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Abstract.

A‘conforming displacement model for plate bendihn was ?resented

~earlier (5) It is of interest to have also an equilibrium model available
in order to generate both upper and lower bounds to plate deflections,

The theory of the triangular equilibrium model, which is presented here, is
a revised version of that of reference 3, taking advantage of obligue coor-
dinates. It is also extended to cover transverse loading modes. Because the
numerical investigations required adaptability of the model to & stiffness
computer-program, only the elaboration of the stiffness matrix wvas aimed at,
following the general procedure set up in reference 2, The element can
nevertheless be recognised as the Southwell analogue (4) of the plane stress
model with quadratic displacement field described in reference 2. As such it
could also be handled efficiently by a force program. ‘ |
Numerical results show the expected monotonic convergénce of deflections
from above for the equilibrium model and from below forthe conforming model,
The convergence rate, in terms of total number of generélized coordiﬁates,

is compared with that of other plate bending elements,
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I. Plate equations in obligue coordinates.

The (x,y) axes of fig. I are taken to lie in the middle plane of the
unstrained plate; the middle surface deflections w(x,y) are taken positive
upvards in the direction of 0Oz axis. '

Bending an twisting moments are oriented by the right hand screw convention.
‘and correspond to oblique stress components positive in the upper layers. i
Shear loads are positively oriented as the transverse shear stresses, |

We define covariant slopes of the middle surface by the formulas
T %:5>Eﬂ'=,f w T Tys L R R (1)

and verify that they are the orthogonal projections of the local rotation
vector o s, lying in the middle plane, on the directions kx1 and _ﬁ x 3
respectively conjugate to 1 and ? .ad ’ 3 , k) are unit veétdrs along
‘the axes Ox , Oy and 0Oz respectively, Hence the conjugate direction to
i is obtained by turning it of 90° about 0z in the positive (right—haﬁd
screw) sense. The same for the direction conjugate to 3?4(fig. 2). \
It is sufficient to carry out the proof for the 35 vector at the origin;

In the neighborhood of the origin the rigid body displacement field is
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.
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. > »> >
Hence we= (wx 1)z + (wx Iy
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In projection on the 0z axis
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and by definition () ¢ (T x ;).K = (k x 1) w
. S . e .; . -‘;-A“—) e e D e e e v+ e i n nn e = e e e = (2)4
v =-(] x w.k =.(k X e w

This property of covariant slopes is convenient because the bending and
twisting moments are precisely oriented along the conjugate directions so

that the virtual work of moments has a natural association with the covariant



components of rotation, For the elementary parallelogram of edges dx and
dy the virtual work performed by moménts in slope increases §¢ and &y
is 4

) , % 9
™ (Mx 8¢ + dxy sY) dxdy + e (Mxy 8¢ + My 8¢) dxdy

'

The transverse shear loads Q, and Qy contribute

2 dy + 2
3% (Q 8 Wdxdy + -2 (Q ¢ w)dxdy

and the external transverse load distribution q(x,y)

et . <

q § w sin g dxdy

The total virtual work is stored as an increase in strain energy
§ W sin ¢ dxdy , wheré W denotes the strain energy per unit areca.

Hence, after simplification by the common factor dx dy and substitutionm-

“of (I)
i =-—a——7\ _a—- -a—_. _-a-— _a— -B-. g
sin ¢ 6 W =~ = Sy a.yaw) 5 (MXy = SV ay<sw)
+ Q. 8w + 3—-(Q Sw) +qgsina §w ' (3
90X X Yy 'y

The equilibrium equations are now obtained by stating that there is no
increase in strain energy when the additional deflection field is of rigid

body type. Thus if 6w = constant

0

§§§/+ ;;Z + q sin.a = 0 ‘ ‘. | (%)
If Sw = x x Fonstant
'-i}-x—’i-iﬁl%q =§ | (5)
L 9X oy X
If 4w =y x constant
-aMx uaM fa o ©

0x oy y
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Those equilibrium equations are formally identical with those in cartesian
coordinates, only the factor sin-q in (4) betrays the obliquity of the axes.
The general statement (3) can now be simplified by taking the equilibrium

equations into account :

sin W=-M \ - 2 M W - M \ ' 7
ad x O Y xx xy 8 Vxy Ty S V,yy 0

It shows that the strain energy per unit area is a function of the elements

(w s W __, w __) of the curvature tensor such that

p XX s XYy YV : .

