Decontamination of emerging resistant pathogens

Pierrette Melin
Medical Microbiology
University hospital of Liège
Introduction

Purpose of decontamination

Special infectious agents
- Bioterrorism, *Bacillus anthracis*
- Antibiotic-Resistant organisms and emerging pathogens, *Clostridium difficile*
- TSE agents (prions)

Conclusion
« Chain of infection »

- Pathogen (viability, virulence, dose)
- Reservoir (source) of pathogen
- Mechanisms of transmission
- Portal of entry
- Susceptible host
- Portal of exit

Introduction
Decontamination
Special agents
Conclusion
Environmentally mediated infection transmission

- Directly or indirectly
 - From environmental sources
 - Air
 - Contaminated fomites
 - Medical/laboratory instruments
 - Aerosols
 - To patients in hospital
 - To laboratory/hospital staff

Introduction
Decontamination
Special agents
Conclusion
Environmentally mediated infection transmission

- In the laboratory setting
 - Relatively rare events
 - High concentrations of pathogens: common
 - Conventional cleaning procedures
 - Reduction of environmental microbial contamination
 - Frequent use of sterilization (as steam autoclaving)
 - Usually unnecessary overkilling and expense
 - Need for a rational basis for decontamination
 - Spill control plan
 - Housekeeping procedures
 - Space decontamination requirements and procedures
In the microbiology laboratory

Purpose of decontamination

- To protect
 - the laboratory worker
 - those who enter the lab
 - those who handle laboratory products away from the lab
 - the environment

- To render safe to handle
 - An area, a device, an item or material

- To reduce the level of microbial contamination
 - To eliminate the risk of transmission of infection

Introduction
Decontamination
Special agents
Conclusion
Bioterrorism, December 2001, USA

- 22 confirmed cases of anthrax
- Press and general public
 - Fear and misunderstanding of the principles of sterilization and decontamination

Do weapons of biological warfare have « Herculean properties »? Are new or modified disinfection/sterilization procedures needed to kill them?
Conventional disinfection and sterilization procedures
 - More than adequate to kill \textit{B. anthracis}
 - Quick killing results
 - No need to extend sterilizing cycles

Normal infection control precautions
 - Adequate to care for “anthrax” patients
 - Do not have spores in biological specimens but vegetative cells

Government building or post office
 - Same principles of decontamination
 - Application of germicidal agents more difficult (physical logistics)
Anthrax is unique

- A bacterial spore, more resistant

All other potential weapons for biological warfare

- Vegetative bacteria or viruses
- Susceptible to common array of chemical germicides
Antibiotic-resistant organisms & emerging pathogens

- Background
 - Outbreaks of disease
 - Newly discovered microorganisms
 - Microorganisms with acquired resistance to antimicrobial agents

 - Disease control strategies
 « as if » agents extraordinary R to commonly used sterilization/disinfection procedures

SARS-associated coronavirus, HIV, Hepatitis B, Ebola virus, multi- R M.tuberculosis, Vancomycin-R enterococci and MRSA
Antibiotic-resistant organisms

- Methicillin Resistant *Staphylococcus aureus* (MRSA)
 - Usually highly R to antibiotics
 - Spread worldwide
 - No increased R to disinfectants commonly used in hospitals

- Antibiotic-resistant Gram negative bacilli
 - *P. aeruginosa*, *Klebsiella* and *Enterobacter* spp, *Serratia marcescens* and *Acinobacter* spp
 - Infection problems
 - Little evidence of increased R to disinfectants commonly used in hospitals
Antibiotic-resistant organisms & emerging pathogens

No relationship between
- Ability to cause serious and fatal infections
- Resistance to antimicrobial agents used for therapy
- Innate resistance to chemical germicides or sterilization

And

No need to change current protocols
- Major exceptions to the rule
 - Clostridium difficile
 - Prions
Introduction

- **Decontamination**
- **Special agents**
 - *C. difficile*
- **Conclusion**

Clostridium difficile

- *C. difficile*-associated diarrhea and pseudomembranous colitis
 - Recent increase of incidence
 - Recent, increase of severity

- **2003, emergence of a more virulent strain**
 - Ribotype O27
 - High level of toxins
 - From North America to Europe
 - Increase of morbidity
 - Increase of mortality (4 to >13%)
 - Increase length of hospitalization
 - In hospitals, in nursing homes

Endoscopic visualization of pseudomembranous colitis,

Pseudomembranes are visible as raised yellow plaques (2-10 mm) scattered over the colorectal mucosa.
Outbreaks of *C. difficile* associated disease

Clostridium difficile-associated diarrhea in a region of Quebec from 1991 to 2003: a changing pattern of disease severity

A large outbreak of *Clostridium difficile*-associated disease with an unexpected proportion of deaths and colectomies at a teaching hospital following increased fluoroquinolone use.

