
Multistage Stochastic Programming:

A Scenario Tree Based Approach

to Planning under Uncertainty

Boris Defourny, Damien Ernst, and Louis Wehenkel

University of Liège, Systems and Modeling, B28,
B-4000 Liège, Belgium

{Boris.Defourny,dernst,L.Wehenkel}@ulg.ac.be

Abstract. In this chapter, we present the multistage stochastic pro-
gramming framework for sequential decision making under uncertainty
and stress its differences with Markov Decision Processes. We describe
the main approximation technique used for solving problems formulated
in the multistage stochastic programming framework, which is based on
a discretization of the disturbance space. We explain that one issue of the
approach is that the discretization scheme leads in practice to ill-posed
problems, because the complexity of the numerical optimization algo-
rithms used for computing the decisions restricts the number of samples
and optimization variables that one can use for approximating expecta-
tions, and therefore makes the numerical solutions very sensitive to the
parameters of the discretization. As the framework is weak in the ab-
sence of efficient tools for evaluating and eventually selecting competing
approximate solutions, we show how one can extend it by using machine
learning based techniques, so as to yield a sound and generic method
to solve approximately a large class of multistage decision problems un-
der uncertainty. The framework and solution techniques presented in the
chapter are explained and illustrated on several examples. Along the way,
we describe notions from decision theory that are relevant to sequential
decision making under uncertainty in general.

1 INTRODUCTION

This chapter addresses decision problems under uncertainty for which complex
decisions can be taken in several successive stages. By complex decisions, it is
meant that the decisions are structured by numerous constraints or lie in high-
dimensional spaces. Problems where this situation arises include capacity plan-
ning, production planning, transportation and logistics, financial management,
and others (Wallace & Ziemba, 2005). While those applications are not currently
mainstream domains of research in artificial intelligence, where many achieve-
ments have already been obtained for control problems with a finite number of
actions and for problems where the uncertainty is reduced to some independent
noise perturbing the dynamics of the controlled system, the interest for applica-
tions closer to operations research — where single instantaneous decisions may
already be hard to find and where uncertainties from the environment may be
delicate to model — and for applications closer to those addressed in decision
theory — where complex objectives and potentially conflicting requirements have

2

to be taken into account — seems to be growing in the machine learning commu-
nity, as indicated by a series of advances in approximate dynamic programming
motivated by such applications (Powell, 2007; Csáji & Monostori, 2008).

Computing strategies involving complex decisions calls for optimization tech-
niques that can go beyond the simple enumeration and evaluation of the possible
actions of an agent. Multistage stochastic programming, the approach presented
in this chapter, relies on mathematical programming and probability theory. It
has been recognized by several industries — mainly in energy (Kallrath, Parda-
los, Rebennack, & Scheidt, 2009) and finance (Dempster, Pflug, & Mitra, 2008)
— as a promising framework to formulate complex problems under uncertainty,
exploit domain knowledge, use risk-averse objectives, incorporate probabilistic
and dynamical aspects, while preserving structures compatible with large-scale
optimization techniques.

Even for readers primarily concerned by robotics, the development of these
techniques for sequential decision making under uncertainty is interesting to
follow: Puterman (1994), citing Arrow (1958) on the early roots of sequential
decision processes, recalls the role of the multi-period inventory models from the
industry in the development of the theory of Markov Decision Processes (Chapter
3 of this book); we could also mention the role of applications in finance as a
motivation for the early theory of multi-armed bandits and for the theory of
sequential prediction, now an important field of research in machine learning.

The objective of the chapter is to provide a functional view of the concepts
and methods proper to multistage stochastic programming.

To communicate the spirit of the approach, we use examples that are short in
their description. We use the freely available optimization software cvx (Grant
& Boyd, 2009), which has the merit of enabling occasional users of optimiza-
tion techniques to conduct their own numerical experiments in Matlab (The
MathWorks, Inc., 2004).

We cover our recent contributions on scenario tree selection and out-of-
sample validation of optimized models (Defourny, Ernst, & Wehenkel, 2009),
which suggest partial answers to issues concerning the selection of approxima-
tions/discretization of multistage stochastic programs, and to issues concerning
the efficient comparison among those approximations.

Many details relative to optimization algorithms and specific problem classes
have been left aside in our presentation. A more extensive coverage of these
aspects can be found in J. Birge and Louveaux (1997); Shapiro, Dentcheva,
and Ruszczyński (2009). These excellent sources also present many examples of
formulations of stochastic programming models. Note, however, that there is no
such thing as a general theory on multistage stochastic programming that would
allow the many approximation/discretization schemes proposed in the technical
literature (referenced later in the chapter) to be sorted out.

Background

Now, even if we insist on concepts, our presentation cannot totally escape from
the fact that multistage stochastic programming uses optimization techniques
from mathematical programming, and can harness advances in the field of opti-
mization.

To describe what a mathematical program is, simply say that there is a
function F , called the objective function, that assigns to x ∈ X a real-valued

3

cost F (x), that there exists a subset C of X , called the feasibility set, describing
admissible points x (by functional relations, not by enumeration), and that the
program formulates our goal of computing the minimal value of F on C, written
minC F , and a solution x∗ ∈ C attaining that optimal value, that is, F (x∗) =
minC F . Note that the set of points x ∈ C such that F (x) = minC F , called the
optimal solution set and written argminC F , need not be a singleton. Obviously,
many problems can be formulated in that way, and what makes the interest of
optimization theory is the clarification of the conditions on F and C that make
a minimization problem well-posed (minC F finite and attained) and efficiently
solvable. For instance, in the chapter, we speak of convex optimization problems.
To describe this class, imagine a point x̄ ∈ C, and assume that for each x ∈ C
in a neighborhood of x̄, we have F (x) ≥ F (x̄). The class of convex problems is
a class for which any such x̄ belongs to the optimal solution set argminC F . In
particular, the minimization of F over C with F an affine function of x ∈ R

n

(meaning that F has values F (x) =
∑n

i=1 aixi + a0) and C = {x : gi(x) ≤
0, hj(x) = 0 for i ∈ I, j ∈ J} for some index sets I, J and affine functions gi, hj ,
turns out to be a convex problem (linear programming) for which huge instances
— in terms of the dimension of x and the cardinality of I, J — can be solved.
Typically, formulation tricks are used to compensate the structural limitations
on F , C by an augmentation of the dimension of x and the introduction of new
constraints gi(x) ≤ 0, hj(x) = 0. For example, minimizing the piecewise linear
function f(x) = max{aix + bi : i ∈ I} defined on x ∈ R, with I = {1, . . . , m}
and ai, bi ∈ R, is the same as minimizing the linear function F (x, t) = t over the
set C = {(x, t) ∈ R×R : aix+ bi − t ≤ 0, i ∈ I}. The trick can be particularized
to f(x) = |x| = max{x,−x}.

For more on applied convex optimization, we refer to Boyd and Vandenberghe
(2004). But if the reader is ready to accept that conditions on F and C form
well-characterized classes of problems, and that through some modeling effort
one is often able to formulate interesting problems as an instance of one of those
classes, then it is possible to elude a full description of those conditions.

Stochastic programming (Dantzig, 1955) is particular from the point of view
of approximation and numerical optimization in that it involves a representation
of the objective F by an integral (as soon as F stands for an expected cost
under a continuous probability distribution), a large, possibly infinite number of
dimensions for x, and a large, possibly infinite number of constraints for defining
the feasibility set C. In practice, one has to work with approximations F ′, C′, and
be content with an approximate solution x′ ∈ argminC′ F ′. Multistage stochastic
programming (the extension of stochastic programming to sequential decision
making) is challenging in that small imbalances in the approximation can be
amplified from stage to stage, and that x′ may be lying in a space of dimension
considerably smaller than the initial space for x. Special conditions might be
required for ensuring the compatibility of an approximate solution x′ with the
initial requirement x ∈ C.

One of the main messages of the chapter is that it is actually possible to make
use of supervised learning techniques (Hastie, Tibshirani, & Friedman, 2009) to
lift x′ to a full-dimensional approximate solution x̃ ∈ C, and then use an estimate
of the value F (x̃) as a feedback signal on the quality of the approximation of F ,
C by F ′, C′.

4

The computational efficiency of this lifting procedure based on supervised
learning allows us to compare reliably many approximations of F and C, and
therefore to sort out empirically, for a given problem or class of problems at hand,
the candidate rules that are actually relevant for building better approximations.
This new methodology for guiding the development of discretization procedures
for multistage stochastic programming is exposed in the present chapter.

We recall that supervised learning aims at generalizing a finite set of exam-
ples of input-output pairs, sampled from an unknown but fixed distribution, to
a mapping that predicts the output corresponding to a new input. This can be
viewed as the problem of finding parameters maximizing the likelihood of the
observed pairs (if the mapping has a parametric form); alternatively this can
be viewed as the problem of selecting, from a hypothesis space of controlled
complexity, the hypothesis that minimizes the expectation of the discrepancy
between true outputs and predictions, measured by a certain loss function. The
complexity of the hypothesis space is determined by comparing the performance
of learned predictors on unseen input samples. Common methods for tackling the
supervised learning problem include: neural networks (Hinton, Osindero, & Teh,
2006), support vector machines (Steinwart & Christman, 2008), Gaussian pro-
cesses (Rasmussen & Williams, 2006), and decision trees (Breiman, Friedman,
Stone, & Olshen, 1984; Geurts, Ernst, & Wehenkel, 2006). A method may be
preferable to another depending on how easily one can incorporate prior knowl-
edge in the learning algorithm, as this can make the difference between rich or
poor generalization abilities.

Note that supervised learning is integrated to many approaches for tackling
the reinforcement learning problem (Chapter 4 of this book). The literature on
this aspect is large: see, for instance, Lagoudakis and Parr (2003); Ernst, Geurts,
and Wehenkel (2005); Langford and Zadrozny (2005); Munos and Szepesvári
(2008).

Organization of the Chapter

The chapter is organized as follows. We begin by presenting the multistage
stochastic programming framework, the discretization techniques, and the con-
siderations on numerical optimization methods that have an influence on the way
problems are modeled. Then, we compare the approach to Markov Decision Pro-
cesses, discuss the curse of dimensionality, and put in perspective simpler decision
making models based on numerical optimization, such as two-stage stochastic
programming with recourse or Model Predictive Control. Next, we explain the
issues posed by the dominant approximation/discretization approach for solving
multistage programs (which is suitable for handling both discrete and continuous
random variables). A section is dedicated to the proposed extension of the multi-
stage stochastic programming framework by techniques from machine learning.
The proposal is followed by an extensive case study, showing how the proposed
approach can be implemented in practice, and in particular how it allows to infer
guidelines for building better approximations of a particular problem at hand.
The chapter is complemented by a discussion of issues arising from the choice of
certain objective functions that can lead to inconsistent sequences of decisions,
in a sense that we will make precise. The conclusion indicates some avenues for
future research.

5

2 THE DECISION MODEL

This section describes the multistage stochastic programming approach to se-
quential decision making under uncertainty, starting from elementary consider-
ations. The reader may also want to take a look at the example at the end of
this section (and to the few lines of Matlab code that implement it).

2.1 From Nominal Plans to Decision Processes

In their first attempt towards planning under uncertainty, decision makers often
set up a course of actions, or nominal plan (reference plan), deemed to be robust
to uncertainties in some sense, or to be a wise bet on future events. Then, they
apply the decisions, often diverging from the nominal plan to better take account
of actual events. To further improve the plan, decision makers are then led to
consider (i) in which parts of the plan flexibility in the decisions may help to
better fulfill the objectives, and (ii) whether the process by which they make
themselves (or the system) “ready to react” impacts the initial decisions of the
plan and the overall objectives. If the answer to (ii) is positive, then it becomes
valuable to cast the decision problem as a sequential decision making problem,
even if the net added value of doing so (benefits minus increased complexity) is
unknown at this stage. During the planning process, the adaptations (or recourse
decisions) that may be needed are clarified, their influence on prior decisions is
quantified. The notion of nominal plan is replaced by the notion of decision
process, defined as a course of actions driven by observable events. As distinct
outcomes have usually antagonist effects on ideal prior decisions, it becomes
crucial to determine which outcomes should be considered, and what importance
weights should be put on these outcomes, in the perspective of selecting decisions
under uncertainty that are not regretted too much after the dissipation of the
uncertainty by the course of real-life events.

2.2 Incorporating Probabilistic Reasoning

In the robust optimization approach to decision making under uncertainty, deci-
sion makers are concerned by worst-case outcomes. Describing the uncertainty
is then essentially reduced to drawing the frontier between events that should
be considered and events that should be excluded from consideration. In that
context, outcomes under consideration form the uncertainty set, and decision
making becomes a game against some hostile opponent that selects the worst
outcome from the uncertainty set. The reader will find in Ben-Tal, El Ghaoui,
and Nemirovski (2009) arguments in favor of robust approaches.

In a stochastic programming approach, decision makers use a softer frontier
between possible outcomes, by assigning weights to outcomes and optimizing
some aggregated measure of performance that takes into account all these possi-
ble outcomes. In that context, the weights are often interpreted as a probability
measure over the events, and a typical way of aggregating the events is to con-
sider the expected performance under that probability measure.

Furthermore, interpreting weights as probabilities allows reasoning under un-
certainty. Essentially, probability distributions are conditioned on observations,
and Bayes’ rule from probability theory (Chapter 2 of this book) quantifies how
decision makers’ initial beliefs about the likelihood of future events — be it

6

from historical data or from bets — should be updated on the basis of new
observations.

Technically, it turns out that the optimization of a decision process contingent
to future events is more tractable (read: suitable to large-scale operations) when
the “reasoning under uncertainty” part can be decoupled from the optimization
process itself. Such a decoupling occurs in particular when the probability distri-
butions describing future events are not influenced in any way by the decisions
selected by the agent, that is, when the uncertainty is exogenous to the decision
process. Examples of applications where the uncertainty can be treated as an
exogenous process include capacity planning (especially in the gas and electric-
ity industries), and asset and liability management. In both case, historical data
allows to calibrate a model for the exogenous process.

2.3 The Elements of the General Decision Model

We are now in a position to describe the general decision model used throughout
the chapter, and introduce some notations. The model is made of the following
elements.

1. A sequence of random variables ξ1, ξ2, . . . , ξT defined on a probability
space (Ω,B, P). For a rigorous definition of the probability space, see e.g.
Billingsley (1995). We simply recall that for a real-valued random variable
ξt, interpreted, in the context of the rigorous definition of the probability
space, as a B-measurable mapping from Ω to R with values ξt(ω), the prob-
ability that ξt ≤ v, written P{ξt ≤ v}, is the measure under P of the set
{ω ∈ Ω : ξt(ω) ≤ v} ∈ B. One can write P (ξt ≤ v) for P(ξt ≤ v) when
the measure P is clear from the context. If ξ1, . . . , ξT are real-valued random
variables, the function of (v1, . . . , vT) with values P{ξ1 ≤ v1, . . . , ξT ≤ vT }
is the joint distribution function of ξ1, . . . , ξT . The smallest closed set Ξ
in R

T such that P{(ξ1, . . . , ξT) ∈ Ξ} = 1 is the support of measure P of
(ξ1, . . . , ξT), also called the support of the joint distribution. If the random
variables are vector-valued, the joint distribution function can be defined by
breaking the random variables into their scalar components. For simplicity,
we may assume that the random variables have a joint density (with respect
the Lebesgue measure for continuous random variables, or with respect to
the counting measure for discrete random variables), written P(ξ1, . . . , ξT)
by a slight abuse of notation, or p(ξ1, . . . , ξT) if the measure P can be un-
derstood from the context. As several approximations to P are introduced
in the sequel and compared to the exact measure P, we always stress the
appropriate probability measure in the notation.

The random variables represent the uncertainty in the decision problem, and
their possible realizations (represented by the support of measure P) are the
possible observations to which the decision maker will react. The probability
measure P serves to quantify the prior beliefs about the uncertainty. There
is no restriction on the structure of the random variables; in particular, the
random variables may be dependent. When the realization of ξ1, . . . , ξt−1 is
known, there is a residual uncertainty represented by the random variables
ξt, . . . , ξT , the distribution of which in now conditioned on the realization of
ξ1, . . . , ξt−1.

7

Table 1. Decision stages, setting the order of observations and decisions.

Stage Available information for taking decisions Decision

Prior Observed Residual
decisions outcomes uncertainty

1 none none P(ξ1, . . . , ξT) u1

2 u1 ξ1 P(ξ2, . . . , ξT | ξ1) u2

3 u1, u2 ξ1, ξ2 P(ξ3, . . . , ξT | ξ1, ξ2) u3

...
...

T u1, . . . , uT−1 ξ1, . . . , ξT−1 P(ξT | ξ1, . . . , ξT−1) uT

optional:
T+1 u1, . . . , uT ξ1, . . . , ξT none (uT+1)

For example, the evolution of the price of resources over a finite time hori-
zon T can be represented, in a discrete-time model, by a random process
ξ1, . . . ξT , with the dynamics of the process inferred from historical data.

