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RESUME. La notion de mélange de modeéles simples aléatoires est de plus en plus utilisée et avec
succes dans la littérature de I’apprentissage supervisé ces derniéres années. Parmi les avan-
tages de ces méthodes, citons I’amélioration du passage a l’échelle des algorithmes d’appren-
tissage grdce a leur aspect aléatoire et I’amélioration de I’exactitude de la prédiction des mo-
deles induits grace a une flexibilité plus élevée en ce qui concerne le compromis biais/variance.
Dans le présent travail, nous proposons d’explorer cette idée dans le contexte de ’estimation
de la densité. Nous proposons une nouvelle famille de méthodes d’apprentissage non-supervisé
a base de mélange de grands ensembles aléatoires de poly-arbres. La caractéristique spéci-
fique de ces méthodes est leur passage a l’échelle, aussi bien en terme de nombre de variables
que de données a traiter. Cette étude, exploratoire, compare empiriquement ces méthodes sur
un ensemble de probléemes de test discrets de taille et de complexité croissantes et ouvre de
nombreuses perspectives auxquelles nous prévoyons de nous intéresser.

ABSTRACT. Ensembles of weakly fitted randomized models have been studied intensively and used
successfully in the supervised learning literature during the last two decades. Among the advan-
tages of these methods, let us quote the improved scalability of the learning algorithm thanks
to its randomization and the improved predictive accuracy the induced models thanks to the
higher flexibility in terms of bias/variance trade-off.

In the present work we propose to explore this idea in the context of density estimation. We
propose a new family of unsupervised learning methods of mixtures of large ensembles of ran-
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domly generated poly-trees. The specific feature of these methods is their scalability to very
large numbers of variables and training instances. We explore these methods empirically on a
set of discrete test problems of growing size. We finally discuss possible extensions which we
plan to study.

MOTS-CLES : estimation de densité, génération aléatoire de poly-arbres, mélange de modeles.

KEYWORDS: density estimation, polytree random generation, mixture of models.




Mélanges aléatoires de poly-arbres 3

1. Introduction

L’ apprentissage des réseaux bayésiens a partir de données s’avere un probleme de
pointe depuis une dizaine d’années (Leray, 2006; Naim et al., 2007). La motivation
de ce domaine est de retrouver, a partir d’un ensemble de données d’apprentissage,
un modele qui représente le mieux le modele sous-jacent et qui pourrait ensuite étre
utilisé dans le cadre de I’aide a la décision. Ce modele peut aussi étre utilisé dans le
cadre de la simulation, car il est sensé étre générateur des données observées.

Dans ce travail, nous nous intéressons de maniere générale au probleme de I’es-
timation de la densité, i.e. comment modéliser le mieux possible la distribution des
données sous-jacentes, et ce avec un modele pouvant supporter facilement le passage
aI’échelle.

Les méthodes classiques d’apprentissage de la structure d’un réseau bayésien per-
mettent de déterminer un modele optimal (souvent local) au sens d’un score ou en tant
que bon représentant des indépendances conditionnelles découvertes dans les don-
nées. Pourtant, dans le cas par exemple ou I’ensemble de données de test est relative-
ment petit par rapport a la taille du probleme, plusieurs solutions potentielles existent.
Les méthodes standards d’apprentissage de structure ne choisiront qu’un seul modele
parmi cet ensemble, alors que 1’exploitation de tous les modeles possibles permettrait
d’améliorer I’estimation de la densité de probabilité.

Nous nous intéressons donc dans ce travail a définir un modele issu en théorie
d’un mélange de toutes les structures possibles pour un probleme donné. Autrement
dit, nous nous intéressons a estimer :

p(X|D) = p(m|D) p(X|m, D) [1]

ol p(X|D) représente la loi de probabilité des variables X du probleme sachant les
données D.

L’espace des structures des réseaux bayésiens est de taille super-exponentielle
en fonction du nombre de variables du probléme. Le calcul de cette somme doit
donc se faire sur un espace plus restreint grace a plusieurs approximations propo-
sées dans (Madigan et al., 1994; Madigan et al., 1995). Certains travaux comme
ceux de (Madigan et al., 1995) utilisent une méthode d’échantillonnage comme les
MCMC pour la génération de modeles m possibles pour 1’estimation de 1’équation
[[] (Friedman ez al., 2000) propose une approche du méme type, en échantillonnant
non pas directement les modeles, mais les ordres sur les variables, et en cherchant les
modeles optimaux pour chaque ordre.

