

ORIGINAL ARTICLE

Comparison of thrombotic microangiopathy after allogeneic hematopoietic cell transplantation with high-dose or nonmyeloablative conditioning

E Willems^{1,2,4}, F Baron^{1,2,4}, L Seidel³, P Frère^{1,2}, G Fillet^{1,2} and Y Beguin^{1,2}

¹Division of Hematology, Department of Medicine, University of Liège and CHU of Liège, Liège, Belgium; ²Department of Infection, Immunity and Inflammation, Giga-Research, Section of Hematology, University of Liège, Liège, Belgium and ³Department of Statistics, University of Liège, Liège, Belgium

The role of conditioning intensity on occurrence of thrombotic microangiopathy (TMA) after allogeneic hematopoietic cell transplantation (HCT) has remained unclear thus far. Here, we retrospectively compared the incidence of TMA in patients given allogeneic hematopoietic stem cells after either nonmyeloablative ($n = 176$) or high-dose ($n = 111$) conditioning. The 1-year cumulative incidence of TMA was 13% in nonmyeloablative recipients versus 15% in high-dose conditioning recipients ($P = 0.5$). In multivariate Cox analysis, occurrence of grade 3–4 acute graft-versus-host disease (GVHD) (hazard ratio (HR) = 2.3, $P < 0.001$), older age (HR = 1.01, $P = 0.045$), and unrelated donors (HR = 1.6, $P = 0.01$) were each associated with a higher risk of TMA, whereas nonmyeloablative conditioning was associated with a lower risk of TMA (HR = 0.6, $P = 0.01$). We conclude that acute GVHD, age, donor type, and conditioning intensity might have a role in the physiopathology of TMA after allogeneic HCT.

Bone Marrow Transplantation (2010) **45**, 689–693; doi:10.1038/bmt.2009.230; published online 31 August 2009

Keywords: hematopoietic cell transplantation; thrombotic microangiopathy; nonmyeloablative; GVHD

Introduction

Post-transplant thrombotic microangiopathy (TMA) is an important complication of allogeneic hematopoietic cell transplantation (HCT).¹ This syndrome associates microangiopathic hemolysis with renal and/or neurologic impairment. It has been proposed that endothelial injury might contribute to the occurrence of TMA after allogeneic HCT.¹ The main mechanisms involved in endothelial injury after allogeneic HCT include high-dose chemotherapy, high-dose radiotherapy, and acute graft-versus-host disease (GVHD). Other factors that have been associated with

TMA after allogeneic HCT include viral or fungal infections, unrelated donor, ABO incompatibility, and postgrafting immunosuppression with sirolimus combined with a calcineurin inhibitor.^{1,2}

The recent development of nonmyeloablative conditioning regimens has permitted performing allogeneic transplantation in older patients, those with medical comorbidities, and those who had failed a high-dose transplant.^{3–6} This approach relies nearly exclusively on the destruction of malignant cells by donor T cells and NK cells through graft-versus-tumor effects.^{7,8}

In this study, we retrospectively assessed the role of conditioning intensity on TMA occurrence after allogeneic HCT.

Patients and methods

Patients, conditioning regimen, and postgrafting immunosuppression

Data from 287 patients given allogeneic bone marrow or peripheral blood stem cells after myeloablative or nonmyeloablative conditioning from January 2000 to July 2008 were retrospectively analyzed. Their characteristics are listed in Table 1. Although there is no consensus on what constitutes nonmyeloablative conditioning versus not,⁹ we defined nonmyeloablative conditioning in this study as conditioning that could be performed entirely in the outpatient setting in most patients. High-dose conditioning regimens were based on high-dose (single dose of 8 Gy or 6×2 Gy) total body irradiation (TBI) ($n = 91$), intermediate (8 mg/kg, $n = 4$) or high-dose (16 mg/kg, $n = 8$) busulfan, or high doses of other alkylating agents ($n = 8$). Nonmyeloablative conditioning regimens consisted of 2 Gy TBI alone ($n = 3$), fludarabine 90 mg/m² plus 2 Gy TBI ($n = 113$), fludarabine 90 mg/m² plus 2×2 Gy TBI ($n = 17$), or fludarabine 90 mg/m² plus cyclophosphamide 3 g/m² ($n = 15$). In the high-dose group, postgrafting immunosuppression consisted in cyclosporine alone for 56 patients receiving CD34- or CD133-selected grafts. For the remaining 55 patients receiving unmanipulated grafts, postgrafting immunosuppression included tacrolimus plus mycophenolate mofetil ($n = 4$), cyclosporine alone ($n = 10$), or cyclosporine plus short methotrexate ($n = 41$, including 7 receiving additional anti-thymocyte globulin). In the

Correspondence: Dr F Baron, Department of Hematology, University of Liège, CHU Sart-Tilman, 4000 Liège, Belgium.