2. A sequence of decisions u1, u2, . . . , uT defining the decision process for the
problem. Some models also use a decision uT+1. We will assume that ut is
valued in a Euclidian space R

m (the space dimension m, corresponding to
a number of scalar decisions, could vary with the index t, but we will not
stress that in the notation).
For example, a decision ut could represent quantities of resources bought at
time t.

3. A convention specifying when decisions should actually be taken and when
the realizations of the random variables are actually revealed. This means
that if ξt−1 is observed before taking a decision ut, we can actually adapt
ut to the realization of ξt−1. To this end, we identify decision stages: see
Table 1. A row of the table is read as follows: at decision stage t > 1, the
decisions u1, . . . , ut−1 are already implemented (no modification is possi-
ble), the realization of the random variables ξ1, . . . , ξt−1 is known, the re-
alization of the random variables ξt, . . . , ξT is still unknown but a density
P(ξt, . . . , ξT | ξ1, . . . , ξt−1) conditioned on the realized value of ξ1, . . . , ξt−1 is
available, and the current decision to take concerns the value of ut. Once
such a convention holds, we need not stress in the notation the difference
between random variables ξt and their realized value, or decisions as func-
tions of uncertain events and the actual value for these decisions: the correct
interpretation is clear from the context of the current decision stage.
The adaptation of a decision ut to prior observations ξ1, . . . , ξt−1 will al-
ways be made in a deterministic fashion, in the sense that ut is uniquely
determined by the value of (ξ1, . . . , ξt−1).
A sequential decision making problem has more than two decision stages
inasmuch as the realizations of the random variables are not revealed simul-
taneously: the choice of the decisions taken between successive observations
has to take into account some residual uncertainty on future observations. If
the realization of several random variables is revealed before actually taking
a decision, then the corresponding random variables should be merged into a
single random vector; if several decisions are taken without intermediary ob-

8

servations, then the corresponding decisions should be merged into a single
decision vector. This is how a problem concerning several time periods could
actually be a two-stage stochastic program, involving two large decision vec-
tors u1 (first-stage decision, constant), u2 (recourse decision, adapted to the
observation of ξ1). What is called a decision in a stochastic programming
model may thus actually correspond to several actions implemented over a
certain number of discrete time periods.

4. A sequence of feasibility sets U1, . . . ,UT describing which decisions u1, . . . , uT

are admissible. When ut ∈ Ut, one says that ut is feasible. The feasibility sets
U2, . . . ,UT may depend, in a deterministic fashion, on available observations
and prior decisions. Thus, following Table 1, Ut may depend on ξ1, u1, ξ2, u2,
. . . , ξt−1 in a deterministic fashion. Note that prior decisions are uniquely
determined by prior observations, but for convenience we keep track of prior
decisions to parameterize the feasibility sets.
An important role of the feasibility sets is to model how decisions are affected
by prior decisions and prior events. In particular, a situation with no possible
recourse decision (Ut empty at stage t, meaning that no feasible decision
ut ∈ Ut exists) is interpreted as a catastrophic situation to be avoided at any
cost.
We will always assume that the planning agent knows the set-valued mapping
from the random variables ξ1, . . . , ξt−1 and the decisions u1, . . . , ut−1 to the
set Ut of feasible decisions ut.
We will also assume that the feasibility sets are such that a feasible sequence
of decisions u1 ∈ U1, . . . , uT ∈ UT exists for all possible joint realizations of
ξ1, . . . , ξT . In particular, the fixed set U1 must be nonempty. A feasibility
set Ut parameterized only by variables in a subset of {ξ1, . . . , ξt−1} must be
nonempty for any possible joint realization of those variables. A feasibility
set Ut also parameterized by variables in a subset of {u1, . . . , ut−1} must be
implicitly taken into account in the definition of the prior feasibility sets, so
as to prevent immediately a decision maker from taking a decision at some
earlier stage that could lead to a situation at stage t with no possible recourse
decision (Ut empty), be it for all possible joint realizations of the subset of
{ξ1, . . . , ξt−1} on which Ut depends, or for some possible joint realization
only. These implicit requirements will affect in particular the definition of
U1.
For a technical example, interpret a ≥ b for any vectors a, b ∈ R

q as a
shorthand for the componentwise inequalities ai ≥ bi, i = 1, . . . , q, assume
that ut−1, ut ∈ R

m, and take Ut = {ut ∈ R
m : ut ≥ 0, At−1ut−1 + Btut =

ht(ξt−1)} with At−1, Bt ∈ R
q×m fixed matrices, and ht an affine function of

ξt−1 with values in R
q. If Bt is such that {Btut : ut ≥ 0} = R

q, meaning
that for any v ∈ R

q, there exists some ut ≥ 0 with Btut = v, then this is true
in particular for v = ht(ξt−1) − At−1ut−1, so that Ut is never empty. More
details on this kind of sufficient conditions in the stochastic programming
literature can be found in Wets (1974).
One can use feasibility sets to represent, for instance, the dynamics of re-
source inflows and outflows, assumed to be known by the planning agent.

5. A performance measure, summarizing the overall objectives of the decision
maker, that should be optimized. It is assumed that the decision maker
knows the performance measure. In this chapter, we write the performance
measure as the expectation of a function f that assigns some scalar value to

9

each realization of ξ1, . . . , ξT and u1, . . . , uT , assuming the integrability of f
with respect to the joint distribution of ξ1, . . . , ξT .
For example, one could take for f a sum of scalar products

∑T
t=1 ct · ut,

where c1 is fixed and where ct depends affinely on ξ1, . . . , ξt−1. The function
f would represent a sum of instantaneous costs over the planning horizon.
The decision maker would be assumed to know the vector-valued mapping
from the random variables ξ1, . . . , ξt−1 to the vector ct, for each t.
Besides the expectation, more sophisticated ways to aggregate the distri-
bution of f into a single measure of performance have been investigated
(Pflug & Römisch, 2007). An important element considered in the choice
of the performance measure is the tractability of the resulting optimization
problem.

The planning problem is then formalized as a mathematical programming
problem. The formulation relies on a particular representation of the random
process ξ1, . . . , ξT in connection with the decision stages, commonly referred to
as the scenario tree.

2.4 The Notion of Scenario Tree

Let us call scenario an outcome of the random process ξ1, . . . , ξT . A scenario
tree is an explicit representation of the branching process induced by the grad-
ual observation of ξ1, . . . , ξT , under the assumption that the random variables
have a discrete support. It is built as follows. A root node is associated to the first
decision stage and to the initial absence of observations. To the root node are
connected children nodes associated to stage 2, one child node for each possible
outcome of the random variable ξ1. Then, to each node of stage 2 are connected
children nodes associated to stage 3, one for each outcome of ξ2 given the ob-
servation of ξ1 relative to the parent node. The branching process construction
goes on until the last stage is reached; at this point, the outcomes associated to
the nodes on the unique path from the root to a leaf define together a particular
scenario, that can be associated to the leaf.

The probability distribution of the random variables is also taken into ac-
count. Probability masses are associated to the nodes of the scenario tree. The
root node has probability 1, whereas children nodes are weighted by proba-
bilities that represent the probability of the value to which they are associated,
conditioned on the value associated to their ancestor node. Multiplying the prob-
abilities of the nodes of the path from the root to a leaf gives the probability of
a scenario.

Clearly, an exact construction of the scenario tree would require an infinite
number of nodes if the support of (ξ1, . . . , ξT) is discrete but not finite. A ran-
dom process involving continuous random variables cannot be represented as a
scenario tree; nevertheless, the scenario tree construction turns out to be instru-
mental in the construction of approximations to nested continuous conditional
distributions.

Branchings are essential to represent residual uncertainty beyond the first de-
cision stage. At the planning time, the decision makers may contemplate as many
hypothetical scenarios as desired, but when decisions are actually implemented,
the decisions cannot depend on observations that are not yet available. We have
seen that the decision model specifies, with decision stages, how the scenario

10

Ω

1. 2. 3.

6.

5.

4.

8.

7.
1.

2. 3.

4. 5. 6. 7. 8.

Figure 1. (From left to right) Nested partitioning of the event space Ω, starting from
a trivial partition representing the absence of observations. (Rightmost) Scenario tree
corresponding to the partitioning process.

actually realized will be gradually revealed. No branchings in the representation
of the outcomes of the random process would mean that after conditioning on
the observation of ξ1, the outcome of ξ2, . . . , ξT could be predicted (anticipated)
exactly. Under such a representation, decisions spanning stages 2 to T would be
optimized on the anticipated outcome. This would be equivalent to optimizing
a nominal plan for u2, . . . , uT that fully bets on some scenario anticipated at
stage 2.

To visualize how information on the realization of the random variables be-
comes gradually available, it is convenient to imagine nested partitions of the
event space (Figure 1): refinements of the partitions appear gradually at each
decision stage in correspondence with the possible realizations of the new obser-
vations. To each subregion induced by the partitioning of the event space can be
associated a constant recourse decision, as if decisions were chosen according to
a piecewise constant decision policy. On Figure 1, the surface of each subregion
could also represent probabilities (then by convention the initial square has a
unit surface and the thin space between subregions is for visual separation only).
The dynamical evolution of the partitioning can be represented by a scenario
tree: the nodes of the tree corresponds to the subregions of the event space, and
the edges between subregions connect a parent subregion to its refined subregions
obtained by one step of the recursive partitioning process.

Ideally, a scenario tree should cover the totality of possible outcomes of a ran-
dom process. But unless the support of the distribution of the random variables
is finite, no scenario tree with a finite number of nodes can represent exactly the
random process and the probability measure, as we already mentioned, while
even if the support is finite, the number of scenarios grows exponentially with
the number of stages. How to exploit finite scenario tree approximations in order
to extract good decision policies for general multistage stochastic programming
problems involving continuous distributions will be extensively addressed in this
chapter.

2.5 The Finite Scenario-Tree Based Approximation

In the general decision model, the agent is assumed to have access to the joint
probability distributions, and is able to derive from it the conditional distribu-
tions listed in Table 1. In practice, computational limitations will restrict the
quality of the representation of P. Let us however reason at first at an abstract
and ideal level to establish the program that an agent would solve for planning
under uncertainty.

For brevity, let ξ denote (ξ1, . . . , ξT), and let π(ξ) denote a decision policy
mapping realizations of ξ to realizations of the decision process u1, . . . , uT . Let

11

πt(ξ) denote ut viewed as a function of ξ. To be consistent with the decision
stages, the policy must be non-anticipative, in the sense that ut cannot depend
on observations relative to subsequent stages. Equivalently one can say that π1

must be a constant-valued function, π2 a function of ξ1, and in general πt a
function of ξ1, . . . , ξt−1 for t = 2, . . . , T .

The planning problem can then be stated as the search for a non-anticipative
policy π, restricted by the feasibility sets Ut, that minimizes an expected total
cost f spanning the decision stages and determined by the scenario ξ and the
decisions π(ξ):

S : minimize E {f(ξ, π(ξ))}
subject to πt(ξ) ∈ Ut(ξ) ∀ t,

π(ξ) non-anticipative .

Here we used an abstract notation which hides the nested expectations cor-
responding to the successive random variables, and the possible decomposition
of the function f among the different decision stages indexed by t. It is possible
to be even more general by replacing the expectation operator by a functional Φ
assigning single numbers in R ∪ {±∞} to distributions. We also stressed the
possible dependence of Ut on ξ1, u1, ξ2, u2, . . . , ξt−1 by writing Ut(ξ).

A program more amenable to numerical optimization techniques is obtained
by representing π(·) by a set of optimization variables for each possible argument
of the function. That is, for each possible outcome ξk = (ξk

1 , . . . , ξk
T) of ξ, one

associates the optimization variables (uk
1 , . . . , u

k
T), written uk for brevity. The

non-anticipativity of the policy can be expressed by a set of equality constraints:
for the first decision stage we require uk

1 = uj
1 for all k, j, and for subsequent

stages (t > 1) we require uk
t = uj

t for each (k, j) such that (ξk
1 , . . . , ξk

t−1) ≡
(ξj

1, . . . , ξ
j
t−1).

A finite-dimensional approximation to the program S is obtained by consid-
ering a finite number n of outcomes, and assigning to each outcome a discrete
probability pk. This yields a formulation on a scenario tree covering the scenar-
ios ξk:

S′ : minimize
∑n

k=1 pk f(ξk, uk)

subject to uk
t ∈ Ut(ξ

k) ∀ k, ∀t ;

uk
1 = uj

1 ∀ k, j ;

uk
t = uj

t whenever

(ξk
1 , . . . , ξk

t−1) ≡ (ξj
1 , . . . , ξ

j
t−1) .

Once again we used a simple notation ξk for designating outcomes of the
process ξ, which hides the fact that outcomes can share some elements according
to the branching structure of the scenario tree.

Non-anticipativity constraints can also be accounted for implicitly. A partial
path from the root (depth 0) to some node of depth t of the scenario tree identifies
some outcome (ξk

1 , . . . , ξk
t−1) of (ξ1, . . . , ξt−1). To the node can be associated the

decision uk
t+1, but also all decisions uj

t+1 such that (ξk
1 , . . . , ξk

t) ≡ (ξj
1, . . . , ξ

j
t).

Those decisions are redundant and can be merged into a single decision on the
tree, associated to the considered node of depth t (the reader may refer to the
scenario tree of Figure 1).

12

The finite scenario tree approximation is needed because numerical optimiza-
tion methods cannot handle directly problems like S, which cannot be specified
with a finite number of optimization variables and constraints. The approxi-
mation may serve to provide an estimate of the optimal value of the original
program; it may also serve to obtain an approximate first-stage decision u1. Sev-
eral aspects regarding the exploitation of scenario-tree approximations and the
derivation of decisions for the subsequent stages will be further discussed in the
chapter.

Finally, we point out that there are alternative numerical methods for solving
stochastic programs (usually two-stage programs), based on the incorporation of
the discretization procedure into the optimization algorithm itself, for instance
by updating the discretization or carrying out importance sampling within the
iterations of a given optimization algorithm (Norkin, Ermoliev, & Ruszczyński,
1998), or by using stochastic subgradient methods (Nemirovski, Juditsky, Lan, &
Shapiro, 2009). Also, heuristics for finding policies directly have been suggested:
a possible idea (akin to direct policy search procedures in Markov Decision Pro-
cesses) is to optimize a combination of feasible non-anticipative basis policies
πj(ξ) specified beforehand (Koivu & Pennanen, 2010).

2.6 Numerical Optimization of Stochastic Programs

The program formulated on the scenario tree is solved using numerical optimiza-
tion techniques.

In principle, it is the size, the class and the structure of the program that
determine which optimization algorithm is suitable. The size depends on the
number of optimization variables and the number of constraints of the program.
It is therefore influenced by the number of scenarios, the planning horizon, and
the dimension of the decision vectors. The class of the program depends on the
range of the optimization variables (set of permitted values), the nature of the
objective function, and the nature of the equality and inequality constraints that
define the feasibility sets. The structure depends on the number of stages, the
nature of the coupling of decisions between stages, the way random variables
intervene in the objective and the constraints, and on the joint distribution of
the random variables (independence assumptions or finite support assumptions
can sometimes be exploited). The structure determines whether the program can
be decomposed in smaller parts, and where applicable, to which extent sparsity
and factorization techniques from linear algebra can alleviate the complexity of
matrix operations.

Note that the history of mathematical programming has shown a large gap
between the complexity theory concerning some optimization algorithms, and
the performance of these algorithms on problems with real-world data. A notable
example (not directly related to stochastic programming, but striking enough to
be mentioned here) is the traveling salesman problem (TSP). The TSP consists in
finding a circuit of minimal cost for visiting n cities connected by roads (say that
costs are proportional to road lengths). The dynamic programming approach,
based on a recursive formulation of the problem, has the best known complexity
bound: it is possible to find an optimal solution in time proportional to n22n.
But in practice only small instances (n ∼ 20) can be solved with the algorithm
developed by Bellman (1962), due to the exponential growth of a list of optimal
subpaths to consider. Linear programming approaches based on the simplex

13

algorithm have an unattractive worst-case complexity, and yet such approaches
have allowed to solve large instances of the problem — n = 85900 for the record
on pla85900 obtained in 2006 — as explained in Applegate, Bixby, Chvátal, and
Cook (2007).

In today’s state of computer architectures and optimization technologies,
multistage stochastic programs are considered numerically tractable, in the sense
that numerical solutions of acceptable accuracy can be computed in acceptable
time, when the formulation is convex. The covered class includes linear programs
(LP) and convex quadratic programs (QP), which are similar to linear programs
but have a quadratic component in their objective. A problem can be recognized
to be convex if it can be written as a convex program; a program minC F is
convex if (i) the feasibility set C is convex, that is, (1 − λ)x + λy ∈ C whenever
x, y ∈ C and 0 < λ < 1 (Rockafellar, 1970, page 10); (ii) the objective function
F is convex on C, that is, F ((1−τ)x+τy) ≤ (1−τ)F (x)+τF (y), 0 < τ < 1, for
every x, y ∈ C (Rockafellar, 1970, Theorem 4.1). We refer to Nesterov (2003) for
an introduction to complexity theory for convex optimization and to interior-
point methods.