Dans cet article, nous proposons d’utiliser une méthode de mélange de modeles
simples. Nous utilisons pour cela deux approximations pour le calcul de la somme
de I’équation [I] en restreignant le calcul a un ensemble de modeles m simples (poly-
arbres).
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Nous commencerons donc par aborder le probleme général de mélange de modeles
dans la section [2] de cet article. Ensuite, le section [3]décrira notre approche a base de
mélange de poly-arbres aléatoires. L’algorithme de génération aléatoire de poly-arbres
est alors détaillé dans la section 4} Une premiere évaluation de cette approche sur
des problemes de taille et de complexité croissante est décrite dans la section [5] Ces
expériences sont les prémisses d’une étude plus poussée qui est actuellement en cours.
La section [6] nous permettra donc de tirer les premiéres conclusions de ces travaux et
surtout d’en détailler les prochaines étapes.

2. Notion de mélange de modeles

Soit un ensemble de données D pour un probleéme dont le domaine consiste en un
ensemble de variables X = (X7, ..., X,). La probabilité d’un événement (observation
x de X)) sachant cet ensemble de données D est donnée par I’espérance sur tous les
modeles possibles m pour 1’ensemble des variables ainsi que leurs paramétres 6,
(Chickering et al., 1997) :

p(x|D) = p(m|D) p(z|m, D) [2]

p(z|D, m) étant 'intégrale sur toutes les valeurs possibles des parametres 6,,, du mo-
dele m :

palm, D) = [ pla.m) p6,|m, D)0, 3]
Ainsi p(z|D) s’écrit :
p(z|D) = Zp(mlD)/P(me,m) p(Om|m, D)dby, [4]

avec p(z|0,, m) la vraisemblance de 1’observation x pour le modele m muni des
parametres 6,,, .

Notons que dans cette équation, 1’estimation de la densité de probabilité de X ne
se fait pas par I’apprentissage d’un seul modele a partir des données mais par une
somme pondérée sur tous les modeles possibles, pour tous les parametres possibles.
Toutefois, dans la pratique, il est empiriquement peu intéressant de faire un tel calcul.

Des approximations peuvent étre faites pour réduire le domaine de calcul.
(Chickering et al., 1997) montre qu’en appliquant une approximation de Laplace, I’in-
tégrale de la vraisemblance de 1’équation[3sur les valeurs des paramétres 6,,, possibles
pour un modele m peut €tre approchée par la vraisemblance en une seule valeur de

0 = 01, qui maximise p(6,,|m, D). 0,,, est dite la configuration maximum a poste-
riori (MAP) de 6,,, sachant D.

La deuxiéme approximation a faire est celle relative a la sommation sur tous
les modeles m possibles. (Robinson, 1977) a montré que le nombre de structures
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possibles de graphes en fonction du nombre n de variables est super-exponentiel.
(Friedman et al., 2000) a évoqué ’'intérét de réduire ce nombre de modeles en re-
streignant 1’espace de calcul a un ensemble GG de graphes et a discuté les différentes
propositions de la littérature pour la détermination de cet ensemble. Cette approche
est connue sous le nom de sélection de modéles.

En appliquant ces deux approximations, 1’équation [4]s’écrit alors :

p(x|D) = > p(m|D)p(x|0m, m) [5]
meG

Notons ici que les approches classiques d’apprentissage de structure essaient de
simplifier une fois de plus cette équation, en ne conservant que le modele m = m
maximisant p(m|D) : }

p(x|D) = pla|fim, 1) (6]

Cette approche de mélange de modeles est aussi a relier a une autre technique
d’apprentissage, le boosting, proposé initialement dans le cadre de la classification su-
pervisée par (Freund et al., 1995) et appliqué aux réseaux bayésiens dans le cas initial
de la classification (Choudhury e al., 2002) et pour 1’estimation de densité (Rosset et
al., 2002). Dans le cas du boosting, le mélange de modeles est obtenu de maniere ité-
rative, chaque modele étant appris sur des données ot les modeles précédents n’étaient
pas pertinents, et les coefficients de mélange sont déterminés au cours de I’apprentis-
sage.

3. Mélanges aléatoires de poly-arbres

Dans ce travail, nous proposons de restreindre I’ensemble des modeles G de
I’équation[5|a I’ensemble des poly-arbres, et plus exactement a un ensemble de grande
taille de poly-arbres générés aléatoirement.

