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Real-time synchronization feedbacks for single-atom frequency
standards: /- and A-structure systems

Mazyar Mirrahimi, Alain Sarlette and Pierre Rouchon

Abstract— This paper proposes simple feedback loops, in-
spired from extremum-seeking, that use the photon emission
times of a single quantum system following quantum Monte-
Carlo trajectories in order to lock in real time a probe
frequency to the system’s transition frequency. Two specific
settings are addressed: a 3-level system coupling one ground
to two excited states (one highly unstable and one metastable)
and a 3-level system coupling one excited to two ground states
(both metastable). Analytical proofs and simulations show the
accurate and robust convergence of probe frequency to system-
transition frequency in the two cases.

I. INTRODUCTION

The SI second is defined to be “the duration of 9 192 631
770 periods of the radiation corresponding to the transition
between the two hyperfine levels of the ground state of the
caesium 133 atom” [1]. A primary frequency standard is a
device that realizes this definition. For micro atomic-clocks
[8] perfect resonance between the probe laser frequency and
the atomic frequency is characterized by a maximum (or
minimum) output signal of a photo-detector. Therefore ex-
tremum seeking techniques (see e.g [3] for a recent exposure)
are usually used in high precision spectroscopy to achieve
frequency lock with an atomic transition frequency [14],
[12], [13].

State-of-the-art experiments appear in two strategies. In a
first strategy A, a real-time synchronization feedback scheme
based on modulation of the probe frequency (see more
description in [9]) is applied to a large population of identical
quantum systems with few mutual interactions (the vapor
cell) having reached its asymptotic statistical regime; the
evolution of this population and the related output signal
follow the continuous density matrix dynamics of a static
Lindblad-Kossakovski master equation. In a second strategy
B (see e.g. [13], [11]), a single atom is probed for a long time
with different probe frequencies and locking with the atom
transition frequency is deduced from the resulting statistics;
this somehow reconstructs over time the continuous signal
corresponding to strategy A.

The present paper proposes a way to merge the two
strategies and adapt real-time synchronization feedback
to a single quantum system. Such a single system cannot
be described by a static non-linear input/output map but
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it obeys stochastic jump dynamics [5], [7], modeled by
“quantum Monte-Carlo” trajectories; with respect to strategy
A, the output signal is no more continuous but corresponds
to a counter giving the jump times. As shown in [4], all the
spectroscopic information and in particular the value of the
atomic transition frequency are contained in the statistics
of these jump-time series. The novelty of the present paper
is to avoid the use of quantum filters [6] and records of
jump-time sequences required by usual statistical treatments
as in strategy B. It proposes a real-time synchronization
feedback scheme that can be implemented on electronic
circuits of similarly low complexity as those used for
extremum-seeking loops in strategy A. The resulting real-
time synchronization scheme might also allow to track (e.g.
field-induced) variations in the atom’s transition frequency
with a reasonable bandwidth, depending on the particular
atomic clock system.

We consider two particular atomic systems in the present
paper. (1) The first one corresponds to a V-system, which
features the electron-shelving mechanism and is one of the
main candidates for atomic clocks [4]. The system has two
excited states — one unstable and one metastable — which
interact with the same ground state through two electro-
magnetic fields. The system mostly evolves through the
ground-to-unstable transition. However, accurate frequency
estimation is based on the ground-to-metastable transition.
(2) The second setting corresponds to a A-system, where
two electromagnetic fields are tuned to make two metastable
ground states both interact with the same unstable excited
state. This system typically appears in coherent population
trapping phenomena and optical pumping [2], but also in
micro atomic clocks. This second setting is studied in more
detail in [9].

For the two systems, we propose relevant forms of the
amplitude modulation of the probe electromagnetic fields and
the associated real-time updates for their frequency on the
basis of photon detection times. We establish the stochastic
convergence property of probe frequency towards atomic
transition frequencies.

Note that the “quantum Monte-Carlo” trajectories, used
throughout the paper, should be understood as the actual
model for a single quantum system’s behavior, and not as a
numerical method. We refer to [7] for more details on the
physical interpretation of these quantum dynamics.

