JOURNAL OF BACTERIOLOGY, May 1993, p. 2844-2852
0021-9193/93/102844-09$02.00/0
Copyright © 1993, American Society for Microbiology

Vol. 175, No. 10

Cloning and Sequencing of the Low-Affinity Penicillin-Binding

Protein 3"-Encoding Gene of Enterococcus hirae S185:
Modular Design and Structural Organization of the Protein

GRAZIELLA PIRAS,t DOMINIQUE RAZE, ABOUBAKER EL KHARROUBL} DANIELE HASTIR,
SERGE ENGLEBERT, JACQUES COYETTE,* anp JEAN-MARIE GHUYSEN

Centre d’Ingénierie des Protéines, Institut de Chimie, B6, Université de Liége,
B-4000 Sart Tilman (Liége 1), Belgium

Received 13 November 1992/Accepted 9 March 1993

The clinical isolate Enterococcus hirae S185 has a peculiar mode of resistance to penicillin in that it possesses
two low-affinity penicillin-binding proteins (PBPs): the 71-kDa PBPS, also found in other enterococci, and the
77-kDa PBP3". The two PBPs have the same low affinity for the drug and are inmunochemically related to each
other. The PBP3"-encoding gene has been cloned and sequenced, and the derived amino.acid sequence has been
compared by computer-assisted hydrophobic cluster analysis with that of the low-affinity PBPS of E. hirae R40,
the low-affinity PBP2’ of Staphylococcus aureus, and the PBP2 of Escherichia coli used as the standard of
reference of the high-M, PBPs of class B. On the basis of the shapes, sizes, and distributions of the hydrophobic
and nonhydrophobic clusters along the sequences and the linear amino acid alignments derived from this
analysis, the dyad PBP3"-PBP5 has an identity index of 78.5%, the triad PBP3"-PBP5-PBP2’ has an identity
index of 29%, and the tetrad PBP3"-PBP5-PBP2’-PBP2 (of E. coli) has an identity index of 13%. In spite of this
divergence, the low-affinity PBPs are of identical modular design and possess the nine amino acid groupings
(boxes) typical of the N-terminal and C-terminal domains of the high-M,. PBPs of class B. At variance with the
latter PBPs, however, the low-affinity PBPs have an additional ~110-amino-acid polypeptide stretch that is
inserted between the amino end of the N-terminal domain and the carboxy end of the membrane anchor. While
the enterococcal PBPS gene is chromosome borne, the PBP3" gene appears to be physically linked to the erm
gene, which confers resistance to erythromycin and is known to be plasmid borne in almost all the Streptococcus

spp. examined.

The relatively low susceptibility to B-lactam antibiotics of
enterococci compared with that of other streptococci is
attributed to the presence of membrane-bound penicillin-
binding proteins (PBPs) with low affinity for the drug (10,
22). Presumably, these PBPs are able to take over the
functions of the other PBPs when the cells are grown in the
presence of B-lactam antibiotics (10, 23). Enterococcus hirae
ATCC 9790 and E. hirae S185, a clinical isolate from swine
intestine, have been studied in some detail (6, 7, 11, 23).
Benzylpenicillin has a MIC for E. hirae ATCC 9790 of 1
ug - ml™L. E. hirae ATCC 9790 possesses a low-affinity PBP
which, on the basis of its migration on sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), is
referred to as the 71-kDa PBPS. Serial cultures in the
presence of increasing concentrations of benzylpenicillin
have led to the isolation of a mutant, strain R40, for which
the MIC is 80 wg-ml™' and which, in parallel to this,
overproduces PBP5 (11). The MIC for E. hirae S185 is 16
pg - ml~l. Unexpectedly, that strain possesses two low-
affinity PBPs, the 71-kDa PBP5 and 77-kDa PBP3". Exposure
to increasing concentrations of penicillin has led to the
isolation of a mutant, strain S185°, for which the MIC is
considerably increased (175 pg - ml~?) and which, in parallel
to this, selectively overproduces the 77-kDa PBP3". Irre-
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spective of the strains from which they are isolated, PBP3"
and PBP5 have the same low affinity for penicillin as
expressed by the same low value (20 M~ s™1) of the
second-order rate constant of protein acylation. The two
proteins have distinct tryptic digestion patterns but are
nevertheless immunochemically related (7, 23).

