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ABSTRACT

Optical remote sensing data is now being used systematically for marine ecosystem applications, such as the
forcing of biological models and the operational detection of harmful algae blooms. However, applications are
hampered by the incompleteness of imagery and by some quality problems. The Data Interpolating Empirical
Orthogonal Functions methodology (DINEOF) allows calculation of missing data in geophysical datasets
without requiring a priori knowledge about statistics of the full dataset and has previously been applied to SST
reconstructions. This study demonstrates the reconstruction of complete space-time information for 4 years of
surface chlorophyll a (CHL), total suspended matter (TSM) and sea surface temperature (SST) over the Southern
North Sea (SNS) and English Channel (EC). Optimal reconstructions were obtained when synthesising the
original signal into 8 modes for MERIS CHL and into 18 modes for MERIS TSM. Despite the very high
proportion of missing data (70%), the variability of original signals explained by the EOF synthesis reached
93.5% for CHL and 97.2% for TSM. For the MODIS TSM dataset, 97.5% of the original variability of the signal
was synthesised into 14 modes. The MODIS SST dataset could be synthesised into 13 modes explaining 98% of
the input signal variability. Validation of the method is achieved for 3 dates below 2 artificial clouds, by
comparing reconstructed data with excluded input information. Complete weekly and monthly averaged
climatologies, suitable for use with ecosystem models, were derived from regular daily reconstructions. Error
maps associated with every reconstruction were produced according to Beckers et al. (2006). Embedded in this
error calculation scheme, a methodology was implemented to produce maps of outliers, allowing identification
of unusual or suspicious data points compared to the global dynamics of the dataset. Various algorithm artefacts
were associated with high values in the outlier maps (undetected cloud edges, haze areas, contrails, and cloud
shadows). With the production of outlier maps, the data reconstruction technique becomes also a very efficient
tool for quality control of optical remote sensing data and for change detection within large databases.

Keywords : Remote Sensing ; Cloud Filling ; Quality Control ; Empirical Orthogonal Functions ; Ocean
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1. Introduction

1.1. importance of cloud filling in remote sensing studies

The objective of this study is to demonstrate the efficiency of a method for reconstruction of complete space-
time information for surface chlorophyll a (CHL) and Total Suspended Matter (TSM) from an archive of
satellite imagery. The resulting data is better suited for applications such as algae bloom detection or for
providing light forcing for ecosystem modelling. In the longer term, comparison of satellite data with
reconstructed fields will contribute to the quality control of satellite data by highlighting suspect or extreme data.

The temporal coverage of ocean colour data doesn't allow resolution of high frequency dynamics typical of
coastal waters. Wide swath polar-orbiting ocean colour remote sensors acquire data with near-global coverage of
the world's oceans and seas every day or, few days. For example, Belgian waters at 51 °N are imaged by
MODIS-Aqua every day (at around 13h30 local solar time) and by MERIS on average twice every 3 or 4 days
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(at around 10h30 local solar time). However, this maximal temporal coverage is greatly reduced by clouds and
by sunglint. The usable data is further reduced for environmental conditions for which derived products are
considered to be of unacceptable quality because of various processing problems. In particular many problems
are associated with atmospheric correction: adjacency effects, high aerosol optical thickness, absorbing aerosols,
cloud edge and cloud shadow, sub pixel scale clouds, low sun or viewing zenith angle, etc. As an example, a
pixel a few kilometres from the Scheldt river mouth (51.47°N; 3.23°E) was within the swath of the MODIS-
Aqua instrument on average 390 times per year for the period 2003-2006, but usable data was retrieved for only
20% of these occasions, that is about 80 times per year. This temporal coverage, although far superior to
shipborne sampling methods, is insufficient for many applications.

Total suspended matter products are used by ecosystem modellers to control the light forcing in simulations
designed to hindcast or forecast eutrophication as a function of anthropogenic nutrient inputs (Allen et al, 2001;
Cugier et al, 2005; Lacroix et al, 2007b). These models require complete spatio-temporal data fields as input. It
is important that such inputs contain as much of the high frequency variability as possible since TSM dynamics,
such as the clearing of the water column by settling after a storm event, may be responsible for triggering algae
blooms (Iriarte and Purdie, 2004; Los et al, 2008). More generally, users of satellite data products, such as
marine scientists investigating conditions at specified sampling locations, prefer to receive a continuous time
series of data rather than the gappy series typically provided directly from optical remote sensors. There is,
therefore, a strong user demand for complete time series and cloud-free maps of CHL and TSM products. This is
the primary motivation for the present study which has the objective of generating spatio-temporally complete
3D (horizontal space and time) fields of surface CHL and TSM from a collection of individual instantaneous
images of these fields as retrieved from MERIS and MODIS. MODIS Sea Surface Temperature (SST) data are
also processed to provide a complementary description of the dynamics of the study area.

As a secondary motivation, it is clear that CHL products derived from optical remote sensing data alone may
contain unacceptable errors (Ruddick et al., 2008; Mélin et al., 2007), particularly in coastal waters where non-
algal absorbing and scattering components are significant and where atmospheric correction problems are more
acute. Multiple solutions to the inverse problem may even be possible (Defoin Platel and Chami, 2007). There is
now considerable research activity aimed at determining the quality of derived products. While many studies
(Mélin et al., 2007; Doerffer and Schiller, 2000) aim to do this using only the pixel-by-pixel optical remote
sensing data, there is a growing interest in using extra information to constrain possible solutions. For example,
climatologies of aerosol properties generated from sunphotometer data could be used to constrain the
atmospheric correction to a range of realistic aerosol models encountered in a certain region (desert dusts are not
often found at very high latitudes). High TSM concentrations are not likely to occur in deep waters far from the
coast. High CHL concentrations are not likely to occur in winter in most regions. High frequency spatial
("speckle") or temporal ("spike") variability of TSM and CHL does not occur frequently in nature — a human
observer will easily spot artefacts in images or time series, whereas a pixel-by-pixel remote sensing algorithm
may find this to be an acceptable solution to the problem of inverting the observed reflectance spectra. The use
of spatial and temporal coherencies in fields of TSM and CHL products taken individually (univariate analysis)
can provide a powerful new way of detecting suspect or extreme data. Moreover, correlations may exist in nature
between say TSM and bottom stress and water depth (because of re-suspension/settling processes) or between
CHL and other factors that affect phytoplankton growth such as TSM and/or temperature. For instance, the main
controls on Photosynthetically Active Radiation (PAR) Attenuation in the Southern North Sea (SNS) are the
winds and the tides because bottom stress determines sediment re-suspension and hence the light availability
(Allen et al., 2001). Identification and exploitation of such correlations via a multivariate analysis may improve
the quality and/or the quality control of optical remote sensing data.

Spatial coherency tests ( Saunders and Kriebel, 1988 ; Kilpatrick et al., 2001 ) are well established for small-
scale cloud detection in thermal infra-red imagery. The use of cloud filling techniques in ocean colour imagery is
much less developed than in SST imagery, perhaps because the satellite data has become easily available only
recently or perhaps because CHL retrieval is notoriously more error-prone than SST retrieval. Examples of cloud
filling of CHL images are provided in Alvera-Azcárate et al. (2007). Use of a Kriging approach for cloud filling
of MERIS CHL imagery is described in Müller (2007). Some aspects of spatial and temporal interpolation of
ocean colour data are addressed in IOCCG (2007) in the context of merging of global CHL data from missions
such as SeaWiFS and MODIS. Simple interpolation/replacement techniques using nearby pixels in space or time
are used by Casey et al. (2007) to fill cloudy MODIS imagery.

