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Introduetion.

The purpose of fthe flnﬁbe e1emcnts methed in matriz structural

analysis is 4 . ,
- 0 define generalized loads and generalized displacement in

terms of which the connection between elements is expressible

by simple identification of displacements and transmission of
~loads;. ‘

to relate an internal stress field and, if possible, an 1nterna1
dlsplacemenﬁ field to the generallze& quantities;

to establish a stiffness matrix or any other convenient form of
relations b@tWeen generalized displacements describing the elas-~
tic properties of the element; |

to solve for the unknowxn quantities of the coﬁnccted cuructdreﬂ

uaklng in%o account the external loading and the appropriate
boundary conditions,
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The discretization, that necessarily occurs at some stage of
& structural analysis when mumerical results are Yo be prosiuced,
ig here incorporated at the outset in the limited number of '
degrees of freedom allocated to the element deformation. This,
as a rule, implies approximations either %0 the ccpatibility
conditions or to the equilibriuvm-conditiong or to both,
’The varleby o models that can be set up to approximate the ele=-
ment behaviour can therefore be subdivided into three classes
according to their properties of .
- aatisfying compatibility but not equilibrium,
~ sabisfying equilibrium bub not compatibility,
-~ violating both equilibrium and compatibilitys :
Confronted with so ‘many possibilities, it is natural thau the*)
question of accuracy of the overall analysis be raiged with res-
pect to any partlcular ah01ce of model. In general the accuracy

B ig established on an experimental basis by checking the analywls_L’

of simple structure against a known exact solubion or by exami-
ning the convergence trends f analyses repeated with a finer
network of elements. Much theoretical work remains to be dome in
order to esbabllsh the model requirements ensuring convergence to
the exact solution when the size of the elements fends to zerm

There are however two parfticular types of models'that allow a |

direct estimate of the convergence from energy congiderations:
For convenience they will be refer@ed to ag the displacemenﬁ Mo
dels'and the equilibrium models'. ' . '
Digplacement models are the best known;‘They are based on
parametric digplacement fields ensuring compatlbllluy of defor-
mations bQﬁh internal to the elements and across their boundaries.
Under thgse conditions the whole displacement field of the connec-
ted stfucture is continuous and piecewise differentiable,. The
examples given are presented with a particular emphasis on the

role of the displacement modes attached o the generalized varia-

bles as weight functions for the external loads.

bqu111br1um models are based om yarametrlc stresg fields secu- -

‘ring internal equilibrium and cquiinuous stress transmigsien bet-
ween elements, The whole stregs field ieg then in equilibrium,
(This chapter presents later a generdl theory for conétructingv
such equilibrium models), The examples illustrate the possibili-
ties of false kinematical deformation modes appearing either in.
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~a single element or in a combination of them and methods for dea-

ling with such situationss - ‘

Arguments based on two-field variational pr inciples are presen-
ted to Justify the superlority of the minimal principles in deri-
ving the stiffness properties of the elements, Still more power-
ful arguments are to be found in the upper and lower bound charac-
ter of the approximate influence coefficients so obtained, Shoxrt
proofs of the upper and lower bound proporvles are presented to
make this chapter self contained.

A dual analysie of a given siructure, based on the alternate
use of displacement and equilibrium models, and submitted to the

same external loads and boundary conditions allows a direct quantbi-j

tative estimate of the convergence to the ftrue solution by compa~
rigon of the upper and lower bounds obtaineds

Both the direct stiffness method end the gelf-gtraining method
for golving the connected fields of elements are given a brief
review, The last one is the more promising for dealing with equil=
| librium models. ‘ ' ‘ |

2, Varistional prineiples spplicable to simplify the analysis
of finite elements.

The use of gelected deformation modes or stress-~trangmission
nodes to approximate the elastic behaviour of a finite element
Cmust in the end resuld in a get of equations relating generalized

- loads o generallzedudlsplcwements° This set isg conveniently dexi— |
ved from energy theorems or variational principles, the most widely]
“used being the principle of variation of displacements and the print

ciple of variation of strepses, also called the complementary ener-
gy pylvclpleo

More general principles éxist which, in theory, allow simulﬁa«
neous approximations on displacements and stresses, It seems worth-
while t@ discuss them brlefly, if only to show their limited use-~
fulness,

For brevity, only the plane stress case will be. considefed; the
extensiong to three dimensional problems belng obviouso By the term

"Pield" will be understood a field of stresses and smralns related
"I by the energy equations

Y Bel’s | "a'ﬁf
2T pe, ’fg qg’%? 7 f‘pgg (1)

i
-
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where ?{{éﬁ i&ga?} Egﬁ ., more briefly denoted by W (€], is
the strain energy density, or energy per unit surface area in the
reference condition. Hence &5:%'3’ 8y 4 ;*3- ) are not properly
speaking stresses but rather normal loads and shear flows dezlnad
- per -unit thickness of slice., The same stregs-gtrain relations are
expressed. by

o= 22 yos 22 g s 2T 2)

' hers q& ﬁ@»’ﬁ ?gggé,y é) , more briefly denoted by %& M"j s 18
the complementary energy density defined by the Legendre trans—
‘formatlon

= 6.¢ ¢ T, ' by & = A : - - (3)
“}g - P Sx mng;q? J s o ' -
- A field is "integrable® if single~valued, continuously differen-

‘tiable displacement functions wu(x, y) and v{(x, y) exist such
that | _

. ‘ P, 2P 222 o s
CRETR L R T R M iﬂ“g % W

The use of those equations implies that the analysis is also res-
tricted to small strains and small rotations.

. A field is "compatible" if, in addition to equations (4) the
‘displacement functions satisfy prescrlbed boundary dn.splacemen’cs
on parts of the*boundary demoted by f,

,@zf? | m-‘?ﬁ em - (5)

A flc"d is am “equlllbf'tum Tield" if the stresses satisfy the fol;u

lowing equi llbrlum equations

D65 BTy, oo ==
AL T °%y %-géaiw + Y 2o (6)

~
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pe=lf 0, < b, ;;ggi%wng by ol D
where (1, m) are the direction cosines‘of the outward normal to
the boundary, (X, ¥) are prescribed internal loads and (Dys Ty, )
préSCflbéd boundawy loads, Thegparu of the boundafy is complomwn—

tary to fﬂ ?*_

2:1: The general variational principleo
The general variational principle of elasticity can be stated
as follows

5{@%?%3}%‘@ o

where 3 =j W{ﬁj dxdy is the total gtrain energy, calouw

lated from a field represented by the strains (@%‘pﬁk?é @3 }

j(%@&%gg}s&%

| p'ﬁmjﬁ§%?§@ﬁﬁﬁ¢? -
k a ‘e

is the potential energy of prescribed loadsg, calculated from an‘
integrable field represented by the displacements (u, v)i

ﬁjjﬁ' Wt T (e W’*M”Wf@
/[ﬁf@m‘“‘*&ﬁ’ff&/% gé’m@ﬁ}?oﬁ,@

is a dislocation potentlal 1qtfoduclng a third field feprewen%ed
by the stressesg ?? s @” ) . These stresses can be congi-

 ,dered as Lawrangean multlpllers rpmov;ﬂg uhe oompat blllty cong=

traints (4) and (5) that must be. satlsfled a priori in the sim~
‘pler princ;ple of variation of displacements
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In this simpler principle only digplacements (v, v) are invelved
and subject to variations. In the general principle all three
fields are subject to independant variations. Those on the Lagran-
gean multipliers restore the compatibility conditions (4) and (5),
Those o the (@agﬁ% 96,3? J field require that

g I o g ©
,g;g?ffg“ %’@% . .g'ammfv'ﬁ'zf 5% = 6, |
¢ .y "?5}@? % §

- In other words they require that the Lagrangean mﬁltlpllers become
identical with the stresses of the fémﬁ Ef’% ¥ & } fields Final-

ly the variations on (u, v) require ‘that the Lagrangnan miltipliers

be an equilibrium Pleld~ the stresses (5;51 ,u P 5“ J should
satisfy the equilibrium equations (6) and (7). A functional dia-
“gram of this general principle is illustrated on

4 EQUILIBARIVMT |

Figs 1%

L ) Fize

| Pig. 1 and is self explanatory. In the end there is complete iden-
tification between the three fields and the solution must, ag it
should, be compatible and in equilibrium.

2.2, B. Reissner's principles .
By making a priori assunptions on the multipliers the general

principle can be simplified, still leaving us with two independant
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fields. The sgsumpbtion leading to Reissnerfs principle 3,% is
that equations (9) are gatisfied a priori. Then, in view of defi-
nition (3), the general theoren reduces to

? g j}ig@;&%% ‘E’Ry(ug-ﬁx &?gg}cﬁ- 5;?@:? = éﬁ?{j@?ﬁﬁ{;

-ﬁ»?:;#j {nﬁﬁiﬁa@%}#ﬁgé@@é}}éﬁ@} = @ (10)
/; | | :

The functional diagram of this is illustrated on Fig., 2

! (ee } Free D

A S

)
\d

. (@Qj FlEL D M%z‘g‘%yéé’-@éﬂsgﬁg

The theoretical possibility of using separate approximation on
the displacements (u,; v) and the stresses g%,:v%ﬁ é},j s
with this theorem, raises the following points :

. (a) If no restrictive assumptions are made on the stresses‘,
their variation reguires | N

‘@@' | ‘ ’Egﬁa
Ot on o= o= gﬁ@’ & ‘5‘% gwﬂ"’f‘“ = ﬁ‘ﬁ’
SERCI )Y J K =y K (11)
o= 2P _ g |
Y
| d
. . . )
& =7 ve b en [, (12)
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Equations (11) show that égéwdgh%,@' ) are the stresses rela-
ted to the strains (U, uy+0 4 5 @y ) 80 that, in view of (3),
Reissner's pr1n01ple (10) reduces Hto the ordinary displacement
principle }

5&? W (s, v, g}dm;% P§“ © (13)

Thig result can be stated in the form-of a'limitation principle s °
If a net of finite elements is analyzed by compatible displace- _
ment modes and the stresses left free to be determined by energy .
considerations, the best stresses are those associated with the
strains derived from the displacements and the degreeslof~freedom~
in the displacement modes are governed by the ordinary principle
of variation of dldplaoemertso In other words it is useless %o
' look for a better solution by 1naect1ng additional degrees of
freedom in the stresses, although the stresses obtained will not,
as a rule gatisfy the detailed equilibrium coxnditionsy

