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Abstract—In this paper, a receding-horizon multi-step opti-
mization is proposed to correct non viable transmission voltages
and prevent long-term voltage instability. The proposed control
scheme is based on real-time control, inspired by model predictive
control, and steady state power-flow-based equations. In order
to anticipate load behavior and avoid using dynamic equations
in the control scheme, explicit formulations are used to model
evolution of load with time. The simulation results of the proposed
technique are presented on the Nordic32 test system.

Index Terms—real-time voltage control, long-term voltage
instability, receding horizon, multi-step optimization, load shed-
ding, capacitor switching compensation, generator voltage con-
trol.

I. I NTRODUCTION

V OLTAGE control is an important aspect of system opera-
tion aimed at maintaining grid voltages within prescribed

limits while accounting for generator reactive power reserves.
Under certain operating conditions, systems can exhibit ab-
normal but stable voltage profiles that must be corrected.
Furthermore, several power system blackouts around the world
[1], [2] have stressed the importance of emergency voltage
control to prevent voltage instability problems. To relieve
operators from this delicate task, there is a need for automatic
control schemes able to correct non viable or unstable voltages
characterized by dramatic drops in bus voltages potentially
leading to system collapse [3], [4].

The literature that deals with corrective control of voltages
is often based on real-time tools[5]. In [6], a real-time voltage
control scheme is considered to mitigate voltage violations
and minimize transmission losses. One of the first automatic
voltage control relying on a (sensitivity) model of the power
system is the so-called coordinated secondary voltage control,
which is in operation in two regional control centers of the
French system [7]. Reference [8] discusses the possibilityto
use the algorithm of the French secondary voltage control to
deal with emergency actions, such as load shedding.

One class of real-time approaches is based on Model
Predictive Control (MPC), which consists of determining a
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sequence of future control actions, based on measurements
received and a model of the system evolution, applying the
first step of the so computed sequence, and repeating the whole
procedure at the next time step, when new measurements
are collected[9], [10], [11], [12], [13], [14], [15], [16].In
order to capture the dynamic response of system, including
load behavior, differential-algebraic equations have been often
used inside of the controller optimization routine. A flexible
secondary voltage control is proposed in [9] based on MPC
in which both static and dynamic optimization subproblems
are used. In [10], emergency voltage control is addressed
using MPC based on sensitivity analysis calculated via system
dynamic equations. In [11], the coordination of generator
voltages, tap changers, and load shedding is studied using
tree search optimization techniques. In [12], a coordinated
voltage control framework is developed based on non-linear
system equations using Euler state prediction and pseudo
gradient evolutionary programming. In [13], MPC of load
is used to determine minimum amount of load shedding to
restore system voltages. A centralized quadratic programming
MPC formulation is considered in [14] to optimally coordinate
generator voltage references and load shedding and solved
via Lagrangian decomposition. In [15], a control switching
strategy of shunt capacitors is presented by means of MPC
to prevent voltage collapse and maintain a desired stability
margin after a contingency.

In this paper, a Receding-Horizon Multi-Step Optimization
(RHMSO) based real-time control approach is proposed to
correct non viable transmission voltages and mitigate long-
term voltage instability. The controls considered in this paper
are shunt capacitors, generator voltage references, and load
shedding. The proposed RHMSO controller is inspired by
MPC formulation in the sense of implementing multi-step
control actions and modifying the controls based on the
feedback received from the system. However, it differs from
standard MPC formulations by the way the future system
evolution is modeled. Traditionally, MPC schemes embed a
state transition equation of the typexk+1 = f(xk,uk) (where
x is the state andu is the control vector) sometimes obtained
by algebraization of differential equations and often linearized
around successive operating points. The proposed RHMSO
scheme uses an explicit model of load power evolution with
time, thereby avoiding to rely on detailed load models which
are very often uncertain in practice. By so doing, the model
is of similar complexity compared to standard optimal power
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flows relying on power flow equations. An additional contri-
bution of this paper is to demonstrate that accounting for the
load power restoration effect produced by Load Tap Changers
(LTCs) after a disturbance can lead to satisfactory voltage
control. Finally, another distinctive feature of the proposed
scheme is the handling of generator reactive power limits,
which takes advantage of their overexcitation capability.The
proposed RHMSO scheme is designed to both mitigate voltage
instability and to efficiently correct non viable but stable
voltage profiles.

The paper is organized as follows. Basic assumptions re-
garding general control strategy are presented in Section II.
The description of a single-step optimization approach to
control transmission voltages is provided in Section III. The
RHMSO scheme is developed in Section IV, with simulation
results presented in Section V. Section VI lists conclusions.

