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ABSTRACT
Mixed flows characterized by a simultaneous occurrence of free surface and pressurized flows are often encountered in hydraulic engineering.
Numerous researches have been dedicated to unify the mathematical description of both flows. Herein, shock-capturing models succeed in giving a
unique set of equations. However, no method accounts for both air-entrapment and air-entrainment. This study proposes an original model to simulate
air–water interactions in mixed flows. The new approach relies on the area-integration of a three-phase model over two layers. The applicability of this
free surface model is extended to pressurized flows by a modified pressure term accounting for the dispersed air. The derived modelling system WOLF
IMPack is then validated. The code successfully simulates open channel flows, mixed flows and water hammer in a unified framework, including
air–water interactions, in structures like the drainage network.

Keywords: Air entrapment; air entrainment; air–water flow; drift-flux model; multiphase flow

1 Introduction

Accidents to existing sewer systems are reported by Guo and
Song (1990, 1991), Zhou et al. (2002) or Vasconcelos and
Wright (2009). These have important detrimental effects, notably
causing structural damage to hydraulic structures and inducing
uncontrolled floods and pollution. These phenomena are linked
to an incorrect appreciation of three dynamic features, namely
transient mechanisms affecting flows, mixed flows characterized
by the simultaneous occurrence of free surface and pressurized
flows, and the effect of air–water interactions (air-entrainment
and air-entrapment).

Since the 1960s, mathematical and numerical models describ-
ing transient air–water mixed flows were developed. Two fam-
ilies of approaches succeeded to overcome the discrepancy
between pressure gradients appearing in unsteady free sur-
face and pressurized flows equations. First, the shock-tracking
approach solves separately free-surface and pressurized flows
(Guo and Song 1990). Li and McCorquodale (1999) proposed
the rigid water column model by integrating the effect of air
entrapment. It relies on a specific model for the air above the
free surface, but neglects the compressibility of water in the pres-
surized portion. The second traditional approach for mixed flow
simulations is the shock-capturing approach. The free surface
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and pressurized flows are computed by means of a single set of
equations. Only four models appear to fall into this category:
the Preissmann slot and its improvements (Leon et al. 2008,
Kerger et al. 2009), the two-component pressure approach (TPA)
(Vasconcelos and Wright 2007), the dual model (Bourdarias and
Gerbi 2008), and the kinetic model (Bourdarias et al. 2008).
Further, only two references propose to integrate air–water inter-
actions into a shock-capturing model. First, an overpressure term
is added in the TPA model to account for the pressurization of
the air pocket above the free surface (Vasconcelos et al. 2006).
Leon et al. (2010) proposed similarly a two-equation model that
adequately simulates the entrapment and release of air. They
added equations describing steady free-surface flows by the
ideal gas law. However, no model integrates the effect of both
air-entrainment and air-entrapment in transient mixed flows. In
addition, all shock-capturing models are known to develop post-
transition oscillations (Politano et al. 2007, Leon et al. 2010).
This problem is linked to the rapid variation of the pressure wave
celerity at the transition (Vasconcelos et al. 2009). Herein, their
artificial reduction of the pressure wave celerity and a numerical
filter are used.

To simulate air-entrapment and air-entrainment in transient
mixed flows, this research establishes an original bi-layer three-
phase mathematical model (Section 2), which is then discretized
to develop the original computational code WOLF IMPack
(Section 3). In Section 4, the validity and applicability of
this module are assessed by comparison with experimental,
analytical, and numerical results.

2 Multiphase mathematical model

The use of multiphase models in hydraulic engineering has so far
remained limited to only few attempts. A worthwhile example
of ingenious application of these models to vaporous cavita-
tion was proposed by Shu (2003). His two-phase homogeneous
equilibrium model improves the conventional column separation
model for cavitation. His results on the drift-flux model (Jha and
Bombardelli 2009) prompt us to use multiphase models for
describing air–water interactions. Herein, the drift-flux model
(Ishii and Hibiki 2006) is developed to a new bi-layer three-phase
model describing transient mixed flows.