With this information provided, questions arose regarding
the molecular organization of PBP3" compared with that of
PBPS5 and the expression of the PBP3" and PBPS genes. As
a prerequisite to an answer to these questions, the PBP3"
gene has been cloned and sequenced and the modular design
of PBP3" has been investigated by hydrophobic cluster
analysis of the amino acid sequence. The possible existence
of a specific linkage between the low-affinity PBP-encoding
genes and other non-B-lactam antibiotic resistance determi-
nants has also been examined. The results of these investi-
gations are described below.

(Most of this work was conducted by G. Piras in partial
fulfillment of the requirements for a Ph.D. degree from the
University of Liege, Li¢ge, Belgium.)

MATERIALS AND METHODS

Bacterial strains, MICs, and DNA recombination tech-
niques. E. hirae S185 and S185" were grown as described
elsewhere (23). MICs were determined in liquid SB medium
(6). Escherichia coli HB101 and JM105 (grown in Luria broth
or 2XYT broth) and plasmids pBR322 and pBR325 were
used for gene cloning experiments (25). The DNA recombi-
nation techniques, the enzymes, and the E. hirae S185" total
DNA were used as described in references 7 and 23. DNA
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fragments were purified by the GeneClean procedure (Bio
101, La Jolla, Calif.) or by electroelution in 10 mM Tris-HCIl
(pH 8.0) containing 5 mM NaCl and 1 mM EDTA. The
29-mer probe (T,, = 80°C) and the other oligonucleotides
described in Results were from Eurogentec, Li¢ge, Belgium.
Hybridization and posthybridization washings were carried
out at 55 and 70°C, respectively. Double-strand sequencing
was carried out as described previously (29).

PBP analysis and immunoassays. Membranes were pre-
pared, protein contents were estimated, PBPs were labeled
with benzyl['*C]penicillin, and SDS-PAGE and fluorography
were performed as described elsewhere (5, 23). Rabbit
anti-PBP3" and anti-PBP5 antibodies prepared and partially
purified by immunoadsorption as described previously (7,
23) were used for immunoblotting experiments and detection
of both PBP3" and PBP5 (see the introduction).

Isolation from E. hirae S185 of penicillin-sensitive mutants
(strain SS22) and penicillin-resistant revertants (strain SS227).
Samples of a stationary-phase culture of E. hirae S185 grown
in SB medium were treated with 50 mM sodium nitrite in
sodium acetate buffer, pH 4.6, for 30 or 60 min at 37°C (4).
Alternatively, samples of an exponential-phase culture of
strain S185 grown in brain heart (BH) medium were diluted
to 10* cells - ml™! (in fivefold-diluted BH medium) and
treated with acridine half-mustard ICR-191 (Serva, Feinbio-
chemica, Heidelberg, Germany) at final concentrations of 5
and 12.5 pg - ml~, at 37°C for 4 to 5 h (4). After nitrous acid
or acridine half-mustard ICR-191 treatment, samples (0.25
ml) of diluted cell suspensions were spread on BH agar
plates and maintained at 37°C for 24 h. Randomly chosen,
surviving colonies were streaked on penicillin-free and pen-
icillin-containing (0.25 pg- ml™') BH agar plates. After
incubation at 37°C for 24 h, penicillin-sensitive clones (se-
lected on penicillin-free agar plates) were grown in liquid SB
medium and the benzylpenicillin MICs for them were deter-
mined. The two mutagens yielded 70 mutants for which the
MIC was very low (0.1 pg- ml~?). These mutants repre-
sented about 9% of the surviving colonies. Strain SS22,
obtained by nitrous acid treatment, was one of them.

Penicillin-resistant revertants were obtained by serial sub-
cultures of strain SS22 on agar plates containing increasing
amounts of penicillin, from 0.1 to 30 pg - ml~*. The MIC for
these revertants was considerably increased (35 pg - ml™1).
Strain SS22" was one of these revertants.

