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Abstract

This paper focuses on the study of
the error composition of a fuzzy deci-
sion tree induction method recently
proposed by the authors, called soft
decision trees. This error may be ex-
pressed as a sum of three types of
error: residual error, bias and vari-
ance. The paper studies empirically
the tradeoff between bias and vari-
ance in a soft decision tree method
and compares it with the tradeoff of
classical crisp regression and classifi-
cation trees. The main conclusion is
that the reduced prediction variance
of fuzzy trees is the main reason for
their improved performance with re-
spect to crisp ones.
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1 Introduction

Fuzzy decision tree induction is a combination
between fuzzy reasoning and automatic learn-
ing based on decision tree induction. It is a
model concerned with the (automatic) design
of fuzzy if-then rules in a tree structure. It is
used in classification problems ([1, 7, 6, 12])
in most of the cases but sometimes also in re-
gression problems ([10]).

The introduction of the fuzzy environment in
the decision tree induction technique has been
suggested within the fuzzy decision tree com-
munity for three reasons: i) in order to enlarge
the use of decision trees towards the ability to

manage fuzzy information in the form of fuzzy
inputs, fuzzy classes, and fuzzy rules manipu-
lation, ii) in order to improve their predictive

accuracy and respectively iii) in order to ob-
tain reduced model complexity.

Building a fuzzy decision tree model is in
most of the literature solely a question of
tree growing. We speak about a top-down
induction either as a crisp tree that after-
wards is fuzzified, or as a tree that directly
integrates fuzzy reasoning during the growing
phase. The numerical inputs must be fuzzified
(transformed from continuous values to fuzzy
values) and this fuzzification step is rarely au-
tomatic. There are approaches that consider
also a pruning stage after growing in order to
tradeoff better the model to data. A few au-
thors have implemented after growing, also a
global optimization phase of some parameters
of the model. A global optimization aims at
tuning the parameters of the model not any-
more based on local learning samples but on
the whole learning set and the already identi-
fied structure of the tree.

We have proposed, explained and validated
in reference [8] a complete fuzzy decision tree
technique, called soft decision tree induction.
The main objective of the present paper is to
verify quantitatively the conjecture that the
accuracy improvement of soft vs crisp trees is
essentially a consequence of the reduced vari-
ance of soft trees with respect to crisp ones.

The paper is organized as follows. Sec-
tion 2 explains intuitively the soft decision
tree (SDT) method. Section 3 defines the
bias-variance tradeoff in a SDT. Section 4
presents the experimental results concerning
the bias-variance tradeoff in a SDT and sec-



tion 5 ends the paper with some conclusions.

2 Soft decision tree induction

A soft decision tree is a method able to par-
tition the input space into a set of rectangles
and then approximate the output in each rect-
angle by a smooth curve, instead of a constant
or a class like in the case of crisp tree-based
methods. A soft tree is an approximation
structure to compute the degree of member-
ship of objects to a particular class (or con-
cept) or to compute a numerical output of
objects, as a function of the attribute values
of these objects. The goal is to recursively
split the input space into (overlapping) sub-
regions of objects which have the same mem-
bership degree to the target class (in the case
of classification problems) or the same out-
put value (in the case of regression problems).
As in any tree-based approach, the hypothesis
space of a soft decision tree model is a family
of structures. A soft decision tree structure
is determined by the graph of the tree and
by the attributes attached to its test nodes.
The parameters in all the test nodes together
with the labels of all the terminal nodes repre-
sent the parameters of the tree-based model.
There is a search over both structure and pa-
rameter spaces so as to learn a model from
experience.

We now give an overview of our SDT
method1. The process starts by growing a
“sufficiently large” tree using a set of objects
called growing set GS. Tree nodes are succes-
sively added in a top-down fashion, until stop-
ping criteria are met. Then the grown tree
is pruned in a bottom-up fashion to remove
its irrelevant parts. At this stage, the hold-
out technique is used which makes use of an
another set of objects, called the pruning set
PS. Next, a third step could be either a refit-

ting step or a backfitting step. Both consist of
tuning certain parameters of the pruned tree
model in order to improve its approximation
capabilities further. These steps may use the
whole learning set LS = GS ∪PS or only the
growing set GS. At the end of every inter-
mediate stage, the obtained trees (fully de-
veloped, pruned, refitted or backfitted) may

1To save space we recall only the basics and ask
the reader to kindly refer to [8] for details.

be tested. A third sample, independent from
the learning set, called test set TS, is used
to evaluate the predictive accuracy of these
trees.

