grouped by
peer. The associated PRG is shown in Figure 6.4.

The RRG of Figure 6.3 does not fulfill the constraints defined above: state files
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Peer

Peer

Peer

Figure 6.3: RRG from Figure 6.1 with resources organized by peer.
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Figure 6.4: PRG based on organization presented in Figure 6.3.
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Peer

Peer

Peer

Figure 6.5: Corrected version of the RRG from Figure 6.3.

are replicated to resources that are part of the same peer. The RRG of Figure 6.5
is a corrected version of the RRG of Figure 6.3 that ensures that each resource
replicates its state files on resources from different peers. We can observe that this
robustness constraint potentially implies the production of a degenerated RRG.

The replication neighborhood of a particular DA can directly be extracted from
an RRG like showed in Figure 6.5. In the method presented below, the PRG is
built by solving an optimization problem (see sections 6.5.2 and 6.5.3). The RRG
is then directly constructed in function of the PRG (see Section 6.5.4).

6.5.2 PRG Optimization Problem

Let VPRG be the set of vertices of the PRG. The PRG built from a set of peers must
have the following properties (with p ∈VPRG):

1. No edge connects a vertex to itself. This ensures that the resources from a
peer replicate their state to resources from other peers.

2. Given replication degree d and given the number of resources rp controlled
by the peer associated to vertex p, p must have d× rp outgoing edges.

3. Let sp be the number of incoming edges of vertex p and L be the list of sp
rp

values for all vertices of the PRG. Then, Var(L) the variance of the values
in L is minimized. This property implies a load balancing regarding the
number of state files each resource receives during state replication.



6. Fault-Tolerance 133

The set of vertices of the PRG is directly built from the set of peers. Building
the edges set is a constrained optimization problem: the first two properties listed
above are constraints and third property is the objective function.

The optimization variables are noted xpq where p,q ∈ VPRG. xpq gives the
weight of the edge going from vertex p to vertex q (xpq = 0 means there is no edge
between p and q). The optimization problem can therefore be stated as follows:

min
∀p,q∈VPRG : xpq

Var(L)

under the following constraints:

• ∀p ∈VPRG : xpp = 0

• ∀p ∈VPRG : ∑q∈VPRG xpq = d× rp

• ∀p,q ∈VPRG : xpq ≥ 0

6.5.3 Construction of the PRG

To solve the optimization problem, we use a heuristic method relying on a com-
mon scheme: variables are initialized in a way that all constraints are met but
Var(L) (cost function) is not necessarily minimized. Variables are then iteratively
adjusted in order to minimize Var(L) without violating the constraints.

Let out, in and inAvg be three functions defined as follows:

out(p) = ∑
q∈VPRG

xpq

in(q) = ∑
p∈VPRG

xpq

inAvg(q) =
in(q)

rq

out(p) gives the number of outgoing edges of vertex p, in(q) the number of in-
coming edges for vertex q and inAvg(q) the average number of incoming edges
per resource of the peer associated to vertex q. The cost function Var(L) can be
expressed in function of inAvg:

Var(L) =Var ({inAvg(p) | ∀p ∈VPRG})

When adjusting variables, out(p) must remain equal to d× rp. This means
that if a value xpq is increased, another value xpq′ must be decreased accordingly.
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However, inAvg(q), inAvg(q′) and therefore Var(L) are potentially different. The
adjustments should be done in order to reduce Var(L) to eventually reach a local
optimum.

We consider variables xpq are represented by an array x of N lines and N
columns where N = |VPRG|. Algorithm 6.7 describes the construction of x. x
is initialized and iteratively adjusted. The cost function is evaluated after each ad-
justments pass (command "Balance rows of x"). The given threshold E con-
trols the termination of the algorithm: when the gain obtained after an adjustments
pass is lower than this threshold, the loop terminates its execution. E is a strictly
positive real number.

var
c1, c2 : real

begin
"Initialize x";
c2 := "Evaluate cost function";
"Balance rows of x";
c1 := "Evaluate cost function"; {P}
do (c2 - c1) ≥ E → {P}

"Balance rows of x";
c2 := c1;
c1 := "Evaluate cost function" {P}

od {P}
end

Algorithm 6.7: Construction of x.

The loop invariant P from Algorithm 6.7 is defined by the following expres-
sion:

{P: “c1 is the value of cost function at time t” ∧ “c2 is the value of cost
function at time t-1” ∧ c2≥ c1}

P essentially states that the algorithm reduces the cost or leaves it unchanged at
each iteration but never increases it.

In order to prove the termination of this loop, we can define the sequence
S = c1,c2, . . . ,cN of cost function’s values evaluated after each adjustments pass
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(each time command "Evaluate cost function" is executed). This sequence
has following properties:

1. (ci− ci+1)> E for 0≤ i < N−1,

2. (cN−1− cN)≤ E.

The termination function t for the loop in Algorithm 6.7 is therefore given by the
following expression:

t =
⌈

c(x)
E

⌉
where c(x) is the result of "Evaluate cost function" command and E the
threshold. c(x) must be a strictly decreasing real function when evaluated at each
iteration before loop’s commands. c(x) is divided by E in order to guarantee that
the difference between the values obtained from two subsequent evaluation of t is
at least 1. Finally, ceiling function is applied to the result of the division of c(x)
by E in order to make t an integer function.

“Initialize x”

Algorithm 6.8 describes the initialization of x. It ensures that x[p,p] = 0 with
0≤ p < N and that the sum of the elements of a row p of x is equal to (d× rp), in
particular when (d× rp) is not divisible by N-1.

“Evaluate cost function” and “Balance rows of x”

The method proposed to adjust variables indirectly minimizes Var(L): the dis-
tance between the smallest and the largest values of inAvg is used as a new cost
function (and returned by command "Evaluate cost function"). It is itera-
tively reduced, eventually leading to a reduction of Var(L).

However, the new cost function is not strictly equivalent to Var(L) because
even if the distance between the smallest and the largest values of inAvg cannot
be reduced, the variance of the values in-between could maybe still be reduced.
A solution for the new cost function is therefore potentially suboptimal regarding
Var(L).

Algorithm 6.9 describes the command "Balance rows of x". It essentially
implies an adjustment for each row of x.

The sum of the elements of each row must remain constant during adjust-
ments. For a fixed row p, two columns q′ and q′′ are chosen such that inAvg(q′) =
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r := (d× rp) mod (N-1);
v1 := (d× rp) div (N-1);
v2 := v1 + 1;
p := 0;
do p < N →

q := 0;
s := 0;
do q < N →

if p = q → x[p,q] := 0
2 p 6= q and s < r → x[p,q] := v2; s := s + 1
2 p 6= q and s ≥ r → x[p,q] := v1
fi;
q := q + 1

od;
p := p + 1

od

Algorithm 6.8: "Initialize x".

p := 0;
do p < N →

"Balance row p";
p := p + 1

od

Algorithm 6.9: "Balance rows of x".
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minq inAvg(q), inAvg(q′′) = maxq inAvg(q), p 6= q′ and p 6= q′′. A value α greater
or equal to zero is then computed such as following expression is minimized.∣∣∣∣(inAvg(q′)+

α

rq′

)
−
(

inAvg(q′′)− α

rq′′

)∣∣∣∣ (6.2)

The command "Balance row p" implies the search for q’ and q” and the
update of x as follows:

• x[p,q’] := x[p,q’] + α

• x[p,q”] := x[p,q”] - α

The core of "Balance row p" is the computation of α. Let α̃ be a real value
such as α̃ = α+ ε with 0≤ ε < 1, Equation 6.2 is minimized as follows:(

inAvg(q′′)− α̃

rq′′

)
−
(

inAvg(q′)+
α̃

rq′

)
= 0

and

α̃ =
rq′rq′′(inAvg(q′′)− inAvg(q′))

(rq′+ rq′′)

This solution is greater or equal to zero because inAvg(q′′)≥ inAvg(q′) and rq′ and
rq′′ are greater or equal to zero by definition.

The value of α is then simply equal to bα̃c. In this case:(
inAvg(q′′)− α

rq′′

)
−
(

inAvg(q′)+
α

rq′

)
= e

with
e =

ε

rq′′
+

ε

rq′

a positive real value. This implies that:

inAvg(q′)≤ inAvg(q′)+
α

rq′
≤ h(q′′)− α

rq′′
≤ inAvg(q′′)

The distance between the smallest and the largest value of inAvg is therefore either
smaller, either unchanged. This is true after each row has been balanced (after the
execution of command "Balance row p"). This property is compatible with the
loop invariant P of Algorithm 6.7.
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6.5.4 Construction of the RRG Using the PRG

The set of vertices VRRG of the RRG is built from the set of resources. The set of
edges of the RRG is constructed using the array x constructed with Algorithm 6.7.
x[p,q] gives the number of edges that can go from a resource controlled by the
peer associated to p to a resource controlled by the peer associated to q.

For a given vertex r ∈ VRRG associated to a resource controlled by a peer p,
there must be d outgoing edges to d other vertices. These d other vertices should
represent resources controlled by d other peers than p. There can be an edge from
vertex r to a vertex s ∈VRRG if the resource associated to s is controller by a peer
q and xpq > 0.

A vertex r ∈ VRRG is connected to another vertex s ∈ VRRG if a directed edge
goes from r to s. A vertex is unconnected if it is not connected to any other
vertex. Algorithm 6.10 describes the construction of the RRG edges set by using
x: A is the set of unconnected vertices, each vertex r ∈ A is removed from A and
connected to d other vertices. These vertices are chosen in function x.

"All vertices of VRRG are added to A"; {P1}
do "A is not empty" → {P1}

"Remove vertex r from A";
p := "the peer controlling r";
k := 0; {P2}
do k < d → {P2}

"Select next peer q such as x[p,q] > 0";
"Select next resource s ∈VRRG of peer q";
"Connect r to s";
x[p,q] := x[p,q] - 1;
k := k + 1 {P2}

od {P2}
{P1}

od {P1}

Algorithm 6.10: Construction of the RRG edges set.

Following expression gives loop invariant P2 from Algorithm 6.10:

{P2: “vertex r is connected to k other vertices”}
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P1 is given by the following expression:

{P1: “vertices of (VRRG \A) are connected to d other vertices”}

When A is empty (after loop’s execution), P1 implies that all vertices of VRRG are
connected to d other vertices. Replication neighborhoods of size d can therefore
be extracted for each resource.

"Select next peer q such as x[p,q] > 0" and "Select next res-
ource s ∈ VRRG of peer q" are implemented such as the elements of the sets
are selected in a cyclic way: always in the same order and after the last element of
the set has been selected, the next element that will be select is the first element of
the set. This ensures that the number of incoming edges is uniformly distributed
among the vertices associated to a given peer.

6.6 Distributed File System

State replication causes several identical files to be stored on several computers.
In case of failure, a particular state file has to be made available on a particular
computer to restart the simulation. If the state file is not available in the local file
system, it must first be downloaded from another computer. A DA must therefore
be able to derive the address of another DA given a state file’s name in order to
download the associated file, this file being stored in the local file system of the
computer hosting contacted DA.

A fault-tolerant Distributed File System (DFS) [5, 2, 6] could be used to store
and retrieve state files. However, because of the portability objective of LaBoGrid,
the use of an external system should be discarded. The DFS should be an embed-
ded component of LaBoGrid. Moreover, in LaBoGrid, the state file replication
process must be easily controlled:

• files stored on a computer must be replicated at least to the computers from
its replication neighborhood,

• file replication should be triggered by LaBoGrid, not by the DFS.

The DFS used by LaBoGrid should provide following capabilities:

• Adding an existing local file to DFS: an existing file is inserted into the
DFS to be made available to other computers. After insertion, the file must
be in read-only mode (no deletion or modification is allowed).
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• Retrieve a file from DFS: a file stored in the DFS is copied (if necessary)
into the local file system of a particular computer.

• Replicating a local file to a given set of other computers: a local file
previously inserted into DFS is replicated to a given set of computers. It
may be interesting to only insert a file into DFS without replicating it (for
example, when a file can be shared without requiring fault-tolerance). This
is why adding and replicating a file are two separate operations.

• Deleting files from DFS: Files that are not needed anymore by any com-
puter can be removed from all computers hosting them. The file names of
the files to delete are defined by a regular expression. This avoids to explic-
itly name a potentially large number of files upon deletion.

6.6.1 LaBoGrid Embedded Distributed File System

A file unique identifier (FUID) is associated to each file inserted into the DFS.
The FUID of a file is represented by a string. This allows operations on groups of
files (i.e. deletion) whose FUIDs match a given regular expression. Note that the
FUID of a file is not necessarily its file name: a file having FUID “state_9_0.dat”
can be stored locally in a file named “down_42.bin”.

The global file locations table (gFLT) provides, given a FUID, the address of
the computers hosting the associated file. The gFLT is maintained and hosted by
the Controller. DAs maintain a partial copy of it called partial file locations table
(pFLT) in order to reduce the number of requests sent to the Controller to get the
locations of a given file. The pFLT is not necessarily consistent with the gFLT
and is updated only if needed. The maintenance cost of the pFLTs is therefore
minimized.

The implementation of the component hosted by the Controller and the DAs
is based on the asynchronous agents framework presented in Section 4.4.1. The
DFS calls are therefore asynchronous. These components are called Distributed
File System Peers (DFSP).

A file can be partitioned into smaller parts called chunks. Files are transmitted
chunk by chunk between DFSPs to avoid to completely load file’s contents into
memory. Several files can be sent/received at the same time. Each DFSP maintains
its local files table (LFT) that provides the path to a local file given its associated
FUID.

The DFS operations previously introduced are now described in more details.
For the sake of simplicity, the asynchronous nature of the presented algorithms
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is hidden (the exchange of messages in an asynchronous way implied by these
operations is not explicitly exposed).

Adding an existing local file to DFS

When adding an existing file into DFS, its FUID has to be provided by the applica-
tion (i.e. it is not the DFS that chooses the FUID to associate to a given file). The
file is then added to LFT, pFLT is updated and a message is sent to the Controller
which updates the gFLT.

In order to guarantee the uniqueness of state files’ FUID, the following naming
scheme is used: the state of sublattice s at time step i is stored in the file associated
to the FUID “s_i.state”.

Retrieve a file from DFS

To retrieve a file from DFS, a FUID must be provided. The result is the path to a
local file or an error if the file could not be found. Algorithms 6.11 describes the
behavior of the DFSP when a file is requested. Expression "File successfully
downloaded" is true if command "Download file from locations provided
by pFLT" successfully downloaded requested file from one of the provided loca-
tions. It is false if the file could not be downloaded from any of the provided
locations or no location is provided.

If a file is not successfully downloaded from locations coming from the pFLT,
it is maybe because the pFLT was not up-to-date. This is why the download is
then triggered with new locations coming from gFLT (see Algorithm 6.12).

Replicating a local file to a given set of other computers

The FUID of the file to replicate and a list of destination DAs (the replication
neighborhood) must be provided. The given FUID must have an entry in the LFT.
A message is sent to given DAs (actually, to the DFSP they host), which update
their pFLT and download the file.

The DFSP that initiated the replication is called the source. The DFSPs that
downloaded the file to replicate are called destinations. When a destination has
downloaded the file to replicate, it adds it to its LFT, sends a message to source
which updates its pFLT and finally (when all destinations downloaded the file)
notifies the Controller which updates the gFLT.
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if "FUID is present in LFT" →
"Result becomes path associated to key FUID in LFT"

2 "FUID is not present in LFT but present in pFLT" →
"Download file from locations provided by pFLT";
if "File successfully downloaded" →

"Downloaded file is added to LFT";
"Result becomes path to downloaded file"

2 not "File successfully downloaded" →
"Get locations from gFLT and download file"

fi
2 "FUID is not present in LFT and not present in pFLT" →

"Get locations from gFLT and download file"
fi

Algorithm 6.11: Retrieval of a file from DFS.

"Request file locations from gFLT";
if "No locations have been received" → "ERROR"
2 "Locations have been received" →

"Update pFLT with received file locations";
"Download file from locations provided by pFLT";
if "File successfully downloaded" →

"Downloaded file is added to LFT";
"Result becomes path to downloaded file"

2 not "File successfully downloaded" → "ERROR"
fi

fi

Algorithm 6.12: "Get locations from gFLT and download file".
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At the end of the replication, the pFLT of the source and the gFLT contain at
least the source and the destinations in the locations associated to the FUID. The
pFLTs of the destinations contain at least the source. The LFT of the source and
the destinations contains an entry for the given FUID.

Deleting files from DFS

The files to be deleted have a FUID matching a given regular expression. Entries
are first removed from gFLT by the Controller. A message is then broadcasted
to all DFSPs to remove their local files (delete the file from local file system and
remove associated entries in pFLT and LFT).

No operation (update, retrieve, replicate) on a file being deleted should be in
execution or triggered during the deletion process.

6.6.2 Distributed File System Oriented Checkpoint/restart

When the checkpoint process is triggered, a state file is stored into the local file
system for each sublattice.

Once it is created, the state file is added to the DFS in order to be replicated.
When all replications are finished for all state files, obsolete state files can be
deleted. Algorithm 6.13 is based on Algorithm 6.5 and describes this process.

if t mod P = 0 →
"Save sublattice state to disk";
"Insert state file into DFS";
"Request replication of state file to DFS";
"Wait for all state files to have been replicated";

2 t mod P 6= 0 → skip
fi

Algorithm 6.13: "Checkpoint sublattice state" (DFS version).

Obsolete state files are deleted by the Controller when all state files have been
replicated: the deletion of files matching the regular expression “.*_i\.state” (any
state file generated at iteration i) is requested where i is the iteration at which
previous checkpoint process was triggered.
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At the end of a sequence of simulations, state files are not required by the next
simulation of the experience (see Section 4.5.3). They are therefore deleted from
DFS using the regular expression “.*\.state”.

When a simulation is restarted, state files are retrieved from DFS using asso-
ciated FUIDs. If a file could not be retrieved, the complete state of the simulation
is not available anymore and the simulation must be restarted from the beginning.
This happens if all the computers that host a copy of the same state file fail at
the same time. However, a replication degree (see Section 6.4.2) “high enough”
makes this event very unlikely.

