RESISTANCE TESTING CHALLENGES

AND SOLUTIONS
WITH EMPHASIS
ON PATIENT CARE

Medical microbiology, University hospital of Liege, Belgium

Clinical Microbiology Laboratories Current Challenges

Specimen collection

Patient's optimized management

- · Detection / method-dependant
- · Level of in vitro expression
- · Predictive value
- Microbiological & therapeutic interpretations

Specimen
Analysis:
Relevant
Pathogens

Identification AST

Cost effective & timely Decreasing resources!

A few years of wonder and then ...

INCREASE OF FAILURES

Very high levels of Resistance

emergence + spread + escalation

« Difficult to treat » patients

Some of the XXIst century-Challenges in infectious diseases

- Microorganisms
 - Increasing antimicrobial Resistance
 - Resistance determinant
 - Pathogens » evolution
- Patients and medical improvements
 - Critical care
 - Immuno-compromised
 - Nosocomial infections

The challenging pathogens

In hospital

- S.aureus (MRSA, GISA, VRSA)
- Enterococci (GRE)
- Enterobacteriaceae(ESBL, carbapenemase, FQ)
- MDR-P. aeruginosa
- MDR-Acinobacter baumanii

In community

- MDR S. pneumoniae
- CA-MRSA
- Salmonella (ESBL, FQ)
- Campylobacter (FQ, macrolides)
- Helicobacter pylori
- MDR-M. tuberculosis

Appropriate therapy saves lives

- Early inappropriate therapy
 - Increase of mortality in severe infection
- Infection with antibiotic-R bacteria
 - Increase of risk of inappropriate therapy
- Antibiotic-R organisms
 - More commonly associated with inadequate therapy
- Streamlining therapy to narrow spectrum drug
 - Saving costs

Weinstein et al. Clin Infect Dis 1997:24:584 Kollef et al Clin Infect Dis 2000: 31 (suppl. 4): 5131

Appropriate therapy saves lives

- Target empiric therapy to likely pathogens,
 - based on hospital, regional, specific epidemiology.
- Target definitive therapy to known pathogens,
 - based on accurate, quantitative S results

Who / What do we treat?

Patient ?

Disease ?

- Bug?

Main goals of anti-infective therapy

- Clinical cure of patients
- Eradicating the pathogens
- To avoid development of resistance
- To avoid transmission

By giving « supposedly » or proven effective antibiotic Choices often based on results in terms of « S » or « Non S »

SIR, bacteria are not simply « S » or « Non S »

5

- Varies over a wide range
- May be quantified by MIC
- May result in overdosing or underdosing
 - Risk of R development
 - Unnecessary costs
 - Increase morbidity/mortality
- Standard definition of Resistance

ACCURATE DETECTION of clinically & epidemiologically significant R-determinants

COST-EFFECTIVE to patient care & infection control

Are AST results clinically relevant & reliable? Therapeutic predictive values

- Many variables affecting results
 - Standardization
 - In vitro // in vivo ?
- Current breakpoints
 - S, I, R
 - NCCLS, BSAC, SFM, Japanese,

Different interpretative criteria

P. aeruginosa ATCC 27853, same MIC yet different categories

Are AST results clinically relevant - reliable? Therapeutic predictive value

- Many variables affecting results
 - Standardization / in vivo ?
- Current breakpoints
 - S, I, R
 - NCCLS, BSAC, SFM, Japanese,
 - Safety or efficacy?
 - Evolution // pharmacology-pharmacodynamics ?
 - β -lactams, aminoglycosides, FQ
- Expression of resistance? Detection?

ART vs. AST

MIC determinations and PK/PD model

Practical recommendations for PK/PD -optimized therapy

Drug class Recommendations

B-lactams -remain > MIC for at least 50 % of the time

-Fractionate the dose

Aminoglycosides -Obtain Cmax/MIC ratio of at least 8

-Administer once daily

Fluoroguinolones -Obtain a 24-H AUC/MIC ratio > 125

-Obtain Cmax/MIC ratio of at least 8

-Do not overfractionate the daily dose

-Consider lowering breakpoints for older FQ

Etc.

AST methods routinely used in Belgium (E. faecium EQC-ISP 2003)

Paper discs 25 %

Rosco tablets 50 %

« MIC » Automated system

Vitek 17.5 %

Vitek 217 %

Real MIC Etest

Vancomycin25 %

AST methods routinely used

	D.Diffusion	Vitek/Phoenix	E test
Results Cost (Invest./fct) Flexibility Pro & Contra	S, I, R Low/Low ++ Not for fastidious, False S // Breakpoints	« MIC » High/high - Workload, TAT, quality Reproducibility Sofware expert Not for +/- fastidious, Black box R expression? Limited range of MICs	Real MIC Low/very high ++ All kinds of organisms, even slow growing Large range of MICs Time consuming

19

To prevent antimicrobial R = to treat infections effectively

- Detection of Resistance
- Target optimal therapy
 - Choice of the most potent drug in class
 - Giving optimal regimen
 - To maximise effect
 - To enhance bacterial eradication
 - To minimise development of R
- Strategies using PK/PD parameters

Real MIC = one necessary component!!

pm-chu lg-04.05.13

Improvement expected for clinical microbiology lab.

- Detection of resistance
- Determination of true MICs
- To be cost effective
 - To define clinical circumstances requiring MIC
 - To identify organisms requiring MIC
 - To define organisms, phenotypes or clinical circumstances requiring specific method for detection of R

Clinical circumstances worthy of MICs

- Patients
 - ICU or other high risk patients
- Infections
 - Endocarditis
 - Meningitidis
 - Cystic fibrosis, other chronic infections, sterile site infections
 - Serious nosocomial infections

Versus

SIR adequate for trivial uncomplicated infections

om-chu lg-04.05.13

Treatment of streptococcal endocarditis

- MIC < 0.1 mg/L
 - Penicillin G for 4 weeks
- MIC 0.1-0.5 mg/L
 - Penicillin + gentamicin 2 weeks; penicillin 2 weeks
- MIC > 0.5 mg/L
 - Penicillin + gentamicin for 4-6 weeks

Organisms or type of R to detect worthy of Etest MICs R proned, invasive, virulent

- 5. pneumoniae
- N.gonorrhoeae
- Fastidious bacteria: NF GNB, GPB, etc
- Anaerobes
- Opportunist with no defined interpretative criteria
- Yeasts, fungi
- Confirmation / Detection of R
 - Penicilline (Pneumo)
 - Glycopeptides (staphylo, enterococci)
 - Oxacilline/SA
 - ESBLs, metallo-BLs

24

Enterococci AST algorithm

Urine, others **Blood or sterile site Etest/MIC** Disc **Ampicillin Ampicillin Teicoplanin** Vancomycin Vancomycin FQ **HL Gentamicin Nitrofurantoin HL Streptomycin VA** I or R **VA** R **Etest primary VA** R **Etest/MIC secondary Ampicillin** Rifampicin Vancomycin

Chloramphenicol

Linezolid - Synercid

Minocycline

Staphylococci AST algorithm

Gram positive Bacilli AST algorithm

Sterile site, pure culture
Multiple positive blood cultures

Corynebacterium sp

Bacillus sp

Etest
Penicillin
Cefotaxime
Vancomycin
FQ

Etest
Penicillin
Clindamycin
Vancomycin
FQ