II. BASIC ASSUMPTIONS

We focus on the control of transmission voltages over a
period of several minutes after a disturbance. In this time inter-
val, the system typically evolves under the long-term dynamics
of LTCs controlling distribution voltages and OverExcitation
Limiters (OELs) protecting synchronous generators. Other
load power restoration mechanisms may also take place, as
well as some slow controls such as automatic shunt device
switching. The short-term dynamics are assumed stable since
the proposed controller focuses on long-term dynamics [4].

We assume that system measurements are collected and
processed by a state estimator in the region of interest, so that
“snapshots” of voltage measurements and bus power injections
are available at a sampling rate in the order of - say - 10 s. To
this purpose, standard SCADA (Supervisory Control And Data
Acquisition) measurements can be advantageously enriched
with synchronized phasor measurements provided by PMUs
(Phasor Measurements Units).

In practice transmission voltages are requested to lie within
a specified range of values:

Vmin ≤ V ≤ Vmax (1)

whereV denotes the vector of voltage magnitudes at theN
buses, andVmin andVmax are the corresponding admissible
limits. The problem of concern here is to correct voltages
that leave the specified range of values. Optimal adjustments
of voltages within those limits, for instance to minimize
transmission losses, is outside the scope of this paper.

To correct unacceptable voltages, the following controls
are assumed to be available (listed in decreasing order of
preference): shunt compensation, generator voltages and load
curtailment. Shunt compensation is given higher preference
since the unbundling of transmission and generation activities
could make the control of generator voltages by TSOs more
difficult or more expensive than in the vertically integrated
industry. The formulation easily accommodates additional
controls such as generator active powers and ratios of trans-
formers located in the transmission system (LTCs controlling
distribution voltages are assumed to act automatically andare
considered embedded in loads).

Any correction of transmission voltages should obey the
limits on the reactive power produced by generators:

Qmin ≤ Q ≤ Qmax (2)

whereQ denotes the vector of reactive power productions, and
Qmin andQmax are the corresponding lower and upper limits.
Each limit should be updated with the corresponding active
power production and terminal voltage, in accordance with the
generator capability curves. To this purpose, the optimization
problems presented in this paper utilize equation (3.51) from
[4].

Let us consider a large disturbance, such as generator or
line tripping, occurring att = 0. Let us denote bys the
vector of load active and reactive powers, and lets(0+) be
its value shortly after the disturbance (i.e. after short-term
dynamics have died out). Most loads have their active and
reactive powers decreasing with distribution voltages. Hence,
the initial impact of the disturbance will be a decrease in the
components ofs in areas importing power, while an increase
can be experienced on loads located at the sending end of a
transmission corridor, after the outage of a transmission link
within that corridor.

An important component of the long-term dynamics is the
load power restoration through the restoration of distribution
voltages by automatic LTCs. Under its effect, one can assume
that thes vector will progressively recover its pre-disturbance
value, denoteds(0−). At load buses where curtailment has
been applied, LTC action will result in recovery of the not
curtailed portion of the load. In practice, LTC deadbands may
lead to somewhat different distribution voltages, and hence
powers of the voltage sensitive loads.

III. T HE SINGLE-STEP OPTIMIZATION APPROACH

The correction of unsatisfactory voltages can be formulated
as the problem of restoring feasibility of the operating point,
at minimum cost, and anticipating load power restoration. The
corresponding Optimal Power Flow (OPF) problem, referred to
in the sequel as Single-Step Optimization(SSO), can be written
as:

min
u,x

n
∑

i=1

ci
[

ui − uo
i (0

−)
]2

(3a)

subject to : g(x,u, s(0−)) = 0 (3b)

umin ≤ u ≤ umax (3c)

Vmin ≤ V(x,u) ≤ Vmax (3d)

Qmin ≤ Q(x,u) ≤ Qmax (3e)

In these relations,x is the state vector, which includes load bus
voltage magnitudes as well as other variables such as the bus
voltage phase angles.u is the vector ofn controlled variables,
including shunt susceptances, generator voltage setpoints and
load demands.u(0−) denotes the pre-disturbance value ofu.
Elements of the bus voltage magnitude vectorV are either
elements ofx, if they are not directly controlled, such as a
load bus, or elements ofu if they are directly controlled, such
as a generator bus.
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The objective (3a) minimizes the deviations of control vari-
ables. The weightsci reflect the respective costs of the various
controls, as mentioned in Section II. Thus, a larger value
is appropriate for generator voltage setpoints than for shunt
susceptances, while a much larger value should be considered
for load shedding in order to resort to the latter only when
the other means are insufficient. A Euclidean norm is utilized
in the objective to push the solution towards using more than
one control action, which tends to increase reliability if there
is a control signal failure.

