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1 Introduction

The design of feedback control laws for linear systems subject to magnitude
constraints on the control variable,

& = Az + Bu ue R, |u <1

has long been recognized as a significant nonlinear control problem. It is
highly relevant in many applications. It has also stimulated many theoretical
contributions. Notably, the time-optimal solution is a nice application of the
maximum principle, which allows for analytical calculations of the switching
surfaces, even though the complexity of the calculations is prohibitive except
for low-dimensional systems ([1, 10]). More recently, special emphasis has
been put on the design of stabilizing control laws that guarantee “large”
regions of attraction ([7, 8, 3, 5]). Several of the proposed solutions rely on
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a one-parameter family of linear control laws u = K(e)z. As the parameter
¢ — 0, the norm || K (¢)|| decreases (hence the name “low-gain” designs), so
that the magnitude constraint |u| < 1 is satisfied in a large domain. At the
same time, the guaranteed region of attraction of x = 0 increases and may
tend to the entire state space if A has no eigenvalue with strictly positive
real part.

In such designs, the tuning of the low-gain parameter ¢ involves two con-
flicting objectives. Large regions of attraction require small values of € > 0
so that the input bound is never attained along the solutions. Obviously,
this leads to cautious designs, resulting in slow convergence. In contrast,
local performance would dictate a larger value of €, resulting in a reduced
guaranteed region of attraction.

Based on the rationale that a small value ¢; is needed far from the origin
and that a larger value ¢; is needed close to the origin, the present paper
proposes an online adaptation of €(t) aimed at the fastest possible evolution
from €y to €; while guaranteeing closed-loop stability for the a priori selected
set of initial conditions. Without loss of generality, €; can be normalized to
one (ef = 1).

Our design combines two ideas that have been recently discussed in the
same context: the high-low gain philosophy of [6], which explicitely uses the
infinite gain margin of Riccati based linear control laws u = —B” P(€)z, and
the gain scheduling proposed in [5], where €(x) is chosen at every point so
that z lies on the boundary of the guaranteed region of attraction.

Our algorithm enforces invariance of the manifold BT P(e)r = 0 while
enforcing the fastest possible increase of €. An analytical example and sim-
ulations suggest that this heuristic leads to accelerated convergence of the
closed-loop solutions.

This paper is organized as follows. In Section 2, we expose methods to
generate low-gain control laws. Existing methods to choose and schedule the
gains are presented in Section 3. The algorithm is presented in Section 4, and
it is analyzed and improved in Section 5. It is then illustrated on the double
and triple integrator in Sections 6 and 7, with a comparison with the earlier
scheme proposed by Megretski [5] and the time-optimal solution. Finally we
give some conclusions.

2 Low-gain designs

In this paper, we restrict our attention to the family of saturated linear
low-gain control laws in the form

u = —sat (BTP(e)x) (2.1)



with
sat(y) = sign(y) min(|y|, 1)

based on the quadratic Control Lyapunov Functions
V(z,€) = 2" Pe)x

The e-family of control laws (2.1) can be generated in various ways; one
method uses the Riccati equation

P(e)A+ ATP(e) — P(e)BBTP(¢) = —Q(¢), ¢ € (0,00) (2.2)

with Q(€) > 0 (positive definite), continuous, such that lim. o Q(¢) = 0 and
9O > 0 ([4, 9)).

If (A, B) is asymptotically null controllable, that is (A, B) is stabiliz-
able and all the eigenvalues of A are in the closed left half-plane, then
lim_,0 P(¢) = 0, A — BBTP(¢) is Hurwitz for all ¢ > 0, and € > 0
([2, 11, 12]). In the remainder of the paper, null controllability of the con-
sidered linear system will always be assumed.

Megretski [5] suggests a simplified construction of P(e) based on the Ric-

cati inequality:
P(e)A+ ATP(e) + P(e)W™2P(e) — P(€)BBTP(¢) < 0 (2.3)

with W > 0 a symmetric matrix. The advantage of (2.3) is that, if the region
of attraction is only required to contain a given compact set {2, one does not
need to explicitely solve the Riccati inequality for every e: one can calculate
a solution Py of (2.3) such that u = —sat (BTPOJJ) ensures €2 to be contained

in the region of attraction, as well as P, (> P) such that v = —BT Pz
ensures satisfying local performance. Then the matrix:

PO =[1-aF +er '] ce o] (2.4)

is solution of (2.3), with A — BBT P(¢) Hurwitz for all € > 0, and ‘“;—EE) > 0.
This construction does not guarantee global stabilization, but is useful for
practical implementation, because it does not require the online solution of an
Algebraic Riccati Equation. The resulting function P(e€) is an interpolation
between Py, which is chosen for stabilization, and P;, which is chosen for

performance.



