Pneumococci & streptococci Testing and clinical implications of susceptibility changes

Pierrette Melin

Medical microbiology University Hospital of Liege, Belgium

Key questions

- What is the clinical importance of streptococci?
- What are their resistances to antimicrobial agents?
- What are the clinical implications for the clinical microbiology lab?

STREPTOCOCCUS PNEUMONIAE

- Lower respiratory tract infections, pneumonia
 - the single most important bacterial pathogen
- Otitis media
 - Main cause in children
 - Hearing impairment if reccurrence
- Meningitis
 - Life-threatening (children, elderly)
 - Neurologic sequelae
- Sepsis

The challenging pathogens

In hospital

- S.aureus (MRSA, GISA, VRSA)
- Enterococci (GRE)
- Enterobacteriaceae(ESBL, carbapenemase, FQ)
- MDR-P. aeruginosa
- MDR-Acinobacter baumanii

In community

- MDR -5. pneumoniae
- CA-MRSA
- Salmonella (ESBL, FQ)
- Campylobacter (FQ, macrolides)
- Helicobacter pylori
- MDR-M. tuberculosis

STREPTOCOCCUS PNEUMONIAE

- Emergence of antimicrobial resistance
 - Treatment failures
 - Increased morbidity/mortality
 - Increased duration of diseases
 - Costs

Key role for laboratory :
To recognize « Resistant » organisms !!

Global antibiotic resistance in S. pneumoniae

Non-S to penicillin

Invasive isolates non-S to penicillin in 2002 - EARSS

Global antibiotic resistance in S. pneumoniae

Non-S to erythromycin

Invasive isolates non-S to erythromycin in 2002 - EARSS

Antibiotic resistance (%) in S. pneumoniae (Blood/CSF) EARSS 1999-2002

5. pneumoniae: Mechanisms of resistance

- Resistance to Penicillin
 - Modification of Penicillin Binding Proteins
 - Qualitative & quantitative alteration of the targets
 - Transformation and/or stepwise chromosomally mediated mutations; genes < oral streptococci
 - Decreased susceptibility to all β-lactams
 - Ceph. III and amoxicillin less affected
 - Clonal spread AND local emergence
 - 50 % co-resistance to other agents

S. pneumoniae: Mechanisms of resistance

- Resistance to Macrolides
 - Alteration of ribosomal methylase (ermB gene)
 - Constitutive or inducible (D test)
 - MLS_B phenotype
 - ATP-dependant efflux pump (mefE gene)
- Resistance to fluoroquinolones
 - Chromosomal mutations of gene encoding for
 - Topoisomerase IV (parC, parE)
 - DNA gyrase (gyrA, gyrB)
 - Efflux

Susceptibility/Resistance testing methods

- Disk diffusion
 - Penicillin : NOT reliable !!
 - Oxa screen
 - NCCLS 1 μg disk (S >= 20 mm)
 - SFM 5 μg disk (S >= 26 mm)
 - No dicrimination between I and R isolates
 - False R and a few false S

Need for true MICs

S. pneumoniae: SIR and penicillin

- S
 - Susceptibility (MIC <= 0.064 mg/L) correlates
 with clinical outcome with standard dosages
- I
 - Intermediate susceptibility (MIC <= 0.12 1 mg/L) requires a high penicillin dose for clinical outcome
- R
 - Resistance (MIC >= 2 mg/L) necessitates alternative therapy

Susceptibility/Resistance testing methods

- MICs in routine
 - Automated microdilution system
 - Vitek 2 (BioMérieux)
 - Risk of underestimation of R
 - Etest
 - The easiest and affordable
 - Detects subtle decreases in S
 - Validated, « reference method »
 - Directly on Gram positive CSF

5. pneumoniae AST algorithm

or

MIC/Etest

Pen G
Amoxicillin
Cefotaxime*

Disc

Erythro (Clinda.) SXT New FQ

Disc

If Oxacillin 1μg < 20 « S >= 20 mm »

Erythro (Clinda.) SXT New FQ

Blood or sterile site

MIC/Etest

Pen G
Cefotaxime*
Meropenem
Vancomycin
New FQ if non-CSF

- Pharyngitis and asymptomatic carriage (1-70%)
- Scarlet fever
- Erysipelas
- Streptococcal pyoderma (Impetigo Contagiosa)
- Lymphangitis
- Cellulitis
- Necrotizing fasciitis
 - Myositis, pneumonia
- STSS
- Puerperal sepsis
- Endocarditis
- Postinfectious sequelae
 - Rheumatic fever, poststreptococcal glomerulonephritis