The paper is organized as follows. Sections II and III
consider, respectively, the V-system and the A-system.
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Fig. 1. The V structure system: a ground state |g) is coupled by two
electromagnetic fields to a highly unstable state |e1) (“blue laser”) and a
metastable state |e2) (“red laser”).

Each section first describes main properties of the specific
stochastic dynamics, then proposes a synchronization
feedback with the main ideas of a convergence proof, and
finally presents simulation results along with comments on
the performance. For detailed proofs the reader is referred
a.o. to [9].

II. THE V-SYSTEM
A. System dynamics and reduction

The V-system evolves on the Hilbert space spanned by a
stable ground state |g), an unstable excited state |e;), and a
metastable excited state |es) (see Fig. 1). Lifetimes of the
excited states w.r.t. decaying to |g) are 1/T'; and 1/T'5, with
I’y > T’y (see simulation section for typical values). The
system is submitted to two laser fields with slowly varying
amplitudes denoted by 21, {25, and frequencies near-resonant
respectively with the |g) < |e1) (“blue laser”) and |g) <
lea) (“red laser”) transitions; the corresponding detunings
are noted A; and A,. The goal is to reach Ay = 0, i.e. to
exactgf synchronize the red laser to the transition frequency
Bea By Indeed, thanks to the large lifetime of metastable
state |ea), the uncertainty on this energy difference is very
narrow.

The classical rotating wave approximation, which as-

. - o . Ea—E,
sumes frequencies associated to transition energies —=5—*,

%, % to be much larger than all other charac-
teristic frequencies, yields the following quantum Markov
trajectory model for the density matrix p characterizing a

single system (where {a,b} = ab + ba):

e continuous-time @))
2

2
Lp=—l,pl - 1> {QlQs 0} + 3 trace(@]Qsp)p
j=1 J=1

. QT +9%Q;
with 2L = Ayler)(er| + Aglea)(ea| + 35, T

Q1= VI'1|g){e] and Q2 = /I'2|g)(e2]
e jump to p = |g){g| during dt with probability
Piump(p = 19) (g) = 2y trace(Q}Q;p)dt
= >0 Tyleslples)dt .

Assuming that decoherence rate I'y (typically 10° Hz) is
much larger than all other characteristic frequencies, singular
perturbation and center manifold theories are applied as
explained in [10] to separate slow and fast dynamics'.
The resulting dynamics describe a two-level “slow” system
essentially on the |g) < |eg) transition. It can be written on
the Bloch sphere (see e.g. textbook [7]) as follows, with

Z = —1 and Z = +1 corresponding to |g) and |es)
respectively.
o LX = wZ+NY+Z(-ZX)
4y = —uZ-NMX+4(-2Y)
4z —vX+uY +3(1-2)14+2) (2

e and jump to Z = —1 with probability
Pump(Z — 1) = T2+ S (1 - 2))dt (3)

2
We denote 2y = v +12v and 0 = (% —T'). Since T's <,
2
it is reasonable that % > I'5 such that o > 0.

Observations:

1. Fortunately A; does not appear in these dynamics.

2. In absence of photon emission jumps, the decoherence
term, proportional to o, drives the system towards excited
state |es), not towards |g) as is usually the case for a two-
level system. This reflects the effect of measurement with the
blue laser: if no photon is emitted despite a strong coupling
of |g) with |ep), then it is most probable that the system is
actually mainly “shelved” on state |es). Of course the system
still jumps to |g) at photon emission.