(b) Comversely, if noirestrective assumptions are made on the
displacements, variations en those will require the stresses to

“5_’be golittions of the equilibrium équationg; This is precigely the

‘.type,of approach- one wishes to use in the stress model analysis
- of finite elements, If we then assume a stress field in equili-
brium and con51der the fol]ow1ﬁg 1nbcgration by parts

i 5@4 + & }-z:v }vjd% .
?&/muwvmj fl@e@% 'ij‘; o T o T2 ety

@]
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This result, substituted into (10) reduces Reissner's principle
to the complementary energy principle

3] [ #100ey - (o) af=e o
r

€

-

This can again be stated as another limiftation prineiple ¢ If the

stregses g-ﬁ; s ﬁ?; @Q j form an equilibrium field a priori

their degrees of freedom are governed by the ordinary complemen—
tary energy principle. in as much at the resulting strains are
noty as a rule integrable the principle gives no indication con-
cerning a best associated displacement field,

It would be wrong to conclude -from the limitation principles
that Reissner!s principle is worthless. It can be used to advan-

tage in developing a consistent equilibrium analysis based on par=i |

tial assunptions on the stresses. 56
A good example is provided by Reissner's theory of plate bending’

2.3 Another two-field variational principle, _ o
Another way to simplify the gemeral principle is to endow the
multipliers with the property of equilibrium. Then, through an
ntegratlon by parts similar to that achieved before, the weveral
pw1n01p78 reduces to @

ggﬂ’{zﬁg; ,,@sz ¢+ 5 f&% 527@4&&?
y (/}&Zzwﬁéﬁ/@%%;o

FD
te
(15)
It contawns the eqvllLbrlum field iﬁ' 5‘ ) B aﬁd fﬁéHw'WV7
arbvtrary field (£, , i%?, %% f ~ o Ius Iunctional dlagram

is represented on Fig. 3. The 1imitat10ns;
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| ', — (o) Eguil. g

-

(c) Fr3e

involved in the use of simultansous éﬁproximations are very simi~{
lar to those of Reissner's principles; A

(a) A Sfrain Tield free of restrictive asswnptions will result

in Buler-Lagrange equations - |

@“A%;gl” »T,_mv“?%fﬁ?p;_ @aawg%f

f A = Tk &a . Y5z ’ =

o fa%%w:v ‘ ‘% ?gai - ”? / @ﬁg

identifying the best strain field with the one associated to the .
~equilibrium FPield, As a result (15) again degenerates into the
complementary energy principle (14) that will goverm the degrees
~of freedom in the equilibrium field, Unless the strain field aszo=-
clated to this equilibrium Tield is integrable, no indioaﬁioné
are given .cencerning displacements. o |

(b) If, in order to obtain displacements, the strain field is
assumed a priori to be integrable;“substitution of squations (4)
followed by an integration by parts and consideration of the
equilibrium equations satisfied by the (0’ ) field, transform the
principle back to thev@isplaCement principle (13)% :

0

234%,Orthogonality of equilibrium solutions and compatible ‘solu-
tidns in Tunction gpace.

-~ 'Up %o now the stiress-strain relatvions expressed by equations

(1) or (2) were kept of gemeral natures in particular the conclu-

gsions reached before are valid for non-linemr relationg.
In the case of linear stressz-strain relatioms the absence of

interaction between compatible fields and equilibrium fields can -

be presented in a more striking form. Both the sirain energy dens’
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gity and the complementary energy density are quadratic homo-
geneous positive definite forms so that, by Euler's theorem,
the following numerical equivalence existis

é%zé(@‘ﬁg%?%%#%gg}g?é (16)

It is a local expression of Clapeyron's theorem., Furthermore the
expansion of the energy density of the difference between two
fields can be written

.?waf(léﬂgej =, ?ffﬁfﬂ?’“ Wﬁéﬁj: - Ll Wj -
with ' | . a5” f & ° “‘éréﬁjjﬂ
i (et b (5-6") W/@;aaﬁw W!ﬁiw%’v /&1:
whene P gﬂ’
here ,ééﬁ;@”jf #gf?“§ #ggd

¢

' /
é%@’;ﬁzi;%‘é}%# gg_gg“‘z” ¢] (18)

]

Thig is a local form of Betti-Rayleigh's reoiprocal theorem, If
one considers s field in the domain 4 as a point F in funetion
’space, the disfance d4(F, FP*) between two fields ie conveniently
‘defined by d4(F, P') = 2/ de(F, 1)

die) = sffiessy < o) genay .,
| 4 ' '

This definivion satisfies the required axioms of distance (see

for_instanoe ref, 5)s
F’}'{g @gfﬁ; F}

C%f/f'pa/v d F /:" “{ cl{f-’" F':/}

’

Fﬂj =0 L=»> FoE F
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The function space ig thereby provided with a metrio6 in particu~

lar the scalar product (F, F') botween two fields is thereby defi-
ned. From f

eig'{@"w}g @j‘#‘gf iﬁi@/}@g{ _j

where O denotes the grigin (stresses and gtrains 1dent10aliy zero)%
applying the definition of distance

(F,F') :[/ﬁm;# Mé%'wf*éﬁ oy
- a | | .

And finally, in viéw’%f equations (17) and (18)

(FFY= AZ/(%M%“@ by b oty

‘ : ~£' o P | _ [} 1 m‘ é’,‘{;
=ty Gty ) day 2 (5

Congequently the scalar product is the total interference energy
between the two fieldss

0f special interest will be the study of the distance between
a compatible field, for which equation (4) and (5) are valid and
an equilibrium field in which the stresses satisfy equations (6)
and (7). Let this be the case respectively for the fields F- and F'd
Their scalar product is then expresgible in uerms of the pfesov1~ )
‘bed loads and boundary displacements s ’

(55’)24(“%%p+{ujf }‘z' 0 jcﬁzz@

becomes after integration by parts and use of the equilibrium equan
tions satisfied by the field F' and equations (5) ’




l
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£, F’ﬁ} ::Aééi(jﬁm1?5;&9129#3‘£;L
a4

#/ mwﬁ(ﬁ}“’é@ f’"ﬁﬁwf’"%w}@% .

v follows then from (17) that the distance between the two
fields can be placed into the form

*f&‘f éé‘}; Mj =
Wig)dn %&%?@9 it cly = (Bt f v) clh
f G oy (FerTo) ey [P

K (éﬁ;%ﬂ@‘ﬂ}@ﬁx%@ @jf“ Ué&%&%ﬁgf&”j ey (22)

Since -the exact solution must enjoy both qualities of equili-
brium and compatipbility, the distance between a compatible
approach znd an equilibrium approach must in the end vanish.
Conversely, when the distance vanishes we know that both fields

- are ldentical and must then represent the exact solution., Hence
a sultable energy principle will be ’

a%(F, F') minimum | | (23)

Inspecfion of equation}(22) reveals however that~thi3sprinciple
spontaneously degenerates in two other principles 3

j{/?? é’aaw ei? @i;zaé?? # P winimm e
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j DLt du e mf " b, B)dg minimum (25)
é¢ / ey /‘;U% 4% |

The first is the principle of minimum totazl potential, the second
the principle of minimum'COmplementary energy. They are both more j
precise statements of principles (13) and (14) under the linear -
stxess—straln assumptions ‘

oIt is clear that approximations on displacements will not 1nuer~i'

act with approximations on equilibrium stresses and conversely,

eagh will be governed by ite own independant principleo It is one ¥4

‘aspect of the orthogonality in function space of the subspace of
equilibrium solutions and the subspace of compatible solutions,
,}' In the applications, the minimum of total potential will be used.
to eotabllsh the propertles of displacement models, the minimum -
' ompTementarv enevgy for stress models, By gecuring the cont1nu1ty
of displacements between elements, or the continuity of stress _
transmission, both principles will also apply to the structure as
1 & whole, It can then be establiShed991O that a lower bound to a
direct influence coefficient is produced by the displacement ana=- .
lysis, anﬁupper bound by” the stress analysis. Furthermore the re-
. sults of both analyses allow a similar enclosure to be built for
the mutual influence coefficients! 1s12s 13"40 This alreddy prov1dos
a powerfuT _control on the overall accuracy of the an aly81s in
flnlte elemenrs0 Bounds on 1ocal stress values can also be. obtél— :
ned in pr1n01ple through the use of Green functionsS; the amount of
- analytical and numerical work involved seems however*too high to be
‘of véal practical utllltyo

N e
\

T Dlsplacemenu model analv51s;

e 4 0 Um@;] m%%?’?m»w- (26)
&
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be = displacement field‘expreséedrin terms of assumed displace-

ment modes (Ui(xﬁy), Vi(x,y)) with unknown amplitudes &;

The column matrix of the amplitudes will be denmoted by &¢
L L ,

itg transpose Of is the row matrix

(€, & -.. &, }

The following matrix notations are also introduced
~ ;

g = ( €4, ggﬁg%«?)

7
_6@?{?‘ by , ?2

From the displacement field follows by taking partial derivati-
ves ‘

; a7 e T o
@% elew (2

with the (nx3) matrix
© ‘ ° « ?f" 1 y d@“%n .
é%‘fiw DU, , 2 V; , fﬁi; @ufiiﬁa | Aoty s &R
i EA &v 9ho80

A ? g, @g
The linear stiress-sbtrain relations are given in matriz form by

@”"gﬁé . ._ (28)

where, taking as example an isotropic plate in plane stress of
thickness t(x,y), ‘ | \

5 ¥ 0

.mj WM % ¥ 94 o

y & : . ' |

COOPIISREYALD [

&
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The strain energy density can now be expressed as a quadratic
form in thé €& gtarting from Clapeyron's theorem
| .
W= % Fe = ﬁ'&i@@ =2 (698)x o)
~ Generalized displacements (qj) are next deflned according to

. certain rulesg :

- connection of the element with another element across a com=
mon boundary is to be expressed by eavating, two by two, the
generalized displacements pertaining %o this boundary, :

- the whole displacement field along this houndary must be deteru

- mined uniquely by the generallzed displacements pertaining to f
the boundary and converselyo In thls manner, equating the gene-|
ralized displacements secures the continuLty of dlsplacements .
along the boundaryy, _

= the number of parameters ©f; must be equal or superior to the
number of required generalized displacements. If superior, G onwp
venient additional generalized displacements can be chosen 80
that the matrices & and q can be connected by a non - 31n¥

gular linear transformation of matriz T= (T, 3)

el = T? ? = TW’& - | (31) ‘;

The unrequired components of g can be eliminated later (see
_exauple of section 3.4:)s From (30)-and (31)-the-total etrain
energy of the element becomes a quadratic function of the gene-
ralied displacements.