CA Muto et al, Infect Control Hosp Epidemiol, 2005
Introduction

Decontamination

Special agents

C. difficile

Conclusion

Clostridium difficile

- A spore forming bacteria
- Can be part of the normal intestinal flora
- Transmission
 - Direct or indirect contact between 2 patients
 - !!! Indirect contact !!!
 - Hands of medical/nursing staff
 - Via environment (floor, furnitures, bathroom, toilets, ...)
 - Via contaminated material (thermometers, bedpan, bell, ..)
 - Feco-oral route
Primary reservoir
- The symptomatic patient
 - $10^7 - 10^9$ cfu of *C. difficile* /gr of stool
 - Within 24 hours, environment massively contaminated

Secondary reservoir
- The environment

Spores
- Survival for several weeks
- Highly R to heat, dehydration
- HIGHLY R to chemical disinfection
Belgian guidelines for control and prevention of *C. difficile* associated diseases in hospital and nursing homes

Superior health Council of Belgium Draft of CSS n°8365, submitted in 2007

Prevention of *C. difficile* associated disease

To prevent horizontal transmission

- **General precautions**
 - Hand hygiene, hydro-alcoholic solution (+/- washing with soap)

- **Additional precautions if Cd disease**
 - Individual room
 - Gloves for patient care and contact with his environment followed by soap washing + hydroalcoholic solution

- **Additional precautions if uncontrolled outbreak of Cd disease**
 - Gloves for every patient care (in the ward) and contact with his environment followed by soap washing + hydroalcoholic solution
Belgian guidelines for control and prevention of *C. difficile* associated diseases in hospital and nursing homes

Cleaning and disinfection of environment

- **Chemical disinfectants**
 - Activity of bleach and some chlorinated compounds
 - ≥ 1000 to 5000 ppm of Chlorine
 - Bleach
 - Tablets of sodium dichloroisocyanurate (NaDCC)
 - Some non-chlorinated hospital disinfectants favor sporulation
 - Practical recommendations for preparation of solutions
 - H_2O_2 spray: sporicidal activity to confirm for room disinfection

- **Recommendations**
 - Environment (see next slide)
 - Linen, cloth
 - Crockery, dishes
Prevention of *C. difficile* associated disease

<table>
<thead>
<tr>
<th></th>
<th>NO OUTBREAK</th>
<th>OUTBREAK PERIOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily cleaning and disinfection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor</td>
<td>Detergent</td>
<td>Sodium hypochlorite 1000/5000 ppm 1x/day</td>
</tr>
<tr>
<td>Surfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bathroom toilet</td>
<td>Sodium hypochlorite 1000/5000 ppm 1x/day</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Final cleaning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor</td>
<td></td>
<td>Sodium hypochlorite 1000/5000 ppm</td>
</tr>
<tr>
<td>Surfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bathroom toilet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Thermodisinfection or Sodium hypochlorite 1000/5000 ppm</td>
<td>Sodium hypochlorite 1000/5000 ppm 1x/day</td>
</tr>
<tr>
<td>Utility sale</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sodium hypochlorite 1000/5000 ppm 1x/day if ...</td>
<td>Sodium hypochlorite 1000/5000 ppm 1x/day</td>
</tr>
</tbody>
</table>

Introduction

Decontamination

Special agents

C. difficile

Conclusion

- Sodium hypochlorite 1000/5000 ppm 1x/day
- Sodium hypochlorite 1000/5000 ppm
- Thermodisinfection or Sodium hypochlorite 1000/5000 ppm
- Sodium hypochlorite 1000/5000 ppm 1x/day
Transmissible spongiform Encephalopathy agents (Prions)

- Prions
 - Proteinaceous infectious particles
 - No nucleic acids
 - Abnormal pathogenic isoform of a normal cellular protein
 - The PrP or prion protein
 - Designated PrPSc (Sc for scrapie)