E-mail: F.Baron@ulg.ac.be

⁴These authors contributed equally to this work.

Received 9 April 2009; revised 23 July 2009; accepted 26 July 2009; published online 31 August 2009

Table 1 Patients' characteristics

	Myeloablative conditioning (n = 111)	Nonmyeloablative conditioning (n = 176)
Median age	42 (4–66)	57 (10–72)
Gender: male/female	67/44	117/59
<i>Diagnostic; no. of patients (%)</i>		
AML	48 (43.2)	25 (14.2)
ALL	11 (9.9)	1 (0.6)
CML	7 (6.3)	5 (2.8)
CLL	3 (2.7)	16 (9.1)
Lymphoma	17 (15.3)	46 (26.1)
MDS et MPD	13 (11.7)	39 (22.2)
MM	4 (3.6)	35 (19.9)
Non-malignant	8 (7.2)	0 (0)
RCC	0 (0)	9 (5.1)
<i>Donor; no. of patients (%)</i>		
HLA-identical sibling	58 (52.3)	56 (31.8)
Unrelated 6/6 identical	42 (37.8)	109 (61.9)
≥1/6 HLA-mismatched donors	11 (9.9)	11 (6.3)
Prior transplantation; no. of patients (%)	10 (9)	97 (55.1)
<i>Conditioning regimen; no. of patients (%)</i>		
High-dose TBI-based regimen	91 (82)	0 (0)
Busulfan-based regimen	12 (10.8)	0 (0)
Miscellaneous	8 (7.2)	0 (0)
TBI 2 Gy	0 (0)	31 (17.6)
Fludarabine 90 mg/m ² +	0 (0)	113 (64.2)
TBI 2 Gy	0 (0)	17 (9.7)
Fludarabine 90 mg/m ² +	0 (0)	15 (8.5)
TBI 4 Gy	0 (0)	
Fludarabine 90 mg/m ² + cyclophosphamide	0 (0)	
<i>Immunosuppressive regimen; no. of patients (%)</i>		
CD34/CD133 selection + CSP	56 (50.5)	7 (+ MMF) ¹¹
CSP alone	10 (9)	0 (0)
CSP + MTX	34 (30.6)	0 (0)
CSP + MTX + ATG	7 (6.3)	0 (0)
MMF + CSP/tacrolimus	4 (3.6)	169 (96)
Graft source: bone marrow/PBSC; no. of patients (%)	9 (8.1)/102 (91.9)	2 (1.1)/174 (98.9)
<i>ABO Compatibility; no. of patients (%)</i>		
Identical	64 (57.7)	103 (58.5)
Major mismatch	26 (23.4)	47 (26.7)
Minor mismatch	27 (24.3)	35 (19.9)
<i>Acute GVHD; no. of patients (%)</i>		
Grade 0–1	82 (73.9)	106 (60.2)
Grade 2	14 (12.6)	44 (25)
Grade 3–4	15 (13.5)	26 (14.8)
TMA; no. of patients (%)	17 (15.3)	25 (14.2)
Median time of onset (days)	54 (0–256)	49 (18–519)
Median duration (days)	44 (4–120)	45 (5–246)
Neurologic signs; no. of patients (%)	12 (10.8)	14 (8)
<i>Treatment; no. of patients (%)</i>		
Stop calcineurin inhibitor	2 (1.8)	2 (1.1)
Shift calcineurin inhibitor	8 (7.2)	19 (10.8)
Plasma exchange	10 (9)	15 (8.5)
Rituximab	2 (1.8)	2 (1.1)
Vincristine	1 (0.9)	2 (1.1)