3 Tuning of the low-gain parameter

When lim,_,q P(¢) = 0, the family of low-gain control laws (2.1) achieves
semiglobal stabilization: given any compact set {2 to be included in the
region of attraction, one can choose € small enough such that |BT P(e)x| is
bounded by 1 within a level set of V'(z, €) that includes Q. For a given initial
condition xzg, the optimal € is then:

e(zg) = max{n € (0,1]: V(z,n) < V(x,n) = |BTP(n)z| <1} (3.5)
With this choice, the compact set
S(e(xo)) = {z € R"|V(z, e(z0)) < V (2o, €(20)) }

is guaranteed to be included in the region of attraction. For a fixed ¢, the
maximal level set of the Lyapunov function within which |[BTP(e)z| < 1 is
the minimal level set where the bound |BYP(e)x| = 1 is reached. Solving
the optimization problem:

mingepe o7 P(e)x
s.t. BTP(e)z =1

(with the absolute value superfluous because of symmetry) yields:

B
- BTP(e)B

‘/EE
and |BT P(e)x| < 1 within the set

1
_ n| 1T
Finding €(xy) then amounts to look for the largest € such that zg lies within
the set 7 (¢), that is:

€(x0) = max{n € (0,1] : (g P(n)zo)(B" P(n)B) < 1} (3.6)

With the choices (2.2) or (2.4), we have d];—ie) > 0, and large regions of
attraction €2 require small values of the parameter ¢ > 0. As a consequence,
the resulting design is “cautious”, that is, it uses little actuation near the
origin and makes the convergence slow.

A first improvement of the above low-gain design is the “high-low” gain
modification based on the observation that the control laws (2.1) have infinite

gain margin. As a consequence, the region of attraction achieved with the



control law u = —sat (kBT P(e)z) still includes the set S(€(zo)) with any gain
k > 1. The limiting case for k — oo results in the sliding mode control

u = —sign(BT P(e)z) (3.7)

In this situation, full actuation is used throughout. However, the motion
along the sliding surface BT P(¢)x = 0 induces chattering and can be very
slow when e is small.

The idea that e should be small far from the origin (for stability) and
larger near the origin (for performance) suggests that the performance of
low-gain designs will improve with an on-line adaptation of e. Megretski [5]
proposes the choice

e(x) = max{n € (0,1] : (2" P(n)z)(BTP(n)B) < 1} (3.8)

which corresponds to an online adaptation of the rule (3.5). It is shown in [5]
that V' (z, e(z)) then decreases along the solutions in the region of attraction,
which is the entire state space if P(e) satisfies (2.2), and which contains € if
it satisfies (2.4).

If the initial condition is far from the origin, the parameter e(z) will
be initially small. However, it will increase as the solution approaches the
origin. This gain scheduling can be stopped once € has reached a value judged
acceptable for local performance (e = 1).

The design flexibility of multiplying the control law by any gain £ > 1 can
be combined with online adaptation of €, a gain k proportional to % being
suggested by Lin (see e.g. [2]).

4 Algorithm

The online adaptation of € presented in this paper is different from (3.8). It is
based on the following observation: multiplying the low-gain control law by
a large gain enforces the near-invariance of the subspace ker BT P(e), at least
in a neighborhood of the origin. In this region, rendering this subspace truly
invariant will be less conservative and more relevant than ensuring V < 0 in
the entire set S(e(xzg)). As a consequence, € will be allowed to increase faster
along the solutions. This suggests the following procedure in three phases:

e Phase 1: Reach the subspace ker BT P(¢) for some € > 0 in a region
such that the invariance condition BT P(¢)x = 0 can be ensured for all
future times with |u| < 1;



e Phase 2: Increase € as fast as possible while maintaining BT P(¢)z = 0
and at the same time ensuring the control invariance of BT P(e)z = 0
for € constant and |u| < 1;

e Phase 3: Once € has reached the value 1, for which the controller
u = —sat(BTP(1)z) ensures satisfying local performance, stop the
adaptation and enforce the invariance condition BT P(1)z = 0, which
guarantees convergence to the origin.

