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ABSTRACT: In this study, the capability of a two-dimensional shallow-water numerical model to simulate the 
symmetric and asymmetric flows that can take place in rectangular shallow reservoirs with different lateral 
expansion ratios and dimensionless lengths is investigated. Numerically, the main difficulty is to properly reproduce 
the transition between symmetric and asymmetric flows. For a large lateral expansion ratio, the use of two protocols 
of simulation highlighted a high sensitivity of the simulated flow pattern to the initial condition. Comparison 
between simulated results and experimental data showed a good agreement for the critical shape parameter 
(combination of the lateral expansion ratio and the dimensionless length) between symmetric and asymmetric flows. 
A good agreement was also found for the value of the shorter reattachment length of asymmetric flows. For small 
lateral expansion ratios, the agreement was not so good. The model was used for even larger lateral expansion ratios 
in order to numerically extend the experimental dataset. This predictive work showed that the shape parameter, 
whose expression was only based on experiments carried out for small lateral expansion ratios, was also relevant for 
larger values. Moreover, the predicted values of the shorter reattachment length were also consistent with a 
regression only based on experimental results. 
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1. INTRODUCTION 

Flow detachment and reattachment processes are 
common occurrences in hydraulic engineering; 
examples are flows over lateral expansions 
(Abbott and Kline, 1962; Chu et al., 2004), flows 
in groyne fields (Uijttewaal et al., 2001; Yeo 
et al., 2005), flows in tanks (Stovin and Saul 
1994; Oca et al., 2004), etc., more generally all 
flows in structures with sudden geometrical 
variations. The present study focuses on turbulent 
free-surface flow in rectangular shallow reservoirs 
in the context of reservoir sedimentation. 
Sediment transport will be taken into account in 
the future since it is the long-term objective of the 
present study; practical applications are 
stormwater storage tanks (Kowalski et al., 1999; 
Todeschini et al., 2010), irrigation basins (Garde 
et al. 1990; Ranga Raju et al, 1999), reservoirs 
(Jothiprakash and Garg, 2008), side weir 
overflows (Luyckx et al., 1999), etc. As 
illustrated in Fig. 1, the geometry consists of an 
upstream expansion and a downstream 
contraction, which may lead  –  despite the 
symmetry  –  to an asymmetric flow pattern 
(Kantoush et al., 2008a). 

If it is assumed that the flow is governed by the 
length of the reservoir (L), the lateral expansion 
(ΔB), the width of the inlet and outlet channels 
(b), the water depth (h), the mean depth-averaged 
velocity (U), the bed shear stress (τ), the water 
density (ρ), the water viscosity (μ) and the 
gravitational acceleration (g)  –  which are a set of 
nine variables involving time, mass and length 
units  –  dimensional analysis principles can 
reduce the problem to six dimensionless 
parameters (Langhaar, 1951). For example, one 
can choose a lateral expansion ratio (ΔB/b), a 
dimensionless length (L/ΔB), a dimensionless 
water depth (h/ΔB), a Froude number (U/(gh)0.5), 
a Reynolds number (4ρUh/μ), and a bed friction 
number (cfΔB/2h). Here, cf is the bed friction 
coefficient (2τ/ρU2); it can be estimated using a 
‘Colebrook’ formula (see for example Henderson, 
1966, p. 95). 
Abbott and Kline (1962) intensively studied the 
stall of turbulent free surface flows over double 
lateral expansions (without downstream 
contraction). They showed that the recirculation 
zones in each side of the expansion were equal in 
length for lateral expansion ratios lower than 0.25 
(flow pattern S2 in Fig. 2), and different for  
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Fig. 1 Schemes of a rectangular shallow reservoir. 

 

Fig. 2 Classification diagram of flow patterns in 
rectangular shallow reservoirs (valid for 
high water depths, high Reynolds numbers, 
low bed friction numbers and a Froude 
number of 0.20). The two lines correspond 
to the shape parameter of Dufresne et al. 
(2010): for values below 6.2, the flow is 
symmetric and for values higher than 6.8 
the flow becomes asymmetric. 