Hydrophobic cluster analysis. Hydrophobic cluster analy-
sis is a powerful method for comparing proteins that are
weakly related in the primary structure (12). It rests upon a
duplicated representation of the amino acid sequences on an
a-helical two-dimensional pattern (in which the hydrophobic
residues tend to form clusters) and compares the distribution
of the hydrophobic clusters along the sequences. The shapes
of the clusters are usually associated with definite secondary
structures, and therefore, clusters of similar shapes, sizes,
and relative positions express similarity in the polypeptide
folding of the proteins. In this method, the six residues
adjacent to the amino acidi arei — 4,i —3,i — 1,i + 1,i +
3, and i + 4. Hence, compared with methods based only on
a single amino acid property or identity, hydrophobic cluster
analysis allows distant information to become visible more
readily and allows deletions or insertions to be introduced
more easily between the secondary structures.

Nucleotide sequence accession number. The EMBL acces-
sion number for the nucleotide sequence shown in Fig. 3 (see
below) is X69092.
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FIG. 1. Membrane-bound PBP3" and PBPS of E. hirae ATCC
9790, S185, S185", SS22, and SS22°. SDS-PAGE and immunodetec-
tion of the PBPs with the anti-PBP3" and anti-PBP5 antibodies.

RESULTS

Linkage between the PBP3" and erm genes. It was known
(see the introduction) that E. hirae S185 has two low-affinity
PBPs, the 71-kDa PBPS5 and the 77-kDa PBP3", and that, by
exposure to increasing concentrations of penicillin, E. hirae
S185 gave rise to penicillin-resistant mutants, in particular,
strain S185%, which selectively overproduced PBP3" (see Fig.
1 and 5 in reference 23). The first run of exposure to
penicillin caused a 6-fold-increased MIC, from 16 to 100
pg - ml~1, and a concomitant 3- to 4-fold-increased amount
of PBP3". In contrast, the subsequent runs resulted, each, in
a small increment in the MIC, which reached 175 pg - ml™!
after the fourth run. In parallel to this, the amount of PBP3*
seemed to remain constant but there was a detectable,
progressive decrease in the amounts of the other PBPs
present in the membranes.

Chemical mutagenesis of strain S185 under the conditions
described in Materials and Methods led to the isolation of
hypersensitive mutants, in particular, strain SS22. SDS-
PAGE of the isolated membranes and Western blot (immu-
noblot) analysis with the anti-PBP3" and anti-PBP5 antibod-
ies showed that, to all appearances, strain SS22 had lost the
capacity of producing PBP3" but still contained low levels of
PBPS (about 25 and 8% of the amounts of PBP5 present in
strain S185 and strain ATCC 9790, respectively) (Fig. 1).
Consistent with this observation, serial cultures of strain
SS22 in the presence of increasing concentrations of penicil-
lin led to the isolation of resistant revertants, in particular,
strain SS22F, which overproduced PBPS but still lacked
PBP3" (Fig. 1). In contrast with penicillin-resistant S185°
mutants, the increase in penicillin resistance of SS22 rever-
tants was progressive and apparently associated with regular
increases in PBP5 amounts in the cell membranes. Note that
the PBP pattern of the mutants of each class derived from
strain S185 was similar to that of the respective prototypic
strains S185°, SS22, and SS22°. Sometimes, but not always,
PBPS5 of strain ATCC 9790 and PBPS5 of strain S185 (and its
derivatives) migrated somewhat differently, suggesting that
minor modifications in the proteins might occur.

Given that the parental strain S185 was also resistant to
erythromycin and tetracycline, thereby probably possessing
the erm and tet genes, the susceptibility of the mutants to
these non-B-lactam antibiotics was determined. The MICs
(Table 1) revealed that strains SS22 and SS22°, which had
lost the capacity of producing PBP3" but not PBPS, had also
lost the ability to resist erythromycin, suggesting that the
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TABLE 1. Susceptibility to three antimicrobial agents and
content of membrane-bound low-affinity PBPs
in five E. hirae strains

MIC (pg - ml™?) of: Level® of:
Strain Benzyl- Erythro-  Tetra- PBP5 PBP3
penicillin mycin cycline

ATCC 9790 1 1 1 + 0
S185 16 360 100 + ++
S185° 175 360 100 + ++++
SS22 0.1 1 100 Very low 0
S§S22° 35 1 100 ++ 0

2 Visual estimation from the gels shown in Fig. 1 and in Fig. 1 and 5 of
reference 23, on a scale from very low to ++++ (0, not present).