The growing procedure of a SDT follows the
same principles as the crisp decision tree in-
duction, only the partitioning procedure is
different, being a fuzzy partitioning and not
anymore a crisp partitioning. In our method,
its objective is to determine in a node the best
attribute a for splitting, the cutting point pa-
rameter α, the degree of fuzziness β of the
fuzzy partitioning and the labels of the two
successors of the node. For this, an error
function of squared error type adapted to the
fuzzy framework is minimized. The strategy
consists in decomposing the search into two
parts: first, searching for the attribute a and
threshold α at fixed null β, as if the node
would be crisp; for this, strategies adapted to
the fuzzy case from CART [2] regression trees
are used; second, with the found attribute and
threshold α kept frozen, searching for width
β by Fibonacci search, and for every β value,
updating labels in the successor nodes by lin-
ear regression formulas.

Next, the pruning stage aims at finding a sub-
tree of the large tree obtained at the growing
stage, which presents the best error computed
on the pruning set. The strategy consists of
three steps: firstly, all the test nodes of the
full tree are sorted by increasing order of their
relevance to the tree error, secondly, the nodes
from the previous list are removed one by one
in the established order and the result is a
sequence of subtrees. And finally, the best
subtree in terms of error is selected by the
so-called “one-standard-error-rule”.

Then, the objective of the refitting step, given
a tree and a refitting set of objects is to op-
timize the labels in all the terminal nodes. It
is a linear regression optimization problem, in
practice fast and efficient in terms of accuracy.

A more complex optimization stage is back-

fitting whose objective, given a tree and a
backfitting set, is to find not only the labels
in terminal nodes but also the parameters
α and β in all the test nodes, by minimiz-
ing a squared error function. The strategy is
to use Levenberg-Marquardt non-linear opti-
mization technique, where only partial deriva-



tives have to be computed, not also second
order derivatives. The delicate part of the
optimization stage is the computation of the
partial derivatives. We developed for this pur-
pose a kind of backpropagation algorithm lin-
ear in the tree complexity. Nevertheless, the
backfitting process is more time consuming
than refitting.

Growing and pruning steps are a phase of
structure identification using a local approach
(which means node by node), whereas refit-
ting and backfitting are optimizations of the
model parameters done in a global manner
(which means all the nodes at the same time).
In the results presented in this paper, the re-
fitting and backfitting set of objects are ex-
actly the growing set used.

3 Bias-variance tradeoff

If we consider a regression learning algorithm,
the mean squared prediction error of an au-
tomatic learning method may be expressed as
a sum of three types of error: residual error,
bias and variance.

MSEalgo = resid err+bias2algo+varalgo. (1)

The residual error resid err represents the ex-
pected error of the Bayes model, thus the min-
imum error one can get by training a model of
unrestricted complexity, hypothesis space and
amount of data concerning the learning prob-
lem. Given a learning problem and no matter
the learning algorithm used and the learning
sample, this is the lowest error one can get in
the best case. It reflects the irreducible pre-
diction error and is beyond control.

The bias term bias2algo reflects the persistent
or systematic error that the learning model is
expected to have on average when trained on
learning sets of the same finite size and is in-
dependent of the learning sample. Generally,
the simpler the model, the higher the bias.

The variance term varalgo reflects the variabil-
ity of the model induced by the randomness
of the learning set used. It reflects the sen-
sitivity of the model estimate to the learning
set. A too complex model is likely to have a
high variance and the model may exhibit what

we call an overfitting problem, an over adjust-
ment of the model parameters to the learning
data.

From eq. (1) one may remark the interest
in reducing as much as possible both bias
and variance terms, given that the term of
the residual error cannot be reduced for a
given problem. Since generally, in decision
tree models, reducing variance increases bias
and vice versa, there is a bias-variance trade-

off in order to improve the error prediction of
the models.

In the case of crisp decision and regression
trees, many experimental studies [5] have
shown that variance is the most important
source of error in the vast majority of prob-
lems. Even a small change of the learning
sample may result in a very different tree and
this results in a high variance and hence small
accuracy.