 

lateral expansion ratios greater than 0.25 (flow 
pattern A2). Kantoush (2008) showed that 
decreasing the dimensionless length of a shallow 
water reservoir induced a transition from an 
asymmetric flow to a symmetric flow without any 
reattachment (flow pattern S0). A reattachment 
point is defined as a point where the longitudinal 
velocity is zero and is changing its sign. Using the 
data of Kantoush (2008) and our own 
experimental results obtained for four different 
lateral expansion ratios (Dufresne et al., 2010) at 
high water depths (> 0.200 m above which the 
water depth has no influence on the flow pattern), 
high Reynolds numbers (around 220,000), low 
bed friction numbers (around 0.002–0.003) and a 
Froude number of 0.20, a transition criterion was 
identified as a combination of the dimensionless 
length and the lateral expansion ratio rather than 
only the dimensionless length (Dufresne et al., 
2010): 

0.40

0.60 0.40

Shape parameter

L B L

B b B b


 

 
  
  
  

 (1) 

When the criterion, named “shape parameter”, 
was lower than approximately 6.2, the flow was 
symmetric (S0); it was asymmetric when the 
shape parameter was greater than approximately 
6.8 (one or two reattachment points  –  flow 
patterns A1 or A2  –  depending on the length of 
the reservoir); between these two values, the flow 
consisted of non-periodic fluctuations between 
symmetric and asymmetric patterns (A1/S0). 
Fig. 2 is a classification diagram. Since the flow 
was turbulent, it has to be noted that the 
experimental reattachment lengths (longitudinal 
distance between the upstream face of the 
reservoir and the reattachment point) given in the 
present paper are median values; the reattachment 
lengths fluctuated over a small distance on the 
reservoir wall. For example, the median value and 
the standard deviation of the reattachment length 
were respectively 1.18 m and 0.10 m for 
Experiment F4-a (ΔB = 0.35 m; ΔB/b = 1.23; 
L/ΔB = 20.0; h/ΔB = 0.57; 4ρUh/μ = 210,000; 
U/(gh)0.5 = 0.20; cfΔB/2h = 0.003; see Dufresne 
et al., 2010 for details). 
For the flow pattern A2 (“long” reservoirs), 
increase of the Froude number induces a decrease 
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of the shorter reattachment length (R1); increase 
of the dimensionless water depth has the same 
effect until the shorter reattachment length 
reaches a minimum level (Dufresne et al., 2010). 
For the flow pattern A1 near the transition  
A1 – S0 (“short” reservoirs), when decreasing the 
water depth (but increasing the Froude number in 
the same time), Kantoush (2008) showed that the 
flow was not steady anymore but started to 
meander. For these fully turbulent flows, the 
influence of the Reynolds number is generally not 
significant (Abbott and Kline, 1962) but 
sometimes not completely negligible for the 
shorter reattachment length (Casarsa and 
Giannattasio, 2008). A significant influence of the 
bed friction number is only encountered for high 
values of this parameter (around 0.05–0.10), 
namely when the water depth is very low and/or 
the roughness is important (Chu et al., 2004; 
Babarutsi and Chu, 1991; Babarutsi et al., 1989). 
Numerically, the main difficulty is to properly 
reproduce the transition between symmetric and 
asymmetric flows. Numerical studies mainly 
focused on the laminar case for which the flow 
symmetry could be broken by increasing the 
Reynolds number (see for examples Revuelta, 
2005 and Battaglia and Papadopoulos, 2006 for 
sudden expansions, Mizushima and Shiotani, 
2001 for expanded and contracted part); only a 
few numerical studies were carried out for the 
turbulent case (De Zilwa et al., 2000; Mullin 
et al., 2003). Even if the present study focused on 
fully turbulent flows, a number of studies 
undertaken at low and moderate Reynolds 
numbers give useful information in the context of 
symmetry breaking: Mullin et al. (2003) about the 
influence of geometrical imperfections, Wahba 
(2007) about the influence of the inflow velocity 
profile, Takaoka et al. (2009) about the 
propagation of a disturbance added at the inlet of 
the domain. Concerning turbulent free-surface 
flows in rectangular shallow reservoirs, Dewals 
et al. (2008) simulated symmetric and asymmetric 
flows by introducing a disturbance in the inlet 
discharge profile; another strategy consists of 
using an asymmetric initial velocity condition 
(Dufresne, 2008). Numerical simulations of flow 
in rectangular shallow reservoirs were also carried 
out by Kantoush et al. (2008b) but the authors 
omitted the presentation of their strategy to 
reproduce flow asymmetry. 
The aim of the present study was to investigate 
the capability of a two-dimensional numerical 
model to simulate the symmetric and asymmetric 
flows that can be encountered in rectangular 
shallow reservoirs varying the lateral expansion 

ratio and the dimensionless length (see Dufresne 
et al., 2010 for a complete description of the 
experimental programme). After validation, the 
model was used as a prediction tool to extend the 
experimental results and get additional knowledge 
about the influence of the geometry on the flow 
pattern. 

