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Abstract

A probabilistic approach to the design of power-system special stability controls is presented here. Using Monte-Carlo simulations,
it takes into account all the potential causes of blackouts, slow and fast dynamics, and modeling uncertainties. A large number of
scenarios are simulated in parallel by time-domain numerical integration, and the relevant parameters of the resulting system
trajectories are stored in a database. Data-mining tools are used to identify the most important system weaknesses and possible
improvements. The approach is tested on a large-scale study on the South—Eastern part of the extra-high-voltage system of Electricité

de France. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Power systems; dynamic behavior; probabilistic models; Monte-Carlo simulation; parallel computation; blackouts; risk;

data-mining, decision trees

1. Introduction

The security or stability of a power system refers to its
ability to perform in a satisfactory way under the occur-
rence of various kinds of adverse events, such as external
disturbances or internal failures of its components. While
‘security’ refers to the robustness of the system in a given
state, ‘reliability’ refers to the expected value of security
over a longer period, say several years. Under normal
conditions, modern interconnected power systems are
rather secure, and they are able to absorb in a satisfac-
tory way the most likely adverse events, i.e. with no or
only very localized consequences. However, it is always
possible that an (unlikely) combination of events would
lead the system to an overall, system-wide failure. While
these types of situations are of very low probability, they
may lead to tremendous consequences. On the other
hand, they are very difficult to anticipate, in particular
due to the complexity of power systems and the wide

* Corresponding author. Tel.: + 324 366 2688; fax: + 32436629 84;
e-mail: Iwh@montefiore.ulg.ac.be.

! Expanded version of a paper presented at CPSPP’97, IFAC-Cigré
Symp. on Control of Power Systems and Power Plants, Beijing, Aug.
1997.

range of dynamic phenomena which may be involved.
For example, the following five types of phenomena may
be involved: (i) cascading tripping of overloaded lines,
(i1) loss of voltage stability, (iii) loss of transient (angle)
stability of synchronous generators, (iv) frequency col-
lapse, and (v) undamped oscillations. It is also true that in
system-wide disturbances several of these phenomena are
generally involved at the same time, and interact in a way
that depends on the structure of the particular power
system under consideration.

Economic and environmental pressure, together with
competition, make modern power systems operate closer
to their limits and at the same time be less predictable
than in the past. Recent experience in North America has
shown that these circumstances increase the probability
of blackouts; therefore the need for systematic methods
to study these phenomena and mitigate their conse-
quences is strongly felt.

In order to increase the reliability and security of
a bulk power system, there are essentially three possible
options:

(i) expand the power system, either by increasing its
transmission capabilities (e.g., by building new lines)
or by reducing the need for long-distance transmis-
sion (e.g., by building power plants close to the load
centers),
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(i) operate the system in such a way that its security
margins are large enough,

(iif) improve the real-time emergency (or stability) con-
trol strategies that act automatically on the system
to minimize the consequences of important distur-
bances (i.e., make the system more intelligent).

However, since it is becoming increasingly difficult to
expand transmission systems within reasonable delays
(e.g., due to ecological constraints), and since the opera-
tion with high security margins conflicts with economic
efficiency, the present trend in power systems is to
rely more and more on special emergency control
schemes.

The design of such special emergency control schemes
implies the identification of the main failure modes of the
system, the determination of appropriate mitigating con-
trol actions, and the design of automatic triggering devi-
ces. These latter must be able to detect in real time when
the system is in the process of losing its stability, and send
appropriate control signals quickly enough to avoid dra-
matic consequences. In particular, these systems must be
robust with respect to changing operating conditions and
other uncertainties related to measurement and modeling
errors. To enhance system performance (i.e., to reduce
failure risks), existing emergency control systems could
be improved or replaced by new, more effective ones. It is
also believed that the coordination of various such devi-
ces, acting in different time frames or in different geo-
graphical areas of a power system, should be improved.

Given the fact that power-system failures are (luckily)
very rare events, actual experience is slim, and the engi-
neers in charge of the design of emergency control schemes
rely mainly on simulation. Their approach thus classical-
ly consists of building up simulation scenarios in a man-
ual trial-and-error fashion, and analyzing the simulation
results by hand. This is an intricate and time-consuming
activity, which strongly relies on human expertise. Gen-
erally, problems are decomposed into elementary sub-
problems (e.g., voltage vs. angle stability, or region-wise)
which are treated separately, often by different engineers.
However, due to the faster changes occurring in today’s
power systems, the need for more regular studies is in-
creasing, while human expertise may quickly become
obsolete and even misleading. Moreover, the fact that
systems tend to operate closer to their limits may lead to
more-complex interactions among the different phe-
nomena, making it even more difficult to find globally
effective solutions.

But, above all, the principal shortcoming of this deter-
ministic approach is its inability to take into account the
stochastic nature of the causes of power system failures,
and the unavoidable modeling uncertainties. Indeed, not
all failure modes are equally likely to happen, their conse-
quences are highly variable in practice, and all simulation
models are wrong to a certain extent.