2.1 One-dimensional bi-layer drift-flux model

The computation of a three-dimensional (3D) multiphase model
frequently requires a prohibitive computational effort such that
1D models are used if transversal velocities are negligible. 1D
air–water flows can be summarized in a single model (Fig. 1b).
Its stratified part is broken down into two layers. The upper layer
is a pure airflow, while the lower layer is a mixture of water and
dispersed air. The model includes three phases: water, dispersed
air, and pure air above the free surface. In an open channel, only
the lower layer with two phases appears, whereas the upper layer
disappears if the free surface reaches a pipe invert.

The 3D drift-flux model simplifies by area-integration over a
single flow cross-section (Fig. 1a). Using a frame of reference
in which the x-axis is parallel to the main flow direction and
the y- and z-axes are included in the cross-section. The x-axis
is inclined by the angle θ . The domain of integration contains
the lower-layer free-surface width l, the free-surface elevation
hs, and the pipe bottom elevation hb, so that the total height is
h = hs + hb.

The integration above the lower layer gives the three partial
differential equations

∂〈ρm〉Ω
∂t

+ ∂〈ρm〉ũmΩ

∂x
= 0 (mixture continuity)

∂〈αd〉Ω
∂t

+ ∂

∂x

(
〈αd〉ũmΩ + 〈αd〉 ρw

〈ρm〉 ŨdjΩ

)

=
〈
�d

ρd

〉
Ω (diffusion)

∂〈ρm〉ũmΩ

∂t
+ ∂〈ρm〉ũmũmΩ + 〈ρm〉g cos θPΩ

∂x

+ ∂

∂x

( 〈αd〉
1 − 〈αd〉

ρdρw

〈ρm〉 ŨdjŨdjΩ

)

= −〈ρm〉gΩ

(
sin θ + SF + ∂hb

∂x

)
+ 〈ρm〉g cos θP∂Ω

− Ω
∂p�

∂x
− S� (mixture momentum) (1)

where Ω is the area of the lower layer and the bracket 〈.〉 desig-
nates the area-average of a function over Ω . The mean mixture

(a)

Upper layer: Pure air

Lower layer: air-water mixture

hs

hb

z 

Zy 

Lower layer: mixture of two phases 
- First phase: water

-Second phase: dispersed air

Upper layer: single phase above the free-surface
- Third phase: pure air

Air-water mixed flow

Zx 

(b)

Figure 1 (a) Unified domain of integration domain, (b) original conceptual model describing all cases of air–water flows
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density and mean mixture velocity are defined as

〈ρm〉 = 〈αd〉ρd + (1 − 〈αd〉)ρw and ũm = 〈ρmum〉
〈ρm〉 (2)

A single term depending on the area-averaged drift-velocity Udj

governs the air diffusion in the water flow accounting for the
relative velocity between both phases, defined as

Ũdj = 〈〈ud〉〉 − 〈 j〉 with 〈〈ud〉〉 = 〈αdud〉
〈αd〉 and

〈 j〉 = 〈αd〉〈〈ud〉〉 + (1 − 〈αd〉)〈〈uw〉〉 (3)

Three pressure terms appear in Eq. (1), namely the hydrostatic
pressure term PΩ , the sidewall reaction to section variations P∂Ω ,
and the pressure acting on the free-surface pΓ as a primitive
unknown of the upper layer equations. By definition, with ξ as
the variable of integration

PΩ(Ω) =
∫ hs

−hb

(h − ξ)l(x, ξ)dξ

P∂Ω(Ω) =
∫ hs

−hb

(h − ξ)
∂l(x, ξ)

∂x
dξ (4)

The internal and external friction terms are separated into two
terms, namely SF accounting for the frictional head loss in the
lower layer and SΓ accounting for friction at the interface.

The integration of the 3D drift flux model over the upper layer
(pure air) gives

∂ρgΩg

∂t
+ ∂ρg〈〈ug〉〉Ωg

∂x
= 0

∂ρgΩg〈〈ug〉〉
∂t

+ ∂ρg〈〈ug〉〉〈〈ug〉〉Ωg

∂x
+ Ωg

∂pΓ

∂x

= −ρggΩgSg + SΓ (5)

where Ωg is the area of the upper layer, and ρg is air density. The
pure air velocity 〈〈ug〉〉 is a primitive unknown, as also pressure
pΓ . Further Sg is the frictional head loss. The upper layer equa-
tions are closed by using an equation of state defining the speed
of sound in air ag = 330 m/s as

a2
g = ∂pΓ

∂ρg
(6)

