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VARIATIONAL PRINCIPLES IN FLUID MECHANICS

B. FRAEIJS DE VEUBEKE (LIEGE)

Introduction

There has been in recent years renewed interest for the powerful variational
methods in fluid mechanics. Surveys of known applications to transonic and super-
sonic flow have been published by W, Fiszpon [10, 11]. A o

The use of a lagrangean description of the flow, coupled with lagrangean varia-
tions of particle displacements, provides the most natural formalism for a variational

- principle. It is a natural extension of the powerful methods introduced in mechanics

by LAGRANGE, HAMILTON and JAcosr. The only difficulty is the introduction of
the side condition of conservation of pariicle mass when passing from a discrete
system to the continuous medium. Most of the older work on variational principles
is in this direction [2, 4, 5]; an excellent account of this approach is to be found

~in a more recent work of ECKART [8].

For practical applications however variational principles based on the eulermn
description of fields, coupled with eulerian, or local, variations are more useful.
Such principles have first been constructed, rather artificially, to yield the known
equations of conservation in eulerian form [3). The first attempt to derive them
logically from Hamilton’s principle seems to be due to HERIVEL [6]. As reported
by SERRIN [7], Herivel’s principle, which yields only irrotational flow, was com-

pleted by LIN.

The present paper attempts a completely logical derivation from Hamilton’s
principle to a purely eulerian principle. It is an extension of an earlier work [9]
where the same difficulty of removing the restriction to irrotational flow was dealt
with rather artificially. A logical step, which departs from the procedure adopted
by LIN, has been taken. Since independant variations are to be taken on the velocity
field, it is only natural to remove the constraints implying that the velocity is the

derivative of the particle’s position vector. This introduces a new vector multiplier -

enjoying a property of constant circulation along any segment fixed in the flow.
This procedure yields almost immediatly a general variational principle that can
easily be specialized to the principles given by BATEMAN.

1. Lagrangean and Enlerian Variations
Let
(1'1) xi:Xi(aji t,8)3 = 1,2a3: j= 1>233

denote the cartesian coordinates of a particle at time f; each particle is identified
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by its parameters, or lagrangean coordinates, @;. Equations (1.1) describe a family
of flows; the true flow corresponding to ¢ = 0, varied flows to ¢ % 0.
The displacement during the interval ¢f in true motion is

(1.2) dax,-:=<?—{"-> dt, i=12,3.
. 0t Je=o
Similarly, the lagrangean variation of displacement, is defined as
(1.3) (5ax,~=<gf‘—"> de, i=1,2,3.
68 e=0

[

Both notations suggest that the lagrangean coordinates are kept fixed so that both
displacemenis refer to the same particle.

More generally, let ,
1.4 J=F(ate)
denote an intensive variable of the field, then
s | : df= (i’i> dt
: ’ at E=0
is the material or total change due to true moiion:
: OF
(1.6) 8, = (-—) de
’ . de e=0

is the lagrangean variation.
Obviously the operators d, and d, commute:

a.mn 5ad‘,f=d‘,5,,f=<a“F> dedt
0e0t /=g

and commute with partial derivatives with respect to the lagrangéan coordinates.
Expression (1.4) is the lagrangean description of the field of the intensive variable f.
By solving Egs. (1.1) for the lagrangean coordinates

(1.8) ‘ a; = ay(x; 1,6)

and substituting in (1.4) one obtains in principle the eulerian description of the
field: S . ,
a9 | = F(aya 1,0),1,8) = (xi 1,8).

This naturally suggests 'cdrresponding definitions for the changes in f when the

. cartesian coordinates are kept fixed:

ot
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is the local change in f due to true motion,

(1.1 ) 0. f= (—af—> de
e =0

is the local or eulerian variation of the field. _

The operators d, and J, commute with each other and with the partial derivatives
with respect to the cartesian coordinates.