2. NUMERICAL MODEL 

Numerical simulations were performed with the 
finite volume code Wolf 2D, developed at the 
University of Liège (Dewals, 2006; Erpicum, 
2006, Erpicum et al., 2009 & 2010). The model is 
based on the two-dimensional depth-averaged 
equations of volume and momentum 
conservation, namely the “shallow-water” 
equations (see for example Dewals et al., 2008 for 
the set of equations); the choice of this approach 
is justified by the “reasonable” two-
dimensionality of the flow that was confirmed by 
dye visualization during experiments (Dufresne 
et al., 2010). Three-dimensional turbulence 
processes are partly accounted for through the 
two-length scale k-ε turbulence closure, as 
detailed below. 
Complementarily, in experimental work of 
Kantoush (2008) with a similar geometric setup, 
measured vertical velocity components using 
ultrasonic velocity profiler were verified to 
remain low compared to velocity components in 
the horizontal plane (Kantoush et al., 2008a) and 
two-dimensional numerical models were applied 
(Kantoush et al., 2008b), yet without careful 
consideration for the inflow boundary conditions 
as done here and in our previous work (Dewals 
et al., 2008). 
In the shallow-water approach, the friction makes 
the link between the bed shear stress and the 
depth-averaged velocity. In the present study, the 
friction coefficient was modeled with the 
Colebrook formula (Idel'cik, 1969): 
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Here, ks is the equivalent grain roughness (zero in 
the present study since the walls are made of 
glass) and Re is the Reynolds number. 
In the set of equations, bottom and vertical wall 
friction were taken into account in the friction 
source terms through a formulation developed by 
the second author (Dewals, 2006) and used by 
Dewals et al. (2008), Erpicum et al. (2009 & 
2010) and Roger et al. (2009) among others. 
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The effect of turbulence on the mean flow was 
modeled using the Boussinesq approximation. 
The eddy viscosity was computed by a depth-
averaged k-ε model with two different length 
scales accounting for vertical and horizontal 
turbulent mixing. This turbulence model is based 
on the work of Barbarutsi and Chu (1998) and 
was further developed by Erpicum (2006) and 
Erpicum et al. (2009). The use of the Colebrook 
friction model and the k-ε turbulence model freed 
us of any calibration procedure. 
Table 1 summarizes the flow conditions with the 
dimensionless parameters given in the 
introduction. In this table, U is the cross-sectional 
averaged velocity in the inlet channel. As in the 
experiments (Dufresne et al., 2010), four lateral 
expansion ratios were investigated with numerical 
modeling: 0.52 (corresponding to ΔB = 0.25 m 
and b = 0.48 m), 0.89 (ΔB = 0.25 m and 
b = 0.28 m), 1.25 (ΔB = 0.35 m and b = 0.28 m) 
and 4.38 (ΔB = 0.35 m and b = 0.08 m). For each 
ratio, a large number of lengths were tested in 
order to find the transition between symmetric 
and asymmetric flows, and get information about 
the reattachment lengths. 
The computational meshes were uniform 
Cartesian grids whose cell size was 0.010 m. In 
order to estimate the numerical uncertainty, 
simulations were also carried out with a cell size 
of 0.025 m for a small number of geometrical 
conditions. 
 

Table 1 Dimensionless flow parameters. 