The definition of a “high enough” replication degree depends on the execution
environment. In the context of a classical cluster, a replication degree equal to
1 or 2 is high enough because computers are reliable most of the time and the
simultaneous failure of several computers is an unlikely event. However, when
LaBoGrid’s DAs are executed by resources managed by CanoPeer, the replication
degree should depend on the number of different peers controlling the resources.
For example, if the resources executing the DAs are controlled by 4 different peers
(each resource is associated to exactly one peer) and 3 peers interrupt all the LB
tasks executed by their resources at the same time, the whole state is still available
if a replication degree greater or equal to 3 is used and replication neighborhoods
are built using method presented in Section 6.5.

6.7 Results

In this section, the execution times of distributed LB simulations with different
replication parameters are measured and compared in function of different failure
probabilities and replication parameters.

6.7.1 State Replication Impact on Execution Time

A distributed simulation on a D3Q19 lattice of size (176,176,176) with 100 iter-
ations implying a state replication every 10 iterations was executed on a cluster of
25 type A (Pentium IV 3.06Ghz, see Section 5.4) computers. A state replication
is composed of the generation and the writing of a state file to disk, the replication
of this file on several replication neighbors and the deletion of obsolete state files.
The state files can contain compressed or uncompressed data.

Figure 6.6 shows the execution time of the distributed LB simulations for an
increasing number of replication neighbors and producing compressed or uncom-
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Figure 6.6: Execution time of an LB simulation on a D3Q19 lattice of size
(176,176,176) using different replication parameters.

pressed state files. The execution time with no replication neighbor is the execu-
tion time when state file is generated and written to disk but not replicated. The
execution time when no state file is produced is 35 seconds.

With centralized state replication (all state files are stored on the Controller),
the total execution time is of 760 seconds (more than twice the execution time
when replicating state on 10 replication neighbors).

These measures illustrate the discussion of Section 6.4.3 on the interest of
compressing state files: state file compression becomes interesting only if the
number of replication neighbors is large enough (more than 10 neighbors in this
case).

We also observe that the execution time increases linearly in function of the
number of replication neighbors: with uncompressed state files, the execution
time increases of approximately 28.55 seconds each time a replication neighbor
is added. This additional execution time has two main components: transmission
time (state files are sent to an additional computer) and deletion time (there are
more files to delete when suppressing obsolete state files).

The deletion time component is negligible regarding transmission time: the
complete state of the simulation is represented on 831.88 MBytes when it is not
compressed (1763×19×8 bytes for the lattice and 1763×8 bytes for the solid).
If we suppose that data are evenly distributed among computers, each computer is
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Figure 6.7: Contribution of simulation and replication times to the total execution
time in the case of a simulation with 100 iterations.

responsible of 33.28 MBytes. The additional transmission time when increment-
ing the number of replication neighbors is therefore at least equal to 27.91 seconds
(33.28 / 11.92 where 11.92 is the approximated bandwidth of a 100 megabits eth-
ernet network) and it remains 0.64 seconds introduced by deletion time among
other effects.

The execution times from Figure 6.6 show that state replication produces an
important overhead: the execution time is at least doubled when enabling state
replication and using only one replication neighbor. Figure 6.7 compares the con-
tribution of simulation and replication times to total execution time and, starting
from two replication neighbors, the contribution of simulation time to the total
execution time is lower than 50%.

However, the number of iterations (100) of these simulations is small regard-
ing more realistic values (1000-10000 iterations). Figure 6.8 compares the contri-
butions of simulation and replication to the total execution time when the number
of iterations of the simulation is set to 1000 and the number of replications (8)
remains unchanged (it occurs every 100 iterations). In this case, the contribution
of replication time to the total execution time remains under 50% even with 10
replication neighbors.
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Figure 6.8: Contribution of simulation and replication times to the total execution
time in the case of a simulation with 1000 iterations.

6.7.2 Execution Time in Case of Failure

When a failure occurs and state replication is not enabled, the simulation must be
restarted from the initial state. Let P(X = i) be the probability of the simulation
being interrupted i times after the same amount of time t f ailure. We suppose that
P(X ≥ N) is equal to 0. The mean execution time tnoRep without state replication
is given by

tnoRep =
N−1

∑
i=0

P(X = i)(texec + i× t f ailure)

where texec is the time to execute the simulation without state replication or failure.

When state replication is enabled, in case of failure, the simulation is restarted
from the last saved state (we suppose it is still available after failure). The “lost”
part of the simulation is therefore potentially smaller. However, as stated previ-
ously, state replication has a cost. The mean execution time trep with state repli-
cation is given by

trep =
N−1

∑
i=0

P(X = i)(texec + trep + i× tlost)

where trep is the replication time and tlost the time elapsed between last state repli-
cation and failure. The replication time depends on the number of state replica-
tions and the number of replication neighbors. tlost depends on the number of
iterations between two state replications and the moment the failure occurs.
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Figure 6.9: Mean execution time for different reTheseplication parameters in
function of failure probability.

If P(X) distribution is known, a choice can be made regarding the use or not
of replication in order to minimize the mean execution time. If replication is used,
replication parameters can also be selected such as the mean execution time is
minimized.

In the following of this section, we suppose that P distribution is known and
analyze the particular case of a simulation on a D3Q19 lattice of size (176,176,176)
executed during 1000 iterations. When state replication is used, state files are
replicated on one replication neighbor.

Enable Or Disable State Replication

Let P(X ≥ 2) = 0, t f ailure = texec/2 and tlost be equal to half the time to execute
simulation steps between two state replications. Figure 6.9 shows the mean exe-
cution time without state replication (noRep) or with state replication triggered 5
(rep5), 10 (rep10), 50 (rep50) and 100 (rep100) times during simulation execution
in function of the probability of failure P(X = 1).

State replication should be used only if the mean execution time remains
smaller than the mean execution time without state replication. In particular, we
observe this situation three times on Figure 6.9:
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Figure 6.10: Mean execution time in function of the number of replications.

• when replicating state 50 times, with a failure probability greater than ap-
proximately 0.90,

• when replicating state 10 times, with a failure probability greater than ap-
proximately 0.20,

• when replicating state 5 times, with a failure probability greater than ap-
proximately 0.10.

Note that the P(X ≥ 2) = 0 assumption is potentially false for long simula-
tions. In this case, state replication becomes more interesting.

Choosing Replication Parameters

Let P(X = 1) = 0.5, t f ailure = texec/2 and tlost be equal to half the time to execute
a simulation between two state replications.

Figure 6.10 shows the mean execution time in function of the number of state
replications executed during the simulation. We observe that:

• with more than 25 state replications, replication is not better than the simple
simulation restart;
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• the mean execution time is minimized when doing 7 state replications.

This essentially shows that, if failure probabilities can be obtained, the choice
of replication parameters can be optimized in order to minimize the mean execu-
tion time.

6.8 Conclusion

In this chapter, we introduced the concept of fault-tolerance: the ability of a dis-
tributed application to continue its execution if one or serveral of its processes are
unexpectedly interrupted. The related problems of failure detection (i.e. the detec-
tion of the unexpected interruption of a process) and resource discovery (i.e. the
search for new resources that could execute a new process) were also presented.

In order to detect the unexpected interruption of a process, a “heartbeat” based
mechanism is used: the processes regularly exchange messages called heartbeats.
If one of these messages could not be delivered to its destination (this event is
signaled by the reception of an acknowledgement) after a given amount of time, a
failure is detected.

Resource discovery is implemented by CanoPeer [1], a P2P Grid middleware
designed by Cyril Briquet. LaBoGrid’s DAs are submitted as tasks to CanoPeer
which “finds” computers to execute them. The scheduling policies of CanoPeer
may lead to the interruption of tasks whose execution is then postponed. CanoPeer
is therefore an additional source of failures. In addition to that, the nature of
the failures caused by CanoPeer (several tasks are interrupted simultaneously)
requires adapted fault-tolerance capabilities.

Fault-tolerant distributed LB simulations are achieved through a distributed
checkpoint/restart mechanism: the state of each process is regularly saved to disk
and replicated to several other computers called replication neighbors. In case
of failure, the last saved state is reloaded and the simulation restarted from this
point. The set of replication neighbors of each computer is constructed in order
to be tolerant to the failures caused by CanoPeer (i.e. the probability of failure of
the computers hosting all replicas of the same state must be minimized).

The regular checkpointing of a distributed simulation’s state increases the total
execution time of the simulation. However, we showed that if the probability of
failure is high enough, it is, on average, interesting to enable state replication for
LB distributed simulations. We also showed that, if the probability of failure is
known, the replication parameters can be chosen in order to minimize the average
total execution time of a distributed LB simulation.



6. Fault-Tolerance 151

A more general analysis on the choice of replication parameters would be
interesting but is not addressed in this thesis.
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Chapter 7

Dynamic Load Balancing

7.1 Introduction

In Chapter 5, Static Load Balancing (SLB) applied to distributed LB simulations
was presented. Before each simulation, sublattices are distributed on computers
in function of their computational power in a way that minimizes execution time.
The computational power of these computers is obtained by benchmarking them
with small LB simulations.

In Section 5.2, a graph representation was introduced to describe a distributed
application (for example, distributed LB simulations) and the system that exe-
cutes it (for example, a cluster). The graph representing the application is called
application graph and the graph representing the system is called resource graph.

In the context of Chapter 5, the resource graph and the application graph do
not change during the application’s execution. Application’s distribution therefore
occurs only once before application is executed. This is a static load balancing
problem. However, if the application graph and/or the resource graph change
during the execution of the application, the application’s distribution should occur
several times during the execution of the application. This is a Dynamic Load
Balancing (DLB) problem.

In Chapter 6, we introduced methods to make LaBoGrid fault-tolerant: even in
case of failure (software or hardware crash, process interruption), LaBoGrid can
continue its execution and successfully finish it (i.e. all requested simulations are
executed). In case of failure, the previously saved state of the running simulation
is reloaded by remaining computers and simulation is restarted.

In this case, sublattices must be redistributed because the state of some of

153
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them is not available anymore. In addition, the integration of LaBoGrid and
CanoPeer [1], a P2P grid computing middleware (see Section 6.2), allows to re-
place lost computers by new ones if possible. Sublattices should then also be
redistributed to take advantage of new available resources. The sublattices’ distri-
bution process is therefore triggered potentially several times during application
execution: this is a DLB problem.

In the context of LaBoGrid, the DLB problem exists if the resource graph
changes during the execution of LB simulations. It is potentially the case when
LaBoGrid is executed by CanoPeer but also when LaBoGrid is executed without
CanoPeer on a cluster of unreliable computers.

The DLB problem has first been addressed in the context of applications with
computational requirements varying over time executed by parallel or distributed
systems. One typical example of this kind of application is the class of numerical
simulations using adaptive mesh refinements [64] where nodes or edges are added
or removed from mesh during simulation’s execution in order to reduce the error
of the calculation. Work must therefore migrate between processors to maintain
load balance.

In our context, the computational requirements of the application (i.e. a dis-
tributed LB simulation) do not vary during a simulation. However, the set of com-
puters executing the simulation can change: computers can be removed from it (in
case of failure) or added to it (when a new computer is “discovered”). Also, the
heterogeneity of computers’ power (the number of processors and their individual
speed) has to be taken into account.

Hendrickson and Devine [42] proposed properties that should be featured by
a dynamic load balancing method:

1. Computational work should be well balanced among computers.

2. Inter-computers communications should be minimized.

3. Execution time should be small.

4. Memory usage should be modest.

5. The amount of work to migrate after a redistribution should be minimized.

Properties 1 and 2 also apply to static load balancing methods and contribute to
minimize the application’s execution time. Properties 3 and 4 are related to the
fact that the computation of work distribution occurs in parallel of the applica-
tion’s execution: computational power and memory used for work distribution
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cannot be used by the application and vice-versa. Finally, property 5 minimizes
the work migration time and, therefore, the total execution time of the distributed
application.

A distributed implementation can help to fulfill the objectives of properties 3
and 4: the time to compute a work distribution should be smaller if DLB mapper is
executed by several processors in parallel than by a single one. Also, the memory
needs of each computer participating in the work distribution process should be
smaller than if executed on a single computer.

Parallel static load balancing tools exist (JOSTLE [76], ParMetis [69], PT-
Scotch [28]) but are not well suited to dynamic load balancing, mainly because of
property 5. Also, they would not interface well with LaBoGrid because they are
generally provided in the form of C libraries and therefore rise potential portability
issues (see Section 2.3).

Methods based on local improvements [41, 77, 79] are an interesting class
of DLB methods. Computers are organized into small overlapping sets called
migration sets. Computers of a same migration set regularly exchange information
about their respective work load. If a computer of a migration set is overloaded,
work is migrated to the other computers of its set. As the migration sets overlap
and migrations may regularly be triggered, work may spread from migration set
to migration set and finally among all computers.

Dynamic load balancing algorithms based on local improvements are incre-
mental methods that have the following advantages:

1. They scale very well if implemented in parallel (because they are based on
local information only: the work load of a migration set’s computers).

2. One iteration of such algorithm (involving the migration of work in function
of the work load of a migration set’s computers at a given time) is usually
short timed and inexpensive in terms of additional memory and computa-
tional power.

However, many iterations may be required to converge towards global balance.
With distributed LB simulations, global balance is important, in particular when
sublattices are large. Solutions have been proposed [44] to reduce the number of
iterations and the amount of migrated work but they cannot easily be implemented
in parallel, in particular because they are not based anymore on local information
only.

Therefore, we propose a DLB method inspired from the principles of local
improvements methods (organization of computers into small migration sets) but
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using global load information (the load of all computers is taken into account)
while remaining scalable and without slow convergence.

7.1.1 Chapter Outline

Section 7.2 presents the common organization of most local improvements meth-
ods. These methods can be described by two consecutive phases: the balancing
phase and the migration phase.

Section 7.3 describes an efficient implementation of the migration phase.

The balancing phase is generally based on iterative methods that require many
message exchanges between computers if implemented in a distributed way. In
order to reduce the number of exchanged messages during balancing phase, we
propose to use an adapted version, described in Section 7.4, of an existing algo-
rithm called Tree Walking Algorithm (TWA).

The distributed implementation of the proposed dynamic load balancing method
is addressed in Section 7.5.

Section 7.6 exposes the results of the proposed dynamic load balancing method.

Section 7.7 concludes this chapter.

7.2 Local Improvements Methods

Most local improvements methods [41, 77, 79] imply two separate phases:

1. the balancing phase,

2. the migration phase.

The balancing phase essentially consists in equalizing the work load on work-
ing computers by scheduling work migration. Work migration occurs during mi-
gration phase. The objects to migrate (sublattices in our context) are generally
chosen in order to minimize communication cost during application execution. If
the application is represented by a graph (see Section 5.2), this is equivalent to
minimize the edge-cut of the graph partition associated to each computer.
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7.2.1 Balancing Phase

In the balancing phase, the amount of work to move from one computer to another
in order to balance load is decided. This phase only uses local load information:
each computer is part of a migration set and is connected to the other computers
of its migration set. The computers of a migration set exchange their load in-
formation. The connections induced by the migration sets can be represented by
a graph called migration graph. This graph is the resource graph with possibly
some edges removed.

Most existing methods are based on the diffusive scheme [30] where a com-
puter work load is modeled by the following equation:

wt+1
i = wt

i +∑
j

αi j(wt
j−wt

i) (7.1)

where wt
i gives the work load of computer i at time t and αi j is a constant such as:

1. ∀i, j : αi j ≥ 0;

2. ∀i : 1−∑ j αi j ≥ 0.

If computers i and j are not connected (there is no edge between i and j in the
migration graph), αi j = 0.

It has been shown [30] that above method always converges to uniform dis-
tribution if the migration graph is connected and either or both of the following
conditions hold:

• ∃ j : (1−∑i αi j)> 0,

• the migration graph is not bipartite.

At convergence, wT
i = w? for all computer i and global balance is reached. The

amount of work each computer will send or receive from its neighbors can then
be calculated.

The number T of iterations before convergence is reached depends on the
number of computers, the way they are interconnected and the initial work load
distribution. For example, this number varies from 50 to 1000 for random work
loads generated for 64 processors connected respectively as a 6-dimensional hy-
percube and a ring [32].

In the context of distributed LB simulations, a diffusive scheme can be used to
compute the number of sublattices ni associated to a computer i. In Section 5.4,
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the CCP, giving the maximum number of sites a computer can handle per time
unit, was introduced. Let ci be the CCP of computer i, we can then write:

wt
i =

S×nt
i

ci
(7.2)

where S is the number of sites per sublattice and nt
i the number of sublattices

associated to computer i at time t. In above equation, the transmission time (the
time to exchange data during execution) is ignored.

Equations 7.1 and 7.2 lead to following update rule for the number of sublat-
tices associated to a computer i at time t:

nt+1
i = nt

i +∑
j

αi j

((
ci

c j

)
nt

j−nt
i

)
(7.3)

where αi j values have the same definition as for Equation 7.1.

In Equation 7.3, nt
i is a real number. This implies that the number of sublat-

tices to migrate computed in function of this value and the number of sublattices
actually associated to a computer is also a real number. However, the number
of sublattices to migrate should be a natural number. This issue is addressed in
Section 7.4.1.

7.2.2 Migration Phase

If load balancing is solved for an application that can be represented by a graph
(see Section 5.2), a partition of the application graph is associated to each com-
puter. Work migration then consists in moving vertices of the application graph
from a computer to another and thus, modifying the partitions associated to each
computer.

In the migration phase, vertices to migrate are generally selected with the goal
of minimizing communication costs during application’s execution. Note that for
a distributed application involving no communications, the selection process is
trivial: any vertex can be moved as there are no edges.

A modified version of the gain criteria from the graph partitioning algorithm
of Kernighan and Lin (KL) [48] is generally used to select the vertices to move.

Original KL Gain Criteria

Let G = (V,E) be an undirected graph where V is the set ot vertices and E the set
of edges. The cost matrix c gives the weights associated to the edges of E: let p,q
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be vertices of V , if there is no edge connecting p and q then cpq = 0, otherwise
cpq = wpq where wpq is the weight of the edge connecting p and q.