. A N o s oW . oW
Mx sin ¢ e 2 ‘Ixy sin ¢ P My , sin g e

Ty XX ‘ s Xy ] 2 YV

(8)

 The complementary energy per unit area is defined, as usually, by the

Legendre transformation

. . .1 . . :
E W 0 Wy 2T Wy

where the right hand side is to be expressed in terms of the conjugate varia=-

bles M_, M and M _, Differentiating totally
X7 Xy . y o

M w +2M w + M w )-W (9)

PETVIma Vx xx Xy LXY Y Yy

and taking (7) .into account

1
60 = - o o SMy + 20 S M w8 )

So that the dual energy relations are

3 . 20 s 3%
W = = sin g - 2w = - gin o ' \ = - sin o
s XX oMy » XY any ’ E)Jy
. - (10)
We know"’ that, for an isotropic plate of bending rigidity D , the strain

energy density is



D 1

BRE (562 - (1~ we,)
/ sin? g 2 .2
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2 1 XX LYY 5%

This gives by (8) the following curvature-moment relations

M

P

- 2 cos
» XX ¢

A

sin3qg - DEW

- DA(- cos g (w
L

+
XX

w

in3
sin‘g Mx ,

Y

3 ~
sin M =-Dlw - 2 cos w
¢ Yy ( »YY “

From ;his we find that

M +M '+ 2cos g M
X y

D2

- 32

M M
Xy

sin2 o
for - and

B O 8 %
complementary energy density

Solving

1 1

w
X

+ (cos2 4 + y sin2 Hw
. ot v o) ,yy)

W

+ {cos2 4 + 'y sin?
( at vs ) ,xxJ

==D (1 + v) 8,

(vez+ (- v)ze )
1 ‘ 2

e = D(1 - v)

The dual energy relations obtained

\
—y2 = - 1 N
D (1=-v?) V xx SIn g (dx + M& +
-2 =~ L05 a
D (1-v2) V xy sin g (Mx + My +
D (1-y2 = M+ M+
: (; v2) w,yy sin ¢ ( x y

2(1+V)sin2‘a

J2 - Jz) :
from (I0) are then

2 cos M + (1 + sin M
0 a. xy) A ( | v) a y

(11)

yy) + (] + (10&32 o - v sin? a)W,xy) : (IZ)

(13)

and replacing into (II) which then becomes the

(14)

2 cos g Mxy) - (1 +vy) sin o Mxy

"

2 cos o Mxy) + (1 + y) sin g MX

(15)
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2. Dending and twisting moments and Kirchhoff loads for arbltrarv

boundary orientation.

The analysis of an arbitrary triangular e;ement is conﬁenieﬁtly carried
out by making two of the edges coincident with the oblique reference axes
(fig. 3). The third edge is located by its intercepts a and b ; its length

¢ is related to the lengths of the other edges by the elementary formula
c2=a2+ b2~ 2 ab cos ¢

Other lengths which are convenient to introduce to simplify formulas are the
two parts in which the third edge is cut by the perpendicular from o :
_a(a-bcos o) b(b -~ a cos g)

- v = = u+ve=c ‘ (16)

In calculating the shear load Qn , bending moment Mn and twistiﬁg moment

y ? Mx"-.nxy

Mns corresponding to a facet of normal o in terms of Qx ,» Q
and M at the same point, the lengths (a, b, ¢) are first considered as

infinitesimals.