Finally it is noted that the assimilation of ocean colour CHL data into dynamical ecosystem models has been
demonstrated in a number of studies (Natvik and Evensen, 2003; Hemmings et al., 2007; Triantafyllou et al.,
2007; Gregg, 2008). Based on the improvement of numerical modelling and data assimilation, Siegel et al.
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(2002) suggested that consistent analyses of organic carbon energy flow by heterotrophs and autotrophs could be
made using satellite-borne data systems, at the scale of the Atlantic ocean for instance. Since then, experiments
assimilating CHL are progressing in this specific topic of carbon ecosystem balance (Hemmings et al. 2008).
Satellite TSM has been integrated with a sediment transport model (Vos et al, 2000) to both yield more
consistent monthly TSM maps and to improve parameter estimation of the model. Such approaches are very
suitable for operational forecasts, and combine the information available from observations and dynamical
models to provide an optimal representation of the ocean state. Other approaches are exploiting ocean models for
forecasting the next day's complete ocean colour fields based on the strict advection and diffusion of daily TSM
or CHL clouded fields (Gould et al., 2008).

The approach used in the present study is rather more modest and contains no direct information on physical
laws, except for the correlations which can be deduced from past observations. This approach has the advantage
of greater computational efficiency as well as providing a better understanding of the important correlations
between the system variables.

1.2. DINEOF principle and applications

DINEOF methodology can be summarized as follows. The input image archive is condensed in a pseudo two-
dimensional matrix. This matrix has one dimension (referred to here as spatial) corresponding to the series of sea
pixels obtained by unwrapping image scenes, and the other dimension (referred to as temporal) corresponding to
successive scenes present in the database. The principle of the algorithm is to fill in the missing data of this
matrix by using iterative cycles of singular value decompositions (SVD) producing a set of Empirical
Orthogonal Functions (EOFs) as an approximate synthesis of the dataset. This is followed by replacement of the
tagged missing data pixels by the value reconstructed by combining the EOF signals. To start, a first best guess
(global or local field average) is used as missing data estimate, and the iterations are stopped when the modes
(and thus missing data estimates) have converged to a constant solution. The number of modes to use is defined
as the one minimizing a global error estimate calculated for a random set of cross validation points. Finally, the
optimal set of EOFs and of missing data estimates are calculated by a last iterative SVD cycle decomposing the
complete dataset into the predetermined optimal number of modes.

DINEOF methodology has been successfully applied to univariate treatment of SST (Alvera-Azcárate et al.,
2005). DINEOF products are suitable not only for filling gaps in databases or filtering the noise component of
the signal, but also to produce a synthetic representation of the dynamics of a system by interpretation of the
dominant retained modes and of the long term trends captured by their temporal signatures. Any complementary
parameter can be included in multivariate analysis (e.g. SST and CHL in Alvera-Azcárate et al., 2007), whether
the aim is to exploit potentially co-varying signals to enhance reconstruction, or describe multi-parameter system
dynamics with the help of detected covariances. DINEOF can also be exploited for the analysis of time series, as
illustrated for biological observations of Posidonia oceanica leaf area index by Alvera-Azcárate et al. (in press).

Here, DINEOF methodology is applied individually to 4 year (2003-2006) datasets of TSM and CHL products
from MERIS and MODIS, and to MODIS SST. It is the first ocean colour application of DINEOF targeting
specifically the colour product reconstruction. Validation of the reconstruction is realized by quantifying the
correlation coefficient, root mean square of the reconstruction error and signal to noise ratio of cross validation
data removed under natural cloud-shaped masks. The signal to noise ratio is defined as the standard deviation of
the signal (here the reconstructed parameter below the cloud), divided by the standard deviation of the error
carried by this signal (here considered as the difference between the reconstructed signal and the original signal).
Based on a comparison between observational error and reconstruction error, an outlier classification of input
data is tested and shows good results on all parameters (TSM, CHL and SST), identifying undetected cloud
edges, haze, contrails, but also unusual events. Reconstructions are made daily at midday, even for days without
satellite passage, by using the interpolated temporal modes coefficients as basis for the signal reconstruction.
Weekly and monthly average maps are produced from these daily fields, and constitute new high resolution
climatologies. Data extracted from the reconstruction at reference stations are compared with existing
descriptions of ecosystem dynamics.

2. Data

2.1. The BELCOLOUR database

The satellite images used in this study are a subset of the BELCOLOUR database (MUMM-RBINS, 2008) of
SeaWiFS (1997-2004), MODIS-Aqua (2003-present) and MERIS (2002-present) imagery for the North Sea
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[48.5°N-60°N, 4°W-9°E]. The present study is limited to the following products TSM and CHL from MERIS
(2003-2006: 595 images), and TSM and SST from MODIS (2002-2006: 1688 images).

The satellite data provided as input to DINEOF are first masked using the level 2 quality control flags calculated
during the atmospheric correction process. Thus, many bad quality data are masked out (clouds, high aerosols
concentration, land pixels, atmospheric correction failure, etc). However, some "bad" pixels may pass through
this quality control step, for example: pixels at cloud edges which are not automatically detected in the current
MODIS and MERIS satellite data processing.

Atmospheric correction of MODIS products from level 1 to level 2 is made with the SeaDAS software, used
with the MUMM turbid water extension (Ruddick et al., 2000). TSM is then estimated from water-leaving
reflectance at 667 nm using the algorithm of Nechad et al. (2010). For MODIS TSM data, if any of the flags of
(Robinson et al., 2003) for atmospheric correction error, straylight, and sunglint is raised, the pixel is masked as
unreliable. An additional quality control step was applied to MODIS TSM, discarding data outside of the range
of application of the TSM algorithm. For MODIS SST data, the standard MODIS product (Brown and Minnet,
1999) is used. The flags of (Robinson et al., 2003) are also exploited as described for MODIS TSM, but the
straylight flag is ignored since water pixels in the infra-red bands (11 µm and 13 µm used — see Brown and
Minnet, 1999) are not greatly affected by the adjacent bright pixels.

The MERIS standard TSM and CHL products are used from the processor version "MERIS/5". As function of
the turbid case 2 flag, either the algal_1 or the algal_2 pigment index are used for the combined MERIS CHL
For MERIS data the product confidence (PCD) flags (ESA/ESRIN, 2007) associated with the products were
applied for the masking. For MERIS CHL, PCD_15 is used if the pixel belongs to case 1 water, otherwise
PCD_17 is used. For MERIS TSM, PCD_16 is used. These PCD flags exclude pixels where an error is expected
due to absorbing aerosol, high glint or the input for the algorithms that is outside of expected range.

The satellite data, originally provided in the scan coordinates, are re-sampled with a nearest neighbour method
onto an equi-rectangular projection with a 1 km spatial resolution to facilitate the use in applications including
the DINEOF analysis.

