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Abstract

The global stabilization of a class of feedforward systems having an
exponentially unstable Jacobian linearization is achieved by a high
gain feedback saturated at a low level. The control law forces the
derivatives of the state variables to small values along the closed loop
trajectories. This “slow control” design is illustrated with a bench-
mark example and its limitations are emphasized.
Keywords: Nonlinear control, global stabilization, feedforward

systems.
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1 Introduction

The global stabilization of nonlinear systems has been the subject of an
important literature over the last decade and significant progresses have been
made towards the development of systematic design methods and a better
understanding of structural limitations to large regions of attractions (see [1,
3, 5, 8, 9, 10, 12] and references therein). It is fair to say that most of existing
results have been obtained by exploiting certain triangularity properties of
the considered system’s differential equations. These structural properties
can be classified in two categories and it is sufficient for our purpose to
illustrate them on the system






ẋ1 = f1(x1) +x2+ g1(x2, x3, · · · , xn, u)
ẋ2 = f2(x1, x2) +x3+ g2(x3, · · · , xn, u)

...
ẋn = fn(x1, . . . , xn) + u+ gn(u),

(1.1)

where x = (x1, . . . xn) ∈ IRn and u ∈ IR. We view (1.1) as a chain of in-
tegrators perturbed by feedback connections (fi functions) and feedforward
connections (gi functions). The two possible forms of triangularity are ob-
tained by setting to zero either the feedforward terms or the feedback terms:

• Setting gi ≡ 0 yields a system in “strict feedback form”. In this case,
the absence of feedforward connections puts no limitations on the avail-
able gain at the input of each integrator. Thanks to this property,
systems in strict feedback are globally stabilizable without further re-
strictions on the feedback nonlinearities. Even strongly destabilizing
nonlinearities can be compensated for with sufficiently high gain feed-
back (see [1, 3, 5, 7, 8]).

• Setting fi ≡ 0 yields a system in “strict feedforward form”. In this
case, the absence of feedback connections limits the instability of the
open-loop system (in particular the Jacobian linearization cannot be
exponentially unstable). Thanks to this property, a low gain at the
input of each integrator is sufficient to stabilize the system and sys-
tems in strict feedforward form are globally stabilizable without fur-
ther restriction of the feedforward connections (except for the fact that
the Jacobian linearization is required to be controllable). Even if the
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feedforward nonlinearities impose severe limitations on the available
gain, stabilization is achieved with sufficiently low gain feedback (see
[4, 6, 11]).

The present paper aims at a (very first) step towards design methods which
could bridge the two extreme triangular classes just described, by simulta-
neously allowing for the presence of (destabilizing) feedback connections and
(“gain limiting”) feedforward connections. Our result is best illustrated with
the help of the simple benchmark system






ẋ1 = f1(x1) + x2 + g1(x2, x3)
ẋ2 = x3
ẋ3 = u

(1.2)

Existing methods for feedforward systems require the feedback connection
f1(x1) to be missing or “stabilizing”, that is f1(s)s ≤ 0. Existing methods
for strict feedback systems require g1(x2, x3) ≡ 0. Our result will show
that a bounded destabilizing nonlinearity f1(x1) can be tolerated provided
that the feedforward term g1(x2, x3) is not “gain limiting” but only “rate
limiting”, that is, g1(x2, x3) = g1(x3) = g2(ẋ2), and is at least quadratic near
the origin. Our design will enforce the convergence of solutions towards a
region of the state space where ẋ2(t) is kept small enough, but not necessarily
x2(t), thereby guaranteeing enough gain to compensate for the destabilizing
connection f1(x1). This design can be viewed as a slow control design in
contrast to the low gain design previously considered for feedforward systems
(see [4, 6, 11]).
Expanding on this idea, we achieve global stabilization of systems which

can be written in the form





ẋ1 = f1(x1) + x2 + g1(ẋ2, ẋ3, · · · , ẋn)
ẋ2 = f2(x2) + x3 + g2(ẋ3, · · · , ẋn)

...
ẋn−1 = fn−1(xn−1) + xn + gn−1(ẋn)
ẋn = fn(xn) + u

(1.3)

with x ∈ IRn, u ∈ IR, where we have

• Feedback connections fi which are depending only on the local integra-
tor state. They are bounded with bounded derivatives on all IRn;

3



• Rate limiting feedforward connections gi with an upper triangular struc-
ture. They are at least quadratic near the origin.

