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ABSTRACT 
 
Optical interconnects systems often require the use of computer generated holograms calcukated in the non-
paraxial diffraction regime. This paper present the use of the chirp-Z transform algorithm in the calculation 
of the non-paraxial scalar diffraction problem. The use of this algorithm is memory saving in comparison 
with convolution with zero-padding. The numerical performances of the approach presented in this paper are 
comparable with methods using sub-sampled convolution. 
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CGHs with high numerical apertures (F/10<F#<F/2.5 and higher) and high spatial frequencies are required 
for reasons of compactness in optical interconnects systems. This raises the question about the possible 
existence of reconstruction errors due to the non-paraxiality that can be superposed on the encoding errors in 
the the design of CGHs for interconnection purposes. In order to cope with non-paraxiality errors, which are 
aberrations with respect to the paraxial model (F#<F/10), a more accurate propagation model has to be used. 
Paraxial complex wavefront synthesis has very often been studied by scientists and it has been shown that it 
gives relatively good results, as long as one works in paraxial approximations. The Fresnel-Kirchhoff 
diffraction integral, also called near-field diffraction integral or non-paraxial diffraction integral, is not so 
widely used due to its numerical complexity. 
Nowadays researchers turn their attention to rigorous vectorial diffraction theory applied to the synthesis of 
CGHs. A rigorous vectorial diffraction theory solves also the problems of non-paraxiality. However the 
rigorous vectorial diffraction theory is presently only adapted to the analysis and synthesis periodic 
diffractive structures [1]. Holograms working in the resonance domain, with feature sizes comparable to the 
wavelength, will have efficiencies that differ from point to point, since this efficiency is dependent on the 
local spatial frequency, but also on the polarisation. The scalar diffraction theory authorises by no way to 
make such conclusions on the local diffraction efficiencies and polarisation dependency in the hologram 
plane. A rigorous vectorial diffraction theory is thus required to describe the light propagation in a small 
region called the hologram aperture. Once that the vectorial complex wavefront has left the hologram 
aperture, the polarisation modes remain decoupled and they propagate independently from each other in the 
free space. Consequently, a scalar theory is sufficient to describe the propagation in free space of these 
vector components. 
The scalar non-paraxial diffraction theory is thus well suited and even required for two kinds of problems:  
 a. design of a CGH in the non-paraxial regime, calculation of the free space propagation of non-
 paraxial complex wavefronts from the hologram aperture to image aperture and vice versa. 
 b. non-paraxial analysis of the diffraction pattern of a CGH designed with a paraxial propagation 
 model. 
The free space propagation between a hologram plane and a reconstruction plane can formally be described 
by: 
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u(x,y) is the complex signal in the exit plane of the hologram, and U(X,Y) is the complex signal in the 
reconstruction plane and F() represents a Fourier transform. 
A classical numerical method to calculate this is expressed in the following way: 
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DFT: discrete Fourier transform    IDFT: inverse discrete Fourier transform 
∆H: sampling rate in hologram plane    Η: hologram extent = N∆H 
The reconstruction space is sampled at a rate ∆H. If the complete diffraction pattern (I=λd/∆H) has to be 
evaluated one has to increase the hologram space with zero samples. The fraction between the extent of the 
reconstructed signal and hologram (I/H) determines the new amount of samples for the calculations. Thus 
the non-paraxial problem requires a supplementary amount of samples to describe the spatial spread due to 
diffraction. This supplementary amount of samples requires much more computer memory. The large 
amount of samples is already one of the major problems in the calculations of computer-generated 
holograms [2]. 



 

One can also put the formal solution into the following form. 
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CZT: chirp-z transform      IDFT: inverse discrete Fourier transform 
∆I: arbitrary sampling rate in reconstruction plane  ∆H: sampling rate in hologram plane    
In reference [3] one explains the algorithmic details of the chirp-z transform (CZT) algorithm, which was 
already presented as a solution for scalar paraxial diffraction problems requiring a clever interpolation 
algorithm. The CZT interpolates the hologram spectrum in subspectra of width (1/∆H) with N samples atv a 
rate (1/I). Then a sum of Fourier transforms over shifted subspectra is performed and it results in an image of 
width I. This procedure can be considered as an alternative to sub sampled convolution [4] in non-paraxial 
diffraction problems. The new algorithm allows to calculate the diffracted field in N by N samples with an 
arbitrary resolution ∆I. 
Consider the value a=I/H, as the interpolation ratio. One can make a rough estimate of the number of 
complex multiplications for the computation of a two-dimensional signal in the non-paraxial regime with 
diffrent algorithms. 
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Fig. 1 Numerical complexity vs. number of samples  Fig. 2 RMS-error of an intensity signal reconstructed  
for 4 types of algorithms, for an interpolation ratio a=16. from a kinoform in the near-field calculated with an  
  iterative phase retrieval algorithm. 
 
It has been shown that the convolution using a CZT-algorithm is superior based on memory considerations 
and it allows to implement both forward and inverse diffraction [5]. The speed of the algorithm is of the 
same order as sub sampled convolution (SSC) and classical convolutions (DFT) with zero padding (See 
Fig.1). Numerical integration (NI) is generally slower than previous algorithms. (Remark erroneous 
conclusions where drawn in [5] on the a2 dependency in the speed considerations). Due to the accurate 
numerical performances it seems that this algorithm might be integrated in encoding procedures such as 
iterative phase retrieval and error diffusion [5] (Fig. 2).  
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