The steady-state operation of the system in the post-
disturbance post-control configuration is modeled using (3b).
In the simplest case, the network active and reactive power
flow equations are used, although one can resort to a more
accurate Quasi Steady-State (QSS) model, as detailed in [17].
Note that load power restoration is anticipated by setting
the load powers tos(0−) in these equations. To preserve
simplicity, the active power productions of generators arenot
shown explicitly in (3b). If standard power flow equations are
used, a distributed slack bus formulation is appropriate toshare
the active power adjustments over all generators participating
in frequency control. The constraints (3c) deal with limits
on control variables, the bounds being possibly a function
of u(0−). The constraints (3d) and (3e) have been already
commented.

In the context of real-time control, the above SSO scheme
suffers from major deficiencies:

1) any model inaccuracy will be reflected on the final
settings and operating point; such an open-loop scheme
offers no chance to correct the consequences of mod-
eling errors. A similar remark applies to measurement
noise;

2) no chance is given to compensate for control changes
that are not implemented as expected due to failures or
uncertainty in system behavior;

3) it does not (easily) allow accounting for new events
taking place in the system;

4) it provides a “target state” but not the transitions to reach
that state. In standard OPF implementations, this task is
left to the operator. The latter should be relieved from the
burden of implementing the computed control changes.
This was one of the main motivations for implementing
secondary voltage control in some countries [7]. It
becomes even more important in the stressed voltage
instability situations considered in this paper. If large
voltage corrections have to be applied to generators,
implementing them in full and “one at a time” may
lead to unacceptable transient variations of the generator
reactive power outputs;

5) As another consequence of not considering the transi-
tions to the target stage, advantage cannot be taken of the
temporary field current overload capability of generators.
The latter contributes to supporting network voltages.

As discussed in the Introduction, a scheme inspired of MPC
can deal with the above issues.

IV. T HE MULTI -STEP OPTIMIZATION APPROACH

A. The Optimization Problem

An RHMSO approach involves the following [16]:
1) at a given time stepk, collect measurements
2) compute the sequence of controls

(uk+1,uk+2, . . . ,uk+K) that should be applied at
theK future time steps to bring all voltages and powers
in the desired intervals afterK ′ steps

3) at stepk + 1, apply the first elementuk+1 of the so-
computed sequence

4) k := k + 1; repeat steps 1 to 3.
K is referred to as thecontrol horizon andK ′ as theprediction
horizon. It is recommended to haveK ′ ≥ K [16]. With
the simplified dynamics considered here, there is no clear
advantage in choosingK ′ > K, and we thus takeK ′ = K.

We propose the following multi-step optimization problem
to be solved at step 2 of the above procedure:

min
uk+1, . . . ,uk+K

xk+1, . . . ,xk+K

k+K
∑

j=k+1

n
∑

i=1

ci

(

uj
i − uj−1

i

)2

(4a)

s.t. g(xj ,uj , sj) = 0 j = k + 1, . . . , k +K (4b)

umin ≤ uj ≤ umax j = k + 1, . . . , k +K (4c)

|uj − uj−1| ≤ ∆ j = k + 1, . . . , k +K (4d)

Vmin ≤ Vk+K(x,u) ≤ Vmax (4e)

Qmin ≤ Q(xk+K ,uk+K) ≤ Qmax (4f)

Qmin
i ≤ Q(xj ,uj) ≤ Qmax

i i ∈ I(k);

j = k + 1, . . . , k +K − 1 (4g)

with a notation similar to the one of Section III.
The objective (4a) is similar to (3a) but the control effort

is now distributed over the nextK time steps. Equations (4b)
involve one set of equations of the type (3b) per time step.
The sequence of load power values{sk+1, . . . , sk+K} to be
used in (4b) is discussed in Section IV-B. The constraints
(4c) are obtained by repeating (3c) over theK steps, while
the constraints (4d) aim at limiting the rate of change of the
controls, where vector∆ models the rate of change limits
of the various control actions, for instance generator ramping
limits.

The inequalities (4e) impose to have, at the end of
control horizon, all voltages back in the admissible inter-
vals. Let us emphasize that only those final voltages are
required to be within limits, not the intermediate values
{Vk+1, . . . ,Vk+K−1}.