Dimensionless parameter Values investigated 

B

b


 0.52, 0.89, 1.25 and 4.38 

0.60 0.40

L

B b
 5.4–36.1 

h

B
 0.57 and 0.80 

U

gh
 0.20 

4 Uh


 220,000 

2

fc B

h


 0.002 and 0.003 

 

In the present study, variable reconstruction at 
cell interfaces was performed linearly, leading to 
a second-order spatial accuracy. Since the model 
was applied to steady-state calculations, the time 
integration was performed by means of a three-
step first order accurate Runge-Kutta algorithm, 
providing adequate dissipation in time. For 
stability reasons, the time step was constrained by 
the Courant-Friedrichs-Levy condition based on 
gravity waves. 
The specific discharge was imposed as an inflow 
boundary condition (q0 = 0.056 m2/s) two meters 
upstream of the sudden expansion; its transverse 
value was set to zero. At the outlet (one meter 
downstream of the sudden contraction), a constant 
water surface elevation was imposed 
(h = 0.20 m). At the wall boundaries, the specific 
discharge normal to the wall was set to zero 
(impervious walls). The gradients in the direction 
parallel to the boundary were set at the same 
value as in the adjacent cell. The gradients in the 
direction normal to the boundary were evaluated 
differently for the velocity components normal 
and parallel to the boundary. In the former case, a 
finite difference was used between the value at 
the boundary and the value at the centre of the 
adjacent cell, whereas in the latter case the 
gradient was set to zero (Erpicum, 2006). 
If the model does not include any spurious 
numerical artifact leading to asymmetry (such as 
the propagation of rounding errors), a problem 
with perfectly symmetric input data (equations, 
geometry, mesh, boundary and initial conditions) 
must lead to a symmetric solution; this was 
checked for the code Wolf 2D by Dewals et al. 
(2008). In order to give the flow the possibility of 
becoming asymmetric, one may introduce 
asymmetry into the problem through boundary 
and/or initial conditions. As Dewals et al. (2008) 
did for the inlet of the reservoir, the cross-
sectional profile of the specific discharge at the 
inlet of the computational domain (namely two 
meters upstream of the inlet of the reservoir) was 
specified with a linear distribution: 
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Here, qin,x(y) and qin,y(y) are the actual 
components specified as inflow boundary 
condition; q0 , the reference value (the total 
discharge divided by the width of the channel); 
αBC , the amount of disturbance of the inlet 
boundary condition. It should be noted that y 
equals zero at the middle of the channel. 
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C

Asymmetry was also introduced through the 
initial flow field in the whole domain, as written 
in Eq. (4). 

 
  0

, 0

,

x

y I

q x y

q x y q


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 (4) 

Here, qx(x,y) and qy(x,y) are the components of 
the initial specific discharge; αIC , the amount of 
disturbance of the initial condition. 
For all simulations, the initial water depth was set 
uniform with the same value as the outflow 
boundary condition, namely 0.20 m. 
Because of the smooth bed and walls, the 
difference between downstream and upstream 
water depths was low (a few millimeters) for all 
the simulations. Therefore, 0.20 m and 0.28 m/s 
can be respectively used as representative water 
depth and depth-averaged velocity in the inlet 
channel. 

3. SIMULATION PROTOCOL: 
BOUNDARY AND INITIAL CONDITIONS 

Since one aim of the present paper is to 
investigate the transition between symmetric and 
asymmetric flows, a number of preliminary 
simulations were carried out for a geometrical 
condition located near the transition between S0 
and A1 patterns in order to choose the protocol of 
simulation. The dimensions were chosen based on 
experimental results (Dufresne et al., 2010). The 
length was 2.40 m; the lateral expansion, 0.25 m; 
the width of the inlet and outlet channels, 0.30 m. 
This corresponds to a shape parameter of 8.9 
(> 6.8). Results of these preliminary tests are 
given in Table 2. 
When no asymmetry was introduced at all 
(neither in the boundary condition nor in the 
initial condition), the simulated flow was 
completely symmetric and exhibited two identical 
reattachment lengths (pattern S2). When 
asymmetry was introduced in the problem, even a 
small percentage of disturbance (0.1%) in the 
boundary or initial conditions was sufficient to 
obtain an asymmetric flow (pattern A1). Despite 
this result, a combination of a high disturbance in 
both boundary and initial conditions (10.0%) was 
chosen since this strategy led to a faster 
convergence. 
This first protocol of simulation  –  named 
“Protocol 1” below  –  was therefore composed of 
two steps. Firstly, simulations were carried out 