- Scrapie
 - Prototypic prion disease

- Other prion diseases
 - Transmissible Spongiform Encephalopathies (TSEs)
 - Neurodegenerative diseases of humans and animals
 - Fatal issue, no cure

- Prion diseases
 - Infectious, inherited and sporadic illnesses
Transmissible spongiform encephalopathy agents (Prions)

- Heightened concerns about safety issues
 - Potential transmission of scrapie
 - Through contaminated foodstuffs
 - 1991, BSE epidemic in the United Kingdom
 - More recently, link between BSE and the new variant of CJD

- Profound reassessment of public health policy
 - Worldwide
 - Prion-associated risks to the human population
 - Recommendations influenced by the invariably fatal outcome of CJD infection
 - To sort out the truth from the myth
 - To sort out the legitimate from the unreasonable
 - To provide rationale for actions to be implemented

Introduction
Decontamination
Special agents
TSE agents
Conclusion

Past decade

pm-chulg - 11.12.07 - BBP
Creutzfeldt-Jakob disease CJD

- **Familial CJD**
 - Inherited

- **Sporadic CJD**
 - Spontaneous conversion of PrP

- **Iatrogenic CJD**
 - < prion contaminated products derived from human tissues
 - Dura mater grafts
 - Pituitary-extracted human growth hormone
 - < surgical instruments or medical devices exposed to contaminated tissues

- **Variant CJD**
 - Link between BSE and new variant of CJD (vCJD)
 - BSE < consumption of contaminated foodstuffs
Care of patients with human prion disease

- No evidence for contact or aerosol transmission from one human to another
 - Standard precautions for HIV, hepatitis = adequate
 - However infectious under particular circumstances
 - Cannibalism in New Guinea (Kuru)
 - Iatrogenic CJD
 - Two recent incidents of transfusion related to vCJD

- Surgical procedures, including brain biopsy
 - Should be minimized in suspected/confirmed CJD
 - Transmission not documented through contact
 - with blood, CSF, intact skin or mucous membranes
 - Recommendations for sterilization of instruments
Inactivation of prions

Extreme resistance to conventional procedures

Need to combine ≥ 2 methods to enhance level of « sterility » assurance

Recommended methods (WHO)

- Steam autoclaving at 134°C - 18 min, or 6 successive cycles of 3 min
- Soaked in sodium hypochlorite (NaOCl) 20,000 ppm, for 1 h at room T°
- Soaked in 2 N sodium hydroxyde solution (NaOH), for 1 h at room T°
Inactivation of prions

More or less active

- Soaked in formic acid 96 % for 1 h,
- Soaked in sodium dodecylsulfate (SDS) 10% for 30 min
- Soaked in 4 M guanidine thiocyanate for at least 1 h or a night

To be used in very specific settings
eg, SDS combined with autoclaving for 15 min: complete inactivation of vCJD bound to stainless steel wires = basis of a non-corrosive treatment
Inactivation of prions

Inactive methods!

- Dry heat
- Steam autoclaving at 121°C for 15 min or 134°C for 3 min (1 cycle)
- Ethylène oxyde sterilization
- Disinfectants like
 - Glutaraldéhyde
 - Formalin (Anatomo pathologic preparation still infectious)
 - Phenols, alcohols, peracetic acid, H_2O_2, etc
 - Radiations (UV, γ, β), microwaves
Promising methods under investigation

- Ozone
- Gaz plasma sterilization with H_2O_2 alone or in combination with a disinfecting procedure (Sterrad)
- Peracetic acid (Steris)
Practical approach for different situations

- Definitions of cases
- Staff
- Environment
- Surgical rooms
- Autopsy room
- Biopsy, endoscopy
- Accidental exposure
- Sterilization department
- Dental procedures
- Laboratory measures
TSE agents

Conclusion

- Existing knowledge still incomplete
- Extreme resistance to conventional inactivation procedures
- Uncomfort for recommendations
 - Highly conservative precautionary measures
- For a long time, lack of sensitive tests to detect prions
- From epidemiological data, worldwide
 - Classical CJD prions
 - Not transmitted from human-to-human through blood or derivatives
 - vCJD
 - Situation substantially different
 - Under continuing review