Integer programs (IP) and mixed-integer programs (MIP) are similar to lin-
ear programs but have integrality requirements on all (IP) or some (MIP) of
their optimization variables. The research in stochastic programming for these
classes is mainly focused on two-stage models: computationally-intensive meth-
ods for preprocessing programs so as to accelerate the repeated evaluation of
integer recourse decisions (Schultz, Stougie, & Van der Vlerk, 1998); convex re-
laxations (Van der Vlerk, 2009); branch-and-cut strategies (Sen & Sherali, 2006).
In large-scale applications, the modeling and numerical optimization aspects are
closely integrated: see, for instance, the numerical study of Verweij, Ahmed,
Kleywegt, Nemhauser, and Shapiro (2003). Solving multistage stochastic mixed-
integer models is extremely challenging, but significant progress has been made
recently (Escudero, 2009).

In our presentation, we focus on convex problems, and use Matlab for gen-
erating the data structure and values of the scenario trees, and cvx (Grant &
Boyd, 2008, 2009) for formulating and solving the resulting programs — cvx is
a modeling tool: it uses a language close to the mathematical formulation of the
models, leading to codes that are slower to execute but less prone to errors.

2.7 Example

To fix ideas, we illustrate the scenario tree technique on a trajectory tracking
problem under uncertainty with control penalization. In the proposed example,
the uncertainty is such that the exact problem can be posed on a small finite
scenario tree.

Say that a random process ξ = (ξ1, ξ2, ξ3), representing perturbations at
time t = 1, 2, 3, has 7 possible outcomes, denoted by ξk, 1 ≤ k ≤ 7, with known
probabilities pk:

k 1 2 3 4 5 6 7

ξk
1 -4 -4 -4 3 3 3 3

ξk
2 -3 2 2 -3 0 0 2

ξk
3 0 -2 1 0 -1 2 1

pk 0.1 0.2 0.1 0.2 0.1 0.1 0.2

14

-4

-3

0

2

-2 1

3

-3

0

0

-1 2

2

1

0.1 0.2 0.1 0.2 0.1 0.1 0.2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

v1

v2

v3

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

-0.1

2.1 -1.16

2 0.667 1.26 -0.74 -2

x1

x2

x3

x4

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

0

-4.1 2.9

-5 0 -1.26 1.74 3.74

-3

-1.333

1.667

0

0

3

2.74

Figure 2. (Left) Scenario tree representing the 7 possible scenarios for a random pro-
cess ξ = (ξ1, ξ2, ξ3). The outcomes ξk

t are written in bold, and the scenario proba-
bilities pk are reported at the leaf nodes. (Middle) Optimal actions vt for the agent,
displayed scenario per scenario, with frames around scenarios passing by a same tree
node. (Right) Visited states xt under the optimal actions, treated as artificial decisions
(see text).

The random process is fully represented by the scenario tree of Figure 2 (Left)
— the first possible outcome is ξ1 = (−4,−3, 0) and has probability p1 = 0.1.
Note that the random variables ξ1, ξ2, ξ3 are not mutually independent.

Assume that an agent can choose actions vt ∈ R at t = 1, 2, 3 (the notation vt

instead of ut is justified in the sequel). The goal of the agent is the minimization

of an expected sum of costs E{∑3
t=1 ct(vt, xt+1) | x1 = 0}. Here xt ∈ R is the

state of a continuous-state, discrete-time dynamical system, that starts from
the initial state x1 = 0 and follows the state transition equation xt+1 = xt +
vt + ξt. Costs ct(vt, xt+1), associated to the decision vt and the transition to the
state xt+1, are defined by ct = (dt+1 + v2

t /4) with dt+1 = |xt+1 − αt+1| and
α2 = 2.9, α3 = 0, α4 = 0 (αt+1: nominal trajectory, chosen arbitrarily; dt+1:
tracking error; v2

t /4: penalization of control effort).
An optimal policy mapping observations ξ1, . . . , ξt−1 to decisions vt can

be obtained by solving the following convex quadratic program over variables
vk

t , xk
t+1, d

k
t+1, where k runs from 1 to 7 and t from 1 to 3, and over xk

1 trivially
set to 0:

minimize
∑7

k=1 pk
[
∑3

t=1(d
k
t+1 + (vk

t)2/4)
]

subject to − dk
t+1 ≤ xk

t+1 − αt+1 ≤ dk
t+1 ∀ k, t

xk
1 = 0 , xk

t+1 = xk
t + vk

t + ξk
t ∀ k, t

v1
1 = v2

1 = v3
1 = v4

1 = v5
1 = v6

1 = v7
1

v1
2 = v2

2 = v3
2 , v4

2 = v5
2 = v6

2 = v7
2

v2
3 = v3

3 , v5
3 = v6

3 .

Here, the vector of optimization variables (vk
1 , xk

1) plays the role of uk
1 , the

vector (vk
t , xk

t , dk
t) plays the role of uk

t for t = 2, 3, and the vector (xk
4 , dk

4) plays
the role of uk

4 , showing that the decision process u1, . . . , uT+1 of the general
multistage stochastic programming model can in fact include state variables and
more generally any element that serves to evaluate costs conveniently.

The following code allows to formulate and solve the program using Matlab
and cvx. It is almost a direct transcription of the program formulation, with
variables and constraints defined in matrix form (column indices are relative
to scenarios). Note that cvx replicates scalars if needed in componentwise con-
straints.

15

% problem data

xi = [-4 -4 -4 3 3 3 3;...

-3 2 2 -3 0 0 2;...

0 -2 1 0 -1 2 1];

p = [.1 .2 .1 .2 .1 .1 .2];

a = [2.9 0 0]’;

x1 = 0; n = 7; T = 3;

% call cvx toolbox

cvx_begin

variables x(T+1,n) d(T,n) v(T,n)

minimize(sum(sum(d*diag(p))) ...

+ sum(sum((v.^2)*diag(p)))/4);

subject to

-d <= x(2:T+1,:)-a(:,ones(1,n));

x(2:T+1,:)-a(:,ones(1,n)) <= d;

x(1,:) == x1;

for t=1:T

x(t+1,:) == ...

x(t,:)+v(t,:)+xi(t,:);

end

v(1,2:n) == v(1,1);

v(2,2:3) == v(2,1);

v(2,5:n) == v(2,4);

v(3,3) == v(3,2);

v(3,6) == v(3,5);

cvx_end

% display solution

cvx_optval, v, x

The code should return the optimal objective value +7.3148. The correspond-
ing optimal solution is depicted on Figure 2. In the next section, we will dis-
cuss the differences between stochastic programming approaches and Markov
Decision Processes. In this example, observe that the final solution can be re-
cast as mappings π̃t from xt to vt, namely, π̃1(0) = −0.1, π̃2(−4.1) = 2.1,
π̃2(2.9) = −1.16, π̃3(−5) = 2, π̃3(−1.26) = 1.26, π̃3(0) = 0.667, π̃3(1.74) =
−0.74, π̃3(3.74) = −2. Hence in this case, the convenient assumption of an agent
able to observe ξt instead of the system state xt is not a fundamental restriction.
Observe also that finding in this example the optimal mapping from xt to vt

by a Markov Decision Process formulation is not straightforward, because the
decision and state variables — to which the past states of the process ξt should
be added, as the process is not memoryless — are continuous and unbounded.

3 COMPARISON TO RELATED APPROACHES

This section discusses several modeling and algorithmic complexity issues raised
by the multistage stochastic programming framework and scenario-tree based
decision making.

16

3.1 The Exogenous Nature of the Random Process

A frequent assumption made in the stochastic programming framework is that
decision makers do not influence by their decisions the realization of the random
process representing the uncertainty. The random process is said to be exogenous.
This allows to simulate, select and organize in advance possible realizations of the
exogenous process, before any observation is actually made, and then optimize
jointly (by opposition to individually for each scenario) the decisions contingent
to the possible realizations.

The need to decouple the description of uncertainties and the optimization of
decisions might appear at first as a strong limitation on the situations that can
be modeled and treated by stochastic programming techniques. This impression
is in part justified for a large family of problems of control theory in which the
uncertainty is identified to some zero-mean noise perturbing the observations
or the dynamics of the system, or when the uncertainty is understood as the
uncertainty on the value of system parameters However, in another large fam-
ily of sequential decision making problems under uncertainty, major sources of
uncertainty are precisely the ones that are the less influenced by the behavior
of the decision makers (weather, interest rate evolution, accidental pollution,
new regulations, for example). We also note that random processes strongly in-
fluenced by the behavior of the decision makers can sometimes be handled by
incorporating them to the initial decision process and treating them as a virtual
decision process.

A probabilistic reasoning based on a subset of possible scenarios could easily
be tricked by an adversarial random process that would exploit one of the scenar-
ios discarded during the planning process. In many practical problems however,
the environment is not totally adversarial. In situations where the environment
is mildly adversarial, it is often possible to choose measures of performances that
are more robust to bad outcomes, and that can still be optimized in a tractable
way. We will come back to issues posed by risk-sensitive models for sequential
decision making at the end of the chapter.

Finally, it is easier in terms of sample complexity to learn a model (find
model parameters from finite data sets) for an exogenous process than for an
endogenous process. Learning a model for an exogenous process is possible from
observations of the process, such as time series, whereas learning a model for
an endogenous process forces us to be able to simulate possible state transitions
for every possible action, or at least to have at one’s disposal a fairly exhaustive
data set relating actions to state transitions.

The scheduling of electric power units (Carpentier, Cohen, & Culioli, 1996;
Sen, Yu, & Genc, 2006) and the management of cash flows, assets and liabilities
(Dempster et al., 2008) are example of sequential decision making problems with
exogenous processes following sophisticated models.

3.2 Comparison to Markov Decision Processes

In Markov Decision Processes (MDP), the decision maker seeks to optimize a
performance criterion decomposed into a sum of instantaneous rewards. The
information state of the decision maker at time t coincides with the state xt of
a dynamical system For simplicity, we do not consider in this discussion partial
observability (POMDP) or risk-sensitivity, for which the system state need not

17

be the information state of the agent. Optimal decision policies are often found
by a reasoning based on the dynamic programming principle, to which is essential
the notion of state as a sufficient statistic for representing the complete history
of the system’s evolution and agent’s beliefs.

Multistage stochastic programming problems could be viewed as a subclass
of finite-horizon Markov Decision Processes, by identifying the growing history
of observations (ξ1, . . . , ξt−1) to the agent’s state. However, the mathematical
assumptions under the MDP and the stochastic programming formulations are
in fact quite different. Complexity results suggest that the algorithmic resolution
of MDPs is efficient when the decision space is finite and small (Littman, Dean,
& Kaelbling, 1995; Kearns, Mansour, & Ng, 2002), while for the scenario-tree
based stochastic programming framework, the resolution is efficient when the
optimization problem is convex — in particular the decision space is continuous
— and the number of decision stages is small (Shapiro, 2006).

One of the main appeals of stochastic programming techniques is their ability
to deal efficiently with high-dimensional continuous decision spaces structured
by numerous constraints, and with sophisticated, non-memoryless random pro-
cesses. At the same time, if stochastic programming models have traditionally
been used for optimizing long-term decisions that are implemented once and have
lasting consequences, for example in network capacity planning, they are now
increasingly used in the context of near-optimal control strategies that Bertsekas
(2005) calls limited-lookahead strategies. In this usage, at each decision stage an
updated model over the remaining planning horizon is rebuilt and optimized on
the fly, from which only the first-stage decisions are actually implemented. In-
deed, when a stochastic program is solved on a scenario tree, the initial search for
a decision policy degenerates into the search for sequences of decisions relative
to the scenarios covered by the tree. The first-stage decision does not depend on
observations and can thus always be implemented on any new scenario, whereas
the recourse decisions relative to any particular scenario in the tree could be in-
feasible on a new scenario, especially if the feasibility sets depend on the random
process.

3.3 The Curse of Dimensionality

The curse of dimensionality is an algorithmic-complexity phenomenon by which
computing optimal policies on higher dimensional input spaces requires an expo-
nential growth of computational resources, leading to intractable problem formu-
lations. In dynamic programming, the input space is the state space or a reduced
parametrization of it. In practice the curse of dimensionality limits attempts to
cover inputs to spaces embedded in R

d with d at most equal to 5-10.
Approximate Dynamic Programming methods (ADP) (Bertsekas, 2005) and

Reinforcement Learning approaches (RL) (Sutton & Barto, 1998) help to mit-
igate the curse of dimensionality, for instance by attempting to cover only the
regions of the input space that are actually reached under an optimal policy.
An exploratory component may be added to the original dynamic programming
solution strategy so as to discover the interesting regions of the input space by
testing decisions. Those approaches work well in several cases:

– The structure of a near-optimal policy is known a priori. For example, policy
search methods work well when a near-optimal policy can be described by a

18

small number of parameters. Value-function based methods work well when
there is a finite and rather small set of actions, known a priori, that are the
elementary building blocks of a near-optimal policy, and are used to drive
the exploratory phase. Such situations are often exploited in robotics. For
instance, the fundamental building blocks of near-optimal policies can be
reduced to a limited number of motor primitives optimized separately.

– The structure of the optimization problem is such that the promising de-
cisions and input space regions identifiable early in the exploratory phase
correspond to those that are actually relevant for a near-optimal policy.
This ensures the practical success of optimistic exploratory strategies, that
refine decisions within regions identified as promising. This situation typi-
cally arises in problems where the stochastic part comes from a noise process
that slightly disturbs the dynamics of the system.

Stochastic programming algorithms do not rely on the covering of the state
space of dynamic programming. Instead, they rely on the covering of the random
exogenous process, which needs not correspond to the complete state space (see
how the auxiliary state xt is treated in the example of the previous section). The
complement of the state space and the decision space are “explored” during the
optimization procedure itself. The success of the approach will thus depend on
the tractability of the joint optimization in those spaces, and not on insights on
the structure of near-optimal policies.

In multistage stochastic programming approaches, the curse of dimensionality
is present when the number of decision stages increases, and in face of high-
dimensional exogenous processes. Therefore, methods that one could call, by
analogy to ADP, approximate stochastic programming methods, will attempt to
cover only the realizations of the exogenous random process that are truly needed
to obtain near-optimal decisions. These methods work with a number of scenarios
that does not grow exponentially with the dimension of the exogenous process
and the number of stages.

3.4 The Value of Multistage Stochastic Programming

Due to the curse of dimensionality, multistage stochastic programming is in
competition with more tractable decision models. At the same time it provides a
unifying framework between several simplified decision making paradigms, that
we now describe.

Reduction to Model Predictive Control. A radical simplification consists
in discarding the detailed probabilistic information on the uncertainty, taking
a nominal scenario, and optimizing decisions on the nominal scenario. As the
common practice for defining a nominal scenario is to replace random variables
by their expectation, the resulting problem on the nominal scenario is called
the expected value problem, the solution of which constitutes a nominal plan.
Even if the nominal plan could be used as an open-loop decision policy, that is,
implemented over the complete planning horizon, decision makers will usually
want to recompute the plan at the next decision stage by solving an updated
expected value problem on a new nominal scenario that incorporates the obser-
vations. In the control community, the approach is known as Model Predictive

19

Control (MPC). We refer the reader with a background in reinforcement learn-
ing to Ernst, Glavic, Capitanescu, and Wehenkel (2009) for discussions on this
area of research.

An indicator of the value of multistage programming decisions over model
predictive control decisions is given by the value of the stochastic solution (VSS).
To make the notion precise, let us define successively:

– V ∗, the optimal value of the multistage stochastic program minπ E{f(ξ, π(ξ))}.
For notational simplicity, we adopt the convention that f(ξ, π(ξ)) = ∞ if the
policy π is anticipative or yields infeasible decisions.

– ζ = (ζ1, . . . , ζT), the nominal scenario.
– uζ , the optimal solution to the expected value problem minu f(ζ, u). Note

that the optimization is over a single fixed sequence of feasible decisions; the
problem data is determined by ζ.

– uζ
1, the first-stage decision of uζ .

– V ζ , the optimal value of the multistage stochastic program minπ E{f(ξ, π(ξ))}
subject to the additional constraint π1(ξ) = uζ

1 for all ξ. If by a slight abuse
of notation, we write π1, viewed as an optimization variable, for the value
of the constant-valued function π1, then the additional constraint is simply
π1 = uζ

1. By definition, V ζ is the value of a policy implementing the first de-
cision from the expected value problem, and then selecting optimal recourse
decisions for the subsequent decision stages. The recourse decisions differ in
general from those that would be selected by a policy optimal for the original
multistage program.

The VSS is then defined as the difference V ζ − V ∗ ≥ 0. For maximization
problems, it would be defined by V ∗ − V ζ ≥ 0. J. Birge and Louveaux (1997)
describe special cases (with two decision stages, and restrictions on the way
randomness affects problem data) for which it is possible to compute bounds on
the VSS. They also come to the conclusion, from their survey of works studying
the VSS, that there is no rule that can predict a priori whether the VSS is low
or high for a given problem instance — for example increasing the variance of
random variables may increase or decrease the VSS.