In subsequent calculaiions general use will be made of the eulerian description
of fields. The connection between the lagrangean and eulerian changes will there-
fore be explicited as follows:

- 3 '
(1.12) %f=¢f+§2~g;%m;
. ’ H 6xi
. . 1
. M 3 )
(1.13) s 7=0. > L5 x..
) i 5«\}'

i

When the more common notations

df _df o _dS

dt dt ot -dt

are used for the material and local time-derivatives, (1.12) reduces to the known
expression

(1.14) ﬂ: —U-f—+u~gradf,
. dt ot

where 1 :S{% are the velocity-field components.
t

-+ Similarly, (1.13) can be written

(s - O, =0, f+0,x grad f.

Observe that, by their very definitions

da; = —C’)ﬁj——}—u-grad a;=0,
dt ot
Jj=123.
0,a;=0,a;+0,%x grad a; =0,
-%;—i—=ui—-u-gradxi=0,
i=1,2,3.

0, X =0, x;—0,x gradx; =0,
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We need corresponding results for the volume element
D(Xy, X3, X5)

dv=Jda;da,day, J=
D((Il,{lz,a3)

The change in volume for the same aggregate of particles will be

d d
—dv=|-—J)da,da,da
dt (‘dt ) e

In calculating the derivative of the jacobian determinant use is made of the fol-
lowing expansions

d

a

0xX; 0 d,x;  ou; ou; 0X,

J = Jo—

dt da; Oa; di da; x,, da;

m=1

Rearraf?gement of the terms produces the well known result

e
L 4 y— Jdivu
’ dt
" so that
‘ d .
(1.16) . —d—du= dvdivu.
: 1

Similarly for the lagrangean variation

1.17) ' 8, dv = dvdivd,x.

Again, by definition,

(1.18) idu=0, d,dv=0
. dt .

We are now in a position to evaluate the changes occuring in any extensive quan-
tity fdv: :

(1.19) »-—(fd 0) = dfd +f-d _<Zf +fdwu>dv

But also, in view of (1.14)

2

(1.20) -——(fd) (f+d1v(fu))dv

Hence, integrating in a volume D, bounded by a surface S of outward mormal n,

.2 o —d-ffdv=3.ffdu+ Jf(u-n)ds.
5 o ot
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This gives the rate of change of the volume integral when the particles are followed
i in their true motion.
! ’ The perfectly similar calculation for variations gives

; W 5,(fdb) = (5,1 +/div 6,%) dv = (5_f+div (3, %)) dv
' S, [fdv=35, [fdo+ [1(,x m)dS.
D . D S

Ly

From this basic formula, a variational principle involving lagrangean variations
can be transformed in one involving only local variations, provided the additional
surface integral can be cancelled or suitably interpreted. The variational principles
i of dynamics also involve time integrals. A useful transformation is then obtained
: from (1.21) by integration:

12

(1.23) J F’; dvdt = — f ff(u-n) ds dt+} dev
ot .
t: D

i1 S D

t2

ll‘

2. Hamilton’s Principle

We consider the case of isentropic flow of a perfect fluid.
The specific internal energy F is a function of specific mass

@.1) E=E() with

aL _ P
do ¢

The specific potential energy £ of external forces is a function of cartesian coordi-
nates only, so that

(2.2) ' . 5,0=0, 5,0=gadQ-5,x. -

The Lagrangian per unit mass will be
| @3 L= (40,

Hamilton’s principle applies to a system that is closed with respect to mass ex-
change; the particles must be followed in their motion, so that the basic formulation
is lagrangean in nature:

O T

12 t .
.4 6, | [oLdvdt— fz [ p¥(6,x n)dSdt = 0.
. . ty D 5

1y S*

' The boundary condi.ons envisaged are as follows:

\ 1) on a portion S* of the bounding surface the pressure is given (p = p*) and
: the corresponding virtual work due to variation of particle displacements is in-
cluded in the principle,
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2) on the remainder S—.S* of the surface the fluid is gliding along flexible moving
walls. At any time the variation of particle displacement must verify the geometrical
constraint .

(2.5) é,x'n=0 on S-—S%.

The only independant variation in the principle is d, x.