Let A and B be two partitions of V (V = A∪B and A∩B = /0), the cost of the
partitioning is given by:

cost = ∑
p∈A, q∈B

cpq

This value is the sum of the weights of the edges crossing partitions boundaries.

The algorithm designed by Kernighan and Lin builds partitions A and B while
minimizing the partitioning cost (it therefore minimizes the edge-cut).

The core of their algorithm is the construction of two sets X ⊂ A and Y ⊂ B
with |X |= |Y | to build a new partitioning:

A? = (A\X)∪Y
B? = (B\Y )∪X

such as the cost of this new partitioning is lower: there must be a gain to exchange
X and Y .

Some concepts are necessary to define the gain of exchanging X and Y :

• the external cost EB
a of a vertex a ∈ A: EB

a = ∑y∈B cay

• the internal cost IA
a of a vertex a ∈ A: IA

a = ∑x∈A cax

The definition of EA
b and IB

b with b ∈ B is similar.

Let z be the total cost due to all connections between vertices from A and B
that do not imply a or b:

z = ∑
p∈A, q∈B,
p6=a, q 6=b

cpq

The cost T of partitioning can be written:

T = z+EB
a +EA

b − cab.

If a and b are exchanged (A′ = (A\{a})∪{b} and B′ = (B\{b})∪{a}), the cost
becomes:

T ′ = z+ IA
a + IB

b + cab.

The gain of exchanging a and b is then written:

gain = T −T ′ = DB,A
a +DA,B

b −2cab (7.4)
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where DB,A
a = EB

a − IA
a and DA,B

b = EA
b − IB

b .

Algorithm 7.1 describes the KL refinement algorithm. It is based on the ex-
change of subsets of A and B until no more gain can be obtained. In this case, a
local optimum has been reached. h represents the gain of exchanging X and Y. If
h is lower or equal to zero, there is no gain to exchange X and Y. However, it may
happen that a local optimum is never reached because the algorithm exchanges the
same vertices indefinitely and h never becomes lower or equal to 0. The maximum
number of exchanges is therefore bounded by a given number T.

var
A, B : "set of vertex";
X, Y : "set of vertex";
h, i : integer

begin
"Build X and Y and set h";
if h ≤ 0 → skip
2 h > 0 →

A := (A \ X) ∪ Y; B := (B \ Y) ∪ X;
fi;
i := 0;
do h > 0 and i < T →

"Build X and Y and set h";
if h ≤ 0 → skip
2 h > 0 →

A := (A \ X) ∪ Y; B := (B \ Y) ∪ X;
fi;
i := i + 1

od
end

Algorithm 7.1: KL refinement algorithm.

Algorithm 7.2 describes the construction of sets X and Y . A sequence of N
gains is generated with N = min(|A|, |B|). Each gain is produced by the exchange
of a pair of vertices selected such as the gain of the exchange is maximized.

In command "Find m ∈ V1 and n ∈ V2 that maximize the gain g",
g takes following value:

DV 2∪E ′, V 1
m +DV 1∪F ′, V 2

n −2cmn
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var
V1, V2 : "set of vertex";
E, F : array[0..N-1] of "vertex";
S : array[0..N-1] of integer;
j, g : integer;
m, n : "vertex"

begin
V1, V2 := A, B;
j := 0;
do "V1 is not empty" and "V2 is not empty" →

"Find m ∈ V1 and n ∈ V2 that maximize the gain g";
"Remove m from V1"; "Remove n from V2";
E[j] := m; F[j] := n; S[j] := g;
j := j + 1

od;
"Build X and Y from E, F and S and set h"

end

Algorithm 7.2: "Build X and Y and set h".



162 7. Dynamic Load Balancing

where E ′ and F ′ are sets containing the vertices at positions 0 to i-1 included
from arrays E and F respectively.

X and Y sets are then generated by selecting the sequence of exchanges that
leads to the maximum accumulated gain (see Algorithm 7.3).

var
k, sum : integer

begin
sum := S[0]; k := 1; h := sum;
j := 1;
do j < N →

sum := sum + S[j];
if sum ≤ h → skip
2 sum > h →

h := sum; k := j + 1
fi;
j := j + 1

od;
"Initialize X and Y as empty sets";
j := 0;
do j < k →

"Add E[j] to X"; "Add F[j] to Y";
j := j + 1

od
end

Algorithm 7.3: "Build X and Y from E, F and S and set h".

Gain Criteria With Unidirectional Vertices Migration

Unlike original KL algorithm based on the exchange of vertices, in the migration
phase, a given number m of vertices must be moved from a partition to another.

We reuse the notations from previous section: let A and B be two partitions.
The problem here is to find a subset X ⊂ A such as |X | = m and such that the
edge-cut is minimized for partitions (A\X) and (B∪X).

The same reasoning as for Equation 7.4 can be used. Let z be the total cost
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due to all connections between vertices from A and B that do not imply a:

z = ∑
p∈A, q∈B,

p6=a

cpq

The cost T of partitioning can be written:

T = z+EB
a .

If a is moved to B, the cost becomes:

T ′ = z+ IA
a .

The gain of moving a to B is then written:

gain = T −T ′ = DB,A
a (7.5)

where DB,A
a = EB

a − IA
a .

Algorithm 7.4 describes the KL-based unidirectional vertices migration.

var
A, B : "set of vertices";
i, g : integer

begin
i := 0;
do i < m →

"Find n ∈ A that maximizes the gain g";
"Remove n from A"; "Add n to B";
i := i + 1

od
end

Algorithm 7.4: Unidirectional KL migration.

In command "Find n ∈ A that maximizes the gain g", g has value DB,A
n .

7.3 Implementation of Migration Phase

In Section 7.2.2, a method to select m vertices to migrate from partition A to parti-
tion B while minimizing edge-cut has been presented. It implies the construction
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G

0 x gLength

X A\X

y

C

Figure 7.1: G areas illustration.

of a subset X of the vertices of A such as |X |=m and the vertices of X are migrated
from A to B.

The selection of the vertex to move to X must be efficiently implemented. Let
C be a set defined as follows:

C = {p | p ∈ (A−X) ∧ ∀q ∈ X ∪B : cpq > 0}

C is a subset of (A \X) and contains all vertices that are part of the boundary of
(A\X). Most of the time, |C| � |A\X |. Therefore, a common way to accelerate
the selection of vertices to migrate is to search only in C [42]. C can also be empty
if no vertex of (A\X) is connected to a vertex of B or X .

7.3.1 Data Structures

In our implementation, X , (A\X) and C are represented in the same array G (see
Figure 7.1). An element of the array is a pointer to a record describing a particular
vertex. A vertex can therefore be moved from one set to another with a swap
operation.

The Vertex record representing a particular vertex v is described in Algo-
rithm 7.5.

• id is the identifier of v and is provided by the application,

• if index ≥ 0, index is the index of v in G . If index < 0, it means v is in
partition B and has no entry in G.

• intC, extC, difC respectively represent the internal cost, the external cost
and the difference of the two of v.

• edges contains pointers to the records describing the vertices adjacent to v.
edges[i] points to the record describing the ith neighbor of v with 0 ≤
i < nEdges. This neighbor is in A or B.
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• weights contains the weights of the links to neighboring vertices. The
weight of the link to ith neighbor of v is given by weights[i] with 0 ≤
i < nEdges.

The adjacency list of Vertex record only contains the neighbors that are in A or
B. Some edges of the original graph may therefore be ignored.

In addition to the definition of Vertex, Algorithm 7.5 contains the declaration
of G and the indexes x and y delimiting the areas of G.

type
Vertex = record

id, index : integer;
intC, extC, difC : integer;
nEdges : integer;
edges : array[0..nEdges-1] of ↑Vertex;
weights : array[0..nEdges-1] of integer

end
var

x, y : integer;
gLen : integer;
G : array[0..gLen-1] of ↑Vertex

Algorithm 7.5: Declarations for uni-directional vertices migration algorithm.

7.3.2 Initialization of G

The initialization of G essentially consists in copying vertices information from
partition A into G.

Partitions A and B are graphs that can be represented using an adjacency list
(see Section 5.2.1). The array G is initialized in function of the adjacency lists
representing A and B.

Algorithm 7.6 provides the definitions and declarations for A’s adjacency list
(adjA) and B’s adjacency list (adjB).

Record Edge describes an edge going out of a particular vertex:

• id is the vertex identifier associated to destination vertex,
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• weight is the weight of the edge.

Record AdjEntry describes an entry of an adjacency list:

• id is the identifier of the associated vertex,

• nEdges is the number of adjacent vertices,

• edges is the list of edges to adjacent vertices.

type
Edge = record

id, weight : integer
end;

AdjEntry = record
id : integer;
nEdges : integer;
edges : array[0..nEdges-1] of Edge
end

var
adjA : array[0..adjALen-1] of AdjEntry;
adjB : array[0..adjBLen-1] of AdjEntry

Algorithm 7.6: Definitions and declarations for A’s and B’s adjacency lists.

adjA and adjB are sorted regarding the field id of their entries. A dichoto-
mous search can therefore be used to find an entry associated to a given vertex.

The construction of G is done in two passes. First pass copies the vertex iden-
tifier of each entry of adjA into G. It also sets the index field of the entries of G.
The second pass initializes the adjacency information of each entry of G (fields
nEdges, edges and weights). The second pass depends on the first pass because
all entries of G must be allocated before it can be applied.

First Pass

First pass is straightforward and is described by Algorithm 7.7. The definition
of type Vertex comes from Algorithm 7.5. After the application of first pass,
G[i] is associated to the same sublattice than adjA[i] with 0≤i<adjALen. G is
therefore sorted regarding the field id of its entries.
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var
G : array[0..adjALen-1] of ↑Vertex;
i : integer

begin
i := 0;
do i < adjALen →

"Allocate G[i]";
G[i]↑.id := adjA[i].id;
G[i]↑.index := i;
i := i + 1

od
end

Algorithm 7.7: First pass of G’s initialization.

Second Pass

In second pass, the edges associated to each entry of adjA are copied into the
adjacency list of the associated G entry. However, some edges may be ignored
because an edge going from a vertex of A to a vertex that is not in A and not
in B is not taken into account by KL-based unidirectional vertex migration (see
Section 7.2.2).

Let v be a particular vertex of A. Three properties can be defined to label the
edges going from v to its neighbors:

• the α label is associated to an edge connecting v to another vertex of A,

• the β label is associated to an edge connecting v to a vertex of B,

• the γ label is associated to an edge connecting v to a vertex that is from
another partition than A and B.

Figure 7.2 shows a vertex v of A and the labels associated to the edges con-
necting v to its neighbors.

When copying edges from an entry of adjA to an entry of G, γ edges are ig-
nored.

Commands "find id in adjA" and "find id in adjB" search for an en-
try of adjA and adjB associated to the given vertex identifier id. A dichotomous
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Figure 7.2: Labels associated to the edges connecting a vertex of A to its neigh-
bors.

search regarding vertex identifier (id field of AdjEntry) is used. If the search is
not successful (no entry with given sublattice identifier is found), the result of the
command is a negative integer. Otherwise, it is the index of the entry associated
to id.

If the given vertex identifier id represents a neighbor of a vertex v of A, the
result of these two commands can be used to find out if the edge connecting v to
the vertex associated to id is an α, β or γ edge and, therefore, if it should be added
to edges list associated to v in G or be ignored. Let c be the result of "find id
in adjA" and d be the result of "find id in adjB". The edge connecting v to
the vertex associated to id has following property:

• α if (c≥ 0) and (d < 0),

• β if (c < 0) and (d ≥ 0),

• γ if (c < 0) and (d < 0).

The situation where c and d are greater or equal to zero cannot happen because a
vertex cannot be in two different partitions at the same time.

The second pass of G’s initialization is described by algorithms 7.8, 7.9, 7.10
and 7.11. Algorithm 7.9 essentially selects the edges to copy from adjA[i] into
G[i] and adds them to a list. Algorithm 7.11 copies the content of the generated
list into G[i]↑.edges.
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type
EListEntry = record

id, weight : integer
end

var
eLst : "list of ↑EListEntry"

begin
i := 0;
do i < adjALen →

"Generate list eLst of G[i]’s edges list";
"Initialize G[i]↑.edges using eLst";
i := i + 1

od
end

Algorithm 7.8: Second pass of G’s initialization.

7.3.3 Construction of X

After G has been initialized as described in Section 7.3.2, the set X of m vertices
to migrate from partition A to partition B can be constructed.

G is used to represent A, X , (A\X) and C by associating areas of G to each set
(see Section 7.3.1 and in particular Figure 7.1). Constant time swap operations
can therefore be used to move a vertex from one set to another.

When two elements of G are swapped, their field index must be updated be-
cause index represents their position in G and this position changes in case of
swap. Algorithm 7.12 defines the swap procedure used to swap two elements
of G.

Algorithm 7.13 describes the construction of X in G array. G, x and y are
declared in Algorithm 7.5. Fields id, index, nEdges, edges and weights of
the entries of G have been initialized like shown in Section 7.3.2. The other
fields (intC, extC, difC) are initialized by "Compute costs for vertices of
A and build C".

M vertices are then added iteratively to set X (which is initially empty) by
"Move vertex from (A \X) to X". This command increments x. The costs
and set C must be updated each time of vertex is moved from (A\X) to X . This is
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var
ge : ↑EListEntry;
j, w, aInd, bInd : integer;
z : Edge;

begin
eLst := "Allocate empty list";
j := 0;
do j < y↑.adjL →

z := adjA[i].edges[j];
w := z.id;
aInd := "find id in adjA";
bInd := "find id in adjB";
if (aInd < 0) and (bInd < 0) → skip {γ edge}
2 (aInd ≥ 0) and (bInd < 0) → {α edge}

"Initialize ge";
ge↑.index := aInd;
"Add ge to eLst"

2 (aInd < 0) and (bInd ≥ 0) → {β edge}
"Initialize ge";
ge↑.index := -1;
"Add ge to eLst"

fi;
j := j + 1

do
end

Algorithm 7.9: "Generate list eLst of G[i]’s edges list".

"Allocate ge";
ge↑.id := w;
ge↑.weight := z.weight

Algorithm 7.10: "Initialize ge".
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G[i]↑.nEdges := "length of eLst";
"Allocate G[i]↑.edges";
j := 0;
ge := "first element of eLst";
do j < G[i]↑.adjLength →

G[i]↑.edges[j] := G[ge↑.index];
G[i]↑.weights[j] := ge↑.weight;
ge := "next element of eLst";
j := j + 1

od

Algorithm 7.11: "Allocate and initialize G[i]↑.edges using eLst".

procedure swap(G : array[0..gLength-1] of ↑Vertex; i : integer;
j : integer);

var
tmp : ↑Vertex

begin
if i = j → skip
2 i 6= j →

tmp := G[i];
G[i] := G[j];
G[j] := tmp;
G[i]↑.index := i;
G[j]↑.index := j

fi
end

Algorithm 7.12: swap procedure.



172 7. Dynamic Load Balancing

done by command "Update costs and C" in function of the last vertex added
to X .

x := 0;
"Compute costs for vertices of A and build C";
"Move vertex from (A\X) to X";
"Update costs and C"; {P}
do x < M → {P}

"Move vertex from (A\X) to X";
"Update costs and C" {P}

od {P}

Algorithm 7.13: Construction of X set.

The loop invariant P from Algorithm 7.13 is given by following expression:

{P: (0≤ i < x) ∧ “vertex associated to position i is part of X” ∧
“all costs and C are up to date” }

After loop’s execution, X therefore contains M vertices because x = M.

Compute costs for vertices of A and build C

Initially, A covers the whole area of G and X is empty. The costs of all entries of G
must be computed.

If the external cost associated to a vertex of A is greater than zero, it implies
that the vertex is connected to at least one vertex from partition B. It should
therefore be added to C.

Initially, C is empty and y is therefore equal to zero. To add a vertex of A
associated to position i such as i ≥ y to C, it is simply swapped with the vertex
at position y which is not part of C. y is then incremented and C contains an
additional vertex.

Algorithm 7.14 describes command "Compute costs for vertices of A
and build C".

Figure 7.3 illustrates the loop invariant of the loop from Algorithm 7.14. The
grey area corresponds to the entries whose costs have been set. When i = gLen,
the costs of all entries of G are set.
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i := 0; y := 0; {P}
do i < gLen → {P}

n := G[i];
"Set costs for n";
if n↑.extC > 0 → swap(G, i, y); y := y + 1
2 n↑.extC = 0 → skip
fi;
i := i + 1 {P}

od {P}

Algorithm 7.14: "Compute costs for vertices of A and build C".

G
0 gLeny

C

i

Figure 7.3: Loop invariant of loop from Algorithm 7.14.
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Command "Set costs for n" sets the costs of the entry n points to. In a
way similar than in Section 7.3.2, we can define properties that can be associated
to the edges connected to a particular vertex v of A:

• a δ edge connects v to another vertex of (A\X),

• an ε edge connects v to a vertex of B or X .

The vertex associated to n must be in A (it is the case in Algorithm 7.14 because
n points to an entry of G which is in A by definition). The edges from array
n↑.edges can therefore be labelled with above properties.

The internal cost of n is equal to the sum of the weights associated to the δ

edges of n↑.edges. The external cost of n is equal to the sum of the weights
associated to the ε edges of n↑.edges.

The edge associated to n↑.edges[j] with 0 ≤ j < n↑.nEdges is a δ edge if
n↑.edges[j]↑.index is greater or equal to x. In this case, n↑.edges[j]↑ is an
entry of G that is in (A\X).

If n↑.edges[j]↑.index < x, the edge associated to n↑.edges[j] is an ε

edge because if 0 ≤ n↑.edges[j]↑.index < x, n↑.edges[j]↑ is an entry of G
that is in X and if n↑.edges[j]↑.index < 0, n↑.edges[j]↑ is associated to a
vertex in B (see Section 7.3.2).

Algorithm 7.15 describes "Set costs for n".