2.2 Extension to multiphase pressurized flows

Equations (1)–(6) define an original 1D bi-layer model that
improves the description of transient free-surface flows with air-
entrainment, yet is unable to describe pressurized and mixed
flows. The applicability of the lower layer equations is thus
extended for pressurized flows by relying on shock-capturing

methods (Vasconcelos and Wright 2007, Kerger et al. 2009). By
definition, p depends on the pressure wave celerity a as

a2 = Ω
∂p

∂(〈ρm〉Ω)
−→ p =

∫ 〈ρm〉Ω

〈ρm〉Ωmax

a2

Ω
dξ (7)

By addition to the hydrostatic pressure term (4),

PΩ(Ω) =

⎧⎪⎪⎨
⎪⎪⎩

∫ hs

−hb

(h − ξ)l(x, ξ)dξ for free surface flow

PΩ(Ωmax, FS) + p
Ωmax

〈ρm〉g for pressurized flow

(8)

where Ωmax is the area of the full pipe at atmospheric pressure. If
Ω > Ωmax, the flow is pressurized; if Ω ≤ Ωmax, then the flow is
either pressurized or free-surface according to the aeration rate.

If celerity a is considered constant in the pure water flow,
its value strongly depends on the concentration in dispersed air.
According to Guinot (2001),

am = a0√
1 + α0ρm,0a2

0 p1/β

0 /p(1+β)/β

(9)

where subscript 0 designates the reference state characterized
by atmospheric pressure, and β = 1 for isothermal processes.
By analogy with Guinot (2001), integration of Eq. (8) by using
Eq. (9) for celerity gives an iterative equation for pressure p.
Equations (8) and (9) extend the applicability of the free-surface
drift-flux model to pressurized flows as well.

2.3 Linear analysis

Two-layer models as proposed here are notorious for losing their
hyperbolicity under certain conditions. With c as the free surface
celerity, this feature is highlighted by identifying the eigenvalues
l of the Jacobian matrix

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

l − ũm = 0[
l2 − 2ũml −

(
c2 − ũ2

m + a2
g
ρg

ρw

Ω

Ωg

)]

∗[l2 − 2〈〈ug〉〉l − (a2
g − 〈〈ug〉〉2)] = a4

g
ρg

ρw

Ω

Ωg

(10)

The second equation does not have any analytical solution. The
numerical analysis of Eq. (10) indicates that the eigenvalues can
be either real or complex, and thus the problem hyperbolic, or
not. Expressing the upper layer equations in their conservative
form makes the problem hyperbolic again (Audusse and Bristeau
2007). Herein, the lateral pressure term pΓ (∂Ωg/∂x) is neglected
in the derivation of the Jacobian matrix, resulting in five real
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eigenvalues

l1 = ũm; l2 = ũm −
√

c2 + a2
g
ρg

ρw

Ω

Ωg
;

l3 = ũm +
√

c2 + a2
g
ρg

ρw

Ω

Ωg
; l4 = 〈〈ug〉〉 + ag ;

l5 = 〈〈ug〉〉 − ag (11)

Theoretically, classical explicit numerical schemes are unable
to solve a non-hyperbolic problem. From a practical point
of view, numerical schemes initially developed for hyperbolic
problems have, however, reached a success when applied to non-
hyperbolic problems if the loss of hyperbolicity originates from a
small number of terms, like above. A numerical scheme was thus
established for this simplified model. Its applicability is extended
below to the full non-hyperbolic problem.

3 Numerical model WOLF IMPack

For solving the above model, the modelling system WOLF that
was developed at the University of Liège is employed. Its validity
was verified by Dewals et al. (2006), and Erpicum et al. (2009).
The implementation of the above equations into WOLF results
into the new computational module WOLF IMPack (Integrated
Multi-Phase Pack).