There are mainly two ways to reduce the vari-
ance in decision trees and obtain a better
tradeoff. Firstly, there are different ways to
reduce the model complexity or to control it.
Pruning is such a way. Its serious drawback
is that it does not succeed always to improve
the accuracy, because together with the vari-
ance reduction appears also a bias increase.
Secondly, recently, aggregation methods are
well established as a way to obtain highly ac-
curate classifiers by combining less accurate
ones, but unfortunately loosing also in inter-
pretability. The most well known aggregation
techniques are bagging and boosting. We will
show in this paper that a third possible way
to reduce variance in decision trees is the soft
decision tree induction method.

3.1 Bias and variance estimation of

SDTs

We consider that a learning set LS used in or-
der to construct a soft decision tree is a sample
of independent and identically distributed ob-
jects drawn from the same probability space.
Let us then denote by ŷLS(o) the output esti-
mated by a SDT built from a random learning
set LS of size N at a point o ∈ U of the uni-
verse U of objects. Then the global variance

of the SDT learning algorithm can be written



as

varSDT = EU{ELS{(ŷLS(o)−ELS{ŷLS(o)})
2}}
(2)

where the innermost expectations are taken
over the distribution of all learning sets of size
N and the outermost expectations over the
distribution of objects.

The global bias of the SDT algorithm reflects
the systematic error that the SDT is having
in average with respect to the Bayes model
when trained on learning sets of the same fi-
nite size. The Bayes model represents the best
possible model one can get for a learning prob-
lem according to a mean squared error min-
imization. Since for the analysed problems
(datasets), the Bayes model is not known a
priori, the bias of the SDT algorithm can-
not be calculated separately from the resid-
ual error only from data. However, in order
to study the global bias relative evolution, we
compute the sum of the residual error and bias
terms, since the residual error is a constant
term:

bias2SDT + resid err

= EU{(y(o) − ELS{ŷLS(o)})
2}.

(3)

Denoting by αLS the threshold parameter at
a given node of a SDT built from a random
learning set LS of size N , the parameter vari-

ance of the SDT reflects the variability of the
parameter induced by the randomness of the
learning set used. It can be written as

varα = ELS{(αLS − ELS{αLS})
2}. (4)

Experiments. In order to compute the ex-
pectations over LS, ELS , we should draw an
infinite number of learning sets of the same
size and build SDTs on them. We make the
compromise of randomly sampling without re-
placement the available learning set LS into
a finite number of q learning samples LSi of
the same size, i = 1, . . . , q. Notice that the
size of the sub-samples LSi should be signif-
icantly smaller than the size of the LS from
which they are drawn. For the expectation
over the input space EU we choose to sum up
over the whole test set TS.
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Figure 1: The crisp class and the fuzzy class
for OMIB data

4 Experimental study

4.1 Datasets

We show in this section results obtained on 3
datasets: gaussian, twonorm and omib. Gaus-
sian [5] is a synthetic database with 20000 ob-
jects, 2 classes and 2 attributes. Each class
corresponds to a bi-dimensional Gaussian dis-
tribution. The first Gaussian distribution is
centered at (0.0;0.0) and has a diagonal co-
variance matrix, while the second one is cen-
tered at (2.0;2.0) and has a non-diagonal co-
variance matrix. There is an important over-
lapping between the two classes. The Bayes
classifier is of quadratic shape.

Twonorm dataset [3] is a database with 2
classes and 20 attributes. There are 10000
objects generated. Each class is drawn from a
multivariate normal distribution with unit co-
variance matrix. One class has mean (a,a,...a)
while the other class has mean (-a,-a,...-a)
where a = 2

√

20
. The optimal separating sur-

face (Bayes classifier) is an oblique plane, hard
to approximate by the multidimensional rect-
angles used in a crisp tree.

The omib2 database [11] is an electric power
system database with 20000 objects that does
a transient security assessment task. A three-
phase short-circuit occurs in the system, nor-
mally cleared after 155ms. The problem out-
put reflects the system security state after
the short-circuit fault occurrence. The input
space is defined by 6 attributes representing
pre-fault operating conditions of the OMIB
system. The continuous output is defined as
the fuzzy or crisp class of figure 1. The prob-
lem is deterministic, that is why the Bayes
error rate (the residual error) is null.

2The acronym OMIB stands for One-Machine-
Infinite-Bus system.



