Taneja et al. raised an important issue about the decontamination of any medical equipment within an area. The dry gas process has been used for many years on various types of electronic equipment, but it will depend on the equipment. For example, electrochemical sensors will be affected by any oxidizing agent. On the other hand, we have successfully fumigated computer and other electrical equipment. Equipment within a room should be considered during a risk analysis prior to fumigation. As for liquid or wet processes, I have a personal reservation about using any liquid on any electrical equipment.

Regarding a recommendation for a ‘safe’ level of environmental contamination, this work is ongoing and will depend on the use of the area (e.g. routine patient ward or intensive care area), the pathogen and the level of contamination. Some environmental disinfection studies have shown lack of efficacy of disinfectants tested, although these results may reflect a lack of adequate efficacy in the time, dilution and formulation type of disinfectants used. There is a need for well-controlled environmental disinfection studies and their impact on infection rates within hospitals. We and others are investigating this and process optimization for healthcare applications. It is clear that this will not only include fumigation processes but also guidelines on the effective use of routine disinfectants in hospital practice.

References


G. McDonnell*
STERIS Ltd, Jay’s Close, Viables, Basingstoke RG22 4AX, UK
E-mail address: gerry_mcdonnell@steris.com
Available online 6 December 2005

Editorial comment
This correspondence is now closed.
Co., Sparks, MD, USA) were applied 25 mm away from a disc containing amoxicillin-clavulanic acid (30 μg) (Becton, Dickinson and Co.). After overnight incubation at 35°C, the test was considered to be positive when the zone of growth inhibition for at least one cephalosporin had a 'champagne cork' aspect.6

Six hundred and ninety-two stool specimens from 224 patients (148 men, 76 women, mean age 61 years) were cultured on the ceftazidime-containing medium during the study period. One hundred and eighty yielded enterobacteriaceae and ESBLs were detected in 98 isolates (14.16%) originating from 32 patients (14.29%). The most frequent species producing ESBLs was E. aerogenes (50%), followed by E. coli (24.3%) and K. pneumoniae (9.18%). In several Belgian and French hospitals, it has also been observed that E. aerogenes has replaced K. pneumoniae as the predominant producer of ESBLs.8 Among the 32 patients colonized with E-ESBLs, 14 were identified on admission or within 48 h of admission to the ICU. For the remaining 18 patients, the mean number of days between admission and colonization with E-ESBLs was 6.78 (range 3-21 days).

Of the 32 patients who were colonized by E-ESBLs in the digestive tract, 68.75% (N=22) were also colonized or infected by E-ESBLs at another body site. In contrast, among the 192 patients with no faecal colonization during their ICU stay, only 23 (12%) were infected or colonized with E-ESBLs at another body site (P ≤0.001). Consequently, faecal carriage of E-ESBLs seems to be an important risk factor for colonization or infection with E-ESBLs at other sites. For this reason, rectal swabs should be collected for all 'high-risk' patients on admission or within 48 h of admission to the ICU. Screening on admission would certainly be necessary because, in this study, 44% of the patients were E-ESBL positive within 48 h of admission to the ICU. The origin of this carriage is not documented: had these patients been hospitalized previously in the last few months or was this a cross-contamination? The first hypothesis seems more plausible because of the hospital ecology of this type of enterobacterium and because of rather persistent carriage. For 18 new cases, the acquisition of E-ESBLs could be due to colonization by an endogenous strain selected from the patient's own flora or patient-to-patient transmission via healthcare personnel.

In conclusion, these data confirm that digestive tract colonization with E-ESBLs is relatively common and that faecal carriage of E-ESBLs can be a good marker for colonization or infection with E-ESBLs at another body site. Consequently, rectal swabs should be collected for all 'high-risk' patients on admission to the ward and repeated every week until the patient's discharge from the ICU. This screening of E-ESBLs has two aims: to limit the cross-transmission of E-ESBLs by applying contact precautions for patients who have screened positive; and to establish empirical antibiotic treatment covering E-ESBLs in case of infection of a patient with prior carriage of E-ESBLs.