Our design will enforce convergence of the solutions towards a sequence of
nested manifolds where an increasing number of state derivatives ẋi are kept
small. Near-invariance of these manifolds will be guaranteed despite of the
destabilizing feedback connections by allowing for enough gain in a restricted
neighborhood of the manifolds. Section 2 of the paper describes our main
result. Limitations of the present approach and its relation to other contri-
butions is discussed in Section 4 (see [2, 13]).

2 Global stabilization of feedforward systems

The next theorem is the main result of this paper. We present a recursive
design to achieve Global Asymptotic and Local Exponential Stability of the
origin of system (1.3) using the saturation function:

sat : IR → [−1, 1]
s → sat(s) = sign(s)min(|s|, 1)

Theorem 1 Suppose we have the C1 system:





ẋ1 = f1(x1) + x2 + g1(ẋ2, ẋ3, · · · , ẋn)
ẋ2 = f2(x2) + x3 + g2(ẋ3, · · · , ẋn)

...
ẋn−1 = fn−1(xn−1) + xn + gn−1(ẋn)
ẋn = fn(xn) + u

with xi, u ∈ IR. Suppose that the feedback interconnections are bounded, with
bounded derivatives, i.e. ∃Mi, Di > 0 ∀xi : |fi(xi)| < Mi, |f ′i(xi)| < Di and
the gi functions are at least quadratic near the origin.
Then there exists positive constants ε > 0 (sufficiently small) and K > 0
(sufficiently large) such that the origin of the system is globally asymptotically
and locally exponentially stabilized by

u = −fn(xn)− εnsat(
Knen
εn
)
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where

e1 = x1
ei = xi + fi−1(xi−1) + εi−1sat(

Ki−1ei−1
εi−1

) for i ∈ {2, · · · , n}

for a suitable choice of εi and Ki. One such choice is:

K1 = K Ki+1 ≥ 16(Ki +Di)

ε1 = ε
ε
∏i
j=2
Kj

2i−1 ≤ εi ≤ 3
2

ε
∏i
j=2
Kj

2i−1

(2.4)

Proof Consider the nested sequence of subsets Ω1 ⊂ · · · ⊂ Ωn ⊂ IRn

defined by

Ωi = {x ∈ IR
n| |ej| ≤

εj
Kj
, j ≥ i}

whose choice is suggested by the form of the system in e coordinates:






ė1 = e2 − ε1sat(
K1e1
ε1
) + g1(ẋ2, ẋ3, · · · , ẋn)

...
ėk = ek+1 − εksat(

Kkek
εk
) + dfk−1

dxk−1
(ek − εk−1sat(

Kk−1ek−1
εk−1

) + gk−1(ẋk, · · · , ẋn))

+gk(ẋk+1, · · · , ẋn) +
dεk−1sat(

Kk−1ek−1
εk−1

)

dek−1
ėk−1

...

ėn = −εnsat(
Knen
εn
) + dfn−1

dxn−1
(en − εn−1sat(

Kn−1en−1
εn−1

) + gn−1(ẋn)) +
dεn−1sat(Kn−1en−1εn−1

)

den−1
ėn−1

(2.5)
We will show that the choice (2.4) for the parameters Ki and εi ensures

the following properties:

(i) each Ωi is invariant

(ii) each solution reaches Ω = Ω1 in finite time

(iii) each solution in Ω converges exponentially to the equilibrium x = 0

We first show that the Jacobian linearization of the closed-loop system
is Hurwitz when the parameters Ki are chosen accordingly to (2.4), with K
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large enough. The Jacobian linearization of the system in e coordinates is:





ė1 = −K1e1 + e2
...

ėi = −
∑i−1
k=1

[(∏i−1
j=kKj

)
(Fk +Kk − Fk−1 −Kk−1)ek

]
− (Ki − Fi−1 −Ki−1)ei + ei+1

...

ėn = −
∑n−1
k=1

[(∏n−1
j=k Kj

)
(Fk +Kk − Fk−1 −Kk−1)ek

]
− (Kn − Fn−1 −Kn−1)en

where we define Fi = f ′i(0) (and we take F0 = K0 = 0 as a convention). The
matrix of this system can be decomposed into two parts: a lower triangular
matrix and a matrix with an upper diagonal:

A =





−K1 0 · · · · · · 0
× −(K2 − F1 −K1) 0 · · · 0
...

...
...

