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- θ: vector of parameters of the 
model;
- next: pid of the next thread 
allowed to update θ;
- counter: array of integers, 
such that counter[i] 
corresponds to the number of 
pending updates of thread i.  

- Δθ: pending 
updates of θ;
- b: current 
mini-batch;
- pid: unique  
identifier.
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function trylock(pid)
    counter[pid]++;
    return next == pid;
end
function next(pid)
    counter[pid] ← 0;
    next ← arg max(counter)
end

next(pid);next(pid);

Parallel and distributed algorithms have become a necessity in modern 
machine learning tasks. In this work, we focus on parallel 
asynchronous gradient descent and propose a zealous variant that 
minimizes the idle time of processors to achieve a substantial 
speedup. We then experimentally study this algorithm in the context of 
training a restricted Boltzmann machine on a large collaborative 
filtering task.

Parallel mini-batch gradient descent with shared memory [1, 2, 3]:  
- Store θ in shared memory. 
- Have multiple processors process asynchronously and independently 
multiple mini-batches. 
- Update θ in mutual exclusion using a synchronization lock.

Drawbacks:
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Minimize                           where C is some (typically convex) cost function 
and the expectation is computed over training points z. In mini-batch 
gradient descent, this is achieved using the update rule

where α is some learning rate and b is the number of training points in a 
mini-batch.

Some delay might occur between the time gradient components 
are computed and the time they are eventually used to update 
θ. Hence, processors might use stale parameters that do not 
take into account the very last updates. Yet, [1, 4] showed that 
convergence is still guaranteed under some conditions.

Contention might appear on the synchronization lock, hence 
causing the processors to queue and idle. This is likely to 
happen when updating θ takes a non-negligeable amount of 
time or as the number of processors increases.

Setting

- Train a restricted Boltzmann 
machine on a large collaborative 
filtering task [3, 5].
- θ counts 10M+ of values, hence 
executing the critical section 
takes a fair amount of time.
- Experiments carried out on a 
dedicated 24-core machine.

[1] A. Nedic, D.P. Bertsekas, and V.S. Borkar. Distributed asynchronous incremental subgradient 
methods. Studies in Computational Mathematics, 8:381–407, 2001.
[2] K. Gimpel, D. Das, and N.A. Smith. Distributed asynchronous online learning for natural language 
processing. In Proceedings of the Conference on Computational Natural Language Learning, 2010.
[3] G. Louppe. Collaborative filtering: Scalable approaches using restricted Boltzmann machines. 
Master’s thesis, University of Liège, 2010.
[4] M. Zinkevich, A. Smola, and J. Langford. Slow learners are fast. In Advances in Neural Information 
Processing Systems 22, pages 2331–2339. 2009.
[5] R. Salakhutdinov, A. Mnih, and G. E. Hinton. Restricted Boltzmann machines for collaborative 
filtering. In Proceedings of the 24th international conference on Machine learning, page 798. ACM, 2007.

Gilles Louppe and Pierre Geurts are respectively research fellow and research associate of the FNRS 
Belgium. This paper presents research results of the Belgian Network BIOMAGNET (Bioinformatics and 
Modeling: from Genomes to Networks), funded by the Interuniversity Attraction Poles Programme, 
initiated by the Belgian State, Science Policy Office. The scientific responsibility rests with its authors.

Significant speedup over the asynchronous parallel gradient 
descent algorithm. 
Future work: corroborate the results obtained in this work with 
more thorough experiments.

Updates of θ may become too much delayed if the number of 
cores becomes too large, which can impair convergence. 
Future work: Explore strategies to counter the effects of delay. 
Derive theoretical guarantees on the convergence of the 
algorithm.

Keep going instead 
of blocking on the 
synchronization 

lock, hence solving 
the idling problem!

This is what we 
address in this work.
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Zealous with 4 cores is 
nearly as fast as 

asynchronous with 8 cores!

Oscillations 
due to delay.
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