B. Synchronization feedback

In the absence of jumps, (2) is strictly equivalent to the
two-level system of [9], after inversion of the Z-direction
(and controls u, v) and scaling by F% Therefore we take

Qo = (1 + 2cos(wt)) 4)

as for this two-level system, with © = 2koe w.rt. the
proof in [9]. Jump dynamics (3) after Z-inversion features a
significant difference w.r.t. the two-level system of [9]: the
system jumps to the opposite point of the Bloch sphere at
photon emission. The jumping probability after Z-inversion
is however as in [9]. Therefore, the analogous update is:

if  |A(N)+4dasin(wty) <C, (5)

Ay(N+1)=C otherwise

where ty, ti,... ty,... are the detection times of photons
that are preceded by a sufficiently long “dead-time” interval
[ty — T, tn) during which no photon has been detected, for
some 7" > 0. Thus (5) is only applied for photons that follow
a sufficiently long evolution without jump. While a similar
condition is included in [9] as a technicality, here T plays

I'This is done by using the corresponding deterministic ensemble dynam-
ics, in Lindblad-Kossakovski master equation form, as an intermediate step.
See details for a similar case in Section III.
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a crucial role, explained in the following. We assume as in
[9] that initially |A| does not exceed a fixed constant C' and
explicitly maintain it within this bound.

The idea behind (4), similarly for the two-level system in
[9], is: under (4),(2) the system ultimately converges to and
evolves on a limit cycle in the neighborhood of Z = 1. The
position of this limit cycle, and linked to this the phase of
the system on the limit cycle w.r.t. the phase in (4), depends
on A,. The jump probability will depend on the position on
the limit cycle, and thus jump times reflect A,.

Under (4), the system in absence of jumps slowly drifts
from |g) towards |e2), around which it stabilizes on a limit
cycle; when jumping, the system goes to |g); the jump
probability decreases when going from |g) to |es). As a
consequence the system jumps to a point (i) that is opposite
to the limit cycle on which we want to use (5) and (ii)
in whose neighborhood jumping again is highly probable.
Therefore, a useful photon for (5), based on limit-cycle
evolution as explained in the previous paragraph, is gained
only rarely, when the system travels the whole way from one
pole of the sphere to the other without emitting a photon.
Physically, (5) is applied close to an electron-shelving state,
which is much less probable to reach than emitting many
photons on the |g) < |e) transition.

Consequently, we must impose a “dead-time” T’ large
enough to ensure that the system has travelled the whole
way from |g) to the limit cycle around |es); in contrast,
for the systems studied in [9] (see also Section III), 7' is
introduced essentially as a technicality. However, the longer
time invested is compensated by better accuracy: the scaling
w.r.t. two-level system of [9], due to the long lifetime of
|e2), implies that (2) is sensitive to T* times smaller A,. It
also requires % times smaller w. Note that the dead-time
detection can be replaced by detection of a “red photon” if
a narrow-band detector is available in the experiment.

Theorem 1: Consider the Monte-Carlo trajectories 2de—
scribed by (2),(3) with controller (4),(5). Assume o = (%1 —
I'y) >0 and take i ~ o€, § ~ o€? with € < 1. For initial
detuning C, assume 4C? + 1 < 4w?. Then there exists a
dead-time 7" large enough so that

limsup E(A(N)?) < O(é?).
N—o0

Indeed, thanks to the analogy between our reduced system
and the two-level system of [9], conclusions of Theorem 2.1
and Corollary 2.2 in [9] can be transposed here assuming
the system reduction to be exact. For the original system, we
need I'; so large that (1),(4) has a limit cycle e*-close to the
one estimated with the reduced system in the proof, see [9].

C. Simulation and discussion

The simulation is made on the full model (1). Parameters
are chosen as I'y = 5, Q; = 0.5, Ay = 0, I'y = 0.005,
2 = 0.04, w = 0.08-2m, 6 = 0.012 and T" = 100. With these
values, about 1 out of 100 photons corresponds to a jump
after sufficient dead-time, thus an update. Figure 2 shows the

evolution of detuning for a single trajectory of the system.
During the overall time of 24 - 10° the detuning decreases
from 0.25 to 0.03. As suspected given the significant dead-
time, convergence is much slower than for the systems
described in [9], see also Section III. For a typical system
with I'; in the nano-second range, the full simulation time
is of the order of 1ms and the obtained accuracy is about
1 ~ 10 MHz.