. The corresponding variation on the specific mass ¢ must be obtained from a sepa-

rate statement of conservation of mass of a particle:

(2.6) O, (pdv)=0.
As a result of this the variational principle (2.4) assumes the equivalent form
I ' 12 .
@7 [ fed.Ldvdi—[ [p*(,x m)dSdt=0.
ty D . ty S* -
Expanding the variation of the Lagrangian.:
(2.8) ,L=w-S,u—"L_5,0—grad 0:5,x,
e
where ' N _
(2.9) | su=s_ 95«
dr- di

and, b}'/ virtue of (2.6) and (1.17)

©.10) o 8,0 = —odiv (5,%).

In preparation for the required integrations by parts we write finally
.ed,Ldv= —:;t—(é,,x-gudu)—i—div(pﬁnx)dn—c?aerv,

where

.11 "Mdy = 5— (oudv)+(grad p+ograd Qdv.

Consequently, the Euler equation of the variational principle is M dv = 0, a slate-
ment of conservation of momentum of a particle. It will be observed that it assumes
the newtonian form of the equations of motion

2.12) Q(ZTu+gradp+ggradQ=0
. .t

after an independant statement of conservation of mass during true motion

d
(2.13) | —d—t—(g dv) =0.

The boundary conditions obtained are

t t2
fzfp(éax-n)det—-f [ p*@.x-n)dSdt =0.
S ty S*
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By virtue of the geomet‘rical constraint (2.5), they reduce correctly to
(2.14) p—pF=0 on S*.
Finally there are initial conditions ’

'Dfé,,x~gudu=0 for 1=t and t=t,.

" They are satisfied by the usual rule stating that the varied configurations must

coincide with the true configuration in the initial and final state.

(2.15) 6,x=0 for (=1t and t=1,.

3. Eulerian form of Hamilton’s Principle .

A direct application of formula (1.22) brings the Hamilton principle into the

_ eulerian form '

12 15 1.2 . .
(1) 8. J [eLdvdi+ [ [oL(8,x-n)dSdi— [ [p*(d,x-n)dSdt=0.
1, D ty S t, S*
Introducing
(3.2) B0 LB o
do 0

the thermodynamical enthalpy, and remembering (1.18) and (2.2), we calculate

3.3) 0. (o) = <—‘],i— (u-u)—1I -—Q) d.0+ou-d.u,
wherein we must substitute
9,0 = —div(ed,x)
d,u=3d,u—(d,x grad)u = —;i;- 8, x~(0,xgrad)w.
Hence » _ ' .

O (oL) = (I +)div(ed,x)+ou- »(;—éax——%(u-u)div(gé,,x)—gu-(éax-grad)u.
at

The two last terms on the last line combine into

u-u \
- =divlp—8,x
| | (Q 2 )
and finally "

‘0, (eL) du = div[9<I+Q—E;)5ax:| du+';dh(gu-5,,xdu)——5ax-Mdv, ‘
. t .

where ‘
Mdv=—dd—(gudu)-!—ggrad([—!—!?)dv. 4
. odt

e
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After use of (2.13), the Euler equation appears in the equivalent form

(3.4) ? t+grad(I+Q) =0
t

showing the existence of an acceleration potential.
Because

Q(I—FQ——H—;ZB—) = p—olL

the boundary conditions of the eulerian form are identical to those of the lagrangean
form.

4. Generalization of the Eulerian Principle

By incorporating the constraint on the conservaiion of mass:
7 .
(.1) 5‘1+dw (ou) =0
. : s

with a lagrangean multiplier, the principle can be made self-supporting. This step
alone, however, is known to be insufficient. In transfering to variations on the
velocity field it restricts the flow to the irrotational case. If variations on the velocity
field are to replace variations on particle coordinates, it is necessary to remove
also the constraints '

“4.2) ‘ ——u=0,

This second step departs from the procedure adopted by Lin to amplify the eulerian
principle formutated by HERIVEL [6]. It seems more satisfactory from the viewpoint
of proceeding without preconceived knowledge of the results to obtain. The generali-
zed principle is then '

I
I 12

@.3) 5, J J[9L+ ¢ (_é’g_ +div (QH)) +od- (E’wx- ——u)] dodf
ot dt

ty D

12

12
+J JeL(éaX'“)dS‘.”*J JP*(éax-n)detxo.
1 S )

t; S*

' Variation of the scalar multiplier ¢ yields (4.1) as Euler-Lagrange equation, varia-

tion of the vector multiplier { yields the constraints (4.2).
The independant variations d, u produce as Euler equation

4.4) u—grad ¢ — =v0 o

[
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while the independant variation d, p yields

u'u d¢
— e ] Q
4.5) [-Q T

5 = 0.