It is important to observe that, during Phase 2, the function V(z,€) is no
longer ensured to decrease along the solutions. This feature justifies the need
for Phase 3. It also appears to be crucial for enabling a faster adaptation of
€.

The following proposition characterizes the region of the state-space where
Phase 2 is applicable. The considered region is characterized by BT P(e)r =
0, and by the fact that the subspace ker BT P(¢), with € > 0 fixed, can be
made invariant for all future times with |u| < 1. This forward invariance
condition then ensures convergence to the origin because BT P(e)z = 0 is a
stable manifold.

Proposition 1 Let € > 0, if the subspace ker BT P(¢) is not A-invariant,
then it can be made control invariant with |u| < 1 within the region

{2|V(2,¢) = 2" P(e)x < V(e)}
with

(BTP(e)B)®

V(e) = (BTP(e)AP(e)'ATP(€e)B)(B" P(€)B) — (BT P(e) AB)?

If ker BT P(¢) is A-invariant, then the entire subspace is kept invariant with
u = 0.

Proof Invariance of the subspace ker BT P(e) is achieved under the con-
dition:
d
y (B"P(e)z) = B"P(e)Az + B"P(e)Bu =0
This imposes the control
_ BTP(e)Ax
~ BTP(¢e)B
In order to satisfy the bound |u| < 1, we look for the maximum level V' (e) of
the Lyapunov function, such that, when V(z,¢) < V(e) and BT P(e)z = 0,
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—BTP(e
BT D( )B

the bound ]%E)Aw[ 1 is attained when BT P(e)x = 0, that is:

we have | Z| < 1. This amounts to find the minimal level set where

mingepe 7 P(e)x
s.t. BTP(¢)Axz = BTP(¢)B (4.9)
BTP(e)z =0

Note that the absolute value in the first equality constraint is superfluous
because of symmetry. Unless ker BY P(¢) is A-invariant, the Linear Quadratic
problem (4.9) has a unique solution, given by

2(e) = (BTP(€)B)?P(e)* AT P(¢)B — (BT P(¢) B)(BTP(¢)AB)B
(BTP(e)AB)? — BTP(e)B(BTP(e)AP(e)~1ATP(¢)B)

Vie) = z(e)" P(e)a(e)
(BT P(e)AP(¢)~ AT P(¢) B)(BT P(¢)B)*— (BT P(¢)AB)?(BT P(¢) B)®
[(BTP(e)AB)2— (BTP(E)AP(E) LAT P(e)B)(BT P(¢) B)]2
(BT P(e)B)3
(BTP(e)AP(e)~LAT P(e) B)(BT P(€) B)— (BT P(e) AB)?

To summarize, BY P(¢)x = 0 can be made invariant with |u| < 1 when

(B"P(e)B)’
(BTP(e)AP(e)~*ATP(€)B)(BTP(¢)B) — (BTP(¢)AB)?
d
A criterion to initialize Phase 2 of the algorithm is easily deduced from

Proposition 1. At any given point z € IR", Phase 2 can be initialized provided
there exist € > 0 such that

zTP(e)x <

BTP(e)z =0 (4.10)
and
(BTPAP*ATPB)(BTPB) — (B'PAB)?*)(2" Pz) < (BT PB)? (4.11)

Note that (4.10) and (4.11) exactly characterize the two situations considered
in Proposition 1.
We now give an explicit formulation of the algorithm.



Phase 1

The first task of the control algorithm is to drive the solution to a region of
the state-space where the conditions (4.10) and (4.11) are satisfied for some
e> 0.

A safe strategy to achieve this goal is to use the control law (3.7)

uyg = —sign(BT P(e)x) (4.12)

with P(e€) taken from (2.2) or (2.4), where ¢y = €(g) is chosen according to
(3.6). This control ensures convergence of the solution to the origin. The
equation

d
p (BTP(e(xO))m) = BT P(e(xy))Ax + (BTP(e(xO))B) U
then shows that the subspace ker BT P(¢(xy)) is reached in finite time because
BT P(e(wg)) Az converges to zero. Moreover, inequality (4.11), with e(zo), is
also satisfied in finite time because it is always satisfied in a neighborhood
of the origin. This means that Conditions (4.10) and (4.11) will be satisfied

in finite time, which terminates Phase 1.