\ ¥ 2// Wdnoly = £ %?TK' | | .
T, 94? % Q? IR ‘(32)”

with

- . ’

T

K:TTgﬁ(ﬁﬁ D B ob ot gﬂr‘a kT  <33)
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No ?rescribed boundary displacements are used; to apply the,minim
mum total energy principle there remains to express the potential
energy of the prescribed lcads, From (26)

P=-ZoF (34)

3)

| agjg?@)#g;yjdm #j(ﬁ;éjéﬁ%@%}@% (35)

- With the matrix notation

T

P8, 8. 7]

equation (34) assumes the form of a gcalar product
?@wé;@wgm§? - (36)

the last result following from transformation (31) and_introducw
ticn of the roy mabrix

g {Q»w &y oo é"? /; Vid e;ﬁ (‘3.7)

As implied by the scalar product form of the potential energy, bhe
elements of the row matrix gT are the generallzod loads conju-

- gate to the generalized displacements. They finally derive Ifrom

the actual loading of the element by the use of welghb functions

){; {%95}: jﬁ U,; iszogf;:; | %j imﬁs ?i?fm;ﬁ; (38)

% ng(ifgén%%”wm? a;_,é(;‘;; X ﬁ_@ ;) . | e

The weight functions depend solely on the assumed displacement
modes and the choice of the generalized displacements. Once cal~ |
——culated-they can—elso-be-uged-directly - to establlsh the_stiffness) |
matrix, for one has

§
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_F a.¥. %é; , 9
“s % ?&){é (23) j UL M (40)
and g = N? with N =B (41)

f
;

The elements of the matrix NT are calculated from partial deri- |

vatives of the weight functions as those of BT were from the
originally assumed modess
The matrix K can then be calculated from the formula

K 25/“%’%/%’} dasly - » (42)
4

o ~ #

Stated in terms of the generalized quantities, the minimum total_5
energy principle is ‘

7 T - |
%a?@f\?ﬂ? - % ? | should be a minimum,

' &
It furnishes the cond1t1oa ' @qr(qug) = 0 for an arbitrary
- row matrixz §E and consequently the mabtrixz equatiom —

g =K 3

s

This set of equations gives the generalized loads in terms of
‘,the genarallzed displacements; the matrix X is known as the

"gtiffness matriz" of the element, Observe that under &, chaﬁge

of generalized displacements q = J” the potential energy Prené
serves its scalar product form -~y q = - gtq if g transforms

according to the rule B'= J g and’equétion:(43) turns into
v =R with % = JTKJ,

q is of course tne matrix representation of a contravariant. ten-

s0T; & that of a covariant tensor and K that of twice oovariant

bensor
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gé
Figs 4

3.2y Stiffness of triangular panelg and beam gegments. Linear
displacement analysiss, : '

Those are early examples of displacement models intrcduced in
15
displacement field is linear and contains the three rigid body

nodes ‘
. YA %

L b e Rt Sy

The generalized coordinates are chosen to be the local displace-
ments at the vertices of the triangle (Pigs 4)
T ' RS
Q= (uy, vy, Uy, Voo V2,.V3)b

mined by the displacements at both of ifts ends, With

the literature by Turner, Clough, Martin and Topp -, The assunsd

This choice is according to bthe rules, for aloug a side of the
triangle the displacements vary linearly and are uniquely deter-
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e = ° 20
g’é& ey % ‘#’ @'{& féé’ #a wﬁ ;;f [
G e S Fhmy ¢ % Yy Ex8,3.

the inverse of the transformation matrix iz deduced |

0o 0 ¢0 1 Xy ¥y

o0 0. 1 % Y

It can be observed that, provided the.vertices‘ara numbeﬁed in
the enticlockwise sense, the determinant '

.4; ;X.z ‘ . :'ggjﬁé | S _»

U RS

is equal to twice the area of the triangles Aftér an elementary
inversion to obtaln the matrix T, the weight functlons are 1ound
-to be

W (XoF) + Ul (%,7) + ugls(x,3),

u = REEE |
| . | (44)
v = v1wjg§g¥a.iJ¥2W2(X,y) + vBWB(X,y)o

(45) -

| ‘EMW = =T jff Gl 95&“‘"% LAtAr I ]
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the other two following from a c¢yeclic index permutation.

Fige 5¢

The weight funection W (x,y) is illustrated o Fig. 5. The gene- -
ralized load conjvgate to Uy is

Zf’ X Mi%,,g;;dwﬁ /ﬁ W m,/af@

The loads conjugate to vy follows by replacing X with ¥ ond

Dy with py s

From equations (44) and (45) the matrizx N of equaticns (41)
turns out to be '

f’g;g'g, Jsde Ja=% o ,@ | o

L 2 1 oa 8 6 Ryl B & "zaz;‘"%?
c&f@

= BNOT I N

hOHR %R funfs Nde 907 j&j
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Finally; denoting by + the average thickness of the plate

o 4

PE e é’ ’ 4

| ” Zj S
‘ﬁ , _

“the stiffness matrixz of the itriangular plate turns out to be

K@E@%M /y‘?"»";f«ﬁ 0 N |
N A R 47

In a sgtructure that can be subdivided into such triangular panels‘
and beau segments the anly additional information necessary is
the gtiffness matrix

1 9
e T T T e
% R
1 l }ll-l LTS
o 4 z
T ] '
4 7 |
Fig, 6o

of a heam megment (Fig. 6)“'If is assuned that this element undery
| goes only uniaxial strain and, for sinplicity of caleulation, the
v*ferenee ax1s Ox 1s taken parallel bo ohe elemenba FO? dlsplam
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-

cement compabibility with the edges of the triangular panels to
which the beam segment is attached, the axial dlsplacement is
again taken to be a linear function

@ = Gs’ 7%:@"?@

In terms of the end displacements taken as generalwaed coordlm

nales .
s @l (a) %‘Z%{gmj

R, P 4

Winja 52 Wonyz ZB2

If the loads on the segment congist of end loads X1 and XQ
and a shear flow distribution q12(x)9 theApothtial energy

m?gy /?ﬁgd@f&!&/ﬁ%-ﬁ )\i‘gj%?a‘t‘{%@&

becomes, after subsiltutlon of u(x)

- P =uyQ + u,y0,

“and the generalized loads conjugate to u
» Hy,

{%} X ?«m mﬁ@”’/ﬂﬁ@% (i=2)

0

1 and u2 are

The weight functions W, (x) are 1llvstrated on Fig, 6, The
strain in the segment id |

i

ol ér ol %/, & -t k
& 7. & 5 :@g«»%,f
A ——
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The normal load in the segment is L=ES{m)& , where S{x/ is
the cross sectional area of the beam. The strain energy

/el dp = ﬁ,{ E S pde la v
z/ 2 7% )G 7
% . .
/ 2, |
The stiffness matrix

&g

Ry,
- ;
f{&?( EStzjdn jom' = %
) gy 2
Z, éﬁa“%ﬁ} =7 9
3¢3. Stiffnegs of triamgular panelg and beam segments? Quadratic

displacement anslysis.
Both displacements are faken to be general quadratic expressions

in the cartesian coordinateSQ Along an edge they will both vary czfp 0

'7acoording to a pafabolic law and will be determined by their values
in three points along the edge. Accordingly a suitable choice for

I the generalized displacement coordinates are the twelve local dis-
placement components at the vertices and at the mid pointes of the
edges, Fig: 7. '
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The inverse of the matrix T is obtained from the equations

@gém@f«éﬁf &, + &, gé’-ﬁh 23?.2;3@5 ﬁ@f‘,-‘@jf'?‘ﬂ

Lz4,8,3
¢ ¢ 0
gﬁo Q{?‘gaf Py # ;g ﬁ,f@/ ﬁf@%_ﬁ,&/ g STpL,5.

Inatead of inverting this matrix analytically, it is much simpler
to establish directly the weight functions, Only twe different
types of weight functlon need to be calcultateds

w3q(xay) sketched on PFig., 7 and W3(x9y) gketched on PFig, 8. The
other ones follow from a cyclic index permutation. Both must be
of the type

2

= A+ Bx + Gy + Dx 2

+ Bxy + Ty

In tme cage of Wﬁ, we can express thao it is 1dentlcally Zero
along the stralght lines -

25

Il Elen) o grpr e s

where. in general,

gmngagﬁ% g%wgfwﬁyw

This yields six equations between the constants (4,8,C,D,E,F)
only five of which are independant. The sixzth equation expresses
that the weight function is equal to unity in the point

r glesva,) é‘?s“é@id?ga-/*
mhese equations are extremely simple to solve and one obtains

| ) éf'f z*fbf f‘%gjﬁ? - “f, “%(,?U ‘i’f"'ggﬁ ,@43}

(48)

{ 73 @”%g ‘ﬁ’ﬁ» gjmﬁg &;f !/dﬂgiﬁg'b"ﬁ gng,i% 32
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‘with the additional notation @ o F Fao Yoy = o Y.om

i
|
H

Figs 8.

{ In the case of W3 one expPesses its nullity along the lines

g = %'%%‘ﬁ -,g&'.;ﬁaf%,j#gﬁ jyj“&“ %/sz@ ” ‘i"ﬁ,;{?