The « flesh eating » bacteria

- Therapeutic options
 - Penicillin,
 - Alternatives may include
 - Macrolides and certain cephalosporins;
 - Vancomycine for pen-allergic patients with serious infections

- Penicillin
 - GAS remain 100 % Sensitive
 - = drug of choice
 - S-testing not necessary
- <u>But</u>, reduced efficacy in severe GAS infection
 - High inoculum
 - Decrease in expression of Penicillin Binding
 Protein (PBP) by GAS in stationary phase

- In severe infections: Clindamycin more effective
 - Not affected by inoculum or stationary phase
 - Inhibits synthesis of bacterial toxins
 - Facilitates phagocytosis of GAS by inhibiting synthesis of M protein
 - Suppresses PBP Synthesis & degradation
 - Longer post-antibiotic effect/penicillin
- Resistance to Macrolides (+/- 10%)
 - Alteration of ribosomal methylase (ermB gene)
 - MLS_B phenotype, constitutive
 - Efflux pump (mefA gene)

Streptococcus agalactiae

- Asymptomatic colonization
- Neonatal infections
 - EOD & LOD
- Infections during pregnancy
- Adult's infections

Risk factors for neonatal EOD

- Vaginal Colonization
- Obstetrical risks:
 - Prolonged rupture of membranes,
 Prematurity, Intrapartum fever
- GBS bacteriuria
- Previous infant with GBS infection
- Immunologic risks:
 - Low level specific IgG, etc

Gyneco-Obst.

Pediatrician

Labo

Labor & delivery ward

Intrapartum antibio-prophylaxis

(CDC 2002, Belgian HC 2003)

- Penicillin G
 - 5 millions U, IV initial dose, + 2,5 millions U IV every 4 hours until delivery
- Ampicilline
 - 2 g IV initial dose, + 1 g IV every 4 h until delivery
 - Acceptable alternative, but extended spectrum, may select R strains

Intrapartum antibio-prophylaxis In case of penicillin-allergy

(CDC 2002, Belgian HC 2003)

- Patient at low risk for anaphylaxis
 - Cefazolin
- Patient at high risk for anaphylaxis
 - Clindamycin

Therapeutic options

- Empiric
 - Ampicillin + aminoglycoside
- When confirmed
 - Penicilline + aminoglycoside (max 3-5 days)
 - Then Penicillin for 10 to 28 days

GBS susceptibility profile (Belgium)

15 à 30 %, en 🐬

50 % cMLS_B 30 % iMLS_B 20 % M

GBS Penicillin susceptibility and tolerance

No tolerance was observed:

79.3 % of isolates had an MBC/MIC = 1

19 % of isolates had an MBC/MIC = 1.5

1.7 % of isolates had an MBC/MIC = 2

Streptococcus « viridans »

- Bacteremia
- Endocarditis
- Nosocomial infections

β-hemolytic streptococci and streptococcus « viridans »

- Tolerance to β-lactams
 - High MBCs despite low MICs
- Progressive decreases in S to Penicillin in β-hemolytic streptococci
- Pen R in viridans group
- Increasing macrolide, trimeth/sulfa and FQ R

MICs needed for serious infections or critical patients

β-hemolytic streptococci and streptococcus « viridans »

- Disc diffusion
 - Penicillin and FQ
 - Only for β-hemolytic streptococci
- Microdilution and automated systems
 - Growth supplement, CO2, etc
 - Not adapted, except for GBS
- Etest
 - Easy, affordable, convenient
 - Media and atmosphere adapted
 - Detects subtle decreases in S
 - Directly on Gram positive CSF

β-hemolytic and viridans streptococci AST algorithm

Blood or sterile site or « critical » patient

GAS, GBS, GCS & GGS large colonies

<u>Disc</u>

Pen G*
(Cefotaxime**)
Erythromycin
(Clindamycin)
(New FQ)

MIC/Etest

Pen G*
(Cefotaxime**)
Erythromycin
Clindamycin
Vancomycin
(New FQ if non-CSF)

* Pen S = β-lactams S ** or Ceftriaxone