with disturbances of 10.0% in both boundary and 
initial conditions. Secondly, in order to remove 
spurious artifacts due to high disturbance in the 
boundary condition (the reattachment length was 
1.12 m for 0.1% and only 1.03 m for 10%, see 
Table 2), simulations were achieved with no 
disturbance in the boundary condition (αBC = 0%). 
The reattachment length obtained using 
Protocol 1 is also 1.12 m (see Table 2). 
A second simulation procedure, named 
“Protocol 2” below, was used in order to 
investigate the sensitivity of the numerical 
solution with respect to the initial condition, 
especially for reservoir geometries close to the 
transition between symmetric and asymmetric 
flow patterns. In this procedure, the asymmetric 
solution obtained for a reservoir of length L was 
used as the initial condition for simulating the 
flow in a reservoir of smaller length, say L - δL 
(the last lines of cells are ignored, with all other 
cells retaining their previous values). Using a 
dichotomy procedure, if the flow obtained for the 
length L - δL was found symmetric, the 
computation was restarted with a smaller value of 
δL. This was done until capturing the transition 
length with a step δL equal to the cell size 
(0.010 m). For Protocol 2, boundary conditions 
were always symmetric. 
Before presenting the results using these two 
protocols and analyzing them, the next portion of 
the text is dedicated to the estimation of the 
numerical error. 
 

Table 2 Influence of initial and boundary conditions 
for L = 2.40 m, ΔB = 0.25 m, b = 0.30 m. 

αBC αIC Flow pattern R1 [m] 

0.0% 0.0% S2 1.94* 

0.1% 0.0% A1 1.12 

1.0% 0.0% A1 1.10 

10.0% 0.0% A1 1.03 

0.0% 0.1% A1 1.12 

0.0% 1.0% A1 1.12 

0.0% 10.0% A1 1.12 

10.0% 10.0% A1 1.03 

Protocol 1 A1 1.12 
*  There were two symmetric reattachment lengths for this 

simulation. 
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Table 3 Numerical uncertainty for typical geometries. 

 Test 1 Test 2 Test 3 Test 4 

L [m] 7.00 7.00 6.50 2.40 

ΔB [m] 0.35 0.25 0.25 0.25 

b [m] 0.10 0.30 0.50 0.30 

B

b


 3.50 0.83 0.50 0.83 

0.60 0.40

L

B b
 33.0 26.0 19.7 8.9 

Flow pattern A2 A2 A2* A1 

R1 [m] (coarse grid) 0.80 0.92 1.03* 0.98 

R1 [m] (fine grid) 0.94 1.03 1.15* 1.12 

R1 [m] (extrapolated) 0.97 1.05 1.17* 1.15 

GCI (R1) 8.8% 5.8% 5.1%* 6.2% 

R2 [m] (coarse grid) 4.14 2.92 2.74* Ø 

R2 [m] (fine grid) 4.38 3.19 2.99* Ø 

R2 [m] (extrapolated) 4.43 3.24 3.04* Ø 

GCI (R2) 0.7% 1.5% 1.6%* Ø 
*  The flow pattern obtained with the coarse grid using the protocol was symmetric (S2); 

therefore, the results presented here are those obtained at the end of the first step of 
Protocol 1. 

 
 
4. NUMERICAL ERROR 

Table 3 summarizes the simulated results 
obtained with a fine grid (cell size = 0.010 m) and 
a coarse grid (0.025 m). Four representative 
geometries were used: three “long” reservoirs 
(different lateral expansion ratios) for which the 
flow presented two asymmetric reattachment 
points, and one “short” reservoir (near the 
transition between symmetric and asymmetric 
flows) for which the flow exhibited one 
reattachment point. Since they should be 
multiples of 0.010 and 0.025 m, the dimensions of 
the four geometries are not exactly the 
experimental values (b = 0.10 m instead of 
0.08 m, 0.30 instead of 0.28, and 0.50 instead of 
0.48). Nevertheless, one can reasonably assume 
that the results can be transposed to the 
experimental dimensions. The number of cells 
corresponding to the meshes using for Test 1 
(L = 7.00 m, ΔB = 0.35 m and b = 0.10 m) is 
approximately 60,000 for a cell size of 0.010 m 
and 10,000 for a cell size of 0.025 m. 
The exact reattachment lengths were estimated 
using the Richardson extrapolation, as written in 
Eq. (5) (Roache, 1994) and given in Table 3. 

