

Centre Hospitalier *Universitaire* de Liège

The microbial diagnosis of infective endocarditis (IE)

Pierrette Melin Medical Microbiology

Introduction

- Duke criteria for diagnosis
- Review of microbiological investigation of IE
- Key points
- Conclusion and perspectives

IE - Introduction

- High morbidity and mortality
 - No decrease of incidence
 - Progressive changes of risk factors
 - Classic risk factors
 - New risks
 - IV drug use
 - Selective valve in elderly patients
 - Use of prosthetic valves
 - Nosocomial diseases
 - Haemodialysis patients
 - Newly identified pathogens difficult to cultivate

IE - Introduction

Evolution of antimicrobial resistance

- Multidrug R Streptococcus viridans
- MRSA and CA-MRSA
- VISA
- VRE
- Aminoglycoside high level R Enterococci

Challenge for a successful outcome : Diagnosis and subsequent treatment

: Diagnosis of IE Modified Duke criteria

- Major criteria
 - Blood culture
 - Positive blood cultures (≥2/2) with typical IE microorganisms (viridans streptococci, S.bovis, HACEK gp, S.aureus, or community acquired enterococci in the absence of primary focus)
 - Persistently positive blood cultures defined as 2 culture sets drawn >12 h apart, or 3 or most of 4 culture sets with the first and last separated by ≥ 1 h
 - Single positive culture for C.burnetii or IgG titre against phase I > 1:800
 - Evidence of endocardial involvement
 - Positive echocardiogram for IE

: Diagnosis of IE Modified Duke criteria

- Minor criteria
 - Predisposing conditions
 - Fever (T° ≥ 38°C)
 - Risk factors
 - Etc.
 - Microbiological evidence:
 - Positive blood cultures, but not meeting major criteria; or
 - Serological evidence of active infection with plausible microorganism
 - (Echocardiogram consistent with disease but not meeting major criteria)

: Diagnosis of IE Modified Duke criteria

- Diagnosis
 - Definite
 - Pathology or bacteriology of vegetations, major emboli; or
 - Intracardiac abscess specimen; or
 - Two major criteria; or
 - One major and three minor criteria; or
 - Five minor criteria
 - Possible
 - One major and one minor; or
 - Three minor criteria
 - Rejected
 - Firm alternative diagnosis; or
 - Resolution after < 4 days antibiotherapy; or</p>
 - Etc.

pm-chulg sbimc 10.05.2007

: Diagnosis of IE Modified Duke criteria

- Sensitivity
 - 66 100 % in selected cohorts
- Limitations
 - Negative blood culture
 - 5 20% of cases
 - Echocardiography inconclusive

!! RAPID ACCURATE DIAGNOSIS ESSENTIAL !!

For early treatment

Decrease of complication rates - surgery - mortality

Microbiological diagnosis

Conventional culture based

- Blood culture
- Valvular material, embolic tissue, abscess debridement,
- Id & susceptibility
- Serological tests
- Molecular based techniques
 - Identification ; resistance genes
 - Specimen
 - Blood
 - Valvular material
 - Isolates from culture

Microbiological diagnosis Blood cultures

The most important available laboratory diagnostic test

- The best method to provide live bacteria
 - For identification
 - For susceptibility testing
- Usually, recovery of etiologic agent
- 5-20 % of blood culture-negative IE

Microbiological diagnosis Blood cultures

1 - 10 microorganisms/ml until treatment is initiated.

- Timing
 - 3 sets
 - within first 12-24 h ; > 1 h apart ; different sites
 - Or within 2 h if acute IE, before antibiotherapy
 - Further blood cultures
 - If patient febrile or unwell under treatment
- Collection
 - Aseptic technique (imperative)
 - Arterial blood not superior to venous samples
 - Volume : minimum 20 ml/set (adult)
 - 1 aerobic and 1 anaerobic bottles, or
 - 2 aerobic bottles

pm-chulg sbimc 10.05.2007

Introduction Duke criteria	Microbiological diagnosis
Laboratory Key points Conclusion	Blood cultures

Patterns of positivity in successive BC evidence of the diagnostic importance of separate cultures (Weinstein et al 1983, Rev InfectDis 5:35-53)

Microbiological diagnosis Blood cultures

Standard

- Automated continuous monitoring systems
- Improved compared to the past
 - No one suited for the detection of all blood pathogens
- Improvement
 - Media with absorptive resins ...
- Evidence
 - Length of incubation
 - 5 days incubation ; no further prolonged incubation
- Specific methods
 - Lysis centrifugation techniques
 - Prior antibiotherapy
 - Fastidious or slow growing microorganisms

Automated continuous monitoring blood culture system

Microbiological diagnosis Blood cultures

Prolonged incubation and extensive subculturing do not increase recovery of clinically significant microorganisms from standard automated blood cultures, EJ Barron, JD Scott, LS Tompkins, CID 2005:41

- 215 patients believed to have had IE
 - 3 sets of 20ml BC (BACTEC aer+ana)
 - Prolonged incubation of culture: 21 days
 - Subcultures at days 3 and 10 on 5-6 specific media/bottle
 - Acridine orange smear at days 3 and 10
 - 4 lysis tube, Isolator system
 - Only 3 clinically relevant results (2 mycobacteria, 1 Legionella)

- All other patients (14,000 BC)
 - 2 sets of 20ml BC (BACTEC aer+ana)
 - 5 days incubation
 - Subcultures of positive vials
 - 24 HACEK group organism recovered
 - 98% of all positive BC detected by day 4