Figure 3 shows a typical section of quantum Monte-Carlo
trajectory for the same simulation. It represents (ea|plea).,
that is the probability of being “shelved” on metastable state
|e2). Each jump down to O corresponds to the emission of
a photon. Each plateau close to 1 corresponds to a “shelved
electron” situation. There is a significant probability to emit
no photon for a long time on this plateau, which has led
to its name “dark window” in the physics literature [4].
Oscillations on the plateau due to periodic excitation (4)
are clearly visible. Jumping from the plateau corresponds
to a “red” photon and triggers a detuning update. The idea
behind (5) is that jumps are more probable in the “valleys”
of the oscillations.

Simulations and approximate reasoning confirm that small
laser amplitudes €21, Qs improve the synchronization ac-
curacy. Note that in addition to Theorem 1, accuracy of
the singular perturbation approximation must be taken into
account. In practice, synchronization accuracy is limited by
the following.

o For small 24, s, it takes longer to travel from |g) to
the neighborhood of |es) where useful information is
gained. Thus convergence becomes very slow.

o Requirement o > 0 imposes Q? > T';T'; where the
right side is a system property. This lower bound on 2y
sets a limit for the accuracy of the singular perturbation
approximation. Thus unlike for the two-level system,
it is not possible here? to reach arbitrary accuracy by
taking small controls.

e One advantage of the V-system for physical experi-
ments is that the blue laser is also used for cooling
atomic motion [15]. This Doppler cooling technique
requires significant amplitude €2; and detuning A;:
optimum cooling is achieved at Q; = I'y and Ay =
f%. With these choices the singular perturbation ap-
proximation clearly fails. A proper reduction of fast vs.
slow dynamics would then reduce the slow ‘“system”
to the one-dimensional |es)-space: the system varies
in first approximation between two discrete situations,
either completely trapped on |es), or constantly moving
between |g) and |e;) with rapid photon emission. Then
real-time synchronization feedback schemes analogous
to the ones in this paper cannot be proposed anymore.

Sensitivity of the system to €27 and A; is known by physi-
cists as “ground state broadening and shifting” through the
laser-induced interaction of |g) with |ej). This effect can

2That is, on the original V-system (1), in contrast to singular perturbation
approximation (2).
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Fig. 2. Simulation of synchronization feedback on the V-system: evolution of detuning for a single Monte-Carlo trajectory.
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Fig. 3. Simulation of synchronization feedback on the V-system: quantum Monte-Carlo trajectory of (e2|p|e2).

be avoided in high-precision frequency measurements by
turning on the blue and red lasers alternatively, as suggested
in [4]. However, the real-time synchronization feedback
proposed here does not work with dynamics modified in this
way.

In conclusion, the proposed real-time feedback
synchronization on the V-system seems not competitive
for ultra-high-precision atomic clock standards like [11].
However, the real-time operation obtained in return (e.g.
convergence in 1ms in the above simulation) might allow
large-bandwidth tracking of energy level variations e.g. to
track a physical parameter (magnetic field) on which

E.—F
==—% depends.

I1I. THE A-SYSTEM
A. System dynamics and reduction

In this section, we consider a 3-level system in A-
configuration, as another candidate for a frequency standard.
The system is composed of two metastable ground states |g; )
and |g2), and an excited state |e) coupled to the lower ones.
The decay times for the |e) — |g;) transitions are assumed
to be much shorter than those corresponding to the transition
between ground states (here assumed so lowly probable that
it is neglected). Similarly to the previous section, we denote
the associated relaxing constants by I'; and I's. However,
we do not have anymore I'y < I';: our essential assumption
is that both I'; and I'y are large w.r.t. other parameters. The
ground states can have their energy separation in microwave
regime, like in atomic microclocks, but also in the optical
regime which would allow a better precision of the clock.

Once again, we consider near-resonant laser fields with
slowly varying amplitudes that we note by 2 and 5 and
the associated detunings A, and A, + A (A is called the
Raman detuning). Here we explicitly detail the derivation

of the quantum Markov model describing single system
trajectories, from the Lindblad master equation governing
average dynamics of an ensemble of systems. The classical
rotating wave approximation yields the following master
equation of Lindblad type

d N 1<
P = —%[H,p]+§ > (2Q;0Qt - Q1Q;p—pQ1Q;)). (6)
j=1
with

2 =2 (1g2) (92| — lg1) on)
+ (8 +3) (l9) (] +1g2) (o2l)
+ 1 lg1) (el + Q5 le) (1] + Q2 lgo) (el + D5 le) (gl

and Q; = \/T;|g;) (e|-

y_,'-

—— ‘q1>

Fig. 4. The A-system: two metastable ground states |g1) and |g2) are
coupled to an unstable excited state.