&4

and

g= o 2o 500y
- 2/ ,

\

end its value of unit& at the pOint X = xag Yy o= y3 o Thus ,'

Ao
<o W Wgz.ﬁ_? oo (950 * j * @fg 7 ﬁ%ﬂ * ygf
“”@5% (¢ 'f"‘g‘?gj'#’ ﬁig ‘”‘gmﬂjﬁﬁ‘ﬁm'f; z

(49)
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As before the symboléﬁgy denotes the area of the triangle, The
digplacement £ield can now be writlen as

Aa "f"ig

i
4

£ = e@?ﬁg @ézgf ¢‘@§ a%; é.%202§:‘f %zﬁ%goﬁbég'z%;ﬁ

&

and the matrix N is set up by partial differentiation of the
weight funcitions, For the purpose of numerical calauldtion it is
convenient to expand the N matrix in the form .

c’f@fﬁgﬂ/% /%tf- ;wef ‘z%g;f@f

where the malrices NO s N and ¥ have constant elements. The
stiffuess matrixz calculaued from equation (42) is then expanded
in the form

Ke Ll > N+ 2l D,
4¥ééa°& @; @jy;,ﬁhéeiﬁgﬁﬁ ;% & Z%iég

-

2

‘ﬂ

SND W el D g s 2
AN o U 8 D 1,

j/ Z?wth ‘ 32%‘$gé§£?ﬁ%@ﬁﬂ%¥ ?%iiég&?g?@%f%l

‘where

ﬁéd A j/ﬁ*’ ol .@ = Jf o*
% j@ g @g % iy dacly U

In the cage of an lsotropic plate of constent thickness D is a

matrlx,of constanta and
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Ain appreciable saving of computational time ié then obtained by a
preliminary shift of the coordinates to the centre of area; then

(x + Xy xq) = O, (y1 + Yot VB) = 0, D, and IS venish, while

j/md% £'§ {&%%zeﬁ,z’i’;f é‘rz‘;’j
jg?«fg@iga? = ?Zm flﬂﬁgwé%gaﬁ%gﬁj

A beam segment attached to an edge of suoh'a triangular‘plate~willf
‘have a compatible deformation provided the axial displacement be ap
parabolic function determined by the local displacements. (u19u2,u ]

at the ends and at the central station (Fige9)o Thus

it etz e,

e e
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where ;
%
e
> 3
Pig. 9
The axial sirain is & = an with
N |
qg G",W 4}2&»4’.& ﬁwﬁﬁhﬁ -’%éf@%ﬁ "éﬁi’;} g/e’& éﬁ" a 5&.4&2_%3
(52,)*
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f i . . .
The gtiffness matrix can then be calculated from

. E
i fg’g:&/[ éﬁgéﬂyﬁ%%%??iﬁﬁé

, 3
ES 1 being the length
R = 5T 16
_ of the segments.
=8

e

3.4 Stiffness of a spar segmento Displacement. modeli

‘Po avoid an exaggerated stiffness of a segment of a spar of the
type used in aircraft construction, elementary considerations
- ghould first be applied to establish the minimum order of polyno-
‘mial expansions involved, The representation should be able %o
- provide an almost exact solution to the bending of the spar under ‘
- constant transverge shear or linearly increasing benaiag momente
This imv]ies that the axial strain be ot least a linear funciion
of x , the axial dlsplacement a parabolic function of %, From
integration of the elementary curvature equation of the beam it
is then also true that the vertical displacement should be a funo-
tion of the third degree, Accordingly the following assumptions
- are intrd@uced for span b@ndingz(SGS Figy 10)

é@l!z«!%j:gﬁ’{ﬁ&j . _.'(5(‘))
where the cfoss”segﬁiqn rotation is
&f (=) = G %@’& AP ¥y A | (51)
| S j.

»
o
R

wing)= Win = w5274 62
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Assumption (50) is equivelent to stating thal the cross seﬁtions'_
remain plane. It alse implies that the spar is symmetrical with

respect to the Ox axis and, if it is part of a hox beanm, thab

the cover csheets are symmetrical,

Assumption (52) implies that the vertical fibers of the web are
inextensible; in addition to the reascnable gimplification it
brings into the calculation of the sirain energy it has alsgo the
important advantage of introducing transverse loading of the spar .
only through the resultant transverse loads in esch cross sechions
Hence one needs only to consider a ftransverse distributed lecad :
p(x) and the‘ﬁfansverse shears T, and T; a% the end seclions.:

e B

_mne'cn01ce O the generalized coordinates ie guided by the {ollo="|"

wing congidergtions. For £ull compatibility in the atitachment of
the spar to cover sheet elements the axial digplacements ab the
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| necessary to add the coordinates

;_displacement along the spar cap; an identical distribution will

- to have a complete representation ef the boundary displacements
~and %o secure full compatibility with respect to the spar connec—

32

endg and in the middle of the upper épar'cap.are selected

Ly, o : - B o v

SR AW 4=R9(o) &zhe(-a) (53)
They determine completely the parabolic distribution of the axial

result along the edge of & triangular panel as analyzed in section
3030, when the eorresponding local displacements are made identl-~

cale .
The displacement of an end section of the spar is entirely dexor»

mined by its vertlcal digplacement and 1its rotation., Since the end
rotations ere already represented by vy and u3 it is only

W= Wia) W= W(-e) (54)

tion to neighbouring elementsg., Since the original field contains
seven parameters we are left two internal degrees of freedom, For'
thoge we select the end slopes of the W(x) Tunction

ﬁﬁ': 2@"” {&j ?} = Z@f [ﬁ%‘j | (55)

In terms of the coordinates introduced by (53~55) the original
asgumptions (51 52) can now be wribten

Auln) = I B 2 T "”““?“"“ ( } (56)
| & & -

4 W iz)

o

tleu, )~ o %% ) 5{%2«&4’%@ %

LY JE) + (45, w’%%{?!’% o

For an isotropic web, taklng into account the 1nexten51b111ty 1n
the Oz direction

ghmﬁpﬁu ﬁv Eﬁ. ix - &£ <% % ?yvﬂ |
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The normal load in the upper spar cap will be
Ne ESH e’

For simplieity both the thickness +t of the web and the area 8
of the spar caps will be assumed constant. The bending moment and
the ﬁransverse shear in a cross sectlon becomes ‘

Ma 2k #jé;@lj@% 5& 7 a o4’
| Sfw- Y]

/z; @% = 2 6ef (e ')
"R

% %@

]

‘The total strain energy can be caloulated by the‘exPressipnz

/[W@( ® T"@% by f]@iw

. . @_’ . " : '

8. .

‘gé‘s’i‘ & an @éé/(@’w ) cla
-t

=&

The asssumptions (56-57) allow the integration to be carried out
expliocity, whereby the strain energy becomes a quadratic form in

the generalized coordinates whoge partial derivatives are the cone- .

jugate generalized loads. We denote those respectively by 2U
(there are two spar caps), W; and ﬁ?i‘o The resulting stlffness
relations (43) are given by the following

(59)




Laboratoire d'Aéronautique UNIVERS}TE' DE LH\‘]GE

82 &g .

caf’\ L g g/ TRl g

2 4 =9 c " . -3 .
Reto = gﬁi g -9 K= Gla »@Zw

& A5

=@ «eﬁ‘ ‘ -3 ,Eg

K. éﬁﬁénfﬁ Pﬁj (m Glh | =9 ==

| T fa 71 K’w mm}?& @

e _2Gtah | & ==

»TuYning now to the task of intefpretlﬁg the gen Palizéd,loadsp we
 compare the scalar product form of the potent;al energy and its
expression in terms of the a'oplied loads = .

W eq

- P &é% ,;m%gg + 8y éj jw@?f;w% 3

< B

+

&
=2 j?mg *%@fgﬁ)@ d7 4 j ﬁmﬂ"%;@ifg 2, ﬁ;% w7,

@ e

Substitution of equations (56) and (57) and identification of the
coefficients of the generalized displacements results in
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A -
O = ff quep 2(2sa)ans b i

' . #,
) Enc&J{ e z ‘ﬁiaaigféﬁ%a o !
'%Q&e@?%}&éj. gﬁ '

o
N
:i 8
&
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]
5o
%
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¥
4
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The auxiliary variables 3*1 and %?3 can now be taken from

equationg (60) and substituted into equations (58»59) to give
flnal gtiffness relations s

(

the

61)

4“'\
o)
el
L




Laboratoire 4’ Aéronautique . UNIVERSITE DE LIEGE

YRS -‘_@. (64)
- G - _GEA [ @}
355 ~;zj L%

The new genewalized loads are
5N Mm”"’ ﬁ
) = & j

| %gm
Hﬁg% aﬁﬁ*f { %ﬁ) @ﬁ}

ﬁyg “Z‘i’fma&-mmé%%«é’»%«gj
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i‘“ﬂ f:g ?fﬁﬁg%ﬁa«% Z&?&. P, ww//’ = fc@ jfym} A

é@

£ n a* &
& :
‘”; = < ) W%'?m 25 Ty 4
| 2@ e T ¢ L[ (a9 &jf;‘m} @z ;
750 | 4 s2 2 |
% I * & & j

The essential feature of the elimination of the auxiliary varia-
~bles is this modification of the generalized loads and in parti- -
cular the appearance of centributions from, the external‘loading
p(x) in the loads conjugate to the spar cap displacements., The
different weight functions attached to the p(x) distribution -
are illustrated in Fige. 10. The weight functions attached to
q(x) are the same as those encountered for the beam segment in
section 3.3, | R

, If the shearing deformation of the spar is neglected, the
stiffnegs problem appears in a different light. The ghearing

deformation can be
¢ go to infinity.
to G must cancel

Tollowing relation

&

fa_ &
34 A

made to vanlish by letting the shear modulus
Then in equatign (61) the terms’prcpbrtional

and this is immediately seen to occur if ﬁhe»

is satﬁ3¢1ed

é,jgg oL @WB H 43 méﬁg =0 (65)

‘This‘pufely geometrical cbndition is a Congequence of'%he fact

that the crosa gections remsin normal to the parsbolic curve of




Laboratoire d’Aéronautique UNIVERSITE DE LIEGE

38

the neutral axis. The general stateménﬁ of thié-proparty ig of
course the disappearance of the shoarlng strain g

%+ o'=o

After substitution of eqUauion (56~ 57) and identification of the
powerg of =x/a this results into

z ~ & =49 " us
A a“MW " N"‘iw?}j

end the eliminétion of the slopesg again results in equation_(65)%‘i
The only stiffness relations that remain are now

L
¢4, | » i
4 4

between the equivalent'banding«momantsg 2hHi ;and}the gpar cap
displacements, where Khh ig reduced to its parbt proportional

to the bending rigidity. This matrix is singnlars In fact if one
set wuj;;;u2,~ uq no_equivalent bending moments are. _induced, .an -
obvioug result slnce we then have a regid body {rotation) modes
Corresponding to this we have the equilibrium relation

‘ | | . L - .

