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A CONFORMING FINITE ELEMENT FOR PLATE BENDING*

B. Fraens pE VEUBEKE

Laboratory of Aerospace Engineering, University of Liége, Belgium

Abstract—A new, more compact, scheme is presented for building the (16 x 16) stiffness matrix of a finite plate
element in bending. The element is of a conforming type: it satisfies continuity of deflections and slopes at the
interfaces. In addition to the promise of good cg@iivergence characteristics, this property also guarantees lower
bounds to influence coefficients. The arbitrary quadrilateral shape is also convenient for versatility in the applica-
tions.

L INTRODUCTIO‘\I

THE difficulties involved in obtaining conforming displacement models for plate bending.
have been stressed in the literature [1-3].

Continuity of deflections at the interfaces is the prime requirement to satisfy. The next
requirement is the continuity of slopes which, if achieved, would produce a continuous,
piecewise differential field of displacements in the structure. Most models, however,
cannot comply rigorously with slope continuity. Although it appears from experience
that local viclations in slope continuity do not necessarily prevent convergence of deflec-

. tionms to the correct values when mesh sizes are reduced, the convergence of the stress field
_is much more seriously affected. Another reason for striving to a rigorous enforcement of
slope continuity is the guarantee it provides that the direct influence coefficients obtained
.are actually lower bounds to the true ones. This, coupled with an analysis of the same
" problem using equilibrium models, opens the possibility to compare those lower bounds

with upper bounds and so ascertain the value of the approximations [4, 5].

A conforming element of quadnlatﬁ‘ral shape can be obtained from a combination of
cubic deflection fields in the four triangular regions delimited by the edges of the quadri-
lateral and its diagonals. The principle of this construction and the advantage of using the
diagonals as a natural oblique co-ordinate system for assembling the fields were the subject
of earlier publications [6, 7]. Further simplifications, reducing computer time, were dis-
covered while setting up a program for the stiffness matrix of the element; they are reported
here. :

2. STRAIN ENERGY OF A TRIANGULAR FIELD

Consider the complete cubic deflection field

W= 0y 40X +a3y+a4>52 +205xy + ag ) +Hagx Foagxty +ooxyt +a,093) (1)

valid in the triangular region 1 of Fig. 1.

* This research has been sponsored by the Air Force Flight Dynamics Laboratory under Contract
AF 61{052)-892 through the European Office of Aerospace Research (EQAR), United States Air Force.
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2(o,b)

FiG. 1

The ten coefficients can be determined in terms of the local deflections (wg, wy, w,)
at the nodes 1,2,0, the local slopes (¢q, @1, ¢,), Where ¢ = dw/dx, the local slopes
W, Y1, ,), where f = dw/dy, and the local slope ¢, at mid distance along the edge 12.

L0y = Wo oy = o a3 =Y ' )

a*oy = —3wy—2ady+ 3wy —ag, , '

2abas = —6wo—2a¢o—2b o+ 6w, —ad, +2bY +ad,—4ad,,

bPug = —3wy—2byo+ 3w, — by,

4a’a; = 2wo+ade—2w; +ag,
4a*bog = 6Wo+2‘1¢0‘+b"/’o“6W1 +ag,—by—ag,+4ag,,
4ab*oy = 6wo+ado+2byo— 6wy +ap, —2by; +4ag,,

863y = 2wo+ big— 2w, + b, | 3)

The bending strain energy in the oblique co-ordinates (x, y} is

. _ _ 2
U, = 5| DH“’“*W.”. Wy 05 Aot —-v)(wnww——wiy)] dxdy
2sina)); ' sina

where D is the bending rigidity of the blate. To calculate it in terms of the generalized co-
ordinates :
(WodoWow1 011 W2P20201,) = d4

{g'; is the transpose of the column matrix g, of the generalized co-ordinates), we express
the curvature as ‘