Phase 2

The task of the controller during this phase of the algorithm is to increase €
up to 1, the value desired for local performance, while keeping the invariance
conditions (4.10) and (4.11) satisfied. This leads to two optimization prob-
lems, one or the other being used depending on whether constraint (4.11) is
an equality or a strict inequality.

Problem 1
If (4.11) is a strict inequality, the constraint is inactive, and the task of
the controller is then to maintain the invariance condition (4.10), that is

d, _r B
&(B P(e)x) =0

that can be rewritten as:

BT P(e)Az + BT P(¢)Bu + BTa];—(e)xé =0 (4.13)
€

At singular points where BToLE . 0, (4.13) gives no constraint on ¢é, but

Oe
u must satisfy:

—BTP(e)Ax
BTP(c)B

u =



(In practice, we do not adapt € at such points).
At regular points where BTaI;—ie)x # 0, we extract from (4.13) the adaptation
rule

_ B"P(¢)Az + BT P(¢) Bu

BT—agEE) z

€ =

and then solve the optimization problem

max € s.t.
d nor
—(B*P(e)x) =0 (4.14)
dt
lul <1 (4.15)

The solution is

OP(e)

— —sion(B7T
u sign( e )
Note that ¢ > 0 because \%TTFI;((EE)S;’\ <1

Problem 2
If the constraint (4.11) is active, that is an equality constraint:

(BTPAP*ATPB)(BTPB) — (B'PAB)?)(2" Pz) = (B PB)?

we impose that its time derivative be non positive, which yields an additional
constraint on €:

g(e)(x" P(e)Ax 4+ 2" ATP(e)x) < q(x, €)é
where
g(e) = (B"P(e)AP(e) AT P(e)B) (BT P(e)B) — (BT P(¢)AB)* > 0

ala,0) = 3(B"PBR(BT ) gy - W) (41 iy o) (a”

dP(e)
de

z)

with g(z, €) not sign definite and 27 P(¢) Az + 27 AT P(€)x < 0. The resulting
optimization problem is:



max € s.t.

d

a(BTP(e)gc) =0 (4.16)
g(e)(@' P(e)Ax + 2" ATP(€)x) < q(x, €)é (4.17)
lul <1 (4.18)

If g(z,€) > 0, constraint (4.17) is inactive and the solution of Problem 2
is identical to that of Problem 1.
Else, the optimal € is

g(€) (2T PAz+2T AT Px) max (BTPAxBTPB BTPAz+BTPB>>
)

q(x,e) BT 2B, ’ BT 2P,

€ = min(
Oe

de

€ QTT € €T mT r €)x
dOLTLOATATPO) yhen BT2EE, — .

Using this expression of €, the control u is then obtained from (4.13).

The solution trivially is € =

Phase 3

Once € has reached the desired value e; = 1, the adaptation is stopped
and convergence to the origin is ensured with the control u = _f;';i((ll))f‘;
which ensures invariance of the stable manifold BT P(1)z = 0. For local
performance, the control can be further switched to u = —B? P(1)z once the
level set 27 P(1)z = m has been reached.

5 Closed-loop behavior

5.1 Convergence

Phase 1 is designed such as to terminate in finite time, while the objective
of Phase 2 is to be terminated as fast as possible, with ¢ = 1. The normal
evolution of the algorithm is thus that Phase 1 and Phase 2 terminate in finite
time, and convergence of the solutions towards the origin is then ensured in
Phase 3 (unless finite time convergence to the origin was already achieved at
the end of Phase 1 or 2).

However, finite time termination of Phase 2 is not guaranteed. A situation
can arise where ¢ — ¢,, < 1 ast — oo. In this case, Phase 2 never terminates,
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but convergence to the origin is ensured. Indeed, we differentiate the function

V(z,e) = zT P(e)x:

GV (z,€) 2T (P(e)A+ ATP(e))x + 2B P(e)au + a7 22 ¢

2T (P(e)A+ ATP(€) + 2P(e)BBTP(¢))z + 7 22 ¢
T

x

(P(e)A+ ATP(e) + 2P(€)BBTP(e) + 20¢)

where the second equality holds because, during Phase 2, z € ker BT P(e).
We know that P(e)A + ATP(e) + 2P(e)BBTP(e) < 0 and that ¢ — 0;
therefore, there exists a time ¢, after which:

OP(e)
Oe

and V < 0, which implies convergence of the solution towards the origin.
Note that, when Phase 2 does not terminate in finite time, the opti-
mization problem 1 eventually becomes the only one that is used; indeed,
z'P(e)x — 0 as € — €, which means that constraint (4.11) will never
be active when z approaches the origin. The control law is then u =

—sign(BTa];—EE)m) or u = %&)ﬁw (< 1), whether BTaI;—EE)m # 0 or not.