‘ H1;+ Héiﬁ,H3,a o )

The procedure for finding the sgpar deflexionslare‘then as followgsy'
The spar must be supported against rotabtion, indeed v1 o u,J are.

generally known :from boundary conditions or previous caloulaLlonsa

The gtiffness relations determine the +two other u valueg, Inser
ting those in equation (65) the deflexion increment can be calcu~ -

lated and again either w, Or W, are known from boundary condi- .

tions ev previous calculations. As was indicated previously the
pleSPnt stlffnmss mater wag devige ¢ to gnve a-correct behe V¢Qur .
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| much finer spanwise subdivision to avoid the poor results reported -

| 39
under constant transverge shear ioad or linearly increasing bhending
moment. Incorporated in g box beam it requlres a parabolic digpla-.
cement snalysis of the cover shee’ elements in the direction of
the gpar flanges. Previoug attempts at setting up spar stiffness
have generally aimed at a linear displacemsn?t along the flanges to
be used in conjunttion with linear cover sheet elementsgy

Our analysig can be modified to incorporate this gimplification

a posteriori by the change (and reduction) in coordinates

i 6’;@5 i

= T = [ %
| éa
]

This states that the middle .displacement wu, 18 now constrained
by the agsumption of linearity to becoms the average of the end
displacements. Remembering the types of changes that generalirzed

loads and stlffness matrices underge as a result of their tensorial

character the simplified representation will read

gm ¢4
&= ] 2 TN@F e T [V ]
o, 620y =y 4o & / |

\

The olement is now adapted only to the transmission of a congw
tant bending momenl and very much stiffened thereby. It 'will need a
16,17 for displacement models of gimilar linear characteristics,
It is parhaps of intersst to note that similar simplifications

can be intrciuced in the guadrstioc displacement- analyais: of briane
gular panels to keep them flexible in a preférential direction end -
linearize them transversallyy -~ = O ST e e

19 -
PR S C N
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4, FBouilibrium snalvysigy

el Genersl theory

While the general theory of displacement models ig reasgonably
well understood ! this does not seem to be the cage for equilibrium
analysis, The reason ig probably that 1t appears less intuitive
- from o geometrical standpoint., The emphasis is on stregs transmis-
sion modes rather than deéformation modes and the firsh step ig Yo
sgsume g parametric stress fields In two dimensional analysis, for j@
exanple

N\
b):

)1 zg“}mw«@ ERT ays v

b2 A B zz

. 2 }
25 ast 287 S
* Lao ——id 2o (67)
3 2 7Y PR ) (¢
"@7;’6%}’ = 5= 12) o7 o7t

mmiiiym! mﬁﬁi&mﬁ = = 2{ ;‘&aagj mgﬁ“g;. 7 = e yé’f@ﬁgf(68)
The stress modeg of unknown ampl%ﬁudes fgg are in equilibrium _
without internal forces, while the modes of amplitudes (P.) are

I in equilibrium with assumed hody force dlst{lbutlons (PrXfSPf¥f>%f”
In order %o extract a mazimum of information froum the complementary
energy principle no loads are prescribed., Instead, digplacements
are specified along the whole bOUﬂQJ vy and also the dlsplacements

conjugate To the bBdy force distributions, This reqvirog a ‘slight
extension in the presentation of the principle ¢
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from virtual work congiderations the displacement conjugate to the
loading mode (Xw9 Yf) ig the weighed average

FAPPRA @j@w@ | o (69)

If this is specified, the complem@ntary epergy princlpla takes the
extended Torn

c{i@ @ﬁieﬁm@ﬁ@ @@ w»s%ﬁ @j”@@ A (70
" Appiveng w986 TP o

Exactly like <Px” p.) are the reactions along the boundary againsﬁf
the specified boundary displacements; the ‘Pr_ are the reaction
amplitudes of stress modes against the prescribed generalized dige
placements ?&aﬁin this manner thevparameters {f%n/ and (Pr) ef
the equilibrium stresg field are arbitrary and independant in the
principles ﬁ
Generalized boundary loads (O ) are next defined according to
the following rule t along each ooarectlon boundary the stress dig-
tribution is uniquely determined by the generalized loadg pertais
ning. to this boundary end conversely, In this manner a reciprocity

between generalized loads acrosz the boundary entails complete conti

nuity of stress transmigsions .
The conjugate bhoundary displacements (qj) are obtained from
the virtusl work equation

p - |
j(g?ﬁﬁg % é’%@ }M = Z % 0" a.lon%; gach bhoundary, | - (7’?)

Let US NOW express all this in matriz form with the notatlons

) G Fa)
s ;gﬁ.,.m w(@w m’?i’;j

i

é? g'ﬁg? sz j i‘*; fo:;#;;u;:n;
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4.2
The stress field (66) can be written as-
G = 5'5%7}9 . (72)

with the stress modes entered ag'oolumns of the (3 %z m) matrix 8§
and the (3 x ) matrix To The commlemenﬁary strain energy will be

w//{@%@#i@"i&:’mf@; ' ii@" @m@@g /@@“?”ﬁmg

(73)
=it g #4h 4 P *f‘ﬁwgﬁfg

1 with flexibility'matriees,

- Ty = Y ol T = |
é’f"% :,j‘%{ R, 5,,.%&?@?’.‘. f‘%ﬁ@/j{/ﬁ 2 Tﬁ@@fg

g b gl/ffgoﬁ‘?nr@fﬁ@%é

o, N - 2 (T4

I Prom their definitions the generalized loads will be expressed in
termg: of the field parameters by a matrix equatlon

geCb 4+ hp - - (75)

The (n x m) matrix © and the (n x t) matrix A are load connec- -
 bion matPices. The vittual work of -the boundary loads agalnst the
p:eoscribed conjugate displacements will be '

a’g = q70b + q'4p

and is now e*rpressed ‘in terms of the fleld parametersa The princ:r.plev

of minimum complemsntbary energy

,éj?mﬁ”'-, yay: w ‘ @ - 'z?/g -8 [ m..nimum;
%@Wfﬁ» %ﬁﬁe ffypf) g €6 f; / "

[
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yields the stationary conditions with respect to variations on
b and p, '

T
AT A
7

T
‘gﬁ"g # F;ﬁ p=Hq ”"““_g‘f’

-

Introducing yhe matrices

K = @gf“"c?”’“

y ‘e"iem
ﬁ? s fﬁ m»‘? 5?6 '{2Vg

T aa;ﬁ
£§§? - ;i%@ i?g fgyy

the stationa conditionsg c¢an be rewritten in the form
L7

%ﬁ.’ ffe?v’h /*%?fy (18

- T
ps bp= A9 o (79)

The first expressges the boundary loads ag the sum of o part due to
the boundary displacements and a part due 0 a reaction against ”
the body loads, The gecond expresses the displacements congug@te
to the body loads as the sum of a fixed boundary term and a term
due to bamndary displacement, This form of the equations is the
more natural since, instead of cdnsidering the p loads as unknown‘;
reactions for the purpose of applying the complementary energy
principle, these loads are generally given, In many cases therse

- no body forces. and equation (78) reduces to the form(43) with the
gtiffness matrix (76), | |

Tt should be obsexrved that the. Pnowledme ol the dlspLacemenus ig
reduced to that of a certain number of weighed averages. Sometbimes
the strain field is integrable and a complete internal displace-
ment field available. “
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452, Triangular panels. Equilibrium analygigy

[ o=y

The assumed stress field is the simples? confeivable

oy GEfo Fwmcf5 0 (o

Fige 116

There are no body forces. Along the edge 1-2 (Fig, 11) the genera-

lized loads

& re v .
axg : gﬂ ; 4 ""ﬂg.fm gwf:;@ < P 8 |
Ay m{f% A T T

(81)

S Pes s )T el nb odw= B o

. & ) F = M )

7] 1y j%g AR TN AT
g 7 : | Co

are defined by the edge stresses and conversely the sdge trastions

are ' |

j?% = fzm /qm;' /?J ::é?ﬂ %@m %{g length of fhe edge,

Conjugate edge displacements are obtained from the virtual work
equations slong thig edge . . T P
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| & —
& |
[fep, B ‘ﬁg’ @ nﬁ»«g; &dd
. ( %% ‘} “ = &é w& '%ﬁ
4 7 d
= ﬁm Hopa * ?4& e [
Hence . | . | (82)
- 2. 15 S AU B v
78 dg . TN

. 7
They are the ordinary averages of the displacements along the edge.
Results for the other edges follow by cyelic index permitations.

| Adopting the order

?25}% fl"vy ffm d23 ds4 ?4@&;

a T o )
? “é“@ﬁ %‘sf @’?& é”%j @,%’ &iﬁ@,

the commection matrix € condenging in the equaﬁion‘ g = Cb all
relations of type (81) is

f .
32 23
43 ° %35
Y21 o %o
G =
O %y Y32
0 E34 Y43
\ 0 ey 5"21‘g

~ Since in the present case we have simply

€ ﬁ:‘ﬁg
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as equation (72), the flexibili’cy patriz is
/ 9 @57.?8‘ @éﬁ

For~an igotropic panel

4 =¥ 0 | |
= % -9 4 © % =7 / dacy
£é o o dfs+7?) ¥ o y Elxg)

The stiffness matrix is

I When this is compared to the stiffness matrix of the same pansl
4§ calculated in section 32 we note that since 24J§ N the :
"present matrix can be deduced from that of sectlon 3225 by multie-
plication with g factor 4(t/t)q

Under consbant thickness condltlons the gtrain field ig inte-
grable and the displacements can be expressed by equations of the -
‘seame type as in section 3,2, i.e. by linear forms, The coefficienty
( &, ) of the forms are completely determined by the pres ent
generallzed displacements, In fact the integration of formulaa of
type (82) yields

_ . .o BF 0
;. = O, 4+ & Q_,_:___,é;..?a. %.E;&Jmé

Lz s -

p: W'. ﬁf' ;4.. ]
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and these squations can be solved for the coefficients. The dig- |
placements at the vertices can be afeduced and the following rela-
tiong, obvious in view of the linearity of the field, are valid

.4 fa o .
w, = 74 v, = 6T
/ A ' ¢ 2.