In order to circumvent these difficulties, while taking
advantage of existing computing power and modern
simulation tools, this paper proposes a smarter probabil-
istic approach, to help engineers carry out such studies in
a more systematic way. It is based on Monte-Carlo
simulations screening a representative sample of security
scenarios, and exploits automatic learning tools to ex-
tract useful information from the simulation results
(Wehenkel, 1998). In this methodology, uneven prior
probabilities of possible causes that could lead to ex-
treme conditions are taken into account, the economic
impact of their consequences is also evaluated, and vari-
ous uncertainties about less well-known system compo-
nents are integrated in the decision-making process
(Cigré, 1997). Note that this approach can identify the
most likely failure modes of a system, while in the deter-
ministic approach this information must be known prior
to the study. Although the probabilistic approach needs
additional information and modeling work in order to
define the random sampling probabilities, it is able to
provide a more objective and a more anticipatory view of
the possible failure modes of a system.

The approach consists of three steps:

(1) modeling probabilistically the causes potentially
leading to extreme conditions (weakened operating
conditions, abnormal operation of protections, mul-
tiple disturbances) as well as uncertainties (load be-
havior, external systems... ),

(i) using parallel Monte-Carlo simulations to sample
scenarios according to this information (random
combinations of operating conditions, dynamic
modeling hypotheses (e.g., relay settings, malfunc-
tions, external systems, load ... ), and disturbances),

(iii) building up a database of simulation results, collect-
ing key variables and their temporal behavior, and
using data-mining techniques to extract from this
synthetic information about the main breakdown
modes and possible ways to improve emergency
control schemes.

While the approach and the developed tools are gen-
eral, this paper focuses on their application to the study
of the French power system under extremely disturbed
conditions, with the aim of evaluating the risks of various
types of failure modes (e.g., voltage collapse vs. loss of
synchronism) so as to identify the weak points and im-
prove protection schemes. Note also that, in the study,
a detailed global dynamic model of the French power
system was first set up, comprising more than 11 000 state
variables. Furthermore, given the size (several GBytes) of
a simulation results database, and the complexity of its
information (temporal curves describing the dynamics of
a large-scale non-linear system), a prototype data-mining
tool was developed for the research, incorporating
a number of graphical and automatic learning tools (clus-
tering algorithms, decision trees, nearest neighbor ... ).
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The paper is organized as follows: Section 2 describes
the probabilistic approach, and Section 3 the software
tools developed. Section 4 discusses the study on the
South-Eastern part of the French extra-high-voltage
(EHV) system, focusing on modeling and database gen-
eration aspects, and Section 5 provides the data-mining
results obtained, and discusses further work in progress.
Section 6 draws some first conclusions, and gives some
guidelines for future work. Throughout the paper, the
applicability of the approach to other control-system
design problems will be pointed out.

2. Overview of the probabilistic approach
2.1. QOverall framework

The overall framework is depicted in Fig. 1. The ap-
proach proceeds by iterating through the following ele-
mentary steps:

Study specification: setting up a detailed probabilistic
model of the possible causes of insecurity: multiple distur-
bances, bad coordination and/or mal-operation of
protective devices, over-optimistic preventive security
strategies due to uncertainties in modeling parameters.

Database generation: sampling representative combi-
nations of these causes, and carrying out extensive simu-
lations to determine the behavior of the power system
under these assumptions.

Data mining: analyzing the database of dynamic
simulation results to identify a posteriori the main weak-
nesses of the system, and possible ways to improve its
reliability.

Evaluation: evaluating the most effective counter-
measures, e.g. in the form of new or modified special
stability-control systems, and validating them through
a cost/benefit analysis on the scenarios stored in the
database.

2.2. Study specification

The first step of the proposed methodology consists of
specifying the range of scenarios that the particular study
will address. While the approach aims at enabling the
engineers to carry out broader studies, more systemati-
cally covering all kinds of situations and dynamic
phenomena, the scope of a particular study should be

Automatic generation of power
system security database

h’ + Numerical simulations
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clearly defined a priori in terms of security scenarios
(Jacquemart et al., 1996).

A scenario has three components: (i) its starting operat-
ing point (available lines and generators, load level and dis-
tribution, generation dispatch, voltage/var schedule ... ),
(i) its dynamic modeling hypothesis (e.g., control-loop
gains, protection settings, malfunctions, load behavior,
measurement noise ... ), and (iii) a sequence of distur-
bances (e.g., short-circuits, outages, load trends... ).

Starting with the existing expertise and problem state-
ment, the random sampling specifications are set up for
each one of these components, generally through a se-
quence of discussions among experts in different fields,
such as power-system dynamics, protection and eco-
nomic questions. Some base cases are selected, and
a catalog of variable parameters that are important for
the study under consideration is set up. Then, for each
parameter, a probability distribution is chosen, in order
to screen its possible values; constraints among these
parameters may also be defined in order to filter
out unrealistic scenarios. For example, among the
many parameters that were handled in this way in the
study described in Section 4, one could mention line
overload protections (the thresholds and triggering de-
lays of which were randomized around their normal
values) and load models (whose sensitivities to voltage
were randomized).