Similarly, the inequalities (4f) impose all generators to
have their reactive power productions within limits at the
end of control horizon. However, the constraints (4g), relative
to intermediate time steps, apply to only a subsetI(k) of
generators, determined as explained in Section IV-D. The
choice of K will be discussed later on (see Section V-I).

B. Load Power Restoration

Many of the previous works on MPC applied to voltage
control used generic models of load dynamics. Those models
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Fig. 1. Linear load power recovery assumed in the controller.

may fail capturing the whole complexity of load responses.
For instance, the single time-constant recovery model [18],
[19] may not reproduce the behavior of (one or several levels
of) LTCs operating with various delays. However, there is quite
some uncertainty on the parameters involved in load models,
in particular the variation of powers with voltage. Hence, one
may question the added value of embedding those models
in a controller, at the cost of increasing its computational
complexity. Instead, the controller should operate satisfactorily
with minimal information about the load behavior.

One contribution of this paper is to demonstrate that a
satisfactory voltage control indeed can be obtained without
tracking the real (and in many cases not well known) load
response, but just accounting for the load power restoration
effect produced by LTCs after a disturbance. To this purpose,
an explicit evolution of load powers with time is assumed, as
detailed hereafter.

Let ko be the last time step where all bus voltages and all
reactive generations were within their limits (3d, 3e). Theload
powers collected at that time step, i.e.sko , are taken by the
controller as reference until it succeeds bringing all voltages
and reactive generations within limits. Letsk be the vector of
load powers collected at thek-th time step, wherek > ko.
Assuming that load powers are going to recover tosko in K
steps, the future values used in (4b) are:

sj = sk + αj
(

sko − sk
)

j = k + 1, . . . , k +K (5)

with αk+1 < αk+2 < . . . < αk+K = 1. The procedure is
illustrated in Fig. 1, for a linear recovery, i.e.αj = (j−k)/K,
overK = 3 steps. The solid line is the time evolution of one
component ofs after a disturbance; the sampled values are
shown with “×”. The future values determined from (5) are
shown with dots. Note that the formula is re-applied at each
step, starting from the newly collectedsk value.

C. Controller Activation

As long as all bus voltages and generator reactive powers
are within limits at the present (j = k) and future (j = k +
1, . . . , k +K) time steps, no control changes will be issued,
since the trivial solution of (4) isuj = uk, j = k+1, . . . , k+
K. On the contrary, a sequence of controls will be issued in
response to measured voltages or reactive powers leaving the
specified intervals. Once the measured voltages and/or reactive

powers have returned to their specified intervals, no control
changes will be issued.

Furthermore, it may be appropriate to trigger the computa-
tion of a new control sequence upon detection of a topological
change. Indeed, shortly after this change, it may happen that
all measured voltages and reactive powers still lie within their
limits while their future values (taking load power restoration
into account) do not. This infeasibility of future states will
trigger control changes, allowing the controller to anticipate
the effective violation of the limits.

D. Handling of Generator Reactive Power Limits

It is well known that reactive power limitations of generators
may lead to non viable or even unstable voltages.

A synchronous generator may temporarily operate with its
field current above the permanent admissible value, until the
OEL acts to reduce the latter. It is important to model and
utilize this overexcitation capability since it contributes to
keeping voltages under AVR control.

In the model of system evolution, one could think of
anticipating the moment where OELs will come into play. In
practice, however, neither the tuning of this protection nor the
exact evolution of the field current are likely to be known from
the control center hosting the RHMSO controller.

This led us to consider the successive OEL activations as
additional disturbances applied to the system. The multi-step
control strategy handles generator limits as follows:

1) if a generator operates above its capability, the corre-
sponding reactive power limit is not enforced at the
intermediate steps but only at the end of control horizon,
to take benefit of its overexcitation while anticipating the
OEL effect. Thus, the generator of concern is involved
in (4f) but not in (4g);

2) if the generator operates below its limit, the latter is
specified as a constraint at all future steps, to avoid
further degradation of the operating conditions. Thus,
that generator is involved in both (4f) and (4g);

3) once a generator has its field current limited by its OEL,
the constraint (4g) becomes satisfied and is included at
all future time steps.