1

fine coarse
exact fine p

R R
R R

r


 


 (5) 

Here, r is the grid refinement ratio (2.5); p, the 
actual order of accuracy (supposed to be equal to 
the formal order of accuracy, namely 2); Rfine , the 
reattachment length obtained for the fine grid; 
Rcoarse , the reattachment length obtained for the 
coarse grid. 
The grid convergence index (GCI), as proposed 
by Roache (1994), is written in Eq. (6). 

3

1

coarse fine

fine

p

R R

R
GCI

r






 (6) 

The GCI was used to estimate the numerical error 
when using the fine grid (see Table 3): between 
5% and 10% for the shorter reattachment length 
(R1), lower than 2% for the longer one (R2). The 
fine grid was used hereafter. 
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Fig. 3 Simulated flow patterns A2, A1 and S0 (b = 0.08 m; ΔB = 0.35 m; L = 7.00 m, 1.80 m and 1.20 m). R1 and R2 
are respectively the shorter and the longer reattachment lengths. 

 

 

Fig. 4 Illustration of the sensitivity to the initial condition (b = 0.08 m; ΔB = 0.35 m). 

 
5. RESULTS AND ANALYSIS 

5.1 Description of flow fields 

For lateral expansion ratios of 0.89, 1.25 and 
4.38, small values of shape parameter correspond 
to the flow pattern S0 (Fig. 3): the jet entering the 
reservoir goes in a straight way to the exit and a 
circulation zone forms on each side of the jet. 
Increase of the shape parameter induces a sudden 
transition to asymmetric patterns (pattern A1). In 
these situations, the jet is deviated to one side at 
the entrance of the reservoir (always on the right 
for the simulations) and reattaches the wall at a 
distance R1 from the inlet. For the longest 
reservoirs, the flow also reattaches on the 
opposite wall at a distance R2 from the inlet 
(pattern A2). Illustrations of these simulated flow 
patterns are given in Fig. 3. Typical simulated 
flows are illustrated in Fig. 4. 
The behavior is quite different for the smallest 
lateral expansion ratio (0.52). If patterns S0 are 

also encountered for small values of the shape 
parameter, increase of this dimensionless 
parameter induces a transition to the flow pattern 
S2: the flow is still symmetric but reattaches on 
both walls at the same distance, which was not 
experimentally observed. Further increasing the 
shape parameter leads to asymmetric flows with 
two different reattachment lengths (A2). 

5.2 Assessment of effects due to simulation 
protocol 

Table 4 gives the critical values of the shape 
parameter for the transition between symmetric 
and asymmetric flows. Since the length was not 
infinitely refined, some of these values are given 
as intervals. For example, the critical value for a 
lateral expansion ratio of 4.38 using Protocol 1 is 
7.5–7.7; this means that the “last” asymmetric 
flow was obtained for a shape parameter of 7.7 
(L = 1.50 m), that the “first” symmetric flow was 
obtained for a shape parameter of 7.5 
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(L = 1.45 m), and that no shape parameter 
between 7.5 and 7.7 was investigated. From this 
table, it can be seen that the simulated critical 
values of the shape parameter are overestimated 
compared to experiments (6.2–6.8), especially for 
small lateral expansion ratios. Whereas small 
values of lateral expansion ratio do not exhibit 
any significant sensitivity to the protocol of 
simulation, there is a large difference between the 
critical shape parameter obtained using Protocol 1 
(7.5–7.7) and the one obtained using Protocol 2 
(7.0) when the lateral expansion ratio is 4.38. 
Besides, the critical value obtained using 
Protocol 2 is relatively close to the upper limit of 
the experimental interval (approximately 6.8). 
This sensitivity to the initial condition is 
illustrated in Fig. 4: when the length of the 
reservoir is 1.40 m (shape parameter = 7.2), 
Protocol 1 leads to a symmetric flow whereas 
Protocol 2 leads to an asymmetric flow; for 
L = 1.20 m (6.2), both protocols lead to 
symmetric flows; for L = 1.40 m (8.2), they both 
lead to asymmetric flows. 
 

Table 4 Critical values of the shape parameter 
(experimental value ≈ 6.2–6.8). 

B

b


 0.52 0.89 1.25 4.38 

Protocol 1 9.2–9.7* 8.0–8.2 8.0–8.1 7.5–7.7

Protocol 2 - 8.0 8.0 7.0 
*  Transition between patterns S2 and A2. 