Fig. 1. Study domain with bathymetry and main rivers.
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2.2. Region of interest

Within the BELCOLOUR domain, the Belgian Coastal Zone (BCZ) is affected by eutrophication problems due
to riverine and atmospheric inputs of nutrients modifying the coastal ecosystem equilibria and functioning (Brion
et al., 2008; Rousseau et al. 2008b). These mechanisms are obviously influenced by forcing at larger scales than
the sole BCZ, and the eutrophication problem is generally addressed from a transboundary and transdisciplinary
perspective by marine scientists (Rousseau et al., 2008a). In parallel with ecosystem modelling activities
(Lancelot et al., 2008; Lacroix et al., 2007a; Lacroix et al., 2007b) the region of the EC and the SNS [48.5°N-
52.5°N, 4°W-5°E] was adopted here. Fig. 1 provides a general view of the domain of interest with bathymetry,
borders and the location of main river discharges. When considering the data gaps through the temporal
dimension for each sea pixel, the proportion of missing data in the original MERIS and MODIS datasets
generally exceeded 75%.

3. Methodology

3.1. Pre-processing

To avoid the production of artefacts in the EOF calculations and subsequent projections, some limitations have
to be set on the acceptable spatio-temporal proportion of missing data as in Alvera-Azcárate et al. (2005). Prior
to DINEOF treatment, it was chosen to eliminate each image holding less than 5% of the expected data. This
reduced the number of exploitable images from 595 to 356 for MERIS and from 1688 to 1291 for MODIS. The
same elimination criteria was applied in time, excluding thus from the study all pixels holding less than 5% of
valid data through the temporal dimension and producing thus the remaining spatial domain to be considered by
the DINEOF analysis. This slightly reduced domain is very similar for both MERIS CHL and TSM, and shows
little pixel loss for open sea pixels. Reduction occurred mostly along coasts and in inner parts of some estuaries.
After this selection, the MODIS TSM dataset presented a slightly lower proportion of missing data than the
MERIS dataset (69% against 73%). Table 1 summarizes the spatio-temporal characteristics of the dataset as
submitted to DINEOF analysis, after this pre-processing.

In order to enhance the sensitivity of the DINEOF analysis to the spatio-temporal variations of CHL and TSM
data occurring in the lower part of the ranges, the base 10 logarithm of the data was taken instead of direct units.
This scale change prior to the analysis reflects the typical statistical distribution of these parameters in nature
(Campbell, 1995) and also prevents any reconstructed data to be projected towards negative values of the direct
unit scale. The background field is then calculated as the mean value observed in each pixel over all selected
images. This field is then subtracted from the dataset in order to provide DINEOF with anomalies around the
mean local value measured in base 10 logarithm, enhancing thus the sensitivity of the EOF to coherent variations
occurring through domains of very different TSM and CHL concentration ranges that can be found between
estuaries, coastal zones and more offshore waters. For SST data, the DINEOF analysis was simply run on
temperature anomalies around the background field expressed in direct units.

Table 1 Details of the MERIS and MODIS database used over the channel area (48.5°N-52.5°N 4°W-5°E).
Sensor MERIS MODIS
Period 01/2003-12/2006 06/2002-12/2006
N. images 356 1291
Mean interval (days) 4.1 1.3
Data points 34*10 E6 185*10 E6
Missing data% 73.2 69.0

3.2. DINEOF algorithm

When using only cloud-free images, a very efficient way to synthesize the information contained in a collection
of scenes is the use of empirical orthogonal functions (EOFs, also called principal components in other research
domains). These functions have some important properties: when only one EOF is used, this EOF is on average
the closest to all images, when multiplied for each image by appropriate amplitude. Hence it is the best possible
approximation of all images using only one spatial pattern (or EOF) and an amplitude for each image. With two
EOFs, it can be shown that no other combination of two patterns can provide a better approximation to all
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images than these two. In general the first N EOFs are therefore the best way to summarize the information
content of all images if only N patterns can be stored (Beckers and Rixen, 2003). Each image is then replaced by
a filtered version in which the basic patterns are linearly combined with specific weight corresponding to each
image. When images are sequential in time, the modulation of the contribution of the basic patterns can be
interpreted as a time evolution of the spatial patterns and be referred to as temporal modes. The practical
calculation of the EOFs can be performed by a singular value decomposition of the data matrix X, of columns of
m elements (spatial dimension) and rows of n elements (temporal dimension). To construct the data matrix, each
scene is stored as a one-dimensional array and corresponds to a column of the matrix X.

To build each one-dimensional array (unwrapped image), the corresponding original two-dimensional scene is
scanned in a column-major order (column by column and pixel by pixel), while only sea pixel values (data or no
data) are stored one after another in the new single dimension array. This rearrangement of the scene data carries
no spatial information to the DINEOF processing itself, which is in fact only sensitive to covariances between all
pixels and does not process information on two-dimensional spatial organisation. Real two-dimensional fields
are only reconstructed after DINEOF treatment, based on the spatial domain mask used during pre-processing.

The temporal dimension of the data matrix (successive elements within any row of matrix X) is simply built by
the compilation of all one-dimensional arrays obtained (as described above) from all scenes for which at least 5
percent of data are present. As described in the pre-processing step (Section 3.1), this elimination of scenes
carrying too limited data is made to prevent uncertain reconstructions that could derive from an under-
conditioned problem.

The SVD decomposition thus provides 3 matrices as in Eq. (1), giving direct access to the spatial patterns
(columns of matrix U), the temporal evolution of these patterns (columns of V) and their overall amplitude
(diagonal elements of S).

The amplitudes are generally stored by decreasing importance so that when using not all EOFs but only the first
N, we neglect the smallest contributions. In this case, the truncated reconstruction Xr is given in Eq. (2), where
the matrices on the right hand side only contain N columns corresponding to the N EOFs retained.

Retaining only these dominant EOFs filters out some information from the scenes and it is customary to quantify
the filtering effect by providing the explained variance when retaining N EOFs. This quantity is generally
expressed as a percentage of the total variance (information content) of the original data.

If we had cloud-free images, EOFs could be calculated easily and an approximate representation of each image
obtained as a truncated combination of a few EOFs. Hence we can imagine to use this combination of EOFs for
points for which we do not have data to interpolate the missing data. Of course there is a circular dependence
because the calculation of EOFs requests a set of cloudless images and the interpolation of the missing data
requests the knowledge of the EOFs. To solve this problem, an iterative method was implemented in the
DINEOF package:

Assuming we know the first EOF, we can estimate the missing data value at any location with this EOF. Once
we have this value, the EOF can be recalculated and so on until convergence. Then two EOFs are taken into
account with the same approach, before going to a third and so on.

There remains to initialise the iterative process and to decide when to stop adding EOFs to the reconstruction.