Reduction to Two-Stage Stochastic Programming. A less radical simpli-
fication consists in discarding the distinction between recourse stages, keeping
in the model a first stage (associated to full uncertainty) and a second stage
(associated to the full knowledge of the realized scenario). A multistage model
degenerates into a two-stage model when the scenario tree has branchings only at
one stage (we have already described how random variables and decisions should
be merged if observations and decisions are not intertwined). The situation arises
for instance when scenarios are sampled over the full horizon independently: the
tree has then branchings only at the root. Huang and Ahmed (2009) define the
value of multistage programming (VMS) as the difference of the optimal values of
the multistage model versus the two-stage model. The authors establish bounds
on the VMS and describe an application (in the semiconductor industry) where
the VMS is high. Note however that a generalization of the notion of VSS would
rather quantify how multistage decisions outperform two-stage decisions when
those two-stage decisions are implemented with model rebuilding at each stage,
in the manner of the Model Predictive Control scheme.

20

Reduction to Heuristics based on Parametric Optimization. As an in-
termediate simplification between the expected value problem and the reduction
to a two-stage model, it is possible to optimize sequences of decisions separately
on each scenario. The decision maker can then use some averaging, consen-
sus or selection strategy to implement a first-stage decision inferred from the
so-obtained ensemble of first-stage decisions. Here again, the model should be
rebuilt with updated scenarios at each decision stage.

The problem of computing optimal decisions separately for each scenario is
known as the distribution problem. The problem appears in the definition of the
expected value of perfect information (EVPI), which quantifies the additional
value that a decision maker could reach in expectation if he or she were able
to predict the future. To make the notion precise, let V ∗ denote as before the
optimal value of the multistage stochastic program minπ E{f(ξ, π(ξ))} over non-
anticipative policies π; let V (ξ) denote the optimal value of the deterministic
program minu f(ξ, u); and let V A be the expected value of V (ξ), according to
the distribution of ξ. Observe that V A is also the optimal value of the program
minπA E{f(ξ, πA(ξ))} over anticipative policies πA, the optimization of which
is now decomposable among scenario subproblems. The EVPI is then defined
as the difference V ∗ − V A ≥ 0. For maximization problems, it is defined by
V A −V ∗ ≥ 0. Intuitively, the EVPI is high when having to delay adaptations to
final outcomes due to a lack of information results in high costs.

The EVPI is usually interpreted as the price a decision maker would be
ready to pay to know the future (Raiffa & Schlaifer, 1961; J. R. Birge, 1992).
The EVPI also indicates how valuable the dependence of decision sequences is
on the particular scenario they are optimized over. Mercier and Van Hentenryck
(2007) show on an example with low EVPI how a strategy based on a particular
aggregation of decisions optimized separately on deterministic scenarios can be
arbitrarily bad. Thus even if the EVPI is low, heuristics based on the decisions
of anticipative policies can perform poorly.

This does not mean that the approach cannot perform well in practice.
Van Hentenryck and Bent (2006) have studied and refined various aggregation
and regret-minimization strategies on a series of stochastic combinatorial prob-
lems already hard to solve on a single scenario, as well as schemes that build a
bank of pre-computed reference solutions and then adapt them online to acceler-
ate the optimization on new scenarios. They show that their strategies perform
well on vehicle routing applications.

Remark on the Progressive Hedging Algorithm. The progressive hedging
algorithm (PHA) of Rockafellar and Wets (1991) is a decomposition method
that computes the solution to a multistage stochastic program on a scenario
tree by solving repeatedly separate subproblems on the scenarios covered by
the tree. First-stage decisions and other decisions coupled by non-anticipativity
constraints are obtained by aggregating the decisions of the concerned scenarios,
in the spirit of the heuristics based on the distribution problem presented above.
The algorithm modifies the scenario subproblems at each iteration to make the
decisions coupled by non-anticipativity constraints converge towards a common
and optimal decision.

As the iterations are carried out, first-stage decisions evolve from decisions
hedged by the aggregation strategy to decisions hedged by the multiple recourse

21

decisions computed on the scenario tree. Therefore, the progressive hedging al-
gorithm shows that there can be a smooth conceptual transition between the
decision model based on the distribution problem and the decision model based
on the multistage stochastic programming problem.

3.5 Example

We illustrate the computation of the VSS and the EVPI on an artificial mul-
tistage problem, with numerical parameters chosen in such a way that the full
multistage model is valuable. By valuable we mean that the presented simplified
decision-making schemes will output first-stage decisions that are suboptimal. If
those decisions were implemented, and subsequently the best possible recourse
decisions were applied, the value of the objective over the full horizon would be
significantly suboptimal.

Let w1, w2, w3 be mutually independent random variables uniformly dis-
tributed on {+1,−1}. Let ξ = (ξ1, ξ2, ξ3) be a random walk such that ξ1 = w1,
ξ2 = w1 + w2, ξ3 = w1 + w2 + w3. Let the 8 equiprobable outcomes of ξ form
a scenario tree and induce non-anticipativity constraints (the tree is a binary
tree of depth 3). Consider the decision process u = (u1, u2, u3) with u2 ∈ R

and ut = (ut1, ut2) ∈ R
2 for t = 1, 3. Then consider the multistage stochastic

program

maximize

1
8

∑8
k=1{[0.8uk

11 − 0.4(uk
2/2 + uk

31 − ξk
3)2]

+ uk
32ξ

k
3 + [1 − uk

11 − uk
12]}

subject to

uk
11 + uk

12 ≤ 1 ∀k

− uk
11 ≤ uk

2 ≤ uk
11 ∀k

− uk
1j ≤ uk

3j ≤ uk
1j ∀k and j = 1, 2

C1: uk
1 = u1

1 ∀k

C2: uk
2 = uk+1

2 = uk+2
2 = uk+3

2 for k = 1, 5

C3: uk
3 = uk+1

3 for k = 1, 3, 5, 7 .

The non-anticipativity constraints C1, C2, C3, which are convenient to state
the problem, indicate in practice the redundant optimization variables that can
be eliminated.

– The optimal value of the multistage stochastic program is V ∗ = 0.35 with
optimal first-stage decision u∗

1 = (1, 0).
– The expected value problem for the mean scenario ζ = (0, 0, 0) is obtained

by setting momentarily ξk = ζ ∀ k and adding the constraints C2’: uk
2 =

u1
2 ∀k and C2’: uk

3 = u1
3 ∀k. Its optimal value is 1 with first-stage decision

uζ
1 = (0, 0). When equality constraints are made implicit the problem can be

formulated using 5 scalar optimization variables only.
– The two-stage relaxation is obtained by relaxing the constraints C2, C3. Its

optimal value is 0.6361 with uk
1 := uII

1 = (0.6111, 0.3889).

22

– The distribution problem is obtained by relaxing the constraints C1, C2, C3.
Its optimal value is V A = 0.6444. The two extreme scenarios ξ1 = (1, 2, 3)
and ξ8 = (−1,−2,−3) have first-stage decisions u1

1 = u8
1 = (0.7778, 0.2222)

and value -0.0556. The 6 other scenarios have uk
1 = (0.5556, 0.3578) and value

0.8778, k = 2, . . . , 7. Note that in general, (i) scenarios with the same optimal
first-stage decision and values may still have different recourse decisions, and
(ii) the first-stage decisions can be distinct for all scenarios.

– The EVPI is equal to V A − V ∗ = 0.2944.

– Solving the multistage stochastic program with the additional constraint
C1ζ : uk

1 = uζ
1 ∀k yields an upper bound on the optimal value of any scheme

using the first-stage decision of the expected value problem. This value is
V ζ = −0.2.

– The VSS is equal to V ∗ − V ζ = 0.55.

– Solving the multistage stochastic program with the additional constraint
C1II: uk

1 = uII
1 ∀k yields an upper bound on the optimal value of any scheme

using the first-stage decision of the two-stage relaxation model. This value
is V II = 0.2431. Thus, the value of the multistage model over a two-stage
model, in our sense (distinct from the VMS of Huang and Ahmed (2009)),
is at least V ∗ − V II=0.1069.

To summarize, observe the collapse of the optimal value from V ∗ = 0.35 to
V II = 0.2431 (with the first-stage decision of the two-stage model) and then to
V ζ = −0.2 (with the first-stage decision of the expected value model).

We can also consider the anticipative decision sequences of the distribution
problem, and check if there exists plausible strategies that could exploit the set
of first-stage decisions to output a good first-stage decision (with respect to any
decision-making scheme for the subsequent stages).

– Selection strategy: Solving the multistage stochastic program with a con-
straint that enforces one of the first-stage decisions extracted from the dis-
tribution problem yields the following results: optimal value 0.3056 if uk

1 =
(0.7778, 0.2222), optimal value 0.2167 if uk

1 = (0.5556, 0.3578). But one has
to concede that in contrast to other simplified models, for which we solve
multistage programs only to measure the quality of a suboptimal first-stage
decision, the selection strategy needs good estimates of the different optimal
values to actually output the best decision.

– Consensus strategy: The outcome of a majority vote out of the set of the 8
first-stage decisions would be the decision (0.5556, 0.3578) associated to the
scenarios 2 to 7. With value 0.2167, this turns out to be the worst decision
between (0.7778, 0.2222) and (0.5556, 0.3578).

– Averaging strategy: The mean first-stage decision of the set of 8 first-stage
decisions is ū1 = (0.6111, 0.3239). Solving the multistage program with uk

1 =
ū1 for all k yields the optimal value 0.2431.

The best result is the value 0.3056 obtained by the selection strategy. Note
that we are here in a situation where the multistage program and its variants
could be solved exactly, that is, with a scenario tree representing the possible
outcomes of the random process exactly.

23

4 PRACTICAL SCENARIO-TREE APPROACHES

We now focus on a practical question essential to the deployment of a multistage
stochastic programming model: if a problem has to be approximately represented
by a scenario tree in order to compute a decision strategy, how should a tractable
and at the same time representative scenario-tree approximation be selected for
a given problem?

After some background on discretization methods for two-stage stochastic
programming, we pose the scenario tree building problem in an abstract way and
then discuss the antagonist requirements that make its solution very challenging.
Then we review the main families of methods proposed in the literature to build
tractable scenario-tree approximations for a given problem, and highlight their
main properties from a theoretical point of view.

Given the difficulty of determining a priori good scenario-tree approxima-
tions for many problems of practical interest (a difficulty which is to some extent
surprising, given the practical success of related approximation methods for two-
stage stochastic programming), there is a growing consensus on the necessity of
being able to test a posteriori the quality of scenario-tree based approximations
on a large independent sample of new scenarios. We present in this light a stan-
dard strategy based on the so-called shrinking-horizon approach — the term is
used, for instance, in Balasubramanian and Grossmann (2003).

4.1 Approximation Methods in Two-stage Stochastic Programming

Let S denote a two-stage stochastic program, where the uncertainty is modeled
by a random vector ξ, possibly of high-dimension, following a certain distribu-
tion with either a discrete support of large cardinality, or a continuous support.
Let S′ be an approximation to S, where ξ is approximated by a random vec-
tor ξ′ that follows a distribution with a finite discrete support, the cardinality
of the support being limited by the fact that to each possible realization of ξ′

is associated optimization variables for representing the corresponding recourse
decisions. To obtain a good approximation, one would ideally target the problem
of finding a finite discrete distribution for ξ′ (values for the support and asso-
ciated probability masses) such that any first-stage decision u′

1 optimal for S′

yields on S a minimal regret, in the sense that with optimal recourse decisions,
the value on S of the solution made of u′

1 and of optimal recourse decisions is
close to the exact optimal value of S. By analogy to the VSS, we could also say
that the distribution for ξ′ should minimize the value of the exact program S
with respect to the approximate program S′.

Many authors have found it more convenient to restrict the attention on the
problem of finding a finite discrete distribution for ξ′ such that the optimal value
of S′ is close to the optimal value of S, and the solutions u′

1 optimal for S′ are
close to solutions optimal for S. For this approach to work, one might want to
impose some weak form of continuity of the objective of S with respect to solu-
tions. One may also want to ensure that small perturbations of the probability
measure for ξ have a bounded effect on the perturbation of optimal solutions u1.

An interesting deterministic approach (Rachev & Römisch, 2002) consists in
analyzing the structure of optimal policies for a given problem class, the struc-
ture of the objective when the optimal policy is implicitly taken into account,
and inferring from it a relevant measure of distance between two distributions,

24

based on worst-case differences among objectives in a class of functions having
the identified structure (or in a larger class if this is technically convenient for
the computation of the distance measure). Finding a good approximation to a
two-stage stochastic program is then reformulated as the problem of finding a
discrete distribution minimizing the relevant probability distance to the original
distribution. Note that probability distance minimization problems can be diffi-
cult to solve, especially on high-dimensional distributions. Thus, the approach,
which reformulates the ideal approximation problem as the optimal quantiza-
tion of the initial probability distribution, can have essentially two sources of
suboptimality with respect to the ideal approximation problem: (i) the class of
functions over which worst-case distances are evaluated are as large as needed
for the tractable computation of the distance; (ii) the minimal distance between
probability measures is not necessarily attained in practice. Despite these limi-
tations, the approach has been shown to work well. Moreover, the reduction of
the initial approximation problem to an optimal quantization problem indicates
the relevance of existing work on vector quantization and probability density es-
timation (MacKay, 2003, Chapter 20), and on discretization methods explored
in approximate dynamic programming.

Randomized approaches are based on Monte Carlo sampling and its many
extensions, including variance reduction techniques, and quasi Monte Carlo tech-
niques. All these techniques have more or less been tried for solving two-stage
stochastic programs: Infanger (1992), for instance, investigates importance sam-
pling. They have been shown to work well in practice. Random approximations
based on Monte Carlo have been shown to be consistent, in the sense that with
an infinite number of samples, optimal solutions to discretized programs can con-
verge to solutions optimal for S. More detailed results can be found in Shapiro
(2003b).

4.2 Challenges in the Generation of Scenario Trees

In two-stage stochastic programming, the large or infinite set of recourse deci-
sions of the original program is reduced to a finite set of recourse decisions for
the approximation. Hence the exact and approximate solutions lie in different
spaces and cannot be compared directly. Still, recourse decisions can be treated
implicitly, as if they were already incorporated to the objective function, and as
if the only remaining element to optimize were the first-stage decision.

In multistage stochastic programming, we face the same issue: we cannot
compare solutions directly. But now, treating all recourse decisions implicitly
leads to a dilution of exploitable structural properties of the objective. The
classes of functions respecting those weak properties are larger. Worst-case dis-
tances between functions in such classes may cease to guide satisfactorily a dis-
cretization procedure. In addition, discretization problems are posed over larger
spaces, making them more difficult to solve, even approximately.

For these reasons, rather than presenting the generation of scenario trees as
a natural extension of discretization methods for two-stage stochastic program-
ming, with the incorporation of branchings for representing the nested condi-
tional probability densities, we state the problem in a more open way, which
also highlights complexity aspects:

Construct a tractable algorithm A that

25

– given a multistage stochastic program S : minπ E{f(ξ, π(ξ))} defined
over a probability space (Ω,B, P) with objective f (including by con-
vention the constraints) and non-anticipative policies π(ξ),

– will produce an approximate finite-dimensional surrogate program of
the form S′ : minu

∑n
k=1 pk{g(ξk, uk)}, defined over some reduced

space (Ω′,B′, P′) and objective g, and from which a surrogate policy
π̂(ξ) subject to non-anticipativity constraints may be computed in a
tractable way,

– with the goal of making the regret

R := E{f(ξ, π̂(ξ))} − min
π

E{f(ξ, π(ξ))} ≥ 0

as small as possible.

Notice that we allow, for the sake of generality, that the surrogate program
may refer to a function g different from the original objective f , and that we
impose that the algorithm A, the solving strategy associated to the problem S′,
as well as the evaluation of the induced policy π̂ on any new scenario, are all
tractable. At this stage, we do not specify how π̂ is inferred or understood; π̂
needs to be introduced here only to be able to write a valid expression for the
regret on the original multistage program.

Depending on situations, the problem S (random process model and function
f) can be described analytically, or be only accessible through sampling and/or
simulation. The problem S′ will be described by a scenario tree and the choice
of the function g, under limitations intrinsically due to the tractability of the
optimization of the approximate program.

As we have seen, there are many derived decision-making schemes and us-
ages of the multistage stochastic programming framework. Also, various classes
of optimization programs can be distinguished — with the main distinctions
being between two-stage and multistage settings, and among linear, convex, and
integer/mixed-integer formulations — and thus several possible families of func-
tions over which one might attempt to minimize a worst-case regret.

In the stochastic programming literature, several scenario tree generation
strategies have been studied. The scenario tree generation problem is there often
viewed in one or another of two reduced ways with respect to the above definition,
namely

(i) as the problem of finding a scenario tree with an associated optimal value
minu

∑n
k=1 pk{f(ξk, uk)} close to the exact optimal value minπ E{f(ξ, π(ξ))},

or
(ii) as the problem of finding a scenario tree with its associated optimal first-

stage decision û1 close to a first-stage decision π1 optimal for the exact
program.

Indeed, version (i) is useful when the goal is merely to estimate the optimal
value of the original program S, while version (ii) is useful when the goal is to
extract only the first stage decision, assuming that later on, recourse decisions
are recomputed using a similar algorithm, given the new observations.