 

5.3 Assessment of the influence of shape 
parameter on flow classification and 
reattachment lengths 

Fig. 5 illustrates the comparison between the 
simulated and experimental reattachment lengths 
at different values of the lateral expansion ratio 
and the shape parameter. The experimental data 
points suggest that the shorter reattachment length 
(R1) remains constant when the shape parameter is 
greater than a critical value (between 10 and 15, 
depending on the lateral expansion ratio); above 
this critical value, the shorter reattachment length 
is not influenced any more by the downstream 
wall of the reservoir (no longitudinal 
confinement). 
For numerical simulations, decrease of the shape 
parameter near the transition from symmetric to 
asymmetric flows induces an increase of the 
reattachment length for lateral expansion ratios of 
0.52, 0.89 and 1.25. For a lateral expansion ratio 
of 4.38, decreasing the shape parameter firstly 
induces a decrease of the reattachment length 
until it reaches a minimum level (R1/ΔB ≈ 2.2); 
further decreasing the shape parameter causes a 
small increase of the dimensionless reattachment 
length until 2.3 (this corresponds to the difference 
between Protocol 1 and Protocol 2). The behavior 
was different for experiments: decreasing the 
shape parameter near the transition only caused an 
increase of the reattachment length for a lateral 
expansion ratio of 0.52; for 0.89, the reattachment 
length was almost constant; for 1.25 and 4.38, the 
reattachment length slightly decreased with the 
shape parameter (from approximately 3.4 to 3.1 
for 1.25; from approximately 2.4 to 1.8 for 4.38). 

 

 

Fig. 5 Dimensionless reattachment length R1 as a function of the shape parameter. 
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Comparison between simulated and experimental 
reattachment lengths highlights a relatively large 
discrepancy for small values of the lateral 
expansion ratio: around 30% for 0.52, around 
10% for 0.89 and 1.25 (for large values of shape 
parameter). For 4.38, the error between 
simulations and experiments is small (around 5% 
for a shape parameter of 36.1); given the 
numerical uncertainty (see Table 3, Test 1), it can 
be concluded that there is a good agreement 
between the numerical and experimental shorter 
reattachment lengths for large values of lateral 
expansion ratio and shape parameter. Near the 
transition, even for a lateral expansion ratio of 
4.38, the difference between simulations and 
experiments is relatively significant (around 
20%). 
The discrepancy between experimental and 
numerical reattachment length can be explained 
as follows. First, the experimental results revealed 
a small unsteadiness of the reattachment length 
around its median position (Dufresne et al., 2010), 
which cannot be reproduced by the model. 
Second, the effect of flow curvature on bed 
friction due to enhanced vertical mixing induced 
by horizontal strain rates is not taken into account 
by the model, which may considerably 
underestimate the bed friction in some cases 
(Stanby, 2003 & 2006). 
Only three measurements were carried out for the 
longer reattachment length (Dufresne et al., 
2010): R2/ΔB = 18.3 (simulated result: 13.2) when 
ΔB/b = 1.25 and L/(ΔB0.60b0.40) = 21.9; 
R2/ΔB = 10.0 (simulated result: 10.5) when 
ΔB/b = 0.52 and L/(ΔB0.60b0.40) = 21.6; 
R2/ΔB = 9.6 (the simulated result corresponds to a 
flow pattern S2) when ΔB/b = 1.25 and 
L/(ΔB0.60b0.40) = 9.2. This dataset is not sufficient 
to draw any conclusion on the longer 
reattachment length. 

6. PREDICTION 

Since there was a good agreement between 
numerical simulations and experiments for the 
transition between symmetric and asymmetric 
flows for large values of ΔB/b and the 
reattachment length R1 for large values of ΔB/b 
and L/ΔB0.60b0.40, the model was used as a 
prediction tool to get information about larger 
values of lateral expansion ratio that can be 
encountered for real-life reservoirs. This study 
was not conducted experimentally because of the 
limited dimensions of the experimental setup 
(Dufresne et al., 2010). 