Assuming that the decoherence rates I'y and I'y are much
larger than the Rabi frequencies |€2;|, |{22| and the detuning
frequencies A and A., the system spends very little time on
the excited state |e) as it transits between |g1) and |g2). We
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then may apply the singular perturbation theory to remove
the fast and stable dynamics of |e) in order to obtain a system
living on the 2-level subspace span{|g1) ,|g2)}.

The reduced Markovian master equation is still of Lind-
blad type and reads (see [10] for a detailed proof)

d

2
1
pr +t3 Z (2L;pL} — LILip— pLiL;), (7)

where the reduced slow—Hamiltonian H is given, up to a
global phase change, by

2= 2(92) (g2 = |gr) (o)) = S0 (8)
and
~ : Q174+
Lj =\ |9j> <b§’ with 4%11
9
State
ba) = T 9 + s oe)

is known as the “bright state” in the physics literature
(coherent population trapping). From now on, we deal with
the 2-level system (7) instead of (6).

Master equation (7) is identical to the ensemble dynam-
ics generated by the following single system Monte-Carlo
trajectories. In the absence of quantum jumps, the system
evolves through the dynamics (where {a,b} = ab + ba):

2
Ao~ ;z{m, } 2 ez

the Lindblad operators L belng glven by (9). Since LTL
Y |b ><
&p= —Z%[Uz,p]

-3 {lba) (b | p[bq) o

In addition, during each time step d¢ the system may jump
towards the state |g;) (g;| with a probability given by

d = —1
al =

=

(10)

Piump(p = 195 (9;]) = trace(L]L;p)dt
=9 (bal » |ba) dt, (1)
This probability is proportional to the population of the bright
state |b§> (which is actually the reason for its name).

=12

B. Synchronization feedback

In this subsection, we consider the 2-level system obtained
as the slow subsystem of the A-system presented in subsec-
tion III-A. Similarly to_subsection II-B, we apply varying
laser field amplitudes Ql and Qg Consider two positive
constant €2y, 2> and take the following modulations

ﬁl = Ql + Z€Q2 COS(Wt)7 622 = QQ — ZEQl COS((.«Jt) (12)

with € < 1 and, to satisfy the assumptions of the above
singular perturbations reduction, w,;,Qs < I'1,T5. By
analogy with subsection III-A, consider the orthogonal basis

Q2|91)—|g2)

_ 091)+Q2[g2) _

which are respectively the “bright” and “dark™ states of the
nonoscillating system (i.e. with e = 0). Define
Q7+03

4 (F11+F22)2 Fj
Replacing A/y by A, w/7v by w, and ~¢ by ¢ in (10),(11),
we get quantum Monte-Carlo dynamics in the 1/ scale, the
optical-pumping scale. It reads as follows (with some abuse
of notation):

for j=1,2 andy=7v + 2.

e continuous-time (14)

A
4= —1[5 02, p) — 3 {|b+ 1€ cos(wt)d) (b + e cos(wt)d|, p}

+ (b + 1ecos(wt)d| p|b+ 1€ cos(wt)d) p

with |b) = cosa|g1) + sina|ga)
|d) = —sina|gr) + cosa|ga)

a € {O, g} the argument of Q2 + Q29

e jump to p = |g;)(g;|, j = 1,2 during dt with probability

Pump(p = 195) (951) =
% (b + 1€ cos(wt)d| p |b + 1€ cos(wt)d) dt .

Each quantum jump leads to the emission of a photon. The
total photon detection probability simply reads

Palijumps = (b + 1€ cos(wt)d| p |b+ 1e cos(wt)d) dt. (15)

We assume a broadband detection process, where the only
information available is the time of jump. The fype of jump
(to p = |g1) (g1| or to p = |g2) (g2]) is not available. This
means that, unlike in the two-level reduction of Section II,
we do not know in which state the system is after each jump.