The initialization of the EOF iterative calculation is done by setting a first guess of zero anomalies in the missing
data points of X. This corresponds to starting the iterative process with a data matrix for which all missing data
have been replaced by the local mean field value obtained from existing data. From this starting point, the SVD
is used to calculate the first guess EOF from the artificially completed dataset. Then, this first guess EOF is used
to make an improved prediction of the missing data. This new prediction replaces the first guess made on
missing data (local mean field value), and allows thus for a second iterative cycle to start. A second SVD
produces a new guess of the EOF, exploited in turn to project new estimates of missing data. This iteration
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continues to produce improved missing data and improved EOF until the changes observed in the missing
dataset estimates between one iterative cycle and the next one are insignificant. The convergence criterion is
reached when the ratio between the root mean square of successive missing data reconstruction and the standard
deviation of existing data becomes lower than a threshold value of 1.0e-3. This example of iterative cycle given
for a SVD limited to one EOF is then carried out repeatedly but with a SVD decomposition into a growing
number of EOFs.

The number of EOFs retained is fixed by a cross validation technique: a few data points are set aside by
removing data on some scenes and an rms misfit between the reconstruction and the dataset aside is calculated
for each reconstruction. The number of EOFs retained is then naturally the one that leads to the minimal misfit.
For more details we refer to Beckers and Rixen (2003) and Alvera-Azcárate et al. (2005).

3.3. Production of complete fields at regular time steps and extraction of multitemporal averages

Once the EOFs are defined, they can be exploited to regenerate full fields at any intermediate moments when no
satellite images were acquired, by assuming that a linear interpolation of the temporal modes is a valid estimate
of their evolution between the dates at which they were calculated by DINEOF. In the present work, full fields
were produced at daily intervals for the whole period. For MODIS, this temporal resolution is generally
comparable to the frequency of exploitable images and is probably meaningful, except in some winter periods.
For MERIS products over the North Sea, the frequency of input imagery is less than daily and the consequent
reconstruction cannot resolve daily dynamics.

Any local or subregional instantaneous reconstruction or multitemporal averages can be reproduced with this
approach, according to the objectives of the user. The global methodology presented can thus be exploited for
the establishment of weekly or seasonal composites of ocean colour parameters.

3.4. Production of error maps associated to reconstructions

If one considers the DINEOF reconstruction to be the meaningful part of the variability of the input signal and
the noise to be the part of the input signal which is not explained by the selected EOFs, simple "observational
error" maps could be obtained from the difference between the original incomplete data and the filled data at
each time step. However, these observational error maps are as incomplete in space as the input signal and do not
correspond to the actual confidence interval around the DINEOF filtered reconstructions as required by users of
the filled products.

As demonstrated by Beckers et al. (2006), a very efficient least square fit of EOF amplitudes to an observed
subset of data is equivalent to optimal interpolation (OI) if the filtered covariance matrix of DINEOF is used as
the ad hoc covariance matrix of OI. This principle is exploited to use the statistically-derived error estimates of
an OI analysis as the error fields for DINEOF. Requiring an a priori knowledge of the signal to noise ratio and
spatial correlation length of the observational error, this reference solution with full error covariance matrix
would also require prohibitive computational resources for inverting the error covariance matrix, losing thus the
efficiency advantages of the DINEOF methodology. A first assumption of this approach is to take the variance
not retained by the EOF expansion as an estimation of the noise variance µ2. This is given in Eq. (3), in which
Xr is the reconstructed data matrix, and mp is the number of data present, corresponding to the product of the
spatial and temporal dimensions of the data matrix minus the number of missing points. Another assumption is
to consider the error to be spatially uncorrelated, providing thus a simplified and easy to invert error covariance
matrix R, as the product of µ2 by the identity matrix I (Eq. (4)).

In reality many remote sensing errors are expected to be spatially correlated (i.e. due to atmospheric correction
errors), but in absence of full information on error covariance structures, Beckers et al. (2006) made an
intermediate complexity level assumption by considering that errors are correlated at a prescribed scale L. Their
study showed the interest of using a corrected error variance µeff

2 (Eq. (5)) instead of µ2 in order to account
efficiently for such spatial correlation of the noise. In Eq. (5), the ratio between the squared correlation length
and the product of pixel sizes in longitudinal and latitudinal directions (ΔxΔy) represents the relative density of
the data points regarding the correlation length of the error field, while N is the number of modes retained by
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DINEOF and mp is the number of data points present.

The value of L is selected so as to minimise the global OI reconstruction error obtained for the same subset of
points as used for the cross validation procedure of DINEOF. This ensures that consistent error fields are derived
at a reduced calculation cost. The first steps of the error calculation are similar to the steps presented in the
following outlier section (Eqs. (6)-(10)). Further details about the error map generation with DINEOF
methodology can be found in Beckers et al. (2006).

In the present study, the ocean colour data is processed by DINEOF as the anomaly of the base 10 logarithm of
the data around the mean base 10 logarithm field. This introduces a complication for a representation of the
associated error maps. When expressed in real units, the confidence interval is asymmetrical and cannot be
represented in a single map. Relative error maps calculated in real units as the ratio of error range to
reconstruction value leads to problematic display of the whole range at once, and to extremes values of relative
errors due to occasional inconsistent reconstructions. Thus, another relative error representation was chosen: the
ratio between the reconstruction error and the standard deviation of the signal captured by the EOFs for the
particular pixel. This proved to be the best way to visualize the spatial variability of the reconstruction error
within maps covering large ranges of background values. Although not illustrated here, these error maps showed
meaningful patterns with respect to the distributions of available input data and to regions exhibiting strong
covariances, as described by Beckers et al (2006).

3.5. Detection of outliers from input data

Benefiting from the existing post-processing error map calculation scheme described by Beckers et al. (2006), a
methodology was implemented to classify original pixels on a scale expressing the "outlying" character of each
local input data. The principle of the outlier calculation is presented shortly hereafter.

The scaled spatial EOFs (defined as the columns of the matrix L) are the set of spatial modes (columns of matrix
U), weighted by the ratio between their associated singular value (diagonal elements of S) and the squared root
of N, the number of modes retained by DINEOF (Eq. (6)).

The matrix Lp is defined by the scaled set of EOFs in which the missing pixels corresponding to an
instantaneous image are set to 0. The covariance matrix between existing data points Cp is calculated by Eq. (7).

The diagonal elements of this observational error covariance matrix are inflated by the corrected observational
error variance µeff

2 (as defined in Section 3.4, Eq. (5)), to account for the spatial correlation of observational
error. This is presented by Eq. (8) in which I is the identity matrix of dimensions N.

As described in Beckers et al. (2006), the matrix C obtained by Eq. (9) has only to be calculated once for a given
image. The correlation length of the observational error can then be tuned at reduced calculation cost to optimize
the fitting between the OI derived error values and the subset of residuals obtained at cross validation points used
for EOF calculation.

The matrix Esp holds the contributions of all modes to the expected error of all pixels, for a specific scene
considered (Eq. (10)). The matrix Esp has a first dimension "i" corresponding to the m pixels of a scene, a
second dimension "j" specifying the scene considered in the series of images analysed and a third dimension "k"
corresponding to the N modes retained).
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A local expected observational error (named here "Deltaij") is calculated for each pixel (index "i") of each scene
(index "j") (Eq. (11)), accounting thus for the spatial variability of the reconstruction error variance. This
expected observational error can be considered as the part of the mean misfit which is unexplained by the EOF
projection itself.