× × · · · −(Kn−1 − Fn−2 −Kn−2) 0
× × · · · × −(Kn − Fn−1 −Kn−1)





+





0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0





= T + U

With the choice (2.4) and K large enough, all eigenvalues of T are negative
and of the order O(K). The matrix U then becomes a small perturbation
in comparison with T and the matrix A is Hurwitz. We have thus fixed the
gains Ki such that our controller ensures local exponential stability of the
system. The original system controlled without saturation has a region of
attraction Λ (independent of ε). The rest of the proof will show that any
solution of the controlled system reaches the set Ω and that we can design
this set to be included inside Λ by taking ε small enough.
To this end, we use the following lemma proven in appendix.

Lemma 1 Suppose that the assumptions of Theorem 1 are satisfied with
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the parameters chosen such that:

ε1 >
ε2
K2

εi >
εi+1
Ki+1
+ 2(Di−1 +Ki−1)εi−1 i ∈ {2, · · · , n− 1}

εn > 2(Dn−1 +Kn−1)εn−1

(2.6)

then the constraints are still satisfied after a µ−scaling of the εi parameters,
that is if we replace εi by µεi, and, for µ small enough, we have: ∀e ∈ Ωi:

a |ẋi| < 2εi

b |ei| = εi
Ki
⇒ eiėi < 0

c |ėi| < 2εi

It is an easy calculation to verify that (2.6) is satisfied with the choice
(2.4) and that a µ-scaling is achieved by taking ε small enough.
Part (i) of the proof of Theorem 1 is a consequence of Lemma 1 (b).

When a solution is on ∂Ωi, it satisfies |ej| =
εj
Kj
for some j ≥ i. Due to the

fact that Ωi ⊂ Ωj for j ≥ i, Lemma 1 (b) implies ej ėj < 0. Therefore, the
solution stays inside Ωi.
In order to prove (ii), we will now show that any solution starting in

IRn \Ωn reaches Ωn in finite time and that any solution in Ωi+1 reaches Ωi in
finite time. By the invariance property of Ωi, this means that any solution
reaches Ω1 = Ω in finite time.
Let us define

φi(xi, ei) = fi(xi) + εisat(
Kiei
εi
)

Let x(0) ∈ IRn \ Ωn. As long as x(t) /∈ Ωn, the solution satisfies:

ẋn = −εnsign(xn + φn−1(xn−1, en−1))

which means that xn converges towards −φn−1(xn−1, en−1). Because φn−1 is
bounded, xn(t) eventually enters an interval where the saturation is no longer
active. This happens when |xn+ φn−1(xn−1, en−1)| = |en| = εn

Kn
: the solution

enters Ωn in finite time.
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Next we show that any solution in Ωi+1 reaches Ωi in finite time. The
solution satisfies

ẋi = ei+1 − εisat(
Ki(xi + φi−1(xi−1, ei−1))

εi
) + gi(ẋi+1, · · · , ẋn) (2.7)

and as long as xi(t) ∈ Ωi+1 \ Ωi, (2.7) can be rewritten using Lemma 1 (b)
as:

ẋi = ei+1 − εisign(xi + φi−1(xi−1, ei−1)) +O(ε
2
i+1, · · · , ε

2
n)

Because |ei+1| ≤
εi+1
Ki+1

< εi, the second term dominates the others while

xi(t) ∈ Ωi+1 \ Ωi. Hence xi(t) converges towards φi−1 until the saturation
stops being active, i.e. the solution has reached Ωi.
Repeating the argument for each i, the solution reaches Ω in finite time.

Observe that a prescaling of the parameters εi can be used to include Ω in an
arbitrarily small compact set containing the origin (this means that practical
stability is achieved for any choice of the Ki satisfying (2.6)).
Part (iii) of the proof is direct from the fact that A is Hurwitz. It is

sufficient to take Ω to be included inside Λ, the region of attraction of the
controlled system without saturation (because Ω is an invariant set for the
system controlled with an without saturation). In order to do so, we take ε
small enough.

The proof of the previous theorem shows why we may use the term slow
control: the derivatives of the variables are successively brought to small
values in order to be able to neglect the values of the gi functions.
When n = 2, condition (2.4) on the parameters reduces to K2 > 16(K1+

D1) (in this case, it could be weakened to K2 > 2(K1 + D1)). We observe
that the latter condition is stronger than the condition imposed for the local
asymptotic stability, which only requires K2 > D1. This shows that the Ki
constants must be chosen large enough not only to ensure local asymptotic
stability, but also to render the designed manifolds near-invariant.