The generic approximation problem that we have described is more general,
since it covers also the case where the scenario tree approach may be exploited
offline to extract a complete policy π̂(ξ) that may then be used later on, in a

26

stand-alone fashion for decision making over arbitrary scenarios and decision
steps, be it in the real world or in the context of Monte Carlo simulations.

To give an idea of theoretical results established in the scenario tree gen-
eration literature, we now briefly discuss two representative trends of research:
work that study Monte Carlo methods for building the tree, and work that seek
to minimize in a deterministic fashion a certain measure of discrepancy between
the original process and the approximate process represented by the scenario
tree.

Monte Carlo Scenario Tree Sampling Methods. Monte Carlo methods
have several advantages: they are easy to implement and they scale well with
the dimension, in the sense that with enough samples, one can get close to the
statistical properties of high-dimensional target distributions with high proba-
bility. The major drawback of (pure) Monte Carlo methods is the variance of
the results (optimal value and solutions of the approximate programs) in small-
sample conditions.

Let us describe the Sample Average Approximation method (SAA) (Shapiro,
2003b), which uses Monte Carlo for generating the scenario tree. One starts by
building the branching structure of the tree. Note that the method does not
specify how to carry out that step. Practitioners often use the same branching
factor for each node relative to a given decision stage. They also often concentrate
the branchings at early stages: the branching factor is high at the root node and
then decreases with the index of the decision stage. The next step of the method
consists in sampling the node values according to the distributions conditioned
on the values of the ancestor nodes. The procedure, referred to as conditional
sampling, is implemented by sampling the realizations of random variables at
stage t before sampling those of stage t + 1. Distinct realizations are assigned
to distinct nodes, which are given a conditional probability equal to the inverse
of the branching factor. The last step consists in solving the program on the
so-obtained scenario tree and thus, although part of the description of the SAA
method, does not concern the generation of the tree itself.

Consider scenario trees obtained by conditional sampling. For simplicity as-
sume a uniform branching factor nt at each stage t, so that the number of scenar-
ios is n =

∏T
t=1 nt. Shapiro (2006) shows under some technical assumptions that

if we want to guarantee, with a probability at least 1 − α, that implementing the
first-stage decision û1 optimized on a scenario tree of size n while implementing
subsequently optimal recourse decisions conditionally to the first-stage decision
will yield an objective value ε-close to the exact optimal value, then the size n of
the tree we use for that purpose has to grow exponentially with the number of
stages. The result goes against the intuition that by asking for ε-optimality with
probability 1−α only, one could get moderate sample complexity requirements.
Now, as the exponential growth of the number of scenarios is not sustainable,
one can only hope solving multistage models in small-sample conditions, and
obtain solutions that at least with the SAA method may vary from tree to tree
and be of uncertain value for the real problem. Perhaps surprisingly, it is not
possible to obtain valid statistical bounds for that uncertain value by imposing
as first-stage decision the tested first-stage decision and reoptimizing recourse
decisions on several new random trees (Shapiro, 2003a).

27

Deterministic Scenario Tree Optimization Methods. There exists vari-
ous deterministic techniques for selecting jointly the scenarios of the tree. Note
that there is a part of numerical experimentation in the development of scenario
tree methods, and a risk of overestimating the domain of validity of the pro-
posed methods, since research efforts are oriented by experiments on particular
problems.

Moment-matching methods (Høyland, Kaut, & Wallace, 2003) attempt to
produce discrete distributions with some statistical moments matching those of
a target distribution. Moment matching may be done at the expense of other
statistics, such as the number and the location of the modes, that might also be
important. Hochreiter and Pflug (2007) gives an example illustrating that risk.

The theoretical analysis underlying probability-metrics methods, that we
have described in the context of two-stage stochastic programming, was initially
believed to be easily extended to the multistage case (Heitsch & Römisch, 2003);
but then it turned out that more elaborated measures of probability distances,
integrating the intertemporal aspect of observations, were needed (Heitsch &
Römisch, 2009). These elaborated metrics are more difficult to compute and to
minimize, so that well-justified discretizations of multistage programs are more
difficult to obtain.

We can also mention methods that come with approximation guarantees, such
as bounds on the suboptimality of the approximation (Kuhn, 2005). However,
they are applicable under very specific assumptions concerning the problem class
and the type of randomness. Quasi Monte Carlo techniques are perhaps among
the more generally applicable methods (Pennanen, 2009).

Most deterministic methods end up with the formulation of difficult opti-
mization problems, such as nonconvex or NP-hard problems (Høyland et al.,
2003; Hochreiter & Pflug, 2007), with computationally demanding tasks (such
as multidimensional integrations), especially for high-dimensional random pro-
cesses.

The field is still in a state where the scope of existing methods is not well
defined, and where the algorithmic description of the methods is incomplete,
especially concerning the branching structure of the trees. That the domains of
applicability are not known or overestimated makes it delicate to select a sophis-
ticated deterministic technique for building a scenario tree on a new problem.

4.3 The Need for Testing Scenario-Tree Approximations

Theoretical analyses of scenario tree generation algorithms, often based on worst-
case reasonings or large deviation theory, provide guarantees on the quality of
approximate solutions that are usually too loose in practice or equivalently call
for intractable scenario tree sizes. Hence they do not really solve the basic ques-
tion of how to build a priori small scenario trees in a generic, scalable, and
computationally efficient way, potentially jeopardizing the practical relevance of
the multistage extension of stochastic programming for sequential decision mak-
ing under uncertainty. Now if we are ready to renounce to worst-case guarantees
embedded in the scenario tree generation method, new tools are needed for com-
puting, a posteriori, guarantees on the value of a given numerical approximation
scheme.

If we want to assess on an independent test set of scenarios the performance
of decisions optimized on a scenario tree, a difficulty arises: first-stage decisions

28

can be tested but subsequent recourse decisions are only defined for the scenarios
covered by the scenario tree. Therefore, it is necessary to extend the approach
so as to allow one to test solutions on new scenarios, at a computational cost
low enough to allow the validation on large numbers of test scenarios.

We have to stress that this extension is not really necessary for two-stage
stochastic programming. First, approximations of two-stage models yield con-
stant first-stage decisions, that are implementable on any scenario, while recourse
decisions on new scenarios can then often be found analytically, or by running
a myopic one-stage optimization procedure for each new scenario, or by imple-
menting a known recourse procedure that the initial two-stage model was only
approximating for optimizing the first-stage decisions — a strategy found effi-
cient in capacity planning (Sen, Doverspike, & Cosares, 1994). Thus, testing is
generally straightforward for two-stage models. Second, finite-dimensional ap-
proximations of two-stage stochastic programming models do not use scenario
trees. They only use a finite set of outcomes. Theoretical results show that in the
two-stage situation, statistical confidence bounds on the quality of an approx-
imate solution can be computed (Mak, Morton, & Wood, 1999). These results
break down in the multistage case, giving its true interest to guarantees based
on testing (Shapiro, 2003a).

4.4 The Inference of Shrinking-Horizon Decision Policies

Several authors have proposed to use a generic scheme similar to Model Predic-
tive Control to assess the performances associated to a particular algorithm A
for building the scenario tree (Kouwenberg, 2001; Chiralaksanakul, 2003). The
scheme can be sketched as follows.

1. Generate a scenario tree using algorithm A, solve the resulting program,
extract from its solution the first-stage decision u1;

2. Generate a test sample of m mutually independent scenarios by sampling
realizations of the random process.

3. For each scenario of the test sample, obtain sequentially the recourse deci-
sions u2, . . . , uT , where each decision ut is treated as a first-stage decision
computed by taking as an initial condition the past decisions u1, . . . , ut−1

and the history ξ1, . . . , ξt−1 of the test scenario, by conditioning the joint
distribution of ξt, . . . , ξT on the history, by using the algorithm A to build
a new scenario tree that approximates the random process ξt, . . . , ξT , by
solving the program formulated on this tree over the optimization variables
relative to the decisions ut, . . . , uT , and by discarding all but the decision
ut = πt(ξ1, . . . , ξt−1).

4. Estimate the overall performance of the scheme on the test sample by forming
the empirical average VTS(A) = m−1

∑m
j=1 f(ξj , uj), where the sum runs

over the indices relative to the scenarios in the test sample TS and their
associated decision sequences uj = (uj

1, . . . , u
j
T).

The statistical estimator VTS(A) provides an unbiased estimation of the value
of the scenario tree building algorithm A in the context of the other approxima-
tions involved in the numerical computations of the sequences of decisions, such
as simplifications of the objective function or early stopping at low-accuracy
solutions.

29

The estimator may have a high variance, but we can expect a high positive
correlation between estimators VTS(A), VTS(A′) relative to distinct algorithm
variants A,A′ on the same test sample TS, allowing a reliable comparison of the
relative performance of the two variants on the problem instance at hand.

The validation is generic in the sense that it can be applied to any algo-
rithm A, but also in the sense that it addresses the general scenario tree build-
ing problem in the larger context of the decision making scheme actually imple-
mented in practice.

4.5 Synthesis

In the preceding subsections we have formulated and analyzed the problem of
inferring a good scenario tree approximation for a given multistage stochastic
programming problem. We have seen that the state of the art does not currently
provide strong enough methods with broad enough practical coverage and good
enough theoretical guarantees in terms of the quality of the approximate solu-
tions derived in this way.

Researchers in the field were thus led to suggest the use of the shrinking-
horizon recursive procedure for exploiting the scenario-tree based approach in
practice. However, evaluating the resulting performance estimator on an inde-
pendent sample of scenarios is extremely demanding, as it requires, for each test
scenario and at each stage of recourse decisions, the automatic construction of
a new scenario tree and the optimization of the resulting program on the tree.
Doing this is still beyond the possibility of available computational approaches
when considering the solution of large-scale problems.

For these reasons, there is currently no scalable off-the-shelf method for gen-
erating and testing scenario-tree based approximations of multistage stochastic
programs, and the framework of stochastic programming based on scenarios trees
has in this way, in spite of its theoretical appeal, lost its practical attractiveness
during the last years in many environments dealing with large-scale systems
(Powell & Topaloglu, 2003; Van Hentenryck & Bent, 2006).

5 MACHINE LEARNING BASED APPROACH

In this section we propose an approach for solving stochastic programming prob-
lems based on the idea of generating in a lazy fashion a large number of random
tractable scenario-tree based approximations. The approach is lazy in the sense
that instead of recommending a careful analysis of the structure of the problem
at hand, and instead of devoting all computational resources to the construction
of a single scenario tree, we recommend a multiplication of solution attempts
through the generation of several approximations. The method works by ex-
tracting, from the solutions of these approximations, datasets that combine re-
alizations of the random process and decision sequences, and by processing these
datasets by a supervised learning method, so as to infer policies that can be later
on tested efficiently on a large sample of new independent scenarios. These poli-
cies can be jointly exploited to infer multistage decision strategies that achieve
good performances in a very generic way.

In this section, we describe our solution approach in general. Practical imple-
mentation details are easier to discuss on a concrete problem; this will be done
in the next section.

30

5.1 Motivation

Our approach is motivated by two complementary and intimately related consid-
erations induced by our analysis of the state of the art in approximation methods
for stochastic programming, and their confrontation to the problems addressed
in the field of machine learning in the last years.

The first motivation is derived from the need for intensive testing of decision-
making policies for multistage programs. This need is primarily a consequence
of the lack of tight theoretical results that would provide broadly usable, a priori
guarantees on scenario-tree based methods. A posteriori testing of decisions by
the shrinking-horizon approach is not a viable option, given its internal use of
additional scenario trees, and its overall computational complexity. With respect
to this motivation, machine learning offers a multitude of ways of extracting poli-
cies that are easy to test in an automatic way on a large number of independent
samples. Keeping the sample set large is an unavoidable requirement for the
statistical significance of performance estimators evaluated on high-dimensional
random vectors and/or long scenarios, and thus ultimately for the practical use
of the framework.

The second motivation has to do with the intrinsic nature of the finite
scenario-tree approximation for multistage stochastic programming. The vari-
ance in the quality of the optimal decisions that may be inferred from finite
approximations suggests that such problems are essentially ill-posed in the same
sense as inverse problems addressed in machine learning are also ill-posed: small
perturbations in the values of a finite data set used for the empirical estimation
of an expectation leads to large variations (instability) of the predictor opti-
mal with respect to the empirical expectation. Therefore, regularization tech-
niques and principles from statistical learning theory (Vapnik, 1998), such as
the structural risk minimization principle, may help to extract solutions from
small scenario-tree approximations in a sound way from the theoretical point of
view, and in an efficient way from the practical point of view.

To summarize the main ideas of the following subsections, we propose an
approach that (i) allows to test small scenario trees quickly and reliably, (ii) is
likely to offer better ways of exploiting individual scenario-tree approximations,
and (iii) in the end allows to revisit the initial question of generating, solving,
ranking and exploiting tractable scenario trees for solving complex multistage
decision-making problems.

5.2 Inference and Evaluation of a Policy from a Scenario Tree

Cheap estimators of the quality of a scenario tree can be constructed by resorting
to supervised learning techniques (Defourny et al., 2009). The basic principle
consists in inferring a suboptimal policy by first learning a sequence of decision
predictors (π̂1, . . . π̂T) from a data set of examples of information state/decision
pairs. The information states are extracted from the nodes of the scenario tree;
they correspond to the partial scenario histories in the tree, but they could also
be represented differently, for instance by features, or by a state in the sense of
dynamic programming. The decisions are also extracted from the nodes of the
tree; they are the optimal decisions computed on the tree. The predictions are
then corrected in an ad-hoc fashion using a cheap repair procedure, denoted for
simplicity by Mt, so as to obtain feasible decisions ut = Mt(π̂t(ξ1, . . . , ξt−1)) ∈ Ut

31

evaluated and implemented online on new scenarios. Repair procedures are also
suggested in Küchler and Vigerske (2010) as a means of restoring the feasibility
of decisions extracted from a tree and directly applied on test scenarios.

Formally, the decision predictor π̂t is defined as a map from inputs Xt =
(ξ1, . . . , ξt−1) to outputs Yt = ut learned from a dataset Dt = {(Xk

t , Y k
t)}n

k=1

of input-output pairs extracted from the scenario tree and its associated opti-
mized decisions. The nature of the repair procedure varies with the feasibility
constraints that should be enforced. It is necessary when standard supervised
learning algorithms are unable to meet the constraints exactly. The decisions
and observations on which Ut depend are passed in arguments of the repair
procedure. An example of repair procedure is the projection of a predicted de-
cision on the corresponding feasibility set. It is also possible to resort to simple
problem-dependent heuristics for restoring feasibility.

This leads to the following inference and validation scheme:

1. Generate a scenario tree using an algorithm A, solve the resulting program,
extract from its solution the first-stage decision u1, and the datasets Dt of
partial-scenario/stage-t-decision pairs.

2. Learn the decision predictors π̂t from the dataset Dt, for t = 2, . . . , T .
3. Generate a test sample of m mutually independent scenarios by sampling

realizations ξj of the random process ξ.
4. For each scenario ξj of the test sample, set uj

1 = u1 and obtain sequen-

tially the recourse decisions uj
2, . . . , u

j
T , where each decision uj

t is obtained

by first evaluating π̂t(ξ
j
1, . . . , ξ

j
t−1) and then restoring feasibility by the repair

procedure Mt.
5. Estimate the overall performance of the scheme on the test sample by form-

ing the empirical average VTS(A) = m−1
∑m

j=1 f(ξj , uj), where the sum runs
over the indices relative to the scenarios in the test sample and their associ-
ated decision sequences uj = (uj

1, . . . , u
j
T).

The estimator VTS(A) computed in this way reflects the quality of the sce-
nario tree, the learned policy and the repair procedure. We expect however that
scenario tree variants can be ranked reliably, despite the variance of the estima-
tor due to the choice of the test sample, and despite a new source of bias due
to the simplified representation of the decision policy by the supervised learning
strategy. The value VTS(A) is obtained by simulating an explicit policy that gen-
erates feasible decisions, and thus always provides a pessimistic bound (upper
bound for minimization, lower bound for maximization) on the performance of
the best policy that could be inferred from the current scenario tree. Hence a
reliable bound on the achievable performance for the sequential decision making
strategy is provided, up to the standard error of the test-sample estimator. (The
standard error can be reduced by increasing m, under the assumption that the
initial problem has a finite optimal value.) The pessimistic bound can be made
tighter by testing various policies obtained from the same scenario tree but with
different learning algorithms and/or repair procedures. The best combination of
algorithms and learning parameters is then retained. In principle, the value of
the best policy should be evaluated again on a new independent test sample.

Note that a learned policy is not necessarily always worse than a shrinking-
horizon policy using the same first-stage decision u1, as the regularization that
occurs during the supervised learning step could actually improve the quality of
the recourse decisions u2, . . . , uT .

32

Note also that the input space of the learned policy is a simple matter of
convenience. As long as the policy remains non-anticipative, the input space can
be reparameterized, typically by letting appear explicitly past decisions, state
variables, and additional features derived from the information state and that
might facilitate the generalization of the decisions in the data sets, or later, the
online evaluation of the learned predictors.