The outlier value is then calculated, for each input data present, as the absolute value of the ratio between the
residual (reconstruction misfit), and the expected observational error Deltaij of the considered pixel.

The resulting outlier coefficient maps can be displayed to visualise how unusual or suspicious are some pixels
and patches with respect to the general content of the dataset. They can also be used as a binary mask to
eliminate inconsistent input data prior to any analysis, including prior to a second DINEOF treatment. For this,
an outlier value of 3 is generally adopted as threshold for this binary distinction between outlier to non-outlier
data. For a Gaussian distribution of the misfit, only 0.3% of the data will be larger than 3.

When analysing results over thousands of images, it is desirable to have some indicators which point
automatically to periods reflecting intense unusual events for the global field, or towards suspicious image
reconstructions linked with unsuitable input dataset (low amount of data with uneven distribution). For the first
case, one can exploit simply the temporal deviation of the image mean outlier factor from its global mean as a
good indicator for intense unusual events of the global field, or similarly, for any subregion of interest.
Concerning the second case, inappropriate input images can be efficiently detected by calculating the
conditioning number of the diagonal covariance matrix Cp or Cpinf (Eqs. (7) and (8)). The condition number of
a matrix measures the sensitivity of the solution of a system of linear equations to errors in the data. It gives an
indication of the accuracy of the results from matrix inversion and linear equation solution. Tests made on the
MODIS TSM reconstruction confirmed that the highest conditioning numbers corresponded to the occasional
inconsistent reconstructions obtained from input images characterized both by uneven spatial distribution and
very low data presence. In these tests little difference was found between using the covariance matrices Cp or
Cpinf. The conditioning number property will be exploited in future work to eliminate the problematic EOF
projections prior to the temporal mode interpolation required for regular field reconstruction, thus avoiding
degradation of daily field multitemporal averages.

Attempts to improve the outlier binary classification are foreseen by adding a preliminary normalisation of the
outlier distributions encountered in each image, and by taking as threshold criteria a certain percentage of the
most outlying data. This will allow the user to explore the sensitivity of the outlier classification and to find the
ideal cut-off to eliminate most completely the recognized artefacts. Such an approach might prove to be a more
appropriate criteria for all parameters, periods, and natures of outlying data, by comparison with using a constant
predefined outlier value as threshold.

Further improvements to input image selection in the post-processing could be considered e.g. by using
combined selections based on several factors such as conditioning number, missing data proportion and mean
outlier value.

4. Results and discussions

4.1. Background fields of MERIS CHL, MERIS TSM, MODIS TSM and SST

The TSM background field from both MERIS and MODIS sensors are very similar (Fig. 2), showing a general
positive gradient towards the coasts, an inverse correlation with water depth, and increase around some estuaries
such as the Seine. Nevertheless two differences can be noted. First, TSM background values are generally
slightly higher for MODIS, this being linked to the very different algorithms used for MODIS and MERIS as
described in Section 2.1. Secondly, a much larger coastal buffer zone is eliminated from the MODIS analysis
(due to temporal coverage below 5%), while the MERIS dataset includes data very close to shores, for example
within the inner part of the Scheldt estuary and in the Oosterschelde.
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The MERIS CHL background field (Fig. 2) shows a general positive gradient towards the coasts as they
constitute the main source of nutrients for this ecosystem. In this sense, the continental coast influence appears
more pronounced than the English one as the concentrations of the dissolved inorganic nutrient originating from
continental river discharges (Lacroix et al., 2007a) are more important than the English ones because of the
much larger extent of their watersheds.

The MODIS SST background field (Fig. 2) shows a general latitudinal gradient, with highest temperature found
in the bay of the Mont-Saint-Michel and along the coast of Cotentin (2°W, 49°N) and in the bay of the Seine
estuary (0°E, 49.5°N), while lowest temperatures are found close to the English coasts in the SNS.

Fig. 2. Background fields obtained for MERIS TSM, MERIS CHL, MODIS TSM and MODIS SST.

4.2. 3 dominants EOFs retained for MERIS TSM and comparison with MODIS TSM

The MERIS TSM signal was optimally synthesised by DINEOF when using 18 modes (minimising the global
error estimator), accounting for a total of 97.2% of the input signal variability. The 3 principal modes are
illustrated in Fig. 3, together with the corresponding parameter representing the variability of the original signal
explained by each EOF. The first mode of MERIS TSM accounts for about 40% of the input signal variability
and is clearly a seasonal signal, being positive in winter and negative in summer: it shows a general winter
increase of surface TSM in most of the domain but particularly in shallow areas, and the opposite in summer.
This seasonality of TSM is known to be linked with the seasonal cycle of average wind intensities over the area
(Fig. 1.4 of Ruddick and Lacroix, 2008). The contribution of this EOF in the western EC is opposite, with
increasing contribution in summer and decreasing contribution in winter, relative to the background field. This
summer increase can be linked to an increase of phytoplankton. The second mode accounts for 12% of the signal
variability and represents, relatively to the previously explained signal, general contributions to local reduction
of TSM in the SNS, in the south-east coasts of England and along the French coast ranging from Normandy
(1°W, 49.5°N) till the strait of Dover (1.5°E, 50.8°N); to the exception of the fall season. This second mode
describes contributions towards an increase of TSM in the western and central parts of the EC in summer,
relatively to the dynamics explained by the previous mode. Still accounting for 8% of the signal variability, the
third mode shows complex spatio-temporal modulations, and the difficulty of interpreting of the modes in terms
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of in situ dynamics increases as we look at the further retained modes. These further modes have progressively
lower weight in the reconstruction of the complete signal and should rather be seen as corrections ( sometimes
partly compensating each other), pulling the reconstructed signal towards the finer significant variations of the
input signal.

Fig. 3. 3 principal EOFs obtained for MERIS TSM (spatial modes: spatial modulation around the background
field due to each EOF; temporal modes: temporal variation of the contribution of each mode for the period
01/2003-06/2005).

With about 3 times more images, a more consistent dynamics could be detected from the MODIS TSM dataset
compared to the MERIS signal as a similar total explained variability (97.5%) was optimally synthesised into a
lower number of modes (14), showing a less noisy appearance mainly in the first modes. Furthermore, the higher
variance explained by the upper level modes of MODIS (mode 2 and above) indicates that these EOFs are
carrying more consistent information on the dynamics then the corresponding MERIS modes. For MODIS, the
first mode describes a general seasonal signal with an increase of TSM in winter and reduction in summer in
most of the domain. Comparatively to the MERIS first mode, the increase is more uniform in the EC and clearly
less intense in the SNS.

Some important spikes can be observed in the spatial modes of MODIS TSM and SST (Figs. 4 and 6). Many of
these spikes can be seen in the same location in various modes, indicating that they result from bad single point
data in some images, probably outliers. These artefacts are propagated in the reconstructions and unrealistic
spikes appear regularly at the same locations of filled images. Further work will exploit a double DINEOF loop
analysis to eliminate this problem. The first DINEOF loop will be devoted only to point out and eliminate
outliers as described in Section 3.5, while the second loop should produce smoother modes and reconstructions
exempt from these spikes and artefacts. Although outliers problems are also well identified in MERIS TSM and
CHL input data (Section 4.4), no spikes are observed in their spatial modes.
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Fig. 4. 3 principal EOFs obtained for MODIS TSM (spatial modes: spatial modulation around the background
field due to each EOF; temporal modes: temporal variation of the contribution of each mode for the period
01/2003-12/2005).