Microbiological diagnosis Blood cultures

Emerging data indicating that extended incubation of bloodcultures has little clinical valueMP Weinstein, CID 2005:41From

- Cockerill et al, CID, 2004;38 ; Bhally, Weinstein et al, IDSA , 2004 ; Reller, Duke university, 2005 ; Etc.
- Objective evidence that prolonged incubation of blood cultures for > 5 days is unnecessary for the detection of HACEK bacteria when a modern, automated, continuous-monitoring blood culture system is used
- 2. Extended incubation of BC for patients with suspected IE due to HACEK bacteria or other fastidious organisms has no clinical utility and should not be done

Microbiological diagnosis Blood cultures

Emerging data indicating that extended incubation of bloodcultures has little clinical valueMP Weinstein, CID 2005:41

- 3. Alternatives to extended incubation
 - Better diagnostic methods for specific microorganisms
 - Lysis centrifugation tube for dimorphic fungi
 - Special broth media or Lysis centrifugation tube for mycobacteria
 - Molecular amplification for some microorganisms

Microbiological diagnosis Blood cultures

Diagnostic challenge

- Negative blood culture
 - 5 20 % of cases
 - Prior antibiotherapy !
 - Fastidious or atypical microorganism
 - Suboptimal blood collection
 - Volume
 - Timing
 - Temperature
 - Transport to the lab and placing in instrument

Microbiological diagnosis Blood cultures

Negative blood culture

- Prior antibiotherapy !
 - Recovery of bacteria reduced by 35-40 %

Washington JAC 1987;20 Hoen et al CID 1995;20 Badour et al Circulation 2005

- Recovery of a microorganism is dependent on
 - susceptibility of the organism, and
 - duration & nature of previous ATB

Tunkel, Kaye NEJM 1992;20

Microbiological diagnosis Blood cultures

Prior antibiotherapy

- Improvement for recovery
 - Withholding antibiotics to achieve a positive BC
 - No data available
 - 2 to 4 days if ...
 - Special procedures:
 - Inactivating antibiotics in culture media
 - Dilution to 1:5 or 1:10
 - Absorptive resins or activated charcoal particles
 - Lysis centrifugation techniques
 - PCR amplification 16S ribosomial RNA gene

Microbiological diagnosis Blood cultures

Negative blood culture

- 5 20 % of cases
- Prior antibiotherapy !
- Fastidious or atypical microorganism
 - Bartonella spp; Tropheryma whippelii; Gemella, Coxiella, Chlamydia; HACEK group and nutritionally deficient Streptococcus spp; Legionella spp; mycobacteria
 - Fungi, including *C.albicans* and *Aspergillus* spp

→ Specific procedures

- Culture-based
- PCR-based

Microbiological diagnosis

Resected valves or biopsy specimens

- Conventional cultures
 - Infrequently positive (15%)
 - Could be helpful and efficient
 - Large number of organisms
 - False positive
 - Use of appropriate medium
 - Sometimes guided by positive serologic tests results
 - C. burnetii, Brucella spp, Legionella spp, etc
- Histologic testing, specific staining
 - More reliable indicator of presence of microorganisms
- Cell culture
- PCR amplification

Cornerstone of therapy : bactericidal antibiotics

- Choice based on AST
- Minimum Inhibitory Concentrations (MIC)
 - Principal drugs / infecting pathogen
- Availability of interpretive criteria
 - New guidelines from CLSI for AST of « infrequently isolated or fastidious bacteria »
 - CLSI M45-A, May 2006
 - Guidance for the most relevant drugs to test and report on specific organisms

Microbiological diagnosis AST - CLSI M45-A, May 2006

 « For infrequently isolated or fastidious bacteria » Gram positive

Abiotrophia and Granulicatella species

Bacillus species (excluding B.anthracis)

Corynebacterium species

Erysipelothrix rhusiopathiae

Lactobacillus species

Leuconostoc species

Listeria monocytogenes

Pediococcus species

Gram negative

Aeromonas hydrophila complex and Plesiomonas shigelloides

Campylobacter jejuni/coli

HACEK group

Moraxella catarrhalis

Pasteurella species

Vibrio species (excluding V.cholerae)

Microbiological diagnosis Serologic testing

- Serologic tests included as diagnostic criteria (Duke)
 - For culture negative BC, antibody determination against
 - C.burnetii (IF)
 - Bartonella spp (IF)
 - Legionella pneumophila (IF)
 - Chlamydia spp (IF, FC, ELISA)
 - Brucella melitensis (agglutination)
 - Mycoplasma pneumoniae (ELISA)

Microbiological diagnosis Key points

Starting IE microbiological diagnostic kit

- 3 Blood culture sets (volume !)
- Blood tube for further serological tests
- Blood tube for further PCR tests)
- Standard BC: 5 days incubation
 - BC with most microorganisms Positive < 48 h</p>
 - 98% of Positive BC at 4 days
- Team discussion with physician
- Saving all blood culture isolates
 - Further characterization, comparison or MICs determination

Conclusions & perspectives

Positive blood culture

- Major criterion for diagnosis
- Key to identifying
 - Etiologic agent
 - Optimal antimicrobial regimen
- Culture-negative endorcarditis
 - Diagnostic challenge
 - Future major criteria??
 - Serological tests and PCR-based tests for difficultto-cultivate organisms
 - Strict interpretive criteria