.Then, since the contribution of the transverse load q 1is an infinitesimal

of higher order, vertical equilibrium requires
c Qn =b Qx + a Qy - (17)

Again, in rotational equilibrium, the couples due to shear loads can be
neglected as 1nf1nlte51mals ‘of higher order. Then, by considering equili-

brium about an axis perpendicular to Ox

Mﬁ b sin o - Mns (a-bcosa)=D Mx +'(a + Db cos o) Mxy + a cos g My

3
/

and for equilibrium about Ox

Mh (a-b cos a) + Mns b sin @ = b sin o Mxy + a sin g M.y

.These relations solved for Mn and Mns can be writteﬁ

M = 533_2 (b2 M + 2 abM 4+ az M ) . N ‘ e : o "(18)
n c2 x Xy y

M ='--‘§--(P-M +Ey J+Z (2 + 2y

ns’ Aex e xy/ b le 'y ¢ xy) “(19')



Formulas (I7), (18) and (I9) can now be applied to the third edgé of the

finite element, provided (Qx , Qy ,.MX , Mxy

edge. In particular, considering the virtual work equation

s My) are known along this

2 s 2 2 5
{ (Qn §w =M 3;‘6w)ds— - (Mns S w)l + { (Qn * EE'Mns)G w ds

it can be concluded that the shear stresses along this edge are statically

equivalent -to the Kirchhoff transverse load

-

. 3 .
k12 = Qn + Y Mns ’ (20)

and concentrated end loads (all defined positive upwards)

i
=
[
=
[y

R -

12 ns

R =-M" in 2
21 ns

- Noting that along 12

Substitution of (I7) and (I9) into (20) produces, after some transformations

by the equilibrium equations (5) and (6)

B . b a v 3 u 3 b2 ab .’ a2
Kjp =22 +2¢ Qy - (b % 7 a ay) (cz M+ 233 MXY ¥ c2 MY) 20)
while

' u (b
R,=male

a
12 M (a, o) + Z'MXy_(a’ o)] +

o'l<

a b '
GZ My (a, 0) < Mxy (a, o)]

- u (b a ., -V A b .
R, =+73 (g (o B v oM, (o b).) -3 (3 M (o, B) + T H (o, b))

If we let b tend to zero (a+c,u+a, v/b -+~ cos q) the formulas

specialize to



‘M = sin o M
o ) y

M = - M - cos o 1
ns Xy

In this limiting process the material comes to lie on the wrong side of the
edge‘ y =0 6f the finite element., For the material on the correct sidg,
the analytical expressions remain invariant provided the positive 6rienta4‘
tions of Mh and Mns are reversed, as indicated onvfigure 4, BHowever,

in the case of the transverse loads we change signs in the limiting formulas

in oxrder to keep their definition as positive upwards. We then obtain along

the edge y = o of the finite element

22)

y = o

(23).

K ==2 Q - cos5 a ——-M '+ 2_ My ) y=o0 (24)

01 oxX 'y oy

RIO = Mxy (a, 0) + cos a My (a,

01

Similarly, by letting a tend to zero (b + ¢

ve find for the edge x = o

Mn = sin g Mx

-
-

M = cos o M + M
ns X Xy

and the positive upwards transverse loads

22 - - -a——’\ —?—-—
K20 2 QX- cos o 5y dx + % Mx

REO = cos a‘.Mx (o, b) + Mxy (o, b)
I%z == cos a M (g, o) - ny (o, 0)

Combination of the concentrated loads at the

corner loads

o)

R = - Mxy (o, 0) = cos a My (o, .0)

,  V>b , u/a >~ cos q)

(25)

(x = o)
' *(26)
= o) (27)

(x

corners produces the final

©



P, = RO1 + ROZ = - 2 Mxy (o, 0) - cgs'a (M (o, 0) + q (o, 0) )
P = + =22y (a, o) ~ bu M (a, o) + (cos + ——~) H (a, o).  (28)
1 Iﬁz THO ¢ “xy ? ac x'° ¢ 7% ’

, R =24 -ay bu
P =R _+R =2 Mxy(o, b) -+ - My(o, b) + (cos o + ~ ) M (o, b)

3. The linear field cculllbrlum model, -

Accordlng to the neneral procedure for building up an equlllbrlum modeltz)
we start with an assumptlon concerning the stress field. It turns out that,

if a 9 parameter linear bending-twisting moments field is adopted :

Mx = 31 + 32 5 +‘33 &
- , X 4
Yy B B T % (29)
, x y
M = -+ i o
Yy 87 Bs a 39 b

the number of generélized loads required at the boundaries is exactly I2.
These loads are connected by 3 overall equilibrium conditions reducing their
degree of independance to 9 so that the model will be free of any spurious
kinematical freedoms., The s8me conclusion is found directly.if it is reco-
gnized that this plate equilibrium model is the Southwell analogue‘3)of the
quadrégic displacement field triangular displacement model of reference 2,
From (29), using equilibrium equations (5) and (6) ’ - -

1 ’ .
tT B ' (30)

=L L =L
Q“'a8+b3 QaB 9

X 2 6 y 5

Equilibrium equation (4) shows then that the element will not accept a dis-
tributed transverse load q . '

Methods for dealing with distributed transverse loads will be presented in a
further section of the paper. The model will presently be restricted to
accept only such exfernal loads that conform with the interface distributions

of stresses.