3 Example

We now illustrate the calculation of the parameters on a simple example.
Consider the benchmark system (1.2) with f a bounded function such that
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‖f ′(x1)‖∞ < D and g1(x2, x3) = x23 = ẋ
2
2:






ẋ1 = f1(x1) + x2 + x23
ẋ2 = x3
ẋ3 = u

(3.8)

The set of constraints (2.6)is:

ε1 >
ε2
K2

ε2 >
ε3
K3
+ 2(D1 +K1)ε1

ε3 > 2K2ε2

(3.9)

which could easily be solved for such a low-order system but becomes more
intricate for larger dimensions. Therefore, we rather use the explicit param-
eter values that we gave in Theorem 1.
Let us take ε1 = ε small enough and K1 = K large enough. We choose

the parameters according to (2.4) with Ki+1 = 16(Di + Ki) and εi in the
middle of the intervals:

K1 = K K2 = 16(D +K) K3 = 256(D +K)
ε1 = ε ε2 = 10ε(D +K) ε3 = 1280ε(D +K)2

The e variables are:

e1 = x1
e2 = x2 + f1(x1) + ε1sat

(
K1x1
ε1

)

e3 = x3 + ε2sat




K2

(
x2+f1(x1)+ε1sat

(
K1x1
ε1

))

ε2





where e3, e2 and e1 will successively been brought inside interval close to
zero: as the εi are small, it means that x3 is first brought close to zero, then
x2 is brought close to −f1(x1) and finally x1 is lead to the origin.
With such parameters and variables, the control law is:

u = −1280ε(D+K)2sat

[
1

5ε(D +K)

(
x3 + 10ε(D +K)sat

[
8

5ε

(
x2 + f1(x1) + εsat

[
Kx1
ε

])])]

We see that both Ki and εi parameters are increasing. Such a controller
can be designed to satisfy any rate constraint on the control and on the states.
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K must be taken sufficiently large in order to get asymptotic stability. ε must
be sufficiently small to be able to neglect the ε22 term that will arise because
of the x23 = ẋ

2
2 term.

We can justify on this example the boundedness condition of Theorem
1 imposed on the fi functions. Indeed, when f1 : IR → IR is a C1 function
such that lims→+∞ f(s) = +∞ and ∃ε > 0 : ∀s ∈ IR : f ′1(s) > ε, system (3.8)
cannot be globally controlled to the origin. This follows from the calculation:

d
dt(f1(x1) + x2) = f ′1(x1)(f1(x1) + x2) + f

′
1(x1)x

2
3 + x3

≥ f ′1(x1)(f1(x1) + x2)− C
≥ ε(f1(x1) + x2)− C when f1(x1) + x2 ≥ 0

where we have used the fact that f ′1(x1)x
2
3 + x3 is bounded from below by

a negative constant −C. If the initial condition of the system is such that
ε(f1(x10) + x20) > C, the quantity f1(x1) + x2 will diverge to +∞ regardless
of the control law. It means that such initial conditions (x10, x20) cannot be
driven to the origin, even if f1 is a simple linear function.

4 Limitations of slow control

The slow control design proposed in this paper applies to a restricted class of
nonlinear systems which simultaneously present destabilizing feedback con-
nections and “rate limiting” feedforward connections. The restrictions on the
feedforward connections (to be “rate limiting” rather than “gain limiting” )
and the boundedness of the fi functions (and of their derivatives) have been
justified by means of elementary (that is, scalar) controllability requirements.
A subtler limitation of slow control is the fact that the fi’s cannot de-

pend on the states x1, . . . , xi−1: the feedback connections are restricted to
be “local” connections around each integrator. Thus our design can yield a
slow control for the second order system

{
ẋ1 = f1(x1) + x2
ẋ2 = f2(x1, x2) + u

but this does not mean that this slow control law can be “backstepped” to
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yield a slow control law for the augmented system





ẋ1 = f1(x1) + x2
ẋ2 = f2(x1, x2) + x3
ẋ3 = u

(4.10)

even if boundedness is assumed for f2 and its derivatives. This is in contrast
with recent bounded backstepping results ([2, 13]) which show that a bounded
control law with bounded rate can be backstepped to yield a new bounded
control law with bounded rate (when all the nonlinearities are bounded with
bounded derivatives). The result seems to be no longer valid without further
restrictions if a fixed rate limit is imposed a priori on the control law. For
this reason, further restrictions are likely to be imposed to achieve global
stabilization of a system as simple as






ẋ1 = f1(x1) + x2 + g(u)
ẋ2 = f2(x1) + x3
ẋ3 = u

(4.11)

which violates the structure covered by the present paper only because f2
depends on x1 rather than x2.