The other part of the database specification concerns
the choice of the attributes that will be extracted from the
simulations and stored in the database: these are scalar
and temporal parameters describing the dynamic behav-
ior of the system, and will be used as inputs (e.g.,
candidate measurements) or outputs (e.g., evaluation of
consequences) to the data-mining tools, in order to ex-
tract synthetic information from the database. Examples
of extracted attributes given in Section 4.3 are EHV
voltages and generator rotor speeds.

Thus, the first time a new problem is considered, the
initial investment in the database specification is quite
important. However, when similar problems are sub-
sequently considered, their adaptation is much more
straightforward.

2.3. Database generation
The database generation process is carried out in

a fully automatic way by a dedicated software tool (see
Section 3.1). It consists of two successive steps: (i) random

Automatic learning of power system
security knowledge

Data mining toolbox Knowledge

Decision trees, neural nets... Base
Graphical visualisation toolbox

Fig. 1. Overall probabilistic framework.
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sampling of individual scenario specifications, and (ii)
numerical simulation of the sampled scenarios.

2.3.1. Random sampling of scenarios

This is essentially a sequential process, building a so-
called a priori data base of individual scenario specifica-
tions. Only trivial computations are carried out here, and
even for very complex problems, the computing time
required by the random sampling process is negligible
with respect to the time needed for the simulation of the
scenarios.

2.3.2. Scenario simulation

While the random sampling builds up the a priori
database sequentially, the scenario simulation engine ex-
tracts successive specifications and launches their simula-
tions in parallel, using a cluster of available workstations
as simulation servers. A master process collects the re-
sults of the servers, and gradually builds up the so-called
a posteriori database with their results.

Notice that, depending on the size of the power system
and the degree of refinement of the dynamic model being
used, the computational burden of these simulations may
be rather high, which justifies their parallelization. More-
over, the raw outputs of the simulation engine have to be
post-processed in order to extract useful information in
a format which is compatible with the data-mining tool,
and to save disk space if necessary by using appropriate
compression techniques. For example, in the study de-
scribed below, the total amount of raw data generated
was about 250 GB; thanks to extraction and compres-
sion, the a posteriori database was finally only about
800 MB large.

Notice also that some of the scenarios generated by
random sampling may not result in successful simulation,
for example due to physical non-feasibility or numerical
convergence problems. Thus, an a posteriori database
generally corresponds to a proper subset of the corres-
ponding a priori database.

Once a sufficient number of scenarios has been
simulated successfully, a database release is created
which can be exploited by the data-mining module. Pos-
sibly, after having carried out some analyses on this
database, the database can be completed by specifying
new random sampling conditions and carrying out fur-
ther simulations, thus yielding successive database re-
leases which will be used successively in a trial and error
fashion during the study and design process.

2.4. Data mining

The data-mining process is itself composed of succes-
sive steps, aimed at extracting more and more refined
information from the simulation database. During this
process a variety of visualization and statistical data
exploration and modeling techniques are used.

Step ‘zero’ in the data mining process consists of
validating the scenarios that are contained in the
database release. In particular, since some of specified
scenarios may have been filtered out (e.g., because they
could not be simulated properly due to physical non-
feasibility or numerical convergence problems) it is neces-
sary to check the representativity of the database. If
validation is successful, data mining can be started in
effect; otherwise database specifications may be modified
and the database generation process is restarted in order
to improve representativity.

The first step would be to rank the scenarios according
to their severity. For example in the study carried out
below, various measures of scenario severity were used,
quantifying various undesirable consequences (number
of transmission elements lost, amounts of lost generation,
amount of lost load, variation in power flows in impor-
tant tie lines). Some interesting (e.g., very severe) scen-
arios can be identified and analyzed by ‘hand’ using the
graphical visualization tools incorporated in the data-
mining software. For example, the temporal evolution of
voltages, power flows, and other interesting variables
may be displayed, and it is possible to step through the
various discrete events corresponding to the action of
protections by using a one-line diagram automatic play-
back.

The next objective of data mining will be to determine
the main weak points of the power system being studied
(i.e., the relative frequency of different types of behaviors:
stable, voltage collapse, cascading line tripping, loss of
synchronism, frequency collapse, oscillations, dynamic
instabilities...). This can be achieved using automatic un-
supervised learning techniques, as illustrated in Section 5.

Finally, further steps will consist of assessing how the
different variables used to characterize the scenarios are
interrelated, and will automatically identify those that
are useful to detect various undesirable phenomena. In
particular, supervised learning and correlation analysis
may be used to screen automatically a large number of
variables and scenarios relevant for each task. Notice
that at this step the engineer can try out various possibili-
ties, being limited only by his imagination and the in-
formation contained in the database. In order to find
efficient ways to predict system failures, he may try out
different ways of decomposing the overall problem into
subproblems, and test different sets of measurements and
detection logics. Such detection rules may be defined
either manually or automatically using supervised learn-
ing methods.

Eventually, the data-mining process will lead to some
changes in some existing special stability controls, or to
the design of new ones. If this is the case, the suggested
improvements may be evaluated by incorporating them
in the simulation model and generating a new “variant”
of the database to simulate their effect. The comparison
of this latter with the original database will allow the



L. Wehenkel et al./Control Engineering Practice 7 (1999) 183—194 187

engineer to assess whether the system works, and if not,
to suggest some improvements until satisfactory results
are obtained.