Similarly to Section II, the goal is to synchronize the lasers
with the system’s transition frequencies. Since A, drops out
of the reduced equations, we will make A converge to zero;
this means that we synchronize on the difference between
ground state frequencies %

We propose the following synchronization algorithm, as-
suming that §, e < 1 K w (K 'y, T):

A(N 4+ 1) = A(N) — §sin(2«) cos(wty)
if  |JA(N) — dsin(2a) cos(wty)| < C,
AN+1)=C otherwise

(16)
at times ¢ty of photon detection for which there has been
no photon emission during a preceding “dead-time” inter-
val [ty — T, tn). As in Section II, we impose bound C
on detuning. Unlike for the V-system, but more like the
traditional 2-level system in [9], the “dead-time” constant
T is just a technical parameter necessary for the proof of the
theorem: numerical simulations illustrate that in practice one
can simply take 7" = 0.

The formal convergence result is similar to Theorem 1
for the V-system: if we assume the system reduction to be
exact, then given any small e (now appearing in the controller
as well), we can adjust the parameters w large and § small
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enough such that the detuning A converges on average to
an O(e?)-neighborhood of 0 with a deviation of order O(e).

Theorem 2: Consider the Monte-Carlo trajectories de-
scribed by (14) with update (16). Assume € < 1, % ~ €2,
§ ~ € and initial detuning C' < 1/2. Then there exists a
dead-time 7' large enough so that

limsup E(A(N)?) < O(€?) .
N—o0

C. Numerical simulations

Like in Section II, we simulate the above synchronization
strategy on the main A-system, and not on the slow 2-level
subsystem resulting from approximate system reduction. We
take the parameters C' = 0.5, 1 = Q9 =1 (ie., « = 7/4),
Iy =T = 3.0 (i.e., 11 = 2 = 0.6667), ¢ = 0.03, v/w =
0.05, and § = 0.015. Dead-time is left at 7" = 0, very unlike
for the V-system. The simulations of Figure 5 illustrate 10
random Monte-Carlo trajectories of the system starting at
A = 0.5and py = |d) (d], |d) = —=(|g1)—1g2)). The
first plot provides the number of photon ({tectlons (quantum
jumps) while the second one gives the evolution of detuning
A(N). As can be noted, the detuning converges to a small
neighborhood of zero within at most 1000 detections.

" e :
] 600 B
=] ﬁ
8 400 |
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I ao0p
* ‘ ‘ ‘ ‘ ‘ : : ‘ ‘
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Fig. 5. Detuning evolution and number of quantum jumps (= photon

detections) as a function of time for the synchronization feedback on the
A-system.

IV. CONCLUSION

We have studied two atomic systems that are possible
candidates for frequency standards: the first one consists
of a so-called “V-configuration” with two excited states
(one highly unstable and one metastable) and one stable
ground state; the second one consists of a “A-configuration”
with one highly unstable excited state and two metastable
ground states. Both systems have been studied in the physics
literature, the V-system widely as a candidate for an ultimate
ultra-high-precision atomic clock and the A-system as a
candidate for atomic microclocks. However, in such physics
experiments, generally a cloud of atoms is considered as a
statistical ensemble and the measured photocurrent is used
to synchronize the laser fields.

In this paper, we propose a real-time output feedback
method to lock the probe frequencies to the atomic ones

in experiments where a single atom is probed and evolves
according to inherently stochastic quantum dynamics. For
both the V' and A settings, we obtain theoretical real-time
synchronization results after having reduced the system with
singular perturbation theory. The synchronization results
are further confirmed in full-model simulations. Precise
synchronization capabilities allow to consider the case of a
single-atom frequency standard, where a laser is tuned to an
atom transition frequency that remains very accurately stable.
Alternatively, the real-time tracking capability might be
used to track variations of the energy levels in a single atom
under influence of physical parameters (e.g. magnetic fields).
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