Move Vertex from (A\X) to X

As stated in Section 7.2.2, the vertex v to move from (A\X) to X must be selected
in a way that maximizes the gain of moving v. The gain obtained when moving v
from (A\X) to X is the difference of the external and the internal costs associated
to v.

In the context of this implementation, this amounts to search for the entry G[i]
with x ≤ i <gLen such as G[i]↑.difC is maximized.

In order to accelerate the search for the vertex to move, it is searched for in C
if C is not empty because |C| � |A\X | most of the time. The entry to find is then
G[i] with x ≤ i <y such as G[i]↑.difC is maximized.

When the vertex to move is found, it is moved from (A\X) to X . Let G[maxI]
be the entry associated to the vertex to move. The entries G[x] and G[maxI] are
swapped.
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intC := 0; extC := 0; j := 0;
do j < n↑.nEdges →

m := n↑.edges[j];
w := n↑.weights[j];
if m↑.index < x → {ε edge}

extC := extC + w
2 m↑.index ≥ x → {δ edge}

intC := intC + w
fi;
j := j + 1

od;
n↑.intC, n↑.extC, n↑.difC := intC, extC, extC - intC

Algorithm 7.15: "Set costs for n".

However, if x < y (C is not empty) and maxI ≥ y (G[maxI] is associated to
a vertex that is not in C), G[maxI] is associated to a vertex that was erroneously
removed from boundary C by the swap. G[maxI] must therefore be put back in C
by swapping it with G[y] and incrementing y.

Algorithm 7.16 describes "Move vertex from (A\X) to X".

Update Costs and C

Only the costs of the vertices adjacent to the last vertex v moved to X may be
updated (the costs associated to the vertices that are not adjacent to v are not
affected by the move of v). After the execution of command "Move vertex from
(A\X) to X", vertex v is associated to the entry G[x-1].

The costs associated to a vertex w adjacent to v need to be updated only if w is
in (A\X). If w is in X or B, its associated costs will not be used later in the exe-
cution of the vertex migration algorithm. The costs of G[x-1]↑.edges[j]↑ with
0 ≤ j < G[x-1]↑.nEdges are therefore updated only if G[x-1]↑.edges[j]↑.
index is greater or equal to x.

After the costs of G[x-1]↑.edges[j]↑ have been updated, the external cost
G[x-1]↑.edges[j]↑.extC may have changed. Let ext be equal to G[x-1]↑.
edges[j]↑.extC and ind be equal to G[x-1]↑.edges[j]↑.index. If the costs
of G[x-1]↑.edges[j]↑ have been updated, ind is greater or equal to x and lower
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i := x;
if x = y → s := gLen {C is empty}
2 x 6= y → s := y
fi;
maxD := G[i]↑.difC; maxI := i; i := i + 1;
do i < s →

c := G[i]↑.difC;
if c ≤ maxD → skip
2 c > maxD →

maxD := c; maxI := i
if;
i := i + 1

od;
swap(G, maxI, x);
if x < y and maxI ≥ y → {G[maxI] must be put back in C}

swap(G, maxI, y); y := y+1
2 x = y or maxI < y → skip
fi;
x := x + 1

Algorithm 7.16: "Move vertex from (A\X) to X".
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than gLen. The vertex associated to G[x-1]↑.edges[j]↑ may:

• stay in C if ext > 0 and ind < y,

• be added to C if ext > 0 and ind ≥ y,

• be removed from C if ext = 0 and ind < y,

• stay out of C if ext = 0 and ind ≥ y.

Algorithm 7.17 describes "Update costs and C" (see Algorithm 7.13).
Command "Set costs for n" can be used only if n is associated to a vertex
from A. It is the case here because x ≤ n↑.index < gLen and the associated
vertex is therefore in (A\X)⊆ A.

v := G[x - 1]; {Last vertex added to X}
j := 0;
do j < v↑.nEdges →

n := v↑.edges[j];
if n↑.index < x → skip {Vertex from B or X}
2 n↑.index ≥ x →

"Set costs for n";
ext := n↑.extC; ind := n↑.index;
if ext > 0 and ind < y → skip {stay in C}
2 ext > 0 and ind ≥ y → {add to C}

swap(G, index, y);
y := y + 1

2 ext = 0 and ind < y → {remove from C}
swap(G, index, y - 1);
y := y - 1

2 ext = 0 and ind ≥ y → skip {stay out of C}
fi

fi;
j := j + 1

od

Algorithm 7.17: "Update costs and C".
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7.4 Load Balancing with an Adapted Tree Walking
Algorithm

The Tree Walking Algorithm (TWA) was designed by Shu and Wu [70] in the
context of dynamic scheduling on distributed memory computers. It can be used
during balancing phase instead of a diffusive scheme-based method. It is able to
accurately balance load using global information and remains scalable. It assumes
that processors are organized as a tree, have all the same computational power and
that scheduled tasks require the same execution time.

In our context, the work load is influenced by the number of sublattices associ-
ated to a given computer but also by the computational power of the computer (ho-
mogeneous computational power is not assumed). Therefore, the original TWA
has to be slightly modified: instead of balancing the number of tasks associated
to a computer, we balance the work load caused by a given number of sublattices
associated to a computer. We assume that computers are organized as a tree (i.e.
each node is a computer) called Computers Tree (CT).

Let n be a computer of the CT. Tn represents the computers subtree having n
as root. Let cn be the Contextual Computational Power (CCP, see Section 5.5) as-
sociated to computer n and sn the number of sublattices associated to computer n.

Following values can be calculated for each computer n of the CT:

• The aggregated CCP Kn of Tn: Kn = ∑m∈Tn cm

• The aggregated number of sublattices Zn of Tn: Zn = ∑m∈Tn sm

With these values, the average load L̄ = Zr
Kr

can be computed where r is the
root of the CT.

The quota qn of a computer n is then given by L̄× cn. This value represents
the ideal number of sublattices that should be associated to computer n.

An aggregated quota Hn can be associated to each computer n: Hn =∑m∈Tn qn.
It gives the number of sublattices that should be associated to the set of computers
in subtree Tn.

Aggregated quota are used to schedule work migration in case of load imbal-
ance:

1. Computer n waits for supplementary sublattices from:

• its parent if Zn < Hn,
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• its child m if Zm > Hm.

2. Computer n sends:

• (Zn−Hn) sublattices to its parent if Zn > Hn,

• (Hm−Zm) sublattices to its child m if Zm < Hm.

If (Zn = Hn) no sublattices have to be migrated to or from the parent. In the same
way, n does not migrate sublattices to or from its child m if (Zm = Hm).

Shu and Wu have proved that this algorithm achieves good load balance and
minimizes work migration and communications during balancing [70].

Average load, quota and aggregated quota are real numbers. In the same way
than with diffusive scheme (see Section 7.2.1), there is a rounding issue to solve:
the number of sublattices to migrate must be a natural.

7.4.1 Migration Scheduling and Rounding Issues

If a computer must send and receive sublattices, it first receives all awaited sublat-
tices. Let zn be the number of sublattices associated to computer n after it received
all awaited sublattices.

Let x be the number of sublattices a computer n must send to a neighbor (Bn−
Cn if sending to parent, Cm−Bm if sending to child m). If n sends bxc sublattices,
n may be overloaded after it sent all sublattices. If n sends dxe sublattices, n may
overload its neighbor. If n rounds x (apply ceiling function if x≥ bxc+0.5, apply
floor function if x < bxc+0.5), one of the above issues may still arise.

If the calculated number of sublattices to send to a neighbor is x, bxc+ y sub-
lattices could actually be sent where y is equal to 0 or 1. The value of y is decided
such as, after all sublattice have been sent, n and its neighbors are as little over-
loaded as possible. Algorithms 7.18, 7.19 and 7.20 describe the commands exe-
cuted by a computer n in order to avoid as much as possible the issues presented
in previous paragraph when sending sublattices.

M is the number of children that computer n has in the CT. We suppose that
the children of n are ordered, it is therefore possible to refer to the ith child of
computer n with 0≤ i<M. nSubs represents the number of sublattices associated
to computer n and is initialized with zn. quota is the quota qn. nErr is the number
of additional sublattices that can be sent to neighbors in order to decrease the
additional load on computer n.
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The neighId field of type Entry is lesser than 0 if the entry is associated to
the parent. Otherwise, it gives the order number of a child (an integer between
0 ≤ i < M). toSend represents the actual number of sublattices that have to be
sent to a neighbor. error is a real number between 0 and 1 excluded. The higher
it is, the lesser the associated neighbor is overloaded if an additional sublattice is
sent to it.

B is sorted in decreasing order regarding the error field of its entries. This
way, additional sublattices are sent in priority to neighbors that will be less over-
loaded if an additional sublattice is sent to them.

type
Entry = record

neighId, toSend : integer;
error : real;

end
var

B : array[0..M] of Entry;
nErr, quota : integer

begin
"Initialize B, nErr and nSubs";
"Sort B in decreasing order regarding error";
i := 0;
do nSubs > quota and nErr > 0 →

B[i].toSend := B[i].toSend + 1;
nSubs := nSubs - 1;
nErr := nErr - 1;
i := i + 1

od;
"Send sublattices"

end

Algorithm 7.18: Sending of sublattices to neighbors.

The commands "Send B[0].toSend sublattices to parent" and "Send
B[i].toSend sublattices to i-1 th child" from Algorithm 7.20 imple-
ment the migration phase described in Section 7.2.2.



7. Dynamic Load Balancing 181

nErr := 0; nSubs := "Number of sublattices associated to computer";
x := "Number of sublattices to send to parent";
B[0].neighId := -1;
if x = 0 →

B[0] := 0; B[0].error := 0
2 x 6= 0 →

B[0] := bxc; B[0].error := x - B[0].toSend;
nSubs := nSubs - 1; nErr := nErr + 1

fi
i := 0;
do i < M →

x := "Number of sublattices to send to i th child";
B[i+1].neighId := i;
if x = 0 →

B[i+1] := 0; B[i+1].error := 0
2 x 6= 0 →

B[i+1] := bxc; B[i+1].error := x - B[i+1].toSend;
nSubs := nSubs - 1; nErr := nErr + 1

fi;
i := i + 1

od

Algorithm 7.19: "Initialize B, nErr and nSubs".

"Send B[0].toSend sublattices to parent";
i := 1;
do i ≤ M →

"Send B[i].toSend sublattices to i-1 th child";
i := i + 1

od

Algorithm 7.20: "Send sublattices".
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7.4.2 TWA Distributed Implementation

The TWA can easily be implemented in a distributed way with computers only
sending messages to their parent or their children in the CT:

1. Computers calculate Kn, Zn through a bottom-up propagation of these val-
ues: Kn = cn +∑m∈Sn Km and Zn = sn +∑m∈Sn Zm where Sn is the set of
children of computer n. Note that for leaves, this set is empty and Kn and
Zn can directly be computed and propagated to parent.

2. Average load L̄ is computed and broadcasted by the root computer to all
computers using a top-down propagation in the CT. Each computer can then
compute its quota and aggregated quotas for itself and for its children. Fi-
nally, work migration scheduling can be computed.

Unlike Kn and Zn, Hn does not need an additional bottom-up propagation of mes-
sages because Kn value is known for all children of a computer (due to first
bottom-up propagation) and Hn = L̄×Kn.

7.5 Dynamic Load Balancing Integration in LaBoGrid

This section is about the actual implementation of the methods presented in this
chapter in LaBoGrid.

7.5.1 Computer Tree

The CT is built and maintained by the Controller. It is updated each time a new DA
registers to the Controller (a new node is added) or when one or several failures
are detected (nodes are removed).

The Controller maintains a representation of the complete CT. This represen-
tation allows him to send its adjacency information in the CT (parent and children)
to any DA. The CT is represented by a height balanced binary tree. This ensures
an optimal execution of the TWA.

7.5.2 Dynamic Load Balancing Implementation

Section 7.3.2 suggests that only partial sublattices graphs are needed to apply
the migration algorithm described in Section 7.3.3. Partial mapping tables are
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therefore not needed during migration phase and can be calculated once for all
after all migrations are done.

The following implementation of dynamic load balancing in LaBoGrid can
therefore be used:

1. When dynamic load balancing process is triggered, our adapted TWA dis-
tributed algorithm is executed and each DA knows how many sublattices it
should send or receive to or from its neighbors in the CT.

2. Each DA sends its partial sublattices graph to neighbors that should send
sublattices to it.

3. When the migration process is finished for a DA, it sends its partial sublat-
tices graph to the Controller which updates the partitions and mapping table
(the partitions table provides the set of sublattices associated to a given DA
and the mapping table provides the DA associated to a given sublattice, see
Section 5.3).

4. When the migration process is finished for all DAs, the Controller updates
the partial mapping tables of all DAs. Both partial sublattices graph and
partial mapping table are up-to-date for all DAs and can be used on next
simulation restart.

The actual data migration i.e. the migration of the state of the sublattices
only occurs when a simulation (re)starts. The migration phase only implies the
“exchange” of sublattices graph’s vertices without the transfer of the associated
data (sublattice’s state).

In case of failure of a DA during migration phase, the partitions and mapping
tables maintained by the Controller become inconsistent with the data from the
partial sublattices graphs of remaining DAs.

To avoid this situation, the Controller duplicates the partitions and mapping
tables before the load balancing process is triggered. Only one copy is updated
during migration phase. Thus, in case of failure, the original partitions and map-
ping tables can be reused. The sublattices of the failed DA are then assigned to
another DA and partitions and mapping tables updated accordingly. Partial sub-
lattices graphs and partial mapping tables have to be updated as well.

When triggering a load balancing process, the Controller associates a sequence
number to the process. This sequence number can be used to dismiss obsolete
messages sent by DAs to update partitions and mapping tables.



184 7. Dynamic Load Balancing

7.5.3 Load Balancing Triggering

The dynamic load balancing process must be triggered when application or re-
source graph changes. Three events can cause resource graph changes and there-
fore trigger a dynamic load balancing process:

• a new simulation,

• a failure detection,

• a new DA registration.

The execution of a new simulation requires an initial distribution of a new
sublattices graph on a resource graph because its weights have potentially changed
(see Section 5.5).

When a failure is detected (i.e. a DA is down) or a new DA has registered, the
DA is removed or added to CT. The CT is then restructured and new adjacency
information is sent to DAs. The load balancing process must then be triggered
because the resource graph has changed.

In case of failure, the sublattices that were associated to a DA that failed must
be attributed to other DAs. In order to avoid to overload some DAs, this attribution
should be computed by the dynamic load balancing process. After CT restructur-
ing, the sublattices from the DA that failed are associated to the DA executed by
the root of the CT. The load balancing process is then triggered in order to balance
the load.

7.5.4 Initial Distribution of Sublattices

Before a new simulation can start, sublattices must be distributed among DAs.
This initial distribution can be addressed with tools described in Chapter 5. Dy-
namic load balancing methods are only used during simulation execution. Another
solution is to associate all sublattices to CT root computer and let the adapted
TWA method distribute the sublattices.

7.6 Results

In this section, our adapted TWA mapping method is compared to a static mapper
considered in Section 5.6 regarding mapping quality (i.e. the execution time of an
LB simulation is compared when using the different mappers).
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These results will show that:

1. the adapted TWA method achieves mapping qualities that are comparable to
those obtained with heterogeneous SCOTCH (see Section 5.6) i.e. compara-
ble execution times are obtained when executing distributed LB simulations
with mappings produced by the adapted TWA and heterogeneous SCOTCH,

2. the TWA balancing scheme presented in Section 7.4 strongly reduces the
number of exchanged messages when compared to a classical diffusion
scheme (see Section 7.2.1),

3. the number of migrated sublattices in case of resource graph changes (fail-
ure or new available computer) is greatly reduced by using incremental
mapping.

7.6.1 LB Simulation Execution Time using the Adapted TWA

The same setup as in Section 5.6 is used: a distributed LB simulation with the
MRT collision operator and a lattice of size (176,176,176) is executed on a cluster
of 17 computers. The cluster is composed of 8 computers of type A (Pentium IV,
see Section 5.6), 8 of type B (Celeron) and 1 of type C (Xeon). The mapping of
32, 64, 128, 192 and 256 sublattices is considered.

The adapted TWA is compared to the heterogeneous SCOTCH mapper which
gives the best results when compared to other static mappers (see Section 5.6).

Figure 7.4 shows the execution time of distributed LB simulations using the
mappings produced by heterogeneous SCOTCH (HeScotch) and the adapted TWA
(ATWA).

We can see that ATWA leads to execution times comparable to the ones ob-
tained with mappings produced by heterogeneous SCOTCH with 128 sublattices
and more. ATWA performs better with smaller numbers of sublattices.

These results can be explained by the fact that mappers produce partitions of
the application graph with small imbalances caused by the fact that the number
of vertices in a partition is not necessarily optimal regarding the weight of the
associated resource graph vertex. The problem in the context of distributed LB
simulations is that a sublattice represents a load that is not negligible and therefore,
small imbalances can lead to a significant increase in execution time.

The adapted TWA mapper produces small partitions imbalances caused by
rounding issues (see Section 7.4.1). However, these imbalances are smaller than
the imbalances produced by heterogeneous SCOTCH.
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Figure 7.4: LB simulation execution times obtained when using increasing num-
bers of sublattices and two different mappers.

7.6.2 Exchanged Messages During Balancing Phase

During the balancing phase of local improvements methods, each computer ex-
changes messages with its neighbors. With a diffusion scheme, each computer
sends load information to its neighbors in the migration graph. In the context of
the TWA, each computer receives a message from its parent and sends a message
to its children during top-down propagation and receives a message from each
child and sends a message to its parent during bottom-up propagation. We define
a round by the fact that all computers have sent one message to each neighbor and
received one message from each neighbor.

In the context of the TWA, there are 1.5 rounds: a top-down or bottom-up
propagation can be considered as a half round and three propagation passes are
needed (a top-down propagation that triggers the bottom-up propagation that sets
aggregated variables and the final top-down propagation) to complete the balanc-
ing phase.

With diffusion schemes, the number of rounds is not known in advance. It
depends on the initial conditions (in our context, the number of sublattices asso-
ciated to each computer), the number of computers participating to the balancing
process and the way they are connected.