Ip2 W+ 22 WxTFazbs W;la _ @
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where the: (3x 10) matriées of constants W, W, and W, can be written down-f_rom .
' Wy, = 20, -+ 24xa, + 8yots
Wyy = 2005+ 8xag + 8yag
Wy, = 206 + 8oty +24y0t4 ¢

and subst.itution of the «; from equations (2) and (3). Then

1 | o
U, =5j.[ Dy'Hydx dy 5)
1 . . :
with .
1 ~2cosa cos?a+v sin’a
1
H= perc] i 2cosa  4cos?a+2(1—v)sin’x —2cosa . (6)
cos?o+ v sin’a —2cosa A 1

-If the bending rigidity remains constant over the area of the triangle, equation (5) can be

evaluated in terms of

' 2 : 2
: J:[ Ddxdy = ﬁIID IJ Dx dxdy :—-fl—bD ‘”\ Dy dxdy =9b—D
1 2 1 6 1 6

: N
a’b a’b? ‘ ab?
2 =27 - 2 =2_D.
JLDx dxdy = 12D J.J;nydXQy o7 D _”;Dy dxdy 12D
Then, having substituted equation (4) into (5)
. . U, = 391K1q, . B '*__@2 ‘
and the stiffness matrix of the first triangle can be calculated from
313 ' ’
6an K, =3WHW42W,HW+ W' HW +W HW+ W HW,+ W, HW,+ W ,HW,)
C+ W HW,+ W HW,.
Closer inspection of this formula reveals that, introducing the combinations
A = W+ W, By = W4+ W, C,=W+W+W, )
the number of products can be reduced to three:
6a3b? , , , ,
Kl =A1HA1+BIHBI+C1HC1. . (10)
Furthermére the matrices A 1» By and C 1 are simpler.
0 —ab? 0 0 ab? 0 0 0 0
A, =10 0 —ab* 0 0 ab> 0 0 _ 0
‘ 0 a -2a% —6a*> a® —2a°h 6a* 0 —2d% . 4d°
: : (11)
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[0 -2 b 0 —ab® —B 0 -ab? 0 dab?

B,=|0 -a 0 0 0 0 0 a% 0 0
0 0 —a®% 0 00 0 0 0 a% 0
| A o (12)
o [eb* ab* B —6b? 2ab?  —b® 0 -—ab® O dab?
C,= |6ab a*b  ab* —6ab a*b —ab> 0 O 0  4a%
6a> a3 b —6a2 a* -2 0 0 a*b 4a®
’ (13)

3. ASSEMBLING THE STIFFNESS MATRICES OF THE TRIANGULAR FIELDS

In the second triangular field we can obtain continuity along the interface x = 0 of
the deflection w (hence also continuity of dw/dy) and of the slope dw/dx by retaining the
values of the coefficients ay, o5, 3, &5, 00, &g and a;, of the first field.

New values o, o5 and oy can be adopted for the remaining coefficients. It can be
verified that, as would be expected, the coefficients of the second field are given by the same
formulas (2) and (3), provided we change a into —c, w, into ws, ¢, into ¢4, ¥, into Y5,
¢y, into ¢, 3. The generalized co-ordinates for the second field are thus

(Wo¢o'/’oW3¢3W3W2¢2‘/’z¢z3) ={3.
, Pfocegding in the same manner as for the first field, the strain energy
U, = 195K249;
produces a stiffness matrix K, given by
6¢3b?
D

where A4,, B, and C, are directly obtainable from the corresponding matrices (11), (12)
and (13) of the first field by changing a into —c.

For field 3, deflections and slopes at the interface y = 0 are identical with those of
field 1 if the coefficients oy, o5, &3, 004, oy, 07 and o are retained.