5.3 Simple Monte Carlo Based Search of Scenario Trees

We are now ready to sketch a workable and generic scheme for obtaining approx-
imate solutions to multistage stochastic programs with performance guarantees.
The scheme builds on the procedure of the previous section, which allows to
extract a policy from any scenario tree and from optimal solutions for the ap-
proximate program associated with the tree, and allows to estimate the value
of the policy by Monte Carlo simulation with a sufficient accuracy. In its most
elementary version, the scheme consists in generating a possibly large set of
randomized scenario-tree approximations for a given problem S, ranking them
according to the estimated value of their corresponding policy, and identifying
in this way automatically the best scenario tree among the considered sample of
trees.

More specifically, we propose the following algorithm.

1. Generate a large test sample TS of mutually independent scenarios for the
problem under consideration.

2. Generate the branching structure for a scenario tree randomly. The proce-
dure may use any valuable insight on good branching structures (in general
or specific to the problem).

3. Use an existing scenario tree generation method to instantiate the values and
probabilities of the nodes of the tree, for example, the Monte Carlo based
method SAA already described. That the generation of the values defining
the scenarios could be integrated to the construction of the branching struc-
ture is not really relevant: the two phases are separated here to stress that
they are carried out independently. The construction of the tree is indepen-
dent of the test sample TS.

4. Solve the approximate program derived from the so-obtained scenario tree.
5. Extract from the solution the datasets of information state/decision pairs

that are necessary to learn a suboptimal policy for the recourse decisions,
and then associate to the scenario tree the score VTS corresponding to the
average performance of that policy on the test sample.

6. Return to step 2 until a stopping criterion is met. Output the first-stage
decision u1 from the scenario tree with the best score, and the guarantee that
u1 yields at least V ∗

TS’ up to some standard error, with the corresponding
learned policy as a certificate. Here V ∗

TS’ is ideally the estimation of the
value of the best policy on a new, very large test sample TS’ of mutually
independent scenarios.

As this procedure performs a kind of model selection on the basis of scores
measured on the test sample TS, an unbiased estimation of the performance of
the selected first-stage decision u1 and associated recourse policy calls for a new
independent test sample TS’. The initial test sample TS should then be called

33

a validation sample, according to the standard machine learning terminology. In
our numerical experiments, we merely used a very large validation sample TS in
order to evaluate various policies and estimate their respective performances in
a reliable way.

In applications where the only information about the random process is a
finite set of realizations, the method could be extended as follows: one would
split the set of realizations into a test set serving as the test sample TS, and a
learning set LS from which a generative model GLS for the random process would
be inferred, that is, a best possible estimate for P. The scenario trees would then
be built by querying new samples from the generative model.

5.4 Discussion

The generic procedure presented in this section is based on various open ingre-
dients that may be largely exploited for the design of a wide class of algorithms
in a very flexible way. Namely, the “meta-parameters” are (i) the scenario tree
sampling scheme, (ii) the (possibly regularized) optimization technique used to
extract from a scenario tree a dataset, (iii) the precise supervised learning al-
gorithm used to obtain the decision strategies from the datasets, (iv) the repair
procedure used to restore the feasibility of the decisions on new scenarios.

The main ideas of the proposed scheme are evaluated in the case study section
on a family of problems proposed by other authors. We illustrate how one may
adjust the scenario tree generation algorithm and the policy learning algorithm
to one’s needs, and by doing so we also illustrate the flexibility of the proposed
approach and the potential of the combination of scenario-tree based decision
making with supervised learning. In particular, the efficiency of supervised learn-
ing strategies makes it possible to rank large numbers of policies inferred from
large numbers of randomly generated scenario trees.

Although we do not illustrate this in the present work, we would like also to
stress that the scenario tree sampling scheme may be coupled in various other
ways with the inference of policies by machine learning. For example, one could
seek to use sequential Monte Carlo techniques inspired from the importance sam-
pling literature, in order to progressively guide the scenario tree sampling and
machine learning methods towards regions of high interest, given the quality of
the policies inferred from scenarios trees at previous iterations. Also, instead of
using each dataset obtained from each scenario tree to extract a single policy,
one could extract multiple policies from a single dataset, or use several datasets
and learning algorithms to extract a single policy, in the spirit of the wide range
of model combination and perturbation schemes from the machine learning lit-
erature (Dietterich, 2000).

6 CASE STUDY

We will show the interest of the approximate solution techniques presented in
the chapter by applying them to a family of multistage stochastic programs.
Implementation choices difficult to discuss in general terms, such as choices con-
cerning the supervised learning of a policy for the recourse decisions, and the
choices for the random generation of the trees, will be illustrated on a concrete
case.

34

The section starts by the formulation of a multistage stochastic program that
various researchers have presented as difficult for scenario tree methods (Hilli &
Pennanen, 2008; Koivu & Pennanen, 2010; Küchler & Vigerske, 2010). Several
instances of the problem will be addressed, including instances on horizons con-
sidered as almost unmanageable by scenario tree methods.

6.1 Problem Description

We consider a multistage problem adapted from Hilli and Pennanen (2008),
interpreted in that paper as the valuation of an electricity swing option. In this
chapter, we interpret the problem rather as the search for risk-aware strategies
for distributing the sales of a commodity over T stages in a flexible way adapted
to market prices. A risk-aware objective is very interesting for our purposes, but
it is difficult to justify it in a context of option valuation. The formulation of the
problem is as follows:

minimize ρ−1 log E{exp{−ρ
∑T

t=1 ξt−1 · πt(ξ)}}
subject to 0 ≤ πt(ξ) ≤ 1 and

∑T
t=1 πt(ξ) ≤ Q ,

π non-anticipative.

The objective uses the exponential utility function, with risk aversion coeffi-
cient ρ. Such objectives are discussed at the end of the chapter.

In our formulation of the problem, there is no constant first-stage decision to
optimize. We begin directly by the observation of ξ0, followed by a recourse de-
cision u1 = π1(ξ0). Observations and decisions are intertwined so that in general
ut = πt(ξ0, . . . , ξt−1). The random variable ξt−1 is the unitary profit (ξt−1 > 0)
or loss (ξt−1 < 0) that can result from the sale of the commodity at time t. Po-
tential profits and losses fluctuate in time, depending on market conditions (we
later select a random process model for market prices to complete the problem
specification). The commodity is sold in quantity ut = πt(ξ0, . . . , ξt−1) at time t,
meaning that the quantity ut can depend on past and current prices. The deci-
sion is made under the knowledge of the potential profit or loss at time t, given by
ξt−1 ·ut, but under uncertainty of future prices. This is by the way why scenario
tree techniques must be used with great care on this problem when the planning
horizon is long: as soon as the scenarios cease to have branchings, there is no
more residual uncertainty on future prices, and the optimization process wrongly
identifies opportunities anticipatively. Those spurious future opportunities may
significantly degrade the quality of previous decisions.

We seek strategies where the sales per stage are bounded (constraint 0 ≤
πt(ξ) ≤ 1). The constraint can model a bottleneck in the production process.
Notice also that bounded sales are consistent with the model assumption of
an exogenous random process: very large sales are more likely to influence the
market prices on long planning horizons. The scalar Q bounds the total sales (we
assume Q ≥ 1). It represents the initial stock of commodity, the sale of which
must be distributed optimally over the horizon T .

When the risk aversion coefficient ρ tends to 0, the problem reduces to the
search of a risk-neutral strategy. This case has been studied by Küchler and

35

Vigerske (2010). It admits a linear programming formulation:

minimize −E{∑T
t=1 ξt−1 · πt(ξ)}

subject to 0 ≤ πt(ξ) ≤ 1 and
∑T

t=1 πt(ξ) ≤ Q ,
π non-anticipative,

and an exact analytical solution (which thus serves as a reference)

πref
t (ξ) =

{

0 if t ≤ T − Q or ξt−1 ≤ 0 ,
1 if t > T − Q and ξt−1 > 0 .

In a first experiment, we will take the numerical parameters and the process
ξ selected in Hilli and Pennanen (2008) (to ease the comparisons): ρ = 1, T = 4,
Q = 2; ξt = (exp{bt} − K) where K = 1 is the fixed cost (or the strike price,
when the problem is interpreted as the valuation of an option) and bt is a random
walk: b0 = σ ε0, bt = bt−1 + σ εt, with σ =

√
0.2 and εt following a standard

normal distribution N (0, 1).
In a second experiment over various values of the parameters (ρ, Q, T) with

T up to 52, we will take for ξ the process selected in Küchler and Vigerske (2010)
(because otherwise on long horizons the price levels of the first process blow out
in an unrealistic way, making the problem rather trivial): ξt = (ξ′t − K) with
ξ′t = ξ′t−1 exp{σεt − σ2/2} where σ = 0.07, K = 1, and εt following a standard
normal distribution. Equivalently ξt = (exp{bt − (t + 1) σ2/2} − K) with bt a
random walk such that b0 = σ ε0 and bt = bt−1 + σ εt.

6.2 Algorithm for Generating Small Scenario Trees

At the heart of tree selection procedure relies our ability to generate scenario
trees reduced to a very small number of scenarios, with interesting branching
structures. As the trees are small, they can be solved quickly and then scored
using the supervised learning policy inference procedure. Fast testing procedures
make it possible to rank large numbers of random trees.

The generation of random branching structures has not been explored in the
classical stochastic programming literature; we thus have to propose a first al-
gorithm in this section. The algorithm is developed with our needs in view, with
the feedback provided by the final numerical results of the tests, until results
on the whole set of considered numerical instances suggest that the algorithm
suffices for the application at hand. We believe that the main ideas behind this
algorithm will be reused in subsequent work for addressing the representation of
stochastic processes of higher dimensions. Therefore, in the following explana-
tions we put more emphasis on the methodology we followed than on the final
resulting algorithm.

Method of Investigation. The branching structure is generated by simulat-
ing the evolution of a branching process. We will soon describe the branching
process that we have used, but observe first that the probability space behind
the random generation of the tree structure is not at all related to the proba-
bility space of the random process that the tree approximates. It is the values
and probabilities of the nodes that are later chosen in accordance to the target

36

probability distribution, either deterministically or randomly, using any new or
existing method.

For selecting the node values, we have tested different deterministic quanti-
zations of the one-dimensional continuous distributions of random variables ξt,
and alternatively different quantizations of the gaussian innovations εt that serve
to define ξt = ξt(εt), as described by the relations given in the previous section.
Namely, we have tested the minimization of the quadratic distortion (Pages &
Printems, 2003) and the minimization of the Wasserstein distance (Hochreiter &
Pflug, 2007). On the considered problems we did not notice significant differences
in performance attributable to a particular deterministic variant.

What happened was that with deterministic methods, performances began
to degrade as the planning horizon was increased, perhaps because trying to pre-
serve statistical properties of the marginal distributions ξt distorts other statis-
tics of the joint distribution of (ξ0, . . . , ξT−1), especially in higher dimensions.
Therefore, for treating instances on longer planning horizons, we switched to a
crude Monte Carlo sampling for generating node values.

By examining trees with the best scores in the context of the present family of
problems, we observed that several statistics of the random process represented
by those trees could be very far from their theoretical values, including first
moments. This might suggest that it is very difficult to predict without any in-
formation on the optimal solutions which properties should be preserved in small
scenario trees, and thus which objective should be optimized when attempting
to build a small scenario tree. If we had discovered a correlation between some
features of the trees and the scores, we could have filtered out bad trees without
actually solving the programs associated to these trees, simply by computing the
identified features.

Description of the Branching Processes. We now describe the branching
process used in the experiments made with deterministic node values. Let r ∈
[0, 1] denote a fixed probability of creating a branching. We start by creating the
root node of the tree (depth 0), to which we assign the conditional probability 1.
With probability r, we create 2 successor nodes to which we assign the values
±0.6745 and the conditional probabilities 0.5 (the values given here minimize the
Wasserstein distance between a two mass point distribution and the standard
normal distribution for εt). With probability (1 − r) we create instead a single
successor node to which we assign the value 0 and the conditional probability 1;
this node is a degenerate approximation of the distribution of εt. Then we take
each node of depth 1 as a new root and repeat the process of creating 1 or 2
successor nodes to these new roots randomly. The process is further repeated on
the nodes of depth 2, . . . , T − 1, yielding a tree of depth T for representing the
original process ε0, . . . , εT−1. The scenario tree for ξ is derived from the scenario
tree for ε.

For problems on larger horizons, it is difficult to keep the size of the tree un-
der control with a single fixed branching parameter r — the number of scenarios
would have a large variance. Therefore, we used a slightly more complicated
branching process, by letting the branching probability r depend on the num-
ber of scenarios currently developed. Specifically, let N be a target number of
scenarios and T a target depth for the scenario tree with the realizations of ξt

relative to depth t+1. Let nt be the number of parent nodes at depth t; this is a

37

random variable except at the root for which n0 = 1. During the construction of
the tree, parent nodes at depth t < T are developed and split in ν = 2 children
nodes with a probability rt = n−1

t (ν−1)−1(N−1)/T . Parent nodes have a single
child node with a probability 1−rt. If rt > 1, we set rt = 1 and all nodes are split
in ν = 2 children nodes. Thus in general rt = min{1, n−1

t (ν − 1)−1(N − 1)/T }.

6.3 Algorithm for Learning Policies

Solving a program on a scenario tree yields a dataset of scenario/decision se-
quence pairs (ξ, u). To infer a decision policy that generalizes the decisions of
the tree to test scenarios, we have to learn mappings from (ξ0, . . . , ξt−1) to ut

and ensure the compliance of the decisions with the constraints. To some extent
the procedure is thus problem-specific. Here again we insist on the methodology.

Dimensionality Reduction. We try to reduce the number of features of the
input space. In particular, we can try to get back to a state-action space rep-
resentation of the policy (and postprocess datasets accordingly to recover the
states). Note that in general needed states are those that would be used by
an hypothetical reformulation of the optimization problem using dynamic pro-
gramming. Here the objective is based on the exponential utility function. By
the property that

E{exp{−∑T
t′=1 ξt′−1 · ut′} | ξ0, . . . , ξt−1}

=exp{−∑t−1
t′=1ξt′−1 · ut′} E{exp{−∑T

t′=t ξt′−1 · ut′} | ξ0, . . . , ξt−1} ,

we can see that decisions at t′ = 1, . . . , t − 1 scale by a same factor the contri-
bution to the return brought by the decisions at t′ = t, . . . , T . Therefore, if the
feasibility set at time t can be expressed from state variables, the decisions at
t′ = t, . . . , T can be optimized independently of the decisions at t′ = 1, . . . , t−1.
This suggests to express ut as a function of the state ξt−1 of the process ξ, and
of an additional state variable ζt defined by ζ0 := Q , ζt := Q − ∑t−1

t′=1 ut′ , that

allows to reformulate the constraint
∑T

t′=1 ut′ ≤ Q as
∑T

t′=t ut′ ≤ ζt.

Feasibility Guarantees Sought Before Repair Procedures. We try to
map the output space in such a way that the predictions learned under the new
geometry and then transformed back using the inverse mapping comply with
the feasibility constraints. Here, we scale the output ut so as to have to learn
the fraction yt = yt(ξt−1, ζt) of the maximal allowed output min(1, ζt), which
summarizes the two constraints of the problem. Since ζ0 = Q, we distinguish the
cases u1 = y1(ξ0) · 1 and ut = yt(ξt−1, ζt) · min(1, ζt). It will be easy to ensure
that fractions yt are valued in [0, 1] (thus we do not need to define an a posteriori
repair procedure).

Input Normalization. It is convenient for the sequel to normalize the inputs.
From the definition of ξt−1 we can recover the state of the random walk bt−1,
and use as first input xt1 := (σ2t)−1/2bt−1, which follows a standard normal
distribution. Thus for the first version of the process ξ, instead of ξt−1 we use
xt1 = σ−1t−1/2 log(ξt−1+K), and for the second version of the process ξ, instead

38

of ξt−1 we use xt1 = σ−1 t−1/2 log(ξt−1 + K) + σt1/2/2. Instead of the second
input ζt (for t > 1) we use xt2 := ζt/Q, which is valued in [0, 1]. Therefore, we
rewrite the fraction yt(ξt−1, ζt) as gt(xt1, xt2).

Hypothesis Space. We have to choose the hypothesis space for the learned
fractions gt defined previously. Here we find it convenient to choose the class of
feed-forward neural networks with one hidden layer of L neurons:

gt(xt1, xt2) = logsig
(

γt +
∑L

j=1wtj · tansig
(

βtj +
∑2

k=1vtjk xtk

))

,

with weights vtjk and wtj , biases βtj and γt, and activation functions

tansig(x) = 2 · (1 + e−2 x)−1 − 1 valued in [−1, +1] ,

logsig(x) = (1 + e−x)−1 valued in [0, 1] ,

a usual choice for imposing the output ranges [−1, +1] and [0, 1] respectively.
Since the training sets are extremely small, we take L = 2 for g1 (which has

only one input x11) and L = 3 for gt (t > 1).
We recall that artificial neural networks have been found to be well-adapted

to nonlinear regression. Standard implementations of neural networks (construc-
tion and learning algorithms) are widely available, with a full documentation
from theory to interactive demonstrations (Demuth & Beale, 1993). We report
here the parameters chosen in our experiments for the sake of completeness; the
method is largely off-the-shelf.