The number of rounds required by the diffusion scheme described in Sec-
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Figure 7.5: Number of rounds of diffusion scheme with two initial conditions.

tion 7.2.1 was evaluated when distributing 256 sublattices on a computer tree
made of 54 computers: 27 of type A (see Section 5.4) and 27 of type B. Each
computer has 3 neighbors: its parent and its two children. Two initial conditions
where used:

1. all sublattices are associated to the root computer,

2. sublattices distribution comes from a previous TWA mapping.

First initial condition can be considered as a bad case with a high number of
rounds for the diffusion scheme and the second initial condition as a good case
with a low number of rounds.

When using a diffusion scheme, a stop criterion must be defined to decide
when the variables wt

i (and therefore nt
i) have converged. All wt

i variables should
converge towards the same value, we therefore use following stop criterion:

wt
max−wt

min
wt

max
< ε

where wt
max = maxi wt

i and wt
min = mini wt

i. ε is called the relative error on wt
i

values.

Figure 7.5 shows the number of rounds required by the diffusion scheme in
function of the relative error ε. The curve labeled “init” (respectively “inc”) gives
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the number of rounds when using initial condition 1 (respectively 2). In the best
case (initial condition 2 and ε = 0.1), the diffusion scheme still requires 4 rounds
to converge. However, with initial condition 1 and ε= 0.1, 91 rounds are required.

In any case, the diffusion scheme requires a number of rounds that is poten-
tially far higher than TWA. In addition, the value of ε has to be chosen such as the
number of rounds is minimized while the load balancing “quality” (i.e. the work
load homogeneity) is maximized. The TWA does not require to solve this kind of
optimization problem.

7.6.3 Sublattices Migrations

To observe sublattices migration in case of resource graph topology changes, a
sequence of resource graphs is generated. A given number of computers are re-
moved and then added to the resource graph. A given sublattices graph is mapped
on each resource graph. The number of migrated sublattices between two subse-
quent mappings is evaluated.

This experiment is described by Algorithm 7.21. M computers are removed
from and added to the resource graph at each iteration. N mappings are produced.
The number of migrated sublattices is therefore evaluated N-1 times.

The number of migrated sublattices between two subsequent mappings com-
puted by command "Evaluate the number of migrated sublattices between
M1 and M2" is the sum of the number of sublattice’s states each computer must
download after a new mapping has been produced. Let Sc

1 (respectively Sc
2) be

the set of sublattices associated to a computer c by mapping M1 (respectively M2).
The set (Sc

1 \ Sc
2) contains the sublattices that are not available on c and have to

be downloaded from another computer in order to resume a simulation using the
mapping M1. The total number of migrated sublattices between two subsequent
mappings M1 and M2 is therefore given by:

∑
c∈R
|Sc

1 \Sc
2|

Note that Sc
2 may be empty because c was not in R when mapping M2 was produced.

The experiment is executed using PaGrid, heterogeneous SCOTCH and the
adapted TWA mappers. The adapted TWA mapper is configured to produce in-
cremental mappings (using the mapping on previous resource graph to generate
the mapping on current resource graph) or classical mappings (previous mapping
is ignored).
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"Initialize resource graph R";
"Initialize sublattices graph A";
"Generate mapping of A onto R and store result in M1";
i := 1;
do i < N →

if (imod 2) 6= 0 →
"Remove M computers from R and store them into L"

2 (imod 2) = 0 →
"Add the M computers from L to R";
"Clear L"

fi;
"Store mapping M1 in M2";
"Generate mapping of A onto R and store result in M1";
"Evaluate the number of migrated sublattices between M1 and M2";
i := i + 1

od

Algorithm 7.21: Sublattices migrations experiment.

Figure 7.6 shows the number of migrated sublattices when using the three dif-
ferent mappers, TWA being configured to produce incremental (TWA) or classical
(TWA-0) mappings. A sublattices graph of 256 sublattices is mapped on 10 re-
source graphs (N= 10). The number of migrated sublattices is therefore evaluated
9 times. The sequence of resource graphs is produced such as R contains initially
54 computers and and M is equal to 1.

We can observe that even small changes in resource graph topology lead to
nearly all sublattices being migrated between two subsequent mappings when pre-
vious mapping is ignored.

4-6 sublattices are associated to each computer of the resource graph. This
means that at least 4-6 sublattices have to migrate when a computer is removed
from the resource graph. Additional migrations are triggered to balance the work
load. In Figure 7.6, we observe that the adapted TWA leads to 20-30 migrations
when one computer is removed from or added to the resource graph.

Figure 7.7 shows the number of migrated sublattices with M = 1, M = 5, M =
10, M = 25 and M = 40 using the adapted TWA mapper configured to produce
incremental mappings. A sequence of 100 resource graphs is produced. The
initial resource graph contains 54 computers. 256 sublattices are mapped onto
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Figure 7.6: Number of migrated sublattices when mapping a sublattices graph
containing 256 sublattices on a sequence of 10 resource graphs using four different
mappers.

the resource graphs. In all cases, the number of migrated sublattices varies but
remains around a central value.

Figure 7.8 shows the mean and standard deviation (SD) of the number of mi-
grated sublattices for each curve of Figure 7.7 in function of M. We observe that
the SD remains bounded.

Note that even in the case with M = 25 where the size of the resource graph
is almost divided or multiplied by 2 between two subsequent resource graphs,
the number of migrated sublattices remains smaller than the case where previous
mapping is not taken into account.

7.7 Conclusion

In this chapter, we proposed a dynamic load balancing method inspired from local
improvements methods that uses an adapted TWA [70]. The adapted TWA takes
computer powers heterogeneity into account during balancing phase. KL-based
refinements [48] on graph boundaries are implemented for the migration phase.

Regarding partitioning quality, the method was compared to a static mapper
(heterogeneous SCOTCH [62]) introduced in Chapter 5. We observed that map-
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Figure 7.7: Number of migrated sublattices for a sequence of resource graphs
using TWA and increasing the number of computers added to or removed from
resource graphs.
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pings produced with our method lead to comparable execution times with high
(≥ 128) numbers of sublattices and better execution times with small (< 128)
numbers of sublattices. This is due to the fact that our method produces smaller
partition imbalances than heterogeneous SCOTCH.

The adapted TWA was compared to diffusion schemes regarding the number
of exchanged messages before convergence is reached to find the optimal work
load of computers. In all cases, our approach requires less messages (diffusion
scheme requires from 2 to 200 times more exchanges before convergence than
TWA for a cluster of 54 computers) to be exchanged in order to determine the
optimal work load.

Finally, the number of sublattices migrated in case of resource graph topology
changes was measured using different mappers including the adapted TWA. We
showed that when previous mappings are ignored, almost all sublattices have to
migrate. Our method clearly reduces the number of migrated sublattices while
maintaining load balance. We observed that the number of migrations varies over
time but remains in a bounded interval.



Chapter 8

Robust Distributed Control

8.1 Introduction

LaBoGrid is able to execute efficiently (see Chapters 3, 5 and 7) distributed LB
simulations. In case of failure of one or several worker computers i.e. computers
running each exactly one Distributed Agent (DA, see Section 4.4), simulations
can continue thanks to the distributed checkpoint/restart mechanism presented in
Chapter 6.

However, if the Controller is not accessible anymore for some reason, the
execution of LaBoGrid cannot continue and the result of the currently executed
simulation cannot be retrieved. The Controller is therefore a single point of failure.

To avoid this robustness problem, two approaches can be used:

1. the Controller disappears and the Controller Agent (CA, see Section 4.4) is
executed by a DA which therefore “controls” the others. In case of failure
of this DA, the CA is instantiated on another DA and continues its execu-
tion. The state of the CA must therefore be saved in order to be restored on
another DA. A leader election problem must be solved by the DAs in order
to decide which DA must instantiate the CA.

2. the Controller’s implementation is distributed. This implementation must
be fault-tolerant.

In addition to the robustness problem, the centralized architecture of the Con-
troller implies a scalability problem: it is a potential bottleneck during its control
operations.

193
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We chose to combine the approaches presented above: the CA becomes a
component that can be instantiated by any DA. However, to improve scalability
and reduce CA migration cost, its implementation is mostly distributed.

Generic services partially or completely implemented by the Controller and
used during a distributed LB simulation can be identified:

• DAs identification (association of a unique identifier to each DA),

• broadcasting,

• barrier synchronization (synchronization of all processes),

• distributed file system (see Section 6.6),

• dynamic load balancing (see Chapter 7).

Currently, these services are fully or partially implemented in a centralized
way:

• Each DA initially connects to the controller to obtain a unique identifier,

• A message to broadcast is sent by the controller to all DAs.

• Barrier synchronization consists of all DAs sending a “reached” message
to the Controller which releases the DAs when all “reached” messages are
received.

• The distributed file system uses a central file location table maintained by
the controller called Global File Location Table (gFLT, see Section 6.6.1).

• The dynamic load balancing method is mostly distributed but requires the
construction of the Computer Tree (CT, see Section 7.5) which is done by
the Controller.

In this chapter, we show how these services can be implemented in a distributed
and robust way.

In addition to above services, a leader election mechanism must be imple-
mented to choose the DA that will instantiate the CA.
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8.1.1 Chapter Outline

Section 8.2 presents how DAs can identify themselves without an initial connec-
tion to the controller.

Section 8.3 describes tree-based algorithms to implement broadcasting, leader
election and barrier synchronization services in a distributed way.

Section 8.4 introduces a robust and distributed system to represent the gFLT.

Section 8.5 describes a robust way to implement the tree-based algorithms of
Section 8.3.

Section 8.6 briefly explains how distributed LB simulations uses the services.

Section 8.7 compares the execution times when centralized and distributed
implementations of services are used.

Finally, Section 8.8 concludes this chapter.

8.2 Distributed Agents Identification

Initially, DAs connect to the Controller and receive a unique identifier (an integer).
This integer can directly be used to identify partitions in the context of static
(see Chapter 5) and dynamic (see Chapter 7) load balancing. Moreover, DA’s
initial registration signals a resource graph change and therefore triggers a load
balancing process.

DAs identification by the Controller could be ignored: the TCP/IP address
associated to a DA (i.e. the address on which the DA accepts connections) can be
used as identification.

However, in Section 6.3, the detection of micro-interruptions of DAs is dis-
cussed and implies the comparison of the destination field of a message (which
contains the identifier of a DA) to the identifier of the receiver DA. If the TCP/IP
address is used as identifier, micro-interruptions are not detected anymore (two
different DAs executed consecutively on the same computer have the same iden-
tifier).

The combination of the TCP/IP address of the computer executing the DA and
a time stamp indicating when the DA was instantiated solves this problem1. In
addition, this identifier can be generated locally by each DA.

1The only required property for a DA’s clock is that the time stamp generated upon DA’s instan-
tiation is different of the time stamp generated before a micro-interruption on the same computer.
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8.3 Tree-based Broadcasting, Leader Election and
Barrier Synchronization

Broadcasting and barrier synchronization services can be implemented in a dis-
tributed way by organizing the computers executing the DAs into a rooted tree.

8.3.1 Leader Election

The leader election problem in dynamic topologies is generally reduced to the
problem of finding a spanning tree [17, 54] because most of the distributed algo-
rithms for finding a spanning tree produce a rooted spanning tree. The root of the
tree is then chosen as the leader. If the rooted tree is available by construction, the
leader election problem is trivially solved.

8.3.2 Broadcast

To efficiently broadcast a message to a large number of entities, the global number
of exchanged messages and the actual broadcast time (the time between the first
message is sent and the last entity receives it) should be minimized.

In a fully connected network, a centralized approach (the source sends directly
the message to all other overlay members) can be used and minimizes the number
of sent messages (if there are N entities, N− 1 messages have to be sent). How-
ever, it is not scalable: when the number of entities becomes large (thousands
up to millions of entities), each entity must know the address of all others which
is clearly a problem in terms of memory usage. In addition, in case of topol-
ogy change (an entity “appears” or “disappears”), all entities have to update their
address table.

Broadcast trees also minimize the number of exchanged messages during broad-
cast and limit the broadcasting time: the message to broadcast traverses O(log(N))
overlay members before any member is reached if the tree is balanced. Also, the
size of the routing table of a tree member depends on the number of children of
the member: each member maintains a link to its parent and its children. If each
tree member has at most k children, the routing tables contain a number of entries
that is at most k+1. k is generally much lower than N.
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8.3.3 Barrier Synchronization

The scalable implementation of software barrier synchronization has been studied
for large scale shared-memory multi-processor systems [57]. In particular, tree
based methods [40] are scalable, minimize the number of transactions between
processes and can easily be adapted to our context.

Let P be a set of processes organized into a rooted tree. In our context, the
processes are executed by different computers. Each process p ∈ P is the root of
a subtree S(p) and has at most K children (for example, Gupta et Hill [40] chose
K = 2). A leaf process f has no child and is the root of a subtree S( f ) containing
only one node, f . The root of the complete processes tree is noted r. The whole
processes tree is therefore noted S(r). If |P|= 1, the root is a leaf as well.

When all processes of a subtree S(p) have reached the barrier, a message is
sent by p to its parent. When the root process r receives this message from all
its children or r has no child, all processes of P have reached the barrier and a
message signaling that all processes can continue their execution is broadcasted
by r to all processes using the tree structure.

Algorithm 8.1 describes the function barrierWait causing a process to wait
until all other processes have reached the barrier. The processes exchange two
types of messages: REACHED and ALLREACHED. The REACHED message is sent by
a process p to its parent when all the processes of S(p) have reached the barrier.
The ALLREACHED message is broadcasted by root process when all processes have
reached the barrier and causes all waiting processes to continue their execution.

8.4 Distribution of the Global File Location Table

The gFLT used by the distributed file system (see Section 6.6.1) provides, given
a file unique identifier (FUID), the list of addresses representing the computers
hosting the associated file. This table must be accessible by any computer running
the distributed file system, hence the idea of using a generic, robust and scalable
table service.

Distributed Hash Tables (DHT) [11, 13, 46, 56, 66, 67, 74, 80] are robust and
scalable Peer-to-Peer (P2P) systems that act like a distributed structure allowing
at least the insertion and the retrieval of data identified by a key:

• (v-key, value) entries can be inserted in a DHT,

• a value is retrieved given its associated v-key.
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procedure barrierWait();
begin

if "process has no child" → skip
2 "process has at least one child" →

"Wait for all children to have sent a REACHED message";
fi;
if "process is the root" →

"Broadcast ALLREACHED message"
2 "process is not the root" →

"Send a REACHED message to parent process";
"Wait for the reception of ALLREACHED message";

fi
end

Algorithm 8.1: Barrier synchronization implementation.

An example of v-key is the FUID and an example of value is a list of addresses.
The gFLT used by the distributed file system can therefore be implemented using
a DHT. This would lead to a fully distributed implementation of the distributed
file system.

In addition to insertion and retrieval, removal and update are required by our
distributed file system implementation. When a file is removed from the DFS, its
associated entry in the gFLT must be removed. When a file is replicated to several
computers, new addresses need to be added to the associated list of addresses in
the gFLT.

Section 8.4.1 presents the general principles common to all DHT systems. A
particular DHT system is presented in Section 8.4.2. Existing DHT systems are
compared in Section 8.4.3 and our choice of one of them is motivated. Finally,
Section 8.4.4 briefly describes how the implementation of the chosen DHT system
had to be adapted in order to be able to implement the gFLT.

8.4.1 General Principles of DHTs

In a centralized table service, a computer called table server maintains a data table
containing key-value entries of the form (v-key, value). When another computer
called table client wants to, for example, insert a new entry in the data table, it
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sends a request to the table server which potentially modifies the data table and
sends a result to the table client (in the context of an insertion, if the insertion was
successful or not; the definition of a successful insertion depends on the imple-
mentation).

In a DHT, the client-server model of the centralized approach is replaced by a
P2P model where each computer is both client and server. In particular, the entries
of the data table are not centralized anymore by a single computer but distributed
among all the computers of the DHT. Each computer therefore maintains a partial
data table i.e. a data table that does not contain all the entries. When a computer
wants, for example, to retrieve a value, it must first search for the computer that
might have this entry in its partial data table. It can then send a request to this
computer which executes it and sends the result to the requesting computer (in the
context of a retrieval, the value associated to the given v-key or nothing if there is
no entry associated to the given v-key in the partial data table).

The member of a DHT is called a DHT peer. Each DHT peer has a unique
identifier that we call p-key (for example, an IP address). The p-key of a DHT
peer can be used to directly send a message to the peer. Let V be the v-keys space
and P be the p-keys space. All DHT systems rely on a hash function h which
associates a h-key to any v-key or p-key. h is defined as follows:

h : P∪V → H

where H is the space of h-keys. A partition Ai of H is associated to each DHT
peer. Let D ⊆ P be the set of all DHT peers of the DHT. The following property
must be true:

H =
⋃
i∈D

Ai

A DHT peer i is responsible of all v-keys k such as h(k) ∈ Ai. A request
associated to a particular v-key k must therefore be sent to the DHT peer that is
responsible of k.

In order to find the DHT peer responsible of a particular v-key k, a routing
table containing key-value entries of the form (h-key, address) could be associated
to each DHT peer. There is an entry for each DHT peer of the DHT. A search
algorithm could be defined to find the entry of the peer responsible of k in function
of h(k).

DHTs have been developed in order to be used at the Internet scale i.e. in
a context where the potential number of DHT peers is very large (|D| > 106).
The approach presented in previous paragraph is clearly not scalable because the
set D of DHT peers may change over time (new DHT peers may join and other
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leave the DHT) and the maintenance cost of the routing table on each DHT peer
may become prohibitive (each time a DHT peer joins or leaves, the routing table
associated to all DHT peers must be updated).

In DHT systems, the routing table is distributed by organizing the DHT peers
into a Structured Overlay Network (SON). A SON is an application-level network
built on top of a physical network. A request associated to a particular v-key is
forwarded in the SON by a routing algorithm executed on each DHT peer. The
routing algorithm uses the partial routing table (i.e. a routing table that does not
contain all DHT peers) of the DHT peer. The routing algorithm ensures that the
request associated to a v-key k eventually reaches the DHT peer responsible of k.