WOLF IMPack relies on a finite volume discretization and a
flux vector splitting (FVS). Herein, the 1D bi-layer three-phase
system is solved over a uniform grid containing cells of length
�xi = xi+1/2 − xi−1/2, i = 1, N (Fig. 2). The explicit updating
formula is given by

U n+1
i = U n

i − �t
�xi

[Fi+1/2(U n) − Fi−1/2(U n)]

− �t
�xi

Pi(U n) + �tSn
i

U i = [{〈ρm〉Ω}i {〈αd〉Ω}i {〈ρm〉ũmΩ}i {ρgΩg}i

{ρg〈〈ug〉〉Ωg}i]T (12)

where i is the spatial index, n the time index, and �t the time step
of the temporal integration. To prevent post-transition numerical
oscillations, the numerical filtering approach proposed by Vas-
concelos et al. (2009) was implemented with values of ε between

t
n+1

t
n

U
i

U
i

U
i+1

U
i-1

F
i+1/2

F
i-1/2

UR
i+1/2

UL
i-1/2

UL
i+1/2

UR
i-1/2

Figure 2 Finite volume method

0.0005 and 0.025

U n+1
i = (1 − 2ε)U n+1

i + ε(U n+1
i−1 + U n+1

i+1 ) (13)

The conservative numerical flux Fi+1/2 is computed with an FVS
originally proposed for shallow-water equations (Dewals et al.
2006, Erpicum et al. 2009) as

Fi+1/2 =
[{〈ρm〉ũmΩ}L

i+1/2 {〈αd〉ũmΩ}L
i+1/2

{ρg〈〈ug〉〉Ωg}L
i+1/2

{〈ρm〉ũmũmΩ}L
i+1/2 + {〈ρm〉g cos θPΩ}R

i+1/2
{ρg〈〈ug〉〉〈〈ug〉〉Ωg}L

i+1/2

]T

(14)

where L designates the up- and R the downstream reconstructed
values (Fig. 2). The two sides are determined by analysing the
sign of the mixture velocity ũm for the first three equations
describing the lower layer, and the sign of the gas phase velocity
〈〈ug〉〉 for the last two equations describing the upper layer. The
non-conservative numerical flux P i is

P i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0

[({Ω}R
i−1/2 + {Ω}R

i+1/2)/2] ∗ [({pΓ }R
i+1/2 − {pΓ }R

i−1/2)

+〈ρm〉g({hb}R
i+1/2 − {hb}R

i−1/2)]
0

0.5({Ωg}R
i−12 + {Ωg}R

i+1/2)({pΓ }R
i+1/2 − {pΓ }R

i−1/2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(15)

All other terms are included in the centered source term S i.
Consistence, order of accuracy and stability of the method has
been extensively studied. The stability of the scheme is ensured
under the conditions of the Courant–Friedrichs–Levy (CFL) cri-
terion. The CFL number is computed using the maximum wave
velocity and the approximate eigenvalues of Eq. (11) as

CFL = max
i=1,5

(|li|)�x/�t (16)

Constant reconstruction gives a first order of accuracy in a uni-
form grid. The linear reconstruction increases the accuracy of
one order. For a two-phase water hammer (Section 4.2), a con-
vergence study is performed. Figure 3 shows the evolution of the
error computed on 25 points along the pipe as

log10 ε = log10

√∑
i=1,25(P

N
i − Pref

i )2

25
(17)

where the reference state includes 1200 meshes. As expected,
this error uniformly decreases with respect to the number of
meshes N .

4 Validation and application

WOLF IMPack was assessed by a large programme of vali-
dation (Kerger 2010). Analytical, numerical, and experimental
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1

2

3

4

5
log

10
e

N

50 75 150 600

2 s
6 s 

10 s
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4 s

900

First order base line

25

Figure 3 Error log10 ε versus number of meshes N for two phase water

benchmarks included pressurized flows, free surface flows of
sub-, super-, and transcritical regimes, and mixed flows. Both
pure water flows and air–water interactions were considered.
Furthermore, the new code underpinned the design of actual
hydraulic structures like a gravity drainage system, a low pres-
sure sewer system (Kerger et al. 2009), and the bottom outlet of
a dam (Kerger et al. 2011). Here the results of the most evocative
cases are presented.

4.1 Mixed flows: rapid pipe filling

The ability of WOLF IMPack to simulate mixed flows is com-
pared with a classical benchmark: rapid pipe filling (Vasconcelos
et al. 2009). The study was conducted on an experimental set-
up described by (Vasconcelos and Wright 2005). It consists
of a 14.3 m long, 94 mm diameter acrylic pipeline, connected

at the upstream end to an inflow box of lateral dimensions
0.25 m × 0.25 m, and at the downstream end with a surge riser of
0.19 m diameter. The pipeline was initially filled with 7.3 cm of
stagnant water. A constant inflow of 3.1 l/s was suddenly added
to the fill box, which immediately formed a pipe-filling bore front
propagating towards the surge riser.