~To establish the Euler equation for 6, x we must mzinipulate

l%——-éi’i —(5,x grad)u = —?ﬂé,,x—{éax-grad)u.
t Sdt

And consequently

4.6) @q)-éx—((% dv = »-(5 X- gtj)du)——ﬁ X- —-—( o dv)y—adods-(J,x-grad)u.

Using the property (2.13), furnished by .the principle in the equivalent form (4.1),
it turns out that the components of the vector multiplier verify, according to (4.6),
the differential equations :

3

dy; Z: ou; I
(4.7) 7}""‘*‘ QI)J—Z{{'——“O, l——-l,..,.).

Jj=1

An equivalent vectorial equation is
e
(4.8) —5~+grad(¢'u)+rot¢xu =0
: ¢

The independant boundary conditions turn out to be:

4.9) [ f ¢do(S,u-n)dSdt =
. L5
and, because of (4.5),
. d¢
eL=p+o—— dr

(4.10) JJ(p—!— T )(6 X n)del—-J J.p ‘(3,x-n)dSdt = .

A necessary constraint on the velocity field is

(4.11) b,u'm)=0 on S-S*,

‘if the compared motions are to remain tangent to the moving walls. On the surface

§%, the variations d, u are free and consequently (4.9) imposes a natural condition
(4.12) ¢=0 on S*. ’

Since pariicles on the free surface will remain on it, (4.12) will entail

(4.13) : —(gf— = on S*.

e ®
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Thus, while along the moving walls the constraint (2.5) prevails, (4.10) is again
satisfied along S* by the pressure condition (2.14).
Initial conditions for the principle are

(4.14) [¥-8,X)dv=0 for t=1 and t=t,,
D :

which is satisfied by the rule (2.15), 'and

4.15) [¢pd0dv=0 for t=1 and t=1,.
D [

Indeed, to have (2.6) satisfied at all times, we need to have it satisfied initially.
After that, Eq. (2.13) which is now catered for by the principle, will keep it true
at later times. Thus we need to have

d,0= —odiv(@d,x) Tfor t=1,
and by*virtue of (2.15) this reduces to the condition
\
4.16) | d,0=0 Tfor 1t=1,.

The similar condition for ¢ = f, will then be automatically satisfied. To achieve’

. the consistency proof of the generalized principle it remains to show that it furnishes

the newtonian equations of motion. Indeed, taking ¢ from (4.4) and d¢/dt rom
(4.5), (4.8) becomes

“.17 —a——+gnad(—a— +I+D>+rotuxn—0
) t

5. ¢ As a Constant Circulation Field

Since the final aim is to remove entirely the necessity for vaiiations of particle
displacements, the corresponding Euler-Lagrange Eq. (4.8) must somehow be
solved and the solution substituted into the principle.

The nature of the solution can be recognized by the property of the { field to ‘

keep a constant circulation along any segment carried with the particles in their
motion. :
If dx (dxy, dx,, dx;) is such a segment

3 3

‘ d 2 i 2 :(dwp, )
5.1 — Cypdx ) = dx;+v;du
( ) ' dt( - ¥ ) i\ d Y

‘by virtue of the diffgrenﬁal Egs. (4.7). Hence the differential form

3 4 3 3 3
D wdsi= > a0 = Z(Z no! )a’a
1 1 : =1 i=1

"

e g
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expressed in lagrangean coordinates, is explicitly independant of time and can
be written

3
(5.2) va dx; = ZA (apda;,
‘ 1

where the functions A; depend only on the chosen set of lagrangean variables.