Cette restriction de GG a I’espace des poly-arbres est guidé par des considérations de
passage a 1’échelle. Pouvoir construire et manipuler rapidement des modeles de grande
taille avec un grand nombre de données nécessite I’utilisation de modeles simples.
Ainsi, en supposant le modele déja construit, 1’algorithme d’inférence classique du
Message Passing proposé par Pearl (Pearl, 1986) ne marche que pour des arbres et
des poly-arbres. L’inférence dans des modeles plus complexes nécessite 1’utilisation
d’algorithmes d’inférence plus complexes comme Junction Tree (Jensen et al., 1990)
ou des algorithmes approchés stochastiques ou variationnels (Jordan et al., 1998).

L’espace des arbres ou celui des poly-arbres sont donc les meilleurs espaces dans
lesquels nous pourrons faire des calculs d’inférence tres rapidement. Entre ces deux
espaces, nous choisissons celui des poly-arbres, plus riche, puisqu’il permet de re-
présenter des indépendances conditionnelles impossibles a représenter par des arbres
(grace aux V-structures du type A — C' «— B).
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Notre second choix concerne 1’utilisation d’un mélange aléatoire de poly-arbres.
Ce choix a été guidé par plusieurs considérations. Tout d’abord, se restreindre a la
meilleure structure dans cet espace n’est pas une solution adéquate. La recherche d’un
arbre optimal, i.e. utiliser I’équation [6] avec G 1’espace des arbres, proposée initiale-
ment par (Chow et al., 1968) a donné lieu a un algorithme d’apprentissage de struc-
ture MWST (Maximum Weight Spanning Tree) tres rapide mais trop contraint (pas
de cycles, ni de V-structures) (Francois et al., 2003). Malheureusement les travaux de
(Dasgupta, 1999) montrent que la recherche d’un poly-arbre optimal est une alterna-
tive trop complexe pour étre intéressante en ce qui concerne le passage a 1’échelle.

(Meila-Predoviciu, 1999) utilise alors un modele de mélange, mais dans 1’espace
des arbres, en choisissant de déterminer les structures optimales de ces arbres et les co-
efficients de mélange durant I’apprentissage (en utilisant conjointement MWST pour
trouver les structures et 1’algorithme EM pour obtenir les parametres de mélange).

Ainsi, nous proposons, de notre c6té, de travailler dans 1’espace des poly-arbres,
mais de ne pas chercher a chaque fois le meilleur poly-arbre possible, en considérant
plutot un mélange de modeles tirés au hasard dans 1’espace des poly-arbres, en nous
inspirant des méthodes d’échantillonnage de modeles utilisées dans (Madigan et al.,
1995; Friedman et al., 2000).

Pour cela, nous allons générer aléatoirement un ensemble de modeles en construi-
sant une séquence P = (Py, P, ..., Pyr) de M poly-arbres.

L’estimation de la densité par ce modele de mélange sera calculée par :

M
p(x|D) = > p(P;|D)p(xlfp,, P;) [7]

i=1

Dans cette premiere étude, nous considérerons constants les coefficients de mé-
lange p(P;|D) = 1/M, ce qui nous donne finalement la formule :

1<
p(zD) = 77 > p(xlop,, P) (8]
=1

ol 6 p, sont les parametres obtenus par maximum a posteriori pour le poly-arbre F;.

4. Génération aléatoire d’arbres

La mise en ceuvre de 1’équation [§] nécessite la génération aléatoire de poly-arbres.
De plus, nous proposons dans la section [5|une série d’expériences pour essayer d’ap-
procher par ce mélange de poly-arbres des modeles de complexité croissante en com-
mencant par les chaines ou les arbres. Pour tout cela, il va nous falloir générer aléatoi-
rement différentes structures : chaines, arbres, poly-arbres. Nous avons choisi d’uti-
liser les algorithmes proposés dans (Quiroz, 1989). Ces algorithmes se basent sur les
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propriétés de codage de Priifer pour les structures d’arbres étiquetées. Ces algorithmes
nous permettent de démontrer que la génération des structures se fait selon une loi uni-
forme dans I’espace des arbres. En effet, Priifer a établit une bijection entre I’ensemble
des arbres completement étiquetés a n noeuds et I’ensemble des listes, dites de Priifer,
de (n — 2) nombres entiers dans {1,2, ..., n} (répétition autorisée).