Thus the overall design process is essentially similar to
the classical trial-and-error process used presently. How-
ever, the main difference is that at each step actions are
evaluated in parallel on the same statistically representa-
tive sample of scenarios. This makes comparisons among
different possibilities much easier and more meaningful,
while a lot of flexibility is gained. Moreover, the engineer
spends his time carrying out interesting investigations,
rather than merely running simulations and managing
their input and output files.

Also, the fact that all analyses are carried out on
a representative sample makes the studies more transpar-
ent, makes it easier to exchange information among vari-
ous engineers, and allows one to refresh the results easily
if some parameter is changed (e.g., if a new FACTS device
comes into operation, or if the dynamic models are
modified).

3. Software tools

In order to carry out this research, a set of software
tools were specifically developed for database generation
and data mining. These tools may be considered as
advanced research prototypes of yet-to-be-developed in-
dustrial-grade software tools.

3.1. Database generation tool

The software tool developed for the automatic
database generation is depicted in Fig. 2. It uses the
Eurostag simulation engine (see Meyer and Stubbe, 1992)
and is composed of two main modules (Lebrevelec et al.,
1997):

(i) Random sampling.
Input: specification of the study scope, in terms of
probability distributions, Eurostag data files, number
of scenarios to be generated, random number seeds.
Output: database describing the sampled scenarios.

(i) Simulation scheduler (master/slave, see Fig. 2).

(a) Eurostag file builder (master).
Input: scenario description, Eurostag data files.
Output: a set of modified Eurostag data files.

(b) Task dispatch (master).

(c) Task simulation and extraction of relevant in-
formation (slaves).
Input: Eurostag data files; specification of at-
tributes to extract.
Output: Extracted attribute files.

(d) Database builder (master).
Input: result files for each scenario.
Output: result database.

The master and slaves are Unix workstations, ex-
changing data through files. As soon as a slave becomes
idle, it receives from the master a scenario to simulate. In
the study described in Section 4, these simulations typi-
cally take several hours of CPU time, and generate sev-
eral hundreds of Mbytes of raw output. From these latter
the slave extracts only the relevant information, i.e. a sub-
set of interesting attributes, sub-sampled at an appropri-
ate (variable) time step. Note that this time step is in
practice about 20 times larger than the (variable) time-
step used by the numerical integration techniques for
their simulations (see below, Section 3); this allows for
significant space savings in the results database. The
latter is organized hierarchically, one directory per scen-
ario containing about 30 compressed flat ASCII files
(UNIX compression facility).

Notice that the software could be easily adapted
in order to replace Eurostag by another simulation
engine.

3.2. Data-mining tool

A dedicated data-mining tool was developed from an
earlier advanced research prototype used in other invest-
igations (Wehenkel et al., 1994a,b, 1995) . The features
added concern the representation and manipulation of
the (large amounts of) temporal data encountered in this
particular problem (curves reflecting the variation over
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Fig. 2. Database generation overview.
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time of different variables describing the scenarios, and
sequences of events corresponding to the action of
various protections).

The overall architecture of this tool is depicted in
Fig. 3. It is composed of two main components.

3.2.1. Data-mining database management module

This accesses data from the generated database flat
files, while allowing one to select a subset of the scenarios
and a subset of attributes, yielding a particular view of the
databases. These data are then compiled into an internal
representation, and an executable image is cloned, con-
taining the viewed data and the data-mining algorithms.
On a workstation with 256MB of main memory it is thus
possible to access simultaneously up to 50 million at-
tribute values: about 1500 scenarios, described by 200
temporal attributes, with an average number of 150 time
steps per scenario.

The database management module allows the user
to define additional attributes as functions of the
basic ones extracted from the simulations, and compiles
them into efficient code. It provides also various
subset and variable sorting/selection facilities, allowing
one to focus on a particular sub-view of the loaded
database.

3.2.2. Data-mining tool box

This module contains both low-level and high-level
algorithms, in order to allow the user to extract know-
ledge from a database. The former are basic statistical
summarizations in text and/or graphical forms (means,
standard deviations, correlations, bar diagrams, curves,
scatter plots... ). The latter are automatic learning algo-
rithms, deemed useful for security assessment applica-
tions, e.g. unsupervised learning (clustering of similar
types of scenarios or attributes), top—down induction of
decision trees, and smooth non-linear regression (multi-
layer perceptrons).

The data-mining module also contains a graphical
scenario inspector VisioNet, which enables the user to
step through time while seeing the effect of protections
and changes in electrical parameters on a one-line
diagram representing the power system (Geurts and
Wehenkel, 1998a).