E. Handling of Generator Voltage Setpoints

Due to the presence of steady-state errors in the Automatic
Voltage Regulators (AVRs), many generating units have termi-
nal voltages somewhat different from their AVR setpoints [4].
To deal with this discrepancy, one option is to resort to a QSS
model of the generator, accounting for the finite open-loop
AVR gain. If instead a standard network power flow model is
used, as in the tests reported in this paper, only the generator
terminal voltages are involved in the optimization problem(4).
However, experience shows that a change in the AVR setpoint
results in an almost equal change of terminal voltage. Hence,
a changeV k+1

i −V k
i of thei-th generator terminal voltage can

be implemented as an equal change of the AVR setpoint of
that generator. By so doing, the RHMSO controller provides
setpoint corrections instead of setpoint values.
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No reference is made in this paper to static var compen-
sators, but the latter can be handled in the same way as
generators, with obviously no overload capability.

F. Relationship with Model Predictive Control

The proposed scheme bears the spirit of MPC and inherits
its already mentioned advantages. However, MPC may bring
its own problems. In particular, if the uncontrolled system
is unstable, care has to be taken so that the controller sta-
bilizes the system. This problem has been tackled in the
MPC literature and practice [20], [21]. Among the proposed
solutions, the terminal constraint-set method recommended in
e.g. [16], [21] consists of imposing the terminal state vector to
lie in a set defined by inequality constraints. The inequalities
(4e, 4f) are constraints of this type. However, they do not
involve the whole state vector. In spite of this restriction,
the approach has been found to work properly, provided the
final statesVk+K andQ(x

k+K
,uk+K) involved in (4e, 4f)

correspond to operating points with load powers restored as
described in Section IV-B. This important aspect is illustrated
in Section V-C.

V. SIMULATION RESULTS

A. Test System, Models and Tools

The proposed controller is demonstrated on a variant of the
Nordic32 test system [22] previously used in [23]. The one-
line diagram is shown in Fig. 2. It includes 52 buses and
20 synchronous machines (denoted with a g, followed by the
machine number). The long-term system evolution is driven
by LTCs and OELs, acting after various delays.

A detailed dynamic model (under the classical phasor
approximation) of generators, AVRs and speed governors was
considered to validate the controller in realistic conditions,
with measurements affected by transients. The loads connected
to the LTC-controlled distribution buses behave as constant
current (resp. impedance) for the active (resp. reactive) power.
This is not known by the RHMSO controller, which processes
(in the s vectors) the active and reactive powers entering the
distribution transformers on the transmission side.

This model was simulated with the MATLAB/SIMULINK-
based tool described in [24]. The optimization problem (4) was
solved in the GAMS-IDE environment [25], interfaced with
SIMULINK through the MATGAMS interface documented in
[26]. In GAMS, the best performances were achieved with
IPOPT, a primal-dual interior-point nonlinear solver (with
filter line-search method) [27], [28]. The simulations were
completed using a Windows machine with Intel Core Duo
1.50 GHz CPU and 2 GB of RAM.

B. RHMSO Controller Settings

The proposed RHMSO controller can adjust: the 20 genera-
tor voltages in the range [0.95 1.10] pu, shunt compensation
by steps of 10 Mvar at buses 1022, 1043, and 1044 and up
to 30 % of the loads at buses 1022, 1041, 1042, 1043, 1044,
1045, and 2031. The relative costs assigned to these controls
are: 100 for load shedding,10−3 for generator voltages and
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Fig. 2. One-line diagram of Nordic32 test system.

10−6 for shunt compensation. Although shedding is heavily
penalized, the optimization (4) might result in a small load
curtailment while the other controls would suffice. To avoid
this, any load shedding smaller than 0.1 MW is ignored.

For simplicity, shunt compensation has been treated as a
continuous variable rounded off to the nearest multiple of 10
Mvar. The multi-step optimization easily accommodates such
deviations with respect to the theoretical optimum.

A maximum rate of change of controls∆ (see Eq. 4d)
is specified on generator voltages only, and is set to 0.05
pu. There is no limit imposed on the variation of capacitor
susceptances or load powers.

The sampling period is 10 seconds. The control (and pre-
diction) horizon has been set toK = 3, which corresponds to
30 s after the measurements have been received.

C. Case 1: Stabilization of a Voltage Unstable Scenario

This case involves the outage of transmission line 4032-
4044 (see Fig. 2) att = 12 s. The evolution of three trans-
mission bus voltages is shown in Fig. 3. The voltages decline
owing to LTCs attempting to restore distribution voltages,as
well as field current limitations (on g14 att = 99.2, g12 at
t = 103.4, g6 att = 108.8, g15 att = 116.8, g7 att = 149.3,
and g16 att = 152.3 s) until collapse takes place at 158.9 s,
right after g7 and g16 become limited.