When a DHT peer joins or leaves the SON, a number M of DHT peers have
to update their partial routing table with M� |D| (M is proportional to the size of
the partial routing tables, see next paragraph).

The size of the partial routing table associated to a particular DHT peer should
grow slowly in function of the total number of DHT peers |D|. This ensures
the system remains scalable. Most DHT systems [74, 80, 67, 13, 56] use partial
routing tables whose size is O(log(|D|)). Some DHT systems [66] use constant
size partial routing tables.

A request potentially traverses several DHT peers before it reaches the respon-
sible DHT peer. The sequence of DHT peers a request traverses is called a routing
path. The forwarding of a request by a DHT peer to the next DHT peer in the
routing path is called a hop. In the same way than the size of the routing table,
the number of hops needed before a request reaches the responsible DHT peer
must grow slowly with the total number of DHT peers |D| for a DHT system to
be efficient. In most DHT systems [74, 80, 67, 13, 56], the number of hops before
a request reaches the responsible DHT peer is O(log(|D|)).

Another important aspect of DHTs is their robustness: when a DHT peer
leaves the DHT unexpectedly, the routing of requests in the SON should con-
tinue. This is generally achieved by using a maintenance algorithm executed by
each DHT peer that updates the partial routing table of the DHT peer when a DHT
peer associated to an entry of the partial routing table unexpectedly leaves.

In addition, the partial data table associated to a DHT peer is replicated to
several other DHT peers. This way, if a DHT peer leaves unexpectedly, the (v-
key, value) entries of its partial data table are still available on another peer.

The principles presented in this section are common to most DHT systems.
DHTs generally differ in the way they implement:

• the SON,
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Figure 8.1: Chord identifier circle with m = 3.

• the routing algorithm on top of the SON,

• the maintenance algorithm,

• the partial data table replication process.

8.4.2 A Simple Example of DHT: Chord

In order to illustrate the general principles introduced in Section 8.4.1, the DHT
system called Chord [73, 74] is presented in this section.

Chord assumes that H is circular and ordered, and that h-keys are represented
on m bits. H can therefore be represented by an identifier circle with 2m possible
positions numbered from 0 to 2m−1. An example of Chord identifier circle with
m = 3 is shown in Figure 8.1. In this case, the hash function h is defined as
follows:

h : P∪V →{0,1,2,3,4,5,6,7}

The notation )a,b] represents an interval of the Chord identifier circle where
0≤ a,b < 2m. This interval is defined as follows:

)a,b] =
{

]a..b] i f a≤ b
]a..2m−1]∪ [0..b] i f a > b

and contains all the values encountered on the Chord identifier circle when going
clockwise from a excluded to b included. For example, in the context of the Chord
identifier circle of Figure 8.1, )1,4] = {2,3,4} and )6,2] = {7,0,1,2}.
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Figure 8.2: Chord identifier circle with m = 3 and 3 peers represented.

Let a Chord DHT involve N peers with N ≤ 2m (in general, N� 2m). Let pi
be the p-key of a Chord peer with i = 0,1, . . . ,N− 1. The order of the p-keys is
chosen such as:

h(p0)< h(p1)< .. . < h(pN−1)

We suppose that h never assigns the same h-key to two different p-keys.

The Chord peer with p-key pi is responsible of v-key k if

h(k) ∈ )h(p(i−1) mod 2m),h(pi)].

The peer with p-key p(i−1) mod 2m is called the predecessor of h-key k and the
peer with p-key pi is called the successor of h-key k.

The functions Succ : H → P and Prec : H → P provide the p-key of respec-
tively the successor and the predecessor of a given h-key. For example, in the
situation presented in previous paragraph:

Prec(k) = p(i−1) mod 2m

Succ(k) = pi

Figure 8.2 shows the same identifier circle as in Figure 8.1 but with three
Chord peers represented on it. The three peers have p-keys p1, p2 and p3 such as
h(p1) = 2, h(p2) = 5 and h(p3) = 7.

Table 8.1 shows the h-keys each peer of Figure 8.2 is responsible of.

Table 8.2 defines the functions Succ and Prec for the situation of Figure 8.2.
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p-key h-keys
p1 {0,1,2}
p2 {3,4,5}
p3 {6,7}

Table 8.1: h-keys the peers of Figure 8.2 are responsible of.

k Prec(k) Succ(k)
0 p3 p1
1 p3 p1
2 p3 p1
3 p1 p2
4 p1 p2
5 p1 p2
6 p2 p3
7 p2 p3

Table 8.2: Definition of Succ and Prec for the situation of Figure 8.2

Structured Overlay Network

Let q be the p-key associated to a Chord peer. The partial routing table of the peer
contains two entries: Prec(h(q)) and Succ(h(q)+1). The first entry is the p-key
of the predecessor of the peer and the second entry is the p-key of the successor
of the peer.

The SON used by Chord can therefore be represented by a double linked ring
called the Chord ring. The chord ring associated to the situation illustrated in
Figure 8.2 is given in Figure 8.3.

Routing algorithm

The Chord ring is enough for the routing of requests towards the peer responsible
of a particular h-key: the request is simply forwarded by a peer to its successor
until the responsible peer is reached. However, this approach leads to a number of
hops that is O(N) where N is the number of peers. In addition, if one peer leaves
unexpectedly, the routing of requests is not possible anymore.

Each peer therefore maintains an additional table called fingers table. The
fingers table contains at most m p-keys. Let q be the p-key associated to a Chord
peer and finger[i] be the ith entry of the finger table of this peer. The content of
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Figure 8.3: Chord ring for the situation illustrated in Figure 8.2.

the finger table is then defined as follows:

finger[i] = Succ(h(q)+2i) where 0≤ i < m.

finger[0] gives the successor of the peer. The entries of the finger table are not
necessarily distinct and equal entries do not need to be stored separately.

When a request is received by a Chord peer, the routing algorithm first tests if
the peer is responsible of the v-key w associated to the request. Let k = h(w) and q
be the p-key of receiving peer. The peer is responsible of w if k∈)h(Prec(q)),h(q)].

If it is the case, the request can be handled, possibly leading to one of the
following operations applied on the partial data table of the peer: the insertion of
a new entry, the retrieval of an entry or the removal of an entry.

If the peer is not responsible of k, the routing algorithm forwards the request
to the closest predecessor of k it can find in its fingers table.

The routing algorithm executed by a Chord peer is described by Algorithm 8.2.

It has been shown that this routing algorithm leads to a number of hops that is
O(log(N)) where N is the number of peers in the Chord ring [73].

Peer Join

Let a peer that has p-key q join the Chord ring. If no peer is present in the ring, q
has no predecessor and uses itself as successor. In order to join an existing Chord
ring, q must know the p-key of at least one peer that is already in the ring. Let q′

be the p-key of a peer that is already in the ring. q has no predecessor and uses
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w := "v-key associated to received request";
k := h(w);
if k ∈ )h(Prec(p)),h(p)] →

"Handle received request"
2 k 6∈ )h(Prec(p)),h(p)] →

i := m - 1;
do i ≥ 0 and finger[i] 6∈ )h(p),k]→

i := i - 1
od;
"Forward request to finger[i]"

fi

Algorithm 8.2: Efficient location of the peer responsible of h-key k.

the peer responsible of key h(q) as its successor. This peer is found by forwarding
a request to q′ which executes Algorithm 8.2.

After the insertion process, the other peers of the DHT are not yet aware of the
new peer. A stabilization algorithm is triggered periodically to update peers’ rout-
ing tables in order to learn about newly joined peers. The stabilization algorithm
also updates routing tables if a peer leaved unexpectedly.

Chord Fault Tolerance

If a peer leaves unexpectedly, remaining peers can loose their knowledge of their
successor. In this case, the correctness of the Chord protocol is not guaranteed
anymore [73]. In addition, the data entries the peer that leaved was responsible of
are not available anymore.

To increase robustness, each Chord peer maintains a list of its r successors in
the Chord ring. Its data entries are then replicated on the r successors. All data
entries that were inserted into the DHT are therefore likely to be still available
even if several peers failed simultaneously.

Chord peers’ lists of successors are built by a slightly modified version of the
stabilization algorithm.
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Chord Features Summary

Chord is a scalable and robust DHT system. Its scalability comes from the fact
that:

• the routing algorithm remains efficient even with large numbers of peers
(the number of hops before the destination peer is reached is logarithmic in
the number of peers in the system),

• the amount of routing information each peer maintains remains small re-
garding the total number of peers (the routing table of a peer contains a
number of entries that is logarithmic in the total number of peers in the
system).

The robustness of Chord is achieved through:

• data replication (data entries are replicated on several peers),

• link replication (each peer maintains a list of several successors),

• self-healing algorithms (the stabilization algorithm that updates routing ta-
bles in case of peers insertion and/or failures).

8.4.3 Comparison of Existing DHTs

DHT systems can be compared using following criteria [34]:

1. lookup efficiency: The number of hops needed to find the peer responsible
of a given h-key.

2. routing table size: The number of entries a peer maintains in its routing
table.

3. fault-tolerance: All DHT systems are fault-tolerant but they may differ in
the way they achieve fault-tolerance. In particular, used methods can have
different maintenance costs in terms of the number of sent messages.

4. implementation availability: to be easily integrated into LaBoGrid, a DHT
system should be available in the form of a lightweight Java library.
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The following systems are only presented regarding the defined criteria. The
interested reader can refer to references for more details. In the following, N
represents the number of peers in the DHT.

Chord [73, 74] was shortly presented in the previous section. The number
of hops is O(log2(N)). The routing table contains O(log2(N)) entries. In case
of peer insertion or departure (graceful or not), routing tables are updated by a
stabilization algorithm. A Java library is available.

DKS [13, 14] can be seen as a generalization of Chord providing better lookup
efficiency but requiring larger routing tables. The number of hops to find a peer
is O(logk(N)) where k is a parameter of the method. There are (k− 1) logk(N)
entries in the routing table of a peer. Overlay maintenance is achieved using
two techniques: correction-on-use (COU) and correction-on-change (COC). With
correction-on-use, routing table entries are not corrected until they are needed.
However, it is assumed that the number of joins and leaves (or fails) is reasonably
lower than the number of lookup messages (used to realize correction-on-use). If
this assumption does not hold, correction-on-change is used: in case of join, leave
or failure, all peers that need to update their routing tables are notified.

Pastry [67] and Tapestry [80] are similar both in underlying concepts and prop-
erties. O(logβ(N)) hops are needed to find a peer (β is a parameter of the system).
Each peer maintains O(α logβ(N)) routing entries where α is proportional to β.
The routing tables are updated using a deterministic procedure in case of peer
insertion or departure. Java libraries are available for both systems. A notable
advantage of Pastry and Tapestry over other DHT systems is the minimization of
latency in addition to the number of hops. This is achieved by forwarding search
messages to peers that are physically close (i.e. geographically close).

Kademlia [56] is based on principles similar to Pastry and is comparable in
terms of number of hops and number of entries in the routing table of peers. The
maintenance of routing tables is done by analyzing the lookup traffic in order to
minimize maintenance costs. A Java library is available. Like Pastry and Tapestry,
latency is minimized.

CAN [66] (Content Addressable Network) maps keys onto a d-torus. The
number of hops is (d/4)(N(1/d)). The number of entries in the routing table does
not depend on the number of peers in the system. A stabilization algorithm is used
to handle peers failure. No library has been found for this DHT.

P-Grid [11] is a system based on randomized algorithms and reaches perfor-
mances comparable to most DHTs in terms of number of hops (O(log(N))) with
a high probability. The routing table size is O(log(N)). Overlay maintenance and
construction are based on random interactions between peers.



208 8. Robust Distributed Control

DHT system hops routing entries Maintenance Library
Chord O(log2(N)) O(log2(N)) Stabilization Yes
DKS O(logk(N)) (k−1) logk(N) COU+COC Yes

Pastry, Tapestry O(logβ(N)) O(α logβ(N)) Deterministic Yes
Kademlia O(logβ(N)) O(α logβ(N)) Traffic analysis Yes

CAN (d/4)(N(1/d)) k Stabilization No
P-Grid O(log(N)) O(log(N)) Random Yes
Koorde O(log2(N))

O(log2(log2(N))) O(log2(N)) Stabilization Yes

Viceroy O(log2(N))
O(log2(log2(N))) O(log2(N)) Stabilization No

DH O(log2(N))
O(log2(log2(N))) O(log2(N)) - No

Ulysses O(log2(N))
O(log2(log2(N))) O(log2(N)) Stabilization No

Table 8.3: Comparison of DHTs regarding lookup efficiency, peer routing table
size, overlay maintenance method and Java library availability.

Koorde [46], Distance Halving (DH) [61], Viceroy [53] and Ulysses [51] need
a number of entries in peers’ routing table that does not depend on the total num-
ber of peers in the system (like CAN). They feature a number of hops that is
O(log2(N)). However, a disadvantage of these methods is that some peers will
have more traffic than others (congestion problem). To be fault-tolerant, these
systems generally need to expand their routing table and reach a number of en-
tries that is O(log2(N)). In this case, the number of hops can be reduced to

O(log2(N))
O(log2(log2(N))) and there is no more congestion. A stabilization algorithm is used
to maintain routing tables in case of peers failure. A Java library is available for
Koorde. No implementation was found for DH, Viceroy and Ulysses.

Table 8.3 summarizes above information. The “hops” column contains the
number of hops needed by a lookup operation, the “routing entries” column con-
tains the number of entries in the routing table associated to each peer of the DHT,
the “maintenance” column contains the method used to update routing tables in
case of peer failure, the “library” column indicates if a Java library implementing
the DHT is available.

The best trade-off between lookup efficiency and routing tables size is pro-
vided by Koorde, Viceroy, DH and Ulysses. No implementation of Viceroy, DH
and Ulysses was found. An existing Java toolkit called Overlay Weaver [7, 71]
(OW) provides a Java implementation of Koorde. Koorde was therefore chosen to
be integrated into LaBoGrid.
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Note that DKS provides an interesting approach regarding overlay mainte-
nance by using methods that minimize the cost in terms of exchanged messages.
An adaptation of these methods to Koorde would be interesting but is out of the
scope of this thesis.

8.4.4 A Missing Function: Update

All DHTs feature at least the basic get (retrieval of an entry given its key) and
put (insertion of a new entry) functions. Most of them provide a remove function
(removal of an entry given its key). Another interesting function is update: the
value of an entry of a partial data table is modified in a way depending on provided
parameters. Examples of updates are the addition of a stored number with another
given one, the adding of a new element to a set or a list, etc. We have not found
any DHT system providing this function. In particular, OW does not implement
the update of a previously inserted value.

In the context of LaBoGrid, this function is required for the distributed file
system implementation: when a file is replicated, a new location must be added to
the list of available locations.

Adding this functionality to OW is not difficult, an update request is routed in
the same way as a get, put or remove request would be towards a set of peers (the
peer responsible of the entry and the peers holding a replica of the entry). When
a peer receives this request, it retrieves the entry from its partial data table and
updates it with given data.

8.5 MN-tree: A Multiple Purpose Tree Overlay

In Section 8.3, we described how broadcast and barrier synchronization services
can be implemented in a distributed way by organizing the computers executing
the DAs into a tree. If DAs are part of an overlay having a tree structure, described
distributed implementations could take advantage of it.

A drawback of tree overlays is their lack of resistance to link or node failures:
in this case, the overlay is disconnected. Robust tree overlays therefore require
maintenance mechanisms. Large-scale systems for data dissemination or data
lookup based on robust tree overlays exist [37, 22] and use mechanisms to repair
the overlay in case of node failure.

For example Frey et al. [37] proposed a system where, if a peer detects that its
parent failed, it searches for a new parent. If it does find one, it connects to the
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Figure 8.4: Illustration of the position of a node in a tree.

new parent. Otherwise, it declares itself as the root. A mechanism ensures that no
cycles appear and that the degree (i.e. the number of connected peers) of the peers
remains bounded.

Our approach is slightly different and is based on node (and therefore link)
redundancy. This leads to simpler repair operations. We have developed the MN-
tree structure for this purpose.

8.5.1 The Overlay

We can define the position of a node in a tree as a pair (x,y) where x is the level in
the tree (i.e. the “distance” of the node to the root) and y the position of the node
in its level. If the maximum number of children by node is bounded by K, at level
l, there are Kl possible positions. Figure 8.4 illustrates the position of nodes in a
tree where nodes have at most 3 children (K = 3). If the tree is not complete (like
it is the case in Figure 8.4), some positions have no node associated to them.

We propose a tree overlay where several peers can be associated to a given
position in the tree. The set of peers associated to a same position is called a
meta-node. The tree overlay whose nodes are meta-nodes is called a meta-nodes
tree or MN-tree.

The peers of a meta-node are fully connected. In addition, each peer of a
meta-node is also fully connected to all peers of the parent meta-node and children
meta-nodes.

Therefore, one interesting feature of MN-trees is that even if one or several
peers fail, the tree structure is not altered (as long as at least one peer remains
available per meta-node). This situation is illustrated in Figure 8.5 showing an
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Figure 8.5: Availability of tree structure even in case of multiple failures.

MN-tree with five meta-nodes containing three peers each; five peers fail but the
resulting MN-tree is still connected. A link between two meta-nodes means that
at least one peer of a meta-node is connected to at least one peer of the other
meta-node (i.e. there remains at least one peer per meta-node in the MN-tree).

The number of entries in peers’ routing tables does not depend on the number
of peers in the overlay. If each meta-node contains M peers and has K children,
the routing table of a peer p in a meta-node n contains M−1 entries for the other
members of n, M entries for the parent and M entries per child of the meta-node.
The total number of entries in the routing table is therefore (K +2)M−1.

8.5.2 Overlay Construction and Joining

Let M be the set of meta-nodes of an MN-tree and P be the set of peers that are
part of this MN-tree. The function mn : P→M provides the meta-node associated
to a given peer i.e. if peer p is part of meta-node n, then mn(p) = n. The size of a
meta-node is the number of peers associated to this meta-node.