Table 1 Continued

	Myeloablative conditioning (n = 111)	Nonmyeloablative conditioning (n = 176)
TMA as primary cause of death; no. of patients (%)	1 (0.9)	2 (1.1)
TMA as secondary cause of death; no. of patients (%)	4 (3.6)	6 (3.4)

Abbreviations: ATG = anti-thymocyte globulin; CSP = cyclosporine; MDS = myelodysplastic syndrome; MMF = mycophenolate mofetil; MM = multiple myeloma; MPD = myeloproliferative disorder; RCC = renal cell carcinoma; TMA = thrombotic microangiopathy.

nonmyeloablative setting, postgrafting immunosuppression included mycophenolate mofetil combined with cyclosporine or tacrolimus in all patients. Fifty patients undergoing nonmyeloablative conditioning received CD8-depleted PBSC,¹⁰ 119 unmanipulated PBSC, and 7 CD34-selected PBSC followed by CD8-depleted donor lymphocyte infusions.¹¹

TMA definition

The following criteria¹² were used to define TMA: (1) RBC fragmentation and ≥2 schistocytes per high-power field on peripheral smear; (2) serum LDH increased above institutional baseline; and (3) concurrent renal (doubling of serum creatinine from baseline or 50% decrease in creatinine clearance from baseline) and/or neurologic dysfunction without other explanations. Diagnostic of TMA was carried out as follows: each patient with (1) evidence of schistocytes on peripheral smear; (2) serum LDH increased above institutional baseline; and (3) no apparent alternative etiologies were prospectively encoded in our clinical transplant database by YB or FB. EW reviewed all suspected cases of TMA and excluded cases that did not fulfill the above definition.

Statistical analyses

The cumulative incidence of TMA in all patients as well as in patients given high-dose or nonmyeloablative conditioning was calculated as described elsewhere.¹³ Potential associations between HCT variables and TMA were assessed using the χ^2 tests or the Fisher's exact test whenever appropriate. A number of factors potentially associated with the occurrence of TMA were also assessed in a Cox model: grade 3–4 acute GVHD, donor type (related versus unrelated), patient age (modeled as a continuous linear variable), earlier HCT or not, tacrolimus or cyclosporine as GVHD prophylaxis, HLA compatibility (6/6 HLA-antigen matched versus other), major ABO mismatch, minor ABO mismatch, prior administration of sirolimus (given only as treatment for steroid-refractory acute or chronic GVHD in our patients), and conditioning regimen intensity. Statistical analyses were carried out with Graphpad Prism (Graphpad Software, San Diego, CA, USA) or with SAS version 9.1 (SAS Institute, Cary, NC, USA). The threshold significance level was 0.05.

Results

Incidence of TMA

The 1-year cumulative incidence of TMA was 13% in the nonmyeloablative setting versus 15% in the high-dose setting ($P=0.5$). Median time after transplant for TMA diagnosis was 52 (range 0–519) days in all patients, 54 (range 0–256) days in the high-dose setting, and 49 (range 18–519) days in the nonmyeloablative setting. Mean (\pm s.d.) % of schizocytes was 2.7 ± 1.0 in nonmyeloablative recipients versus 2.7 ± 1.1 in high-dose recipients ($P=0.9$). Twelve percent of nonmyeloablative patients versus 59% of high-dose recipients were platelet transfusion-dependent at diagnosis of TMA ($P=0.002$), whereas 68% of nonmyeloablative patients versus 88% of high-dose recipients were/became platelet transfusion-dependent after TMA ($P=0.2$). Mean platelet levels at diagnosis of TMA in patients not requiring platelet transfusion were $58 \pm 36 \times 10^9/l$ in nonmyeloablative patients versus $57 \pm 56 \times 10^9/l$ in high-dose recipients ($P=0.9$). Mean creatinine levels were $18 \pm 10 \text{ mg/l}$ in nonmyeloablative patients versus $17 \pm 11 \text{ mg/l}$ in high-dose recipients ($P=0.8$).