The solid, dashed and dash-dotted curves in Fig. 4 show
the voltage evolution stabilized by the proposed RHMSO
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Fig. 3. Case 1: unstable system response.
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Fig. 4. Case 1: voltage at bus 1044 with the prop-
osed controller; various load recovery assumptions.
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Fig. 5. Case 1: voltage of generator G7 modified by
the proposed controller.

controller. The latter switches on capacitors very early (in
betweent = 30 andt = 50 s) and modifies generator voltage
setpoints during some 120 s, but does not shed any load. An
example of generator voltage variation is provided in Fig. 5.

The three curves were obtained assuming that load power
recovers respectively:

• linearly as in (5), i.e.αk+1 = 1

3
, αk+2 = 2

3
, αk+3 = 1

• exponentially, i.e.αk+1 = 0.6, αk+2 = 0.9, αk+3 = 1
• at the end point only:αk+1 = αk+2 = 0, αk+3 = 1.

Figure 5 shows that the linear recovery offers a compromise
between the “aggressive” control with small settling time of
exponential recovery and the smooth control with longer set-
tling time of end-point recovery. The latter demonstrates that
even an unrealistic load power recovery yields an acceptable
controller response. What matters is to consider that load
power will eventually restore. To confirm this, the same figure
shows, with the dotted lines, the system evolution with no
load recovery, i.e. the measured load powers are used in all
eqs. (4b). The controller cannot stabilize the system, in spite
of pronounced, but lately applied, control actions.

For the above reasons, linear recovery was adopted in all
tests reported hereafter.

Figure 6 illustrates the ability to deal with generator reactive
power limits. It shows the field current of g12, selected for
being at some distance of buses 1043 and 1044 where shunt
capacitors are switched (and obviously decrease the field
current of nearby generators). The dashed line refers to the
case without the RHMSO controller; the activation of the
OEL at t ≃ 103 s is easily identified. With the controller in
operation (solid line), the field current is kept below its 1.9 pu
limit until t = 140 s. From there on, the limit is slightly
exceeded but for a short duration. Hence, the machine is kept
under AVR control over the whole simulation. With the SSO
approach it is not possible to take advantage of field current
over-excitations since the control actions are computed with
all limits enforced at once.

D. Case 2. Same Unstable Case Stabilized by Load Shedding

The same case is considered but with capacitor switching
disabled and generator voltages prevented from increasing

above their pre-disturbance values, in order to force the
RHMSO controller to shed load. Voltages are indeed stabi-
lized. For instance, the one at bus 1044 (considered in Fig. 4)
settles to 0.978 pu after some 100 seconds.

The total curtailed power is 106.7 MW. Shedding takes
place very progressively over the seven (partly) interruptible
loads as shown in Fig. 7. The exponential shape of each
curve is noteworthy. The case shown involves some tiny
load curtailments. However, tests were performed in which
any load shedding smaller than some threshold was assumed
impractical and was merely not implemented. In all cases, the
RHMSO scheme was able to subsequently compensate for the
not implemented actions with larger shedding steps, at the
price of a somewhat more oscillatory response.

E. Case 3. Correction of Low but Stable Voltages

The same line outage is considered but with a lower initial
load in the Central area (see Fig. 2), so that the system is long-
term stable. However, some voltages fall below theV min =
0.95 pu limit, as shown by the dashed curve in Fig. 8.

The same figure shows, with the solid line, the voltage
with the proposed controller in operation. 40 Mvar of shunt
capacitors are switched on as follows: 10 Mvar at bus 1043 at
t = 30, 60 and100 s, 10 Mvar at bus 1044 att = 30 s. Neither
generator voltages nor loads were modified in this scenario,
which illustrates the controller ability to adjust to the severity
of the situation.

F. Case 4. Stabilization of a Load Increase Scenario

Starting from the operating point of Cases 1 and 2, the loads
at buses 1041, 1042, 1043, 1044 and 1045 were linearly in-
creased with time, at a rate of 7.2 MW/min (in total) and until
t = 530 s. The loadability limit (significantly impacted by the
generator excitation limitations) was crossed before reaching
this time, and since LTCs attempt to restore load powers, long-
term voltage instability followed. The resulting degradation
eventually made g6 lose synchronism, att = 518.9 s, soon
after its field current became limited.

In order to use all three types of controls, the available
shunt compensation was limited to 10 Mvar at each of the
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Fig. 6. Case 1: field current of g12 with and without
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Fig. 8. Case 3: voltage at bus 1041 without and with
the proposed controller.

same three buses, while upper bounds on generator voltages
were decreased to 0.01 pu above the pre-disturbance values.