4. Case study: south-eastern EDF subsystem
4.1. Brief description of existing problems

In July 1995 a study was started to apply the methodo-
logy described in Section 2 to a case study on the Electri-
cit¢ de France (EDF) system under highly disturbed
conditions, so as to yield a representative test-bench, and
to assess the behavior of this system in extreme condi-
tions. The primary objective was to study interactions
among slow and fast dynamics and their corresponding
protection systems. Consequently, EDF experts defined
a study region in the Provence/Alpes/Riviera subsystem,
which was already known to present rather diverse fail-
ure modes: cascading line tripping, plant and area mode
loss of synchronism, and voltage collapse. This South-
Eastern part of the EDF system (see Fig. 4) generally
exports large amounts of power to the rest of France and
to foreign countries (Italy, Switzerland and, indirectly,
Spain). In the very extreme of South-Eastern part it is
weakly meshed and deficient in generation, and thus
liable to voltage-collapse phenomena. It is also interest-
ing to notice that this subsystem (1998 projection) is
equipped with various automatic emergency control sys-
tems, in order to mitigate various types of failure modes:
the coordinated defense plan (regional islanding scheme
in case of area mode loss of synchronism); generation
shedding to alleviate specific line overloads; automatic
tap-changer blocking scheme to mitigate voltage col-
lapse, etc.
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Fig. 4. One-line diagram (study region and surroundings).

4.2. Dynamic system model used

To enable the simulation of both fast and slow phe-
nomena, while taking into account the operation of the
relevant protections and special stability-control sys-
tems, a rather detailed dynamic model was first set up.

Table 1
Dynamic system model. (Lebrevelec et al., 1997)

This model, comprising all in all more than 11000 state
variables, is summarized in Table 1.

4.3. Database generation

During the first year of the research project the
database specifications were set up and an appropriate
dynamic model was developed, together with the soft-
ware for generating and analyzing the databases. A first
preliminary database of a few hundred scenarios was
generated in early 1996, and, in August 1996, the genera-
tion of the final database was started, using the tool
described in Section 2. By end of October 1996, 1500
scenarios had been simulated.

4.3.1. Operating points

Three different operating points were used, corre-
sponding to three different situations of import/export of
power from the study region. They were chosen manually,
in order to provide interesting scenarios to validate the
approach, and are representative of realistic N-1 secure
operating conditions of the 1998 system projection.

4.3.2. Dynamic modeling hypotheses
In order to take account of the effect of uncertainty
and/or errors in protection settings (delays, thresholds...),

System Nb. buses* Nb. lines Nb. units® Installed pwr

380 225 380 225 Therm. Hydr. Gen. Load
EDF (kV) kV) kV) kV) (MW) (MW)
Study regn. 51 217 74 252 22 48 26000 20400
Rest 306 646 259 810 61 12 58800 55200
Equiv.
Belgium 22 1 32 1 2 11400 12200
Germany 13 3 32 10 64 500 65800
Switzerld. 31 16 35 4 13400 15600
Italy 81 22 124 32 20 15700 18200
Spain/Port. 11 2 39 3 9 33400 34000
Total 515 907 595 1098 128 60 223200 221400

Special control systems

Secondary Voltage Control (EDF system)

UnderFrequency load shedding (EDF and foreign systems)
Generation shedding line overload mitigation (study region)

First step of EDF’s coordinated defense plan [Trotignon et al., 1992]
Local line tripping scheme on loss of synchronism (study regn.)
OLTCs blocking scheme in case of voltage collapse (study regn.)
Busbar low-voltage protection (study regn.)

Other protections
Line overload (all 380 kV/225 kV lines of the EDF system)
Under/over voltage/frequency (all units of the EDF system)

*193 loads in the study region are connected to the EHV system through a cascade of two OLTCs.

® Generators modeled in detail, with AVR, governors and PSS.
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these were systematically randomized in the database
generation. Similarly, the load model (P = Py(V/V )%,
0 = 0,(V/V,)?) was also randomized in order to repres-
ent the uncertainty and variability of load behavior.
Moreover, in order to represent what may happen in real
life, in each scenario there is a random selection of some
protections that are supposed to mal-operate: untimely
generator tripping for over/under frequency or voltage
protections, untimely line tripping for overload protec-
tions, or partial non-operation of underfrequency load-
shedding protections.

4.3.3. External disturbances

These are composed of two consecutive contingencies
in the study region, chosen randomly (probabilities more
or less reflecting their relative likelihood in real life)
among the following ones:

Generator loss: loss of one unit (thermal or nuclear);
loss of some units of the same plant (thermal and hydro
units); loss of a plant.

Faults on lines: temporary fault on a line, permanent
fault on a line; permanent fault on parallel circuits;
two temporary or permanent faults separated by
about 100ms on geographically close lines (lightning
storm).

Faults in substations: (bus bar fault) fault inside a
substation leading to the loss of part of the substation;
fault outside (but close to) a substation combined with
protection failure and leading to partial loss of the sub-
station; loss of the whole substation after a major fault
inside.

The two external disturbances are applied in sequence
within a rather short time-slot (less than 10 min), and it is
supposed that there is no operator action in between.
Then, the scenarios are simulated during the 40 mins
after the second external disturbance, in order to evaluate
the consequences.

The scenarios were simulated by Eurostag (Meyer and
Stubbe, 1992); this simulation program is used in dy-
namic security assessment studies at EDF and, with
its variable integration time step, is able to simulate
slow dynamic phenomena (e.g., voltage collapse) as
well as faster ones (e.g., loss of synchronism). The simula-
tions were carried out in parallel on a cluster of
12 workstations, available at night and during the
week-ends.