Risk factors

The clinical factors predicting for TMA in univariate analyses are listed in Table 2. In multivariate Cox analyses (Table 3), occurrence of grade 3–4 acute GVHD (hazard ratio (HR)=2.3, $P<0.001$), higher patient age (HR=1.01, $P=0.045$), and unrelated versus related donors (HR=1.6, $P=0.01$) were each associated with a higher risk of TMA, whereas nonmyeloablative versus high-dose conditioning was associated with a lower risk of TMA (HR=0.6, $P=0.01$). There were no statistically significant associations between TMA and major (HR 0.8, $P=0.2$) or minor (HR 1.2, $P=0.2$) ABO mismatch between recipients and donors, $\geq 1/6$ HLA-antigen mismatches or not (HR 1.1, $P=0.8$), prior HCT or not (HR=0.8, $P=0.3$), tacrolimus or cyclosporine as GVHD prophylaxis (HR 0.7, $P=0.2$), or sirolimus administration or not (HR 0.8, $P=0.6$).

Median times to achieve 1×10^9 neutrophils/l and 100×10^9 platelets/l were 11 and 16 days, respectively, in patients without TMA versus 11 ($P=0.8$) and 17 ($P=0.7$) days, respectively, in patients who experienced TMA.

Outcomes of TMA

Of the 42 patients who experienced TMA, 30 were treated by changing immunosuppressive drugs alone ($n=12$) or in combination with plasma exchanges ($n=18$), 7 with plasma exchanges, 4 with rituximab, and 3 with vincristine. Twenty-three patients (55%) achieved a resolution of TMA (defined as schizocytes levels $<0.3\%$, normalization of LDH levels and decrease in transfusion support) a median of 48 (range 5–165) days after diagnosis of TMA. For non-responders ($n=19$), TMA was deemed the main cause of death in three patients who had no other life-threatening complication at that time. Primary causes of death in the remaining non-responders included infection ($n=4$), progressive disease ($n=3$), bleeding ($n=3$), acute GVHD ($n=3$), chronic GVHD ($n=2$), and interstitial pneumonia ($n=1$). Forty-three percent of patients

Table 2 Clinical factors for prediction of TMA

Variable	No. of patients (n=287)	No. of patients with TMA (%)	P-value (n=42)
<i>Patient gender</i>			
Male	184	24 (13)	
Female	103	18 (17)	0.3841
<i>Patient age</i> (continuous variable)			
<i>Donor</i>			
HLA-identical sibling	114	8 (7)	
6/6 HLA antigen-matched	151	30 (20)	
unrelated			
HLA-mismatched	22	4 (18)	0.0121
<i>Conditioning regimen</i>			
Nonmyeloablative	176	25 (14)	
High dose	111	17 (15)	0.8642
<i>Immunosuppression</i>			
CD34/CD133 + CSP	56	6 (11)	
CSP	10	0 (0)	
CSP + MTX	35	9 (26)	
CSP + MTX + ATG	7	0 (0)	
MMF + CSP/Tacrolimus	179	27 (15)	0.1322
<i>Acute GVHD</i>			
Grade 0–1	188	20 (11)	
Grade 2	58	5 (9)	
Grade 3–4	41	17 (41)	<0.0001
<i>CMV infection</i>			
No	156	20 (13)	
Yes	131	22 (17)	0.4027
<i>CMV disease</i>			
No	252	33 (13)	
Yes	35	9 (25)	0.0698
<i>Invasive aspergillosis</i>			
No	250	36 (14)	
Yes	37	6 (16)	0.8032
<i>Prior HCT</i>			
No	180	26 (14%)	
Yes	107	16 (15%)	1.0
<i>Tacrolimus as GVHD prophylaxis</i>			
No	200	31 (15.5)	
Yes	87	11 (12.6)	0.59
<i>Sirolimus administration</i>			
No	277	40 (14)	
Yes	10	2 (20)	0.6442

Abbreviations: ATG = anti-thymocyte globulin; CSP = cyclosporine; HCT = hematopoietic cell transplantation; MMF = mycophenolate mofetil; Tacrolimus = tacrolimus; TMA = thrombotic microangiopathy; URD = unrelated donor.