4.2 Protocol of experiments

Each database was split into a pool set, a
pruning set PS and a test set TS. From the
pool set, multiple q growing sets GS of the
same size have been randomly chosen by sam-
pling without replacement in order to build
multiple models for each dataset. Table 1
presents the size of each set: pool set, grow-
ing set, pruning set and test set for the three
datasets. Each model has been grown on GS,
pruned on PS, tested on PS, and refitted or
backfitted on GS. In the results presented fur-
ther q = 20 models have been averaged for
the study of the global variance and q = 25
for the study of the parameter variance. The
soft decision trees have been compared with
CART regression trees and with ULG deci-
sion trees (see [2] and [11]). CART and ULG
trees were completely grown and then pruned.
CART and SDT were trained for a regression
goal (0/1 in the case of the crisp pre-classified
datasets, µ(C) in the case of fuzzily classified
ones). ULG was trained on a crisp classifi-
cation goal, classes being converted into 0/1
class-membership degrees to compute bias,
variance and mean-square errors.

Table 1: Datasets
Database Pool set GS PS TS
Gaussian 14000 100 2000 4000
Twonorm 7000 300 1000 2000
Omib 14000 500 2000 4000

4.3 Comparing SDT bias-variance

tradeoff with crisp methods

tradeoff

The global variance and bias 3 have been com-
puted for each method for the GS size of ta-
ble 1. Figure 2 shows for each dataset the
proportion of bias and variance in the mean
squared error (MSE) of each method: CART,
ULG, fully grown (F), pruned (P), refitted
(R) and backfitted (B) SDTs. We may notice
the next aspects from these graphics: SDT
in all its versions, improves accuracy with re-
spect to a crisp tree, being regression or de-
cision tree, SDTs reduce very much the vari-
ance of crisp trees, pruning step succeeds to

3What we will call further bias is in fact the relative
bias of eq. (3).

leave slightly constant bias and variance quan-
tities and refitting and backfitting steps in-
crease variance of SDTs.

Figure 2: The proportion of variance and bias
in the mean squared error

4.4 Variance and bias variation in

terms of the model complexity

We computed bias, variance and error quanti-
ties for models of different complexities. The
complexity of a tree model is given here by the
number of its test nodes. Figure 3 displays
the evolution of MSE, variance and bias with
the model complexity, for twonorm database,
for fully-grown CART and fully-grown SDT.
For a crisp tree as CART, the evolution is the
classic one: bias decreases and variance in-
creases with the complexity. And there is a
trade-off point where the mean squared error
is the best and the corresponding complexity
is the complexity of the right sized tree: about
8 test nodes. We expected to find the same
type of curve evolutions for SDTs but the re-
sult looks like this: the variance is almost con-
stant and very low, the bias is the principal
source of error, and the error always decreases
with the model complexity. Thus, the more
complex a SDT, the better the accuracy. As
the figures show, we point out that we found
the tradeoff point between bias and variance
by scanning CART regression trees up to 25
test nodes complexity. Whereas for the SDT,
models with up to 350 test nodes have been
scanned and no such point has been found.



Figure 3: Evolution of MSE, variance and
bias with the model complexity on twonorm
dataset

4.5 Fuzzy versus crisp output

definition

One very interesting property of our soft de-
cision tree algorithm is that it can reproduce
a classical crisp classification but also a fuzzy
output when such a fuzzy membership degree
to the class is given in the dataset. To show
the potential of our method in this case, we
have chosen a database where it was possi-
ble to define a fuzzy output because we had
the necessary knowledge about the problem:
the OMIB stability problem. Figure 1 shows
the definitions of both crisp and fuzzy classes.
They are both defined based on a parameter
called CCT, the critical clearing time of the
disturbance, which may be interpreted as a
degree of stability.

So if the objective is to classify situations with
respect to the threshold of 155ms, we actually
have two possibilities: either we build a (crisp
or soft) tree directly with respect to the dis-
crete 0/1 output, or we use the fuzzy output
to build a tree and then discretize its output
a posteriori.

Figure 4 represents the mean squared error

Figure 4: Crisp (left part) versus fuzzy (right
part) class on CART and SDT results and
omib database

for CART, fully grown (F), pruned (P), refit-
ted (R) and backfitted (B) SDTs, in the crisp
output case definition and in the fuzzy output
case. As we may notice, all the quantities,
MSE, bias and variance, are much decreased
by the use of fuzzy output, for all the algo-
rithms. So, when a fuzzy output is available,
it can thus be used to improve the accuracy
of the algorithms.

4.6 Variance and bias as function of

the growing set size

Figure 5 displays the evolution of MSE, vari-
ance and bias with the growing set size on
omib dataset for the backfitted version of
SDTs. As expected, both bias and variance
decrease with the growing set size. They
are almost constant and equal quantities for
medium and large sample sizes. The refitted
version of the SDTs gives the same allure of
the curves as the backfitted SDT for all the
datasets investigated.

