
A zealous parallel gradient descent algorithm
Gilles Louppe and Pierre Geurts

Department of EE and CS, University of Liège, Belgium

Zealous parallel gradient descent algorithm

Procedure followed by each individual thread Global state

Local state

Critical section

Policy functions

Abstract

Experimental results

References and acknowledgements

Asynchronous mini-batch gradient descent

Mini-batch gradient descent

Conclusions and future work

- θ: vector of parameters of the
model;
- next: pid of the next thread
allowed to update θ;
- counter: array of integers,
such that counter[i]
corresponds to the number of
pending updates of thread i.

- Δθ: pending
updates of θ;
- b: current
mini-batch;
- pid: unique
identifier.

Stop?End

trylock(pid)

Get next mini-batch bGet next mini-batch b

(,)

z b

C z

0;

;

0;

True False

Access grantedAccess refused

function trylock(pid)
 counter[pid]++;
 return next == pid;
end
function next(pid)
 counter[pid] ← 0;
 next ← arg max(counter)
end

next(pid);next(pid);

Parallel and distributed algorithms have become a necessity in modern
machine learning tasks. In this work, we focus on parallel
asynchronous gradient descent and propose a zealous variant that
minimizes the idle time of processors to achieve a substantial
speedup. We then experimentally study this algorithm in the context of
training a restricted Boltzmann machine on a large collaborative
filtering task.

Parallel mini-batch gradient descent with shared memory [1, 2, 3]:
- Store θ in shared memory.
- Have multiple processors process asynchronously and independently
multiple mini-batches.
- Update θ in mutual exclusion using a synchronization lock.

Drawbacks:

[(,)]z C z

1

(,)k

k

s b

k t
k k

t s

C z

Minimize where C is some (typically convex) cost function
and the expectation is computed over training points z. In mini-batch
gradient descent, this is achieved using the update rule

where α is some learning rate and b is the number of training points in a
mini-batch.

Some delay might occur between the time gradient components
are computed and the time they are eventually used to update
θ. Hence, processors might use stale parameters that do not
take into account the very last updates. Yet, [1, 4] showed that
convergence is still guaranteed under some conditions.

Contention might appear on the synchronization lock, hence
causing the processors to queue and idle. This is likely to
happen when updating θ takes a non-negligeable amount of
time or as the number of processors increases.

Setting

- Train a restricted Boltzmann
machine on a large collaborative
filtering task [3, 5].
- θ counts 10M+ of values, hence
executing the critical section
takes a fair amount of time.
- Experiments carried out on a
dedicated 24-core machine.

[1] A. Nedic, D.P. Bertsekas, and V.S. Borkar. Distributed asynchronous incremental subgradient
methods. Studies in Computational Mathematics, 8:381–407, 2001.
[2] K. Gimpel, D. Das, and N.A. Smith. Distributed asynchronous online learning for natural language
processing. In Proceedings of the Conference on Computational Natural Language Learning, 2010.
[3] G. Louppe. Collaborative filtering: Scalable approaches using restricted Boltzmann machines.
Master’s thesis, University of Liège, 2010.
[4] M. Zinkevich, A. Smola, and J. Langford. Slow learners are fast. In Advances in Neural Information
Processing Systems 22, pages 2331–2339. 2009.
[5] R. Salakhutdinov, A. Mnih, and G. E. Hinton. Restricted Boltzmann machines for collaborative
filtering. In Proceedings of the 24th international conference on Machine learning, page 798. ACM, 2007.

Gilles Louppe and Pierre Geurts are respectively research fellow and research associate of the FNRS
Belgium. This paper presents research results of the Belgian Network BIOMAGNET (Bioinformatics and
Modeling: from Genomes to Networks), funded by the Interuniversity Attraction Poles Programme,
initiated by the Belgian State, Science Policy Office. The scientific responsibility rests with its authors.

Significant speedup over the asynchronous parallel gradient
descent algorithm.
Future work: corroborate the results obtained in this work with
more thorough experiments.

Updates of θ may become too much delayed if the number of
cores becomes too large, which can impair convergence.
Future work: Explore strategies to counter the effects of delay.
Derive theoretical guarantees on the convergence of the
algorithm.

Keep going instead
of blocking on the
synchronization

lock, hence solving
the idling problem!

This is what we
address in this work.

(1)

()
efficiency

T

nT n

Zealous with 4 cores is
nearly as fast as

asynchronous with 8 cores!

Oscillations
due to delay.

	poster-lccc.vsd
	Page 1