There is a trade-off between robustness and scalability: an MN-tree made of
one meta-node containing all the peers of the overlay is perfectly robust (the tree
structure is always preserved provided that there remains at least one peer in the
overlay). However, this approach is not scalable at all because of the size of the
routing table of each peer and the maintenance cost of these tables in case of
topology change. On the other hand, an MN-tree made of meta-nodes containing
one peer each is not robust at all (if one peer fails, the overlay is disconnected) but
implies small routing tables: (K +1) entries with K being the number of children
per meta-node.

A reasonable approach is therefore to use a parameter giving the number of
peers a meta-node should contain in order to have a robust enough overlay but
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leading to reasonably small routing tables.

A meta-node is considered as reliable if it contains at least R peers i.e. its
size is greater or equal to R and unreliable otherwise. The R parameter is called
reliability threshold. An MN-tree is reliable if it is only made of reliable meta-
nodes and unreliable if it contains at least one unreliable meta-node.

For each meta-node, a master peer is defined. The master peer manages its
associated meta-node topology. The function mp : M → P provides the master
peer of a given meta-node.

Initially, the first peer of the MN-tree is the master peer of the root meta-node.

A peer that wants to join an existing MN-tree can send a request to any peer
already part of the overlay. If the peer is the master peer of a meta-node, it tries to
insert the joining peer in its meta-node, otherwise the join request is forwarded to
the master peer of the associated meta-node.

The master peer mp(n) inserts the joining peer in the meta-node n if n is not
yet reliable or it has not yet K children. Otherwise, it forwards the join request to
the master peer of one child of n. If the peer was inserted in n and the size of n is
greater or equal to 2R, a new reliable meta-node can be extracted from n and can
become its child. The creation of a new meta-node is illustrated in Figure 8.6 with
R = 2.

The creation of a new meta-node implies that peers already in a meta-node are
moved to another meta-node. In this case, the routing table of a moved peer must
be updated. If a peer of a meta-node n is moved to another meta-node m, the main
peer of m sends the new routing table to the peer.

The insertion scheme ensures that only reliable meta-nodes are created and
that the maximum number of children per meta-node does not exceed K. Indeed,
a new child is added for a meta-node only if it has not already K children. If the
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peer has been inserted because the meta-node was not reliable, a new child cannot
be created (because the size of the meta-node remains smaller than 2R).

A join request message is forwarded at most O(logK(N/R)) times before the
peer is inserted, where N is the number of peers in the MN-tree, K the number of
children per meta-node and R the number of peers per meta-node.

For example, if N = 104, K = 2, R= 5 and a join request is sent to a peer of the
root meta-node of a complete (all meta-nodes have K children except the leaves)
reliable MN-tree, the join request is then forwarded 11 times before reaching a
leaf. Each peer maintains a routing table containing at most 19 entries. MN-trees
are clearly scalable regarding routing table size and joining.

8.5.3 Overlay Maintenance

In case of peer failure, an MN-tree remains connected. If the failed peer was a
master peer, it is replaced by another peer of the same meta-node. We suppose
that each peer has a unique identifier (e.g. an IP address and a TCP port) and that
the peer identifier space is ordered. In this case, the peer that becomes the new
master peer is simply the peer with the smallest identifier.

All the peers connected with the failed master peer also “know” the candi-
date peer (i.e. they have it in their routing table) that will replace it (by overlay
construction). The update of the master peer of a meta-node is therefore a local
operation that does not require an additional exchange of messages.

However, in case of peer failure, the MN-tree may become unreliable and
therefore more vulnerable to subsequent peer failures. Additional maintenance
methods have to be provided.

Passive Maintenance

The join process could be modified in order to route join requests towards unre-
liable meta-nodes. After peer insertions, the reliability of the MN-tree may be
restored.

However, this approach requires that new peers frequently join the overlay. If
it is not the case, the MN-tree may stay unreliable for a long period of time. In
order to avoid this situation, an active maintenance method is proposed.
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Figure 8.7: Active maintenance process in case of failure: 1) a meta-node becomes
unreliable, 2) a peer request message is sent and a peer is moved, 3) the MN-tree
is reliable again (R = 3).

Active Maintenance

The MN-tree construction method presented previously tends to build a complete
tree with meta-nodes containing exactly R peers. The meta-nodes that do not
already have K children may have a size greater to R. A meta-node that becomes
unreliable could therefore take a peer from one of these meta-nodes to become
reliable again and the providing meta-node remains reliable.

Let a meta-node become unreliable because one of its peers fails. If the meta-
node is a leaf of the MN-tree (it has no child), it merges with its parent. Otherwise,
it sends a peer request message to one of its children. This message is forwarded
downside in the MN-tree until a meta-node having more than R peers or a leaf is
reached. A peer is then moved from reached meta-node to the unreliable meta-
node. If the reached meta-node is a leaf and becomes unreliable after peer move,
it merges with its parent.

Active maintenance implies that peers already part of a meta-node are moved
to another meta-node. In the same way than when peers are moved during the
insertion of a new peer, the routing tables of moved peers must be updated.

Figure 8.7 illustrates the described maintenance process.
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8.5.4 MN-trees Multiple Purposes

The MN-tree overlay is designed in order to:

• elect a leader peer,

• broadcast messages,

• provide a Computer Tree used for Dynamic Load Balancing (see Chapter 7),

• implement barrier synchronization service in a distributed way.

Leader election

The master peer of the root meta-node is selected as the leader. Therefore, in case
of leader failure, the maintenance process described in Section 8.5.3 implicitly
selects the new leader through the selection of the new master peer of a meta-
node. This process is particularly efficient because it does not require directly the
exchange of any message.

Reliable Broadcast

An efficient broadcast is easy to implement using MN-trees: initially, the source
peer (the peer that initiates the broadcast) sends the message the master peer of
its meta-node (if it is not the master peer). The classical tree broadcast method
is then used to broadcast the message among the master peers of the MN-tree.
Each master peer also forwards the message to the other peers of its associated
meta-node. This process is illustrated in Figure 8.8.

This method is not reliable in case a master peer fails before it could deliver
the message to all required peers. Any other peer can fail without affecting the
reliability of the broadcast.

A possible solution would be to use multiple paths to broadcast a message.
A broadcasted message is then received multiple times and even if one peer fails
during message propagation and cuts one path, the message will still be delivered.
This solution has the disadvantage of implying a substantial constant overhead
even in the absence of failure.

We propose a protocol based on message retransmission in case of failure with
a smaller overhead in terms of message transmissions in the absence of failure.
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Figure 8.8: Simple broadcast in an MN-tree.

When a master peer p receives a broadcast message, it stores and forwards it
to its neighboring master peers (i.e. the master peers of parent and children meta-
nodes) and to the other peers of its meta-node which also store the message. When
neighboring master peers have forwarded the message to all the other peers of their
associated meta-node, they acknowledge the forwarding to p. p then signals to all
the peers of its associated meta-node they can delete the acknowledged message.
The only overhead in terms of message transmissions caused by this protocol in
the absence of failure is caused by the acknowledgements.

If a master peer fails before the message could be delivered to all required
peers (namely the peers from its associated meta-node, parent meta-node and chil-
dren meta-nodes main peers), the new master peer sends the message again.

If the message to broadcast was not yet forwarded to all other peers of the
meta-node when the master peer fails, the new master peer may not be able to
send the message again because it did not receive it. In this case, it is sent again
by the source peer to the new master peer.

Computer Tree

The Computer Tree (CT) is used during the balancing phase of the dynamic load
balancing method presented in Chapter 7. This phase essentially consists in com-
puting the optimal number of work units (sublattices in our particular case) to
attribute to each computer of the tree.

The peers of the MN-tree can be used as nodes of the CT and it can therefore
be directly derived from the MN-tree: the tree formed by the master peers serves



8. Robust Distributed Control 217

Meta node

Peer

Master
peer

Computer treeMN-tree

Figure 8.9: Computer tree derived from a given MN-tree.

as skeleton and the peers of a meta-node are the children of the master peer of
their meta-node. Figure 8.9 shows the CT derived from a given MN-tree. Each
meta-node contains three peers, the master peer of a meta-node with two children
in the MN-tree has four children in the CT: the master peers of the children meta-
nodes in the MN-tree and the two other peers of its meta-node. The master peer of
a leaf meta-node has only two children in the CT: the other peers of its meta-node.

The construction of a new CT on topology changes (new computer available
or computer fail) is implicit to the MN-tree construction and maintenance and
requires no additional effort as long as the dynamic load balancing component is
aware of the MN-tree topology changes.

Barrier Synchronization

The scalable tree-based barrier synchronization mechanism from Section 8.3 can
use the MN-tree structure. As a reminder, this mechanism is based on two types of
messages the processes exchange: REACHED and ALLREACHED. The REACHED mes-
sage is sent by a process p to its parent once all the processes of the subtree whose
root is p have reached the barrier. The ALLREACHED message is broadcasted by
root process when all processes have reached the barrier and causes the processes
to continue their execution.

If we suppose that each peer runs exactly one process that will reach a barrier,
then we can use the tree based barrier synchronization mechanism with a tree
organization of the processes similar to the Computer Tree derived in previous
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section.

8.6 Distributed LaBoGrid Control

In previous sections, we presented tools to distribute the central point of the ar-
chitecture described in Chapter 4: the Controller. In this section, we present how
these tools are integrated into LaBoGrid.

All DAs must join two overlays: the DHT overlay which allows the distributed
access to shared data and the MN-tree overlay which provides leader election,
broadcasting, implicit computer tree construction and barrier synchronization. As
discussed in Section 8.2, DAs are able to generate themselves a unique identifier
and do not need anymore to initially connect to the Controller in order to receive
it. The first executed DA initializes the two overlays. Subsequent DAs take as
argument a list of DAs already part of the overlays through which they can join.

The DA executed by the leader peer selected by the MN-tree is called the
leader DA. It executes the Controller Agent (CA) which is stripped from all logic
and data implemented by the DHT and the MN-tree. In the context of LaBoGrid,
the minimal CA:

• generates the initial application graph (the graph representing a distributed
application, see Section 5.2),

• triggers load balancing phases when needed (see Section 7.5.3) and broad-
casts the mapping result to all DAs,

• updates the state of the experience (simulation number and last replicated
iteration for current simulation).

Topology changes must be signaled to the CA when detected (the CA can then
trigger a load balancing process and (re)start a simulation). It is the master peer
of the meta-node in which the change occurred that signals the event (failure or
insertion) to the CA. To signal a topology change, a message is reliably forwarded
to the leader DA. A protocol similar to the reliable broadcast is used.

8.7 Results

In this section, we compare the efficiency of broadcast, barrier synchronization
and shared table services implemented in a centralized non-robust way and using
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an MN-tree and a DHT.

An MN-tree has two parameters: the maximum number of children of a meta-
node d and the reliability threshold r. Let N be the number of MN-tree peers. The
MN-tree then contains bN/rc meta-nodes and has depth dlogd(bN/rc)e.

An MN-tree degenerates to the centralized case in two situations:

• when r = 1 and d = N−1,

• when r > (N/2).

In first situation, there are as many meta-nodes as peers, the MN-tree has depth
2 and is not robust: if the only peer of the root meta-node leaves, the overlay is
disconnected. In last situation, the MN-tree has depth 1, contains only one meta-
node and is robust.

With d = 1, the MN-tree degenerates into a meta-nodes chain.

8.7.1 Broadcast

In order to compare the centralized and distributed implementations of the broad-
casting service, we measure the time required to broadcast 1000 messages. The
experience is executed on a cluster of 51 computers (N = 51).

It takes 64 seconds to broadcast all messages with the centralized implemen-
tation. Table 8.4 shows the time to broadcast the messages using the distributed
implementation in function of different MN-tree parameters. The distributed im-
plementation of the broadcast service gives better results in all cases except the
two highlighted ones in the table.

d\r 1 2 4 10
1 25 14 28 68
2 11 12 22 48
4 15 19 26 66

10 37 41 48 57

Table 8.4: Time (in seconds) to broadcast 1000 messages using different MN-tree
parameters.

When increasing r and/or d, the depth of the tree potentially decreases and
the dissemination process is better parallelized, which should let the execution
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time unchanged or decrease it. However, we do not systematically observe this
property.

The reason for this is that when increasing d or r, main peers have a sup-
plementary source of acknowledgement messages which increases their load in
terms of messages to handle. The choice of d and r values is therefore a trade-off
between robustness and efficiency.

8.7.2 Barrier Synchronization

The centralized and distributed implementations of the barrier synchronization
service are compared in the same way than broadcast service: the time required to
synchronize all processes 1000 times is measured using the two implementations.
The experience is executed on a cluster of 51 computers (N = 51).

It takes 137 seconds to sync all processes 1000 times with the centralized im-
plementation. Table 8.5 shows the time to sync the processes using the distributed
implementation in function of different MN-tree parameters.

d\r 1 2 4 10
1 141 90 59 62
2 41 41 42 59
4 41 41 43 56

10 41 42 44 56

Table 8.5: Time (in seconds) to execute 1000 barrier synchronizations using dif-
ferent MN-tree parameters.

The MN-tree based implementation is more than 3 times faster most of the
time (d > 1 and r < 10). When d = 1, the tree used by the synchronization al-
gorithm described in Section 8.3 degenerates into a chain which explains the bad
results.

When d ≥ 2, good results are achieved but increasing r slows the execution
down. This is because the load of the main peers in terms of messages to send and
receive then increases. Therefore, like for the broadcast service, the choice of the
MN-tree parameters is a trade-off between robustness and efficiency.

8.7.3 Table Service

In order to compare the centralized and distributed implementations of the table
service used by the distributed file system, we executed an experience where each
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task executed by a DA inserts 2000 entries, then retrieves them and, finally, re-
moves them from the table.

The distributed implementation uses a DHT to implement the table service.
As stated in Section 8.4, we use a Koorde [46] DHT implemented by the Overlay
Weaver [7] library.

The DHT based implementation of the table service leads to the lowest exe-
cution time: it takes 680 seconds to execute the experience with the centralized
implementation and 578 seconds with the distributed implementation.

8.8 Conclusion

In order to remove the single point of failure and potential bottleneck in LaBo-
Grid’s architecture, we proposed a mostly decentralized implementation of the
controller.

This implementation is based on the definition of several services used by the
components of LaBoGrid:

• leader election,

• broadcasting,

• barrier synchronization,

• distributed file system,

• dynamic load balancing.

A decentralized implementation was proposed for each of these services.

The distributed implementation of leader election, broadcasting and barrier
synchronization services is based on MN-trees: an original robust tree-based over-
lay.

The distributed file system relies on the gFLT that was previously hosted by
the Controller. The gFLT is now implemented by a Koorde [46] DHT provided by
Overlay Weaver [7, 71], a Java toolkit that features an API for overlay algorithms
design and high-level services. Overlay Weaver’s API had to be slightly modified
in order to add the “update” operation required by our distributed file system.

Finally, the dynamic load balancing service needs the computation of the
Computer Tree (CT). The CT, previously generated by the Controller, is now built
in a decentralized way by using MN-trees.
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We observed that, in addition to being robust, the distributed implementation
of most services is generally more efficient (i.e. decreases the required execution
time for the same task) than the centralized implementation.

The efficiency of broadcast and barrier synchronization services depends on
the MN-tree parameters: the reliability threshold (controlling the number of peers
per meta-node) and meta-nodes degree (bounding the maximum number of chil-
dren a meta-node can have).

Increasing the reliability threshold improves the overlay robustness but in-
creases the load on the main peers of the meta-nodes. Increasing the meta-nodes
degree improves the parallelization of broadcast and barrier synchronization ser-
vices but also increases the load on the main peers of the meta-nodes. In the
same way than explained in Section 6.7, if the probability of failures is known,
the choice of these parameters can probably be optimized. However, this topic is
not addressed in this thesis.

The services presented above are not intensively used in the context of dis-
tributed LB simulations. The use of their distributed implementation instead of
the centralized implementation does therefore not lead to a significant reduction
in execution time (at least, not in the simulations we executed). However, LaBo-
Grid is now better adapted to larger scale simulations and is completely robust.



Chapter 9

Conclusion

9.1 Summary

We have developed a distributed implementation of LB simulations presented in
Chapter 2. In Chapter 3, this implementation was optimized using a method intro-
duced by Murphy [58] that had to be adapted to the Java programming language
and was improved by removing its memory overhead. An additional method was
proposed in order to circumvent the memory locality problem introduced by Mur-
phy’s method regarding the collision operator implementation. As a result of these
modifications, the execution time was almost divided by two regarding the initial
implementation.

LaBoGrid is the distributed application designed in the context of this thesis.
Its general architecture is presented in Chapter 4. LaBoGrid allows the user to
easily run sequences of simulations with potentially different parameters and im-
plementations for each simulation. These are provided to LaBoGrid by the user
through an XML configuration file and, potentially, additional JAR files contain-
ing additional classes used to implement the simulations.

LaBoGrid is written using a generic framework based on asynchronously com-
municating components. This framework includes a communication layer that
handles the transmission and the reception of messages through the network. We
expected this generic framework to produce an execution time overhead when
compared to a more specific implementation but we observed that this overhead
remains acceptable. For example, the execution time of a distributed LB simu-
lation on a (128,128,128) lattice using an MRT collision operator executed by
32 processors is multiplied by a factor 1.17 when using LaBoGrid instead of the
specific implementation.

223
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In Chapter 5, we have shown that existing static load balancing tools called
static mappers can be used to distribute an LB simulation in a way that minimizes
the execution time for a cluster of computers with heterogeneous computational
powers. This is achieved by distributing simulation data in function of the com-
putational power of available computers and by minimizing the amount of data
transmitted through the network. For example, the execution time of a distributed
LB simulation on a (176,176,176) lattice using the MRT collision operator was
divided by 1.34 when distributing 256 sublattices on 17 computers of a hetero-
geneous cluster using the heterogeneous SCOTCH mapper instead of assigning a
single sublattice to each computer (see Section 5.6).