‘It will be convenient to think of the Pfaffian form (5.2) in the lagrangean variables

as reduced to any canonical form: ,
H

3
;A;(ak) da;=dI'+AdB.

Then, returning to the eulerian representation,

3

(5.3) | Z’/’i dx; = dy(x, 4o (x, D) df(x, 1),

| 1
where ,

1

|
(5.4) ; ff‘ﬁ_o ibl:o, ay _

dit dt dt

It appears finally from (5.3) that the general soluiion of (4.8) is
(5.5) ' A G =grady-+agrad 3,

where «, § and y are lagrangean variables.

6. Elimination of the Variations d,x

The solution (5.4) and (5.5) of the vector multipliers is substituted into the ge-
neralized principle as follows.

From (5.4)
- i[i 6/3 cgradf =0 ﬂ=a—y+§—'grad)}=0.
dt ot dt dt ot dt
- This allows us to write
dx dx [0y (7/3)
c— = (grady+agrad f) — = - —+« —
¢ o - (grad y 4o grad f) @ ( o 5

and the kernel of the variational principle becomes

K= QL+¢<ég+diV(9")> —0(*6—1}i +u-grad v>~9a (—.ai+u'grad ﬂ).
ot S\ Ot 4 ot

There are no J, x terms stemming any more from variation of the kernel. Accor-
dingly all boundary terms in 4, x in the varia‘inrnal principle are also removed,
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which will entail that any pressure condition will have to be satisfied independently.
In expanding the principle ’

l2

(6.1) . 6, [Kdvdt=

| ty D
it is easily seen that dy/dr = 0 is lost as an Euler equation but, simultaneously, .
that variations on ¢ and y play a similar role. As a maiter of fact we can write the :
second term of K dv as follows:

¢ -a—g—»l-div(gu) du=i(</>gdv)—g £‘)-diJru-grmi(ﬁ)du. i
ot dt ot ,
Removal of the total iime derivative will only modify the conditions at t = f,

and ¢ = t,, while it is seen that ¢ and ¥y combine into a single variable 0 = ¢ +.
Hence we consider the principle (6.1) with the simplified kernel

K=p Y k0 —(ég—+u-grad0>—oz<3ﬁ+u-grad/3)}.
: 2 ot S\t
The following Euler equations are obtained
62y , d,u u=gradf-+ogradf,
. ' u-u d/)’
6.3 O — =1+ Q+ +
,( ) ¢ 2 dt di’
: de .
6.4 A 8,0 — +div(ow) =0
: ot .
. dp f
6.5 (Sx(x B =1 R
©3) =
0 . i
(6.6) 6.8 = o0) + div (pau) =
e t
together with initial condmons requiring 0, 6 and 4, f to vanish for ¢ = f; and -
t =1,
From (6.4) and (6.6) the result du/dt = 0 is retrieved and (6.2) is then the formu-
lation of the velocity field originally given by Clebsch [1]. : €

The vorticity is represented by
©6.7) rotu = grad o x grad f8

so that the voriex lines are intersections of the surfaces « = constant and g =
= constant which move with the pariicles.
Combining the result

o dp (o0 aﬂ)
u-u=u- ad0+oz radff) = —+« B
(er grad f) dt dt (a: ot

e @ rrgomg e P e T
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obtained from (6.2) with (6.3), we find the energy integral

9B _

(6.8) I+9+ L‘i+__+
2 of

;The newtonian equations of motions can be derived by taking the material deri-
v'vfmve of (6.2).

The absence of natural surface boundary conditions is a m'\ﬂer of closer scrutiny
of the technique of integration by parts. In the stationary case there are surface
boundary terms; in the non stationary case those terms are cancelled by appli-
cation of formula (1.23). A natural way to correct this situation is to replace (1.21)
by the statement

(6.9) ) J‘f v=— deer Jf(w n)ds,
s

where w is equal to the fluid velocity u on the free surface S*, but elsewhere equal
to the local velocity of the wall. If the fluid is gliding along the wall there is no
flux across it and (6.9) holds true as well as (1.21). Replacing (1.23) by the new

formula
(6.10) .[ J dvdt = J Jf(w n)dS di+ deu}Z
f0(5 0+0d, B)(W—u-n)dSdt =0

1y S

the surface boundary terms obtained are

1y
They require correctly that
(6.11) a'n=w-'n on S.