The computations were performed on a uniform grid of 791
meshes 0.019 m long. Both the up- and downstream tanks were
simulated such that the boundary conditions represent imperme-
able walls. Using a two-step Runge-Kutta RK31 time integration,
the computational time was 400 s for 40 s of simulation on a PC.
The CFL number was kept constant at 0.3 and the filter con-
stant at 0.025. The computational results are compared with the
experimental data in Fig. 4. Adequacy is obvious between both
“mean” curves at each measurement stations. A numerical fil-
ter prevents spurious oscillations at the transition bore but keeps
physical oscillations linked to the water hammer (Fig. 4a).

4.2 Air-entrainment: two-phase water hammer

This standard benchmark is presented by Guinot (2001), consist-
ing of a 3000 m long circular pipe of area 0.29 m2. The reference
celerity is 981 m/s while the reference density is 992 kg/m3. The
void fraction is assumed constant at 0.2%. The fluid is initially
at rest, at a pressure of 5 × 105 Pa. At time t = 0, the pressure at
the left-hand boundary is lowered to 105 Pa, causing a rarefac-
tion wave to travel to the right. Upon reflection at the pipe end, a
shock wave occurs. This feature is critic for air-entrainment and
has never been simulated by any mixed flows codes.

The numerical computation was performed on a uniform grid
of 300 cells each 10 m long. Time integration was performed

0.00

0.40(a)

(c)

(b)

(d)
0 20

DH
 (

m
)

t (s)

0 20t (s)

Numerical data

Experimental data

0.00

0.20

0.40

0 40

DH
 (

m
)

t  (s)

Numerical data

Experimental data

0.00

0.20

0.40

0.60

H
 (

m
)

Numerical data

Experimental data

0.20

0.00

0.20

0.40

0 40

V
 (

m
/s

)

t (s)

Experimental data

Numerical data

Figure 4 Comparison between experimental data (Vasconcelos et al. 2006) with numerical data from WOLF IMPack. Pressure head-time evolution
from filling box (a) 9.9 m, (b) 14.1 m, (c) pressure head-time evolution in surge riser, (d) velocity-time evolution 9.9 m from filling box
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0

300000
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0 3000

P (Pa)

x (m)

12 seconds: 
- computed
- reference

2 s
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Figure 5 Comparison between data of Guinot (2001) and results given
by WOLF IMPack for pressure profile P(x)

with a three-step Runge–Kutta scheme (RK31) with the CFL
number kept at 0.4. The computation took 6.72 s for a 12 s simu-
lation on a PC. Figure 5 compares the pressure profiles computed
at 2, 6, 8, and 12 s with WOLF IMPack with these of Guinot
(2001), resulting from a two-phase water hammer code. Con-
trary to a single phase water hammer characterized by a sharp
shock wave translating at constant velocity, a rarefaction wave
occurs due to the relation between pressure and celerity. The
wave is reflected at the right-hand pipe side and the resulting
wave steepens when travelling to the left hand-side. This water
hammer is thus strongly non-linear. The lower the pressure, the
lower is the celerity. Results from WOLF IMPack agree well
with the data of Guinot (2001).

4.3 Closed surge tanks dynamics

Closed surge tanks constitute an interesting benchmark for
WOLF IMPack, because it gives insight into their hydraulic
features. The benchmark considers a circular pipe of 0.094 m
diameter. A closed surge tank was placed 5 m downstream from
the pipe entrance. The tank was 1.25 m long, 0.25 m wide and 1 m
high. Beyond the tank, a pipe 0.094 m wide and 9.05 m long was
connected to a device keeping the pressure constant at 0.1825 m.
The water was initially at rest with a pressure of 0.1825 m. The
approach flow discharge was suddenly increased to 0.001 m3/s
so that a water hammer resulted (Fig. 6).