References


G. Christiaensα,∗
Y. Ciccarellaα
P. Damasb
M.-P. Hayetteα
P. Melina
M. Nysb
P. De Molaa

αDepartment of Microbiology, University Hospital of Liège, Liege, Belgium

βIntensive Care Units, University Hospital of Liège, Liege, Belgium

E-mail address: g.christiaens@chu.ulg.ac.be
Hospital work as a major risk factor for Helicobacter pylori infection

Sir,

In a paper recently published in the Journal of Hospital Infection, Mastromarino et al. concluded that hospital work involving direct contact with patients seems to constitute a major risk factor for Helicobacter pylori infection. The finding is of potential relevance for knowledge of risk factors for infection and practical implications. However, some methodological flaws in the study make interpretation of the data difficult.

Three groups of workers at a university teaching hospital were compared: 92 staff from gastrointestinal endoscopic units (Group A), 105 general medical staff (Group B), and 52 staff from laboratories and other units (Group C). The total number of workers considered for the study was not given, so it is not known how many eligible workers did not participate or why. From the above reported numbers, it seems likely that the vast majority of the target population did not participate in the study, thus introducing a potential self-selection bias. Furthermore, Group A workers were probably over-represented compared with Group B and C workers.

Another potential bias may derive from the higher percentage of workers with a high level of education carrying a lower risk of H. pylori infection in Group A (50%) compared with Group B (30%).

A history of gastritis was reported in 26% of Group A workers, 23% of Group B workers and 17% of Group C workers. As the diagnosis of gastritis is histological, this means that a relevant proportion of workers with a mean age of 43 years had undergone an upper gastrointestinal endoscopy in the past. This high proportion of endoscopic examinations is extremely unusual in this age group, and strongly points towards self-selection bias.

Seventeen percent of Group C workers had a past diagnosis of gastritis; however, only 2% of them had a history of H. pylori infection. As H. pylori is the cause of the vast majority of cases of gastritis, it is very surprising that only a small fraction of subjects with gastritis had infection in this group, and suggests that Group C had rather unusual clinical characteristics.

Mastromarino et al. reported that 2% of Group C workers (i.e. one worker) had a history of H. pylori infection. However, six members of this group had received therapy aimed at H. pylori eradication, meaning that five workers had received pointless H. pylori eradication therapy. Alternatively, it may be argued that collection of data was inaccurate in this regard. In any case, considerations by the authors on the re-infection rate in Group C seem to be based on unreliable data.

It is unclear why Mastromarino et al. believed that 30% of the H. pylori positivity observed in Group B and C workers who underwent previous eradication treatment was due to re-infection; treatment failure is far more likely. Indeed, re-infection in adults is quite rare, whereas the success rate of eradication therapy has declined in the last years due to antibiotic resistance, and 30% treatment failure is by no means an unexpected finding.

Mastromarino et al. found a higher prevalence of infection in older subjects belonging to Group A, and no age effect was observed on prevalence in Groups B and C. They speculated that safer working habits among young personnel working in endoscopy units may be responsible for this finding. However, an increase in the prevalence of infection with age is generally found in the Western world, due to the well-known cohort phenomenon. Therefore, what is unusual is the lack of an age effect in Groups B and C, probably due to self-selection bias.

Mastromarino et al. reported a correlation between ‘gastrointestinal’ symptoms and H. pylori infection in Group A patients, without distinguishing between upper abdominal symptoms (i.e. dyspepsia), which may have a relationship with infection, and symptoms relating to the lower abdomen (i.e. irritable bowel syndrome), which bear no relationship to infection. Furthermore, they made a curious classification of symptoms, recognizing abdominal pain, dyspepsia and nausea as distinct entities. Indeed, according to the universally accepted Rome criteria, upper abdominal pain and nausea are part of dyspepsia.

No significant difference was found in the prevalence of infection between workers exposed to oral or faecal secretions and non-exposed workers. As the putative mechanism of H. pylori transmission is through oral and faecal secretion, this finding suggests that infection was acquired outside the working environment.