Equations (29) and (30) can now be substituted into (I8), (2I), (22), (26),
(25), (27) and (28) to obtain the edpe load distributions in terms of the
stress parameters g, .

For dlmen51onal homogenelty all generalized loads will be defined as forces,
The first 3 generalized loads will be the corner loads Pl » P, and P, Y |
their associated generalized displacements are obviously the local plate
deflections Ve W, 'and w, at the corners. The next three generalized
loads will be taken to be the total transverse forces due respectively to

KOI R K12 and Kzo' . Noting that those Kirchhoff-type line loads are~uqi—t
form we shall have ‘ ‘

P =2ak P =cKk P =bK : (31)
01 01 . 12 12 20 20

and, by virtual work consideratioms, their associated generalized displacements

are the simple averages of plate deflections along the edges :

W
01

ml~4

£ w dx w =-él-f w20=-§-£2wdy . (32)
1

The last six generalized loads are due to the normél bending moments along the
edges. They each have linear variations and are defined by two generalized
qnantitiés, , ' ' '

For instance along the edge 01 (y = o)

‘Mn = sin ¢ (37 + = 68)

This distribution is determined by the local values.

Mo=M (o, o) = sin ¢ B,

01
. (33)
M =M 0) = sin (. *+8
o - M (a, o (8, By
which are taken to be generalized loads. In terms of those
X ' X
M =M (1 ==)+M = (34).
noon (v -3) 10 @

The corresponding virtual work equatibn

+ M

a |
[FMy g dx=My, ¢ Mo ¢10

0



A0

gives, after substitution of (34) and identification, the associated generali-

zed displacements

1 .
¢ 0 =af ¢ (1-3F)aZ ¢10=afl¢-§-d-§- (35)

s cxtrom st 01 a

In a similar fashion we define

M02_=AB1 sin'a M20_= (81,+ 63) sin o (36)
=b [! AR =b [y Tad
$gp = P fo 6 (1-g)dag e, =b fo ¢ y9% (37)
Along the edge 12 we set
o}-{-: l: - '
= zZ ‘ 5 1 z . o0 <[ <1
so that, from (I8)
Mo =202 (12 (g wg )+ 2an (B, +B) *a (B, + B)) (38)
12 2 1 3 » By T P 7 Pl .
. = sin o 2 2
M, = (b2 (8, +8) +2ab (B, +8) +a2 (B, +8)) (39
. '1 A 1
b= fo ¢ G-ode 6y =c fO ¢ cdc (40)

-

The result of expressing all generalized loads in terms of the stress parame-

ters is summarized in the loads conmection matrix C of table 1 , where

[

g=Ch (41)

S : M
g' = (P, P P P PR M, >Mlo M, My Mg Mpy)

L y : ‘
b (81 82 83 84 Bs 86 87 68 69)
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The flexibility matrix F of the element results from
J[ ¢ sin o dx dy =-% R' F B

where the complementary energy density (I4) is expressed through the inva=-

riants (I3) in terms of the stress parameters.