H (m)

x (m)

0.25 s

0 15.5

0.5 s

1.25 s1 s

0

0.182

0.364

Figure 7 Pressure head profiles H (x) at different times underlining
water tank effect

The numerical computation was performed on a uniform grid
of 100 cells each 0.025 m long. Time integration was performed
again with a RK31 scheme and CFL = 0.4, which took 1000 s
for a 1.5 s simulation on a PC. As shown in Fig. 7, the sudden
discharge increase creates a pressure surge propagating at pres-
sure wave celerity within the pipe. After 0.5 s, the water hammer
impacts the surge tank. The free surface level in the tank slowly
increases. Next, the elevation of the free surface level induces
a pressure increase in the downstream pipe, yet which is much
smaller than the increase upstream. While a high-intensity water
hammer propagates between the upstream end and the tank, a
smaller wave travels between the tank and the downstream pipe
end. The tank efficiency is explained by both the small celer-
ity of free surface flows and the cushion effect of entrapped air,
described adequately by WOLF IMPack.

4.4 Air-entrapment: moving mixed flows

One of the objectives of IMPack is to describe the entrapment
of air pockets by mixed flow. Consequently, WOLF IMPack
was applied on two benchmarks involving mobile transitions
and active upper layers: the entrapment of air bubbles at high
points of pipelines and the rapid pipe filling. However, post-
transition oscillations occur in the lower layer contaminating the
upper layer. Since the air pressure celerity is large at 330 m/s,
these oscillations rapidly reduce the numerical stability. Even the
numerical filter of Vasconcelos et al. (2009) was insufficient to

1.25 m 9.05 m

0.094 m

0.25 m

Qwater= 0.001 m3/s
Hini=0.1825 m

Closed
Air Tank

5 m

Hconstant=0.1825 m

Figure 6 The benchmark exemplifies the functioning principle of a closed surge tank located in the middle of a circular pipe
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prevent the problem. This observation indicates that numerical
shock-capturing methods are partly inefficient in the presence
of highly variable celerities, a shortcoming linked to the dis-
cretization of both the equations and the computational domain
(Vasconcelos et al. 2009). Kerger (2010) and Kerger et al.
(2011a) proved that any numerical shock-capturing solver is
affected by this flaw.

5 Conclusions

This research presents a new multiphase mathematical model
describing transient air water mixed flows. Based on the drift-
flux model, the original set of equations developed governs the
evolution of three phases in two layers. The upper layer contains
only air while the lower layer includes both water and dispersed
air phases. The pressure gradient in the lower layer was modified
to extend the model applicability to two-phase pressurized flows.
This new term accounts for the effect of dispersed air on the pres-
sure wave celerity. The set of governing five partial differential
equations was discretized, using the finite volume method and
implemented into WOLF IMPack. These innovations are vali-
dated with benchmarks, and then the code was applied to various
cases of engineering interest presented in a companion paper.

The new code enables to simulate open channel flow, mixed
flows and water hammers in a unified framework. The multi-
phase approach accounts for air-entrainment in these three flows
and air-entrapment in closed pipes. The code is able to handle
non-uniform pipe sections and variable pressure wave celerities
as a function of void fraction. This study also includes one limita-
tion of shock-capturing approaches: post-transition oscillations
produced by the numerical scheme, even with a numerical filter,
do not allow for simulating air-entrapment by a moving tran-
sition, whereas air-entrapment by a fixed transition is correctly
retained. This shortcoming is a challenge, paving the way to
further research on air–water mixed flows.

Notation

c, a = free surface and pressure wave celerity (ms−1)
F , S = flux and source term (–)
g = gravitational constant (ms−2)
h = height (m)
i, n = space and time index (–)
j = volumetric flux (ms−1)
l, L = free surface width (m)
L, R = left and right (–)
M = mixture momentum source (kg m−2s−2) or

density function (–)
P, p = area-integrated pressure (N) and pressure

(Nm−2)
S = head loss slope (–)
t = time (s)
x, y, z = space variables (m)
v, V , u, U = velocity (ms−1)

Greek letters

α = void fraction (–)
β = adiabatic or isothermal coefficient (–)
� = local gradient (–)
ε = relative error, filtering constant (–)
Γ = mass source term (kg m−3s−1)
θ = angle between x-axis and horizontal (–)
ξ = variable of length integration (m)
ρ = density (kg m−3)
τ = stress (Nm−2)
Ω = area (m2)

Subscripts and exponents

0 = reference state
d, w = dispersed air and water phases
F = friction
g = upper layer
j = drift value
m = mixture of water and air
max = max maximum
s, b = free surface, bottom
Sat = saturation state in air
T , D = turbulent and diffusion
Γ = interface
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