The fault-tolerance problem is described in Chapter 6 where a method is pro-
posed to execute robust distributed LB simulations. This method is based on the
regular saving of the state of the simulation. The most recently saved state is then
reloaded to restart the simulation if a simulation process fails. This general mech-
anism is called checkpoint/restart. The saving of simulation’s state requires that
all processes write their state to disk in a state file. The state files are then repli-
cated in a distributed way to several computers in order to be still available if one
or several computers fail.

LaBoGrid can be executed as a job of CanoPeer [1], a P2P Grid computing
middleware created by Cyril Briquet who participated to the design of LaBoGrid’s
fault-tolerance system. The interest of this integration is mainly the resource dis-
covery service provided by CanoPeer. However, CanoPeer’s scheduling policy is
an additional source of failures.

We observed that state replication causes a substantial overhead in execution
time. However, the proposed distributed replication scheme is far more effi-
cient than centralized replication (for example, centralized replication is almost
13 times slower that distributed replication with a single replication neighbor for
a (176,176,176) lattice distributed among 25 computers).

In order to evaluate the interest of using state replication instead of simply
restarting the simulation in case of failure, we introduced the concept of mean
execution time of a simulation which takes into account the probability of failure
of one or several processes one or several times during the simulation’s execution.
Using the mean execution time, we have shown through a few examples that if the
probability of failure of a process is high enough, it is indeed interesting to use
state replication instead of simply restarting the simulation from the beginning in
case of failure.

In addition, if the probability distribution of failures is known, it is possible
to choose replication parameters (the number of replication neighbors and the
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replication period) in a way that minimizes the mean execution time.

The checkpoint/restart mechanism potentially triggers the execution of several
load balancing phases during a simulation. The static load balancing tools from
Chapter 5 are not adapted for the additional constraints introduced by the dynamic
load balancing problem.

An original dynamic load balancing method combining an adapted Tree Walk-
ing Algorithm (TWA) [70] for load balancing and the KL criterion [48] for work
migration is introduced in Chapter 7.

We observed that our method produced mappings leading to a reduction of
simulations’ execution time comparable to the reduction obtained with heteroge-
neous SCOTCH [62], a static load balancing tool introduced in Chapter 5. We also
observed that, compared to a distributed implementation of diffusive scheme [30]
generally used in dynamic load balancing methods, the adapted TWA significantly
reduces the number of exchanged messages. For example, when distributing 256
sublattices among 54 computers and initially associating all sublattices to one
computer, the number of exchanged messages is divided by a factor between 61
and 412. This factor depends on the expected quality of the distribution produced
using the diffusion scheme. Finally, our method minimizes the amount of mi-
grated work in case of incremental mappings.

Finally, we have shown in Chapter 8 that LaBoGrid’s architecture could be
expressed in terms of services:

• leader election,

• broadcasting,

• barrier synchronization,

• shared table,

• distributed file system,

• dynamic load balancing.

Most of these services were totally (broadcasting, barrier synchronization, shared
table) or partially (distributed file system, dynamic load balancing) centralized and
implemented by the Controller. The Controller was therefore both a single point
of failure (robustness problem) and a potential bottleneck (scalability problem).

A distributed and mostly decentralized implementation is proposed for each
of these services. We designed a robust tree-based overlay called MN-tree used in
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Figure 9.1: Example of structured packing used in distillation and reactive distil-
lation columns.

the distributed implementations of leader election, broadcasting, barrier synchro-
nization and dynamic load balancing services. We observed that, in addition to
being robust, the distributed implementations are more efficient than centralized
implementations, even for small scale clusters (50 computers). For example, when
using MN-trees instead of a centralized implementation to organize 50 processes,
broadcast is 2.5 times faster and barrier synchronization 1.5 times faster.

The distributed shared table service is based on Koorde DHT [46] whose im-
plementation is taken from an existing toolkit called Overaly Weaver [7]. In ad-
dition to making the service robust, we observed slightly better results than the
centralized implementation: a data intensive task consisting of 2000 insertions,
retrievals and removals by each task of a set of 50 tasks is executed 1.17 times
faster when using the distributed implementation instead of the centralized imple-
mentation.

9.2 Concluding Remarks

The main result of this thesis is LaBoGrid, the application currently used by the
LGC at University of Liège. Several publications [19, 24, 55, 75, 18] include
results produced using it.

In particular, LaBoGrid was used to produce a velocity field describing a fluid
flow in structured packing used in distillation and reactive distillation columns
(see Figure 9.1). Figure 9.2 shows a mesh representation of this kind of structured
packing. The blue areas represent the inflow plane and the red areas the outflow
plane. Figure 9.3 shows two slices of the velocity field computed from the result
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Figure 9.2: Mesh representation of a structured packing.

of an LB simulation of a single-phase gas flow through the structure shown in
Figure 9.2. Upper slice is parallel to flow direction (and therefore perpendicular
to inflow and outflow plane). Lower slice is perpendicular to flow direction (and
therefore parallel to inflow and outflow plane). Only two channels out of the four
represented in Figure 9.2 are shown in the lower slice.

LaBoGrid is currently not able to directly produce graphical representations
like shown in Figure 9.3. These were obtained by post-processing LaBoGrid’s
result using MATLAB.

LaBoGrid is currently executed in three environment types:

• single desktop computer,

• very small homogeneous cluster of 3 powerful servers,

• small heterogeneous cluster of 50 desktop computers.

The first two environment types were generally chosen to execute small simula-
tions for example when testing various implementations of collision operators or
boundary conditions. The last environment was used to execute larger simulations
involving lattices with several millions of sites (for example, (400,400,400) lat-
tices) and complex collision operators (for example, the turbulent viscosity model
of Smagorinsky adapted to the MRT collision operator; see Section 2.2.2).

The execution environment must be taken into account when choosing LaBo-
Grid’s parameters. In Section 5.6, we observed that using a number of sublat-
tices that is high enough regarding the number of computers (in our experiments,
we observed best results when the number of sublattices is more than 10 times
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Figure 9.3: Slices of a velocity field.
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higher than the number of computers) is interesting when computers have het-
erogeneous computational powers but implies an execution time overhead when
computers have homogeneous computational powers (and, therefore, a single sub-
lattice could be associated to each computer). The number of sublattices to pro-
duce should therefore be chosen in function of the execution environment: equal
to the number of computers in case of homogeneous computational powers and
higher otherwise (for example, 10 times higher for a (176,176,176) lattice exe-
cuted on 17 computers).

We have shown that state replication implies an important execution time over-
head (see Section 6.7). It should therefore be disabled for simulations where the
simulation execution time without replication enabled is small, and in reliable (i.e.
where the probability of failure is low enough so that restarting the simulation in
case of failure is acceptable) environments. In unreliable environments, the selec-
tion of replication parameters (number of replicas and replication period) can be
optimized if failure probability distribution is known.

State replication brings robustness to distributed LB simulations. However,
for simulations to be able to complete, the execution environment must feature
enough stability periods, i.e. phases of the execution during which no failure
occurs. The stability periods must be long enough to complete at least one sim-
ulation phase (the computation for time steps between two replications) followed
by a replication. In following example, it is not the case: a failure occurs system-
atically after the same amount of time and this amount of time is smaller than the
time required to execute a simulation phase followed by a replication. The simula-
tion will then never complete because each time the failure occurs, the simulation
is restarted from the beginning.

This situation can be avoided by choosing a very short replication period (for
example, state replication occurs after each simulation time step). However, in
this case, the execution time overhead becomes prohibitive.

To summarize, we designed a powerful and flexible software called LaBoGrid
to execute large LB simulations. LaBoGrid is highly configurable which allows
to adapt it to the execution environment. In particular, the execution environment
can be heterogeneous (in terms of architecture, OS, but also computational power)
and unreliable.
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Figure 9.4: Grouping of two adjacent sublattices A and B into a meta-lattice M.

9.3 Future Work

LaBoGrid is currently an experimental software that provides “raw” results that
need to be post-processed in order to extract a meaningful information such as
a velocity field. A part or the whole post-processing could be embedded into
LaBoGrid and executed in a distributed way in order to accelerate its completion.

LaBoGrid is based on a generic framework providing commonly used ser-
vices. Other distributed applications than distributed LB simulations can surely
benefit from this implementation. It is planned to separate the components of
LaBoGrid that are generic from those that are specific to LB simulations and use
the generic framework to implement other types of applications. This will proba-
bly arise the need for new services to be added to the existing framework.

In Section 5.6, we stated that increasing the number of sublattices per com-
puter implies an execution time overhead caused by the fact that more incoming
and outgoing densities have to be handled when compared to the single sublattice
case because the number of sublattice-sublattice interfaces is increased. A method
consisting of copying the contents of adjacent sublattices associated to the same
computer in a single meta-lattice (which, similarly to sublattices, has the same
properties as a lattice) decreases the number of sublattice-sublattice interfaces.
Figure 9.4 illustrates the grouping of two adjacent sublattices A and B into a sin-
gle meta-lattice. The densities that were copied from one sublattice to another
when using only sublattices are then simply propagated in the meta-lattice.

The Java programming language was chosen to implement LaBoGrid because
it is an acceptable trade-off between efficiency and portability. A native version of
LaBoGrid could be produced for environments where portability is not an issue.
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LaBoGrid was designed by keeping extendability in mind. In particular, it
should be easy (from software engineer point of view at least) to develop new
collision operators and boundary conditions, add support for multi-phase flows or
create more complex lattice representations including more information than only
the description of the fluid.

In Chapter 8, the distribution of the Controller was addressed. The two main
reasons for this are robustness and scalability. There is still a scalability issue to
solve. However, it is less important than with the centralized case: the structure of
MN-trees implies that some computers have more load than others, in particular
the main peer of the root meta-node. There is maybe a more generic structure
that could replace partially or completely MN-trees and that would not have this
drawback.

From the LB simulations point of view, before simulations can be executed in
large scale environments on very large lattices (for example, a (1000,1000,1000)
lattice), another scalability issue must be solved: the solid representation. Cur-
rently, the solid is given in a file that is fully read into memory by the master
process in order to be subdivided into subsolids before the simulation is executed.
With very large lattices (and therefore solids), it is not possible anymore to read
the whole file into memory (a (1000,1000,1000) lattice requires around 1 giga-
byte of memory). Several solutions are possible: another lighter representation
for solids than bitmaps, a structured file representation allowing to directly extract
parts of the solid (but this implies the access to the file from all computers), etc.

All these suggestions for future works mostly imply extensions or improve-
ments of the existing implementation. However, the system could be further an-
alyzed: a more general study on the choice of replication parameters (see Sec-
tion 6.7) in function of the probability distribution of failures and simulation pa-
rameters would be interesting. The dynamic adaptation of replication parameters
in reaction to failure events could also be an interesting topic.

The dynamic load balancing method presented in Chapter 7 should be studied
on more general graphs than the application graphs representing a distributed LB
simulation. For example, it would be interesting to compare it to other mappers
when handling meshes produced for classical CFD methods.

9.4 Thesis Statement Fulfillment

We have shown that it is possible to design and develop a software system which
is able to organize large scale clusters of inherently unreliable computers in an
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efficient, scalable and robust way for implementing large scale LB simulations:

• existing and original load balancing methods have been used to leverage the
computational power of available computers in an optimal way,

• a distributed and scalable fault-tolerance mechanism was designed to make
LB simulations adapted to unreliable execution environments,

• the master-slave model, on which our distributed implementation of LB
simulations relies, is implemented in a distributed and mostly scalable way.

In previous section, suggestions were made to further improve the efficiency
of distributed LB simulations (in particular, by using meta-lattices).

In addition, scalability issues remain; the most important being the solid rep-
resentation. This issue must be solved in order to be able to execute very large
scale LB simulations involving lattices composed of billions of sites.

Finally, our distributed implementation of the master-slave model is poten-
tially not scalable for very large scale clusters (involving several millions of com-
puters) because the tree organization of computers used as the basis of our imple-
mentation implies that computers that are close to the root endure a heavier load.
Further research is needed to address this kind of execution environment in the
context of LB simulations’ execution.
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Appendix A

Agent and Error Handler Class
Diagrams

Figure A.1 gives the class diagrams of Agent class and ErrorHandler interfaces.
The members of Agent class have the following definition:

• queue: the events queue of the agent.

• agentThread: the thread that executes the agent.

The methods of Agent class have following definition:

• start(): instantiates agentThread thread and starts it if the agent has not
already been started.

• stop(): puts a stop event into agent’s events queue.

• join(): waits until agentThread thread finishes its execution.

• run(): instructions executed by agentThread thread. These instructions
represent the execution of the agent (initialization, events handling and clos-
ing).

• signalError(error : Throwable, agent : Agent): implements the
ErrorHandler interface by putting an error event into message queue. The
members of the error event include error and agent.

• submitEvent(e : Object): called by subclasses to put an event into
queue.
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Figure A.1: Class diagrams of Agent and ErrorHandler.

Following methods have to be implemented by subclasses of Agent:

• init(): instructions of initialization phase of agent.

• handleMessage(e : Object): handling code for e event extracted from
messages queue.

• exit(): clean-up instructions executed when agent is closing.

• handleError(error : Throwable, agent : Agent): handling code
for a signaled error.

Agent class features no public method that allows another class to submit
an event (except stop and signalError that are implemented by the insertion
of a message into queue). It is the responsibility of subclasses to declare event
submission methods and thus specify what kind of event can be submitted to the
agent.



Appendix B

LaBoGrid’s XML Configuration File

As a reminder (see Section 4.5), The XML configuration file is composed of three
parts:

1. LB configurations,

2. Processing chains description,

3. Simulations description.

B.1 LB Configurations

This part contains a sequence of LB configurations. Each LB configuration has a
unique identifier (a string) and provides:

• a specific lattice class name and lattice’s size,

• a specific solid class name, a file name and the content type of the given file
(binary or text),

• a specific partitions generator class name and the number of partitions to
generate.

The size of the lattice must be equal to the size of given solid.

Figure B.1 shows an example of a single LB configuration. The associated
LB simulation is executed on a (32,32,32) D3Q19 lattice divided into 8 sublat-
tices. The solid matrix is read from a file called “bin.solid” containing a binary
representation.
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<LBConfiguration id="conf0">
<Lattice

class="lb.lattice.d3.q19.D3Q19DefaultLattice"/>
size="(32,32,32)"

<Solid
class="lb.solid.d3.D3SolidBitmap"
fileId="bin.solid"
type="bin"/>

<SubLattices
generatorClass="lb.modelGraph.d3.D3CuboidsGenerator"
subLatticesCount="8"/>

</LBConfiguration>

Figure B.1: An example of LB configuration.

B.2 Processing Chains Description

An operator is described by its class name and a parameters string. The parsing
of this parameters string is the responsibility of the operator.

The description of a logger is composed of:

• logger class name,

• logger parameters string,

• refresh rate,

• logger identifier,

• logger output class name (to choose the type of logging output),

• logger output parameters string.

Figure B.2 shows an example of processing chain description. This chain
implies following operations each iteration:

1. send outgoing densities,

2. apply in-place propagation on lattice,
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<ProcessingChain id="proc0">
<Operator

class="laboGrid.operators.BorderSender"
parameters=""/>

<Operator
class="laboGrid.operators.InPlaceStream"
parameters=""/>

<Operator
class="laboGrid.operators.BorderFiller"
parameters=""/>

<Operator
class="lb.operators.d3.q19.D3Q19PressureOperator"
parameters="0 1.001 0.099"/>

<Operator
class="lb.operators.d3.q19.D3Q19SRTCollider"
parameters="1 0 0 0 0 20"/>

<Logger
loggerClass="laboGrid.logging.loggers.IterationLogger"
loggerParameters=""
rate="10"
id="itLog"
clientClass="laboGrid.logging.output.LocalFileLogOutput"
clientParameters="/home/user/logs/"/>

</ProcessingChain>

Figure B.2: An example of processing chain description.
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3. set incoming densities with received data,

4. apply pressure boundary conditions,

5. apply SRT collision operator,

6. log current iteration every 10 iterations to a local file.

B.3 Experiment Description

Figure B.3 shows an example of experiment description. This experiment is com-
posed of two simulations sequences. First sequence contains three simulations:

1. First simulation lasts 3000 iterations using lattice, solid and partitioning
defined by LB configuration “conf0”. It applies processing chain “proc0”.
Starting iteration equal to 0 means that the fluid is initially at rest. The solid
file is read from given input.

2. Second simulation uses as initial conditions the result from previous simu-
lation and lasts 1000 iterations. Another processing chain (“proc1”) is used.

3. Third simulation uses as initial conditions the result from previous simula-
tion and lasts 1000 iterations. Processing chain “proc1” is used again but
another LB configuration is set (partitioning and solid data are ignored, only
the type of the lattice is taken into account).

Second sequence contains only one simulation: it uses as initial conditions the
result of a previous simulation stored in folder “/home/user/io/in/”. It starts its
execution at iteration 5000 (this means the result used as initial conditions should
be obtained with a simulation of 5000 iterations) and lasts 10000 iterations. The
result of the simulation is stored in the folder “/home/user/io2/”.
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<Experiment>
<SimulationSequence>

<Simulation
iterationsCount="3000"
lbConfiguration="conf0"
processingChain="proc0"
startingIteration="0">
<Input

class="laboGrid.simIO.LocalFileInput"
parameters="/home/user/io/"/>

</Simulation>
<NextSimulation

iterationsCount="1000"
lbConfiguration="conf0" processingChain="proc1"/>

<NextSimulation
iterationsCount="1000"
lbConfiguration="conf1"
processingChain="proc1">
<Output

class="laboGrid.simIO.LocalFileOutput"
parameters="/home/user/io/"/>

</NextSimulation>
</SimulationSequence>
<SimulationSequence>

<Simulation
iterationsCount="10000"
lbConfiguration="conf1" processingChain="proc1"
startingIteration="5000">
<Input

class="laboGrid.simIO.LocalFileInput"
parameters="/home/user/io/in/"/>

<Output
class="laboGrid.simIO.LocalFileOutput"
parameters="/home/user/io2/"/>

</Simulation>
</SimulationSequence>

</Experiment>

Figure B.3: An example of experiment description.
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