This flexibility matrix is presented in table 2 . It is to be inverted
numerically to produdelz)the stiffness matrix K of the equilibrium model

g=Kq | K=CF !c g

f' =2 (w w w w w W
q ( 1 2 3 ¢

01 12 20 "061 "10 "12 "21 "20 "02

4, Assembled stiffness matrices,

Some minor modifications to the direct stiffness method are required for
assembling the individual stiffness matrices. All transverse loads and deflec~-
tions are referred to a common positive upwards direction. lence in the loca~-

lizing matrix Lk of element (k)

\ =
Q(k) Lk q

the first six rows are void except for a sinéle unit in each, identifying a
vertical displacement in-the element with a nodal displacement of the struc-
ture. N - ' o
However, bending moments and slopes at an interface have natural reference to
reciprocal directions. This follows from the matural anticloékwise sense of
definition of the bending moment orientations around each element (see fig. 4),
or, alternativeiy, from the outward normal definitions of the conjugate slopes
along‘the edges, As a consequence, in the six last rows of a localizing matrix,
the units identifying a ¢ij(k) slope of element (k) with a nodal slope of
the structure.will have to be affected by a sign. The sign will be positive if
the nodal slope has same positive orientation, negative otherwise.

In some cases the mesh of elements and positive orientation of nodal slopes

can be so devised that, for a given element, all positive slopes are codirec~-
tional with the nodal slopes (+ element) or antidirectional (- element),

A case in point is represented in fig. 5. The adjacent of a + element must

then be a - element and this is obviously possible if the number of elements



. a3 oo,

12
meeting at an interior point remains even.
The nature of the external generalized loads that the structure can accept as
an equilibrium model is also clear :
- at each vertex a concentrated transverse load can be associated with the
local nodal deflection;
~ along each interface segment,or boundary segment,a uniform transveréekline
load can be applied; its resultant is associated with the average deflection

of the segment;

"~ each interface ségment,or boundary segment,can be the axis of an applied

couple of linearly varying intensity; the intensities at each end are the

generalized external loads associated with the generalized slopes.
It should be noted that, just as the end intensities of the distributed cou-

ples have the physical dimensions of a force, the generalized slopes defined

by (35, 36 or 40) have really the physical dimensions of a deflection.

5. Transverse surface loads,

From the viewpoint of equilibrium.models the only correct way to intro-
duce transverse surface loads is by increasing the number of generalized
coordinates, Taking the simplest case, where the model is required to accept
a uniform surface load q , let

p= %-q ab sin o ' (42)
the total ioadD be the additional generalized coordinate., The associated

generéiized‘displacement, obtained from virtual workAconsideration, is the

ordinary average of deflection over the plate area

- =t [[ v axdy o (43)

A particular field of bending and twisting moments and shear loads, satis;
fying the equilibrium equations (4), (5) and (6) under the uniform load is

X
=4 o (44)
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- (45)

It was derived from a general quadratic field in the bendingAand_twisting
moments by requiring f '
a) that the moments vanish along the three edges of the element

‘M =M =o0 for x= o0
X Xy , .

M_ =M =o0 for y=o0
Xy y :

bM_ + aM__ = o and aM_ +bM_ = o for X2 +L=
x Xy y Xy - a b

b) that the'Shear loads be constant along the edges
Qx independant of y for x=o0

Qy indepeﬁdant of x for y=o0

L

= L=
an.‘ be + aQy constant for + ) 1

The requirements are certainly sufficient to prevent the necessity of intro-
ducing new generalized interface loads. In fact the nevw external load p is .

simply reacted at the interfaces by three uniform Kirchhoff shear loads

Geegs € g fer xno)
KY n':-—'izé- (- QY for y"" 0)

‘p. b a . e X , ,
Ky = -5 @ +3Q for T*g=1) - 

The generalized reaction loads are, consequently .

= o= B s e . 6) -
Por = P12 = By 3P : (46)

PPy =Py =My =M, oM, =M, =t =H,=0 (47)



The requirements a) and b) can in fact be regarded as necessary., For, if
one allows the particular sdlution‘in,equilibrium with a transverse pressure
q(x,y) to be reacted by a complete system of the (previously defined) genera-
lized loads, superposition with a general field of type (29) can always
implement the nine conditions (47) (equivalent to requirement a) ) by adjust=-
ment of the mine Bi' parameters,

If p 1s now considered to be the IOth stress parameter

-

P= B (48)

10
equations (46) and (47) are incorporated in an augmented load connectioﬁ
matrix by bordering the C matrix of table I with a IOth column, hereafter

- written in transpose
(o o o =73 -3 -¥3 o0 o o o o o).