Three values of ΔB/b were investigated to extend 
the experimental data: 5.00, 7.50 and 10.00 (with 
b = 0.08 m). For each ratio, simulations were 
carried out in order to find the transition between 
symmetric and asymmetric flows and also to get 
information about the shorter reattachment length 
when it is not sensitive any more to the shape 
parameter. 
As given in Table 5, the comparison of the critical 
shape parameters using Protocol 1 and Protocol 2 
highlights a significant sensitivity to the initial 
condition. Whereas the critical values obtained 
with Protocol 1 are scattered, the critical values 
obtained with Protocol 2 are relatively close to 
7.0 (7.0 for ΔB/b = 5.00, 7.1 for 7.50 and 7.3 for 
10.00). Despite the slight increase of the critical 
value with increase of the lateral expansion ratio, 
additional simulations for larger ΔB/b would be 
required to really argue in favor of modifying the 
shape criterion. In other words, this means that 
the shape parameter  –  which has been defined 
only based on experiments for values of ΔB/b 
between 0.52 and 4.38  –  is also relevant for 
ΔB/b up to 10.00. 
 

Table 5 Prediction of the critical values of the shape 
parameter (experimental value ≈ 6.2–6.8). 

B

b


 5.00 7.50 10.00 

Protocol 1 7.6–7.9 8.8–9.0 8.2–8.3 

Protocol 2 7.0 7.1 7.3 

 

Fig. 6 shows the shorter reattachment length from 
both laboratory experiments and numerical 
simulations. Simulations were carried out for 
L/ΔB0.60b0.40 of 38.1 (ΔB/b = 5.00), 44.8 (7.50) 
and 50.2 (10.00); these values are significantly 
higher than the critical shape parameter 
highlighted by Fig. 5 (in the interval 10 – 15). 
Given the numerical uncertainty of the shorter 
reattachment length, the agreement between the 
simulated values and the regression only based on 
experimental measurements is very good for large 
values of lateral expansion ratio (< 5%): 

0.75 0.25
1 3.43R B b   (7) 

This equation is only valid when ΔB/b is greater 
than 0.52 and lower than 10.00. Fig. 6 also 
suggests that a limiting plateau value of R1/ΔB ≈ 2 
can be assumed from the data trend for ΔB/b. 
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Fig. 6 Dimensionless reattachment length as a function of the lateral expansion ratio. 

 
7. CONCLUSIONS 

In the present study, the capability of a two-
dimensional shallow-water numerical model to 
simulate the symmetric and asymmetric flows that 
can take place in rectangular shallow reservoirs 
with different lateral expansion ratios and 
dimensionless lengths was investigated. The use 
of the Colebrook friction model and the k-ε 
turbulent model freed us of any calibration 
procedure. 
Two protocols of simulation were used. 
Protocol 1 was composed of two steps: simulation 
was first carried out with disturbances of 10.0% 
in both boundary and initial conditions; it was 
then achieved with no disturbance in the 
boundary condition in order to remove spurious 
artifacts. Protocol 2 was defined as follows: the 
asymmetric solution obtained for a reservoir of 
length L was used as the initial condition for 
simulating the flow in a reservoir of smaller 
length, say L – δL. For Protocol 2, boundary 
conditions were always symmetric. 
For a lateral expansion ratio of 4.38, the use of 
Protocol 1 and Protocol 2 highlighted a high 
sensitivity of the critical shape parameter 
(L/ΔB0.60b0.40) to the initial condition. When using 
Protocol 2, the transition between symmetric and 
asymmetric flows occurred around a shape 
parameter 7.0, which was relatively close to the 
upper limit of the experimental interval 
(approximately 6.8). Therefore, Protocol 2 should 
be preferred to Protocol 1. It has also been shown 

that the model accurately reproduces the shorter 
reattachment length R1 for ΔB/b = 4.38. For 
smaller values of lateral expansion ratio (0.52, 
0.89 and 1.25), the agreement between 
experimental and numerical critical shape 
parameters and reattachment lengths was not so 
good. 
Based on these results, the model was used for 
larger lateral expansion ratios in order to 
numerically extend the experimental data. This 
predictive work showed that the shape parameter, 
whose expression was only based on experiments 
undertaken for ΔB/b between 0.52 and 4.38, was 
also relevant up to 10.00. Moreover, the predicted 
values of the shorter reattachment length for large 
shape parameters were also consistent with the 
regression only based on experimental results. 
A great attention must be paid to the simulation 
protocol since symmetric and asymmetric flow 
patterns may be responsible for completely 
different deposition patterns; this will be 
numerically investigated in the near future. 
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