PBP3" and erm genes were linked physically and deleted
concomitantly by chemical mutagenesis of strain S185.

Cloning of the PBP3" gene. In a previous study (23), two
degenerated oligodeoxynucleotides were synthesized on the
basis of the known N-terminal sequences of peptides iso-
lated from a tryptic digest of the E. hirae PBP3" and used to
amplify a 233-bp DNA segment by the polymerase chain
reaction procedure. This segment was cloned, and on the
basis of its established nucleotide sequence, the nondegen-
erated 5'-CATTTTGTTTGGATCATAGCTTGGAGAGC-3'
29-mer probe (complementary to the SSPSYDPNKK de-
capeptide-encoding DNA strand) was synthesized and y->?P
labeled at the 5’ end. Libraries of E. hirae S185° total DNA
were prepared into pBR322 or pBR325 depending on the
available restriction sites and used to transform E. coli
HBI101 cells. Of the 7,400 colonies cloned, 16 gave a strong
hybridization signal with the radioactive 29-mer probe after
extensive washings under stringent conditions. Recombinant
plasmids whose inserts ranged from 0.7 to 14 kb in size were
identified by Southern blot analysis. To prove that the
inserts contained the PBP3" gene, membranes of trans-
formed E. coli cells were isolated and subjected to SDS-
PAGE followed by Western blot analysis with anti-PBP3*
(and anti-PBP5) antibodies. E. coli actually produced a
novel, membrane-bound, low-affinity PBP which migrated
with an apparent molecular mass of 77 kDa (and thus
distinguished itself from the 71-kDa PBPS). Of the available
plasmids, pDMLS501, i.e., pBR325 harboring a 4.5-kb Ncol
insert, served to sequence the PBP3" gene. Comparison of
the restriction map of pDML501 with that of the PBP5
gene-containing pDML540 (7) confirmed that pDMLS501 did
contain the PBP3" gene (Fig. 2).

Nucleotide sequence of the PBP3" gene and amino acid
sequence of PBP3". By using the strategy shown in Fig. 2,
sequencing of the pDMLS501 insert on both strands yielded
an open reading frame which started at position 261 with an
ATG codon and terminated at position 2095 by a TAA stop
codon (or from position 6010 to position 8044 by using the
numbering of pDML501) (Fig. 3). A perfect ribosome bind-
ing site, AGGAGG, which matched exactly the sequence
consensus (27) occurred S bp upstream from the ATG start
codon. Computer analysis of the secondary structure of the
corresponding RNA showed that the AGGAGG sequence
was on a single-stranded region optimal for the expression of
prokaryotic genes (19). The TAA stop codon was followed
by palindromic regions able to form a hairpin or stem-loop in
the corresponding RNA, a structure typical of many pro-
karyotic terminators (19). The 39.7% GC content of the
sequence was similar to that of other streptococcal genes (9).
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FIG. 2. Cloning and sequencing of the PBP3" gene of E. hirae
S185". (A) Restriction map of pDML501. The arrow in the insert
indicates the position and orientation of the PBP3" gene. (B)
Restriction map of the PBP5 gene (see reference 7). (C) Restriction
map of the PBP3" gene and sequencing strategy. Restriction sites:
Ba, BamHI; Cl, Clal; Ec, EcoRI; HII, Hindll; HIII, HindIII; Kp,
Kpnl; Nc, Ncol; Ps, Pstl; P1, Pvul; PII, Pvull; Ss, Sstl. The 0.6-kb
PII-HIII, 0.7-kb Ps-Ps, 1.1-kb Ps-HII, and 1.0- and 1.3-kb HIII-HIII
DNA fragments were cloned into M13mp18 or mpl9 phages and
sequenced on both strands (in most cases) by using M13 universal or
synthetic primers. The Ps-Ps segment was sequenced by the double-
strand method with a specific synthetic oligonucleotide.