Fig. 5. 3 principal EOFs obtained for MERIS CHL (spatial modes: spatial modulation around the background
field due to each EOF; temporal modes: temporal variation of the contribution of each mode for the period
01/2003-06/2005).
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Fig. 6. 3 principal EOFs obtained for MODIS SST (spatial modes: spatial modulation around the background
field due to each EOF; temporal modes: temporal variation of the contribution of each mode for the period
06/2002-12/2006).

4.3. Background fields and 3 dominants EOFs retained for MERIS CHL

For MERIS CHL, a combination of only 8 modes was retained by DINEOF for optimal reconstruction. The 3
principal modes are illustrated in Fig. 5. A total of 93.5% of the variability of the original signal was explained
by this EOF synthesis. Although still high, this total variability explained is slightly lower than for TSM perhaps
because of the greater complexity of factors affecting phytoplankton dynamics: advection and mixing but also
biotic processes (growth as affected by nutrients, light and temperature, grazing, competition, self-shading). The
greater algorithm uncertainties for remote sensing of CHL in turbid waters may be a second reason. The
temporal evolution of CHL modes are similarly more complex than for TSM modes, with many intense shifts.
Hence, interpretation of EOFs in terms of in situ dynamics is more complicated than for TSM case and the
permanence of sign (positive or negative) of the EOF temporal mode during some periods is more easily
interpreted and meaningful than high frequency fluctuations.

The first CHL mode accounts for 31% of the input signal variability and shows a general concentration increase
over the domain, particularly pronounced off the southern English coast. The sign of this contribution tends to
remain positive for long periods during the spring and during late autumn or early winter, reflecting the main
signal variability: the spring and autumn bloom events occurring in areas corresponding to low average
concentrations on the background field map. The second CHL mode accounts also for an important value of the
input signal variability (20%). It describes patterns of concentration increases and decreases that are opposite and
complementary in space with those presented by the first mode. Still accounting for 12% of the input signal
variability, the third mode describes spatially distinct but coherent contributions to CHL concentration variations
occurring off the Dutch coast on one side and on the other side in the middle of the western EC, with the longest
periods of positive peaks occurring mainly in spring-early summer.

In regard to the complex phytoplankton dynamics of the area, the interpretation of the second and third CHL
modes dynamics are beyond the objectives of this methodological study, but for future investigations, the
following contributions to the analyzed signal should be considered.
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Some local blooms of Karenia mikimotoi may occur in the seasonally stratified region extending from the central
western EC to the coast of Cornwall (4.5°W, 50°N) as described by Le Corre et al. (1993) and Rodriguez et al.
(2000). Vanhoutte-Brunier et al. (2008) described, with support of SeaWiFS imagery, the early and very intense
monospecific Karenia bloom that occurred in spring-summer 2003. They also suggested to study the effect of
inter-annual variability of fresh water intrusions from the Atlantic shelf (Kelly-Gerreyn et al., 2007) on Karenia
bloom dynamics. The dynamic of other phytoplankton groups at larger scale should also be considered to
attempt a deeper analysis of the reconstructed CHL signal. Indeed, with general transport of Atlantic water
entering the western EC, phytoplankton biomasses originating from the nearby continental margin in the Gulf of
Biscay or from the Celtic sea can be advected to the western side of the Channel (Garcia-Soto et al., 1995), and
be observed in the western part of the area studied here, either still in a growing phase or as a decaying bloom
(B. Delille, personal communication).

4.4. Background fields and 3 dominants EOFs retained for MODIS SST

The MODIS SST dataset could be synthesised into 13 modes explaining 98% of the input signal variability, of
which 67% just by the first mode. The 3 principal modes are illustrated on Fig. 6. The first mode confirms the
seasonal cycle of solar radiation heating as the main driving factor of temperature dynamics in the study area. It
illustrates a coherent temperature fluctuation for the whole domain, with an amplitude inversely related to water
depth. Under the form of a general gradient from the western EC to the SNS, the second mode accounts for 7%
of the signal variability and describes a seasonal modulation with a summer contribution to local increase of
temperature in the SNS and decrease in the western Channel, relatively to the first mode, and the opposite trend
in winter.

Fig. 7. Illustration of original fields, outliers and reconstructions maps for: MERIS TSM on 13/04/03 with
probable undetected haze, MERIS CHL on 18/10/03 with clear outliers at cloud edges, MODIS SST on the
17/08/02 with numerous outliers spread throughout a large clouded area.

4.5. illustration of original and filled images with associated outlier coefficient

As described in Section 3.5, outlier maps can now be produced in association with each input image analysed by
DINEOF. Outlier maps represent, for each pixel, the ratio between the observational error and the expected
error. Conventionally, any outlying coefficient above a value of 3 would indicate an outlying pixel in the input
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image. Clear detections of outliers have been observed during the various analyses. Typical situations for which
artefacts in original images were detected as higher outlier values are illustrated in Fig. 7, with probable haze in
the MERIS TSM image of 13/04/03, with some clear cloud edges and suspect noisy low values frequently
affecting MERIS CHL images, as on the 18/10/03, and with numerous outliers spread throughout a large clouded
area in the MODIS SST image of the 17/08/02. This MODIS SST image illustrates well a case where a single
pass DINEOF reconstruction cannot filter the outlying input data but is rather strongly influenced by problematic
pixels. A large zone of isolated and spread pixels of extreme low values is found in the middle of a large clouded
area (Pison and Nechad, 2006). Well spotted as outliers, these values are numerous and consistent in space,
pulling the reconstructed field to display an inconsistent very low temperature zone (12 °C) in a summer field
ranging from 16 to 20 °C.

For the scene of 16/09/03 (Fig. 8), MODIS TSM and MODIS SST fields are both affected by problems of cloud
edge with similar shapes in the central EC, and by the same contrails in the western EC. It is interesting to note
that the intensity of the outlying signals is not exactly similar. Although clearly affecting both regions and TSM
and SST input images, some part of contrails are well detected in the TSM outliers, while others are better
spotted by the SST outlier field. Thus, there could be an advantage to exploit jointly outlier detection information
derived from several parameters to improve the overall data quality of each type of input data. This will be
especially relevant for undetected clouds affecting both TSM and SST products.

Despite the limited number of EOFs retained, the sensitivity of DINEOF methodology to the presence of outliers
can be explained as follows. The limited series of modes selected by DINEOF is that which allows a
reconstruction of original cross validation data with a minimal global reconstruction error. Therefore, this
combination of EOFs is the most sensitive to the significant coherent variational modes that are present in the
incomplete dataset. As such, it is also the combination of modes that points most efficiently towards the original
signal variations which appear to be incoherent with the global dataset. This incoherence is pointed out by an
excessive reconstruction error observed when compared with the statistically expected reconstruction error.