La probabilité d’une liste dans cet ensemble est p = 1/n™~2, ce qui confirme le
théoréme de Cayley disant que le nombre d’arbres completement étiquetés a n noeuds
estn" 2,

Pour construire un arbre non dirigé a n noeuds, les étapes sont les suivantes :

1) Générer une liste a de (n—2) entiers dans {1,2,...n}. Soit a =
(al, ag, ..., an_g), eth = (1, 2, ..., n)

2) Chercher b; le plus petit entier dans b non dans a. Joindre a; a b; pour former
la premicre aréte de I’arbre. Retirer a; de a et by de b.

3) Répéter I’étape 2 jusqu’a vider la liste a.
4) Joindre les deux entiers restant dans b pour former la derniere aréte de 1’arbre.

L orientation des arétes de 1’arbre étiqueté ainsi obtenu peut se faire en utilisant
une exploration en profondeur classique a partir d’un nceud racine tiré au hasard parmi
les n noeuds du graphe. L’ordre de visite des arétes du graphe nous permet alors de
transformer 1’arbre non orienté en un arbre orienté.

La génération aléatoire d’un poly-arbre ne peut pas se faire aussi facilement.
L orientation des arétes doit étre décidée d’une fagon aléatoire selon une loi de proba-
bilité uniforme (p = 1/2) de maniere a pouvoir obtenir des V-structures non présentes
dans les arbres orientés.

La génération aléatoire d’une chaine a n noeuds peut se faire de deux manieres :
soit en tirant au hasard un ordre sur les entiers de 1 a n, le premier entier correspondant
a la racine de la chaine, soit en utilisant le codage de Prifer. En effet. la liste de
Priifer correspondant a une chaine est tout simplement une liste ne présentant pas
de répétitions. Il suffit donc de générer une telle liste, de construire la chalne avec
I’algorithme présenté ci-dessus, et d’orienter la chalne comme dans le cas d’un arbre.

5. Résultats expérimentaux
5.1. Protocole

Afin de tester notre approche, nous envisageons un ensemble de scénarii d’expé-
riences. L’objectif de tous ces scénarii est d’évaluer la qualité de I’estimation d’un
mélange de poly-arbres (équation[8]) pour des problemes plus complexes.

Pour évaluer I’intérét de notre approche dans des situations les plus variées pos-
sibles, nous proposons de générer des réseaux bayésiens de structures et parametres
variés qui nous permettront de générer des données qui seront ensuite utilisées pour
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I’apprentissage du mélange de modeles. Cette procédure nous permet ainsi de contrd-
ler 1a complexité des problemes a modéliser en choisissant respectivement des chaines,
des arbres, des poly-arbres puis des graphes orientés sans circuit quelconques.

La qualité de I’estimation de notre mélange sera estimée par la mesure de diver-
gence KL (Kullback et al., 1951) entre ce modele estimé et le modele théorique avec
lequel les données sont réellement générées.

Dans ce travail, nous ne considérons que le cas d’ensembles de données completes
pour un ensemble de variables discretes. Les parametres des poly-arbres sont estimés
par maximum a posteriori avec des a priori de Dirichlet uniformes.

Ainsi, pour un modele théorique initial (structure et parametres), une expérience
consiste en :

1) la génération avec ce modele d’un ensemble de données d’apprentissage D.

2) la génération aléatoire d’un ensemble de poly-arbres dont les parametres res-
pectifs sont déterminés a partir des données D

3) le calcul de la divergence KL entre ce mélange de poly-arbres et le modele
théorique
La taille de I’ensemble de poly-arbres augmentant progressivement de 10 a 1000 pour
évaluer I’'importance du nombre M de poly-arbres dans la qualité de I’approximation.

Nous choisissons de répéter 10 fois cette expérience, i.e. utiliser 10 bases d’ap-
prentissage D différentes pour un méme modele théorique initial afin que les perfor-
mances mesurées ne dépendent pas d’un seul jeu de données qui pourrait étre un cas
particulier. La qualité de cette expérience (un modele théorique, 10 bases d’appren-
tissage) est alors calculée par la moyenne des divergences KL obtenues pour chaque
base d’apprentissage.