This was used as starting point for the original derivation of
the equilibrium model of the panel”o The present derivation is
a more correct application of the basic principles. It also

applies to the variable thickness case for which the strain field

might not be'integrablea

The major difference between the direct stiffness analysis and
the equilibrium analysis is in the connection propertiss of the
models, For the equilibrium model the atregses are transmltted ,
continuously from o6ne panel to the other but only the average dlnm
placenents of the edges are coincident: Tn the other model the
edge displacements are everywhere coincident but the stresses suf«
fer discontinuities from one panel to the other, :

G
J S O . fvzy  emedt i A
< J | &
G e - 2 &
- Pige 12%

4.3s Beam gegment equilibrium analvsige
The equilibrium equation governlng the axzal load I in the
beam is (Fig. 12) ' :
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Warrequiré a solution for a constant shear flow T 5 The general
solution of equation (83) is then. .

b= p-Tx | (e

;
i

In accordance with the philosophy of the gemeral theoxy, . j@’ is
the only parameter of the stress field in equilibrium'wiﬁhou#“bodyf
forces, %  the only amplitude parameter of the fleld in equili-
brium with the assumed body force distribution T =4 ., Let ¥

bhe the.conjugate digplacement to this distribution

24 :?Gf! ¢ ofse

Thig 4is supposed to be specified together with the boundary dis-
placements u(0) and ulec), leading to a virtual work of the reac-
tions eqgual %o

@.&l@}ﬁé@}#— @4@}@»@@;% ﬁﬁ"’g’
The generalized loads defined for boun@éry‘oonnec%ions are
- L , % ‘,‘g B eT N
@ng Lic)=-p &, = bic)= - (85)

I In this exanmple fthe body force & can be generated parﬁlaITy or

'tobally by attachment of the beam o ghear panelsa It is for this
reagon that a constant € solubtion was indlcatedg it can produce
a continuousg stress transmisgion between the beam and our triangum'
lar shear panels of gection 4°2° For the same wreason tha generallm.
zed load

= & T . : ‘. '
@fv ¢ ‘ _' (86)

that will correspond 0 a generalized load of the panale_mﬁst»be ~

added to Tthe set of connection loads, Equations (85<86) result in f“"

the following connection matrix

. @,‘?ﬁﬁ E pl% é'ﬂﬁ 0
és‘l f‘:mi C% o= @ f@m Q - e Qg‘ |
"\, - s (87)

o B
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The éignifioanae of the conjugate generalized displacementy is
deduced from the virtual work equations for esch boundary sepa-

rately , - » e ,
9 @q = = Elo)buto)= F1o)f
&
A = of 96
5 % = "”Z'ji 6 of 2e |

9.G, = &ferbiy = G()(p-cT)

Substitution of equations (85-86) and identificatlion produces

| | . o
| o | o o
E?@ﬁ = ééa’@f_ ‘?32%/&5@?;@ ?&@mg@j

. ’ T »»l @ ‘

The flexibility matrix F results from the expansion of the com- :
plementary strain energy, using equation (84) '

e ,&
&/ Fs = lp Wr(?}

: €
fg/{ 2 ol 26
‘5 .

@

and we have fihally‘ g‘@ Kg with X = 0F~102;
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Por the particular case of a beam of constant cross section S,
the flexibility matriz furns out to be

F-m,a é' “‘“53@‘

.
6E&S -2 4

end the gtiffness matrix,

255 [
Kﬁ | -3 £ -3
7 -3 &

L

~The .spame result was established befora14 in another ways

4.4 Spar bending eguilibrium theorys.

Although, as in the case of displacement models, spars cauld be

treated as combinations of trianguler plate elements and beam geg-
mentg, an independant analysis taking into account the symmetry

propexrties of the problem, appears to be more efficiente The foiloéi

e
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wing three parameter field is assumed fox thc web stresses

1 63
%f‘g%‘gmff%w%ﬁ} %‘g@, . f&aﬂa@ (89)

It is an‘equilibrium field without body forces and can easily be
derived from an Airy stress function expanded in odd powers of 2,
The expansich in the X direction is limited so as to give a cons-
tant shear flow ??XZ |
In this manner the spar flanges can be added as beam segments

treated to the theory of section 4.3, and implementing the equili-

- brium conditions with the web, Hence it proves adequate to treat
the web separately. It is also worth noting that, because the
stress transverse to the fibers is zero, the~external vertical

loading on the spar will have to take place through shears in the |

sections X = ﬁ %

Generslized loads glVlng a complete descrlption of the atress
dmstrmbutlons along'the connectlon boundaries ars 8

(a) @ Jé ay @5»*; 2 é@«/ﬁ &&@ﬁj (90)
. 33 . .

the total load tranqmit ed to the flangeq, the shear flow betwsen .

web and gpar flanges is then Q (Za) ‘end ﬁhe cOngugate displace-
ment Uy can be deduced from the virtual work equatica

T e
Syl ax - J/ wdn s Byuy o

& &
whe:ncé A4 * ’
" o £ = e eeefom
& da |

= &

along the comnection with the spar flanges. -

(p) » Mg = j {@;/i{;g%é@w g%ﬁ_ﬁﬁ mﬁ&j .(9_2)
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the web bending moment in the =x = a section, The normal load

‘aistribution in this seotion is then & = BZM?/(QhB) and the

conjugate displacement ?92 follows Ffrom

; "*M& A _ : :
Jlau) ay=infiw) 34=I%5

whenos T o B

-2 ) g ol
?& ag?gﬁj%{é@_éga% Y N o k. (93)

. Similar definitionms

3 " e | '
Fo= 23 ) (Y n® o

are used in the section =x = =ay

(e) "Fge:j("g;%};z @é’%zgzﬁé”/%@ﬁaj_ 08)

These generalized loads descwribe the shear flow along = = a

QTZ@%E ﬁg%7& ‘@”@“" (7"‘9@?”

Auw
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in terms of a constant distribution of botal shear T2 and a
parabolic distribution of amplitude V, which is sbatically eou:»
valent to zerc. The conjugate displacements follow from the vire
tual work equat'

f@f’z" a5 =

whence

A _ o 4
? ) eix |
%“gzg‘ji(ff!iﬁ T éwwﬂ’wf B

Hs&a

o%

Similar definitions are used in the X = -a section.

‘?‘:gm/("z:%ig wﬂggm%{/%&,%j‘ (99)

f(w%%%ﬁé ) r-tAp
?@’s»& :

4
@@mm ) el @ﬁ‘mmmgg 1 2
gﬁ; g H2eon 9 7 q‘ ‘. }i"’o%%’
- ® 9 ,

(100)

'_‘Aﬁopting the following seqﬁence of generaliZed quantities.

" | |
gJ‘ = <T19 V19 M-]B T29 VQ’ 2& zQa)p

.......

— e - -
v'f?'??_f'%ﬁéﬁziaaﬁﬁyp by E%%&éé%%,f &%§»}.-
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the connection matrix, defined by equation (75), follows from
equations (90-99) as : | o

=4h Q 0] 4h O

0 2h 0 0 4

2 2
7. . |
a‘*&? 6&3’?’9 sz of
E¢ &t K

After substitution of agsumptions (89) the F matrix can be
obtained and, in case of a constant thickness ¥, turns @it to be

g Iz o
:
j 2 2 '
r=d2 0 9 sa 4 2 (102)
ht é B 5G
.
- hE
¢

The web gtiffness matrix followg from inversion and matrix multi-
i M

plications as K = CF'G'

rically; there is also no difficulty in carrying them oult anaslyw

“Li() allyo

C™% These operations can be carried oubt numet
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5, Properties of element stiffneés matriced,
The complete system of equations
. _ o |
g = Kq, E =K, : . (103)

between the generalized loads and displacements of an element is
always singular, sinoce the corresponding homogeneous system

Ku = 0, (104)

posgegses amongst its non vanishing solutions at least the rigid
body displacement modes of the element s

' : Ku(i) = O | (i = 1;2 oéo r)o ' (105}

In displacement models this is a consequence of the inclusion s

priori of the rigid modes in the original parametric field. In

the case of equllibrium models it ig a consequence of equilibriumf
properties of the generalized loads, calculated from an original
equilib;:&j.um‘field° Indeed, congidering the homogeneous system

. | | o
1 T :

¥
M

. e Tia

and in view of the struotuwve (76) of the stiffness Eatrixg it is
observed that the non trivial solutions

CTZ(j) = O’ (j = 192 oo'OS)g A (107)
are also sqlufions of equaﬁion (104). Moreover, dencling by
2 .

the body load displaeements due_to the boundary displacements
Z(j)g it is found that, by virtue of equation (78)

| T T . : | ST N
- L Eeg)E vwéiﬁa-On e (1091w,w

These equations express overall equilib?ium properties‘of the _
generalized loads in the form of vanishing virtual work equatiocns.
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The difference between element stiffness matrices derived from
displacement models and from'equilibrium models is that, in the
- lattex case, there may exist® z(.)‘modes that are not of the rigid
" body types It will be remembered that for digplacement models it
is exactly the cpposite : there may be more field parameters than
generalized coordinates required for connection purposes. A good

example of an equilibrium model where generalized loads exceed in 1.

number the stress field parameters by more than the rigid body
freedoms is the spar bending model of section 4.4: An independant
get of Z(j) modes derived from equations (107) is as follows ¢

T - - o
% (1) = 1 0 0 1 0 ;O 0)
T . .
2 (2) =.(EL 0 ] -a 0 1 1’1) |
o ,A . | | '
5 (3) = (O P 0 0 1 0 0)
o | , ' | S
zA(4),= (0 = 1] 0 _.O 1 0)
ThevfirSﬁ ig easgily reaognized ag a vertiecal translation mode, the
second as a rotation mode about the origin and this exhausts the

rigid ‘body freedoms if due aCOOhﬂb ig taken of the symuetry of the
“problem, The other two modes are klnematlcal deiormatlon freedoms

that leave the element unsfwa@sedo fhey may deem Yo be undesirable |

‘~oharacbef¢stics of the element repregentation but represent, admit-
tedly in an extreme for rm, deficiencies in deformation compatibility
_that must necessarlly be expected from an appromimate equilibrium
analysis. The equilibrium equations of type (109) a55001ated.with
.these Z(j) modes are respectively 3

T, + I, = 0, or vertical equilibriunm

K m / N X P 'n‘ ¥ T3 q
a(T, Ty) + My + M, + 2hQy = 0 oz rotat;onal equilibrium

Vy o+ Vy = O, ' ' (110)

My My BaVp = 00 S (jj?>
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This is precisely the case in our example, provided fthe web thiclk-