Fig. 8. Illustration of original fields, outliers and reconstructions for MODIS TSM and SST on the 16/09/03,
showing slightly variable but complementary signatures of contrails and cloud edges artefacts in their outlier
fields.
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4.6. Validation of reconstruction (MERIS TSM and CHL)

4.6.1. Objectives and constraints of validation method and cases

In the present work we have adopted a modest validation procedure by adding typical sized clouds. This is a first
standard approach in DINEOF processing which has the advantage of being representative of the real data gaps
(large clouds) frequently occurring in the North Sea area. This validation procedure aims to demonstrate and
explain how the reconstruction quality is related to the variability of the target parameters. The objective of our
validation work is to produce a first sound comparison of reconstruction quality through extremes environmental
conditions characterized by most homogeneous areas to highest gradient area, and to allow this comparison for
the two parameters CHL and TSM. For the current work this was already quite challenging because of the
undersampling of natural variability and gappiness typical of the input dataset, which left few suitable dates for
demonstrating comparative reconstruction. To compare with reference analysis for which all existing data are
used, specific DINEOF analyses were carried out on slightly modified inputs: existing data being removed under
two identical artificial clouds for 3 images of the series. Data were removed below 'false clouds' appropriately
placed: a homogeneous region (the central part of the EC, referred to hereafter as cloud 1) and a region usually
displaying important spatial gradient (the Belgian coastal region, referred to as cloud 2). The 3 images processed
were chosen in relatively cloud free weeks so that the typical spatial patterns observed for the other days of these
periods could be theoretically captured by the EOFs.

For both TSM and CHL, the dates chosen were the 16/04/03, 27/10/ 03 and 16/07/06.

Future researches will be oriented towards a more systematic validation methodology and, for example, plan to
look at new satellite data sources with much higher sampling frequency (Neukermans et al, 2009) to facilitate.

Fig. 9. Validation of reconstruction under false clouds for MERIS TSM, 16/07/06.
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4.6.2. Results of reconstruction quality estimates

The estimation of the reconstruction quality obtained under these artificial clouds on the 16/07/2006 is illustrated
in Fig. 9 for TSM and Fig. 10 for CHL. Original, unused data are displayed below the clouds delimited by black
contour lines, for visual comparison with the reconstructed fields obtained. The quality of the reconstruction is
estimated by statistical parameters calculated from original unused data and reconstructed data obtained below
the artificial clouds, as indicated on these figures. These parameters are root mean square of the reconstruction
error (rms), signal to noise ratio for the reconstructed datasets (sn) and correlation coefficient between unused
and reconstructed data (r).

For both TSM and CHL, Table 2 summarizes the ranges of r, sn, and rms error obtained in this validation of the
reconstruction below artificial clouds.

Table 2 Ranges of correlation coefficient (r), signal to noise ratio (sn) and root mean square error (rms)
obtained in the validation of the TSM and CHL DINEOF reconstructions below artificial clouds (cloud 1 :
homogeneous region; cloud 2: high gradient region) for 3 different images.

TSM CHL
Min Max Min Max

Cloud 1 r 0.47 0.83 0.25 0.58
sn 1.04 1.67 0.88 1.15
rms 0.10 0.11 0.09 0.19

Cloud 2 r 0.87 0.95 0.12 0.70
sn 1.94 2.65 0.99 1.27
rms 0.13 0.15 0.17 0.29

Fig. 10. Validation of reconstruction under false clouds for MERIS CHL, 16/07/06.
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4.6.3. Discussion of reconstruction quality estimates

Minimal signal to noise ratio are of the order of 1 for both parameters, meaning that the importance of the error
is, in the worse situations, comparable to the signal. This is generally found in situations where the signal is itself
of low intensity and uniform across the clouded regions, rather than to be due to larger absolute reconstruction
errors.

With a wider range of input values below the cloud number 2, the reconstruction quality parameters sn and r are
most of the time higher, both for TSM and CHL. The rms values are also systematically higher under cloud 2,
but less than proportionally with the signal variability as shown by the signal to noise ratio. These results suggest
a better response of EOFs to the reproduction of the signal observed in regions of high gradients and high
variability, relatively to regions of rather more homogeneous values.

In the Belgian coastal zone, reconstructions are consistently better for TSM for the 3 selected test days, with sn
ranging from 1.9 to 2.7 while it was limited to a maximum of 1.27 for CHL. Correlation coefficient was also
higher for TSM (from 0.87 till 0.95) than for CHL (0.12 till 0.7). Generally, the lower quality results obtained
for CHL illustrate the greater complexity of phytoplankton spatio-temporal variations and/or retrieval
uncertainties.

The range of reconstruction quality was estimated from worse to best situations, as well as within the selected
images, between relatively homogeneous zones as well as regions of strong gradient and results are encouraging.

The quality of the reconstruction depends on the coherence/ repeatability of the signal being analyzed, which is
itself a representation of natural processes but with discrete sampling and measurement errors. Thus, low
reconstruction quality estimates can occur when:

1.  The natural processes show low coherency, e.g. phytoplankton blooms which may occur for different
subregions in a decoupled fashion with different timing, or with low coherency in the shape of successive bloom
fronts within a same subregion.

2.  The natural processes are undersampled, both in time and/or in space. In the present study case, level of data
gaps are significant (order of 70%), underlying the difficulty of the reconstruction challenge addressed. This is
seen particularly for the reconstruction of MERIS CHL data where the proportion of missing data is higher than
for MODIS TSM. This can also specifically occur for original scenes for which a little amount of data are
present but spread unevenly, leading to an under-conditioned EOF projection problem.

3.  The natural processes are poorly represented in some input scenes,. This can occur for scenes for which
important proportion of erroneous data (outliers) remain because of processing uncertainties, e.g. undetected
cloud-edge pixels. In this respect the DINEOF reconstruction quality estimate can provide useful information on
weaknesses in the satellite data processing.

Future studies, which would not have to produce comparable quality estimator for both TSM and CHL on same
dates and locations, might complement the validation by focusing on other regions, possibly with different
approaches such as using numerous smaller and evenly spread false clouds checks, or as analysing validation
results as function of the temporal variability of the input signal at specific pixels.

4.7. Daily regular reconstructions, multitemporal climatologies and time series extraction at reference stations

For all analysed parameters (MERIS TSM and CHL, MODIS TSM and SST), daily reconstructions were
produced by EOF projection using interpolated temporal amplitudes, over the 4 year period of the input dataset.
This daily regular reconstruction step is made as a post-processing of the DINEOF methodology and the
validation presented in Section 4.6 only concerns DINEOF direct reconstructions of existing incomplete satellite
scenes. For some relatively cloud-free periods between spring and late fall, the temporal dynamics of daily
MODIS reconstructions can be comparable to the frequency and availability of input data. As an illustration of
the fine TSM dynamics that can be reconstructed from MODIS for such periods, an animation showing daily
reconstruction at 12h00 UTC can be downloaded as complementary information from (http://
modb.oce.ulg.ac.be/projects/2/RECOLOUR_products) and from the present journal web site (Video 1).

However, occasional local spikes are observed in daily reconstructions, as occasional incoherent fields. This
latter problem occurs when EOF projection is made from unsuitable input data leading to an under-conditioned
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problem. A mathematical problem is considered well conditioned if the sensitivity of the solution to
perturbations on the data remains acceptably low, as described by Toumazou and Creteaux (2001). At this stage
of the research into optical products, users of the present research reconstructed products are advised to use the
more robust weekly averages as the highest temporal resolution of the analysed colour product signal.