The PBP3" gene translated into a 678-amino-acid-residue
protein (Fig. 3). The theoretical 4.73 pl value (Genetics
Computer Group program) was very close to the experimen-
tal 4.5 pI value measured for the 63-kDa t-PBP3" tryptic
peptide isolated previously (23).

Hydrophobic cluster analysis of PBP3". The amino acid
sequence of the E. hirae PBP3" was compared with those of
the low-affinity PBPS of E. hirae and the low-affinity PBP2’
of Staphylococcus aureus, using the E. coli PBP2 as the
standard of reference. The staphylococcal PBP2', which is
responsible for acquired resistance to methicillin, is struc-
turally related to the enterococcal PBP5 (7). The 633-amino-
acid-residue PBP2 of E. coli is involved, together with the
intrinsic membrane protein RodA (3, 15, 21), in the forma-
tion of the rod shape of the cell. Of the high-M, PBPs of
known primary structure, the E. coli PBP2 shows the highest
similarity with the low-affinity PBPs.

The high-M, PBPs are three module proteins (13). A
membrane anchor, usually 30 to 60 amino acid residues long,
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MAGATCGATACATTATCCGTAACCAGT)\GACGGCAGTTGGACTTCMCGACAATACGCCTTCCGGAAGTGTTCTGGAATTAGATTTGACCAMAACCAAGAAGCAATCAAAMATTTCT

1
GAATMTTMGTAMGMMTMMGAAAAGA}\GTTAGAMTMCAATTTATGTTATGTTCTGACTTCTTTTATTATGTTAGAATAAACAGGTATAAATAGTGAAAATAAAGGAATMCA
121

SD MKRSDKHGKNRTGAYIAGAVILIVTASGGYFYY33
AGCMAAGAAGGAGGAAAAAATGMAAGAAGTGACAAGC&CGGCAAAAATCGAACAGGCGCTTATATTGCCGGCGCAGTGATTTTMTAGTAACTGCMGTGGCGG‘I‘TATTTTTACTACC
241

RHYQETQAVEAGBKTVEQE‘VQALNKGDYNKAAGHASKKAA73
GGCACTACCAAGAAACCCAAGCAGTAGMGCTGGAGAMAGACGGTTGAGCAATTTGTCCAAGCTTTMACAAAGGAGATTATAACAAAGCTGCAGGAATGGCATCGAAAAAGGCAGCAA
361 HindIII Pstl

NKSALSEKBILEKYQNIYGAADVKGLEISNLKVDKKDDST133
ATAAAAGTGCATTATCTGAAAAAGAGATCTTAGAAAAATACCAAAATATATACGGTGCTGCCGATGTCAAAGGACTTGAGATATCAAATCTARAAGTAGATAAAAAAGATGATTCTACTT
481

YSFSYKAKMNTSLGELKDLSYKGTLDRNDGKTTINWQPNL153
ATAGCTTTTCATATAAAGCAAAGATGAATACCTCATTAGGTGAATTGAAAGATCT TTCTTATARAGGAACAT TAGACAGAAATGATGGAAAAACCACGATCAACTGGCAGCCTAACTTGG
601

V FPEMETGNU DT KV VS STLTTU QEA ATT RGNTITLUDI RNSGET PTLATTGZ KTLIKQL 193
TTTTTCCAGAAATGGAAGGAAATGACAAAGTAAGTCTGACCACGCAAGAAGCAACAAGAGGGAACATTTTAGATCGAAATGGGGAACCATTAGCAACAACCGGCAAACTAARACAATTAG
721

G VVZPSKLGDTGTDETZ KTA ANTITEKATILIARASATFT DTILTTETDA ATING QA ATISOQS WV 233
GAGTCGTTCCAAGCAAACTTGGGGATGGGGACGAAAAAACAGCCAATATCAAAGCCAT TGCTTCTGCATTCGACTTAACAGAAGATGCTATCAATCAGGCTATTTCACAAAGCTGGGTAC
841

Q P DY FVPLIKTITIDGATO®PETLUPAGATTIUGQEVDSGHRYYZ?PL G E A A A Q 273
AACCCGATTACTTTGTCCCATTGAMATCATTGATGGAGCAACGCCAGAACTTCCAGCTGGAGCTACCATCCMGAAGTAGACGGCAGATATTATCCTTTGGGTGMGCAGCTGCTCMC
961 Pwlt Pvull