Figure 9 shows the system responses without and with the
RHMSO controller. The latter smoothly stabilizes the system,
which settles to a new long-term equilibrium att ≃ 650 s.

The system operating state leaves the allowed intervals at
t = 330 s for the first time. From there on, the load powers at
the last feasible point are used as final values in the linear load
recovery, except if the newly measured load power has a larger
value, in which case this measurement is used at allK future
steps. This provides a simple way to track load increases. A
similar procedure would apply to low load and high voltage
conditions.

First, the controller resorts to shunt compensation, switching
on the available 30 Mvar att = 340 s. Then, it adjusts the
generator voltages, as shown for three of them in Fig. 10. In
the last resort, it curtails loads, as shown for three of themin
Fig. 11. The total power shed is 77.0 MW.

G. Case 5: Simulating Control Failures

An RHMSO scheme is known for being able to adjust to
changing conditions in the course of controlling the system,
and hence inherently offers robustness with respect to both
modeling uncertainties and component failures. The latterare
considered here. We merely show how the controller faces
a situation where actuators fail implementing the previously
computed actions, and no information is provided about this
failure. Techniques for enhancing fault-tolerance (e.g. fault
detection and isolation [16]) are thus not considered.

Case 1 is repeated with the AVRs of generators g13, g14
and g16 as well as shunt capacitors at buses 1022 and 1044
not implementing the orders sent by the RHMSO controller.
Figure 12 shows that the resulting voltage evolution only
slightly departs from the one with all control changes applied
correctly, in spite of the fact that the controller is not aware
of the failures. Figure 13 shows how it compensates, after
t = 70 s, for the unsatisfactory system response, by acting
more on the voltage of g7 (not subject to failure).
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Fig. 12. Case 5: voltage response with and without componentfailure.

H. Comparison with Single-Step Optimization

In this section, the performance of the proposed multi-step
approach is compared against a single-step approach (SSO
considered in Section III) by simulating Case 2 presented in
Section V-D. A comparison of computational burden for both
approaches is included in Section V-J.

It was first assumed that an accurate system model is
available to both approaches.

For the case scenario of concern, it was observed that
the SSO approach is able to save the system, even with a
bit less load shedding compared to the RHMSO approach
(99.5 MW versus 106.7 MW). In fact, by varying generator
parameters, such as decreasing the limits of generators g6 and
g7, cases were found with the SSO approach shedding a little
more load than the RHMSO approach. Thus, the total control
effort is similar with both approaches. However, since loadis
curtailed by SSO at one time instant, more oscillations occur
and consequently the settling time increases.

Next, control failures on variables were assumed to inves-
tigate performances in less optimal conditions.

In the first scenario considered, signals to switch the shunt
capacitor at bus 1043 were blocked to simulate control failure
of this component. The response obtained with the SSO
approach, illustrated with the voltage magnitude at bus 1044,
is shown with dash-dotted line in Fig. 14. The SSO is not
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able to stabilize the system and voltage collapse occurs at
approximatelyt = 470 s. In the second simulation, signals
to control generator g13 were also blocked, leading to system
collapse for the SSO approach att = 290 s, as shown by
dashed curve in the same figure. In the third simulation,
failures in both shunt switching and g13 voltage control
were considered. Figure 14 shows that the RHMSO approach
stabilizes the system. Although the failure isnot known by
the controller, it compensates by resorting to other available
controls including shedding a small amount of load (4.1 MW)
at bus 1043 att = 130 s.

Finally, the effect of optimistic generator reactive power
limits and uncertainty in load shedding on the performance of
both control approaches was examined. Figure 15 illustrates
the voltage magnitude at bus 1044 for these sets of simulations.

In the first set of simulations, optimistic reactive power
limits of generators are assumed (ranging from+1 to +7.5%
of the actual value). Simulation results found that even a small
error in these limits considerably impacts the performance
of SSO and computed controls are not able to stabilize the
system. In the second simulation, uncertainty in load shedding
is considered. Here the actual reactive power shed is less than
the control signal (constant power factor is not preserved).
For buses 1022, 1041, 1042, 1044, and 1045 only 75% of the
reactive load shed control command is actually curtailed and
only 50% is curtailed at buses 1043 and 2031. With the SSO
approach the system collapses aftert = 590 s. In the final
simulation, the RHMSO approach is applied with both the
7.5% optimistic reactive power limits and same load shedding
errors as above and does stabilize the system.