The new coefficients are ag, ¢y and «},. To determine the coefficients in terms of the
generalized displacements

K, = AyHA,+ByHB, +C,HC,

(WoPoWowid 1t 1 wadbathadar) = g3

" we can use formulas (2) and (3) with the modifications b into ~d, w, into w,, ¢, into ¢,,
¥, into Y, and ¢, into ¢, . The stiffness matrix K is given by - '

- 6a’d® = , ,
) ——D""'K3 == A3HA3+B3HB3+C3HC3
where A5, B, Cy derive from A,, B;, C, by changing b into —d. Finally the fourth field
conforms with fields 2 and 3 at the interfaces, if its coefficients are

! ' ! ! ’ !
Oy, Oy, Oy, O, Ol5, Og, 07, Oy, 0y and af,.
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In terms of the generalized co-ordinates

(vadatbowsbsiswababiadse) =4

the coefficients derive from equatlons (2) and (3) w1th the combined modxﬁcanons a into
-¢, binto —d .

wy, ¢y, ¥ respectively into  ws, @3, 5
Wy, @, ¥, respectively into  wy, @a, Yy '

© ¢y into @s,.

Again, with the double change : a into —c and b into —d, the matrices (1 1H13) can be used
to form

6c3d3
~—Ky = A4HA4+ B,HB,+C,HC,.

The four partial stiffness matrices are combined into a (19 x 19) matrix J defined by energy
addition

4 .
;qSK.q: =p'Jp (14)

where

= (W0¢0¢0W1¢131/1“’2¢2¢2W3¢3‘/’3W4¢4¢4¢12¢23¢34¢41)-

This can be done by using localizing matrices L;
4= Lp 4 | (15)

4
1 .

. or simply addressing ditectly the elements to their proper place in J as they are generated.

4. CONDENSATION

Jis not a proper stiffness matrix since the nineteen co-ordinates in parenot mdependent
They depend on sixteen coefficients

%(i=1,23...10) and o (i=46,78,9,10).

It is interesting to observe that «,, o, 3 which represent the rigid body freedoms of the
plate and o5, which represents a torsional deformation mode, are the only coeflicients
valid throughout the four fields. Equating the four different field expressions obtained
from equation (3) for coefficient a5, we obtain a system of three equations that can easily

\

\\QUQB . -

oo+ Ma,
%,

s,
pjauy -
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be solved for the deflection and slope at the in'temal node:.

[ a ac ac

Yo = a-{-cwl+a+c"\»’3“6(a+c)¢1+6(a'1'c)¢3
5@1—4-203175:F—3—)t d¢,2+d¢23+b¢34—b¢41)
$o = aiﬁ-c(wl "W‘*‘)'z(ai %! '“z(ac+ c).¢3+2(bid)¢2+2(bi‘ 8% R
..m%m(adqslﬁcwu+bc¢34+éb¢>4x)
bo = rehitaehs (a+f>‘lb+d> bttt o)

It can be verified that, with these values of w,, ¢4 and 4, the other equations between
different expressions of the o; and «; coefficients turn into identities. Hence the sixteen
coeflicients can be expressed in terms of the sixteen generalized co-ordinates

(W1¢1¢1W2¢2§[/2W3¢3W3w4¢4¢’4¢1z¢23¢34¢41) =q

by a non-singular transformation.
If the linear relations (17) are put in matrix form

wo\
$o | = Mg - (13
Yo
a condensation matrix N is defined by
M
(!
where E is a (16 x 16) identity métrix, so that
p=Ng. - (20)
The total energy becomés ‘ '
f4Kq 21)
with the (proper) stiffness matrix
K=NJN. . (22)

. 5. NORMALIZATION TO COMMON REFERENCE DIRECTIONS

K is now the stiffness matrix of a conforming element.

Indeed, consider the edge 12 and suppose the quantities (wy, ¢, ¥,) (w4, ¢4, ;) and
¢y, to be known. From ¢, and i, we can deduce the slopes s, and n, respectively in the
direction 12 and normal to it in 1. Similarly from ¢, and ¥, we can deduce s, and n,. The

A
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* knowledge of (w,, w,, sy, 5,) is just sufficient to determine w everywhere, since it varies = -
as a cubic along the edge. In particular the slope s; , at mid distance is thereby determined. .