Details on the Implementation. The weights and biases are determined by
training the neural networks. We used the Neural Network toolbox of Matlab
with the default methods for training the networks by backpropagation — the
Nguyen-Widrow method for initializing the weights and biases of the networks
randomly, the mean square error loss function, and the Levenberg-Marquardt
optimization algorithm. We used [−3, 3] for the estimated range of xt1, corre-
sponding to 3 standard deviations, and [0, 1] for the estimated range of xt2.

Trained neural networks are dependent on the initial weights and biases be-
fore training, because the loss minimization problem is nonconvex. Therefore,
we repeat the training 5 times from different random initializations. We obtain
several candidate policies (to be ranked on the test sample). In our experiments
on the problem with T = 4, we randomize the initial weights and biases of
each network independently. In our experiments on problems with T > 4, we
randomize the initial weights and biases of g1(x11) and g2(x21, x22), but then
we use the optimized weights and biases of gt−1 as the initial weights and bias
for the training of gt. Such a warm-start strategy accelerates the learning tasks.
Our intuition was that for optimal control problems, the decision rules πt would
change rather slowly with t, at least for stages far from the terminal horizon.

We do not claim that using neural networks is the only or the best way
of building models gt that generalize well and are fast in exploitation mode.
The choice of the Matlab implementation for the neural networks could also be
criticized. It just turns out that these choices are satisfactory in terms of imple-
mentation efforts, reliability of the codes, solution quality, and overall running
time.

39

6.4 Remark on Approximate Solutions

An option of the proposed testing framework that we have not discussed, as
it is linked to technical aspects of numerical optimization, is that we can form
the datasets of scenario/decisions pairs using inexact solutions to the optimiza-
tion programs associated to the trees. Indeed, simulating a policy based on any
dataset will still give a pessimistic bound on the optimal solution of the targeted
problem. The tree selection procedure will implicitly take this new source of
approximation into account. In fact, every approximation one can think of for
solving the programs could be tested on the problem at hand and thus ultimately
accepted or rejected, on the basis of the performance of the policy on the test
sample, and the time taken by the solver to generate the decisions of the dataset.

6.5 Numerical Results

We now describe the numerical experiments we have carried out and comment
on the results.

Experiment on the small-horizon problem instance. First, we consider
the process ξ and parameters (ρ, Q, T) taken from Hilli and Pennanen (2008).
We generate a sample of m = 104 scenarios drawn independently, on which
each learned policy will be tested. We generate 200 random tree structures as
described previously (using r = 0.5 and rejecting structures with less than 2
or more than 10 scenarios). Node values are set by the deterministic method,
thus the variance in performance that we will observe among trees of similar
complexity will come mainly from the branching structure. We form and solve
the programs on the trees using cvx, and extract the datasets. We generate 5
policies per tree, by repeatedly training the neural networks from random initial
weights and biases. Each policy is simulated on the test sample and the best of
the 5 policies is retained for each tree.

The result of the experiment is shown on Figure 3. Each point is relative
to a particular scenario tree. Points from left to right are relative to trees of
increasing size. We report the value of m−1

∑m
j=1 exp{−∑T

t=1 ξj
t−1 · π̂t(ξ

j)} for
each learned policy π̂, in accordance with the objective minimized in Hilli and
Pennanen (2008). Lower is better. Notice the large variance of the test sample
scores among trees with the same number of scenarios but different branching
structures.

The tree selection method requires a single lucky outlier to output a good
valid upper bound on the targeted objective — quite an advantage with respect
to approaches based on worst-case reasonings for building a single scenario tree.
With a particular tree of 6 scenarios (best result: 0.59) we already reach the
guarantee that the optimal value of our targeted problem is less or equal to
log(0.59) ' −0.5276. On Figure 4, we have represented graphically some of
the lucky small scenario trees associated to the best performances. Of course,
tree structures that perform well here may not be optimal for other problem
instances.

The full experiment takes 10 minutes to run on a pc with a single 1.55 GHz
processor and 512 Mb RAM. By comparing our bounds to those reported in Hilli
and Pennanen (2008) — where validation experiments taking up to 30 hours with

40

number of scenarios of the tree

co
st

o
f
p
o
li
cy

o
n

th
e

te
st

sa
m

p
le

1 2 3 4 5 6 7 8 9 10
0.58

0.6

0.62

0.64

0.66

Figure 3. First experiment: scores on the test sample associated to the random scenario
trees (lower is better). The linear segments join the best scores of policies inferred from
trees of equivalent complexity.

1/4

1/8

1/8
1/4

1/4

ξk
0 ξk

1 ξk
2 ξk

3 pk

-0.453

-0.260

+0.000

+0.352

+0.828

1/4
1/8

1/8

1/8

1/8

1/4

ξk
0 ξk

1 ξk
2 ξk

3 pk

-0.453

-0.260

+0.000

+0.352

+0.828

1/8
1/8

1/4
1/8

1/8

1/8

1/8

ξk
0 ξk

1 ξk
2 ξk

3 pk

-0.595
-0.453

-0.260

+0.000

+0.352

+0.828

+1.472

1/8

1/8
1/4

1/16

1/16

1/8

1/16

1/16

1/8

ξk
0 ξk

1 ξk
2 ξk

3 pk

-0.595
-0.453

-0.260

+0.000

+0.352

+0.828

+1.472

Figure 4. Small trees (5,6,7,9 scenarios) from which good datasets could be obtained.
The scenarios ξk = (ξk

0 , ξk

1 , ξk

2) are shifted vertically to distinguish them when they pass
through common values, written on the left. Scenario probabilities pk are indicated on
the right.

a single 3.8Ghz processor, 8Gb RAM have been carried out — we deduce that
we reached essentially the quality of the optimal solution.

Experiment on large-horizon problem instances. Second, we consider the
process ξ taken from Küchler and Vigerske (2010) and a series of 15 sets of
parameters for (ρ, Q, T). We repeat the following experiment on each (ρ, Q, T)
with 3 different parameter values for controlling the size of the random trees:

41

Table 2. Second experiment: Best upper bounds for a family of problem instances.

Problem Upper bounds1

ρ Q T Reference2 Value of the best policy3, in function of N

N = 1 · T N = 5 · T N = 25 · T

0 2 12 -0.1869 -0.1837 -0.1748 -0.1797
2 52 -0.4047 -0.3418 -0.3176 -0.3938
6 12 -0.5062 -0.5041 -0.4889 -0.4930
6 52 -1.1890 -1.0747 -1.0332 -1.1764
20 52 -3.6380 -3.5867 -3.5000 -3.4980

0.25 2 12 -0.1750 -0.1716 -0.1661 -0.1700
2 52 -0.3351 -0.3210 -0.3092 -0.3288
6 12 -0.4363 -0.4371 -0.4381 -0.4365
6 52 -0.7521 -0.7797 -0.7787 -0.8030
20 52 -1.4625 -1.8923 -1.9278 -1.9128

1 2 12 -0.1466 -0.1488 -0.1473 -0.1458
2 52 -0.2233 -0.2469 -0.2222 -0.2403
6 12 -0.3078 -0.3351 -0.3385 -0.3443
6 52 -0.3676 -0.5338 -0.5291 -0.5354
20 52 -0.5665 -0.9625 -0.9757 -0.9624

1 Estimated on a test sample of m = 10000 scenarios. On a same row, lower is better.
2 Defined by πref

t (ξ) and optimal for the risk-neutral case ρ = 0.
3 On random trees of approximately N scenarios.

generate 25 random trees (we recall that this time the node values are also
randomized), solve the resulting 25 programs, learn 5 policies per tree (depending
on the random initialization of the neural networks), and report as the best score
the lowest of the resulting 125 values computed on the test sample.

Table 2 reports values corresponding to the average performance

ρ−1 log{m−1
m

∑

j=1

exp{−ρ

T
∑

t=1

ξj
t−1 · π̂t(ξ

j)}}

obtained for a series of problem instances, the numerical parameters of which
are given in the first column of the table, for different policies selected among
random trees of 3 different nominal sizes, so as to investigate the effect of the size
of the tree on the performance of the learned policies. One column is dedicated
to the performance of the analytical reference policy πref on the test sample.

In the case ρ = 0, the reference value provided by the analytical optimal
policy suggests that the best policies are close to optimality. In the case ρ = 0.25,
the reference policy is now suboptimal. It still slightly dominates the learned
policies when Q = 2, but not anymore when Q = 6 or Q = 20. In the case ρ = 1,
the reference policy is dominated by the learned policies, except perhaps when
Q = 2 and the trees are large. That smaller trees are sometimes better than
large trees may be explained by the observation that multiplying the number of
scenarios by 25, as done in our experiments, does not fundamentally change the
order of magnitude of size of the tree, given the required exponential growth of
the number of scenarios with the number of stages.

42

This experiment shows that even if the scenario tree selection method requires
generating and solving several trees, rather than one single tree, it can work very
well. In fact, with a random tree generation process that can generate a medium
size set of very small trees, there is a good likelihood in the problem that at least
one of those trees will lead to excellent performances. Large sets of scenario trees
could easily be processed simply by parallelizing the tree selection procedure.
Overall, the approach seems promising in terms of the usage of computational
resources.

7 TIME INCONSISTENCY AND BOUNDED

RATIONALITY LIMITATIONS

This section discusses the notion of dynamically consistent decision process,
which is relevant to sequential decision making with risk-sensitivity — by oppo-
sition to the optimization of the expectation of a total return over the planning
horizon, which can be described as risk-indifferent, or risk-neutral.

7.1 Time-Consistent Decision Processes

We will say that an objective induces a dynamically consistent policy, or time-
consistent policy, if the decisions selected by a policy optimal for that objective
coincide with the decisions selected by a policy recomputed at any subsequent
time step t and optimal for the same objective with decisions and observations
prior to t set to their realized value (and decisions prior to t chosen according
to the initial optimal policy).

Time-consistent policies are not necessarily time-invariant: we simply require
that the optimal mappings πt from information states it to decisions ut at time
t, evaluated from some initial information state at t = 0, do not change if we
take some decisions following these mappings, and then decide to recompute
them from the current information state. We recall that in the Markov Deci-
sion Process framework, the information state it is the current state xt, and
in the multistage stochastic programming framework, it is the current history
(ξ1, . . . , ξt−1) of the random process, with t indexing decision stages. We say
that a decision process is time-consistent if it is generated by a time-consistent
policy.

A close notion of time-consistency can also be defined by saying that the
preferences of the decision maker among possible distributions for the total re-
turn over the planning horizon can never be affected by future information states
that the agent recognizes, at some point in the decision process, as impossible
to reach (Shapiro, 2009; Defourny, Ernst, & Wehenkel, 2008).

In the absence of time-consistency, the following situation may arise (the dis-
cussion is made in the multistage stochastic programming framework). At time
t = 1, an agent determines that for each possible outcome of a random variable
ξ2 at time t = 2, the decision u2 = a at time t = 2 is optimal (with respect
to the stated objective and constraints of the problem, given the distribution of
ξ2, ξ3, . . . , and taking account of optimized recourse decisions u3, u4, . . . over the
planning horizon). Then at time t = 2, having observed the outcome of the ran-
dom variable ξ1 and conditioned the probability distributions of ξ2, ξ3, . . . over
this observation, and in particular, having ruled out all scenarios where ξ1 differs

43

from the observed outcome, the agent finds that for some possible realizations
of ξ2, u2 = a is not optimal.

The notion of time-consistency already appears in Samuelson (1937), who
states: “as the individual moves along in time there is a sort of perspective phe-
nomenon in that his view of the future in relation to his instantaneous time
position remains invariant, rather than his evaluation of any particular year”
(page 160). Several economists have rediscovered and refined the notion (Strotz,
1955; Kydland & Prescott, 1977), especially when trying to apply expected util-
ity theory, valid for comparisons of return distributions viewed from a single
initial information state, to sequential decision making settings, where the infor-
mation state evolves.

In fact, if an objective function subject to constraints can be optimized by
dynamic programming, in the sense that a recursive formulation of the optimiza-
tion is possible using value functions (on an augmented state space if necessary,
and irrespectively of complexity issues), then an optimal policy will satisfy the
time-consistency property. This connection between Bellman’s principle (1957)
and time-consistency is well-established (Epstein & Schneider, 2003; Artzner,
Delbaen, Eber, Heath, & Ku, 2007). By definition and by recursion, a value
function is not affected by states that have a zero probability to be reached in
the future; when the value function is exploited, a decision ut depends only on
the current information state it. Objectives that can be optimized recursively
include the expected sum of rewards, and the expected exponential utility of a
sum of rewards (Howard & Matheson, 1972), with discount permitted, although
the recursion gets more involved (Chung & Sobel, 1987). A typical example of
objective that cannot be rewritten recursively in general is the variance of the
total return over several decision steps. This holds true even if the state fully de-
scribes the distribution of total returns conditionally to the current state. Note,
however, that a nice way of handling a mean-variance objective on the total
return is to relate it to the expected exponential utility: if R denotes a random
total return, Φρ{R} = E{R} − (ρ/2)var{R} ' −ρ−1 log E{exp(−ρR)}. The ap-
proximation holds for small ρ > 0. It is exact for all ρ > 0 if R follows a Gaussian
distribution.

7.2 Limitations of Validations Based on Learned Policies

In our presentation of multistage stochastic programming, we did not discuss
several extensions that can be used to incorporate risk awareness in the deci-
sion making process. In particular, a whole branch of stochastic programming
is concerned with the incorporation of chance constraints in models (Prékopa,
1995), that is, constraints to be satisfied with a probability less than 1. Another
line of research involves the incorporation of modern risk measures such as the
conditional value-at-risk at level α (expectation of the returns relative to the
worst α-quantile of the distribution of returns) (Rockafellar & Uryasev, 2000).
An issue raised by many of these extensions, when applied to sequential decision
making, is that they may induce time-inconsistent decision making processes
(Boda & Filar, 2006).

The validation techniques based on supervised learning that we have pro-
posed are not adapted to time-inconsistent processes. Indeed, these techniques
rely on the assumption that the optimal solution of a multistage stochastic pro-
gram is a sequence of optimal mappings πt from reachable information states

44

(ξ1, . . . , ξt−1) to feasible decisions ut, uniquely determined by some initial infor-
mation state at which the optimization of the mappings takes place. We believe,
however, that the inability to address the full range of possible multistage pro-
gramming models should have minor practical consequences. On the one hand,
we hardly see the point of formulating a sophisticated multistage model with
optimal recourse decisions unrelated to those that would be implemented if the
corresponding information states are actually reached. On the other hand, it is
always possible to simulate any learned policy, whatever the multistage model
generating the learning data might be, and score an empirical return distribution
obtained with the simulated policy according to any risk measure important for
the application. Computing a policy and sticking to it, even if preferences are
changing over time, is a form of precommitment (Hammond, 1976).

Finally, let us observe that a shrinking-horizon policy can be time-inconsistent
for two reasons: (i) the policy is based on an objective that cannot induce a time-
consistent decision process; (ii) the policy is based on an objective that could be
reformulated using value functions, but anyway the implicit evaluation of these
value functions changes over time, due to numerical approximations local to
the current information state. Similarly, if an agent uses a supervised-learning
based policy to take decisions at some stage and is then allowed to reemploy
the learning procedure at later stages, the overall decision sequence may appear
as dynamically inconsistent. The source (ii) of inconsistency appears rather un-
avoidable in a context of bounded computational resources; more generally, it
seems that bounded rationality (Simon, 1956) would necessarily entail dynamical
inconsistency.

8 CONCLUSIONS

In this chapter, we have presented the principles of the multistage stochastic
programming approach to sequential decision making under uncertainty, and
discussed the inference and exploitation of decision policies for comparing vari-
ous approximations of a multistage program in the absence of tight theoretical
guarantees.

Sequential decision making problems under uncertainty form a rich class
of optimization problems with many challenging aspects. Markov Decision Pro-
cesses and multistage stochastic programming are two frameworks for addressing
such problems. They have been originally studied by different communities, lead-
ing to a separate development of new approximation and solution techniques.
In both fields, research is done so as to extend the scope of the framework to
new problem classes: in stochastic programming, there is research on robust
approaches (Delage & Ye, 2008), decision-dependent random processes (Goel
& Grossmann, 2006), nonconvex problems (Dentcheva & Römisch, 2004); in
Markov Decision Processes, many efforts are directed at scaling dynamic pro-
gramming (or policy search) to problems with high-dimensional continuous state
spaces and/or decision spaces (Ng & Jordan, 1999; Ghavamzadeh & Engel, 2007;
Antos, Munos, & Szepesvári, 2008).

It is likely that a better integration of the ideas developed in the two fields
will ultimately yield better solving strategies for large-scale problems having
both continuous and discrete aspects. Both fields have foundations in empirical
process theory, and can benefit from advances in Monte Carlo methods, espe-

45

cially in variance reduction techniques (Singh, Kantas, Vo, Doucet, & Evans,
2007; Coquelin, Deguest, & Munos, 2009; Hoffman, Kueck, Doucet, & de Fre-
itas, 2009).