LI GYVGDTITA ATETDTITDTEKNZPETLSSNSGTE KTIGRSGILEMATFUDTZEKTDTLR G 313
TGATTGGTTACGTGGGAGATATCACAGCAGAAGATATTGATAAAAATCCAGAAT TAAGCAGTAATGGAAAAATCGGACGATCTGGTTTGGAAATGGCTTTTGATAAGGATCTTCGTGGGA
1081

T T GG KL S I TDTTUDGVETZKT KV VILTIEHTEV QNSGI KT DTITZ KTLTTITDATZEKAOQ K 35
CTACAGGTGGAAAATTAAGCATCACAGATACAGACGGTGTCGAGAAAAAGGTTCTGATCGAGCATGAAGTCCAAAACGGAAAAGATATCAAATTGACAATCGATGCAAAGGCACAAAARA
1201 Clal

T AF D SLGGJZ KA AGS STV VA ATTZ&PZ KTGDTULILALA ASSZPSYDZPNI KMTN G 3903
CAGCTTTCGACAGTCTAGGAGGAAAAGCTGGATCGACTGTTGCGACAACGCCAAAAACCGGTGATCTTCTTGCGCTTGCTAGCTCTCCAAGCTATGATCCAAACAAAATGACAAACGGGA

1321 ‘Probe
ISQEDYKAYEEN?EQPFISRFATGYAPGSTFKMITAAIGL433

TCTCACAAGAAGACTACAAAGCTTATGAAGAAAATCCTGAACAACCATTCATCAGCCGATTTGCGACAGGTTATGCTCCTGGCTCTACGTTTAAAATGATCACAGCAGCAATCGGTCTCG
1441 HindIII

D NGTTIDU PNEVTLTTINGLIEKTUWSO QI KUDSS WG S Y QV TRV S DV S QV DL 473
ACAACGGCACTATCGATCCAAATGAAGTGTTGACGATCAACGGGCTTAAATGGCAAAAAGATAGT TCTTGGGGATCGTATCAAGTAACTCGTGTTAGTGATGTGTCACAAGTAGACTTAA

1561 . HindII

K T A L I Y S I YMAOQETULIKMGET KNTFIRAGTLTDTEKT FTIVFGEDTLDL P 513
AAACTGCTTTGATTTATTCCGATMTATATATATGGCACAAGAMCGTTGAAAATGGGGGAGAAGMTTTCCGTGCAGGTTTGGATAMTTCATTTTTGGTGAAGACCTTGATTTGCCAA
1681

I S M NPAQTI SNETESTFNSDTIULLADTSGYGQGETLTLTINZPTIAOQQAAM 553
TCAGTATGAATCCAGCACAAATTTCTAATGAAGAGAGCTTTAATTCAGATATCTTGCTAGCTGATACTGGATATGGACAAGGCGAACTTCTAAT TAATCCTATCCAGCAAGCAGCAATGT
1801

Y S VFANNGTTULVYZP?PZ KU LTIADTIKTETI KT DI KT EKNVIGETA AV QTTIV P DL 593
ATTCTGTTTTTGCCAACAATGGCACACTTGTCTATCCTAAAT TGATTGCAGATAAAGAGACAAAAGATAAGAAGAATGTCATCGGCGAAACAGCAGTACAAACGATCGTGCCAGATCTGA

1921
*

R EVV QD VN GTAUHS L S A I P LAAIKTGTA AETIKETKU QDEK G K E 633
GAGAAGTTGTGCMGATGTAAATGGTACAGCACATTCTCT‘I‘TCTGCTTTAGGGATTCCATTGGCAGCGAAAACTGGTACAGCGGAAATCAAAGAAAAACAGGATGAMAAGGGAMGAGA
2041

NSFLFA_FN'PDNQGYMMVSMLBNKBDDDSATKRAPELLQYL673
ACAGTTTCTTGTTTGCTTTCAACCCTGATAACCAAGGATATATGATGGTTAGCATGTTGGAAAATAAAGAAGATGATGATTCAGCAACTAAACGAGCACCCGAACTATTACAATACCTCA
2161