4.3.4. Attributes
About 800 temporal attributes are used to describe the
scenarios in the results database. They are:

e voltage (magnitude and phase angle) of defined buses
(130 attributes);

e rotor angle, velocity, and acceleration as well as excita-
tion current and mechanical power of defined units
(315 attributes);

e total active and reactive load and mean voltage in
defined load areas (54 attributes);

e mean transformation ratio of ‘on-load tap changers’ in
defined areas (13 attributes);

e cquivalent voltage angle and frequency for the regions
of the defense plan (6 attributes);

e reactive generation of the units participating in second-
ary voltage control (19 attributes);

e active and reactive power flows of all 380 kV lines of
the EDF system, and some important 225 kV lines in
the study region (234 attributes);

e a listing of the discrete events happening in the system
during the simulation.

Some of these attributes are to be used in order to
define the severity of the scenarios, i.e. to measure the
consequences in terms of loss of load and generation. The
others are to be used as input parameters to criteria for
characterizing the dynamic behavior of the scenarios and
to predict their severity as accurately and as early as
possible. Applying data-mining algorithms to the
database will allow one to find those that are most
strongly correlated to scenario severity. These latter may
then be used to predict the future behavior for real-time
system monitoring, together with appropriate decision
rules extracted from the database.

4.4. General overview of the database

Table 2 provides a first glance at the diversity of the
information in the database.
First of all, the database physics data:

o the CPU time of a scenario (about 11 h) is quite impor-
tant, which is due to the complexity of the dynamic
model used and the long simulation time. In future
database generations, this time could be reduced sig-
nificantly by simplifying the simulation model outside
the study region, and by taking advantage of faster
computers (a factor 3 within 2 yr);

e the number of time steps after interpolation is rather
small if compared to the number of steps used by the
simulator; consequently, the size of a scenario stored in
the results database is small enough (540 K bytes) to
allow the storage (on available cheap mass-storage
devices) of databases comprising up to to 5000
scenarios.

Thus, a results database can be easily built and stored.
Concerning the contents of the database, the following
preliminary comments are appropriate:

o The number of 380/225 kV lines tripped shows the
amplitude of the phenomena in the database, going
from a simple cascading line tripping, to the action of
the coordinated defense plan, opening all the frontier
lines between the study region and the rest of the EDF
and the foreign systems.



Table 2

Result DB statistics (Lebrevelec et al., 1997)
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Object Min Max Mean o

CPU simulation time (s) 0 99000 38000 22000
Time steps before interpolation 89 46 800 3800 3071
Time steps after interpolation 4 1728 145 137.2
Size (Mb) (raw) 4 2140 174 140
Size (Kb) (after extraction) 324 3720 540 460
Nb of lines lost

380 kV 0 48 5 6.3
225 kV 0 149 9.6 18.53
Thermal units

Nb of units lost 0 15 1.15 2.1
Mechanical power lost (MW) 0 13000 617 1213
Mech. power variation (EDF, MW) — 20800 546 — 1265 2445
Hydro units

Nb of units lost 0 32 2.7 53
Mechanical power lost 0 2952 271 584
Mech. power variation (EDF, MW) — 3039 60.5 — 332 604
Load variation (MW)

I region — 9046 654 864 1714
L region — 8944 288 — 1194 2368
EDF system — 22000 426.8 — 2417 4323
Exportation variation (MW)

EDF system to Belgium — 1527 1568 22 460
EDF system to Germany — 1832 1607 17 476
EDF system to Switzerland — 3301 830 — 150 400
EDF system to Italy — 2974 1609 —48 463
EDF system to Spain — 1644 1253 — 148 435
EDF system to all foreign systems — 8470 4946 — 305 1626
Voltage in buses at end of simulation (see Fig. 4)

A: B.CARS71 (380 kV) 0 424 327 137
B: TAVELS71 (380 kV) 0 467 366 98
C: P.CORS71 (380 kV) 0 463 394 60
D: G.ILES71 (380 kV) 0 487 395 71
E: GEN.PS71 (380 kV) 0 469 395 57
F: VIELMS71 (380 kV) 0 449 397 45
G: BAYETS71 (380 kV) 0 416 387 55
H: VAUPASG61 (225 kV) 0 288 211 59
I: FLEACS61 (225 kV) 0 255 235 36

e Generator (under/over voltage/frequency) protections
installed on units in the EDF system are often ac-
tivated.

e The different voltages on widespread buses in the study
region demonstrate the variety of the voltage collapse
areas, even if some areas of the system are more deeply
concerned than others.

e Among the scenarios generated randomly, not all
could be simulated until the end. Thus, the analysis
below concentrates on 1140 scenarios, which were
simulated completely. The other scenarios will be ana-
lyzed separately.

5. Application of data mining

Some of the results obtained with data-mining
methods are illustrated here, using scalar attributes

derived from the temporal ones, so as to give a flavor of
the type of information that can be extracted, and of the
diversity of the dynamic scenarios stored in the database.
To save space, the reader is referred to specialized litera-
ture for the description of the algorithms used. The
reader who is interested in automatic learning theory is
recommended to consult (Vidyasagar, 1997), which also
provides a control-systems perspective on this subject.