Froms,, and ¢,,, n;, can now be determined and the knowledge of n,, n, and n,, is just
sufficient to determine the transverse slope n everywhere, since it has parabolic variation.
Consequently, the knowledge of (w,, ¢1, ¥,), (w2, @5, ¥,) and ¢,, determines completely
the defiections and slopes along the edge 12. Should this edge become an interface, con-
tinuity of deflections and slopes will follow from the single-valuedness of deflections and

- slopes in the nodes 1 and 2 and single-valuedness of the transverse slope at mid distance. ;
As the natural reference directions, provided by the diagonals, can change when

passing from one element to the other, it is advisable to refer the slopes to common reference
directions. This facilitates pairwise identification of the co-ordinates that will in fact
become the nodal displacements of the assembled structure.

For the identification of slopes at mid distance of an edge the best pohcy is to use as
generalized co-ordinates the slopes in the directions of the outward normal (Fig. 2).

F1G. 2

Then, when assembling elements, account must be taken of the reversal of sign of the

reference direction. Taking the case of the edge 12, the problem consists in expressing

¢, in terms of the slope n,, in the direction of the outward normal and (w,, ¢, ¥,),

(w2, ¢2? ¥s)

One procedure is as follows. From ¢, and ¥, deduce the slope s, in the direction 12

1251 = —ag;+by,
(a®>+b%—2ab cos a)* the length of the edge.

il

Ci2
Similarly in2

C125; = —ag,+by,.
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Then, conmdermg the cubic variation of w along 12, express the slope sy at mxd dxstance

4012312 6W2 ‘6W1 “012(31 +32)
or, substituting s, and's,,

4‘-'12312 = 6w, — 6w, +ap; —by, +ap, "bllfz
Finally express ¢,, in terms of s,, and n,,
' 1201, = bsinan;, —(a=bcos a)s,,.
When s, is substituted the required formula is

bsina a—bcosa,, -
‘¢12'= Ryz— 4c, (6w, — 6w +ad, —by, +ag,—by,). (23)

Ci2

At the vertices, where several elements are interconnected, the slopes should be referred

to a common cartesian reference frame (Fig. 2). The cartesian slopes 6w/dX and ow/0Y
will be denoted by ¢ and 7 respectively. They are related to the slopes ¢ and ¥ in the refer-
ence frame of the diagonals by

. X ay X oY
¢ = fa‘*‘ﬂ"a-; Y= 60_y+n5' (24)

There is a choice for expressing the direction cosines, which can sometimes produce
analytical simplifications:

X - X10 _ Xo3 _ *13

ox a ¢ a+c

25)

In these formulas x;; stands for x; --x;and y;; for y;—y;, where (x;, y;) are the co-ordinates
of the intersection of the dlagonals (i = 0) and of the vertices (i = 1, 2, 3, 4) in the cartesian
reference frame. The computer can generate the required geometrical characteristics from
the co-ordinates of the vertices alone by formulas such as

_ X1X3Y3a4FXaX3Ya1+X3X4Y12 +X4X1)23
Y31X24—X31Y24

_ 1YaX34+VaY3Xar +V3YaX12+VaY1X23
X31Y24YV31%X24

0

(26)
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_ a? = x3,+y%, IR
‘(a'_}_c)z = x{3+yis
‘ ety =xh+yly ‘
~ absina = X10¥20 ~V10%20 '
abcosa = Xx;0X20+ Yi0V20 ' . - : (27)

“ala—bcosa) = xy0X12+Y10V12
Our final (conforming) set of generalized co-ordinates is described by the row vector

v = (Wi &y wana€awatalawana€an snaanaang,).
The transformation ‘
q = Pr (28)

from the old (natural) set of co-ordinates to the conforming one is made up from eight
equations of type (24) applied to the slopes at the vertices, four identities w; = w; at the
vertices, and four equations of type (23) in which, however, the natural slopes at the vertices
are still to be replaced by the cartesian ones. The result for ¢,, turns out to be

¢ - *10Y20 = Y10%20 n a
1 \/[(xfo+)ffo)(x%2 +yh)] o
__%*10%12FY10¥12
4(x}2+ yi v/ (xio+yio)
In this form, the other ¢;; values can be obtained by a cyclic permutation of the indices
(1,2,3,4) ‘

Under the linear transformation (28) the energy of the element becomes the quadratic
form

(29)

(6w, — 6wy +x 1,81+ %1382+ Y1211+ V12M2)

3rRr

in the conforming co-ordinates. The final (operational) stiffness matrix Ris to be calculated
from

R=PKP or R=0JQ (30

where Q = NP is the product of the cbndensing matrix N and the conforming matrix P.
This product can be programmed numerically. If an analytical form is preferred, the only
algebra remaining is the substitution of equations (24) and (29) into equations (17).