7. The Variatienal Principles of ‘Bateman

There are two ways of modifying the presentation of the variational principle
(6.1) with the simplified kernel.

When (6.3) is used a priori, the variations on g should disappear. This is achieved
by substlitution of (6.3) into the kernel, producing:

K=o(I-E)=p.

In this presentation p should be considered as a function of the enthalpy, the ent-
balpy itself being taken from (6.3). The procedure is very similar to the transfor-
mation of the total energy principle of elasticity into the complementary energy
principle. One first looks after the variable conjugate to p with respeci to the energy
per unit volume, which turns out to be the enth'alpy:

d dE
~ (eE)=E+p—— =1.
dg(@) ng

L
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The complementary energy is then built up by a contact transformation and
turns out to be the pressure

|,
0 i(eE)—@E =o(I-E)=p.
do :

This complementary energy is to be considered as a function of the conjugate
variable /. In fact, from the involutive property of contact transformations:

. | P _y.

Bateman’s first principle is precisely

(12) ‘ 1 f pdvdt =0
| "
|
where p=p (1) and one considers a priori that

{
13) ¢ = l’) -0Q- <6—0+u grad 0>~—a(—ﬁ~+u gmd[i)

ot

i L

"~ In view of (7.1) the Euler equations are again (6.2), (6.4), (6.5) and (6.6).

Suppose now that (6.2) is used @ priori; then u and its variation should disap-
pear. Replacing (6.2) inio the kernel, it takes the form

(7.4 K=:—9<E+ +~a—+oc%£+—(glad9+dgrad/}) (glad0+ozg1adﬁ)>

The Euler equations of this principle are (6.3), (6.4), (6.5) and (6.6), where u
stands for the expression given by (6.2).

With this understanding, Bateman’s second principle for the stationary case
is sometimes losely written as

’ ' 12 . \ . ‘
(1.5) 6 fg(E+Q+u)dudt =0. .
' 1ty D 2

In most practical applications both modifications are used. In applying (7.2),
the pressure is expressed as a function of the enthalpy and the enthalpy directly
expressed in terms of the functions (&, «, ) '

a0. ap

(7.6) I = —Qr——a—f—aa_— —(grad0+ocgrad B)-(grad 0+ grad f).
t t

.

8. Isoenergetic Flows

The restriction to xsentloplc flow is easily removed to treat the more generdl

“case of isoenergetic flow, characterized by

dS

8.1
(8.1) - =
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This law of conservation of entropy for each particle, shows that $ is a function
of lagrangean variables only. Instcad of introducing it as a side condition with
a lagrangean multiplier, a procedure followed by HeriveL [6] and ECKART [8],
we prefer to keep the velocity field in the form (6.2) and consider the entropy as
a function

(8.2) S=5(0,0,f).

With this understanding, and remembering thai:
ab (Q’ S) — 1)/02 and aE(Q: S) — T,
Op . oS

where T is the absoluie temperature, the Euler equations of principle (6.1) are
modified as follows: (6.2) and (6.3) remain true, (6.4) remains irue provided:
as . '
8.9 — =0 Qe S=S{
a0
(6.5) and (6.6) are replaced by:

dp _ _0S  do as
dt oo’ dt - AP

(8.5)

Observe that from these equations

dS @S du  3S df _

R —— — e

dt 6o dt 0f dt

as required. .
- The vortex lines are still given by the intersections of the surfaces « = constant
and f = constant but they are no more fixed in the fluid. Another consequence

“of (8.5) is

8.6) -'g—g+roi uxu=TgradS
: t

so that, by Crocco’s theorem

(8.7) grad <I+.Q+ 521) =0.
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