5 Conclusion

We have considered the global stabilization of a restricted class of nonlinear
systems which simultaneously present “destabilizing” feedback connections
and “rate limiting” feedforward connections. Under the restriction that the
feedback connections are “local” connections around each integrator, a slow
control design has been proposed which enforces a slow convergence towards
a nested sequence of manifolds, the last of which is a stable manifold of the
closed-loop system. Near invariance of the successive manifolds is achieved
by allowing for enough gain in their neighborhood, yet keeping the control
slow in the entire state space.

A Proof of lemma 1

(a) (By induction) Because ẋn = −εnsat
(
Knen
εn

)
(a) holds for i = n
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Suppose now that it is true for j = k+1 · · ·n, we show that it is true for
j = k. We know that |ẋj| < 2εj for j > k inside Ωk. We have:

ẋk = ek+1 − εksat(
Kkek
εk
) + gk(ẋk+1, · · · , ẋn)

Using the fact that x is in Ωk and |ẋj | < 2εj for j > k, we obtain:

|ẋk| <
εk+1
Kk+1

+ εk +O(ε
2
i+1, · · · , ε

2
n)

By (2.6), we conclude that |ẋk| < 2εk up to µ-scaling (that is, by scaling all
the εi’s with µ sufficiently small, O(ε2m) becomes negligeable in front of the
other terms and |ẋk| < 2εk follows from (2.6))
To prove (b) and (c) we consider the system in the e coordinates (eq.

2.5).
We show (b) and (c) by induction.
For k = 1, we have:

ė1 = e2 − ε1sat(
K1e1
ε1
) + g1(ẋ2, ẋ3, · · · , ẋn)

which becomes, when x ∈ Ω,

ė1 = e2 − ε1sign(e1) + g1(ẋ2, ẋ3, · · · , ẋn)

where g1(ẋ2, ẋ3, · · · , ẋn) = O(ε22, · · · , ε
2
n) by using (a). From (2.6) and after

µ-scaling, we conclude that the derivative of e1 has the sign of −ε1sign(e1)
i.e. e1ė1 < 0 when |e1| = ε1

K1
. We also see that |ė1| is bounded by ε1 +

ε2
K2
+

O(ε22, · · · , ε
2
n) < 2ε1 inside Ω1 (after µ-scaling). Hence (b) and (c) hold for

i = 1.
Induction step: Suppose that (b) and (c) hold for i = k−1. We will show

that (b) and (c) also hold for i = k.
Consider the ek equation:

ėk = ek+1 − εksat(
Kkek
εk
) + dfk−1

dxk−1
(ek − εk−1sat(

Kk−1ek−1
εk−1

) + gk−1(ẋk, · · · , ẋn))

+gk(ẋk+1, · · · , ẋn) +
dεk−1sat(

Kk−1ek−1
εk−1

)

dek−1
ėk−1

(A.12)
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When x ∈ Ωk, the last term of (A.12)

dεk−1sat(
Kk−1ek−1
εk−1

)

dek−1
ėk−1

is zero when x /∈ Ωk−1 and it is Kk−1ėk−1 when x ∈ Ωk−1, which is bounded
by 2Kk−1εk−1 in this part o Ωk−1. Evaluating (A.12) when |ek| =

εk
Kk
, we

obtain that ėkek < 0 if:

εk >
εk+1
Kk+1

+Dk−1(
εk
Kk
+ εk−1+O(ε

2
k, · · · , ε

2
n)) +O(ε

2
k+1, · · · , ε

2
n) + 2Kk−1εk−1

(A.13)
By (2.6), εkKk < εk−1 and

εk+1
Kk+1

+ 2(Dk−1 +Kk−1)εk−1 < εk, so that (A.13) is
verified, i.e. ėkek < 0
Using the bound (2.6), we analogously see that the bound

|ėk| < 2εk

is verified.
The induction step proves (b) and (c) for k ∈ {2, · · · , n− 1}. For k = n,

(2.6) is slightly different. Inequality (A.13) becomes:

εn > Dn−1(O(ε
2
n) +

εn
Kn
+ εn−1) + 2Kn−1εn−1 (A.14)

which follows from (2.6) up to µ-scaling. This ends the proof.
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