I. Design Parameters

A few design parameters are involved in the proposed
method. One parameter to set is the sampling period. We tried
different sampling periods, ranging form 3 to 15 seconds, for
the system studied in this paper. A period of 10 seconds was
found acceptable, and it is likely to be in general for practical
power systems. It matches the value used in the coordinated
secondary voltage control in operation in France [7]. It gives
time to telecommunication and for solving the optimization
problem with a security margin.

A second parameter to set is the control horizonK. Larger
values ofK lead to smoother control but higher settling times
and increased computational effort (there are more eqs. 4b,
4c, 4d, 4g to treat). Furthermore, the control sequence should
be fast (K low) enough to be able to counteract voltage
instability [4], [5]. On the other hand, small values ofK
makes the control scheme come closer to the SSO criticized
in Section III.

Values ofK from 2 to 5 were tried and the best perfor-
mances were achieved usingK = 3. Figure 16 illustrates
the impact of varyingK by showing the magnitude of the
voltage at bus 1044. As can be seen, a higher value ofK leads
to slower system response and significantly longer settling
time. This is the consequence of less aggressive control due
to slower load power recovery. The system response with
different values for the prediction horizonK ′ and the control
horizonK is also shown in the figure. It clearly supports the
claim in Section IV.A that there is no advantage in choosing
K ′ > K.

The response of the RHMSO approach was found little
sensitive to small variations in the value ofK, however more
significant changes can result in poor performance. For each
particular system considered, planning studies would needto
be performed to determine an appropriate value to use.

Finally, the rate of change of controls may be limited by
specifying constraints of the type (Eq. 4d). The objective
is to protect equipment against unacceptable variations. It
also acts as a safeguard against an abnormal future system
evolution that could hypothetically result from the absence of
bounds onVk+1, . . . ,Vk+K−1. The components of∆ must
not be set too low, as it could make the optimization problem
(4) infeasible. In our tests the only constraints imposed (on
generator voltages) were not active.

J. Computational Burden

The simulations required solution times of 0.71 seconds
for the RHMSO approach and 0.47 for the SSO approach.
These are the times elapsed from the call of GAMS in MAT-
LAB until the results of the optimization are returned back
from GAMS to MATLAB. For the Nordic32 test system the
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Fig. 16. Illustration on the impact of value of K.

RHMSO approach involves 309 equality constraints, up to 332
inequality constraints, 309 state variables, and up to 30 control
variables. For this test system, the SSO approach involves 103
equality constraints, up to 147 inequality constraints, 103 state
variables, and up to 30 controls. The optimization problems
to be solved for both approaches are relatively small.

The average execution times, as reported by GAMS to
solve optimization problem (without time for data transfer)
are: 0.027 second for the RHMSO and 0.014 for SSO ap-
proach. Using a simple warm-start strategy [29] in multi-
step optimization considerably decreases execution time to
0.016 second which is only 2 milisecond higher than the
execution time in SSO. This strategy consists of initializing
the control vectorsuk+1,uk+2, . . . ,uk+K−1 to the values
computed at the previous time stepk − 1, and uk+K to
uk+K−1 in the absence of a better initial guess for this
newly introduced unknown. Since the sampling period is 10
seconds, observed IPOPT performances for practical problem
are clearly compatible with real-time control requirements.

In a real-life application, in order to decrease the compu-
tational complexity, the optimization problem can be solved
concentrating on areas close to the disturbance with a simple
representation used for other areas. If a utility were to im-
plement the RHMSO approach, the algorithms developed in
MATLAB would be replaced with efficient software designed
for real-time operation. Such software would include full

exploitation of the sparsity found in the problem further
reducing the computation time.

VI. CONCLUSION

To control non viable or unstable transmission voltages, this
paper has proposed an algorithm relying on a model typical
of optimal power flow but implemented in multiple steps and
with a receding horizon, as considered typically in MPC. The
test were performed on a detailed dynamic system model in
order to consider realistic conditions. It was effective using
capacitor switching, generator voltages, and load shedding.
The proposed load recovery model used in RHMSO was
successful achieving an acceptable control response to stabilize
the system. Disturbances associated with line outages and
incremental load increases were considered. In both cases,the
RHMSO control approach provided stabilization. In situations
where a disturbance resulted in low voltage magnitudes,
but the system remained stable, the proposed approach did
enhance the voltage profile. The robustness of the controller
was considered by not applying some control actions. From
this simulation, the RHMSO algorithm emphasized control
settings which were not subject to this failure, resulting in
system stabilization. The RHMSO was compared with the SSO
approach and was shown to be more reliable when control
failure and uncertainty in reactive limits and load shedding
was considered.
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