Since p also becomes the I3th generalized load, C 1is further extended by

2 I3th border row
(o o o o o ) o o o 1)

expressing equation (48). ,
The flgxibiiity matrix is also augmented and follows from computation of the .
etrain energy as a quadratic form is the ten 6j pafameters obtained by |

. superposition of the fields (29) and (44) (where p 1s replaced by 310).

For an isotropic plate of constant rigidity D the elements of the addi~

tional column (and row) of the - G matrix of table 2 turn out to be

+ == cos a)

qu
oim
oo

(

\

(4 6% ~cos a) + 3y EJ

e

a

-l--[lo (u%-COSa) 4‘3%)



% ((4-§-+-3»‘-2-)_co‘su-;2 A)
L ((3§_+4%)co;a-zxj
§ Rergeom .
%5 (4 (uz-g-—cosa)+3%)
-;—6 (4 (%;cosu)+3y%)

, ) ' . ,
(.""_2.5_;.32-] - (-§-+%]cosa+%(10u+4x)‘
b' a a

win
Wl

Clearly the process can be extended to cover more complicated surface load

distributions. Even in the absence of surface loads, such extended models
are valuable in that they yield additibnal information on the displacement
field. | | ' -
Should we wish to keep the simplicity of the original model and yet take
surface loads q{x,y) into account, one obvious procedure consists in
réﬁiaéing;EHEQé;éﬁffééé loads by éﬁﬁi?éléﬁf“intérface“1oads and rely-on -
de Saint-Venants principle to keep the effects of this substitution local.

However the guarantee of upper deflection bounds is lost,.

I5
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6, Numerical results,

' In reference 7 a comprehensive numerical comparison was made between several
models of plate bending elements under various loading and boundary conditions.
Some of those results are again presented here in order to evaluate the perfor—
mance obtained under similar conditions for the present equilibrium element and-
the conforming quadrilateral element of reference 5., Only those elements that
exhibited satisfactory convergence'characteristics were retained for comparison.
In the code of reference 7 they are : | ,

I, (ACM) a rectangular element developped by Adini, Cloﬁgh and Melosh, _
It is based on a I2 parameter transverse diSplacément field,‘cbntaining the comf"
plete cubic field (IO parameters) and, in addition, the x3y and xy3 terms. |
The genéralized cootdinates'are the deflections and slopes at the 4 vertices.
Continuity of the normal slope along the boundary is not secured, i.e. the ele~
ment is not conforming, v

2. (M) a rectangular elemeAt developped by Melosh on‘the basis of physical gnaqub
gies with beam bending: It is a hybrid element, neither of the displacement ﬁdf?
of the equilibrium type. '

3., (HCT) the so-called "high compatibility triangle" developped by Clough. It is
a conforming model of the spline interpolation type, The major objective was to
obtain a linear normal élope variation along éach edge so that continuity of
deflections and slopes could result from an identification of deflections and
slopes at the vertices of the elements only.

4. (CQ) .is our code‘name for the conforming quadrangular element, described
earlier 2. . | ‘

5. (EQT) is our code number for the'p:esent equilibrium triangle, ‘

6. (Z) stands for a non conforming triangular displacement model developped by
Bazeley, Cheung, Irons and Zienkiewicz(az This model was aléo used as the basis
of conforming ones, pursuing a very similar objective to that of the HCT trian-
gle, Hdweyer this objective was reached differently. Inspection ofvthe'bouﬁdary
conditions in areai coordinates permitted the addition of several types of cor-
rection fields, linearizing the normal slope variations. The conforming elements
appear to be considerably stiffened and their convefgeﬁce characteristics are

difficult to assess from the numerical results reported.
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The comparisons were performed for a square plate and a rectangular plate of
aspect ratio 2, centrally loaded and with edges either clamped or simply suppor-
ted, Syﬁmetry allowed the treatment to be reduced to a quarter plate. The center"
deflections are reported in tables in the form of a dimensionless coefficient B8
defined by 3tob (Fig.6)

Pa?

v= B

-

P o cehtra} load, & : size of quarter plate, D : bending rigidity.
The corresponding graphs (figs.7 to I0) are plots of . ‘
Bcomputed " Bexact

Y=
Bexact

. The exact solutioh was‘compﬁted’by a Navier type series to the required four

- digit accuracy. The graphs are siﬁilar to those of reference 7 exéept'thét the

- new definition of the ordinate gives a direct estimate of percentage error and

" the use of the numberkéf geherélized coérdinates in place of a mesh number
prévides‘a better comparison of accuracy versus computer load.