P(e)A + ATP(e) + 2P(¢)BBT P(e) + é<0

5.2 Improvement of Phase 1

Phase 1 is designed to terminate in finite time, that is when BT P(e(xg))z =
0 and the constraint (4.11) are satisfied. In fact, verifying the invariance
conditions (4.10) and (4.11) for € = €(zo) is conservative because (4.10) and
(4.11) could be satisfied for some larger value n before they become satisfied
for €(xg), allowing to initialize Phase 2 sooner, with a larger value of €. The
conservatism would be eliminated by solving the nonlinear equation

BTP(n)r =0 (5.19)

for n on line and by checking the invariance condition (4.11), but this solution
is obviously numerically expensive. A practical recommendation is as follows:
given the initial condition zy, solve off-line the nonlinear equation (5.19). If
a positive solution 7(xg) exists, keep track of the solution of (5.19) during
Phase 1, by using the adaptation law:

dBTP(n)x
= VU7
dt
which gives:
T T . T 7OP(n) . _
B"P(n)Az — (B" P(n)B) sign(B" P(e(z0))x) + B 5, =0(5.20)
"
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Extracting 1 from (5.20), dictates the evolution of 7. It is then sufficient to
check online whether the additional constraint (4.11) becomes satisfied for
71, at a given time, in which case Phase 2 of the algorithm can be initialized
with € = 1. The solution of (5.19) may not exist for x = xy or may cease to
exist along the closed-loop solution z(t), in which case 7(t) escapes to infinity
in finite time. In such situations, one will adopt the conservative solution of
checking (4.10) and (4.11) for € = e(xo).

6 The double integrator

The algorithm is now illustrated on the double integrator:

.’i‘l = X2
Ty = u lu| <1
The simplicity of this second order system allows for analytical calculations

and yields an interesting analogy with the time-optimal control solution.
Solving the Riccati equation (2.2) with:

Q(6)=<€; 0)

results in the Lyapunov matrix:

and the family of low-gain controls is then:
u= —BTP(e)x = —e*z; — V3ex, e>0

which is a typical low-gain control for second order systems. We consider
that the behavior of the closed-loop system is satisfying when ¢ = 1. The
invariance conditions (4.10) and (4.11) give respectively:

2ot 2L =0 with e > 0 (6.21)

V3

€|$2|

V3

The latter being obtained from (4.11):

<1 (6.22)

6v'3
2T P(e)r = V3322 4 2% 2119 + V3ex) < —\/_ (6.23)
€
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taking equality (6.21) into account, or simply by imposing that the control
law maintaining (6.21) invariant be bounded by 1 (which is sufficient for
second order systems).

For the first phase of the algorithm, we follow (4.12) and use

6(m0)x1)
V3

with €(zg) chosen as in (3.6), that is:

u = —sign(zy +

1
e(zo) = max{n € (0,1] : V30’2, + 2n’zo120s + V3022, < ﬁ}

€
If €(z9) = 1, the control u = —BT P(1)z is applied and the algorithm is not
used. Otherwise, in order to apply the algorithm, we notice that the two
conditions (6.21) and (6.22) are simultaneously satisfied for some ¢ > 0 in

the sectors delimited by the axis zo = 0 (i.e. E'\%' = 0) and the manifold
elzz|

1+ Ta|w2| = 0 (ie. =7 = 1). Phase 1 of the algorithm will be implemented
only for initial conditions outside this sector, which is shaded on Figure 1.

(X, %)

Figure 1: Sectors of initial conditions for which Phase 1 is not applied for
the double integrator

Depending on the initial condition, Phase 1 terminates when the solution
reaches the axis zo = 0 or the manifold x; + zo|xs| = 0.
During Phase 2, we use the maximum ¢, while verifying

d €T 1116. €T

a(x2+%)205%+u+%
13



and 6%‘ < 1.
The control algorithm is then:

é — _ \/§u+ez2
1
u = —sign(xy)
until 422l — 1, meaning that the manifold z; + x2|zs| = 0 is reached. On the

V3
manifold, the two constraints (4.10) and (4.11 ) give:

V3u + exs +éx; =0
(eu + 6.1'2)1’2 < 0

and the solution maximizing € is

. 2
{ € = 3
— 1.s
u = —jsign(z;)

The resulting control is thus the control u = :I:% that keeps the manifold
x1 + 2|xe| = 0 invariant. The finite escape time observed for € corresponds
to finite time convergence of the solutions to the origin unless the adaptation
is stopped at 1 in which case the final control (in Phase 3) is u = — /5> Which
achieves invariance of the manifold x5 + % =

This control law is of course highly similar to the time-optimal solution.
The control law is bang-bang and the switching surface is the one of the
time-optimal control for a constraint |u| < 3.