57
Weiconclude this section by showing how, in this particular case,
the kinematical deformation freedoms can be removed at the expense
of some stress.oonﬁinuity'viqlétion at the boundaries butb retaining
the major benefit of the equilibrium analysis s the proviso of
upper bounds to the remaining influence coeffioiéntsz The method
is geherally applicable whenever the strain field is integrabley

nesgs is constant. For then

| | "5 |
Flu = m%?ng» @ﬁ% {m (,;,.fﬂ [;ﬂ}% gg;.fj%}gs gwf{f%f’

%@
(112)
gféﬁ’(& @/’.3&@,5' mégs? :ﬁ ’??,f'g Ji,% %5 ?pﬁif‘%m
2 % d{q P e @f% gﬁ‘#ﬁ csmrl
K % &:a
is a‘displacement field agsociated to (89); Q{G and &!&" " ars

integration constanﬁs repregenting the rigid body modes, When this
»field is substituted into the definitioms (91=100) , the seven |
generalized displacements are correlated with the five parameters
é'&o,%’ . M;’?’& 2 f‘%} “ By alimina't;iﬁg the. parameters it turns
out that we should have ' ‘ .

v 2 ‘a% VW g’% 5{,?}

N %(@ & —g4 (113)
g g E17 £v°?? ji@

Rk

Hence. vy end Vo are dependant Poisson ratio effects and, conver-

-sely, as can be aaen from equations (110 111) the congu ate loads .
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are determined by the bending momentss

In as much as the equilibrium theory considers the seven genera=|

lized displacements to be independant, equations (113). are geng-
rally unsatisfied, This shows more explicity now the kinematical
deformation freedoms are of the nature of compatibllibty violationsi
Compatibility can be restored as follows s the original minimam
principle can be written

4 ?f . 7 2.3 ) ) :
$AFC - (0T w0 T+ Mg #0280 (o1 4 K]

minimum i .

where the P matrix is given by expression (102), the genralized

- loads are to be expressed in terms of the stress parameters and

tha generallized displacements are to be prescribed, This is now

modified by calculating the last bracket in terms of stress para-
meterss from equations (97*99) one has"

o

| J
wleo b = «z:‘?/ﬁ [v-2, )
4But_also from the displacement field (112) and definitionsﬁ(98»‘

©100) o 5 e
Y-ty =V = o

ggnthat finallyt;
1y, m‘«ﬁ-?ﬁ :
- §

| Substitution of this into the original principle gives

T mini
FOHE = (0T 0T eqpbyop i a2i5@y | ™00 |
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with a modified flexibility matrix
| | o Q@ & o
- 80 e H .
.Mgéwmgﬁﬂé o o | =
TE
& 8 @
|
' £ .8 3 |
I g+ mg mgw,;;gﬁ, %
§EEG %
g
- 2 ‘ g{) Pﬁﬂ )
of2¢7)h bevih §

' The generalized loads matrix is now reduced to

nt
gL = (T,lg M,ly ng Bﬁ?’ 2@3)9

with a connection matrix Bmg deduced from (101) by suppression of
the gmecond and fifth columne leading to the new stifness matrix
)
mentary energy principle, the upper bound character of the influw
ence coefficients ies preserved, The advantages of the new repre~-

gentation are ¢ the reduction in size of the stiffness matrix, the

elimination of the kinematical deformation freedoms and the exig-—

tence of a correlated internal digplacenment field, In eounuerpart

{ there can exist a violation in siress continuity in the form of

different aswmplitudes of the parabolic shear distributions -
(1 = 33z /hg) between the edges of vertical web gunculonso dowever
equilibrium is restored if one conceives this difference to he

-z-Qaﬁﬁiﬁieially&absorbedmbyﬂanmex$e&naimloadvdiséribu$i@nafSincewﬁhis%»f

local load is statically equivalent to zerc, it can be expected;

on the bagis of de Saint-Venant's prineiple, that its effect on
the deflections and slopes will be smalls,

+ Ag the rvepresentation gtill follows from a minimum comple-
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6. Properties of connscted elements gtiffness matricess

From a kinematic standpoint the connections between elements are)

defined by relating their generalized displacements to the nodal
displacements of the structure, Ordering the various elements by
means of a subscript (k), so that q I denotes the displacements
matrix of the kth element, and denciing simply by q the column
matrix of nodal displacements, the kinematic connectlons can be
written in the form - '

Q) = BKQB‘ | | | i(115)

Tn thls ‘equation L is the locallzlng matrix of element ki Often

‘the elcmgnt displacements are all oriented with regpect fo a com«ﬁ_
mon axes systemgvthe localizing matrix is then simply composed of .

- zerc or unit elements and serves to identify each element digplaw;
cement component with some, similarly deflned9 nodal dlsplacemento

However, in the more generasl case, the localizing matrix can 1ncoru
porate the changes in orientation required for oonfo*mlty w1th the

definitions of the nodal displacements,
The force relatlonships due tw the connections follow directly
row consideration of the virtual work of the external loads

:““acting-at»thu lsvel of the nodes, If g denotes the.column matriy ;

of ~these-loadsy conjugate to~ the nodal" dlqblqccmenfog and” g(k
the generalized loads on the isolated kth elemeaﬁo the following
virtual work equality mugt hold for an arbitrary displacsment
matrix q, o

e T | - D
Ji1= ““f‘; igw Diay = %; ?m; iz,‘g ? e
Whe.nc:a : ' g?% «ﬁm é}"/;&j&& | o | ;

A

f(ﬁqr
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.@ﬁm;

This equation shows hOW‘the_loadé on the isolated elements add
up to balance‘the,external loads on the nodes. Because of the
zule adopted in equilibrium models to attach each generalized

quantity to a single boundary, the summation for any row in equam“

tion (117) raaliy extends only to two subscript valuss. If the
corresponding external load happens to be zero, we then have a
statement of reciprocity of action between two eleméntsa

In view of the identity of stress distributions represented by
the reciprocal element loads, this is equivalent to complete com-

tinulty in the gtress transmission. When the external lomd OOMPOM‘:

nents is present the gtress contlnulby ig enforced cnly if the
extornal load possesses the same type of distrlbutlono , ‘
Tn displacement models, while displacement continuity is buils
in g priori, the summations generally extend to more than two
subscript values and stress continuity is not enforced, In this
cage equations (117) are easily interpreted in terms of weight
functions applicable to the arbitrary external loading of the

" structure for conversion into equivalent nodal forcess

Refaf;;ng'bagk tq equation (78) and writing it for each eleﬁaﬁtA
B0 = Bt * Ry (1)
' We obtéin, after'substitutian into eguation (117)  :
S T I
Wherg |

K= ;g;éa. mé@

- p= Z L Kéée !%? ' e
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In these equations p represents a cSlumn matrix of extermal body
loads converted into equivalent nodal forces, K is the complete
gtiffness matrix of the uansuppoirted structure., It is seen to be
built up by properly addressing the elemen’t matrices by means of
the localizing matricess i {
In building the complete stiffness matriz by comnecting displa~

cement models, no kinematic deformation modes are generated that

do not properly belong to the structure. With equilibrium models
however artifioial kinematic fresdoms can appear. This was already
shown to happen within a single element; it can also result from f
relative motlons between elements, Special care must therelore be

“exercised with raspect to the pabtlern of qubdiv1sion into equi-

libriun modelga

It should bé observed that a s»ructural representation contai-
ning .such unreal kinematic freedoms is notb nécessarily to be
rejected, The restrictions put on the external loads o avoid pro-
duction of wirtual work in the kinematic modes can be acceptable.
It can happerig for instance, thatéhese modes only displacé unload-
ed nodes, A Simple example 1g provided by the quadrilatberal. panalf
when subdivided into trlangular elements by the diagonalsg, each
ﬁriangle being treated as an equ111br1um model according to the

nalysis of section 4.2% , . S ‘ }

For the purpoge of visualizing tne klﬂematlc mode genex abed by |
this gubdivigion (Fige 14), the friangular panals-can be assumed

to be pinjcinted at the middle of their edges, since for unstrege

ged panels the displacements of these points are the averages of
the edge digplacements and
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comply with the definitlons of the genera1¢acd displacements. The
vnstressed auadrilateral can obviously behave am a four bar lin-
kage but it can be proved by geomebry14 that the points E, Iy &
and H can be baken as instantaneous rotabion centers. Consequently
the quadrilateral can transmit eny self equilibrabed load system
applied to the nodes E, P, G and H¢

The internal nodes I, J, K and L sould either remain unloaded or
their load system réstricted by a viritual work cbndiﬁiong The
impact of this on the mathematicalvproéess of elimination of the
unloaded nodes is worth 1nvestig ating. By splitting the nodal dis-
placements and nodal loads matrices in two parts s 901) and 8(1) |
for the fixzed nodes and U0) and 8(2) for the others, the folLOm
wing stiffness equations can be written

1) = Kq99¢1) + Epp9pye o (122)
8(2) = K219¢1) *+ Fapl(a)* (123)
By assumption the kinematic mode is of the bype

9Uq) =0 4y =m

- and, since 1t exists without external loads,

K, m = O, R | | - (124)
Koot = 05 | | (125)
If the g,y loads exigt

B . n oo T
€ (2) B = 4 (q)8pqB + a7 (p)kpms

_ ' - '
But, since Kl‘z1 =K, and KT2 Kza, it follows from equauisna

(12¢$125?fthah B T B
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This is the virtual work equation reétricting these loadss IT
however the nodes affected by the kinematic mode are unloaded,

that is 8(2) = 0, we shall penerally wish %o ellminate the congu«f

gate displecomenbs by solvmmg the gystem

Kapd(p) = Epacy (2D

and substitutiwg for ch) in equation‘(ﬂzz)ﬁ Aithouph fhe bbmo«

geneous adjoint to eouatlon (127) has. the non Hrivial solution
q(2)~z m, the second mamber hag the orthogonality property -

4 I\
Ve = 0
reguired for the existence of a solution. The general golution

} - depends on the arbltrary gealer & , However, in view of equationi
~ (124) the final result does not :depondion it

o gy = By F EPlaggys ~ (128)

and holds for any particular matrix P satisfying

: Kzf,? . me R e  (129) |

A particular matrix can be found by preventing the kinematic

deformation to take place; e@.g. in the case of the quadrilateral -

by adding a rigid rod between JK or LI; In this manner a displa-
cement component of ncde J (or L) is related to one of node K