N Q N Y Q * 678
ACCAAAAT‘I\\TCAATAAAGAACGACTTCATMCTATAGTAAAAGGACTGTGACGGTATCGTCACAGT"TTT‘I‘TTCGAATAAACGAQ\GGTTCACGACCACT‘I‘TCTGGGTCACTCACACTT
2281
CATAAACTTTTTTTGTAAAATATTTCAGAACAAGTGGAGAAATAAGTGTACT TAATAAAAT CACGATTACTAAAGGTGAATAGTACTGTGGTTCGATCAATTGACTTTGCTGTCCAATTT
2401
GCAAAATGATCAAAGCCATTTCTCCACGCGAAATCATACCAGCACCGACCATCAATGAACTATGTTGAGAAAAACCGGCAATCTGAGCACCAAAATACCCTCCAAGCAATTTGGTCAAAA

2521

TTGCTACAAGCGTCAATATAGAAATAAAGAGAAGCTGCTCAGATCCAAAGTCAGAARAAT CAACTTCTAATCCTACACTGACAAAAAATACTGGTATAAATACTGCATATCCTAAAGCTT
2641 HindIII
CAACATTG

2761

FIG. 3. Nucleotide sequence of the PBP3" gene and amino acid sequence of PBP3" of E. hirae S185'. SD, Shine-Dalgarno sequence.
Arrows indicate inverted repeats forming the putatlve terminator. Restriction sites and the position of the cloning probe are underlined. *,
active-site-defining motifs of the penicilloyl serine transferase family. PBP3" has a calculated molecular mass of 73,822 kDa.
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is linked to a several hundred-amino-acid-residue N-terminal
domain which is linked to a several hundred-amino-acid-
residue penicillin-binding C-terminal domain. The high-M,
PBPs fall into two classes, A and B, whose members differ in
their N-terminal domains (8). Those of class B possess nine
conserved motifs or boxes along the amino acid sequences
(8, 13). Box 1 and box 4 are-at the amino end and the carboxy
end of the N-terminal domain, respectively. Box 5 and box 9
are at the amino end and the carboxy end of the C-terminal
domain, respectively. Boxes 6, 7, and 8 of the C-terminal
domain are the active-site-defining motifs characteristic of
the penicilloyl serine transferase family, i.e., in the indicated
order, the tetrad S*XXK (where S* is the active-site serine),
the triad SDN (or analog), and the triad KT(S)G (or analog).

Consistent with the modular design of the proteins, the
patterns of hydrophobic and nonhydrophobic clusters of the
membrane anchors and N-terminal domains of the four PBPs
under comparison are shown in Fig. 4. The corresponding
C-terminal domains are shown in Fig. 5. In this representa-
tion, each hydrophobic amino acid residue (F, I, L, M, V,
W, and Y) and each hydrophobic cluster are delineated; the
hydrophobic residues and clusters occurring at equivalent
places along the sequences of the low-affinity PBPs 3%, 5, and
2' are in boldface; and the nonhydrophobic residues occur-
ring as-strict identities are marked by scattered points. The
residues and clusters marked in boldface or by scattered
points along the amino acid sequence of the E. coli PBP2
occur at places equivalent to those found in the low-affinity
PBPs. Figure 6 is the linear amino acid alignment derived
from the data of Fig. 4 and 5.

DISCUSSION

The low-affinity PBPs 37 and 5 of E. hirae S185 and PBP2’
of S. aureus are proteins of very similar size, containing 678,
678, and 667 amino acid residues, respectively (7, 26). The
pair PBP3"-PBP5 has 532 identities (identity index: 78.5%),
the pair PBP3"-PBP2’ has 216 identities (33%), and the triad
PBP3"-PBP5-PBP2’ has 195 identities (29%) (Fig. 6). In spite
of this divergence, the hydrophobic and nonhydrophobic
cluster patterns of the three low-affinity PBPs are almost
superimposable (Fig. 4 and 5). Few deletions or insertions
have to be made between the conserved clusters to obtain an
optimal match.