Afin de prendre en compte ensuite la variabilité des modeles théoriques initiaux,
nous décidons de répéter cette série de 10 expériences plusieurs fois, i.e. pour 10 struc-
tures théoriques générées aléatoirement selon le principe décrit dans[d] La divergence
KL moyenne sur cette série de 10x10 expériences nous donnera alors la qualité de
I’estimation de notre modele pour une classe de modeles théoriques fixés (chaines,
arbres, poly-arbres, ...).

De plus, pour vérifier I’hypothese faite dans la section |3| préférant les mélanges
de poly-arbres aux mélanges d’arbres, nous décidons de réaliser les mémes séries
d’expériences pour des mélanges aléatoires d’arbres.

5.2. Résultats

Nous avons utilisé dans nos expériences un modele théorique a 8 variables boo-
Iéennes. La taille des bases de données générées pour I’ apprentissage est de 2000. Nos
différents algorithmes de génération de modeles ont été implémentés en C++ a 1’aide
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Figure 1. Approximation de modéles simples (chaines, arbres et poly-arbres) par des
mélanges d’arbres (trait pointillé) et de poly-arbres (trait plein)

de la librairie Boost disponible sur http ://www.boost.org/ et des API fournies
par la plateforme ProBT(©) disponible sur http ://bayesian-programming.org.

La figure [If trace la divergence KL moyenne sur 10x10 expériences, en fonction
du nombre de modeles dans le mélange, pour les trois familles de modeles théo-
riques simples (chaines, arbres et poly-arbres) et pour deux types de mélange (mélange
d’arbres en pointillé, mélange de poly-arbres en trait plein).

Nous voyons sur ces premieres expériences que les mélanges d’arbres sont 1é-
gerement meilleurs que les mélanges de poly-arbres lorsque le modele théorique a
approcher est tres simple (chaine ou arbre). Par contre, les deux semblent se valoir
lorsque le modele théorique est un poly-arbre !

Nous voyons aussi qu’un mélange de taille 1 est visiblement moins bon qu’un mé-
lange de plusieurs modeles. L'utilisation d’un mélange de plusieurs modeles améliore
alors la qualité de I’estimation.

Cette méme figure nous indique que le nombre de modeles dans le mélange ne
semble plus influer sur la qualité de I’estimation a partir de M = 150 modeles environ.
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6. Conclusions et perspectives

Nous avons présenté ici les tous premiers résultats d’une étude sur 1’estimation de
densité par mélange aléatoire de poly-arbres.

Apres avoir rappelé quelques éléments théoriques a propos de la notion de mé-
langes de modeles, nous avons détaillé notre approche et présenté les algorithmes de
génération de modeles simples (chaines, arbres et poly-arbres) utilisés dans la phase
expérimentale.

Nous avons ensuite expliqué le protocole expérimental que nous nous proposons
de suivre, et décrit les premiers résultats de ces expériences. Ces résultats sont assez
surprenants puisque pour les modeles théoriques les "moins" simples de ces expé-
riences (poly-arbres), les mélanges d’arbres donnent d’aussi bons résultats que les
mélanges de poly-arbres.

Puisque ce travail est encore dans sa phase préliminaire, il nous reste de nom-
breuses perspectives a creuser. Nous comptons tout d’abord répéter les mémes expé-
riences sur davantage de modeles (100x100 expériences au lieu de 10x10) pour obtenir
des performances moyennes plus représentatives.

Nous poursuivrons ensuite en reprenant les mémes expériences avec des modeles
théoriques plus complexes (graphes orientés sans circuit) pour observer si un mélange
d’arbres donne encore des résultats du méme niveau qu’un mélange de poly-arbres.

Notre objectif est d’étudier si ces mélanges de modeles peuvent remplacer les ap-
proches d’apprentissage de structure classiques. Pour cela, nous comparerons nos ré-
sultats a ceux obtenus par des algorithmes d’apprentissage comme 1’arbre de recouvre-
ment maximal, la recherche gloutonne dans I’espace des graphes orientés sans circuit
ou dans I’espace des représentants des classes d’équivalence de Markov, aussi bien en
terme de qualité d’estimation que de temps d’apprentissage et d’inférence.

Pour tout cela, nous comptons aussi nous intéresser a ’influence du nombre de
données utilisées sur la qualité de I’estimation, et a I’influence du passage a 1’échelle
en augmentant significativement le nombre de variables considérées.

Pour finir, nous sommes réfléchissons actuellement a une méthode automatique
d’estimation des parametres de mélange au lieu de les considérer constants, méthode
devant aussi étre capable de résister au passage a 1I’échelle.
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