(or I) and system (127) reduced to one with a non singular matrix;
the discarded equation being automatically sabtifiedy

[—,

M
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T Solution by self-strainingssy

The theory of esquilibrium models developed in section 4.1) fup-
nishes stiffness matrices and allows in principle & sclution of
the overall structural problem by the same gtiffness methods and
the sams compuber programs ag for displacement models, Tt is
nowaver true that the requirements of stress continuity and the

regulting definitions of generalized variables increase considerawn |-

bly the number of nodal displacementsy As a consequence the size
of the complete stiffness matrix can be much larger than in the
case of a gtructure anahpzed in the same number of digplacement
models. Problems of conaltionlng of the stiffness equations and
accuracy of the numerical procedures are raised thereby, whlen
only experience can help to evaluate,

As a matter of fact the topology of the oonnections between ele-
ments is generally such that displacements are better choices for
the unknowns in a displacement model analysis and forces in an
equilibrium model analysisy When the internal forces themselves
are chosen it 1lg better to look for self-equilibrating combina=

tiong, whoge intensities constitute the generalized unknowns., This:

section ig devoted to a short mathematical demcription of this
procedure, usgsing the matrices previcusly definedy
We start by expressing the external loads on the nodes in terms

of the stress parameters of the elements. This iz achieved subgti~

tuting the relations (75)

g(k) = OK (k) + Ak}?(}; o | ' _(130?

into the eqvlllbrium equation (117)

LS

f pN ﬁ.‘ f{i .;?ww %L&% 5&}?;&Zmié kﬁ{k} ) (331)v

From equation (121) we also obtain equivalent nodal forces due to
the external body loads and transform the expression by meansg of

the definition (77) of the R matrices

fﬁ zm%@né’;% gﬁlzﬁﬁ} Z'I %ﬁm} »(1;32)
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Adding (131) and (133) and denoting by
fe=ga+p - C 33

the total nodal external forces, we place the wegult in the form

Z&é&a ﬁj f@ ; = Fﬂ 5&/@(&} (134)

& (i éb‘

- of a linear system to determine the unknowvs b(h)o Tbe general
‘golution 1g of the form

‘.1é%§} T TlA) e (R)

o

- The particular sgluﬁion is of the type

- é | 136,
i/@} Mgg é/f Z‘ ,C %ﬁg ‘@ég Fesy (1360
- The mubnr terms are the geneval solution wz*hoat second mcmbef |

o L= 19 2 56 BY (137)
giaéé éza ‘g{m} pusites o S( - o

They reprpsent the stress parameters of self~equilibrating states
of stress, whose unknown intengities Xy are taken to be the gene-

ralized quapblules to determine in oréer to satisfy the compati-
blllty requirenentssg Introducing the mairices '

Bk = (b(k)g b(k) oo’e b(k))ﬁh“k

M
i

= (x4 Fp bos x4

the solution (135) takes the form

=€ 4 F ndll. | (135)
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af ' "~ ;
by = (1~ LG Et b))+ 6% o |

it is a complete description of the possibla.equilibrium‘states ofy
the structure; We substitute it into the strain energy (73) of an |

slement

P ’ mo T
22000 FopiP (1) T PO TeprP )t EP (k) FppeP (i)

add cver all the elements and obtain, after cancellatlon of termsg'

the following expression of the total strain energy

Aﬂf’zéf?%ﬂf‘f“%? ;7f‘ﬁ°:§f fﬁ» o (139)
‘ ~4

sy ) Gt Pete)

where
‘ 2 A (140) -
g'{%@]f < My Togn My - |
= = ' (441)
}m % A@é f’”émﬁ .
‘ _ T o
[2 } = & B, Eé@é%, ﬁﬁg - (142)

From equations (119) thalt can be writtenm £ = Kq, the nodal displal

cements.maﬁrix' q is conjugate to the loads matrix f and the
virtual work of the external loads is ~"mq?‘e; We can apply the come=
plementary energy prlnulple in the Torm -

{"f f?j”oi -‘}f(m;’s)

where the matriz q is presoribed and F considered ag a reacgs

tion loads natrixe .
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#ally much smaller than that of g, The advaitage of the self-

6&

Taking variations on the self-straining intensities matrix x
produces the statlonarity condition

(5. 1% «[5,71 =
% = ag’ e d %E?f ’“ (1;‘4;4)

‘The stresses are then determined in tbe whole structure in terms

of the eﬁﬁernal forcese. Taking variations on the reaction loads £

zté;;:7‘2%kﬁ*Z:Z;::;jgzg‘c?

-~ or, in view of equation (144)

o g=If L | (145)

"with the influence coefficients matrix

| I = [«Zg 7@[@2@?{&??6“ géj‘;@}? (146)

Onr last step implies that the elements of £ can be varied inde-

pendantlys this of course iz only the case when thé complete struct

ture has been supported against rigid body modes by preventing
some of the nodal displacements and when the £ mabrix does nob

“include the reactions against the supports, Those reactions can
be determined from overall equllibrium congiderationgy Should the

struchure be subjected to additional prescribed dimplacements
(oxternally hyperstatic) the corresponding unknown resctions can
be obtained from the set of equations (145)% |

As already mentioned ph@ gize of the columm maebrix =x is gene=-

strainings method is then that it requires only the 1nversion of
the square matrixz zﬁgg{;? of the same size as %, The difficulty
lies in the determination of the gimplest matricesn b(k) or Buv‘

A great step forward in the automation of the calculaftions would
be achieved if the computer itself could be taught o invb501g@te
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‘The requirement is however automatlcally satisfied when the type

“endowed with in the new analysis, The only difference is that moms

“on influence coefficientss
division pattern must play an important role in the convergence

convergence can be ascertainady

9e1e Liower boundg by the minilmum total enerey principley

69

the topology of the matrices Lgdk ~and deduce the meli~gtrainings

confined to the smallest number of elements:

8..Convergences

Because the solutions based on displacement models depend on a
minimim principle, the lower bounds on the influence coeffilcients
can only be raised by further subdivision of the structure, provi-
ded the original system of displacements be contained ag a partl-
cular case of the new one, This point has been stressed by Melosh1%

of element analysis is no? altered. For along a new subdivision
line the original displacement field behaves with the sams pelyno- |
mial approximation (linear, quadratic or higher) as it will be

of the coefficients of the polynomial, which were originally depen=
dant, become independanty A

The same considerations apply to the analyses with squilibrium
models where further subdivision can only lower the upper bounds

This monotonic convergence is however insufficient to guarantee
convergence o the ftrue solution and it is cbvious that the sub~

process. The interest of Tthe dual method of analysis is precisely.
thalt by comparigon between upper and lower bounds the degree of trud

9, Bounds to the diregt influence coeffiocientsge ‘

The displacements are ESSQmed'to verify sdme homogeneous boundary

conditions ‘ '

=0 andfor = v %,49,,,.4:011' r (147) 1 |

¢6

g0 that the structure is at least isostatieally supported and can
resist the application of unit loadsy
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Sindé thé first variation of'the €otal;anergy muét vanish
/7 (555 %, %’7 5y ) ey
@ﬁ€§§&¢ Y iv) sl ddy

@j{ﬁg@“‘f% -g;@,@:} s = 0 (148) 

i~

Cangider the‘speéial varistion { J?g a oconstant)
Jie = e« 8%

. where u‘ and v aré the final displacement components given by
- agpplication of the principle; This speeidl var riation is compatible
- with (147) and gives also

Jp=zwde (149)

- Dee : -
g‘g‘ﬁéggg‘?ﬁay mj&{(;;}ﬁ“f? gd@

and gimilarly

@7

Substltuulon into (148) pfoduces

jffg Ca2 5’;’&? ms? (}S/Z{gifﬁvfﬁ@ﬁg&i
f (e ToJandy = [(Fruely o) s = o

Xg 5 &, by, =d¢ iy

&4 » . y
R/ £ o
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In view of equation (16) this ié‘a form of Glapeyron's theorem

= '*g% é@: ﬁﬂ{ﬁw }7@/0‘!@@2}? # g{/g’é{%@w%ajd@ (150)
d - e |

Thig special variation certainly exists if no epproximastions are
mades hence for the exact solution ' '

U, = ~4P % (151)

The special variation also exists for approximate fields of the
assumed type (26) ag it is possible to take 45@2 = 5% & o
Hence for the approximate solution :

U, = ~ER o o (152)

Because the total energy of the exact soluticm must be an abso~
lute minimum ‘ '

Ua Ex Pa‘%% Ué + Pe

and then, by virtue of equations (151-152)

P, 2 By » (153)

Let P be a prescribed generalized load conjugaté to the displace~
ment g5 Then P, = -Fq , and P, = =Fq , whereby (153) gives

The proof of the lower bound character of the approximate infiu= | |

ence coefficient followg after diwigion by T2




Laboratoire d"Aéronautique ' ‘UNIVERSITE DU LIEGE

72
.. a. | (154)
-8 8 3 . .
-2 &£ L _ _
7 il

9,25 Upper bounds by the minimum complemehtagy énergv principle,
Since the prescribed displacements on the boundary, where the
structure is supported are ZeT0y the prineciple reduces to

/§ﬁ(6@}@jﬁd’*ﬁ = ?F ?F | minimum  (155)

 Tne genefallzed dlsplacement is now prescribed, the conjugate load
& reactlon, Vanishing of the first variation yields

ﬁ(f é} ‘*"’5?} g% +& 5‘%"}% 5)?’;::"‘6” -<156)

vconslder the speolaT varlablons

5"5@ %ﬁ J7%;,
AU ~S ‘

that certainly exist for fthe exact solution and also for the appro-
ximate stress fields of type (66), where one can met

ﬁa LA Y A

For such sgpeciazl varlablonsg»condition (156) gives

"‘“’m S TCRR VAL i

8
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gitraightforward algebraic process

e

oT, in view of equation (16), again a form of (lapeyron's theorem
o L EF
y=x29"
From the statement (155) it follows thab

g

RAL AL KA

and since

8)

t, = 296 hetTC

B
#

N

e

7l =75

?Z% - and %ﬁé being strain energies are both positive, so
that P_ and F, have both the sign of T, Division by the posi-
tive quantity FaFe proves the upper bound character of the approq
ximate influence coefficient 3

e e (157)

The derivation of bounds to the eross influence coefficients ig a
) 11912913914,&
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