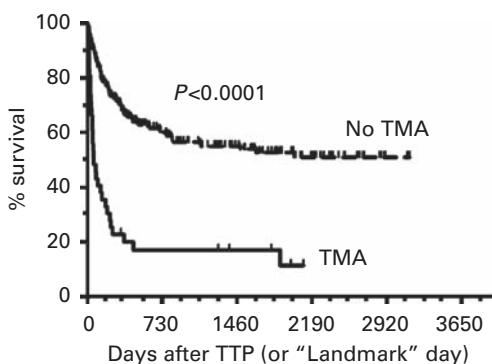

without TMA versus 69% of those with TMA experienced secondary platelet failure ($P=0.002$). One year after TMA, creatinine ($12.8 \pm 6.7 \text{ mg/l}$ versus $12.9 \pm 4.3 \text{ mg/l}$, $P=0.9$) and platelet ($195 \pm 91 \times 10^9/l$ versus $168 \pm 96 \times 10^9/l$, $P=0.4$) levels were similar in patients without or with antecedent TMA. One-year survival from diagnosis of TMA was 20%. By comparison, the 1-year survival from

Table 3 Clinical factors predicting for TMA in a multivariate Cox model

	Hazard ratio (95% CI)	P-value
Grade 3–4 acute graft-versus-host disease	2.3 (1.5–3.5)	<0.0001
Nonmyeloablative versus high-dose conditioning	0.56 (0.36–0.88)	0.0121
Major ABO mismatch	0.76 (0.52–1.11)	0.15
Minor ABO mismatch	1.2 (0.9–1.8)	0.25
Unrelated donor	1.6 (1.1–2.2)	0.014
1/6 HLA-antigen mismatch	1.1 (0.6–2.0)	0.78
Patient age ^a	1.01 (1.00–1.03)	0.045
Prior HCT	0.82 (0.56–1.2)	0.33
Tacrolimus or cyclosporine as GVHD prophylaxis	0.73 (0.47–1.1)	0.16
Sirolimus administration	0.8 (0.36–1.8)	0.59

Abbreviations: HCT = hematopoietic cell transplantation; TMA = thrombotic microangiopathy.

^aModeled as a continuous linear variable.

Figure 1 Semi-landmark plots illustrating impact of TMA on overall survival.

day 52 in patients who did not experience TMA and were alive on day 52 (pseudo-landmark analysis⁷) was 67% ($P<0.0001$, Figure 1). As expected, median survival from TMA diagnosis was higher in patients who achieved resolution of TMA compared with those who did not (median 218 days versus 27 days, $P<0.001$). Further, 1-year survival was significantly worse in patients requiring platelet transfusions after TMA (9%) versus in those who did not (56%, $P=0.006$). Finally, 100-day and 1-year overall survivals from diagnosis of TMA were 40 and 18%, respectively, in nonmyeloablative recipients versus 41 and 24%, respectively, in high-dose recipients ($P=0.8$).

Discussion

TMA is a well-known complication of allogeneic HCT.^{1,2} The relative roles of the conditioning regimen and alloreactivity in post-transplant TMA have not been completely elucidated. The primary objective of the current retrospective study was to compare TMA incidence in patients given nonmyeloablative versus high-dose conditioning. Other objectives included determining factors

predicting for TMA, and analyzing the impact of TMA occurrence on OS. Several observations have been made.

First, the incidence of TMA was lower in the non-myeloablative than in the high-dose setting in the multivariate Cox analysis, suggesting that conditioning intensity might have a role in the physiopathology of post-transplant TMA. Two recent studies compared the incidence of TMA after myeloablative or after 'reduced-intensity' conditioning and failed to show significant differences.^{14,15} This might be due to the fact that the 'reduced-intensity' conditioning regimen (combining relatively high doses of fludarabine and busulfan 8 mg/kg) used in these studies was still relatively intense and capable of inducing endothelial damage. In support to this hypothesis, sinusoidal obstructive syndrome has been observed with this conditioning regimen, when never in our patients undergoing nonmyeloablative conditioning. For these reasons, we chose to classify the four patients given grafts after fludarabine and busulfan 8 mg/kg in this study within the 'high-dose' chemotherapy group.

