36th ICAR Session and Interbull Meeting 16-20 June 2008, Niagara Falls, New York, USA

Alternative Modeling of Body Condition Score from Walloon Holstein Cows to Develop Management Tools

C. Bastin¹, L. Laloux², A. Gillon¹, C. Bertozzi² & N. Gengler^{1,3}

¹ Animal Science Unit, Gembloux Agricultural University, Belgium
 ² Walloon Breeding Association, Ciney, Belgium
 ³ National Fund of Scientific Research, Brussels, Belgium

FNRS

Context

A regular evaluation of Body Condition Score (**BCS**) is a valuable management tool for dairy farmers.

BCS assess the stored energy reserves of the cow

(indicator of energy balance status)

It is linked to production, fertility and health traits

Context

- BCS has been recorded since April 2006 in 76 dairy herds (nearly 100 herds now) in the Walloon Region
- Monthly collected by the milk recording agent
- Scoring from 1 (emaciated cow) to 9 (obese cow)

Context

- BCS has been recorded since April 2006 in 76 dairy herds (nearly 100 herds now) in the Walloon Region
- Monthly collected by the milk recording agent
- Scoring from 1 (emaciated cow) to 9 (obese cow)

"Herd BCS Balance Sheet"

- sent to farmers after each milk recording
- allows to point across time cows which are not in the range of desirable scores

Context: "Herd BCS Balance Sheet"

Number of primiparous in each class of days in milk according to their BCS

1.1 Répartition des PRIMIPARES en fonction de leur BCS										
Classe	Total	BCS								
		-	2	3	4	5	6	7	8	9
Tarissement	1					0	1			
de 0 à 45 jours	0				0	0	0			
de 45 à 100 jours	6			0	3	1	2			
de 100 à 200 jours	11				2	4	5			
de 200 à 270 jours	13				4	2	5	2		
de 270 jours au tarissement	13				1	1	8	3		

Context: "Herd BCS Balance Sheet"

Evolution of percentage of cows presenting optimal BCS

Objective

Model BCS to predict a BCS value for each day of the lactation in order to develop decision-making indicators for dairy farmers

Objective

Model BCS to predict a BCS value for each day of the lactation in order to develop decision-making indicators for dairy farmers

- 1. Define the model
- 2. Assess its usefulness
 - ➤ overall fit
 - ability to predict missing and future records
- 3. Develop potential decision-making indicators

54,955 BCS records from 5,123 cows collected between the 1st April 2006 and the 31st March 2008

Fixed effects

Herd x test-month period Classes of 5 DIM Milk recorder x classes of 14 DIM Age at calving State: lactating or dried

Regression curves modelled with 2nd order Legendre polynomials

Based on known information, it is possible to predict a BCS value for each day in milk of a given cow

Based on known information, it is possible to **predict a BCS value for each day in milk** of a given cow

Use this modeling for management purposes requires :
 > good adjustment on data used for the solution estimation
 > good predictive ability for missing and future records

Based on this alternative modeling, indicators could be defined:

Based on this alternative modeling, indicators could be defined:
> BCS loss at early stage of lactation

Based on this alternative modeling, indicators could be defined:
 BCS loss at early stage of lactation

Besides individual prediction, herd indicators could be defined:

Besides individual prediction, herd indicators could be defined: herd effect across time

Conclusions & Prospects

Adjustment of the model was good

Predictive ability of the model for missing and future records was satisfying

Conclusions & Prospects

Adjustment of the model was good

Predictive ability of the model for missing and future records was satisfying

- According to the structure of data (less than 2 years of recording)
 - Model improvement could be done

Conclusions & Prospects

Adjustment of the model was good

- Predictive ability of the model for missing and future records was satisfying
 - According to the structure of data (less than 2 years of recording)
 - Model improvement could be done
- Indicators based on this alternative modeling could be developed and included in the current "Herd BCS Balance Sheet"

Study supported through FNRS grants F.4552.05 and 2.4507.02 and RW-DGA projects 2836-2837

Thank you for your attention

Presenting author's e-mail:

bastin.c@fsagx.ac.be

With the support of :