5.1. Automatic identification of failure modes

The analysis starts by using unsupervised learning to
identify different families of dynamic behavior: stable
ones, and various types of breakdown scenarios. To this
end 39 synthetic attributes are used, describing the 1140
scenarios in terms of consequences (see also Table 2):
overall number of (225 and 400 kV) lines and generators
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tripped, amount of load reduction in various areas, vari-
ation of active power flows through interfaces with neigh-
boring systems, voltages at various 400 kV buses. Using
the K-means clustering algorithm to automatically define
a certain number of classes of scenarios (Duda and Hart,
1973), it was found that the database can be partitioned
into six main classes, described below in increasing order
of severity.

(1) 702 stable scenarios. These are characterized by
a mean loss of 150 MW load and six lines; voltages close
to nominal at the end of the simulation.

(2) 77 local losses of synchronism. These are character-
ized by a loss of synchronism of some hydro plants in
region I (2000 MW lost generation, in the mean) and the
tripping of some 225kV lines. In terms of load loss,
the consequences remain rather limited (1200 MW in the
mean, mainly in region I close to the hydro plants), and
voltages in the 400 kV system remain normal. The differ-
ence between the lost generation and the lost load is
compensated for by a decrease in the power exported
towards foreign systems.

(3) 176 local losses of load. These scenarios correspond
mainly to cascading losses of various transmission lines,
and to almost no loss of generation. In the mean, about
2100 MW of load is lost (50% in region I, and 50% in
region L) and 300 MW of generation. Thus the overhead
is partially compensated for by primary frequency con-
trol in France (900MW) and an increase in exportation
(900 MW). Further clustering analysis allows the identi-
fication of two subclasses: 93 scenarios with loss of load
in the Rhne valley and stable voltages; 83 others yielding
voltage collapse and loss of load in the South-Eastern
part of region L.

(4) 113 region L voltage collapses. In the mean, 44 EHV
lines are lost, 2000 MW of generation, 6400 MW of
load in region L and only 1000 MW in region 1. At
the end of the simulation, voltages are very low through-
out region L, while they remain stable everywhere else.
The large difference between the loss of load and genera-
tion is compensated for by primary frequency control
(about 2000 MW) and an increase of power export
(3000 MW).

(5) 33 region L+ 1 voltage collapses. In the mean,
17000 MW of load is lost in France (5500 MW in region
I, 6700 MW in region L, and 4800 MW outside the
study region). Most of the load variation is compensated
for by primary frequency control in Europe. 400 kV
voltages drop to very low values within the whole study
region: 170kV in the South-East and 230kV in the
North.

(6) 17 Regional loss of synchronism. Loss of synchronism
extends to the whole study region, and the defense plan
trips lines to isolate it from the system, and activates load
shedding in France. Thus, very large amounts of genera-
tion are lost: in the mean, 7000 MW (9 thermal and 12

hydro units). As a byproduct, voltage collapses in region
L, where most of the load is lost (7000 MW in the
mean). In region I, on the other hand, voltages are low
(365 kV) but stable, and only 2550 MW of load is lost in
the mean.

5.2. Searching for a specific kind of scenario

For example, one could search in the database for
a voltage collapse in region L, with the following speci-
fication (see Fig. 4) : (i) voltages in subst. A and B close to
200 kV; (ii) voltage in subst. E close to 400 kV; (iii) loss of
load of 8000 MW evenly spread among regions L and I;
(iv) loss of 9 lines in the 400 kV system and 60 lines in the
225 kV system.

Using the nearest-neighbor method (Duda and Hart,
1973) it transpires that scenario No. 1439 (class 4) fits
these specifications best: loss of 9400 and 65225 kV lines,
5 thermal units, 6 hydro units, 3100 MW of load in
region I and 4700 MW in region L; increase in total
exportation of 3600 MW; voltage in substations A, B and
C of 153, 266 and 408 kV, respectively.

A brief description of the chronology of events happen-
ing within this scenario is as follows:

Initialization (t = 0-505s). At t =20s a first (bus bar)
fault appears in the 400 kV substation B, leading to
immediate tripping of 225 kV lines (overload protections
working improperly). The fault is cleared at ¢t = 20.1 by
permanent tripping of breakers in the substation, leading
to the loss of the two 400 kV lines connected to the bus
bar. Att = 40s 12 tap-changer blocking devices act with-
in the 225 kV subsystem close to the hydro plants. Noth-
ing else happens until the occurrence of the second fault,
at t = 504 s: this is a three-phase short-circuit on a criti-
cal 400 kV line in the Rhone valley, leading to the loss of
two major 400 kV lines (a parallel line, due to overload
protection maloperation, and the faulty line due to nor-
mal operation of the protections).

Intermediate stage (t = 505-2000s). Given the number
of circuits lost, 9 (400 and 225 kV) lines are overloaded
in the study region, leading to their successive trip-
ping between t = 1650 and 2000s. During the same
period, tap changers start reacting, first in region I, then
in region L.