The cluster pattern of the low-affinity PBPs is similar to
that of the E. coli PBP2 except that the low-affinity PBPs
have an additional =110-amino-acid-residue stretch that
extends from the carboxy end of the membrane anchor to the
amino end of the N-terminal domain. When this N-terminal
extension is excluded from the analysis, the four PBPs under
comparison have 82 identities (identity index: 13%) (Fig. 6).
This low index is not due to the random distribution of a
limited number of conserved amino acid residues but results
from the occurrence of 10 definite amino acid groupings of
high homology or identity along the amino acid sequences
(Fig. 4 and 5). When the comparison is restricted to the nine
boxes conserved in the high-M, PBPs of class B, the identity
scores are 85% for the pair E. hirae PBP3"-E. hirae PBPS5,
70% for the pair E. hirae PBP3'-S. aureus PBP2’, and 64%
for the pair E. hirae PBP3"-E. coliPBP2. The 10th conserved
grouping, which is located immediately downstream from
D-535 or D-518 in the low-affinity PBPs, aligns with the
grouping located immediately downstream from D-447 in the
E. coli PBP2. Site-directed mutagenesis experiments (1)
suggest that D-447 is an important component of the cata-
lytic machinery of the E. coli PBP2. It may be equivalent to
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the active-site E-166 of the B-lactamase of class A (17). Note
also that the SDN motif (box 7) of the low-affinity PBPs
aligns with the SAD motif of the E. coli PBP2.

From the above analysis, one can safely conclude that the
enterococcal and staphylococcal low-affinity PBPs (i) have
very similar polypeptide scaffoldings and thereby perform
similar functions and (ii) have a basic multimodule design
and structural organization comparable to those of the E.
coli PBP2 but (iii) differ from the E. coli PBP2 by the
presence of an =110-amino-acid residue polypeptide in-
serted immediately downstream from the membrane anchor.
This polypeptide is large enough to provide the low-affinity
PBPs with an additional domain having a particular folding
and performing a separate function. Its possible role in the
low-affinity PBP-mediated penicillin resistance remains to be
established.

PBP3" and PBPS5 of E. hirae S185 are extremely similar
with respect to structure and low susceptibility to acylation
by penicillin. Yet expression of PBP3" is selectively en-
hanced when strain S185 is submitted to penicillin pressure
(strain S185%), expression of PBP3" is selectively annihilated
when strain S185 is submitted to chemical mutagenesis
(strain SS22), and exposure of this latter strain to penicillin
pressure causes overexpression of PBP5 (strain SS22).
These differences in regulation and chemical susceptibility
as well as the linkage of the erythromycin resistance-encod-
ing erm gene to the PBP3" gene, but not to the PBPS5 gene,
indicate that the PBP3" and PBP5 genes are borne by
different DNA segments. Recent results from this lab show
that both the PBP3" and erm genes are present on a large
plasmid (24). Note that erm is plasmid borne in almost all
streptococci examined except S. pneumoniae (14, 18). Sim-
ilarly, the S. aureus mec region, which contains the low-
affinity PBP2'-encoding mecA gene, is present in a transpo-
son that carries other antibiotic resistance determinants (i.e.,
aadD, tet, and erm) (16, 20, 28). The enterococcal PBP3" and
staphylococcal mec genes code for similar PBPs; they may
also be integrated into similar DNA structures.

The accumulation of antibiotic resistance determinants in
autotransmissible plasmids facilitates the lateral or horizon-
tal mobility of the corresponding genes between bacterial
species (2). It is a serious threat for antibacterial chemother-
apy. By acting as collectors of transposons in which genes
move as integron cassettes, these plasmids increase the gene
pool and thereby increase the gene flux between bacterial
species. Intraspecies transfer of low-affinity PBP-encoding
genes may be accompanied by the immediate acquisition of
penicillin resistance. Given the structural variations of the
wall peptidoglycans and the variations in the specificity
profiles of the PBP-catalyzed reactions, acquired resistance
to penicillin by interspecies transfer of low-affinity PBP-
encoding genes may require remodeling of the PBP active
sites. The relatively low index of identity (28%) between the
enterococcal and staphylococcal low-affinity PBPs may be
the expression of a species-specific adjustment of the en-
zyme active-site configuration.
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