- Convergence of deflections to their exact value is only onebaspect of the
accuracy of a CQmpdtation._Convergenqe of the stre;é,fiéld is in many cases |
still more important. By their very naturé, equilibrium models should be expec—
ted tovyield bettef streés information than displacement models. A comparison is
therefore included df“fﬂe—zgﬁputed and exact bending moments along a symmetry -

© axis for the simply 'supported square platé case., The test is severe since the
exact bending moment tends to infinity as the central load is approached.

Figure II illustrates the evolution of the bending moment distribution as the
mesh size of the (CQ) element is reduced. Figure ‘I2 illustrates the same for the
(EQT);elemen;. Fbr_élarity the exact distribution is not represented- as it‘éimostv
coincidés with the computed solution with the finer mesh size. It 1s however

- .represented in figurer I3 s==#=== where the performance of both models is compa—-
red for a given mesh size. The superfority of the equilibrium model in the large

stress gradient region 1s thereby evidenced, =
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7. Conclusions,

Numerical results confirm the expected monotonic convergence characteristics
of the central deflection from below for the’conforming'displacement elements
(BICT and CQ) and from above for the equilibrium element (EQT). In‘particular
. the gap between the deflections of (EQT) and (CQ) constitutes a convenient quan-—
. titative estimator of the state of convergence. It is a good illustration of the
general principle of a dual analysis in finite elements (6). |
Non conforming and hybrid elements, such-as .(M) and (Z), can present excellent
convergence rates, sometimes monotonic, sometimes oscillatory. However in pro-
blems where the exact solution is not accessible, the accuracy of computations
based on such elements is more difficult to estimate since there is no guarantee
of upper or lower bounds. The approximations based on the (CQ) element are, in
most cases, the best, especially for crude idealizations; this is probably due
to the additional freedom in normal slope variation along the edges. Suppressing .
this additional freedom by requiring a linear variation, as in the (HCT) trian-
gle and conforming solutions based on the (Z) model, would probably make the
~element behave as (HCT) for a sﬁall'number of generalized coordinates. The con-
vergence characteristics of (EQT) are similar to those of (HCT) but from the .
other side. Furthermore (EQT) elements involve rapidly a high number of genera=-
- lized diSplacements; as is generally the case with equilibrium elements it would
be more efficiently handled by a Force computer program than by a Stiffﬁess
program, 4
Finally, both the (CQ) and the (EQT) element can .provide an accurate represen:a?

tion of the stress field,
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Table 2, The Flexibility Matrix of an isotropic élementv

ab

T =

IZ(l-vz)D sin o

G(o,v) '

G(a,v) 1is expressed below in terms of the.aukiliéryj quantities

A =1 + cos

2

-

a +v sin® a

u = cos? a - v sin a
6
2 1 ‘ »‘ -
2 0.5 | 1 Symnetrical
12 cos oo | 4 cos a | 4 ‘r‘:os. a|I2 A
b cos « 2 cos a cos o 4‘A 2
"4 cos a cos o 2 coé’a | 4 A '-xx; 2 A
6 u 2 2 u Izicos d | 4 cos 4 cosal| 6
2 u " 0.5u |4 cos a| 2 cos cgs ul 2 1
2y 0.5 1 u |4 coe‘q cos 2¢cosa| 2 0.5
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Universite de Llege -~ racuite des oclences Appliquees

Figure I , Strésses and Moments in oblique coordinates,

>



Filgure 2. Definition of covariant slopes in cblique coordinéteso;



Figure 3. Moments and shear load along slanting edge.Shear loads Q and Q

are taken poaitive downwalds,Q upwards.

AN AR ES UUEL BRI, W f AT LTSRS P X 23 B R D e QUMM e L AT s e L TR e 2

\n
o



|

- -

Figure 4, Choice of positive orlentations for interconnect ion (+ element) -



 'Figura 5. A typilcal mesh of + type and =

L

type elemeh;s.'
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Figure 6
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