Voltage collapse in region L (t = 2000-2904 s). Upon loss
of the last three lines the critical point is passed in the
Eastern part of region L: tap changers continue raising
their taps, but load decreases. At about the same time,
low-voltage protections start disconnecting 56 further
(mainly 225 kV) lines around Lyon, leading to the loss of
3100MW of load in region I. At t = 2230 s a second wave
of 30 tap-changer blocking devices are activated
throughout region L, unfortunately too Ilate. At
t = 2310s a further 400 kV line in the North-Eastern part
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Fig. 5. Voltage collapse prediction DT (partial view).

of region I trips on overload protection, and two seconds
later some generators in the Southern part trip on under-
voltage protections. About ten seconds later, some other
generators are lost due to overspeed protections; two
further lines are tripped on overload at ¢t = 2650 and
t = 2900 s, without notable consequences. At t = 2904 s
the system stabilizes, with very low voltages throughout
region L, and normal ones in region I.

5.3. Predicting voltage collapse in region L

Since region L is weak in terms of voltage stability, and
tap-changer blocking may act too late to avoid voltage
collapse, it would be interesting to find an anticipatory
criterion to trigger emergency control. Thus, one can
build a decision tree using information about machines’
field currents to predict a voltage collapse in the South-
Eastern part of region L. Thus, a scenario is classified as
a collapse if, at the end of the simulation, the voltage in
substation A is below 304kV. As attributes, the field
currents of 41 candidate machines shortly after the sec-
ond fault occurrence will be used (i.e., as early as possible
after the damping of fast transients). Note that, of the
1119 scenarios, 245 are voltage collapses (230 with volt-
ages lower than 250 kV), some local and some extending
to the whole study region.

Fig. 5 shows the first levels of the tree built with the
method described in [Wehenkel and Pavella, 19937]; it
has 35 nodes, and selects from among the 41 machines
the 11 most important ones. Note that the most discrimi-
nating attribute selected at the top-node (see Fig. 5)
corresponds to a hydro unit in the South-Eastern part.
Note also that, in order to avoid non-detections of col-
lapse scenarios, the tree was biased during its building by
enhancing the weights of collapse scenarios. Its reliability
(estimated by cross-validation) thus corresponds to

a rather low non-detection rate (6%), and a rather high
false-alarm rate (19%).

To see whether it would be possible to improve the
classification accuracy at the price of being less predic-
tive, another tree was built, using the same candidate
attributes at a later time (1000 s before the end of the
simulation). The resulting tree is indeed simpler and more
accurate: lower non-detection rate (2%) and reduced
false alarm rate (6%). Note that it has selected field
currents of eight different machines in region L.

The preceding example illustrates the contradictory
requirements between degree of anticipation and accu-
racy of emergency control criteria, and how data mining
may be used in order to evaluate different types of com-
promises. Before drawing conclusions about possible cri-
teria, many further investigations will be carried out,
considering different types of attributes and different
compromises. But the preliminary results already ob-
tained look very promising.

5.4. Ongoing R&D

Research is proceeding along two directions, in order
to take the best advantage of the probabilistic methodo-
logy.

The first direction is problem-oriented. Among others,
it is aimed at defining objective scenario severity criteria,
so as to identify the most dangerous modes of blackout.
Another objective is to study the interactions among
different types of instabilities, and the corresponding
emergency-control schemes. Still another topic consists
of combining fast voltage and transient stability screen-
ing tools with detailed time-domain simulations, so as to
carry out efficiently global security assessment studies at
the full system level.

The second research direction is aimed at developing
machine-learning methods that are able to exploit the
temporal nature of the databases more efficiently. The
first step of this work consists of extending the decision-
tree induction method, in order to build automatically,
instability detection rules that offer a good compromize
between selectivity and degree of anticipation (Geurts
and Wehenkel, 1998b).

6. Conclusions

In this paper a novel probabilistic approach to com-
plex design problems under uncertainties was presented.
It relies on Monte-Carlo sampling to generate automati-
cally a database of detailed simulations of system perfor-
mance under diverse hypotheses, as well as the systematic
exploitation of this database by data-mining tools, in
particular automatic learning algorithms such as deci-
sion trees or neural nets, but also simple statistical sum-
maries and graphics.
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While this approach is very general, and flexible
enough to yield a broad variety of applications, this
paper has focused on the design of electric power-
system protection schemes against blackouts. The
end-goal of this research is to develop a probabilistic
methodology that will enable engineers to appraise the
likelihood and the consequences (i.e., the risk) of various
types of breakdown modes of their system, so as to
choose the best countermeasures, and to validate them in
the study environment before going towards actual field
testing.

Admittedly, this goal is very ambitious and needs
further research to be fully reached. The objective
of the paper was therefore threefold: (i) to give a prospec-
tive discussion of the overall approach; (ii) to describe
the tools developed to make it practicable; (iii) to
show its technical feasibility on the basis of first
results coming from a real-life study on a large-scale
system.

As far as future work is concerned, the first step will
consist of taking full advantage of the database. Customi-
zation of some of the automatic learning algorithms
(decision trees, in particular) is under way so as to handle
the temporal information more effectively. In the longer
term, the approach should lead to a complete probabilis-
tic methodology for security assessment and design of
power systems.
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