Acknowledgments

This paper presents research results of the Belgian Network DYSCO (Dynamical
Systems, Control, and Optimization), funded by the Interuniversity Attraction
Poles Programme, initiated by the Belgian State, Science Policy Office. The sci-
entific responsibility rests with its authors. Damien Ernst is a Research Associate
of the Belgian FRS-FNRS of which he acknowledges the financial support. This
work was supported in part by the IST Programme on the European Community,
under the PASCAL2 Network of Excellence, IST-2007-216886. This publication
only reflects the authors’ views.

46

References

Antos, A., Munos, R., & Szepesvári, C. (2008). Fitted Q-iteration in contin-
uous action-space MDPs. In Advances in Neural Information Processing
Systems 20 (NIPS-2007) (p. 9-16). Cambridge, MA: MIT Press.

Applegate, D. L., Bixby, R. E., Chvátal, V., & Cook, W. J. (2007). The trav-
eling salesman problem: A computational study. Princeton, NJ: Princeton
University Press.

Arrow, K. J. (1958). Historical background. In K. J. Arrow, S. Karlin, & H. Scarf
(Eds.), Studies in the mathematical theory of inventory and production.
Stanford, CA: Stanford University Press.

Artzner, P., Delbaen, F., Eber, J.-M., Heath, D., & Ku, H. (2007). Coher-
ent multiperiod risk adjusted values and Bellman’s principle. Annals of
Operations Research, 152 (1), 5-22.

Balasubramanian, J., & Grossmann, I. E. (2003). Approximation to multi-
stage stochastic optimization in multiperiod batch plant scheduling under
demand uncertainty. Industrial & Engineering Chemistry Research(43),
3695-3713.

Bellman, R. (1962). Dynamic programming treatment of the travelling salesman
problem. Journal of the ACM , 9 , 61-63.

Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization.
Princeton, NJ: Princeton University Press.

Bertsekas, D. P. (2005). Dynamic Programming and Optimal Control (3rd ed.).
Belmont, MA: Athena Scientific.

Billingsley, P. (1995). Probability and measure (Third ed.). New York, NY:
Wiley-Interscience.

Birge, J., & Louveaux, F. (1997). Introduction to stochastic programming. New
York, NY: Springer.

Birge, J. R. (1992). The value of the stochastic solution in stochastic linear
programs with fixed recourse. Mathematical Programming, 24 , 314–325.

Boda, K., & Filar, J. A. (2006). Time consistent dynamic risk measures. Math-
ematical Methods of Operations Research, 63 , 169-186.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge, UK:
Cambridge University Press.

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification
and regression trees. Boca Raton, FL: Chapman and Hall/CRC.

Carpentier, P., Cohen, G., & Culioli, J. C. (1996). Stochastic optimization of
unit commitment: A new decomposition framework. IEEE Transactions
on Power Systems , 11 , 1067-1073.

Chiralaksanakul, A. (2003). Monte Carlo methods for multi-stage stochastic pro-
grams. Unpublished doctoral dissertation, University of Texas at Austin,
Austin, TX.

Chung, K.-J., & Sobel, M. (1987). Discounted MDP’s: Distribution functions
and exponential utility maximization. SIAM Journal on Control and Op-
timization, 25 (1), 49-62.

Coquelin, P.-A., Deguest, R., & Munos, R. (2009). Particle filter-based pol-
icy gradient in POMDPs. In Advances in Neural Information Processing
Systems 21 (NIPS-2008) (p. 337-344). Cambridge, MA: MIT Press.

References 47

Csáji, B., & Monostori, L. (2008). Value function based reinforcement learning in
changing Markovian environments. Journal of Machine Learning Research,
9 , 1679-1709.

Dantzig, G. B. (1955). Linear programming under uncertainty. Management
Science, 1 , 197-206.

Defourny, B., Ernst, D., & Wehenkel, L. (2008, December). Risk-aware decision
making and dynamic programming. Paper presented at the NIPS-08 work-
shop on model uncertainty and risk in reinforcement learning, Whistler,
BC.

Defourny, B., Ernst, D., & Wehenkel, L. (2009). Bounds for multistage
stochastic programs using supervised learning strategies. In Stochastic Al-
gorithms: Foundations and Applications. Fifth International Symposium,
SAGA 2009 (p. 61-73). Berlin, Germany: Springer-Verlag.

Delage, E., & Ye, Y. (2008). Distributionally Robust Optimization under Mo-
ment Uncertainty with Application to Data-Driven Problems. (To appear
in Operations Research)

Dempster, M. A. H., Pflug, G., & Mitra, G. (Eds.). (2008). Quantitative fund
management. Boca Raton, FL: Chapman & Hall/CRC.

Demuth, H., & Beale, M. (1993). Neural network toolbox for use with Matlab.

Dentcheva, D., & Römisch, W. (2004). Duality gaps in nonconvex stochastic
optimization. Mathematical Programming, 101 (3), 515-535.

Dietterich, T. G. (2000). Ensemble Methods in Machine Learning. In Proceedings
of the first international workshop on multiple classifier systems (p. 1-15).
Berlin, Germany: Springer-Verlag.

Epstein, L., & Schneider, M. (2003). Recursive multiple-priors. Journal of
Economic Theory, 113 , 1-13.

Ernst, D., Geurts, P., & Wehenkel, L. (2005). Tree-based batch mode reinforce-
ment learning. Journal of Machine Learning Research, 6 , 503-556.

Ernst, D., Glavic, M., Capitanescu, F., & Wehenkel, L. (2009). Reinforcement
learning versus model predictive control: A comparison on a power system
problem. IEEE Transactions on Systems, Man and Cybernetics - Part B:
Cybernetics , 39 (2), 517-529.

Escudero, L. F. (2009). On a mixture of the fix-and-relax coordination and
Lagrangian substitution schemes for multistage stochastic mixed integer
programming. Top, 5-29.

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees.
Machine Learning, 63 .

Ghavamzadeh, M., & Engel, Y. (2007). Bayesian policy gradient algorithms.
In Advances in Neural Information Processing Systems 19 (NIPS-2006)
(p. 457-464). Cambridge, MA: MIT Press.

Goel, V., & Grossmann, I. E. (2006). A class of stochastic programs with decision
dependent uncertainty. Mathematical Programming, 108 , 355-394.

Grant, M., & Boyd, S. (2008). Graph implementations for nonsmooth con-
vex programs. Recent Advances in Learning and Control – A tribute to
M. Vidyasagar , 95-110.

Grant, M., & Boyd, S. (2009, February). CVX: Matlab soft-
ware for disciplined convex programming (web page and software).
(http://stanford.edu/∼boyd/cvx)

48

Hammond, P. J. (1976). Changing tastes and coherent dynamic choice. The
Review of Economic Studies , 43 , 159-173.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical
learning: Data mining, inference, and prediction (Second ed.). New York,
NY: Springer.

Heitsch, H., & Römisch, W. (2003). Scenario reduction algorithms in stochastic
programming. Computational Optimization and Applications , 24 , 187-
206.

Heitsch, H., & Römisch, W. (2009). Scenario tree modeling for multistage
stochastic programs. Mathematical Programming, 118 (2), 371-406.

Hilli, P., & Pennanen, T. (2008). Numerical study of discretizations of multistage
stochastic programs. Kybernetika, 44 , 185-204.

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for
deep belief nets. Neural Computation, 1527-1554.

Hochreiter, R., & Pflug, G. C. (2007). Financial scenario generation for stochas-
tic multi-stage decision processes as facility location problems. Annals of
Operations Research, 152 , 257-272.

Hoffman, M., Kueck, H., Doucet, A., & de Freitas, N. (2009). New infer-
ence strategies for solving Markov decision processes using reversible jump
MCMC. In Proceedings of the twenty-fifth conference on Uncertainty in
Artificial Intelligence (UAI-2009) (p. 223-231). AUAI Press.

Howard, R. A., & Matheson, J. (1972). Risk-sensitive Markov Decision Pro-
cesses. Management Science, 18 (7), 356-369.

Høyland, K., Kaut, M., & Wallace, S. W. (2003). A heuristic for moment-
matching scenario generation. Computational Optimization and Applica-
tions , 24 , 1573-2894.

Huang, K., & Ahmed, S. (2009). The value of multistage stochastic programming
in capacity planning under uncertainty. Operations Research, 57 , 893-904.

Infanger, G. (1992). Monte Carlo (importance) sampling within a Benders de-
composition algorithm for stochastic linear programs. Annals of Operations
Research, 39 , 69-95.

Kallrath, J., Pardalos, P. M., Rebennack, S., & Scheidt, M. (Eds.). (2009).
Optimization in the energy industry. Berlin, Germany: Springer-Verlag.

Kearns, M. J., Mansour, Y., & Ng, A. Y. (2002). A sparse sampling algorithm
for near-optimal planning in large Markov Decision Processes. Machine
Learning, 49 (2-3), 193-208.

Koivu, M., & Pennanen, T. (2010). Galerkin methods in dynamic stochastic
programming. Optimization, 339-354.

Kouwenberg, R. (2001). Scenario generation and stochastic programming models
for asset liability management. European Journal of Operational Research,
134 , 279-292.

Küchler, C., & Vigerske, S. (2010). Numerical evaluation of approximation
methods in stochastic programming. Optimization, 59 , 401-415.

Kuhn, D. (2005). Generalized bounds for convex multistage stochastic programs
(Vol. 548). Berlin, Germany: Springer-Verlag.

Kydland, F. E., & Prescott, E. C. (1977). Rules rather than discretion: The
inconsistency of optimal plans. The Journal of Political Economy, 85 ,
473-492.

References 49

Lagoudakis, M. G., & Parr, R. (2003). Reinforcement learning as classification:
leveraging modern classifiers. In Proceedings of the twentieth International
Conference on Machine Learning (ICML-2003) (p. 424-431). Menlo Park,
CA: AAAI Press.

Langford, J., & Zadrozny, B. (2005). Relating reinforcement learning perfor-
mance to classification performance. In Proceedings of the twenty-second
International Conference on Machine Learning (ICML-2005) (p. 473-480).
New York, NY: ACM.

Littman, M. L., Dean, T. L., & Kaelbling, L. P. (1995). On the complexity
of solving Markov Decision Problems. In Proceedings of the eleventh con-
ference on Uncertainty in Artificial Intelligence (UAI-1995) (p. 394-402).
San Francisco, CA: Morgan Kaufmann.

MacKay, D. J. C. (2003). Information theory, inference and learning algorithms.
Cambridge, UK: Cambridge University Press.

Mak, W.-K., Morton, D. P., & Wood, R. K. (1999). Monte Carlo bounding tech-
niques for determining solution quality in stochastic programs. Operations
Research Letters , 24 (1-2), 47-56.

Mercier, L., & Van Hentenryck, P. (2007). Performance analysis of online an-
ticipatory algorithms for large multistage stochastic integer programs. In
Proceedings of the twentieth International Joint Conference on Artificial
Intelligence (IJCAI-07) (p. 1979-1984). San Francisco, CA: Morgan Kauf-
mann.

Munos, R., & Szepesvári, C. (2008). Finite-time bound for fitted value iteration.
Journal of Machine Learning Research, 9 , 815-857.

Nemirovski, A., Juditsky, A., Lan, G., & Shapiro, A. (2009). Stochastic approxi-
mation approach to stochastic programming. SIAM Journal on Optimiza-
tion, 19 , 1574-1609.

Nesterov, Y. (2003). Introductory lectures on convex optimization. Dordrecht,
The Netherlands: Kluwer Academic Publishers.

Ng, A. Y., & Jordan, M. (1999). PEGASUS: a policy search method for large
MDPs and POMDPs. In Proceedings of the sixteenth conference on Un-
certainty in Artificial Intelligence (UAI-2000) (p. 406-415). San Francisco,
CA: Morgan Kaufmann.

Norkin, V. I., Ermoliev, Y. M., & Ruszczyński, A. (1998). On optimal allocation
of indivisibles under uncertainty. Operations Research, 46 , 381-395.

Pages, G., & Printems, J. (2003). Optimal quadratic quantization for numerics:
the Gaussian case. Monte Carlo Methods and Applications , 9 , 135-166.

Pennanen, T. (2009). Epi-convergent discretizations of multistage stochastic
programs via integration quadratures. Mathematical Programming, 116 ,
461-479.

Pflug, G. C., & Römisch, W. (2007). Modeling, measuring and managing risk.
Hackensack, NJ: World Scientific Publishing Company.

Powell, W. B. (2007). Approximate Dynamic Programming: Solving the curses
of dimensionality. Hoboken, NJ: Wiley-Interscience.

Powell, W. B., & Topaloglu, H. (2003). Stochastic programming in transporta-
tion and logistics. In A. Ruszczyński & A. Shapiro (Eds.), Stochastic Pro-
gramming. Handbooks in Operations Research and Management Science
(Vol. 10, p. 555-635). Amsterdam, The Netherlands: Elsevier.

50

Prékopa, A. (1995). Stochastic programming. Dordrecht, The Netherlands:
Kluwer Academic Publishers.

Puterman, M. L. (1994). Markov Decision Processes: Discrete stochastic dy-
namic programming. Hoboken, NJ: Wiley.

Rachev, S. T., & Römisch, W. (2002). Quantitative stability in stochastic
programming: The method of probability metrics. Mathematical Program-
ming, 27 (4), 792-818.

Raiffa, H., & Schlaifer, R. (1961). Applied statistical decision theory. Cambridge,
MA: Harvard University Press.

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine
learning. Cambridge, MA: MIT Press.

Rockafellar, R. T. (1970). Convex analysis. Princeton, NJ: Princeton University
Press.

Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-
risk. Journal of Risk , 2 (3), 21-41.

Rockafellar, R. T., & Wets, R. J.-B. (1991). Scenarios and policy aggregation in
optimization under uncertainty. Mathematics of Operations Research, 16 ,
119-147.

Samuelson, P. A. (1937). A note on measurement of utility. The Review of
Economic Studies , 4 (2), 155-161.

Schultz, R., Stougie, L., & Van der Vlerk, M. H. (1998). Solving stochastic pro-
grams with integer recourse by enumeration: A framework using Gröbner
basis reduction. Mathematical Programming, 83 , 229-252.

Sen, S., Doverspike, R. D., & Cosares, S. (1994). Network planning with random
demand. Telecommunication Systems, 3 , 11-30.

Sen, S., & Sherali, H. (2006). Decomposition with branch-and-cut approaches
for two-stage stochastic mixed-integer programming. Mathematical Pro-
gramming, 106 , 203-223.

Sen, S., Yu, L., & Genc, T. (2006). A stochastic programming approach to
power portfolio optimization. Operations Research, 54 , 55-72.

Shapiro, A. (2003a). Inference of statistical bounds for multistage stochastic
programming problems. Mathematical Methods of Operations Research,
58 (1), 57-68.

Shapiro, A. (2003b). Monte Carlo sampling methods. In A. Ruszczyński &
A. Shapiro (Eds.), Stochastic Programming. Handbooks in Operations Re-
search and Management Science (Vol. 10, p. 353-425). Amsterdam, The
Netherlands: Elsevier.

Shapiro, A. (2006). On complexity of multistage stochastic programs. Operations
Research Letters , 34 (1), 1-8.

Shapiro, A. (2009). On a time-consistency concept in risk averse multistage
stochastic programming. Operations Research Letters , 37 , 143-147.

Shapiro, A., Dentcheva, D., & Ruszczyński, A. (2009). Lectures on stochastic
programming: Modeling and theory. Philadelphia, PA: SIAM.

Simon, H. A. (1956). Rational choice and the structure of the environment.
Psychological Review , 63 , 129-138.

Singh, S. S., Kantas, N., Vo, B.-N., Doucet, A., & Evans, R. J. (2007).
Simulation-based optimal sensor scheduling with application to observer
trajectory planning. Automatica, 43 , 817-830.

References 51

Steinwart, I., & Christman, A. (2008). Support Vector Machines. New York,
NY: Springer.

Strotz, R. H. (1955). Myopia and inconsistency in dynamic utility maximization.
The Review of Economic Studies , 23 , 165-180.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning, an introduction.
Cambridge, MA: MIT Press.

The MathWorks, Inc. (2004). Matlab. (http://www.mathworks.com)
Van der Vlerk, M. H. (2009). Convex approximations for a class of mixed-integer

recourse models. Annals of Operations Research. (Springer Online First)
Van Hentenryck, P., & Bent, R. (2006). Online stochastic combinatorial opti-

mization. Cambridge, MA: MIT Press.
Vapnik, V. N. (1998). Statistical learning theory. New York, NY: John Wiley &

Sons.
Verweij, B., Ahmed, S., Kleywegt, A., Nemhauser, G., & Shapiro, A. (2003).

The Sample Average Approximation method applied to stochastic rout-
ing problems: A computational study. Computational Optimization and
Applications , 24 (2-3), 289-333.

Wallace, S. W., & Ziemba, W. T. (Eds.). (2005). Applications of stochastic
programming. Philadelphia, PA: SIAM.

Wets, R. J.-B. (1974). Stochastic programs with fixed recourse: The equivalent
deterministic program. SIAM Review , 16 , 309-339.