Weekly and monthly averaged fields were produced from reconstructed daily fields for MERIS TSM and CHL
products, and for MODIS TSM and SST products. These new climatologies have the advantage that missing data
were replaced by estimates resulting not only from information provided by the existing parts of the scenes
considered but also from the data covariances detected throughout the whole database. For this reason, the new
monthly and weekly climatologies produced are supposed to be less biased by the spatio-temporal heterogeneous
distribution of clouds then classical climatologies would be. While detailed quantification of differences is left
for further work, a simple comparison of both methodologies shows the practical advantage of the DINEOF
approach over classical averaging, for which results are contaminated by discontinuity patterns and lack of
coverage (Fig. 11).

Fig. 11. Comparison of weekly climatological fields obtained from daily DINEOF reconstructions (left) and
from classical averaging of present data (right); examples of MERIS CHL (top; in April 2003) and MODIS TSM
(bottom; in august 2002).

As illustration of the interest of studying seasonal dynamics from reconstructed continuous time series, weekly
averaged MERIS TSM and CHL reconstructed signals were extracted from one pixel corresponding to a turbid
water station near the Scheldt Estuary mouth (51.47°N; 3.23°E, identified by a spot on Fig. 11). These
reconstructed averages are plotted from January 2003 till June 2004 (Fig. 12), in regard to the weekly averages
calculated from the existing original data extracted in the same pixel from the instantaneous images.

The fact that no data are available in this pixel for several original scenes doesn't mean that DINEOF
reconstructed values will only be influenced by the other data available for that pixel. When producing the daily
reconstruction in this missing spot, DINEOF can be affected by the presence of higher or lower TSM
concentrations data existing in other locations for which strong covariances with our missing spot were detected
by the EOFs. So, for several days of a week, the instantaneous values reconstructed by DINEOF in the missing
spot can happen to be much higher (or lower) than the value sensed directly by the satellite in one moment of
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this week. In consequence, it is absolutely possible that the weekly average value of the DINEOF reconstruction
obtained in one pixel will be well different (higher or lower) than one or few existing original instantaneous data
in that pixel. This is justifying what is for instance happening in the end winter/beginning of spring for TSM in
Fig. 12.

Continuous time series are far more convenient for analysis of environmental dynamics then sparse
instantaneous data and show well the strong seasonal TSM dynamics and the onset of the spring CHL bloom.
These reconstructed averages show also the unusually intense spring bloom event observed in the Scheldt plume
in 2003 and described in Borges et al. (2008).

Any reconstructed product extracted from the study domain can be obtained by contacting the authors or by
posting a request at (http://www.mumm.ac.be/BELCOLOUR/EN/sendmail.php).

Fig. 12. Weekly averaged time series of MERIS TSM and CHL calculated from daily DINEOF daily
reconstructions in a pixel of the Scheldt Estuary mouth turbid waters (51.47°N; 3.23°E), versus original existing
data extracted from the same pixel.

4.8. Perspectives for elimination of artefacts

Future work will involve successive DINEOF runs as an attempt to eliminate the spikes captured by the EOFs
and reconstructions as consequence of outlying input data. According to preliminary tests, inconsistent EOF
projections should be eliminated by the use of the conditioning number of the field covariance matrix, a criterion
defining the sensitivity of the EOF projection to possible uncertainties on the input data. Thus, new solutions are
in the testing phase for improving further the quality of instantaneous reconstructions as of multitemporal
averaged fields.

5. Conclusions

This study demonstrates successful applications of the parameter free DINEOF method to the reconstruction of 4
years of satellite TSM, CHL, and SST data in the EC and the SNS. For the CHL and TSM products, a significant
part of the variability of the input signal (93.5 to 97.5%) could be synthesized into a limited number of modes (8
to 18), allowing optimal reconstructions of the complete fields, even with a very high proportion of missing data
(70%).

Optimal reconstructions were obtained by DINEOF when synthe-sising the original signal into 8 modes for
MERIS CHL and into 18 modes for MERIS TSM. The variability of these original signals explained by the EOF
synthesis reached 93.5% for CHL and 97.2% for TSM. For the MODIS TSM dataset, 97.5% of the original
variability of the signal could be synthesised into 14 modes, but with less variability explained by the first mode
comparatively to MERIS TSM, revealing a seasonal signal better captured and described by two modes instead
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of one. This results probably from the higher frequency of image acquisition and from the lower global
proportion of missing data of the MODIS dataset. The MODIS SST dataset could be synthesised into 13 modes
explaining 98% of the input signal variability, of which 67% only by the first mode, as expected due to the
strong seasonal pattern of the SST dynamics for this area.

For MERIS TSM, the reconstruction quality was evaluated for 3 dates below 2 artificial clouds and proved very
encouraging with correlation coefficients ranging from 0.45 to 0.95, and signal to noise ratio between 1 and 2.7.
Reconstruction quality of CHL was lower with correlation coefficients ranging from 0.12 to 0.70, and signal to
noise ratio comprised between 0.88 and 1.27.

Daily reconstructions were produced by interpolation of the temporal mode coefficients. Weekly and monthly
averaged fields were produced from these daily reconstructions, underlying the interest of the method for the
establishment of multitemporal composites. These are expected to be less biased than classically averaged
products, which are affected by the heterogeneity of cloud coverage. Any subregional or local multitemporal
averages can be reproduced with the described DINEOF approach, according to user needs.

The regular and full gridded weekly averaged fields are useful for forcing or validation of ecosystem models. For
instance, the weekly averaged TSM fields produced here are being exploited to test the impact of light
attenuation on phytoplankton blooms.

Error maps associated with every reconstruction were produced according to Beckers et al. (2006). An outlier
detection method was implemented on the basis of this error calculation scheme. It produces, for every input
image, a map of coefficients representing the absolute value of the ratio between the observational error
(difference between original and reconstructed fields) and the expected error of the reconstructed field itself.
Several original input data can be identified as suspect by the users, as illustrated for CHL in Ruddick et al.
(2008b). After the present analysis, several input data appeared clearly as higher values in the outlier maps
(undetected cloud edges, haze areas, contrails, and cloud shadows). The method is also efficient in detecting
events considered as unusual with respect to the available image database. The structures observed in the outlier
maps are generally very distinct from normal data, although the classical threshold criteria of 3 is not always
reached for all of the suspect data (i.e. only some part of the clearly visible contrails are detected as outliers).
Future improvement of the outlier classification could be an automatic adaptation of the outlier threshold setting
based on a normalisation of the outlier value distribution of each image. The combination of outlier signatures
associated with the various parameters (CHL/SST/TSM) produced from a same scene is another promising
direction for improving outlier detection.

With the production of outlier maps, the DINEOF data reconstruction technique becomes a very efficient tool for
automatically analysing large databases. It opens the way to potential applications in the processing and quality
control of optical remote sensing data, adding statistical information to the conventional spectral processing.

Supplementary materials related to this article can be found online at doi:10.1016/j.seares.2010.08.002.
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