Second, our study showed that severe acute GVHD and unrelated donor were two strong predictors of TMA occurrence, in agreement with several earlier reports.^{15–20} The association between acute GVHD and TMA was not surprising given that endothelial cells are the targets of graft-versus-host reactions.²¹ The association between unrelated donor and TMA might be explained by the wider antigenic disparity between donors and recipients in the setting of unrelated donor transplantation, increasing the risk of host endothelial injury by donor immune cells. In contrast, our study failed to show significant associations between infections and post-transplant TMA as observed in some earlier reports.^{17,18} The lack of association between infection and TMA in this study might be due to the relatively low number of patients included.

Third, patients who experienced TMA had a dramatically lower probability of survival than those who did not experience this complication. TMA was the primary cause of death of 7% of patients with TMA, and a secondary cause of death in 24%. The poor outcome in patients with TMA could also be related to the strong associations observed between TMA and severe GVHD, which is one of the leading causes of nonrelapse mortality after allogeneic HCT.^{4,5,7} Supporting this hypothesis, 26% of patients with non-responding TMA died of GVHD in this study.

We should acknowledge that comparisons of TMA incidence between different groups of investigators might be difficult because of the relatively non-specific criteria for diagnosis of TMA and variable sensitivity to the diagnosis in different institutions. This probably explains the large range of TMA occurrence reported in different studies (from 0.5 to 63%).²² However, the incidence of TMA observed in our high-dose chemotherapy cohort (15% at 1-year) is well in the range of what has been reported recently by other groups of investigators (10–20%),^{14,15,23} one of them using a similar definition for TMA (18%).¹⁵

In summary, our data suggest that though severe acute GVHD and unrelated donor are strong predictors for TMA occurrence, patients undergoing nonmyeloablative conditioning might have a slightly lower risk of TMA than those given high-dose conditioning.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

We are grateful to physicians, physicians' assistants, and clinical staff for their dedicated care of the patients. FB is a senior research associate and YB a research director of the National Fund for Scientific Research (FRS-FNRS), Belgium. The study was in part supported by funds from the FNRS, the anti-Cancer Center from the University of Liège, and by the Belgian Federation against Cancer (FBC).