Figure 5: Evolution of MSE, variance and bias
with the growing set size on omib dataset

4.7 Parameter variance

Some references [4] show that classical dis-
cretization methods of decision trees actu-



ally lead to very high variance of the cutting
point parameter, even for large learning sam-
ple sizes. We studied the behavior of soft de-
cision trees from this point of view by measur-
ing the variance of the cutting point param-
eter in a test node of the tree: firstly, in the
root node, and secondly, in the second level
test nodes (at depth 2).

The procedure was like follows. For each
growing set size, we built q trees (CART, ULG
and SDT). For each of these trees we kept the
α cutting point parameter of the root node of
the tree given that was corresponding to the
same attribute. Thus we obtained at most q

parameters, since not necessarily all the trees
have chosen the same attribute in the root
node. We computed the variance on these pa-
rameters.

Figure 6 displays the evolution of the cutting
point parameter variance with the growing set
size at the root node, for omib database and
the fuzzy class definition for ULG decision
trees, refitted (R) and backfitted (B) SDTs.
For this dataset, all the trees have chosen nat-
urally the same attribute in the root node.

Due to the adopted fuzzy partitioning ap-
proach, the chosen attribute in the root node
of a non-backfitted soft decision tree and its α
value will always coincide with the ones cho-
sen in the root node of a CART regression
tree. For this reason, the cutting point vari-
ance is identical for CART and refitted SDT
in the root node. Once backfitted, a soft deci-
sion tree changes its thresholds in all the tree
nodes, and thus also its parameter variance.
One may observe from figure 6 that a non-
backfitted soft decision tree, identically to a
CART regression tree, presents less param-
eter variance in the root node than a ULG
decision tree. By backfitting, parameter vari-
ance in a root node of a SDT increases with
respect to the non-backfitted version. The ex-
planation resides in the fact that by globally
optimizing, the location parameters are not
any more restricted to fall in the range [0,1]
and therefore they are more variable with re-
spect to the average.

By studying the parameter variance in the
root node of a soft decision tree, we are not
able to see the contribution of the fuzzy ap-
proach of splitting to the parameter variance

Figure 6: Evolution of the parameter variance
with the growing set size at the root node

in a whatever internal test node. Thus, we did
also an experiment where the structure of the
SDT was fixed and the complexity was settled
to 3 test nodes. The structure has been deter-
mined with an ULG decision tree built with
the whole dataset. We present here the study
for omib fuzzy output dataset. We watched
also the evolution of the parameter variance
with the growing set size.

We may notice from figure 7 that CART, refit-
ted SDT and backfitted SDT do not seem to
show a significant difference in their param-
eter variance at the second level nodes, but
they are definitely all more stable from this
point of view than the ULG method. The
conclusion of this study is that the reduction
of the global variance of SDTs (with respect
to CART) is not correlated with a reduction of
parameter variance (with respect to CART).
Thus, the fuzzy partitioning does not improve
the parameter stability with respect to a crisp
partitioning. On the other hand, a by product
of our study is that we found that parameter
variance of CART (and also SDTs) is smaller
than that of ULG.

5 Conclusions

This paper studied bias and variance of soft
decision trees. An important conclusion of
our experiments is that the improved accu-
racy of soft decision trees with respect to crisp
decision and regression trees is explained es-
sentially by a lower prediction variance. Thus,
soft decision trees are indeed another tool for
reducing variance, beside pruning and aggre-
gation techniques. However, complementary



Figure 7: Evolution of the parameter variance
with the growing set size at the second level
nodes of a soft decision tree (depth 2), for
omib fuzzy output database

studies [9] have shown that soft decision trees
do not reduce variance as much as aggrega-
tion methods do. We have pointed out also
that the variance in soft decision trees is not
influenced by the model complexity, in con-
trary to the case of crisp trees which variance
increases quickly with their complexity. We
have also highlighted the possibility to exploit
a fuzzy pre-classification of objects and shown
that this may also very significantly improve
accuracy. On the other hand, the parame-
ter variance study shows that the reduction in
prediction variance of a soft decision tree with
respect to a crisp regression tree is not corre-
lated with a reduction in parameter variance.
However, the parameter variance of CART re-
gression trees and soft decision trees is smaller
than that of ULG decision trees.
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