6. SHAPING OR WEIGHTING FUNCTIONS

In order to translate externally applied loads into generalized loads, the transverse
displacement of the plate should be expressed. in terms of the generalized displacements.
Suppose that in each field (i = 1, 2, 3, 4) w is expressed in function of the co-ordinates g;.
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For example, in field 1,

W = WoWo,1(x, ¥+ $o®o,1(x, ) +¥oPo,1(x, y)+w; Wi 1(, )
+¢,®;,4(x, -V)"*' Ui 1, p) W Wa i (x, y)+ D, 1 (x,Y) (31)
+ YW1 (%, )+ @12 5(x, y). ‘

Then, the virtual work equation for a transverse load n(x, y) on that part of the element is

sin ozj\JA nlx, ywdxdy = q1 f; (32)
1 .

where the elements of the generalized loads matrix f, are in succession
sin « ” n(x, Y)We,1(x, y) dx dy, sin aJ.J. n(x, y)®@o,1(x, y) dx dy, etc.
o J1 ' 1

The contribution of concentrated loads is simply obtained by multiplication of the 1bad
by the local values of the weighting functions v

Wo,1(x, y), etc.

The total virtual work, adding the four field contributions, will be, by virtue of eq.uation (15)

4 4
;%ﬂ=#;ﬂﬁ=ﬂf (33)

Hence, the generalized loads conjugate to the generélized displacements in p are obtained
from

4
f=YLf. G
1

. Again, from the invariance of the virtual work, and by virtue of relations (20), (28) and (30)
. ' . P
.g=N ’(}: L; f,.) (virtual work g'q) (35)
1 -

is the loads matrix conjugate to g (defining a set of “natural” generalized displacements),
while ‘ ' .

4 ’ . -
h=Pg= Q’(Z L;j}) (virtual work k'r) (36)
1 ‘. -
is the loads matrix conjugate to r (defining a set of “cénfo}ming” genera]ized displacements).

Hence, since the matrix Q is available, being necessary to generate the operational
stiffness matrix, it is convenient to evaluate the loads by the f; contributions.

g.\:\qu Og
‘Q‘b@
; § oo 9
: g 9, ¢
5
") (7]
% &
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. The req\iifed Weighting functions for field 1 turn out to be:

oo = [1-2-2 2('1»+232+2%) |

Poy = x l‘ﬁ‘zy;)z

¥os = —3-—-{;)2

W, = -’2 3)—;+6%~2§;~—6§%-— Ey; . N

(37

" b
[, x
(DZ,I = xz(l_z)
y ¥
¥, = }’E(“H“B)

@, =42 —14+547
@12-—4x5{ 1+a+b)

The modifications to introduce in order to convert those functions into the weighting
functions of fields 2, 3 and 4 are exactly.the same as those discussed in Section 3.

7. GENERALIZED EXTERNAL LOADS FOR UNIFORM TRANSVERSE LOADING

To evaluate the integrals involved in equation (32), which are extended over a triangular
field, it is convenient to change variables as follows:

alx

it
<

|
=

|

It
-

!
<

so that equation (32) is transformed into

! - v .
. g1 fy, = absin aL{J.O n(x, y)w du}.du . (38)

- . Fanis *'_h‘
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and the weighting functlons (37) become

Wo,1 = u*(3— 2u)
@y, = au*(v—u)

Yo = bu?(1 —v)
Wy, = v*(3—2v)—u?*(3—2u)
Q= ;I(U—u)(u2+vz~uv—u)
¥,.1 = b(*—u?)(1—1)
Wz.i = (1-v)*(1+2v)
D, =av—u)(1-v)(1—v+u)
¥, = —bu(l—v)?