The value % on the switching surface produces an average effect of the
sliding mode control u = —sign(z; + xa|z2|).

Our control algorithm and the control algorithm proposed in [5] can be

compared based on the time taken by both schemes to reach the level set

1

' P(1)x = BTP)B

(6.24)

that is:
1
V3

Indeed, once the solutions are inside this set, their behaviors are very similar.
The level set (6.24) is shown on Figure 2. Stars indicate the time instants
or the points in state-space at which the solutions reach this level set. The
faster convergence of the present algorithm can be explained by a faster
adaptation of € (see Figure 2): for a solution to reach the level set (6.24)
from the initial condition (10, 0), the stars indicate that it takes 6.79 for our

\/gxf + 2z129 + \/51’3 =

14



control algorithm versus 10.25 for the algorithm of [5], to be compared with
5.64 for the time optimal solution. This comes from the fact that, for a fixed
x, the constraint (3.8) on ¢, i.e.

1
2T P(e)x = V322 + 2e%x1 15 + V3ex: < —,
V3¢
is tighter than (6.23). Comparing (3.8) and (4.11), the algorithm proposed
in the present paper will accelerate the adaptation of ¢ whenever

L (BTP(¢)B)?
(BTP(e)B) ~ (BTP(c)AP(e) *ATP(¢)B)(BTP(¢)B) — (BT P(¢)AB)?

(6.25)

for € > 0.

7 Simulations

Figure 3 shows a simulation of the algorithm applied to the triple integrator:

i’l = X2
.I"Q = I3
T3 = u lul <1

for the initial condition (1,1,1). The family of low-gain control laws is gen-
erated by the Riccati equation (2.2), with the classical choice Q(¢) = e/. An
analytical solution cannot be found as easily as in the previous case, and
the Riccati equation is therefore numerically solved online. Note that for
higher dimensions, this calculation is expensive and justifies the use of (2.4),
as suggested in [5].

Figure 3 shows a comparison of the algorithm presented in this paper with
two other control schemes: the time optimal solution (which is still tractable
for this example) and the online adaptation from [5] discussed in Section 3.
The online adaptation is implemented with a large gain (k = %) because it
yields superior performance in this example. The difference between the three
control schemes can best be seen in the evolution of z;. The convergence of
x1 with our method is intermediate between the time-optimal solution and
the solution [5]. As in the previous example, the upper hand of the present
algorithm is also illustrated by the time that it takes for solutions to reach

the level set
1

' P(1)z = BTP()E

15



epsilon

Figure 2: Control of the double integrator: time optimal method (dotted),
Lin-Megretski’s method with k& = 1 (dash-dotted) and our method (solid)

(w10, 20) = (—10,0))

16



The faster adaptation of €, shown in Figure 3 allows for a faster convergence
to this level set (7.56, to be compared with 9.83 for the algorithm of [5] and
6.58 for the time-optimal solution, for the initial condition (1,1,1)). This
can be explained by inequality (6.25), which is again satisfied for all € > 0.
Finally, observe also that V' does not decrease during Phase 2.

Figure 3: Control of the third order integrator: time optimal method (dot-
ted), Lin-Megretski’s method with & = £ (dash-dotted) and our method

(solid) ((10, 20, z30) = (1,1,1))

8 Conclusion

The control algorithm presented in this paper aims at improving the con-
trol performance of linear systems with bounded input. Starting from low-
gain designs u = —BT P(e)z with infinite gain margin, we take advantage
of the fact that, if a high gain is added and u = —sat(kB* P(€)z), we have
BTP(e)x ~ 0 after a finite time. We explicitly use this observation in the
adaptation rule €, which leads to less conservative designs. Our design can
be seen as a sliding mode design for which the sliding surface is calculated
online. Further research in this direction will include the improvement of
low-gain designs for general nonlinear feedforward systems.
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