References

- 1 Batts ED, Lazarus HM. Diagnosis and treatment of transplantation-associated thrombotic microangiopathy: real progress or are we still waiting? *Bone Marrow Transplant* 2007; **40**: 709–719.
- 2 Kojouri K, George JN. Thrombotic microangiopathy following allogeneic hematopoietic stem cell transplantation. *Curr Opin Oncol* 2007; **19**: 148–154.
- 3 McSweeney PA, Niederwieser D, Shizuru JA, Sandmaier BM, Molina AJ, Maloney DG et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. *Blood* 2001; **97**: 3390–3400.
- 4 Baron F, Storb R, Storer BE, Maris MB, Niederwieser D, Shizuru JA et al. Factors associated with outcomes in allogeneic hematopoietic cell transplantation with nonmyeloablative conditioning after failed myeloablative hematopoietic cell transplantation. *J Clin Oncol* 2006; **24**: 4150–4157.
- 5 Baron F, Sandmaier BM, Storer BE, Maris MB, Langston AA, Lange T et al. Extended mycophenolate mofetil and shortened cyclosporine failed to reduce graft-versus-host disease after unrelated hematopoietic cell transplantation with nonmyeloablative conditioning. *Biol Blood Marrow Transplant* 2007; **13**: 1041–1048.
- 6 Maris MB, Sandmaier BM, Storer BE, Maloney DG, Shizuru JA, Agura E et al. Unrelated donor granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cell transplantation after nonmyeloablative conditioning: the effect of postgrafting mycophenolate mofetil dosing. *Biol Blood Marrow Transplant* 2006; **12**: 454–465.
- 7 Baron F, Maris MB, Sandmaier BM, Storer BE, Sorror M, Diaconescu R et al. Graft-versus-tumor effects after allogeneic hematopoietic cell transplantation with nonmyeloablative conditioning. *J Clin Oncol* 2005; **23**: 1993–2003.
- 8 Baron F, Petersdorf EW, Gooley T, Sandmaier BM, Malkki M, Chauncey TR et al. What is the role for donor natural killer cells after nonmyeloablative conditioning? *Biol Blood Marrow Transplant* 2009; **15**: 580–588.
- 9 Baron F, Sandmaier BM. Nonmyeloablative Transplantation. In: Soiffer RJ (ed). *Hematopoietic Stem Cell Transplantation*. Humana Press: Totowa, 2008, pp 349–374.
- 10 Castermans E, Baron F, Willems E, Schaaf-Lafontaine N, Meuris N, Gothot A et al. Evidence for neo-generation of T cells by the thymus after non-myeloablative conditioning. *Haematologica* 2008; **93**: 240–247.
- 11 Baron F, Baudoux E, Frere P, Tourqui S, Schaaf-Lafontaine N, Herens C et al. Low T-cell chimerism is not followed by graft rejection after nonmyeloablative stem cell transplantation (NMSCT) with CD34-selected PBSC. *Bone Marrow Transplant* 2003; **32**: 829–834.
- 12 Ho VT, Cutler C, Carter S, Martin P, Adams R, Horowitz M et al. Blood and marrow transplant clinical trials network toxicity committee consensus summary: thrombotic microangiopathy after hematopoietic stem cell transplantation. *Biol Blood Marrow Transplant* 2005; **11**: 571–575.
- 13 Gooley TA, Leisenring W, Crowley J, Storer BE. Estimation of failure probabilities in the presence of competing risks: new representations of old estimators. *Stat Med* 1999; **18**: 695–706.
- 14 Shimoni A, Yeshurun M, Hardan I, Avigdor A, Ben Bassat I, Nagler A. Thrombotic microangiopathy after allogeneic stem cell transplantation in the era of reduced-intensity conditioning: The incidence is not reduced. *Biol Blood Marrow Transplant* 2004; **10**: 484–493.
- 15 Nakamae H, Yamane T, Hasegawa T, Nakamae M, Terada Y, Hagiwara K et al. Risk factor analysis for thrombotic microangiopathy after reduced-intensity or myeloablative allogeneic hematopoietic stem cell transplantation. *Am J Hematol* 2006; **81**: 525–531.
- 16 Holler E, Kolb HJ, Hiller E, Mraz W, Lehmacher W, Gleixner B et al. Microangiopathy in patients on cyclosporine prophylaxis who developed acute graft-versus-host disease after HLA-identical bone marrow transplantation. *Blood* 1989; **73**: 2018–2024.
- 17 Roy V, Rizvi MA, Vesely SK, George JN. Thrombotic thrombocytopenic purpura-like syndromes following bone marrow transplantation: an analysis of associated conditions and clinical outcomes. *Bone Marrow Transplant* 2001; **27**: 641–646.
- 18 Daly AS, Hasegawa WS, Lipton JH, Messner HA, Kiss TL. Transplantation-associated thrombotic microangiopathy is associated with transplantation from unrelated donors, acute graft-versus-host disease and venoocclusive disease of the liver. *Transfus Apher Sci* 2002; **27**: 3–12.
- 19 Uderzo C, Bonanomi S, Busca A, Renoldi M, Ferrari P, Iacobelli M et al. Risk factors and severe outcome in thrombotic microangiopathy after allogeneic hematopoietic stem cell transplantation. *Transplantation* 2006; **82**: 638–644.
- 20 Ruutu T, Hermans J, Niederwieser D, Gratwohl A, Kiehl M, Volin L et al. Thrombotic thrombocytopenic purpura after allogeneic stem cell transplantation: a survey of the European Group for Blood and Marrow Transplantation (EBMT). *Br J Haematol* 2002; **118**: 1112–1119.
- 21 Biedermann BC, Sahner S, Gregor M, Tsakiris DA, Jeanneret C, Pober JS et al. Endothelial injury mediated by cytotoxic T lymphocytes and loss of microvessels in chronic graft versus host disease. *Lancet* 2002; **359**: 2078–2083.
- 22 George JN, Li X, McMinn JR, Terrell DR, Vesely SK, Selby GB. Thrombotic thrombocytopenic purpura-hemolytic uremic syndrome following allogeneic HPC transplantation: a diagnostic dilemma. *Transfusion* 2004; **44**: 294–304.
- 23 Hale GA, Bowman LC, Rochester RJ, Benaim E, Heslop HE, Krance RA et al. Hemolytic uremic syndrome after bone marrow transplantation: clinical characteristics and outcome in children. *Biol Blood Marrow Transplant* 2005; **11**: 912–920.