D, = ~4du(v~u)(1_v)

In the case of a uniform transverse load n, in field one, integration produces the following
generahzed loads matrix

(39)

, _ mabsina
Ji="1g
Similar results are immediately obtainable for the three other fields by the appropriate

substitutions in the geometrical parameters a and b. The proper combinations generating
the equivalent external loads for the element are then obtained through equation (36).

(18 2a 2b 24 —5a 4b 18 3a —4b —4a).

8. LAGRANGIAN MASS MATRICES

Let m,(x, y) be the distribution of mass over the area of the first field of the plate element.
The kinetic energy, neglecting the rotary inertia, will then be

0

1 ' e
sin a3 J.J. my(x, yW(x, y)dx dy = labsin ocJ {j m,(u, )Wy, v) du}dv.
1 0 .
* Substitution of the transverse velocity in terms of the shaping functions

W= WwoW,, (1, 0)+ --- +61,9 4,5, v)

gives the quadratic form '

My
With a Lagrangian mass matrix M, having elements defined by

ab sin ar {r my(u, )W3 1 (u, v) du} dv
4] 0
(40)

H v
ab sin aJ‘ {j my(u, )Wy, 1 Do du} dv etc.
0 0
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Those elements have been evaluated for the case of a constant mass distribution
my(x, y) = mand the resulting Lagrangian mass matrix M, is given in Table 1. The corres-
ponding matrices for the other fields follow by the appropnate modifications in the geo-
metrical constants.

TABLE 1. LAGRANGIAN MASS MATRIX FOR THE g, CO-ORDINATES; UNIFORM MASS DISTRIBUTION m

864 A \
84 12a%

84b  6ab  12b2

39  66a 36b 1224

—%a —15a2 —8ab -240a 504?

666  9ab 8b* 1746  ~37ab  32b?
252 18a  48b 396 ~9%a 96b 864 .
422  54° 6ab 102a ;
~66b —5ab —12b* —102b 23ab
[ ~9%a —12a> —12ab —144a 324

Symmetrical

mab sina
. o . 10080

~23a* 22ab 108a 204>
—24p* —168p —24ab 36b*
~28ab ~96a —20a* 24ab 324° |

. The Lagrangian mass matrix of the element in conforming co-ordinates follows by
addition of energies and application of the linear transformations (15), (20) and (28) as

M= P'N’(iL;-MiLi)NP = Q’( i L;.M;Li)Q. (41)
1 -1

9. FINAL REMARKS

The element is now operational and preliminary results for the case of a rectangular
.plate, centrally loaded, under various boundary conditions, are extremely satisfactory
) " from the deflections point of view. Numerical results and comparlson with other reported
data are given in [8].
Finally, in a private communication, Professor T. H. Pian pointed out the smnlarlty
of our technique for assemblmg polynomial approximations to the methods described in
[9—1 1.
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Adbcrpakt—ITIpeanaraerTcs AN pacyeTa coopyxenuit Hoeas, Oonee xomMmakTHag cxema (16 x 16) MaTpunsl
X03hQUIMEHTOB JKECTKOCTH Uil KOHEYHOTO U3rnGaeMoro sjieMeHTa IUTACTHHKHY. OJIEMEHT SBIAETCH
COOTBETCTBYIOHMM THIIOM TaK, KaK YAOBJETBODSET YCIIOBHIO HENMPEPLIBHOCTYH M3rHGOB M MMEET HAKIIOHSI
HAa HOBEPXHOCTAX pasnena. Jo6aBOYHO, OTHOCHTENBHO MNEPCHNEKTHBEL HANEXawed CXOaAMMOCTH

XapaKTEePHCTHK, TAKOE CBOHCTBO O0ECTICUMBAET TAKNE HU3IINE CKAYKH, KOTOPBIE BIMSIOT HA KOIQ@QHIMEHTH.

Yroxe Kacaercs MHOTFOCTOPOHHOCTH METOAa, oObluHAs YeThIpeyroibHas (opMa ABISETCS TaKKe
yREOOHOU B NPHMEHEHMSX. .
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